

A computer checked algebraic verification of a distributed
summation algorithm
Citation for published version (APA):
Groote, J. F., Monin, F. G., & Springintveld, J. (1997). A computer checked algebraic verification of a distributed
summation algorithm. (Computing science reports; Vol. 9714). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/bfb7512d-6bac-4e43-86f9-acb9a96e784a

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

A Computer Checked Algebraic Verification
of a Distributed Summation Algorithm

by

J.F. Groote, F. Moninand J. Springintveld

editors: prof. dr. R.C. Backhouse
prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nllwin/cs

Computing Science Reports 97114
Eindhoven, October 1997

97114

A Computer Checked Algebraic Verification of a Distributed
Summation Algorithm

Jan Friso Groote
CWl

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

&

Department of Mathematics and Computing Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: jfg«lcwi.nl

Fran~ois Monin
Department of Mathematics and Computing Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: monin!lhJin.tue.nl

Jan Springintveld
Computing Science Institute, University of Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

E-mail: jans«lcs.kun.nl

Abstract

We present an algebraic verification of Segall's Propagation of Information with Feedback
(PIF) algorithm and we report on the verification of the proof using the PVS system.
This algorithm serves as a nice benchmark for verification exercises (see [2, 18, 9]). The
verification is based on the methodology presented in [8] and demonstrates its suitability
to deliver mechanically verifiable correctness proofs of highly nondeterministic distributed
algorithms.

CR Subject Classification {1991}: D.2.4 Program Verification; F.3: logics and Meanings of
Programs.
AMS Subject Classification (1991): 68Q60: Specification and verification of programs;
68Q22: Parallel and distributed algorithms.
](eywords 8 Phrases: Distributed Summation Algorithm, Verification, Formal Proof Check­
ing, Process Algebra, pCRl, PVS.
Note: The research of the second author is supported by Human Capital Mobility (HCM).
The research of the third author is supported by the Netherlands Organization for ScOlentific
Research (NWO) under contract SION 612-33-006. His current affiliation is: CWI, P.O. Box
94079, 1090 GB, Amsterdam, The Netherlands, spring<!lcwi .nl.

1

1 INTRODUCTION 2

1 Introduction

The applicability of formal methods for the spepification and verification of distributed sys­
tems is still a much debated issue. For instanc~, in [2], Chou claims that there are still no
formal methods to reason about distributed systyms which are both practical and intuitive. In
order to illustrate his opinion he introduces a variant of Segall's PIF (Propagation of Informa­
tion with Feedback) algorithm [15] which he claims is difficult to prove correct formally. The

, .
purpose of this parallel algorithm is to collect the sum of values that are stored by processes
which form the nodes of a finite, connected net~ork. The algorithm is indeed an interesting
benchmark problem for verification because it iis highly parallel and non-deterministic. As
such it has been treated in [2, 18, 9]. .

Here we present a verification of a distribut~d summation algorithm in /LCRL, which is
a process algebra which allows processes parabeterised with data [7, 6]. The correctness

I

of the algorithm is stated as a process equation (Theorem 3.5), the proof of which is a
straightforward application of the methodology: from [8], which is a combination of algebraic
and assertional techniques. In [10] it is showrt how proofs using this methodology can be
proof-checked by computer using the proof cl:lecker COQ [3]. Here we have used similar

I

techniques to check the verification using the theorem prover PVS from SRI [12, 13, 14, 16].
This paper is organised as follows. The algorithm is described informally in Section 2 and

formally in Section 3. In Section 4, a linear prbcess eqnation for the algorithm is given and
,

it is proven that the resulting process does no~ admit infinite sequences of internal actions.
Section 5 contains a set of invariants that characterise the reachable states of the algorithm.
In Section 6, a state mapping is devised that ,relates configurations of the implementation
to corresponding configurations of the specific~tion. We prove that the state mapping is a
branching bisimulation between the implementation and the specification. In section 7, we
report on how we checked the proof in PVS. ?ection 8 contains a comparison of our proof
with three other verifications of the summati<;m algorithm [18, 2, 9]. Finally, Appendix A
contains a short overview of the language /LeRL and the methodology of [8J.

I

Acknowledgement

Thanks go to Bas Luttik for carefully proof re'fding, and to Twan Basten and Jozef Hooman
for assistance with PVS.

2 Description

The distributed summation algorithm does t4e following. Consider a set of processes that
are connected via some network of bidirectional links (see e.g. Figure 1). We assume that
all processes are connected, i.e. from each process we can reach any other process via one
or more links. Each process contains some humber, not known to other processes. The

,

algorithm describes how to collect all numbers such that one designated (root) process can
output the sum of these numbers. The major difficulty in doing so is to use each value in
each process exactly once.

The algorithm is described as the parallel ~omposition of a (finite) number of processes,
indexed by natural numbers. Each process wotks in exactly the same way, except for the root

3 FORMAL SPECIFICATION 3

8 7
23

6 14

root

Figure 1: A set of distributed processes

process, which has number O. This process differs from the other processes in the sense that
initially it is already started, and when it has collected all sums of its neighbours, it issues
a rep message to indicate the total sum to the outside world, instead of a partial sum to a
neighbour.

The overall idea behind the algorithm is that a minimal spanning tree over the links between
the processes is constructed with as root the process O. All partial sums are then sent via
this spanning tree to the root. The difficulty of this protocol is that it is not a priori known
how the spanning tree will look like. For every run of the algorithm nondeterministically a
different spanning tree may be constructed.

Initially, a process is waiting for a start message from a neighbour. After it has received
the first start message, the process is considered part of the spanning tree and the process by
which it is started is called its parent. Thereafter it starts all its neighbours except its parent
by a start message .

• Those neighbours that were not yet part of the minimal spanning tree will now become
part of it with the current process as parent. Eventually, these neighbours will send a
partial sum to the current process using an answer message .

• Those neighbours that were already part of the spanning tree ignore the start message.
Note however that due to symmetry these processes will also send a start message to
the current process.

So, a process gets from each neighbour except its parent either a partial sum or a start
message. After having received these messages, it adds all received partial sums to its own
value, and sends the result as a partial sum to its parent. Eventually, the root process 0 has
received all partial sums, and it can report the total sum.

Theorem 3.5 says that this simple scheme is correct, i.e., if each process is connected to the
root, processes do not have themselves as neighbours and the neighbour relation is symmetric,
then the distributed summation algorithm computes the sum of the values of the individual
processes. Note that if any of the stated conditions on the topology does not hold, the
algorithm either deadlocks, not yielding a result, or it does not sum up all values.

3 Formal specification

In this section we will formalise the description given above and state the correctness criterion.
The algorithm is described as the parallel composition of the algorithms for the individual

3 FORMAL SPECIFICATION 4

nodes in the network, which are described generically by meam of a linear process equation.
For a short introduction to the !-,CRL syntax ofl processes, we refer to Appendix A.

For the formal specification, we need the dat~ type Bool of the booleans T and F and the
usual operators 1\, V, --+ and " We also use na~ural numbers N with addition and (cut-off)
subtraction.

The data type nSet denotes finite sets of natural numbers. For such a set N we let
rem(i, N) represent the set N where element i has been removed. The function size(N)
yields the number of different elements in the skt. We use E and if. to test membership of a
set.

We also use lists of natural numbers nList :and lists of sets of natural numbers SList.
Positions in lists are indexed by natural numbers, starting with index 0. For a list I, ~ i] is

,

the element at position i of the list. We write ~i] := t for the list 1 where t has been put at
position i. As these data types are fairly standard, we have omitted their specification using
abstract data types.

The processes of the network interact via matching actions st, st (for start), ans, ans
(for answer) and the total sum is communicatkd using a rep (for report) action. Although
communication is synchronous, we think of th~ overbarred action as a send activity, and a
non-over barred action as the receiving activit/ If an action a synchronises with an action
a, we call the resulting communication a*. I~ !-,CRL we formally declare the actions and
communications as follows. '

act st, st, st* : N X N (parameters: destination, source)
ans, ans, ans* : N X N X N (parameters: destination, source, value)
rep: N (parameter: value)

commstlst = st*
anslans = ans*

Definition 3.1 (Processes). Processes P are described by means of six parameters:

• i: the ID-number of the process.

• t: the total sum computed so far by the process. Initially, it contains the value that is
contributed by process i to the total sUIIJ.

• N: a set of neighbours to which the process still needs to send a 8t message.

• p: the index of the initiator, or parent, of the process. Variable p is also called the
parent link of i.

• w: The number of st and ans messages that the process is still waiting for.

• s: the state the process is in. The process can be in three states, denoted by 0, 1, 2.
If 8 equals 0, the process is in its initial state. If s equals 1, the process is active. If s
equals 2, the process has finished and behaves as deadlock.

