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ABSTRACT

We consider the determination of electromagnetic fields for a (large) number of values of a physical parameter. We
apply an iterative procedure based on the minimization of an integrated squared error, and start this procedure from an
initial estimate that is a linear combination of the last few “final” results. When the coefficients in this extrapolation are
determined by minimizing the integrated squared error for the actual value of the parameter, the built-in orthogonality
in this type of scheme ensures that only a few iteration steps are required to obtain the solution. The algorithm has
been available for some time [1], and has already been demonstrated in a number of applications. In the present paper,
we illustrate its potential by applying it to two classical implementations of the CGFFT method to three-dimensional
geometries i.e., a flat, rectangular conducting plate and an inhomogeneous dielectric cube, both in free space. In both
cases, the space discretization preserves the convolution symmetry of the continuous form of the relevant integral equation.

METHOD OF SOLUTION

In the computational modeling of electromagnetic fields for practical applications, typically a large system of linear
equations must be solved. This system originates from spatially discretizing Maxwell’s differential equations (in “finite”
or “local” techniques) or equivalent integral equations (in “global” techniques). In formal notation, such a system can be
written as

L(p)u(p) = f(p), (1)

whereL(p) is a linear operator that originates from discretizing its counterpart in the continuous equation,u(p) is a
discretized field andf(p) corresponds to an impressed source or an incident field. We are interested in the situation
where this problem must be solved for a large number of sampled values of the parameterp, e.g.,p = p0 + m∆p, with
m = 0, 1, . . . ,M .

Iterative procedure

In this subsection, we consider the iterative procedure that is used to solve the system of equations (1). We summarize
the classical description of Van den Berg [2], but restrict ourselves to the case where (1) is a discretized equation. We do
account for the case where (1) is an overdetermined system. First, we introduce an inner product. Letg andh be two
vectors in data space, i.e., the space in which the vectorsLu andf are defined. Then, we define the inner product as

< g | h >=
∑

j

g∗j hj , (2)

wheregj andhj denote the components ofg andh, and where the asterisk denotes complex conjugation. Further, we
define a norm according to||g||2 =< g | g >. The basic idea behind the iterative procedure is to construct a sequence of
vectors{u(n) | n = 0, 1, 2, . . .} such that the norm of the residual in (1), i.e.,

ERR(n) =< r(n) | r(n) >
1
2 , with r(n) = Lu(n) − f, (3)

decreases with increasingn. At each step of the iterative procedure, we write

u(n) = u(n−1) + u(n)
cor, (4)

whereu
(n)
cor is a suitably constructed correction vector. We start the procedure with an initial guessu(0) with corresponding

residualr(0), and a suitably chosen variational vectorϕ(1). Let u(1)
cor = α(1)ϕ(1). We now determine the scalarα(1) such



that< r(1) | r(1) > is minimized. This leads to

α(1) =
− < Lϕ(1) | r(0) >

||Lϕ(1)||2 . (5)

In subsequent steps, we letu
(n)
cor = α(n)û

(n)
cor with û

(n)
cor = ϕ(n) + β(n)û

(n−1)
cor , for n = 2, 3, . . .. Here,ϕ(n) is again a

suitably chosen variational vector. It now follows that< r(n) | r(n) > is minimized when

α(n) =
− < Lϕ(n) | r(n−1) >

||Lû
(n)
cor||2

and β(n) =
< Lû

(n−1)
cor | Lϕ(n) >

||Lû
(n−1)
cor ||2

. (6)

With equations (4)–(6) the iterative scheme based on error minimization has been defined. A geometrical interpretation
is that, in each iteration step, the component of the residualr(n−1) in the subspace spanned by the basis vectorsLϕ(n)

andLu
(n−1)
cor is removed by the correctionα(n)û

(n)
cor. However, for a general choice of the expansion vectors{ϕ(n)},

the successive basis vectors{Lu
(n)
cor} are not orthogonal. Therefore, the iterative procedure formulated above cannot be

interpreted as a full projection scheme.

