
 

A computer checked algebraic verification of a distributed
summation algorithm
Citation for published version (APA):
Groote, J. F., Monin, F. G., & Springintveld, J. (1997). A computer checked algebraic verification of a distributed
summation algorithm. (Computing science reports; Vol. 9714). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/bfb7512d-6bac-4e43-86f9-acb9a96e784a


-----------------------------------------------------------------------------------------

ISSN 0926-4515 

All rights reserved 

Eindhoven University of Technology 
Department of Mathematics and Computing Science 

A Computer Checked Algebraic Verification 
of a Distributed Summation Algorithm 

by 

J.F. Groote, F. Moninand J. Springintveld 

editors: prof. dr. R.C. Backhouse 
prof.dr. J.C.M. Baeten 

Reports are available at: 
http://www.win.tue.nllwin/cs 

Computing Science Reports 97114 
Eindhoven, October 1997 

97114 



A Computer Checked Algebraic Verification of a Distributed 
Summation Algorithm 

Jan Friso Groote 
CWl 

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

& 

Department of Mathematics and Computing Science, Eindhoven University of Technology 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

E-mail: jfg«lcwi.nl 

Fran~ois Monin 
Department of Mathematics and Computing Science, Eindhoven University of Technology 

P.O. Box 513, 5600 MB Eindhoven, The Netherlands 

E-mail: monin!lhJin.tue.nl 

Jan Springintveld 
Computing Science Institute, University of Nijmegen 

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 

E-mail: jans«lcs.kun.nl 

Abstract 

We present an algebraic verification of Segall's Propagation of Information with Feedback 
(PIF) algorithm and we report on the verification of the proof using the PVS system. 
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verification is based on the methodology presented in [8] and demonstrates its suitability 
to deliver mechanically verifiable correctness proofs of highly nondeterministic distributed 
algorithms. 
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1 INTRODUCTION 2 

1 Introduction 

The applicability of formal methods for the spepification and verification of distributed sys­
tems is still a much debated issue. For instanc~, in [2], Chou claims that there are still no 
formal methods to reason about distributed systyms which are both practical and intuitive. In 
order to illustrate his opinion he introduces a variant of Segall's PIF (Propagation of Informa­
tion with Feedback) algorithm [15] which he claims is difficult to prove correct formally. The 

, . 
purpose of this parallel algorithm is to collect the sum of values that are stored by processes 
which form the nodes of a finite, connected net~ork. The algorithm is indeed an interesting 
benchmark problem for verification because it iis highly parallel and non-deterministic. As 
such it has been treated in [2, 18, 9]. . 

Here we present a verification of a distribut~d summation algorithm in /LCRL, which is 
a process algebra which allows processes parabeterised with data [7, 6]. The correctness 

I 

of the algorithm is stated as a process equation (Theorem 3.5), the proof of which is a 
straightforward application of the methodology: from [8], which is a combination of algebraic 
and assertional techniques. In [10] it is showrt how proofs using this methodology can be 
proof-checked by computer using the proof cl:lecker COQ [3]. Here we have used similar 

I 

techniques to check the verification using the theorem prover PVS from SRI [12, 13, 14, 16]. 
This paper is organised as follows. The algorithm is described informally in Section 2 and 

formally in Section 3. In Section 4, a linear prbcess eqnation for the algorithm is given and 
, 

it is proven that the resulting process does no~ admit infinite sequences of internal actions. 
Section 5 contains a set of invariants that characterise the reachable states of the algorithm. 
In Section 6, a state mapping is devised that ,relates configurations of the implementation 
to corresponding configurations of the specific~tion. We prove that the state mapping is a 
branching bisimulation between the implementation and the specification. In section 7, we 
report on how we checked the proof in PVS. ?ection 8 contains a comparison of our proof 
with three other verifications of the summati<;m algorithm [18, 2, 9]. Finally, Appendix A 
contains a short overview of the language /LeRL and the methodology of [8J. 

I 
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2 Description 

The distributed summation algorithm does t4e following. Consider a set of processes that 
are connected via some network of bidirectional links (see e.g. Figure 1). We assume that 
all processes are connected, i.e. from each process we can reach any other process via one 
or more links. Each process contains some humber, not known to other processes. The 

, 

algorithm describes how to collect all numbers such that one designated (root) process can 
output the sum of these numbers. The major difficulty in doing so is to use each value in 
each process exactly once. 

The algorithm is described as the parallel ~omposition of a (finite) number of processes, 
indexed by natural numbers. Each process wotks in exactly the same way, except for the root 
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Figure 1: A set of distributed processes 

process, which has number O. This process differs from the other processes in the sense that 
initially it is already started, and when it has collected all sums of its neighbours, it issues 
a rep message to indicate the total sum to the outside world, instead of a partial sum to a 
neighbour. 

The overall idea behind the algorithm is that a minimal spanning tree over the links between 
the processes is constructed with as root the process O. All partial sums are then sent via 
this spanning tree to the root. The difficulty of this protocol is that it is not a priori known 
how the spanning tree will look like. For every run of the algorithm nondeterministically a 
different spanning tree may be constructed. 

Initially, a process is waiting for a start message from a neighbour. After it has received 
the first start message, the process is considered part of the spanning tree and the process by 
which it is started is called its parent. Thereafter it starts all its neighbours except its parent 
by a start message . 

• Those neighbours that were not yet part of the minimal spanning tree will now become 
part of it with the current process as parent. Eventually, these neighbours will send a 
partial sum to the current process using an answer message . 

• Those neighbours that were already part of the spanning tree ignore the start message. 
Note however that due to symmetry these processes will also send a start message to 
the current process. 

So, a process gets from each neighbour except its parent either a partial sum or a start 
message. After having received these messages, it adds all received partial sums to its own 
value, and sends the result as a partial sum to its parent. Eventually, the root process 0 has 
received all partial sums, and it can report the total sum. 

Theorem 3.5 says that this simple scheme is correct, i.e., if each process is connected to the 
root, processes do not have themselves as neighbours and the neighbour relation is symmetric, 
then the distributed summation algorithm computes the sum of the values of the individual 
processes. Note that if any of the stated conditions on the topology does not hold, the 
algorithm either deadlocks, not yielding a result, or it does not sum up all values. 

3 Formal specification 

In this section we will formalise the description given above and state the correctness criterion. 
The algorithm is described as the parallel composition of the algorithms for the individual 
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nodes in the network, which are described generically by meam of a linear process equation. 
For a short introduction to the !-,CRL syntax ofl processes, we refer to Appendix A. 

For the formal specification, we need the dat~ type Bool of the booleans T and F and the 
usual operators 1\, V, --+ and " We also use na~ural numbers N with addition and (cut-off) 
subtraction. 

The data type nSet denotes finite sets of natural numbers. For such a set N we let 
rem(i, N) represent the set N where element i has been removed. The function size(N) 
yields the number of different elements in the skt. We use E and if. to test membership of a 
set. 

We also use lists of natural numbers nList :and lists of sets of natural numbers SList. 
Positions in lists are indexed by natural numbers, starting with index 0. For a list I, ~ i] is 

, 

the element at position i of the list. We write ~i] := t for the list 1 where t has been put at 
position i. As these data types are fairly standard, we have omitted their specification using 
abstract data types. 

The processes of the network interact via matching actions st, st (for start), ans, ans 
(for answer) and the total sum is communicatkd using a rep (for report) action. Although 
communication is synchronous, we think of th~ overbarred action as a send activity, and a 
non-over barred action as the receiving activit/ If an action a synchronises with an action 
a, we call the resulting communication a*. I~ !-,CRL we formally declare the actions and 
communications as follows. ' 

act st, st, st* : N X N (parameters: destination, source) 
ans, ans, ans* : N X N X N (parameters: destination, source, value) 
rep: N (parameter: value) 

commstlst = st* 
anslans = ans* 

Definition 3.1 (Processes). Processes P are described by means of six parameters: 

• i: the ID-number of the process. 

• t: the total sum computed so far by the process. Initially, it contains the value that is 
contributed by process i to the total sUIIJ. 

• N: a set of neighbours to which the process still needs to send a 8t message. 

• p: the index of the initiator, or parent, of the process. Variable p is also called the 
parent link of i. 

• w: The number of st and ans messages that the process is still waiting for. 