3 FORMAL SPECIFICATION

P(i, t:N, N :nSet, p, w:N, s:N) =

[s = 0] => '£j,Nst(i,j)P(i,t,rem(j,N),j,size(N)-l,l)+

'£jN [j E Nils = 1] => st(j, i) P(i, t, rem(j, N), p, w, s)+

'£j,m,N[s = 1] => ans(i,j,m)P(i,t+m,N,p,:"'-l,s)+

'£j,N[s = 1] => st(i,j)P(i,t,N,p,w-l,s)+

[i = 0 II N = 0 II w = 0 II s = 1] => rep(t) P(i, t, N, p, w, 2)+

[i oj OliN = 011 w = 011 s = 1] => ans(p,i,tlP(i,t,N,p,w,2)

5

o

In line 1 of P above, process i is in its initial state and an st message is received from some
process j, upon which j is stored as the parent and s switches from 0 to 1, indicating that
process i has become active. Since it makes no sense to send start messages to one's parent, j
is removed from N. The counter w is initialised to the number of neighbours of i, not counting
process j. In line 2, a st message is sent to a neighbour j, which is thereupon removed from N.
In line 3, a sum is received from some process j via an ans message containing the value m,
which is added to t, the total sum computed by process i so far. The counter w is decreased.
In line 4 a st message is received from neighbour j. The message is ignored, except that the
counter w is decreased. In line 5 a rep(t) is sent (in case i = 0), when process 0 is active,
there are no more ans or st messages to be received (formalised by the condition w = 0),
and a st message has been sent to all neighbours (formalised by the condition N = 0). The
status variable s becomes 2, indicating that process 0 is no longer active. Line 6 is as line 5
but for processes i oj 0; now an ans message is sent to parent p, containing the total sum t
computed by process i.

Next, we define the parallel composition of n + 1 copies of the process P. The result can
be viewed as a network of processes in the following way. Think of the n + 1 nodes of the
network as items in a list of length n + 1. The neighbour relation is given by a list n of length
n + 1 of finite sets of natural numbers, with at each position i the set of neighbours of process
i. The t-values of the processes are put in a list t of length n + 1 of natural numbers, with
at position i the t-value of process i. Similarly, the lists p, w, s contain the values of the
variables p, wand s of all processes, respectively.

Definition 3.2 (Parallel composition of processes).

Impl(n:N, t:nList, n:SList, p:nList, w:nList, s:nList) =

prO, t[O], n[O], p[O], w[O], s[O]) ~ n = O~

(P(n, t[n], n[n],p[n], w(n], s[n]) II Impl(n-I, t, n,p, w, s))

3 FORMAL SPECIFICATION 6

D

Next, we formulate some requirements on the topology of the network.

Definition 3.3 (Requirements for topology). , We fix a natural number n, denoting the
number of non-root processes in the network,: a list of natural numbers to of length n +
1, containing the initial t-values of each of th~ processes, and a list (of length n + 1) of
sets of natural numbers no, containing for eac~ process the hi's its neighbours. We define
goodtopology(n, no) as the conjunction of the following properties:

• No process has a link to itself: Vi i ~ noli];

• The neighbour relation is symmetric: Vi, j :s; n i E nolj] '""'" j E noli];

• Every process i :s; n is connected to process 0:

for all i :s; n there exist m :s; nand i == io, ... , im == 0 such that, for all 0 :s; I < m,

h+l E noliI].

• no only contains valid neighbours: Vi V j 6 n i E nolj] -; i :s; n.

D

Definition 3.4 (Distributed Summing Algorithm). The distributed summation algorithm
DSum is defined as Impl, initialised with, apart from n, to, and no, the following special
values:

• Po, a list of n+ 1 O's, saying that initially each process considers process 0 as its initiator.

• wo, a list of length n + 1, with at each position i the size of the set noli]. Thus, initially
every process expects a message from all! its neighbours.

• So, a list of length n + 1, with in the first position a 1, to indicate that process 0 is
active, and at the remaining n positions a 0, to indicate that all other processes are
still sleeping.

We leave it to the reader to devise algebraic specifications of these lists. We put

DSum(n, to, no) == Impl(n, to, 11{), Po, wo, so)

D

The theorem below states correctness of the summation algorithm. It says that in a topology
as described above, the distributed summation algorithm correctly reports the sum of all
values in the processes and halts. The right hltnd side mentions a function sum, which sums
up the numbers in a list of natural numbers.

The remainder of this paper is devoted to proving this theorem; it is repeated and proved
as Theorem 6.3.

Theorem 3.5.

4 LINEARlSATION

L-Impl(n:N, t:nList, n:SList, p, w:nList, s:nList) =

[n[OJ = 0/\ w[oJ = 0/\ s[oJ = IJ =>
rep(t[O]) L-Impl(s[OJ := 2) +

~i,j'N [s[iJ = 0/\ i E n[j] /\ s[jJ = 1/\ i ¥ j /\ i :::: n /\ j :::: nJ =>
T L-Impl(n[jJ := rem(i, n[j]),

n[iJ := rem(j, n[i]),
p[iJ := j,
w[iJ:= size(n[il)-I,
s[iJ := 1) +

~i,j'N [s[iJ = 1/\ i E n[jJ /\ s[jJ = 1/\ i ¥ j /\ i :::: n /\ j :::: nJ =>
T L-Impl(n[jJ := rem(i, n[jl),

w[iJ:= w[iJ-l) +
~j'N [n[jJ = 0/\ w[jJ = 0/\ s[jJ = 1/\ s[p[j]] = 1/\

j ¥ 0 /\ j ¥ p[jJ /\ j :::: n /\ p[jJ :::: nJ =>
T L-Impl(t[p[jJJ:= t[p[jJJ + t[jJ,

w[p[j]]:= w[p[j]]-I,
s[jJ := 2)

Table 1: Linearisation of the implementation

goodtopology(n, 1I<J) --+ T TrOH(DSum(n, ~, 1I<J)) = T rep(sum(~)) 8

7

where J = {st*,ans*} and H = {st,ans,st,ans}. In the trivial case that process 0 has no
neighbours, the T'S at the left and right hand side of the equation may be omitted.

4 Linearisation

In Table 1, we define the process L-Impl, which in Lemma 4.1 is stated to be a convergent
linearisation of TPH(Impl(n, t, n, p, w, s». The first and second T-actions originate from
hiding the action st*. The third T-action comes from hiding ans*. In the recursive calls of
L- Impl only the parameters that are changed are displayed.

Lemma 4.1.

1. L-Impl in Table 1 is convergent, i.e. does not admit infinite T-paths.

2. TPH(Impl(n,t,n,p,w,s)) = L-Impl(n,t,n,p,w,s).

5 INVARiANTS 8

Proof.

1. At each T-step, either a link in n is remo,!ed, or a process moves from state 1 to state
2. Hence, the sum of the number of links 'in n and the number of processes in state 0
or 1 strictly decreases with each T-step.

I

2. This follows from Theorem 3.5 in [5J and application of T[and 8H.

3. By item 2.

5 Invariants

We provide a number of invariants of which mdst express that hookkeeping is done properly
(see Appendix A for a precise definition of inv~riants). The most interesting are invariants
14, 15 and 16. The first of these three implieS' that from each process in state 1 process 0

,

is reachable in a finite number of steps by iteratively following parent links (Le. following
I

variable pl. As each process has a unique parent, this is an alternative way of saying that the
parent links constitute a tree structure with p,ocess 0 as root (and a self-loop at the root).
Invariant 15 expresses that along each such path all processes are in state 1 too, meaning
that they are willing to pass partial results aloflg. Invariant 16 expresses that the total sum
in the processes is maintained in the processe~ that are not in state 2. We will see that at
a certain moment all processes, except process; 0, are in state 2, which implies that at that
moment the total sum is present in process O. ,

The invariants mention the functions Preach, starters, children, and sumO,lo which are
defined first.

Definition 5.1. Let t, n, p, s be as in Definition 3.2.

• The function Preach(i, j, p, m) expresses that from process i process j can be reached by
following the parent links in p. So Preach(-i,j, p, m) holds if there exist i = i o, ... , im =
j such that, for all 0 :0; I < m, p[ilJ = il+1'

• starters(i, n) is the number of sets L in n such that i E L. Intuitively, starters(i, n) is
the number of prOcesses that still want tb send a st message to process i.

• children(i, p, s) is the number of processes j # 0 in the list p such that p[jJ = i and
s[jJ = 1. That is, children(i,p,s) is tlhe number of active non-root processes that
regard process i as their parent.

• sumO,! (t, s) is the sum of the t[i)-values Of the processes i that are not yet finished, Le.
such that s[iJ = 0 Or s[iJ = 1.

o

5 INVARIANTS 9

Theorem 5.2. The following are invariants of L-Impi(n, t, n, p, w, s). Here the universal
quantification over i and j is left implicit. The conjunction of the invariants is written as
Inv(no, to, n, t, n,p, w, s). Note that the initial topology no and the initial distribution of
values to are part of the invariant, although these are not a parameter of L-Impi.

1. s[iJ :'0 2.

2. p[iJ :'0 n.

3. i E n[jJ --> i :'0 n.

4. i rf- n[iJ.

5. s[OJ i- O.

6. p[OJ = o.
7. s[iJ = 01\ j E n[iJ ---> i E n[jJ.

8. s[iJ = 01\ i E n[jJ ---> j E n[iJ.

9. s[iJ ~ 0 ---> n[iJ = no[iJ.

10. s[iJ = 2 --> w[iJ = 0/1 n[iJ = 0.

11. If a process i is in state 0, then it can't be a parent:

s[iJ == 0 ---> p[jJ i- i.

12. s[iJ ~ 0 --> w[iJ = starter s(i, n) 1\ starters(i, n) = size(n[iJ) 1\ chiidren(i, p, s) = O.

13. For every process i, w[iJ records exactly the number of messages that are to be received.
These can either be st messages, or ans messages:

w[iJ = starters(i, n) + children(i, p, s).

14. From every process i process 0 is reachable via parent links in a finite number of steps:

3m Preach(i, 0, p, m).

15. If a process i is in state 1, then its parent is also in state 1:

s[iJ == 1 ---+ s[p[iJJ = 1.

16. As long as no rep message has been issued by process 0 (i.e. s[OJ i- 2), the total sum
(i.e. Bum(to») is present in the processes that are in state 0 or 1:

s[OJ i- 2 ---> sumO,l(t, s) = sum(to).