Choice of expansion vectors

In principle, the iterative procedure outlined above works for any choice of the expansion vectors{ϕ(n)}. The error is
reduced as long as the coefficientα(n) differs from zero, i.e., when

< Lϕ(n) | r(n−1) > 6= 0. (7)

The condition (7) is known as theimprovement condition. In theconjugate-gradient method, the expansion vectors are
generated from the residuals:

ϕ(n)(pm) = L†(pm) r(n−1)(pm), (8)

whereL† is the adjoint operator corresponding toL. This choice offers the advantage that (7) is inherently satisfied. For
this specific choice of expansion vectors, it can be shown that

< Lu(n)
cor | Lϕ(j) >= 0 and < r(n) | Lϕ(k) >= 0, (9)

for j = 0, 1, . . . , n − 1, andk = 0, 1, . . . , n, respectively. Now, any correction vectoru
(n)
cor is inherently a linear com-

bination of the expansion vectors{ϕ(n)}. Therefore, we may interpret the conjugate-gradient method as a successive
projection of the residualr(0) on the orthogonalized basis vectors{Lϕ(n)}. In the remainder of this paper, we will restrict
ourselves to this choice of expansion vectors. Further, we will attempt to organize the space discretization such that the
convolution structure of the continous equation is preserved. In that case, the matrix-vector products in (3) and (8) can be
evaluated by FFT operations, which considerably improves the speed of the so-called CGFFT algorithm.

Initial estimate

In many applications of the conjugate-gradient method, a simple initial estimate is used. Typically, the scheme is started
from u(0) = 0. Depending on the nature of the problem at hand, we can also start from an incident field or from the
Kirchhoff approximation to an unknown surface current. Our choice of the initial estimate is inspired by the fact thatu(p)
depends in a well-behaved manner on the parameterp. Therefore, it should be possible to extrapolate, by choosing

u(0)(pm) =
K∑

k=1

γk u(pm−k). (10)

The interpretation of the conjugate-gradient scheme given above suggested that the{γk | k = 1, . . . ,K} should be found
by minimizing the squared error

< L(pm)u(0)(pm)− f(pm) | L(pm)u(0)(pm)− f(pm) > . (11)

Because of the built-in orthogonality of the conjugate-gradient method, we are then certain that this procedure must start
its search for components off(pm) outside the space spanned by the “previous” functions{Lu(pm−k) | k = 1, . . . ,K}.
The coefficientsγk that minimize the squared error (11) can be found from the system of linear equations

K∑

k′=1

< L(pm)u(pm−k) | L(pm)u(pm−k′) > γk′ =< L(pm)u(pm−k) | f(pm) >, (12)



with k = 1, . . . , K. Typically, we chooseK = 2 (linear extrapolation) orK = 3 (quadratic extrapolation). For larger
values ofK, the basis vectorsL(pm)u(pm−n) with n = 1, . . . ,K become almost linearly dependent, and therefore the
coefficients{γk} can no longer be resolved from (12).

SCATTERING BY A FLAT PLATE

To illustrate our approach, we have extended existing implementations of the CGFFT procedure for two three-dimensional
objects that have become standards in the literature. In both cases, no special precautions were taken to enhance the
discretization, which is first-order accurate as a function of the mesh size. The first example is a flat, rectangular plate
in free space located at0 < x < a, 0 < y < b andz = 0 [3]. For this problem, we solve the well-known electric-field
integral equation

[
∇T∇T ·+s2

c2
0

] ∫ a

0

dx′
∫ b

0

dy′
exp(−sR/c0)

4πR
JS(r′T , s) = −sε0 Ei

T (rT , s), (13)

wheres is a complex frequency,R = |rT − r′T |, and where the subscriptT stands for a transverse component. The un-
known surface currentJS(rT , s) is approximated by rooftop functions, and we use a weak formulation of (13), weighted
by the same rooftop functions. In the resulting discretized form, the convolution symmetry is preserved, so that the matrix-
vector products in the conjugate-gradient procedure can be evaluated with the aid of two-dimensional FFT operations.