• s: the state the process is in. The process can be in three states, denoted by 0, 1, 2. 
If 8 equals 0, the process is in its initial state. If s equals 1, the process is active. If s 
equals 2, the process has finished and behaves as deadlock. 
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P( i, t:N, N :nSet, p, w:N, s:N) = 

[s = 0] => '£j,Nst(i,j)P(i,t,rem(j,N),j,size(N)-l,l)+ 

'£jN [j E Nils = 1] => st(j, i) P( i, t, rem(j, N), p, w, s)+ 

'£j,m,N[s = 1] => ans(i,j,m)P(i,t+m,N,p,:"'-l,s)+ 

'£j,N[s = 1] => st(i,j)P(i,t,N,p,w-l,s)+ 

[i = 0 II N = 0 II w = 0 II s = 1] => rep(t) P( i, t, N, p, w, 2)+ 

[i oj OliN = 011 w = 011 s = 1] => ans(p,i,tlP(i,t,N,p,w,2) 

5 

o 

In line 1 of P above, process i is in its initial state and an st message is received from some 
process j, upon which j is stored as the parent and s switches from 0 to 1, indicating that 
process i has become active. Since it makes no sense to send start messages to one's parent, j 
is removed from N. The counter w is initialised to the number of neighbours of i, not counting 
process j. In line 2, a st message is sent to a neighbour j, which is thereupon removed from N. 
In line 3, a sum is received from some process j via an ans message containing the value m, 
which is added to t, the total sum computed by process i so far. The counter w is decreased. 
In line 4 a st message is received from neighbour j. The message is ignored, except that the 
counter w is decreased. In line 5 a rep(t) is sent (in case i = 0), when process 0 is active, 
there are no more ans or st messages to be received (formalised by the condition w = 0), 
and a st message has been sent to all neighbours (formalised by the condition N = 0). The 
status variable s becomes 2, indicating that process 0 is no longer active. Line 6 is as line 5 
but for processes i oj 0; now an ans message is sent to parent p, containing the total sum t 
computed by process i. 

Next, we define the parallel composition of n + 1 copies of the process P. The result can 
be viewed as a network of processes in the following way. Think of the n + 1 nodes of the 
network as items in a list of length n + 1. The neighbour relation is given by a list n of length 
n + 1 of finite sets of natural numbers, with at each position i the set of neighbours of process 
i. The t-values of the processes are put in a list t of length n + 1 of natural numbers, with 
at position i the t-value of process i. Similarly, the lists p, w, s contain the values of the 
variables p, wand s of all processes, respectively. 

Definition 3.2 (Parallel composition of processes). 

Impl( n:N, t:nList, n:SList, p:nList, w:nList, s:nList) = 

prO, t[O], n[O], p[O], w[O], s[O]) ~ n = O~ 

(P(n, t[n], n[n],p[n], w(n], s[n]) II Impl(n-I, t, n,p, w, s)) 
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D 

Next, we formulate some requirements on the topology of the network. 

Definition 3.3 (Requirements for topology). , We fix a natural number n, denoting the 
number of non-root processes in the network,: a list of natural numbers to of length n + 
1, containing the initial t-values of each of th~ processes, and a list (of length n + 1) of 
sets of natural numbers no, containing for eac~ process the hi's its neighbours. We define 
goodtopology( n, no) as the conjunction of the following properties: 

• No process has a link to itself: Vi i ~ noli]; 

• The neighbour relation is symmetric: Vi, j :s; n i E nolj] '""'" j E noli]; 

• Every process i :s; n is connected to process 0: 

for all i :s; n there exist m :s; nand i == io, ... , im == 0 such that, for all 0 :s; I < m, 

h+l E noliI]. 

• no only contains valid neighbours: Vi V j 6 n i E nolj] -; i :s; n. 

D 

Definition 3.4 (Distributed Summing Algorithm). The distributed summation algorithm 
DSum is defined as Impl, initialised with, apart from n, to, and no, the following special 
values: 

• Po, a list of n+ 1 O's, saying that initially each process considers process 0 as its initiator. 

• wo, a list of length n + 1, with at each position i the size of the set noli]. Thus, initially 
every process expects a message from all! its neighbours. 

• So, a list of length n + 1, with in the first position a 1, to indicate that process 0 is 
active, and at the remaining n positions a 0, to indicate that all other processes are 
still sleeping. 

We leave it to the reader to devise algebraic specifications of these lists. We put 

DSum( n, to, no) == Impl( n, to, 11{), Po, wo, so) 

D 

The theorem below states correctness of the summation algorithm. It says that in a topology 
as described above, the distributed summation algorithm correctly reports the sum of all 
values in the processes and halts. The right hltnd side mentions a function sum, which sums 
up the numbers in a list of natural numbers. 

The remainder of this paper is devoted to proving this theorem; it is repeated and proved 
as Theorem 6.3. 

Theorem 3.5. 



4 LINEARlSATION 

L-Impl( n:N, t:nList, n:SList, p, w:nList, s:nList) = 

[n[OJ = 0/\ w[oJ = 0/\ s[oJ = IJ => 
rep(t[O]) L-Impl(s[OJ := 2) + 

~i,j'N [s[iJ = 0/\ i E n[j] /\ s[jJ = 1/\ i ¥ j /\ i :::: n /\ j :::: nJ => 
T L-Impl(n[jJ := rem(i, n[j]), 

n[iJ := rem(j, n[i]), 
p[iJ := j, 
w[iJ:= size(n[il)-I, 
s[iJ := 1) + 

~i,j'N [s[iJ = 1/\ i E n[jJ /\ s[jJ = 1/\ i ¥ j /\ i :::: n /\ j :::: nJ => 
T L-Impl(n[jJ := rem(i, n[jl), 

w[iJ:= w[iJ-l) + 
~j'N [n[jJ = 0/\ w[jJ = 0/\ s[jJ = 1/\ s[p[j]] = 1/\ 

j ¥ 0 /\ j ¥ p[jJ /\ j :::: n /\ p[jJ :::: nJ => 
T L-Impl(t[p[jJJ:= t[p[jJJ + t[jJ, 

w[p[j]]:= w[p[j]]-I, 
s[jJ := 2) 

Table 1: Linearisation of the implementation 

goodtopology( n, 1I<J) --+ T TrOH(DSum( n, ~, 1I<J)) = T rep( sum(~)) 8 

7 

where J = {st*,ans*} and H = {st,ans,st,ans}. In the trivial case that process 0 has no 
neighbours, the T'S at the left and right hand side of the equation may be omitted. 

4 Linearisation 

In Table 1, we define the process L-Impl, which in Lemma 4.1 is stated to be a convergent 
linearisation of TPH(Impl( n, t, n, p, w, s». The first and second T-actions originate from 
hiding the action st*. The third T-action comes from hiding ans*. In the recursive calls of 
L- Impl only the parameters that are changed are displayed. 

Lemma 4.1. 

1. L-Impl in Table 1 is convergent, i.e. does not admit infinite T-paths. 

2. TPH(Impl(n,t,n,p,w,s)) = L-Impl(n,t,n,p,w,s). 
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Proof. 

1. At each T-step, either a link in n is remo,!ed, or a process moves from state 1 to state 
2. Hence, the sum of the number of links 'in n and the number of processes in state 0 
or 1 strictly decreases with each T-step. 

I 

2. This follows from Theorem 3.5 in [5J and application of T[ and 8H. 

3. By item 2. 

5 Invariants 

We provide a number of invariants of which mdst express that hookkeeping is done properly 
(see Appendix A for a precise definition of inv~riants). The most interesting are invariants 
14, 15 and 16. The first of these three implieS' that from each process in state 1 process 0 

, 

is reachable in a finite number of steps by iteratively following parent links (Le. following 
I 

variable pl. As each process has a unique parent, this is an alternative way of saying that the 
parent links constitute a tree structure with p,ocess 0 as root (and a self-loop at the root). 
Invariant 15 expresses that along each such path all processes are in state 1 too, meaning 
that they are willing to pass partial results aloflg. Invariant 16 expresses that the total sum 
in the processes is maintained in the processe~ that are not in state 2. We will see that at 
a certain moment all processes, except process; 0, are in state 2, which implies that at that 
moment the total sum is present in process O. , 

The invariants mention the functions Preach, starters, children, and sumO,lo which are 
defined first. 

Definition 5.1. Let t, n, p, s be as in Definition 3.2. 

• The function Preach( i, j, p, m) expresses that from process i process j can be reached by 
following the parent links in p. So Preach(-i,j, p, m) holds if there exist i = i o, ... , im = 
j such that, for all 0 :0; I < m, p[ilJ = il+1' 

• starters(i, n) is the number of sets L in n such that i E L. Intuitively, starters(i, n) is 
the number of prOcesses that still want tb send a st message to process i. 

• children( i, p, s) is the number of processes j # 0 in the list p such that p[jJ = i and 
s[jJ = 1. That is, children(i,p,s) is tlhe number of active non-root processes that 
regard process i as their parent. 

• sumO,! (t, s) is the sum of the t[i)-values Of the processes i that are not yet finished, Le. 
such that s[iJ = 0 Or s[iJ = 1. 

o 
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Theorem 5.2. The following are invariants of L-Impi( n, t, n, p, w, s). Here the universal 
quantification over i and j is left implicit. The conjunction of the invariants is written as 
Inv(no, to, n, t, n,p, w, s). Note that the initial topology no and the initial distribution of 
values to are part of the invariant, although these are not a parameter of L-Impi. 