Proof. The invariants 1 to 12 are easily checked (invariant 6 uses invariant 5). The invariant
13 uses invariants 4, 5, 6, 8 and 12. The invariant 14 uses invariant 11. The invariant 15 uses
invariant 13. The last invariant can be proven on its own. I);]

6 STATE MAPPING, FOCUS POINTS AND FINAL LEMMA 10

6 State mapping, focus points ~nd final lemma

In order to apply the methodology from [8], we Jpecify a linear process L-Spec describing the
specification.

proc L-Spec(b: Bool) == [bJ =? 1"ep(sum(to))L-Spec(~b)

Clearly, L-Spec(T) = ,·ep(sum(to))o.
,

Furthermore, we provide astute mupping h, that specifies how the control variable b of the
specification L-Spec is constructed out of the pabmeters n, t, n. p, w, 8 of the implementation
L-Impl. We put

h(n,t,n,p,w,8) = (8[OJ = 1).

The intuition behind this definition is as follow~. In a configuration s of L-Impl that satisfies
8(0] == 1, his) is T (true), so L-Spec can perfor¢. the rep-action, after which it halts. L-[mp[
may not be able to perform a matching rep acti';'n directly, since the computation of the value
to be reported has not yet finished (Le., n[OJ 1"! 0 or w[OJ 1" 0). However, using the fact that ,
L-Impl is convergent, we see that after a finite jnumber of internal T-steps a configuration s'
is reached where no T-step is enabled, 8[OJ is s~iIl 1 (h will be invariant under the T-steps),
but a/so n(OJ = 0 and w[OJ = O. So the rep-actipn can be performed (with the correct value),
after which L-Impl halts. Conversely, it is easy ito verify that if in configuration s L-Impl can

,

perform the rep action, then s[OJ = 1, so in copfiguration h(s) the control variable b = h(s)
of L-Spec has the value T and the specificatibn L-Spec can perform the rep-action (with
corresponding value). From these observations it will follow that h is indeed a branching
bisimulation function.

We formalise this intuitive argument, using ai focus condition, which is a formula that char­
acterises the configurations of L-ImpJ in which no T-step is enabled. (These configurations are
so-called focus points). Such a formula is extr~cted from the equation characterising L-Impl
(see Table 1) by negating the guards that enable T-steps in L-Impl. As an optimisation, we
have put the first two negated guards togeth~r, and have restricted the focus condition to
configurations satisfying the invariant.

FC(n,t,n,p,w,s)='ii,j::n ,
(s(iJ = 2 V i jt n[jJ V s[jJ 1" 1 V i =;))11

(nUJ 1" 0 V w[jJ > 0 V s[jJ 1" 1 V ~[p[jJJ 1" 1 V j = 0)

We distinguish two kinds of focus points of the distributed summation algorithm. One is the
set of configurations where the algorithm has r~ported the sum and is terminated, so s[O] = 2.
The other one contains the configuration s' m~ntioned above and is characterised by s[OJ = 1.
At that moment the correct sum should be reported. Items 1 and 2 of the lemma below say
that all conditions in the process L- Impl for jssuing a rep action are satisfied; so reporting
is possible. Item 3 says that in such a case, all other processes are in state 2. Hence, using
invariant 16 (i.e., s[OJ 1" 2 -t sumO,! (t, s) = surn(to») we may conclude that the total sum is
indeed collected in process 0, Le. process 0 reports the correct sum.

Lemma 6.1. Inv(no, to, n, t, n,p, w, s) and [OJ = 1 together imply

1. FC(n, t, n,p, w, s) II sri] = 1 ~ n[iJ = 0

6 STATE MAPPING, FOCUS POINTS AND FINAL LEMMA 11

2. FC(n, t, n, p, w, s) --+ w[O] = O.

3. goodtopology(n, no) 1\ w[O] = 01\ i # 0 ---> sri] = 2.

Proof.

1. Towards a contradiction, assume there exists a process i such that sri] = 1 and n[i] # 0,
say j E n[i]. By invariant 4 we have j # i. By the first part of FC(n, t, n,p, w, s),
s[j] = 2. By invariant 10, w[j] = 0, contradicting invariant 13 (remember that j E n[i]).

2. In order to derive a contradiction, aSsume that w[O] > O. For arbitrary m, we construct
a sequence of m + 1 processes 0 = io, i" ... , im such that for all 0 ::; I ::; m, we have
slid = 1, w[id > 0, P[il+1] = ii, and if I # 0, il # O. Clearly, if m > n, there is one
element i k # 0 which appears twice in the path (pigeou hole principle). Hence we get
in the path a cycle starting from ik where 0 is not there. So, io can't be reachable
via parent links from ik and in particular from im , this contradicts the existence of the
current sequence.

Let a process il be given such that writ] > 0 and slid = 1. According to invariant 13 at
least one of the following should hold .

• There exists some i such that il E n[i]. By invariant 4, il i' i. By the first part
of FC(n, t, n, p, w, s) it follows that sri] # 1. So, either s[i] = 2, but this leads
to a contradiction using invariant 10 (remember that n[i] # 0). Or, sri] = O. By
invariant 7, i E n[izl. So, by FC(n, t, n, p, w, s), s[izl i' 1. Contradiction .

• Or there is some i such that p[i] = iz, i i' 0 and sri] = 1. By the second part of
FC(n,t,n,p,w,s), we have w[i] > OVn[i] # 0. By item 1 of this lemma, n[i] = 0.
So w[i] > O. We can take il+1 = i.

3. First, assume there is some process i i' 0 such that sri] = 1. Using invariants 13, 15
and 14, it follows that there is a sequence of processes i = io, ... , im = 0 such that,
for all 0 ::; I < m, il # 0 (even if it means to cut the path), p[id = il+I, s[it] = 1 and
W[il+1] > O. In particular w[O] > 0 contradicting an assumption.

So, assume that there is no process i # 0 such that sri] = 1, but there is some process
i # 0 such that sri] = O. From the topology requirement it follows that there is a
sequence i = io, ... , im = 0 such that for all 0 ::; I < m, il+1 E no[iz]. We show that
slid = 0 for all I, 0 ::; I ::; m. This contradicts the assumption that s[O] = 1.

Note that by assumption s[io] = O. So let i l such that s[izl = O. By invariant 9, it
follows that i l+1 E n[id. By invariant 13, W[il+1] > 0, so il+I # 0 and, by invariant
10, S[il+1] # 2. As we have excluded that process il+I is in state 1, it must hold that
S[il+1] = 0, as required.

Below we copy the General Equality Theorem (see Theorem A.3) instantiated for the dis­
tributed summation algorithm. It says that, given the invariant, implementation L-Impl

6 STATE MAPPING, FOCUS POINTS ANDIFINAL LEMMA 12

i

and specification L-Spec are equivalent (with "f without a preceding T-step, depending 011

whether the focus condition holds). Its proof refluires that 6 groups of requirements, the so­
called matching criteria, are checked. Given Lejrrma 6.1 this is completely straightforward.

Lemma 6.2. Assume goodtopology(n, no).

Inv(no, to, n, t, n, p, W, s) ---t

L-Impl(n, t, n, p, w, s) ~FC(n, t, 't, p, w, s)[> T L- Impl(n, t, n, p, w, s)

L-Spec(s[OJ = 1) ~FC(n, t, i, p, w, s)[> T L-Spec(s[OJ = 1)
,

Proof. According to [8J it suffices to check that the following instances of the matching
criteria are implied by the invariant. '

1. By Lemma 4.1.1 L- Impl is convergent.

2. The following three requirements ensure :that the state mapping h is invariant under
T-steps of L-Impl.

(a) s[iJ = 0 II i E n[jJ II s[jJ = 1 II i ~}, II i :c; nil j :c; n implies s[OJ = (s[iJ := 1)[OJ
(note that (s[iJ := 1)[OJ is the first element of. where the ith element has been
replaced by 1). '

We distinguish two cases. If i ~ 0, ,the condition triviaily holds because in that
case (s[iJ := 1)[OJ = .[OJ. If i = 0, one conjunct of the precondition says .[OJ = O.
This contradicts invariant 5. '

(b) s[iJ = 1 II i E n[jJ II s[jJ = 1 II i ~ j l' i :c; nil j :c; n implies .[OJ = .[OJ.
This requirement clearly holds.

(c) n[jJ = 0/\ w[jJ = 0/\ s[j] = 1 II .[p[j]] = 1/\ j ~ 0 II j ~ p[jJ II j :c; nil p[jJ :c; n
implies .[OJ = (.[jJ := 2)[0]. '

This requirement is aiso trivially ~alid, because the assumption explicitly says
j ~ O. Hence, (.[jJ := 2)[OJ = 8[OJ.

3. Next, we verify that when the rep actioIl! is enabled in L- Impl, it is enabled in L-Spec:
n[O] = 0 II w[O] = 0 II 8[0] = 1 implies .[0] = 1. This is obviously true.

4. We must show that if L-Impl is in a focus point (no internal actions enabled) and L-Spec
can perform a rep-action, L- Impl can al~o perform the rep action:

FC(n, t, n, p, w, s) II .[0] = 1 implies n[0J = 0 II w[O] = 0 II .[0] = 1. This is a direct
I

consequence of Lemma 6.1.2 and Lemma 6.1.1.