In particular, we have computed the monostatic radar cross section of aλ× λ plate for the special cases = −iω. A plane
wave is incident on the plate at an angleθ with respect to thez-axis and an angleφ = 90◦ with respect to thex-axis.
The incident plane wave isx-polarized. The discretized plate has a mesh of31 × 31 points. Figure 1 shows the number
of iterations for increasingθ. The red line represents starting from a zero initial estimate, and the blue line is for two
previous results in the initial estimate, i.e.K = 2.

The second result for the plate concerns marching on in length. The idea was inspired by the shape sensitivity analysis
in [4]. Here, we start from aλ × λ plate and we increase the length of the plate in 100 steps to a2λ × λ plate. We used
a fixed space discretization of62 × 31 mesh points. The number of iterations required to reach a relative error of10−3

versus the length of the plate is shown in Figure 2.

SCATTERING BY AN INHOMOGENEOUS DIELECTRIC CUBE

The second example is an inhomogeneous dielectric cube, again in free space. We formulate the scattering problem as a
domain integral equation over the object domainD as

Ei(r, s) =
D(r, s)
ε(r, s)

+
(

s2

c0
−∇∇·

)
A(r, s), (14)

wheres is a complex frequency and where the vector potentialA(r, s) is given by

A(r, s) =
1
ε0

∫∫

D

∫
exp(−sR/c0)

4πR

ε(r, s)− ε0

ε(r, s)
D(r, s) dV ′, (15)

whereR = |r− r′|. We take the contrast function in (15) constant in each rectangular subdomain in the space discretiza-
tion. Like the current in the plate problem, the dielectric displacementD(r, s) is approximated by an expansion that is
piecewise linear in the longitudinal direction and constant in the transverse directions. The Green’s function is replaced
by a weak form, and the result is weighted by testing functions that are identical to the expansion functions. Again, the
space discretization preserves the convolution symmetry of the continuous form of the integral equation given in (14) and
(15). More details can be found in [5].

As an illustration, we have modeled a cube of muscle tissue centered inside a cube of fat tissue. The incident field isx-
polarized with propagation vector parallel to thez-axis and a strength of 1 V/m. The dispersive tissues are modeled using
a Debye model, and the dimensions of the inner and outer cubes are 0.14 m and 0.30 m, respectively. The discretized
object has30× 30× 30 mesh points. The field is computed in the middle of the muscle cube for real-valued frequencies
s = −iω = −2πif with f between 100 and 600 MHz and then converted to a time domain signal. The number of
iterations needed is shown in Figure 3, where the red line is for a zero initial estimate, and the blue line for minimization
using two previous results. Again, usingK = 2 in the extrapolation procedure led to the most rapid convergence. The

time signal, shown in Figure 4, is computed by an FFT using the waveformexp
[
− (t−τ)2

2T 2

]
sin(ω0t), whereτ = 14 ns,

T = 2.75 ns andω0/2π = 450 MHz.
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Fig.1. Number of iterations required to reach a relative
error of10−3 versus angle of incidence for the marching-
on-in-angle version of the CGFFT method for a flat plate
using zero (red line) and two previous results (blue line)
as an initial estimate.

Fig.2 Number of iterations required to reach a relative
error of10−3 versus length of the plate for the marching-
on-in-length version of the CGFFT method for a flat plate
using zero (red line) and two previous results (blue line)
as an initial estimate.
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Fig. 3. Number of iterations required to reach a rela-
tive error of10−3 versus frequency for the marching-on-
in-frequency version of the CGFFT method for an inho-
mogeneous dielectric cube using zero (red line) and two
previous results (blue line) as an initial estimate.

Fig. 4. Time domain signal at the center of the muscle
cube for an incidentx-polarized wave with amplitude 1
V/m.
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