1. s[iJ :'0 2. 

2. p[ iJ :'0 n. 

3. i E n[jJ --> i :'0 n. 

4. i rf- n[iJ. 

5. s[OJ i- O. 

6. p[OJ = o. 
7. s[iJ = 01\ j E n[iJ ---> i E n[jJ. 

8. s[iJ = 01\ i E n[jJ ---> j E n[iJ. 

9. s[iJ ~ 0 ---> n[iJ = no[iJ. 

10. s[iJ = 2 --> w[iJ = 0/1 n[iJ = 0. 

11. If a process i is in state 0, then it can't be a parent: 

s[iJ == 0 ---> p[jJ i- i. 

12. s[iJ ~ 0 --> w[iJ = starter s( i, n) 1\ starters( i, n) = size( n[iJ) 1\ chiidren( i, p, s) = O. 

13. For every process i, w[iJ records exactly the number of messages that are to be received. 
These can either be st messages, or ans messages: 

w[ iJ = starters( i, n) + children( i, p, s). 

14. From every process i process 0 is reachable via parent links in a finite number of steps: 

3m Preach(i, 0, p, m). 

15. If a process i is in state 1, then its parent is also in state 1: 

s[ iJ == 1 ---+ s[p[ iJJ = 1. 

16. As long as no rep message has been issued by process 0 (i.e. s[OJ i- 2), the total sum 
(i.e. Bum( to») is present in the processes that are in state 0 or 1: 

s[OJ i- 2 ---> sumO,l(t, s) = sum(to). 

Proof. The invariants 1 to 12 are easily checked (invariant 6 uses invariant 5). The invariant 
13 uses invariants 4, 5, 6, 8 and 12. The invariant 14 uses invariant 11. The invariant 15 uses 
invariant 13. The last invariant can be proven on its own. I);] 
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6 State mapping, focus points ~nd final lemma 

In order to apply the methodology from [8], we Jpecify a linear process L-Spec describing the 
specification. 

proc L-Spec(b: Bool) == [bJ =? 1"ep(sum(to))L-Spec(~b) 

Clearly, L-Spec(T) = ,·ep(sum(to))o. 
, 

Furthermore, we provide astute mupping h, that specifies how the control variable b of the 
specification L-Spec is constructed out of the pabmeters n, t, n. p, w, 8 of the implementation 
L-Impl. We put 

h(n,t,n,p,w,8) = (8[OJ = 1). 

The intuition behind this definition is as follow~. In a configuration s of L-Impl that satisfies 
8(0] == 1, his) is T (true), so L-Spec can perfor¢. the rep-action, after which it halts. L-[mp[ 
may not be able to perform a matching rep acti';'n directly, since the computation of the value 
to be reported has not yet finished (Le., n[OJ 1"! 0 or w[OJ 1" 0). However, using the fact that , 
L-Impl is convergent, we see that after a finite jnumber of internal T-steps a configuration s' 
is reached where no T-step is enabled, 8[OJ is s~iIl 1 (h will be invariant under the T-steps), 
but a/so n(OJ = 0 and w[OJ = O. So the rep-actipn can be performed (with the correct value), 
after which L-Impl halts. Conversely, it is easy ito verify that if in configuration s L-Impl can 

, 

perform the rep action, then s[OJ = 1, so in copfiguration h( s) the control variable b = h( s) 
of L-Spec has the value T and the specificatibn L-Spec can perform the rep-action (with 
corresponding value). From these observations it will follow that h is indeed a branching 
bisimulation function. 

We formalise this intuitive argument, using ai focus condition, which is a formula that char­
acterises the configurations of L-ImpJ in which no T-step is enabled. (These configurations are 
so-called focus points). Such a formula is extr~cted from the equation characterising L-Impl 
(see Table 1) by negating the guards that enable T-steps in L-Impl. As an optimisation, we 
have put the first two negated guards togeth~r, and have restricted the focus condition to 
configurations satisfying the invariant. 

FC(n,t,n,p,w,s)='ii,j::n , 
(s(iJ = 2 V i jt n[jJ V s[jJ 1" 1 V i =;))11 

(nUJ 1" 0 V w[jJ > 0 V s[jJ 1" 1 V ~[p[jJJ 1" 1 V j = 0) 

We distinguish two kinds of focus points of the distributed summation algorithm. One is the 
set of configurations where the algorithm has r~ported the sum and is terminated, so s[O] = 2. 
The other one contains the configuration s' m~ntioned above and is characterised by s[OJ = 1. 
At that moment the correct sum should be reported. Items 1 and 2 of the lemma below say 
that all conditions in the process L- Impl for jssuing a rep action are satisfied; so reporting 
is possible. Item 3 says that in such a case, all other processes are in state 2. Hence, using 
invariant 16 (i.e., s[OJ 1" 2 -t sumO,! (t, s) = surn( to») we may conclude that the total sum is 
indeed collected in process 0, Le. process 0 reports the correct sum. 

Lemma 6.1. Inv(no, to, n, t, n,p, w, s) and [OJ = 1 together imply 

1. FC(n, t, n,p, w, s) II sri] = 1 ~ n[iJ = 0 
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2. FC(n, t, n, p, w, s) --+ w[O] = O. 

3. goodtopology(n, no) 1\ w[O] = 01\ i # 0 ---> sri] = 2. 

Proof. 

1. Towards a contradiction, assume there exists a process i such that sri] = 1 and n[i] # 0, 
say j E n[i]. By invariant 4 we have j # i. By the first part of FC(n, t, n,p, w, s), 
s[j] = 2. By invariant 10, w[j] = 0, contradicting invariant 13 (remember that j E n[i]). 

2. In order to derive a contradiction, aSsume that w[O] > O. For arbitrary m, we construct 
a sequence of m + 1 processes 0 = io, i" ... , im such that for all 0 ::; I ::; m, we have 
slid = 1, w[id > 0, P[il+1] = ii, and if I # 0, il # O. Clearly, if m > n, there is one 
element i k # 0 which appears twice in the path (pigeou hole principle). Hence we get 
in the path a cycle starting from ik where 0 is not there. So, io can't be reachable 
via parent links from ik and in particular from im , this contradicts the existence of the 
current sequence. 

Let a process il be given such that writ] > 0 and slid = 1. According to invariant 13 at 
least one of the following should hold . 

• There exists some i such that il E n[i]. By invariant 4, il i' i. By the first part 
of FC( n, t, n, p, w, s) it follows that sri] # 1. So, either s[ i] = 2, but this leads 
to a contradiction using invariant 10 (remember that n[i] # 0). Or, sri] = O. By 
invariant 7, i E n[ izl. So, by FC( n, t, n, p, w, s), s[izl i' 1. Contradiction . 

• Or there is some i such that p[i] = iz, i i' 0 and sri] = 1. By the second part of 
FC(n,t,n,p,w,s), we have w[i] > OVn[i] # 0. By item 1 of this lemma, n[i] = 0. 
So w[i] > O. We can take il+1 = i. 

3. First, assume there is some process i i' 0 such that sri] = 1. Using invariants 13, 15 
and 14, it follows that there is a sequence of processes i = io, ... , im = 0 such that, 
for all 0 ::; I < m, il # 0 (even if it means to cut the path), p[ id = il+I, s[ it] = 1 and 
W[il+1] > O. In particular w[O] > 0 contradicting an assumption. 

So, assume that there is no process i # 0 such that sri] = 1, but there is some process 
i # 0 such that sri] = O. From the topology requirement it follows that there is a 
sequence i = io, ... , im = 0 such that for all 0 ::; I < m, il+1 E no[iz]. We show that 
slid = 0 for all I, 0 ::; I ::; m. This contradicts the assumption that s[O] = 1. 

Note that by assumption s[io] = O. So let i l such that s[izl = O. By invariant 9, it 
follows that i l+1 E n[id. By invariant 13, W[il+1] > 0, so il+I # 0 and, by invariant 
10, S[il+1] # 2. As we have excluded that process il+I is in state 1, it must hold that 
S[il+1] = 0, as required. 

Below we copy the General Equality Theorem (see Theorem A.3) instantiated for the dis­
tributed summation algorithm. It says that, given the invariant, implementation L-Impl 
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i 

and specification L-Spec are equivalent (with "f without a preceding T-step, depending 011 

whether the focus condition holds). Its proof refluires that 6 groups of requirements, the so­
called matching criteria, are checked. Given Lejrrma 6.1 this is completely straightforward. 

Lemma 6.2. Assume goodtopology( n, no). 