5. We must show that if the rep action is en~bled in L- Impl then the reported sum is equal
,

to the sum reported in L-Spec: n[O] = 0' II w[O] = 0 II 8[0] = 1 implies t[O] = sum(to).
By invariant 16 we have sum(to) = surhO,l(t, .). By definition, sumO,l(t,') contains
the sum of the t[iJ values of all process~s i that are not in state 2. By Lemma 6.1.3,
only process 0 is not in state 2. Hence spm(to) = sumO,l(t,') = t[OJ.

7 COMPUTER-CHECKING THE VERIFICATION 13

6. Finally, we have to show that the h-mapping commutes with the rep action, i.e. (s[OJ :=

2)[OJ oF 1. This is easily seen to hold.

Theorem 6.3.

goodtopoiogy(n, 11{)) -+ T TJfJH(DSum(n, t:J, 11{))) = T rep(sum(t:J)) 0

where I = {st*, ans*} and H = {st, ans, st, ans}. In the trivial case that process 0 has no
neighbours, the T'S at the left and right side of the equation may be omitted.

Proof. Apply Lemma 6.2 with t:J substituted for t, 11{) for n, Po for p, Wo for wand So
for s. This substitution reduces the invariant to T. Furthermore, reduction of the term
FC(n, t:J, 11{), Po, Wo, so) leads to Ifi i <t 1I{)[0]. Thus we have

L- Impi(n, t:J, 11{), Po, Wo, so) <lfi i <t 1I{)[0]~ T L- Impi(n, to, 11{), Po, wo, so)

L-Spec(T) <lfi i <t 1I{)[0]~ T L-Spec(T).

Hence we can conclude

TL-Impi(n, t:J, 1I{),Po, wo, so) = TL-Spec(T)

by adding an initial T if appropriate. We can conclude the stronger

L-Impi(n, t:J, 11{), Po, wo, so) = L-Spec(T)

in case Ifi i <t 1I{)[0], i.e. in case process 0 has no neighbours.
By Lemma 4.1.3, we have TPH(DSum(n,t:J,1I{))) = L-Impi(n,t:J,1I{),po,wo,so). We also

have seen that L-Spec(T) = rep(sum(t:J)) o. The theorem follows. GJ

7 Computer-checking the verification

The proof of Theorem 6.3 establishing the correctness of the distributed summation algorithm
(DSA for short) has been computer checked with the theorem prover PVS (2.1 Test (patch
level 2.399)).

We have first defined in PVS the general notion of linear process equations (LPEs), and for­
mulated the General Equality Theorem A.3 which allows to prove equality between processes
specified by LPEs (see Appendix A). Using this theorem we have given a complete formal­
ization of the proof in PVS. We have not mechanically checked the proof of GET itself since
it is part of the logical framework of !,CRL and we therefore considered it as given for the
verification of this particular distributed algorithm. Also, the linearisation of the protocol,
i.e. Lemma 4.1.2, was not checked. We note that linearisation can be done mechanically [5J.
The whole of the definitions, lemmas and proof-scripts can be obtained by mailing one of the
authors.

I

7 COMPUTER-CHECKING THE VERIFICATION 14

The specification language of PVS is a highe~-order typed logic ([13, 14, 16]), with many
built-in types including booleans, integers, sequences, lists, etc. For example, upto(i):
TYPE = {s: nat I s<= i} is the subtype of the integers less or equal to i. New types may
be added together with functions, tuples, records, predicate subtypes, abstract datatypes.
Usually, a PVS specification consist of one or se~eral theories. A theory can have parameters

I

and can be imported by other theories (see [13]).
In the vernacular of PVS, the complete main! theorem (Theorem 6.3), including the note

on the "trivial case", is represented as follows (i~ order to make clear what the PVS code is,
we typeset it in teletype font):

MAINTHM : THEOREM
goodtopology =>

seq(tau,Sol(L_Impl) (no,to,no,po,wo,so))
=

seq(tau,seq(rep_(totsUm(to)) ,delta))
AND

«FORALL (i:upto(nb)) : not(member(i,no(O)))) =>
Sol (L_Impl) (nb,to,no,po,wo,so)

=
seq(rep_(totsum(to)),relta))

where seq, rep_, tau, delta represent respectively the sequential composition operator "
rep, T and o. Sol(L_Impl) is the solution of :the linear process equation L-Impl depicted
in Table 1. The value nb is the number n of n~n-root processes in the network. The terms
to ,no ,po, wo. so stand respectively for the init)al values to, no, Po, wo, so, while totsum(to)
stands for the sum of the values in to. Finall~, goodtopology correspond to the topology
requirements goodtopology(n, no). The values np and (to, no,Po, Wo, so) have been introduced
as constants in PVS and therefore do not appe\u- in goodtopology.

I

In the following subsections we describe the formalisation of the proof of MAINTHM in PVS.
First, we describe how the General Equality Theorem has been encoded. In subsection 7.2,

,

the data of L-Impl and L-Spec, the initial value~ to, no, Po, wo, so, and the topology are given.
In the next subsection we show how the invaria~t property, i.e. Theorem 5.2, has been proven
in PVS. In subsection 7.4 the proof of Lemma 6,1 is described. In the following subsection, we
present the formalisation of the state mapping, the focus points and the matching criteria. We
conclude the proof in subsection 7.6. Finally, in subsection 7.7, we discuss the formalisation
in PVS.

7.1 The General Equality Theorem

We have devised the general notion of a lin~ar process equation (LPE) depending on a
data type D as a parameter in a theory LPES[D:TYPE]: THEORY (see Definition A.l in Ap­
pendix A). This theory imports the theory T~EDATA: THEORY which specifies the processes,
actions and domains over which summation taKes place in the definition of the LPEs. The set
of LPEs has been defined as a type LPE: TYPE i = Each element of this type corresponds
to a linear process equation. Theorem A.3 me~tions two LPEs of which the second one runs

7 COMPUTER-CHECKING THE VERIFICATION 15

over a set of actions from which T has been removed. So, in the same theory, we have defined
a subtype ALPE: TYPE = ... of the previous type, containing elements that are LPEs but
from which the T action has been removed. We do not provide the types LPE and ALPE
here because their definition is somewhat unwieldy and not necessary to understand the main
steps of the verification.

Then, in a new theory THGET[OX,OY:TYPEJ: THEORY, Theorem A.3 has been introduced.
Here the data types ox and OY are parameters of the theory THGET that can be instantiated
with data types. Since the LPEs involved rely on different data types, the theory imports
both LPES [OXJ and LPES [OYJ . This is actually the way in PVS to use polymorphic types.
The invariant property, the focus points and the criteria occurring in Theorem A.3 have been
translated into the theory as predicates. Theorem A.3 is then represented as an axiom as
follows:

GET: AXIOM FORALL (lpox: LPE[OXJ,lpoy: ALPE[OYJ,h: [OX -> OYJ,
I: [OX -> boolJ) : Invlpox(lpox,I) ANO

(forall (d: OX) : I(d) => Convx(lpox) and Crit2(lpox,d,h) and
Crit3(lpox,lpoy,d,h) and Crit4(lpox,lpoy,d,h) and
Crit5(lpox,lpoy,d,h) and Crit6(lpox,lpoy,d,h)) =>

forall (d: OX) : I(d) =>
condi(Sol(lpox)(d),FC(lpox,d) ,seq(tau,Sol(lpox) (d)))

=
condi(Sol(lpoy)(h(d)),FC(lpox,d),seq(tau,Sol(lpoy)(h(d)))).

Here, condi(argl,arg2,arg3) denotes the conditional construct argl ~ arg2t>arg3.
The invariant property Invlpox(lpox :LPE[OXJ, I: [OX -> boolJ) asserts that the func­

tion I: [OX -> boolJ) is an invariant of lpox, that is to say, for any state d :OX, if red) holds
and a step can be performed by lpox, then I holds in the new state. The focus condition
FC(lpox: LPE[OXJ ,d :OX) characterises the states d of the LPE implementation lpox in which
no T-action is enabled. The first criterion Convx(lpox:LPE[OXJ) says that the LPE imple­
mentation lpox must be convergent. Crit2(lpox :LPE[OXJ ,d :OX,h: [OX -> OYJ) says that
if in a state d in the LPE implementation Ipox, an internal step can be done, then this internal
step is not observable modulo the state maJlping h. Crit3(lpox:LPE[OXJ ,lpoy:LPE[OYJ ,d:
DX,h: [OX -> OYJ) says that when the LPE implementation lpox can perform an external
step according to the value of d, then the corresponding point (modulo h) in the LPE specifi­
cation Ipoy must also be able to perform this step. Crit4(lpox:LPE[OX] ,1poy:LPE[OY] ,d:
OX,h: [OX -> OYJ) says that in a focus point FC(lpox, d) of the LPE implementation lpox,
an action can be performed if it is enabled in the LPE specification Ipoy. Cri t5 (lpox ,lpoy ,
d,h) and Crit6(lpox,lpoy ,d,h) express that corresponding external actions carry the same
data parameter (modulo d and h) and lead to corresponding states.

In order to define L- Impl and L-Spec, data types OX and OY corresponding to their parame­
ters have been made explicit in a theory IMPL: THEORY. The theory IMPL imports the theories
LPES [oxJ and LPES [OYJ. The distributed summation algorithm L-Impl has been defined as
an LPE by L_Impl: LPE [oxJ = ... corresponding to the formalisation of L- Impl depicted
in Table 1. In the same way the linear process L-Spec described in Section 6 has been defined

7 COMPUTER-CHECKING THE VERIFICATION
I
I

to be of type ALPE, LSpec: ALPE [DY] =

16

The various parts of the proof of MAINTHM are! provided in the theories DSA1, DSA2, DSA3,
DSA4 and DSA: THEORY.