Inv( no, to, n, t, n, p, W, s) ---t 

L-Impl( n, t, n, p, w, s) ~FC( n, t, 't, p, w, s)[> T L- Impl( n, t, n, p, w, s) 

L-Spec( s[OJ = 1) ~FC(n, t, i, p, w, s)[> T L-Spec(s[OJ = 1) 
, 

Proof. According to [8J it suffices to check that the following instances of the matching 
criteria are implied by the invariant. ' 

1. By Lemma 4.1.1 L- Impl is convergent. 

2. The following three requirements ensure :that the state mapping h is invariant under 
T-steps of L-Impl. 

(a) s[iJ = 0 II i E n[jJ II s[jJ = 1 II i ~}, II i :c; nil j :c; n implies s[OJ = (s[iJ := 1)[OJ 
(note that (s[iJ := 1)[OJ is the first element of. where the ith element has been 
replaced by 1). ' 

We distinguish two cases. If i ~ 0, ,the condition triviaily holds because in that 
case (s[iJ := 1)[OJ = .[OJ. If i = 0, one conjunct of the precondition says .[OJ = O. 
This contradicts invariant 5. ' 

(b) s[iJ = 1 II i E n[jJ II s[jJ = 1 II i ~ j l' i :c; nil j :c; n implies .[OJ = .[OJ. 
This requirement clearly holds. 

(c) n[jJ = 0/\ w[jJ = 0/\ s[j] = 1 II .[p[j]] = 1/\ j ~ 0 II j ~ p[jJ II j :c; nil p[jJ :c; n 
implies .[OJ = (.[jJ := 2)[0]. ' 

This requirement is aiso trivially ~alid, because the assumption explicitly says 
j ~ O. Hence, (.[jJ := 2)[OJ = 8[OJ. 

3. Next, we verify that when the rep actioIl! is enabled in L- Impl, it is enabled in L-Spec: 
n[O] = 0 II w[O] = 0 II 8[0] = 1 implies .[0] = 1. This is obviously true. 

4. We must show that if L-Impl is in a focus point (no internal actions enabled) and L-Spec 
can perform a rep-action, L- Impl can al~o perform the rep action: 

FC( n, t, n, p, w, s) II .[0] = 1 implies n[0J = 0 II w[O] = 0 II .[0] = 1. This is a direct 
I 

consequence of Lemma 6.1.2 and Lemma 6.1.1. 

5. We must show that if the rep action is en~bled in L- Impl then the reported sum is equal 
, 

to the sum reported in L-Spec: n[O] = 0' II w[O] = 0 II 8[0] = 1 implies t[O] = sum( to). 
By invariant 16 we have sum(to) = surhO,l(t, .). By definition, sumO,l(t,') contains 
the sum of the t[iJ values of all process~s i that are not in state 2. By Lemma 6.1.3, 
only process 0 is not in state 2. Hence spm(to) = sumO,l(t,') = t[OJ. 
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6. Finally, we have to show that the h-mapping commutes with the rep action, i.e. (s[OJ := 

2)[OJ oF 1. This is easily seen to hold. 

Theorem 6.3. 

goodtopoiogy(n, 11{)) -+ T TJfJH(DSum(n, t:J, 11{))) = T rep(sum(t:J)) 0 

where I = {st*, ans*} and H = {st, ans, st, ans}. In the trivial case that process 0 has no 
neighbours, the T'S at the left and right side of the equation may be omitted. 

Proof. Apply Lemma 6.2 with t:J substituted for t, 11{) for n, Po for p, Wo for wand So 
for s. This substitution reduces the invariant to T. Furthermore, reduction of the term 
FC( n, t:J, 11{), Po, Wo, so) leads to Ifi i <t 1I{)[0]. Thus we have 

L- Impi( n, t:J, 11{), Po, Wo, so) <lfi i <t 1I{)[0]~ T L- Impi( n, to, 11{), Po, wo, so) 

L-Spec(T) <lfi i <t 1I{)[0]~ T L-Spec(T). 

Hence we can conclude 

TL-Impi(n, t:J, 1I{),Po, wo, so) = TL-Spec(T) 

by adding an initial T if appropriate. We can conclude the stronger 

L-Impi( n, t:J, 11{), Po, wo, so) = L-Spec(T) 

in case Ifi i <t 1I{)[0], i.e. in case process 0 has no neighbours. 
By Lemma 4.1.3, we have TPH(DSum(n,t:J,1I{))) = L-Impi(n,t:J,1I{),po,wo,so). We also 

have seen that L-Spec(T) = rep(sum(t:J)) o. The theorem follows. GJ 

7 Computer-checking the verification 

The proof of Theorem 6.3 establishing the correctness of the distributed summation algorithm 
(DSA for short) has been computer checked with the theorem prover PVS (2.1 Test (patch 
level 2.399)). 

We have first defined in PVS the general notion of linear process equations (LPEs), and for­
mulated the General Equality Theorem A.3 which allows to prove equality between processes 
specified by LPEs (see Appendix A). Using this theorem we have given a complete formal­
ization of the proof in PVS. We have not mechanically checked the proof of GET itself since 
it is part of the logical framework of !,CRL and we therefore considered it as given for the 
verification of this particular distributed algorithm. Also, the linearisation of the protocol, 
i.e. Lemma 4.1.2, was not checked. We note that linearisation can be done mechanically [5J. 
The whole of the definitions, lemmas and proof-scripts can be obtained by mailing one of the 
authors. 
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The specification language of PVS is a highe~-order typed logic ([13, 14, 16]), with many 
built-in types including booleans, integers, sequences, lists, etc. For example, upto(i): 
TYPE = {s: nat I s<= i} is the subtype of the integers less or equal to i. New types may 
be added together with functions, tuples, records, predicate subtypes, abstract datatypes. 
Usually, a PVS specification consist of one or se~eral theories. A theory can have parameters 

I 

and can be imported by other theories (see [13]). 
In the vernacular of PVS, the complete main! theorem (Theorem 6.3), including the note 

on the "trivial case", is represented as follows (i~ order to make clear what the PVS code is, 
we typeset it in teletype font): 

MAINTHM : THEOREM 
goodtopology => 

seq(tau,Sol(L_Impl) (no,to,no,po,wo,so)) 
= 

seq(tau,seq(rep_(totsUm(to)) ,delta)) 
AND 

«FORALL (i:upto(nb)) : not(member(i,no(O)))) => 
Sol (L_Impl) (nb,to,no,po,wo,so) 

= 
seq(rep_(totsum(to)),relta)) 

where seq, rep_, tau, delta represent respectively the sequential composition operator " 
rep, T and o. Sol(L_Impl) is the solution of :the linear process equation L-Impl depicted 
in Table 1. The value nb is the number n of n~n-root processes in the network. The terms 
to ,no ,po, wo. so stand respectively for the init)al values to, no, Po, wo, so, while totsum( to) 
stands for the sum of the values in to. Finall~, goodtopology correspond to the topology 
requirements goodtopology(n, no). The values np and (to, no,Po, Wo, so) have been introduced 
as constants in PVS and therefore do not appe\u- in goodtopology. 

I 

In the following subsections we describe the formalisation of the proof of MAINTHM in PVS. 
First, we describe how the General Equality Theorem has been encoded. In subsection 7.2, 

, 

the data of L-Impl and L-Spec, the initial value~ to, no, Po, wo, so, and the topology are given. 
In the next subsection we show how the invaria~t property, i.e. Theorem 5.2, has been proven 
in PVS. In subsection 7.4 the proof of Lemma 6,1 is described. In the following subsection, we 
present the formalisation of the state mapping, the focus points and the matching criteria. We 
conclude the proof in subsection 7.6. Finally, in subsection 7.7, we discuss the formalisation 
in PVS. 

7.1 The General Equality Theorem 

We have devised the general notion of a lin~ar process equation (LPE) depending on a 
data type D as a parameter in a theory LPES[D:TYPE]: THEORY (see Definition A.l in Ap­
pendix A). This theory imports the theory T~EDATA: THEORY which specifies the processes, 
actions and domains over which summation taKes place in the definition of the LPEs. The set 
of LPEs has been defined as a type LPE: TYPE i = .... Each element of this type corresponds 
to a linear process equation. Theorem A.3 me~tions two LPEs of which the second one runs 
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over a set of actions from which T has been removed. So, in the same theory, we have defined 
a subtype ALPE: TYPE = ... of the previous type, containing elements that are LPEs but 
from which the T action has been removed. We do not provide the types LPE and ALPE 
here because their definition is somewhat unwieldy and not necessary to understand the main 
steps of the verification. 