7.2 The data types, the initial values and the topology

Below we give the data types DX and DY corresponding to the types of the parameters of
L-Impl and L-Spec. Since PVS allows one to have bounded types using subtypes, we have
used families indexed by the finite set of proces~es in a network. Here nb denotes the number
of non-root processes, it has been introduced i1\ the THEDATA theory:

nb
state
ent
boundlist(ent)

nat
TYPE = upto (2)
var nat
TYPE = {I : list[upto(rb)] I length(l) (= ent}

'l. boundlist(ent) is a type parameterise~ by ent. It is used in particular
'l. to define auxiliary functions in the theories DSA2,DSA3.

intlist
listlist
boundintlist
statelist

DX
DY

TYPE = [upto(nb) -) na;t]
TYPE = [upto(nb) -) boundlist(nb+l)]
TYPE = [upto(nb) -) upto(nb)]
TYPE = [upto(nb) -) st;ate]

TYPE =[nat,intlist,listlist,boundintlist,intlist,statelist]
TYPE = bool

The initial values to, no,Po, wo, So of Definitio1\ 3.4 appear in the IMPL theory as follows:

to : intlist
no : listlist
po(i: upto(nb))
"o(i:upto(nb))
so(i:upto(nb))

upto(nb) = 0
nat = length(no(i))
state = if i=O then 1 else 0 endif

Here, e.g., the domain and range of "0 are respectively upto(nb) and nat, so the type of ,,0

is intlist. For each element i of type upto(nb), "o(i) is equal to length(no(i)). This
I

corresponds to the fact that Wo is a list of length n + 1, with at each position i the size of the
set noli]. Likewise, the domain and range of so are respectively upto(nb) and (a subset of)
nat, hence the type of so is statelist. Also,po is the null function of type boundintlist.

The definition of boundintlist implies the fourth property of the topology in Defini­
tion 3.3. So it is not necessary to introduce it into goodtopology. On the other hand, we
modified the topology with a new requiremen~ TOP4 asserting that each element has at most
one occurrence in no[j] (neighbours). This is obviously true for sets but wrong for lists. We
could also have used sets for neighbours, as 'used in the previous sections, but it is more
converuent using lists together with this requirement. The requirement TOP4 allows us to
have the following properties:

7 COMPUTER-CHECKING THE VERIFICATION

Member_three: LEMMA FORALL (i: upto(nb) ,1: boundlist(nb+l))
not(member(i,rem(i,l)))

Lightlist_three : LEMMA FORALL (i: upto(nb),l: boundlist(nb+l))
nodouble(l) and member(i,l) => length(1)=1+1ength(rem(i,1))

17

where rem removes all occurrences of i in 1. The non-redundant property TOP4 is necessary
to prove that the invariant predicate Inv applied to the initial values holds (for Inv, see
subsection 7.3):

Initialinv : LEMMA goodtopology => Inv(nb,to,no,po,wo,so)

where below goodtopology is defined:

TOPl bool = FORALL (i: upto(nb)) : not (member(i,no(i)))

TOP2 bool = FORALL (i,j: upto(nb)) : member(i,no(j)) iff member(j ,no(i))

TOP3 bOol = FORALL (i: upto(nb)) EXISTS (m: upto(nb),

fm [upto(m) -> upto(nb)])
fm(O)=i) AND fm(m)=O) AND

FORALL (1: upto(m)) : 1 < m => member(fm(l+l),no(fm(l))

TOP4 : bool = FORALL (i: upto(nb)) : nodouble(no(i))

pretopology : bool = TOPi and TOP2 and TOP3

goodtopology : bool = TOPl and TOP2 and TOP3 and TOP4.

7.3 The invariant property

The use of the GET theorem requires an invariant property, that is to say the existence of
a function I: [OX -> bool] such that in particular the predicate Invlpox(L..Impl,I) holds.
For I we provide a function Inv which corresponds to the formalisation of the conjunction
of the items in Theorem 5.2. Actually, the first three items of Theorem 5.2 are not included
in Inv, as they are direct consequences of the definitions of statelist, boundintlist and
listlist, respectively. In the proof of MAINTHM, the predicate Invlpox(L..Impl,Inv) leads
to the requirement to prove the four predicates SlInv, S2Inv, S3Inv and S4Inv, each one
corresponding to a summand of the LPE L-Impl in Table 1. The predicate SlInv corre­
sponds to the summand with the rep action, the remaining three predicates correspond to
the summands with T actions.

SlInv: LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist,
w: intlist,s: statelist) :

Inv(k,t,n,p,w,s) AND n(O)=null and w(O)=O and s(O)=l =>
Inv(k,t,n,p,w,s with [(0):=2])

7 COMPUTER-CHECKING THE VERIFIC4TION

S2Inv : LEMMA FORALL (i,j: upto(nb),k: rlat,t: intlist,n: listlist,
p: boundintlist!w: intlist ,s: statelist) :

Inv(k,t,n,p,w,s) AND s(i)=O and memb~r(i,n(j)) and
s(j)=1 and i/=j =) ,

Inv(k,t,n with [(j) :=rem(i,n(j)), (i) ;=rem(j ,n(i))],
p with [(i):=jJ,w with [(i):=minus(length(n(i)),1)J,

,

s with [(i) :=1J) ,

S3Inv : LEMMA FORALL (i,j: upto(nb),k: ~at,t: intlist,n: listlist,
p: boundintlist,w: intlist,s: statelist)

Inv(k,t,n,p,w,s) AND s(i)=1 and member(i,n(j)) and s(j)=1
and i/=j =)

Inv(k,t,n with [(j):=rem(i,n(j))J ,p,w with [(i):=minus(w(i),1)J ,s)

S4Inv : LEMMA FORALL (i,j: upto(nb),k: nat,t: intlist,n: listlist,
p: boundintlist', w: intlist, s: statelist)

Inv(k,t,n,p,w,s) AND n(j)=null and w~j)=O and s(j)=1 and
s(p(j))=1 and j/=O and j/=p(j) =)

Inv(k,t with [(p(j)):=t(p(j))+t(j)J ,~,p,
w with [(p(j)) :=minus(w(p(j)) ,'1)J ,s with [(j) :=2J).

18

Each of the previous lemmas has been proven i~ the following way. First, we define predicates
Inv4, ... , Inv16 corresponding to the items of Theorem 5.2. For example the last predicate
is:

Inv16(k :nat, t: intlist ,n: list list ,p :boun,dintlist, w: intlist, s: statelist) :
bool = s(0)/=2 =) sumOand1(t,s)=t,otsum(to)

where sumO and 1(t, s) represents sumO,l (t, 8) (Definition 5.1).

Secondly, for i = 4, ... ,16, we introduced and: proved lemmas SlInvi, S2Invi, S3Invi, and
S4Invi (Inv is changed to Invi). As a detail, w~ mention that items 5 and 6 have been directly
put into Inv13, as they are only necessary for the item 13 and easily checked. They obviously
still appear in Inv15 because the proofs of Sfrnv15, ... ,S4Inv15 require respectively the
lemmas SlInv13, ... ,S4Inv13. Likewise, itein 11 has been directly put into Inv14. The
most delicate to be proven was S2Inv13.

7.4 Lemma 6.1

The formalisation of Lemma 6.1 directly follows the text given in Section 6. So, it has been
,

split into three lemmas Itemllemma6_1, Item2lemma6_1, and Item3lemma6_1. We present
here only the first one. '

Itemllemma6_1 : LEMMA FORALL (k: nat,t: intlist,n: listlist,
p: bounctintlist,w: intlist,s: statelist)

Inv(k,t,n,p,w,s) AND s(0)=1 =)
FORALL (i: upto(nb)): FC2(k,t,n,p,w,s) AND s(i)=1 =) n(i)=null

7 COMPUTER-CHECKING THE VERIFICATION 19

where FC2 defined below corresponds to the optimised focus condition FC introduced in
Section 6.

FC2(k: nat,t: intlist,n: listlist,p: boundintlist,w: intlist,s: statelist):
bool = FORALL (i,j: upto(nb» :

(s(i)=2 or not(member(i,n(j») or s(j)/=l or i=j)
and

(n(j)/=null or w(j»O or s(j)/=l or s(p(j»/=l or j=O).

Consider, for example, the following part of the proof of Item21emma6_1, corresponding to
Lemma 6.1.2. Under the hypotheses Inv(T/{J, to, n, t, n, p, w, s), s[O] = 1, FC(n, t, n, p, w, s),
w[O] > 0, we can construct for any integer m, a sequence of m + 1 processes 0 = io, i}, ... , im

such that for all 0 S; I S; m, s[it] = 1, writ] > 0, p[il+1] = it, and if I cF 0, il cF O.
The construction of the sequence is formalised by the lemma ConstructSequel. It turned

out to be convenient to use the relation ph[io] = ih, i.e. ih is the hth successor of io. Using
the function iterate, ph[io] = ih is modeled by i terate(p ,h) (i).

ConstructSequel : LEMMA FORALL (k: nat,t: intlist,n: listlist,
p: boundintlist,w: intlist,s: statelist)

Inv(k,t,n,p,w,s) and s(O)=l =>
FC2(k,t,n,p,w,s) and w(O)/=O =>

FORALL (m :nat) : EXISTS (i: upto(nb» :
iterate(p,m) (i)=O and FORALL (h: nat) :

(h<=m => s(iterate(p,h)(i»=l and w(iterate(p,h) (i»/=O)
and (h<m => iterate(p,h)(i)/=O).