Then, in a new theory THGET[OX,OY:TYPEJ: THEORY, Theorem A.3 has been introduced. 
Here the data types ox and OY are parameters of the theory THGET that can be instantiated 
with data types. Since the LPEs involved rely on different data types, the theory imports 
both LPES [OXJ and LPES [OYJ . This is actually the way in PVS to use polymorphic types. 
The invariant property, the focus points and the criteria occurring in Theorem A.3 have been 
translated into the theory as predicates. Theorem A.3 is then represented as an axiom as 
follows: 

GET: AXIOM FORALL (lpox: LPE[OXJ,lpoy: ALPE[OYJ,h: [OX -> OYJ, 
I: [OX -> boolJ) : Invlpox(lpox,I) ANO 

(forall (d: OX) : I(d) => Convx(lpox) and Crit2(lpox,d,h) and 
Crit3(lpox,lpoy,d,h) and Crit4(lpox,lpoy,d,h) and 
Crit5(lpox,lpoy,d,h) and Crit6(lpox,lpoy,d,h)) => 

forall (d: OX) : I(d) => 
condi(Sol(lpox)(d),FC(lpox,d) ,seq(tau,Sol(lpox) (d))) 

= 
condi(Sol(lpoy)(h(d)),FC(lpox,d),seq(tau,Sol(lpoy)(h(d)))). 

Here, condi(argl,arg2,arg3) denotes the conditional construct argl ~ arg2t>arg3. 
The invariant property Invlpox(lpox :LPE[OXJ, I: [OX -> boolJ) asserts that the func­

tion I: [OX -> boolJ) is an invariant of lpox, that is to say, for any state d :OX, if red) holds 
and a step can be performed by lpox, then I holds in the new state. The focus condition 
FC(lpox: LPE[OXJ ,d :OX) characterises the states d of the LPE implementation lpox in which 
no T-action is enabled. The first criterion Convx(lpox:LPE[OXJ) says that the LPE imple­
mentation lpox must be convergent. Crit2(lpox :LPE[OXJ ,d :OX,h: [OX -> OYJ) says that 
if in a state d in the LPE implementation Ipox, an internal step can be done, then this internal 
step is not observable modulo the state maJlping h. Crit3(lpox:LPE[OXJ ,lpoy:LPE[OYJ ,d: 
DX,h: [OX -> OYJ) says that when the LPE implementation lpox can perform an external 
step according to the value of d, then the corresponding point (modulo h) in the LPE specifi­
cation Ipoy must also be able to perform this step. Crit4(lpox:LPE[OX] ,1poy:LPE[OY] ,d: 
OX,h: [OX -> OYJ) says that in a focus point FC(lpox, d) of the LPE implementation lpox, 
an action can be performed if it is enabled in the LPE specification Ipoy. Cri t5 (lpox ,lpoy , 
d,h) and Crit6(lpox,lpoy ,d,h) express that corresponding external actions carry the same 
data parameter (modulo d and h) and lead to corresponding states. 

In order to define L- Impl and L-Spec, data types OX and OY corresponding to their parame­
ters have been made explicit in a theory IMPL: THEORY. The theory IMPL imports the theories 
LPES [oxJ and LPES [OYJ. The distributed summation algorithm L-Impl has been defined as 
an LPE by L_Impl: LPE [oxJ = ... corresponding to the formalisation of L- Impl depicted 
in Table 1. In the same way the linear process L-Spec described in Section 6 has been defined 
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to be of type ALPE, LSpec: ALPE [DY] = 

16 

The various parts of the proof of MAINTHM are! provided in the theories DSA1, DSA2, DSA3, 
DSA4 and DSA: THEORY. 

7.2 The data types, the initial values and the topology 

Below we give the data types DX and DY corresponding to the types of the parameters of 
L-Impl and L-Spec. Since PVS allows one to have bounded types using subtypes, we have 
used families indexed by the finite set of proces~es in a network. Here nb denotes the number 
of non-root processes, it has been introduced i1\ the THEDATA theory: 

nb 
state 
ent 
boundlist(ent) 

nat 
TYPE = upto (2) 
var nat 
TYPE = {I : list[upto(rb)] I length(l) (= ent} 

'l. boundlist(ent) is a type parameterise~ by ent. It is used in particular 
'l. to define auxiliary functions in the theories DSA2,DSA3. 

intlist 
listlist 
boundintlist 
statelist 

DX 
DY 

TYPE = [upto(nb) -) na;t] 
TYPE = [upto(nb) -) boundlist(nb+l)] 
TYPE = [upto(nb) -) upto(nb)] 
TYPE = [upto(nb) -) st;ate] 

TYPE =[nat,intlist,listlist,boundintlist,intlist,statelist] 
TYPE = bool 

The initial values to, no,Po, wo, So of Definitio1\ 3.4 appear in the IMPL theory as follows: 

to : intlist 
no : listlist 
po(i: upto(nb)) 
"o(i:upto(nb)) 
so(i:upto(nb)) 

upto(nb) = 0 
nat = length(no(i)) 
state = if i=O then 1 else 0 endif 

Here, e.g., the domain and range of "0 are respectively upto(nb) and nat, so the type of ,,0 

is intlist. For each element i of type upto(nb), "o(i) is equal to length(no(i)). This 
I 

corresponds to the fact that Wo is a list of length n + 1, with at each position i the size of the 
set noli]. Likewise, the domain and range of so are respectively upto(nb) and (a subset of) 
nat, hence the type of so is statelist. Also,po is the null function of type boundintlist. 

The definition of boundintlist implies the fourth property of the topology in Defini­
tion 3.3. So it is not necessary to introduce it into goodtopology. On the other hand, we 
modified the topology with a new requiremen~ TOP4 asserting that each element has at most 
one occurrence in no[j] (neighbours). This is obviously true for sets but wrong for lists. We 
could also have used sets for neighbours, as 'used in the previous sections, but it is more 
converuent using lists together with this requirement. The requirement TOP4 allows us to 
have the following properties: 
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Member_three: LEMMA FORALL (i: upto(nb) ,1: boundlist(nb+l)) 
not(member(i,rem(i,l))) 

Lightlist_three : LEMMA FORALL (i: upto(nb),l: boundlist(nb+l)) 
nodouble(l) and member(i,l) => length(1)=1+1ength(rem(i,1)) 

17 

where rem removes all occurrences of i in 1. The non-redundant property TOP4 is necessary 
to prove that the invariant predicate Inv applied to the initial values holds (for Inv, see 
subsection 7.3): 

Initialinv : LEMMA goodtopology => Inv(nb,to,no,po,wo,so) 

where below goodtopology is defined: 

TOPl bool = FORALL (i: upto(nb)) : not (member(i,no(i))) 

TOP2 bool = FORALL (i,j: upto(nb)) : member(i,no(j)) iff member(j ,no(i)) 

TOP3 bOol = FORALL (i: upto(nb)) EXISTS (m: upto(nb), 

fm [upto(m) -> upto(nb)]) 
fm(O)=i) AND fm(m)=O) AND 

FORALL (1: upto(m)) : 1 < m => member(fm(l+l),no(fm(l)) 

TOP4 : bool = FORALL (i: upto(nb)) : nodouble(no(i)) 

pretopology : bool = TOPi and TOP2 and TOP3 

goodtopology : bool = TOPl and TOP2 and TOP3 and TOP4. 

7.3 The invariant property 

The use of the GET theorem requires an invariant property, that is to say the existence of 
a function I: [OX -> bool] such that in particular the predicate Invlpox(L..Impl,I) holds. 
For I we provide a function Inv which corresponds to the formalisation of the conjunction 
of the items in Theorem 5.2. Actually, the first three items of Theorem 5.2 are not included 
in Inv, as they are direct consequences of the definitions of statelist, boundintlist and 
listlist, respectively. In the proof of MAINTHM, the predicate Invlpox(L..Impl,Inv) leads 
to the requirement to prove the four predicates SlInv, S2Inv, S3Inv and S4Inv, each one 
corresponding to a summand of the LPE L-Impl in Table 1. The predicate SlInv corre­
sponds to the summand with the rep action, the remaining three predicates correspond to 
the summands with T actions. 

SlInv: LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist, 
w: intlist,s: statelist) : 

Inv(k,t,n,p,w,s) AND n(O)=null and w(O)=O and s(O)=l => 
Inv(k,t,n,p,w,s with [(0):=2]) 
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S2Inv : LEMMA FORALL (i,j: upto(nb),k: rlat,t: intlist,n: listlist, 
p: boundintlist!w: intlist ,s: statelist) : 

Inv(k,t,n,p,w,s) AND s(i)=O and memb~r(i,n(j)) and 
s(j)=1 and i/=j =) , 

Inv(k,t,n with [(j) :=rem(i,n(j)), (i) ;=rem(j ,n(i))], 
p with [(i):=jJ,w with [(i):=minus(length(n(i)),1)J, 

, 

s with [(i) :=1J) , 

S3Inv : LEMMA FORALL (i,j: upto(nb),k: ~at,t: intlist,n: listlist, 
p: boundintlist,w: intlist,s: statelist) 

Inv(k,t,n,p,w,s) AND s(i)=1 and member(i,n(j)) and s(j)=1 
and i/=j =) 

Inv(k,t,n with [(j):=rem(i,n(j))J ,p,w with [(i):=minus(w(i),1)J ,s) 

S4Inv : LEMMA FORALL (i,j: upto(nb),k: nat,t: intlist,n: listlist, 
p: boundintlist', w: intlist, s: statelist) 

Inv(k,t,n,p,w,s) AND n(j)=null and w~j)=O and s(j)=1 and 
s(p(j))=1 and j/=O and j/=p(j) =) 

Inv(k,t with [(p(j)):=t(p(j))+t(j)J ,~,p, 
w with [(p(j)) :=minus(w(p(j)) ,'1)J ,s with [(j) :=2J). 

18 

Each of the previous lemmas has been proven i~ the following way. First, we define predicates 
Inv4, ... , Inv16 corresponding to the items of Theorem 5.2. For example the last predicate 
is: 

Inv16(k :nat, t: intlist ,n: list list ,p :boun,dintlist, w: intlist, s: statelist) : 
bool = s(0)/=2 =) sumOand1(t,s)=t,otsum(to) 

where sumO and 1( t, s) represents sumO,l (t, 8) (Definition 5.1). 

Secondly, for i = 4, ... ,16, we introduced and: proved lemmas SlInvi, S2Invi, S3Invi, and 
S4Invi (Inv is changed to Invi). As a detail, w~ mention that items 5 and 6 have been directly 
put into Inv13, as they are only necessary for the item 13 and easily checked. They obviously 
still appear in Inv15 because the proofs of Sfrnv15, ... ,S4Inv15 require respectively the 
lemmas SlInv13, ... ,S4Inv13. Likewise, itein 11 has been directly put into Inv14. The 
most delicate to be proven was S2Inv13. 

7.4 Lemma 6.1 

The formalisation of Lemma 6.1 directly follows the text given in Section 6. So, it has been 
, 

split into three lemmas Itemllemma6_1, Item2lemma6_1, and Item3lemma6_1. We present 
here only the first one. ' 

Itemllemma6_1 : LEMMA FORALL (k: nat,t: intlist,n: listlist, 
p: bounctintlist,w: intlist,s: statelist) 

Inv(k,t,n,p,w,s) AND s(0)=1 =) 
FORALL (i: upto(nb)): FC2(k,t,n,p,w,s) AND s(i)=1 =) n(i)=null 
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where FC2 defined below corresponds to the optimised focus condition FC introduced in 
Section 6. 

FC2(k: nat,t: intlist,n: listlist,p: boundintlist,w: intlist,s: statelist): 
bool = FORALL (i,j: upto(nb» : 

(s(i)=2 or not(member(i,n(j») or s(j)/=l or i=j) 
and 

(n(j)/=null or w(j»O or s(j)/=l or s(p(j»/=l or j=O). 

Consider, for example, the following part of the proof of Item21emma6_1, corresponding to 
Lemma 6.1.2. Under the hypotheses Inv( T/{J, to, n, t, n, p, w, s), s[O] = 1, FC( n, t, n, p, w, s), 
w[O] > 0, we can construct for any integer m, a sequence of m + 1 processes 0 = io, i}, ... , im 

such that for all 0 S; I S; m, s[it] = 1, writ] > 0, p[il+1] = it, and if I cF 0, il cF O. 
The construction of the sequence is formalised by the lemma ConstructSequel. It turned 

out to be convenient to use the relation ph[io] = ih, i.e. ih is the hth successor of io. Using 
the function iterate, ph[io] = ih is modeled by i terate(p ,h) (i). 

ConstructSequel : LEMMA FORALL (k: nat,t: intlist,n: listlist, 
p: boundintlist,w: intlist,s: statelist) 

Inv(k,t,n,p,w,s) and s(O)=l => 
FC2(k,t,n,p,w,s) and w(O)/=O => 

FORALL (m :nat) : EXISTS (i: upto(nb» : 
iterate(p,m) (i)=O and FORALL (h: nat) : 

(h<=m => s(iterate(p,h)(i»=l and w(iterate(p,h) (i»/=O) 
and (h<m => iterate(p,h)(i)/=O). 

Next, consider a step of the proof of Lemma 6.1.3 under the following assumptions: 
Inv( no, to, n, t, n, p, w, s), s[O] = 1, w[O] = 0, the existence of a process i i' 0 with sri] = 0, 
and the existence of a sequence i = io, ... , im = 0 such that for all 0 S; I < m, il+1 E no [it]. 
We have to prove that s[ ih] = 0 for all h, 0 S; h S; m. This is obtained via the following 
lemma: 

BuiltNewSequel LEMMA FORALL (k: nat,t: intlist,n: listlist, 
p: boundintlist,w: intlist,s: statelist) 

Inv(k,t,n,p,w,s) AND s(O)=l AND w(O)=O => 
FORALL (i,m: upto(nb),fm: [upto(m) -> upto(nb)]): 

(i/=O AND s(i)=O AND fm(O)=i AND fm(m)=O AND 
FORALL (1: upto(m» : 1 < m => member(fm(l+l),no(fm(l»» 

=> FORALL (h: upto(m» : s(fm(h»=O 

where fm(h) stands for ih. The proof of BuiltNewSequel requires in particular the fact that 
any process of the sequence mentioned above can't be in state 1. This is provided by the first 
step of the proof of Lemma 6.1.3, and corresponds to the following lemma: 

StepforItem3: LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist, 
w: intlist,s: statelist) 

Inv(k,t,n,p,w,s) AND s(O)=l AND w(O)=O => 
FORALL (i: upto(nb» : i/=O => s(i)/=l 
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On the whole, the formalised proof of Item21krnma6_1 required 2 auxiliary definitions and 
I 

14 lemmas. Some of them were also nsed at otiler places, in particular for Item3lernma6_1, 
which required overall 6 lemmas. 

7.5 State mapping, focus points and \nat ching criteria 

As explained in Section 6, the state mapping h: [DX -> DY] occurring in the theorem GET is 
provided by the following function 

stmapp(k:nat,t:intlist,n:listlist,p:boundintlist,lI:intlist,s:statelist): 
bool = s(O)=l. . 

, 

The application of the theorem GET in the proOf of MAINTHM leads to following proof six obli­
I 

gations Convx(LJmpl), Cri t2(LJmpl,d, stmapp), Crit3(LJmpl,L-.Spec ,d, stmapp), ... , 
Crit6(Llmpl,L-.Spec,d,stmapp) to be proven! using the topological hypotheses and the in-

I 

variant Inv(d). Corresponding to these proof obligations, we define six predicates cri terl, 
... , criter6 and introduce six lemmas Invcriterl, ... , Invcriter6. The predicates corre­
spond respectively to the formalisation of the iitems given in the proof of Lemma 6.2. For 
example the fifth criterion is: 

criter5(k:nat,t:intlist,n:listlist,p:bohndintlist,lI:intlist,s:statelist): 
bool = n(O)=null and 11(0)=0 and s(O)=l => t(O)=totsum(to) 

The lemmas Invcriterl, ... , Invcriter6 assert that each criterion holds under Inv. Note 
that criter5 is the only criterion which requir,es the topological hypotheses: 

Invcriter5 : LEMMA FDRALL (k: nat,t: in~list,n: listlist, 
p: boundintlisti,lI: intlist ,s: statelist) 

pretopology and Inv(k,t,n,p,II,s) =:> criter5(k,t,n,p,II,s). 
! 

During the proof of MAINTHM, Crit5(L_Impl"L-.Spec,d,stmapp) was smoothly reduced to 
proving criter5(proj_1(d), ... , proj_6(d)) f<j>r which we could use the lemma Invcriter5 
mentioned above. The others were proven in the same way. As a detail, we mention that, 
whereas Crit4 (LJmpl, L-.Spec, d, stmapp) m~ntions the focus condition FC(LJmpl, d), we 
use for its proof Lemma 6.1 which used the 6ptimised focus condition FC2(d). To bridge 
this gap, we provided an auxiliary focus point: formula FC1, defined below, together with a 
lemma FCequivFCl which shows that FC is eqJivalent to FC1. Next we proved, assuming the 
invariant Inv, lemma FClequivFC2 which esdblishes the equivalence between FCl and FC2 

I 

and so between FC and FC2. ' 

FC1(k: nat,t: intlist,n: listlist,p: 
bool = (FDRALL (i,j: upto(nb)) : 

not(s(i)=O and member(i,n(j)) 
and (FDRALL (i,j: upto(nb)) : 

not(s(i)=l and member(i,n(j)) 
and (FDRALL (i,j: upto(nb)) : 
not(n(j)=null and lI(j)=O and s(j)=l 

bdundintlist,lI: intlist,s: statelist): 
! 

and s(j)=l and i/=j)) 
, 

, 

arid s(j)=l and i/=j)) 
, 

~d s(p(j))=l and j/=O and j/=p(j))). 
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Below we give the lemma FC1equivFC2. Actually, its proof require the following lemma 
noclon which is easily proven. It asserts that if i can reach to another process j via parent 
links, then i can't be its own parent. 