Next, consider a step of the proof of Lemma 6.1.3 under the following assumptions:
Inv(no, to, n, t, n, p, w, s), s[O] = 1, w[O] = 0, the existence of a process i i' 0 with sri] = 0,
and the existence of a sequence i = io, ... , im = 0 such that for all 0 S; I < m, il+1 E no [it].
We have to prove that s[ih] = 0 for all h, 0 S; h S; m. This is obtained via the following
lemma:

BuiltNewSequel LEMMA FORALL (k: nat,t: intlist,n: listlist,
p: boundintlist,w: intlist,s: statelist)

Inv(k,t,n,p,w,s) AND s(O)=l AND w(O)=O =>
FORALL (i,m: upto(nb),fm: [upto(m) -> upto(nb)]):

(i/=O AND s(i)=O AND fm(O)=i AND fm(m)=O AND
FORALL (1: upto(m» : 1 < m => member(fm(l+l),no(fm(l»»

=> FORALL (h: upto(m» : s(fm(h»=O

where fm(h) stands for ih. The proof of BuiltNewSequel requires in particular the fact that
any process of the sequence mentioned above can't be in state 1. This is provided by the first
step of the proof of Lemma 6.1.3, and corresponds to the following lemma:

StepforItem3: LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist,
w: intlist,s: statelist)

Inv(k,t,n,p,w,s) AND s(O)=l AND w(O)=O =>
FORALL (i: upto(nb» : i/=O => s(i)/=l

7 COMPUTER-CHECKING THE VERIFIC,hION
!

20

On the whole, the formalised proof of Item21krnma6_1 required 2 auxiliary definitions and
I

14 lemmas. Some of them were also nsed at otiler places, in particular for Item3lernma6_1,
which required overall 6 lemmas.

7.5 State mapping, focus points and \nat ching criteria

As explained in Section 6, the state mapping h: [DX -> DY] occurring in the theorem GET is
provided by the following function

stmapp(k:nat,t:intlist,n:listlist,p:boundintlist,lI:intlist,s:statelist):
bool = s(O)=l. .

,

The application of the theorem GET in the proOf of MAINTHM leads to following proof six obli­
I

gations Convx(LJmpl), Cri t2(LJmpl,d, stmapp), Crit3(LJmpl,L-.Spec ,d, stmapp), ... ,
Crit6(Llmpl,L-.Spec,d,stmapp) to be proven! using the topological hypotheses and the in-

I

variant Inv(d). Corresponding to these proof obligations, we define six predicates cri terl,
... , criter6 and introduce six lemmas Invcriterl, ... , Invcriter6. The predicates corre­
spond respectively to the formalisation of the iitems given in the proof of Lemma 6.2. For
example the fifth criterion is:

criter5(k:nat,t:intlist,n:listlist,p:bohndintlist,lI:intlist,s:statelist):
bool = n(O)=null and 11(0)=0 and s(O)=l => t(O)=totsum(to)

The lemmas Invcriterl, ... , Invcriter6 assert that each criterion holds under Inv. Note
that criter5 is the only criterion which requir,es the topological hypotheses:

Invcriter5 : LEMMA FDRALL (k: nat,t: in~list,n: listlist,
p: boundintlisti,lI: intlist ,s: statelist)

pretopology and Inv(k,t,n,p,II,s) =:> criter5(k,t,n,p,II,s).
!

During the proof of MAINTHM, Crit5(L_Impl"L-.Spec,d,stmapp) was smoothly reduced to
proving criter5(proj_1(d), ... , proj_6(d)) f<j>r which we could use the lemma Invcriter5
mentioned above. The others were proven in the same way. As a detail, we mention that,
whereas Crit4 (LJmpl, L-.Spec, d, stmapp) m~ntions the focus condition FC(LJmpl, d), we
use for its proof Lemma 6.1 which used the 6ptimised focus condition FC2(d). To bridge
this gap, we provided an auxiliary focus point: formula FC1, defined below, together with a
lemma FCequivFCl which shows that FC is eqJivalent to FC1. Next we proved, assuming the
invariant Inv, lemma FClequivFC2 which esdblishes the equivalence between FCl and FC2

I

and so between FC and FC2. '

FC1(k: nat,t: intlist,n: listlist,p:
bool = (FDRALL (i,j: upto(nb)) :

not(s(i)=O and member(i,n(j))
and (FDRALL (i,j: upto(nb)) :

not(s(i)=l and member(i,n(j))
and (FDRALL (i,j: upto(nb)) :
not(n(j)=null and lI(j)=O and s(j)=l

bdundintlist,lI: intlist,s: statelist):
!

and s(j)=l and i/=j))
,

,

arid s(j)=l and i/=j))
,

~d s(p(j))=l and j/=O and j/=p(j))).

7 COMPUTER-CHECKING THE VERIFICATION 21

Below we give the lemma FC1equivFC2. Actually, its proof require the following lemma
noclon which is easily proven. It asserts that if i can reach to another process j via parent
links, then i can't be its own parent.

FC1equivFC2 : LEMMA FORALL (k: nat,t: intlist,n: listlist,p: boundintlist,
y: intlist,s: statelist) :

Inv(k,t,n,p,y,s) => (FC1(k,t,n,p,y,s) <=> FC2(k,t,n,p,Y,s))

noclon : LEMMA FORALL (i,j: upto(nb),p: boundintlist,m: nat) :
preach(i,j,p,m) and i/=j => p(i)/=i.

where preach(i,j ,p,m) represents Preach(i,j,p,m) (Definition 5.1).

7.6 Final steps of the proof

We finish the formal proof using the main steps of the previous subsections and we show how
the last arguments ofthe proof of Theorem 6.3 given in Section 6 have been translated in PVS.

The first required step before applying the theorem GET is to make sure that L...Impl and
L...Spec are linear process equations. This is the same as establishing that they are respectively
of the types LPE and ALPE. In other words, the LPEs properties arise as types correctness
conditions.

As Theorem 6.3 is a consequence of the General Equality Theorem A.3, we find on the
top of the proof commands tree of MAINTHM the two following commands (LEMMA "GET")
introducing the theorem GET in the proof of MAINTHM, and (INST -1 "L...Impl" "L...Spec"
"stmapp" "Inv") instantiating the quantifiers of GET. Next, the hypothesis goodtopology
in MAINTHM has been put as an antecedent in the sequent formalizing the main theorem.
Finally the assumptions of GET have been split off, providing the following formula

forall (d: DX) : Inv(d) =>
condi(Sol(L_Impl)(d),FC(L_Impl,d) ,seq(tau,Sol(L_Impl) (d)))

=
condi(Sol(L_Spec) (stmapp(d)) ,FC(L_Impl,d) ,seq(tau,Sol(L_Spec) (stmapp(d))))

as an antecedent from which we derive the main theorem below, and returning the formulas
Invlpox (L...Impl, Inv) and

forall (d: DX) : Inv(d) => Convx(L_Impl) and Crit2(L_Impl,d,stmapp) and
Crit3(L_Impl,L_Spec,d,stmapp) and Crit4(L_Impl,L_Spec,d,stmapp) and
Crit5(L_Impl,L_Spec,d,stmapp) and Crit6(L_Impl,L_Spec,d,stmapp)

of GET as two new proof obligations. The first one of these has been proved as described in
subsection 7.3. Next, we have skolemised the second formula, moved the hypothesis Inv as
antecedent and split the resulting formula into six sequents. Each of them could be proven
as described in subsection 7.5.

This leaves the main sequent to be proved. The quantified variable d in the antecedent
coming from GET mentioned above was instantiated with (nb, to ,no ,po, YO, so). The lemma

!
7 COMPUTER-CHECKING THE VERIFICATION

I

Initialinv : LEMMA goodtopology
i

=> InvQnb,to,no,po,wo,so)
!
I

22

gives Inv(nb, to ,no ,po, 110 ,so), which allows t6 reduce the antecedent coming from GET into
the following one: !

condi(SoICL_Impl) (nb,to,no,po,1I0,so),FC(L_Impl,(nb,to, no,po,wo,so)),
seq(tau,Sol(L_Impl) (nb,to,no,po!lIo,so)))

=
condi(Sol(L_Spec) (stmapp(nb,to,no,po,lIo;so)) ,FC(L_Impl ,(nb,to,no,po,lIo,so)),

I seq(tau,Sol(L_Spec)(stmapp (nb,to'fo,po,lIo,so)))).

Next, we used the stmapp function, the so valu~, and Sol(LSpec) together with the !LCRL
axioms to obtain

condiCSol(L_Impl) (nb,to,no,po,1I0,80) ,FC(L_Impl,(nb,to,n 0,PO,1I0,80)),
seq (tau,Sol(L_Impl) (nb, to ,no ,po', 110,80)))

I

=
I

condi(8eq(rep_(tot8um(to)),delta),FC(L_~mpl,(nb,to,no,p0,110,80)),

8eq(tau,seq(rep_(totsum(to)),del~a))).
I

We then proceeded with a case distinction !between FC(LImpl, (nb, to ,no ,po, 110, so))
I

being true and false, respectively. Finally, w~ introduced the following lemma:

ReduceFC : LEMMA pretopology =>
(FC2(nb,to,no,po,1I0,50) iff FORALL (i:upto(nb)) : not(member(i,no(O))))

I

This allowed us to establish MAINTHM and therefore to finish the proof: Q. E. D.