FC1equivFC2 : LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist, 
y: intlist,s: statelist) : 

Inv(k,t,n,p,y,s) => (FC1(k,t,n,p,y,s) <=> FC2(k,t,n,p,Y,s)) 

noclon : LEMMA FORALL (i,j: upto(nb),p: boundintlist,m: nat) : 
preach(i,j,p,m) and i/=j => p(i)/=i. 

where preach(i,j ,p,m) represents Preach(i,j,p,m) (Definition 5.1). 

7.6 Final steps of the proof 

We finish the formal proof using the main steps of the previous subsections and we show how 
the last arguments ofthe proof of Theorem 6.3 given in Section 6 have been translated in PVS. 

The first required step before applying the theorem GET is to make sure that L...Impl and 
L...Spec are linear process equations. This is the same as establishing that they are respectively 
of the types LPE and ALPE. In other words, the LPEs properties arise as types correctness 
conditions. 

As Theorem 6.3 is a consequence of the General Equality Theorem A.3, we find on the 
top of the proof commands tree of MAINTHM the two following commands (LEMMA "GET") 
introducing the theorem GET in the proof of MAINTHM, and (INST -1 "L...Impl" "L...Spec" 
"stmapp" "Inv") instantiating the quantifiers of GET. Next, the hypothesis goodtopology 
in MAINTHM has been put as an antecedent in the sequent formalizing the main theorem. 
Finally the assumptions of GET have been split off, providing the following formula 

forall (d: DX) : Inv(d) => 
condi(Sol(L_Impl)(d),FC(L_Impl,d) ,seq(tau,Sol(L_Impl) (d))) 

= 
condi(Sol(L_Spec) (stmapp(d)) ,FC(L_Impl,d) ,seq(tau,Sol( L_Spec) (stmapp(d)))) 

as an antecedent from which we derive the main theorem below, and returning the formulas 
Invlpox (L...Impl, Inv) and 

forall (d: DX) : Inv(d) => Convx(L_Impl) and Crit2(L_Impl,d,stmapp) and 
Crit3(L_Impl,L_Spec,d,stmapp) and Crit4(L_Impl,L_Spec,d,stmapp) and 
Crit5(L_Impl,L_Spec,d,stmapp) and Crit6(L_Impl,L_Spec,d,stmapp) 

of GET as two new proof obligations. The first one of these has been proved as described in 
subsection 7.3. Next, we have skolemised the second formula, moved the hypothesis Inv as 
antecedent and split the resulting formula into six sequents. Each of them could be proven 
as described in subsection 7.5. 

This leaves the main sequent to be proved. The quantified variable d in the antecedent 
coming from GET mentioned above was instantiated with (nb, to ,no ,po, YO, so). The lemma 
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I 

Initialinv : LEMMA goodtopology 
i 

=> InvQnb,to,no,po,wo,so) 
! 
I 
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gives Inv(nb, to ,no ,po, 110 ,so), which allows t6 reduce the antecedent coming from GET into 
the following one: ! 

condi(SoICL_Impl) (nb,to,no,po,1I0,so),FC(L_Impl,(nb,to, no,po,wo,so)), 
seq(tau,Sol(L_Impl) (nb,to,no,po!lIo,so))) 

= 
condi(Sol(L_Spec) (stmapp(nb,to,no,po,lIo;so)) ,FC(L_Impl ,(nb,to,no,po,lIo,so)), 

I seq(tau,Sol(L_Spec)(stmapp (nb,to'fo,po,lIo,so)))). 

Next, we used the stmapp function, the so valu~, and Sol(LSpec) together with the !LCRL 
axioms to obtain 

condiCSol(L_Impl) (nb,to,no,po,1I0,80) ,FC(L_Impl,(nb,to,n 0,PO,1I0,80)), 
seq (tau,Sol(L_Impl) (nb, to ,no ,po', 110,80))) 

I 

= 
I 

condi(8eq(rep_(tot8um(to)),delta),FC(L_~mpl,(nb,to,no,p0,110,80)), 

8eq(tau,seq(rep_(totsum(to)),del~a))). 
I 

We then proceeded with a case distinction !between FC(LImpl, (nb, to ,no ,po, 110, so)) 
I 

being true and false, respectively. Finally, w~ introduced the following lemma: 

ReduceFC : LEMMA pretopology => 
(FC2(nb,to,no,po,1I0,50) iff FORALL (i:upto(nb)) : not(member(i,no(O)))) 

I 

This allowed us to establish MAINTHM and therefore to finish the proof: Q. E. D. 

7.7 Discussion 
I 

The distributed summation algorithm has been: computer checked with on the whole 1341em­
mas. Apart from the Type Correctness Conditions (T. C.C.s) concerning the LPEs LImpl and 

I 

L...spec, this does not take into account the OBE.IGATIONs lemmas, since these were generated 
automatically by PVS for the T. C. C.s So did riot have to be devised, and were always imme-

I 

diately proven. The complete proof developm~nt (definitions, lemmas including OBLIGATION 
lemmas also, and proof scripts) comprises about 270 Kb. 

The expressive power of the PVS system all0red us to translate the definitions and lemmas 
in an accurate way. However it turned out !that it was difficult to translate the general 
notion of a linear process equation (LPE). T~e reason is tha.t its definition is complex and 
polymorphic, involving data types as paramet~rs. In particular a family of a priori different 
types indexed by a finite set of actions appea:s in the LPEs. This phenomenon also occurs 
in the matching criteria of the General Equf-lity Theorem. Therefore we have explicitly 
introduced a number bounding the size of th~ set of actions which allowed us to use record 
types for LPEs instead of functional definitioris. 

I 

As mentioned at the beginning of this section, the theorem GET has been provided as an 
axiom in PVS and, being part of the meta-t~eory of !LCRL, was not mechanically checked 
itself. We point out that the theorem MAINTHM has been proven without any axioms other 

I 
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than an axiom stating that rep action and r action are distinct, those of f'CRL and GET 
within the logical framework of PVS. 

As has been illustrated with the distributed summation algorithm, we think that the syn­
tactical and axiomatic description in f.lCRL of distributed systems is suitable for verification 
and enables the proofs to be checked by higher order proof checkers or theorem provers such 
as PVS and COQ leading to an extremely high level of confidence in the correctness of the 
proofs. 

8 Comparison with other verifications. 

Our appraisal of the applicability of formal techniques for reasoning about distributed algo­
rithms differs strongly from Chou's. We feel that proof techniques from the area of formal 
methods are sufficiently mature to prove the correctness of protocols of at least the com plex­
ity of a distributed summation algorithm. We are convinced that the reader - after having 
read, digested and understood the correctness proof - will agree that it is straightforward 
and not at all more complex than necessary. 

There are as far as we know three other formal proofs of the distributed summation al­
gorithm. In [18] Vaandrager proves the summation algorithm correct in the setting of I/O 
automata. His description of the algorithm, which is best compared to the linearisation of 
the algorithm in Table 1, differs from ours in two aspects. First, in his set-up processes 
communicate asynchronously by means of queues, whereas we let processes communicate 
using synchronous interaction. The second difference is that in [18] when a process reads a 
st message from its input queue, st messages are put simultaneously in all outgoing queues, 
whereas in our setting sending these messages happens in an interleaved way. 

The structure of Vaandrager's proof is the following. First, some invariants are proven. 
U sing these, a relation is defined between implementation and specification that is proven 
to be a refinement. From this it may be concluded that the trace set of the implementation 
is included in the trace set of the specification. As trace inclusion does not imply deadlock­
freeness, this fact is proven separately. 

There are two major differences between both proofs. In [18] history and prophecy variables 
are employed which are not present in our paper. It is remarked in [18] that it should be 
possible to give the proof without such auxiliary variables, but that they have been included 
to illustrate their use. Secondly, although the refinement that is presented is very much 
like our state mapping h, we establish branching bisimulation between specification and the 
algorithm, whereas using the refinement, only a weaker fact, namely trace inclusion is shown. 
Therefore, we do not have to show deadlock freeness separately, as branching bisimulation 
preserves deadlock freeness. 

It is also important to note the similarities between both proofs. The overall structure of 
the proofs is the same, as are the essential arguments. Actually, it would not be very hard 
to upgrade the proofs of trace inclusion and deadlock freeness in [18] to imply a result such 
as ours. 