7.7 Discussion
I

The distributed summation algorithm has been: computer checked with on the whole 1341em­
mas. Apart from the Type Correctness Conditions (T. C.C.s) concerning the LPEs LImpl and

I

L...spec, this does not take into account the OBE.IGATIONs lemmas, since these were generated
automatically by PVS for the T. C. C.s So did riot have to be devised, and were always imme-

I

diately proven. The complete proof developm~nt (definitions, lemmas including OBLIGATION
lemmas also, and proof scripts) comprises about 270 Kb.

The expressive power of the PVS system all0red us to translate the definitions and lemmas
in an accurate way. However it turned out !that it was difficult to translate the general
notion of a linear process equation (LPE). T~e reason is tha.t its definition is complex and
polymorphic, involving data types as paramet~rs. In particular a family of a priori different
types indexed by a finite set of actions appea:s in the LPEs. This phenomenon also occurs
in the matching criteria of the General Equf-lity Theorem. Therefore we have explicitly
introduced a number bounding the size of th~ set of actions which allowed us to use record
types for LPEs instead of functional definitioris.

I

As mentioned at the beginning of this section, the theorem GET has been provided as an
axiom in PVS and, being part of the meta-t~eory of !LCRL, was not mechanically checked
itself. We point out that the theorem MAINTHM has been proven without any axioms other

I

8 COMPARJSON WITH OTHER VERJFICATIONS. 23

than an axiom stating that rep action and r action are distinct, those of f'CRL and GET
within the logical framework of PVS.

As has been illustrated with the distributed summation algorithm, we think that the syn­
tactical and axiomatic description in f.lCRL of distributed systems is suitable for verification
and enables the proofs to be checked by higher order proof checkers or theorem provers such
as PVS and COQ leading to an extremely high level of confidence in the correctness of the
proofs.

8 Comparison with other verifications.

Our appraisal of the applicability of formal techniques for reasoning about distributed algo­
rithms differs strongly from Chou's. We feel that proof techniques from the area of formal
methods are sufficiently mature to prove the correctness of protocols of at least the com plex­
ity of a distributed summation algorithm. We are convinced that the reader - after having
read, digested and understood the correctness proof - will agree that it is straightforward
and not at all more complex than necessary.

There are as far as we know three other formal proofs of the distributed summation al­
gorithm. In [18] Vaandrager proves the summation algorithm correct in the setting of I/O
automata. His description of the algorithm, which is best compared to the linearisation of
the algorithm in Table 1, differs from ours in two aspects. First, in his set-up processes
communicate asynchronously by means of queues, whereas we let processes communicate
using synchronous interaction. The second difference is that in [18] when a process reads a
st message from its input queue, st messages are put simultaneously in all outgoing queues,
whereas in our setting sending these messages happens in an interleaved way.

The structure of Vaandrager's proof is the following. First, some invariants are proven.
U sing these, a relation is defined between implementation and specification that is proven
to be a refinement. From this it may be concluded that the trace set of the implementation
is included in the trace set of the specification. As trace inclusion does not imply deadlock­
freeness, this fact is proven separately.

There are two major differences between both proofs. In [18] history and prophecy variables
are employed which are not present in our paper. It is remarked in [18] that it should be
possible to give the proof without such auxiliary variables, but that they have been included
to illustrate their use. Secondly, although the refinement that is presented is very much
like our state mapping h, we establish branching bisimulation between specification and the
algorithm, whereas using the refinement, only a weaker fact, namely trace inclusion is shown.
Therefore, we do not have to show deadlock freeness separately, as branching bisimulation
preserves deadlock freeness.

It is also important to note the similarities between both proofs. The overall structure of
the proofs is the same, as are the essential arguments. Actually, it would not be very hard
to upgrade the proofs of trace inclusion and deadlock freeness in [18] to imply a result such
as ours.

The description of the algorithm by Chou [2] closely resembles the description of [18].
Chou's proof sets out with defining three modal properties together stating that the algorithm
will deliver the total sum exactly once. First, it is argued that proving the modal properties

A SHORT DESCRIPTION OF p.CRL 24

directly on the description of the distributed suinmation algorithm is too complicated. Then
J

a more abstract version of the algorithm is defi,ned in terms of causes and events, the state
space of which can be characterised by simple; invariants. The abstract version is related
to the original one by means of a simulation relation and a 'joint invariant'. It is shown
that translated versions of the modal correctn~ss properties hold for the abstract version.
U sing the simulation relation and the joint invariant it is shown that validity of the original
correctness properties can be derived for the original algorithm. Chou's proof thus is similar
to Vaandrager's proof except that correctness is' stated by means of modal properties instead
of by a specification automaton, and the abstract version is defined in terms of causes and

I

events. To the best of our knowledge, these proofs have not been proof-checked.
We remark that our proof method is purely I syntactical and axiomatic, while the proofs

in [2, 18] have a semantical nature. This is npt very visible in this paper, as we have for
readability omitted all syntactic definitions of flata types and employ the General Equality
Theorem from [8] whose proof is syntactical but which has a semantic flavour. We feel that
our method shares the advantages of semanticai reasoning, while its axiomatic nature allows

,

a complete, computer-checked formalisation.
A third proof of essentially the same description of the protocol as the one of Chou and

Vaandrager is given by Hesselink [9]. He describes the protocol using LISP functions that
are triggered by data in input queues and atpmically put data in all output queues of a

,

process. In order to model non-deterministic oehaviour, Hesselink introduces an oracle. He
then proves that the protocol terminates and ithat if terminated the total sum is collected
in the root. These observations exactly match: with proof steps one and five of Lemma 6.2.
Hesselink uses the Boyer-Moore theorem prove,~ to verify the <:arrectness of his proofs.

A Short description of JLCRL

The language p.CRL is a formalism (with proof theory) for process algebra comprising data
[7, 6]. In this section we give a brief overview bf the p.CRL syntax for processes and restate
the General Equality Theorem of [8], which is ~he basis of the correctness proof in this paper.
In order to do the latter we have to define the;format for line:>r process equations.

A.1 Overview of syntax

Starting from a set Act of actions that can be parameterised with data, processes are defined
by means of guarded recursive equations and ~he following operators.

First, there is a constant {) ({) rf- Act) that carmot perform any action and is called deadlock
or inaction.

Next, there are the sequential composition operator' and the alternative composition
operator +. The process x . y first behaves as k and if x successfully terminates continues to
behave as y. The process x + y can either do 'an action of x and continue to behave as x or
do an action of y and continue to behave as y,

Interleaving parallelism is modeled by the operator II. The process x II y is the result of
interleaving actions of x and y, except that actions from x and y may also synchronise to a
communication action, when this is explicitly allowed by a communication function. This is a
partial, commutative and associative function ,I : Act X Act -+ Act that describes how actions

A SHORT DESCRIPTION OF fICRL 25

can communicate; parameterised actions a(d) and b(d') communicate to ,(a, b)(d), provided
d = d'. A specification of a process typically contains a specification of a communication
function.

In order to axiomatise the parallel operator there are two auxiliary parallel operators. First,
the left merge lL, which behaves as the parallel operator, except that the first step must come
from the process at the left. Secondly, the communication merge I which also behaves as the
parallel operator, except that the first step is a communication between both arguments, as
specified by the communication function ,. We often write a I b = c for ,(a, b) = c.

To enforce that actions in processes x and y synchronise, we can prevent actions from
happening on their own, using the encapsulation operator BH . The process BH (x) can perform
all actions of x except that actions in the set H are blocked. So, assuming ,(a, b) = c, in
B{a,b}(X II y) the actions a and b are forced to synchronise to c.

We assume the existence of a special action T (T <t Act) that is internal and cannot be
directly observed. The hiding operator T[renames the actions in the set I to T. By hiding
all internal communications of a process only the external actions remain.

The following two operators combine data with processes. The sum operator 2;d,DP(d)
describes the process that can execute the process p(d) for some value d selected from the
sort D. The conditional operator _ <l _~_ describes the then- if -else. The process x <l b~y (where
b is a boolean) has the behaviour of x if b is true and the behaviour of y if b is false. When
the right hand side trivialises, i.e. y equals 6, we write [bJ =? x.

We apply the convention that· binds stronger than 2;, followed by _ <l _~_, the parallel
operators, and + binds weakest. Moreover, . is usually suppressed.

We work in the setting of branching bisimulation [17J, which is a refinement of weak bisim­
ulation [llJ.

Axioms for the operators can be found, e.g., in [7J.

A.2 Linear process equations

The process equations for process P in Definition 3.1 and for L-Impl in Table 1 are (essen­
tially) written in the format of linear process equations (LPEs). A linear process equation
is of the form X(d:D) = RHS, where d is a parameter of type D and RHS consists of an
alternative composition of a number of summands of the form

L [b(d,e)] ~ a(!(d,e))X(g(d,e))
e:E

Such a summand means that if for some e of type E the guard b(d, e) is satisfied, the action
a can be performed with parameter f(d, e), followed by a recursive call of X with new value
g(d, e). Now the main feature of LPEs is that for each action there is a most one summand
in the alternative compositionl . This makes it possible to describe LPEs by means of a
finite set Act of actions as indices, giving for each action a the set Ea over which summation
takes place, the guard ba that enables the action, the function fa that determines the data
parameter of the action and the function ga that determines the value of the recursive call.

In the next definition the symbol 2;, used for summation over data types, is also used to
describe an alternative composition over a finite set of actions. If Act = {at, ... , an}, then

lThe LPEs described here, are called deterministic in [8].

A SHORT DESCRIPTION OF p,CRL 26

~aEActPa denotes Pa, + Pa, + ... + Pan' Note t~at for summation over actions the symbol E
is used (instead of the symbol :).