The description of the algorithm by Chou [2] closely resembles the description of [18]. 
Chou's proof sets out with defining three modal properties together stating that the algorithm 
will deliver the total sum exactly once. First, it is argued that proving the modal properties 
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directly on the description of the distributed suinmation algorithm is too complicated. Then 
J 

a more abstract version of the algorithm is defi,ned in terms of causes and events, the state 
space of which can be characterised by simple; invariants. The abstract version is related 
to the original one by means of a simulation relation and a 'joint invariant'. It is shown 
that translated versions of the modal correctn~ss properties hold for the abstract version. 
U sing the simulation relation and the joint invariant it is shown that validity of the original 
correctness properties can be derived for the original algorithm. Chou's proof thus is similar 
to Vaandrager's proof except that correctness is' stated by means of modal properties instead 
of by a specification automaton, and the abstract version is defined in terms of causes and 

I 

events. To the best of our knowledge, these proofs have not been proof-checked. 
We remark that our proof method is purely I syntactical and axiomatic, while the proofs 

in [2, 18] have a semantical nature. This is npt very visible in this paper, as we have for 
readability omitted all syntactic definitions of flata types and employ the General Equality 
Theorem from [8] whose proof is syntactical but which has a semantic flavour. We feel that 
our method shares the advantages of semanticai reasoning, while its axiomatic nature allows 

, 

a complete, computer-checked formalisation. 
A third proof of essentially the same description of the protocol as the one of Chou and 

Vaandrager is given by Hesselink [9]. He describes the protocol using LISP functions that 
are triggered by data in input queues and atpmically put data in all output queues of a 

, 

process. In order to model non-deterministic oehaviour, Hesselink introduces an oracle. He 
then proves that the protocol terminates and ithat if terminated the total sum is collected 
in the root. These observations exactly match: with proof steps one and five of Lemma 6.2. 
Hesselink uses the Boyer-Moore theorem prove,~ to verify the <:arrectness of his proofs. 

A Short description of JLCRL 

The language p.CRL is a formalism (with proof theory) for process algebra comprising data 
[7, 6]. In this section we give a brief overview bf the p.CRL syntax for processes and restate 
the General Equality Theorem of [8], which is ~he basis of the correctness proof in this paper. 
In order to do the latter we have to define the;format for line:>r process equations. 

A.1 Overview of syntax 

Starting from a set Act of actions that can be parameterised with data, processes are defined 
by means of guarded recursive equations and ~he following operators. 

First, there is a constant {) ({) rf- Act) that carmot perform any action and is called deadlock 
or inaction. 

Next, there are the sequential composition operator' and the alternative composition 
operator +. The process x . y first behaves as k and if x successfully terminates continues to 
behave as y. The process x + y can either do 'an action of x and continue to behave as x or 
do an action of y and continue to behave as y, 

Interleaving parallelism is modeled by the operator II. The process x II y is the result of 
interleaving actions of x and y, except that actions from x and y may also synchronise to a 
communication action, when this is explicitly allowed by a communication function. This is a 
partial, commutative and associative function ,I : Act X Act -+ Act that describes how actions 
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can communicate; parameterised actions a( d) and b( d') communicate to ,(a, b)( d), provided 
d = d'. A specification of a process typically contains a specification of a communication 
function. 

In order to axiomatise the parallel operator there are two auxiliary parallel operators. First, 
the left merge lL, which behaves as the parallel operator, except that the first step must come 
from the process at the left. Secondly, the communication merge I which also behaves as the 
parallel operator, except that the first step is a communication between both arguments, as 
specified by the communication function ,. We often write a I b = c for ,(a, b) = c. 

To enforce that actions in processes x and y synchronise, we can prevent actions from 
happening on their own, using the encapsulation operator BH . The process BH ( x) can perform 
all actions of x except that actions in the set H are blocked. So, assuming ,(a, b) = c, in 
B{a,b}(X II y) the actions a and b are forced to synchronise to c. 

We assume the existence of a special action T (T <t Act) that is internal and cannot be 
directly observed. The hiding operator T[ renames the actions in the set I to T. By hiding 
all internal communications of a process only the external actions remain. 

The following two operators combine data with processes. The sum operator 2;d,DP(d) 
describes the process that can execute the process p( d) for some value d selected from the 
sort D. The conditional operator _ <l _~_ describes the then- if -else. The process x <l b~y (where 
b is a boolean) has the behaviour of x if b is true and the behaviour of y if b is false. When 
the right hand side trivialises, i.e. y equals 6, we write [bJ =? x. 

We apply the convention that· binds stronger than 2;, followed by _ <l _~_, the parallel 
operators, and + binds weakest. Moreover, . is usually suppressed. 

We work in the setting of branching bisimulation [17J, which is a refinement of weak bisim­
ulation [llJ. 

Axioms for the operators can be found, e.g., in [7J. 

A.2 Linear process equations 

The process equations for process P in Definition 3.1 and for L-Impl in Table 1 are (essen­
tially) written in the format of linear process equations (LPEs). A linear process equation 
is of the form X(d:D) = RHS, where d is a parameter of type D and RHS consists of an 
alternative composition of a number of summands of the form 

L [b(d,e)] ~ a(!(d,e))X(g(d,e)) 
e:E 

Such a summand means that if for some e of type E the guard b( d, e) is satisfied, the action 
a can be performed with parameter f( d, e), followed by a recursive call of X with new value 
g(d, e). Now the main feature of LPEs is that for each action there is a most one summand 
in the alternative compositionl . This makes it possible to describe LPEs by means of a 
finite set Act of actions as indices, giving for each action a the set Ea over which summation 
takes place, the guard ba that enables the action, the function fa that determines the data 
parameter of the action and the function ga that determines the value of the recursive call. 

In the next definition the symbol 2;, used for summation over data types, is also used to 
describe an alternative composition over a finite set of actions. If Act = {at, ... , an}, then 

lThe LPEs described here, are called deterministic in [8]. 



A SHORT DESCRIPTION OF p,CRL 26 

~aEActPa denotes Pa, + Pa, + ... + Pan' Note t~at for summation over actions the symbol E 
is used (instead of the symbol :). 

Definition A.1. Let Act <;; Act U {T} be a fi~ite set of actions, and let D be a data type. 
A linear pmcess equation (LPEj over Act and IJ is an equation of the form 

I 

X(d: D) = L L [ba(d,e)] =? aUa(d,~))X(ga(d,e)). 
aEAct e:Ea 

for some data types Ea, Da, and functions fa : D -t Ea -t Da, ga 
ba : D -t Ea -+ Bool. (We assume that T has ~o parameter.) 

D -t Ea -t D, 
o 

The process equations for process Pin Definitiol' 3.1 and for L-Impl in Table 1 do not directly 
fit in the LPE format; consult [8] to verify thati the deviations are harmless. 

Definition A.2. An LPE X written as in Definition A.1 is called convergent if it does not 
admit infinite T-paths, i.e., there is a well-foun~ed ordering < on D such that for all e : ET 
and d : D we have that bT( d, e) implies gT( d, e) ,< d. 

An invariant of an LPE X written as in Definition A.1 is a. function I : D -t Bool such 
I 

that for all a E Act, e : Ea, and d : D we have ba( d, e) II I(d) -+ I(ga( d, e)). 0 
I 
I 

For each LPE X, we assume an axiom which postulates that X has a solution, and an axiom 
, 

that postulates that every convergent LPE has ,at most one solution. In this way, convergent 
LPEs define processes. The two principles reflect that we only consider process algebras 
where every LPE has at least one solution andiconverging LPEs have precisely one solution. 

A.3 General Equality Theorem 

Theorem A.3 (General Equality Theorem from [8]). Let X and Y be LPEs given as follows: 

X(d: Dx) = L L [ba(d,e)] =? aUa(d,e))X(ga(d,e)) 
aEAct e:Ea 

Y(d: Dy) = L L [b~(d,e)l =? a(if~(d,e))Y(g~(d,e)) 
aEAct\{T} e:Ea 

Let FCx be a formula over d:D x describing exactly the states of X from which no T-actioll 
is enabled (i.e. equivalent to -dx:ET bT(d, x )).j Assume that 7" and q are solutions of X and 
Y, respectively. Suppose I is an invariant of Xi and, for all d: Dx , I(d) implies the following 
set of matching criteria. 

X is convergent 

lIe:ET(bT(d, e) -+ h(d) = h(gT(d, ell) 

lIa E Act \ {T}lIe:Ea (ba(d,e) -t b~(h(d):,e)) 

lIa E Act \ {T }lIe:Ea (FCx(dj II b~(h(d), e) -t ba(d, ell 

(1) 

(2) 

(3) 

(4) 
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\fa E Act \ {T} \fe:Ea (ba( d, e) ---+ fa(d, e) = f~(h( d), e)) 

\fa E Act \ {T} \fe:Ea (ba( d, e) ---+ h(ga( d, e)) = g~(h(d), e)) 

Then 

\fd:D X I( d) ---+ r( d) ~ FCx( d)~rr( d) = q(h( d)) ~ FCx( d)~T q(h( d)). 
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