Definition A.1. Let Act <;; Act U {T} be a fi~ite set of actions, and let D be a data type.
A linear pmcess equation (LPEj over Act and IJ is an equation of the form

I

X(d: D) = L L [ba(d,e)] =? aUa(d,~))X(ga(d,e)).
aEAct e:Ea

for some data types Ea, Da, and functions fa : D -t Ea -t Da, ga
ba : D -t Ea -+ Bool. (We assume that T has ~o parameter.)

D -t Ea -t D,
o

The process equations for process Pin Definitiol' 3.1 and for L-Impl in Table 1 do not directly
fit in the LPE format; consult [8] to verify thati the deviations are harmless.

Definition A.2. An LPE X written as in Definition A.1 is called convergent if it does not
admit infinite T-paths, i.e., there is a well-foun~ed ordering < on D such that for all e : ET
and d : D we have that bT(d, e) implies gT(d, e) ,< d.

An invariant of an LPE X written as in Definition A.1 is a. function I : D -t Bool such
I

that for all a E Act, e : Ea, and d : D we have ba(d, e) II I(d) -+ I(ga(d, e)). 0
I
I

For each LPE X, we assume an axiom which postulates that X has a solution, and an axiom
,

that postulates that every convergent LPE has ,at most one solution. In this way, convergent
LPEs define processes. The two principles reflect that we only consider process algebras
where every LPE has at least one solution andiconverging LPEs have precisely one solution.

A.3 General Equality Theorem

Theorem A.3 (General Equality Theorem from [8]). Let X and Y be LPEs given as follows:

X(d: Dx) = L L [ba(d,e)] =? aUa(d,e))X(ga(d,e))
aEAct e:Ea

Y(d: Dy) = L L [b~(d,e)l =? a(if~(d,e))Y(g~(d,e))
aEAct\{T} e:Ea

Let FCx be a formula over d:D x describing exactly the states of X from which no T-actioll
is enabled (i.e. equivalent to -dx:ET bT(d, x)).j Assume that 7" and q are solutions of X and
Y, respectively. Suppose I is an invariant of Xi and, for all d: Dx , I(d) implies the following
set of matching criteria.

X is convergent

lIe:ET(bT(d, e) -+ h(d) = h(gT(d, ell)

lIa E Act \ {T}lIe:Ea (ba(d,e) -t b~(h(d):,e))

lIa E Act \ {T }lIe:Ea (FCx(dj II b~(h(d), e) -t ba(d, ell

(1)

(2)

(3)

(4)

REFERENCES

\fa E Act \ {T} \fe:Ea (ba(d, e) ---+ fa(d, e) = f~(h(d), e))

\fa E Act \ {T} \fe:Ea (ba(d, e) ---+ h(ga(d, e)) = g~(h(d), e))

Then

\fd:D X I(d) ---+ r(d) ~ FCx(d)~rr(d) = q(h(d)) ~ FCx(d)~T q(h(d)).

References

27

(5)

(6)

[1] .I.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

[2] C.-T. Chou. Practical use of the notions of events and causality in reasoning about
distributed algorithms. CS Report #940035, UCLA, October 1994.

[3] C. Cornes et al. The Coq Proof Assistant Reference Manual, Version 5.10. Technical
Report, INRIA, 1996.

[4] E.W. Dijkstra and C.S. Scholtens. Termination detection for diffusing computations.
Inf. Processing Letters, 11(1):1-4, 1980.

[5] J.F. Groote. A note on n similar processes. Technical report CS-R9626, Department
of Software Technology, CWI, Amsterdam, 1996, June 1996.

[6] J.F. Groote and A. Ponse. The syntax and semantics of {tCRL. In A. Ponse, C. Verhoef
and S.F.M. van Vlijmen, eds, Algebra of Communicating Processes, Workshops in
Computing, pp. 26-62, 1994.

[7] J.F. Groote and A. Ponse. Proof theory for {tCRL: a language for processes with
data. In Andrews et al. Proceedings of the International Workshop on Semantics of
Specification Languages. Workshops in Computing, pages 231-250. Springer Verlag,
1994.

[8] J.F. Groote and J. Springintveld. Focus points and convergent process operators. A
proof strategy for protocol verification. Technical Report 142, Logic Group Preprint
Series, Utrecht University, 1995. This report also appeared as Technical Report CS­
R9566, Centrum voor Wiskunde en Informatica, 1995

[9] W.H. Hesselink. A mechanical proof of Segall's PIF algorithm. Formal Aspects of
Computing, 9(2), pages 208 - 226,1997.

[10] H. Korver and A. Sellink. On automating process algebra proofs. In V. Atalay et.
aI., editors, Proceedings of the ll-th International Symposium on Computer and In­
formation Sciences, ISCIS XI, Antalya, Turkey, volume II, pages 815-826, November
1996

REFERENCES 28

I

[11] R. Milner. Communication and Concur~ency. Prentice Hall, London, 1989.
!

[12] S. Owre, J.M. Rushby, N. Shankar and 'F. von Henke. Formal verification for fault­
tolerant archictectures: Prolegomena to the design of PVS. IEEE Transactions on

I

Software Engineering, 21(2): 107-125, 1995.

[13] S. Owre, N. Shankar and J.M. Rushby. i The PVS Specification Language. Computer
Science Laboratory, SRI International, ¥enlo Park, CA, February 1993.

[14] S. Owre, N. Shankar and J .M. Rushb~. User Guide for the PVS Specification and
Verification System. Computer Science ,Laboratory, SRI International, Menlo Park,

CA, February 1993.

[15] S. Segall. Distributed network protocols'. IEEE Transactions on Information Theory,

IT-29(2):23-35,1983.
,

[16] N. Shankar, S. Owre and J.M. Rushby. The PVS Proof Checker: A Reference Manual.
Computer Science Laboratory, SRI Intetnational, Menlo Park, CA, February 1993.

[17]

[18]

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
I

semantics (extended abstract). In G.~. Ritter, editor, Information Processing 89,
pages 613-618, 1989. '

F.W. Vaandrager. Verification of a distributed summation algorithm. In 1. Lee and
S.A. Smolka, editors, Proceedings CONCUR95, pages 190-203, LNCS 962, Springer­

Verlag, 1995.

Computing Science Reports

In this series appeared:

96/01

96/02

96/03

96/04

96105

96/06

96107

96/08

96/09

96110

96/11

96112

96113

96114

96115

96117

96118

96/19

96/20

96121

96/22

96123

96/24

96/25

97/01

97/02

97103

97/04

97/05

97/06

97/07

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. vander Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aalst

W.M.P. van der Aa1st and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
l.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and J.J. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. van der Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graafand OJ. Houben

W .M.P. van der Aalst

M. Voorhoeve and W. van der Aalst

M. Vaccari and R.C. Backhouse

B. Knaack and R. Gerth

1. Hooman and O. v. RoosmaJen

J. Blanco and A. v. Deursen

rCM. Baeten and 1.A. Bergstra

J.C.M. Baeten and 1.1. Vereijken

M. Franssen

I.CM. Baeten and 1.A. Bergstra

Department of Mathematics and Computing Science
Eindhoven University of Technology

Pr,?cess Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SOL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

StructuraJ Petri Net Equivalence, p. 16.

OODa Support for WWW Applications: Disclosing the intemaJ structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Oeontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. \3.

AUTOMA TH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The J 1 C-bus !n Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. 11.

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy FunctionaJ Programs in a concur­
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a sys~olic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26. .

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

97/08 P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.
Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

97/10

97/11

97/12

97/13

P.C.N. v. Gorp, E.1. Luit, D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van der Aa1st

W.M.P. van der Aa1st

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p.30.

WOFLAN: A Petri-net-based Workflow AnaJyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

-- -- --

Technische Universi'ei, tU) Eindhoven

Uw kenmerk

Onderwerp

CSN-rapport

L.S .•

Ons kenmerk

MM/fI

Bij deze verk.laar ik dat het artike1

Telefax

Den Dolech 2

Poslbu5513
5600 MB Eindhoven

Telefoon (040) 4791 11
Telex 51163

040 - 436685
e-mail

wSinti@win.tue.nl

Datum Doorkiesnummer
040 - 474214

A c.ovnfu\-~~ c~~<::..~eJ o,-fcJ~Lro,./c- tfiAf'cc..J'iOn 1 CL d,~h.,t~red
~w\MQhlr. O--~tf,l{h"

geschikt is om als CSN-rapport te verschijnen.

Handtekening:

Technische Universiteit tU) Eindhoven

Uw kenmerk

Onderwerp
CSN-rappon

L.S.,

Dns kenmerk

MM!fI

Bij deze verklaar ik dat het artikel

geschikt is om als CSN-rappon te verschijnen.

Naam:

Handtekening:

Telefax

Den Oolech 2

Postbus 513
5600 MB Eindhoven

Telefoon (040) 47 9111
Telex 51163

040 - 436685
e-mail

wsinti@win.tue.n1

Datum Doorkiesnummer

040 - 474214

	Abstract
	1. Introduction
	2. Description
	3. Formal specification
	4. Linearisation
	5. Invariants
	6. State mapping, focus points and final lemma
	7. Computer-checking the verification
	7.1 The General Equality Theorem
	7.2 The data types, the initial values and the topology
	7.3 The invariant property
	7.4 Lemma 6.1
	7.5 State mapping, focus points and matching criteria
	7.6 Final steps of the proof
	7.7 Discussion
	8. Comparison with other verifications
	A. Short description of muCRL
	A.1 Overview of syntax
	A.2 Linear process equations
	A.3 General Equality Theorem
	References

