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Abstract 

Two types of applications are considered: Hard Real-Time (HRT) and Soft Real-Time 
(SRT). HRT applications need to meet their dead-lines under all circumstances; deadlines 
of SRT applications may occMionally be missed. HRT and SRT applications coexist on 
the same set of processors and need to exchange data in a consistent manner. 

Several concurrency control algorithms exist to assure the consistency of the results of 
transactions in distributed database systems. Three types of concurrency control are gen
erally recognized: locking, timestamp ordering and optimistic concurrency control. They 
all impose an acyclic order on the individual actions of the transactions. The addition of 
versions to the data can diminish the execution time of read-only transactions. Imposing 
two different orderings, one for read-only transactions and one for all other transactions, 
the wait-time of read-only transactions is considerably reduced. The specified RO-Read 
allows the exchange of data between HRT and SRT applications without perturbations 
to the HRT applications. 

1 Introduction 

Real-Time application software reacts to stimuli from its environment. The state of the 
application is determined by the environment, while the state of the environment in its turn 
is determined by the state of the application. The application software (controlling process) 
often interacts quite heavily with a physical process (process under control). 

The results of Real-Time applications not only need to be functionally correct, they must 
also be delivered in time. A result that is delivered too late is as bad as, or even worse than, 
a result that is not delivered at all. The timeliness apects of the Real-Time applications 
make Real-Time systems notoriously complex. In this paper, an application is divided into 
two parts: A Hard Real-Time (HRT) and a Soft Real-Time (SRT) part (application). Both 
applications have deadlines which have to be met. However, the missing of the deadline of a 
HRT application has catastrophic consequences for the process under control; the missing of 
a SRT application only constitutes a temporary degradation of the system performance. This 
division has been made to provide the system designer with a means to put some structure 
in its application to increase the number of designs that meet a given specification. 
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The object-oriented programming paradigm is followed for the development of the ap
plications. An application consists of a program which is constructed from classes. A class 
defines a data-structure and the actions which can be executed on this structure. An instance 
of a class is called an object. Objects are distributed over a set of processors. Objects do 
not migrate between processors. The interleaving of actions to the same object may lead 
to inconsistent results. When during two concurrent accesses to the object, an item a with 
value A is read followed by the storage of A + 1 into a, a possible final result A + 1 dif
fers from the intended result A + 2. To prevent such unintended outcome, objects can be 
declared atomic. This means that the results of the actions on an object are the same as 
if those actions were executed at one unique atomic moment of time. Inconsistent results 
caused by the interleaving of the actions are then excluded. The atomicity concept allows the 
system designer to concentrate on the functionality of his actions and not to bother about 
the intricate interactions between the different concurrent executions of these actions. The 
concept of atomic objects is motivated by the well-known concept of Conversation Schemes 
[AL81] used for the construction of reliable Real-Time systems. The duality of atomic ob
jects and conversation schemes has been shown in [SMB85]. Concurrency Control Algorithms 
(CCA) impose an order on the concurrent actions on the objects with the purpose to meet 
the atomicity requirements of the objects. The research area of Real-Time (RT)-databases 
is lively one [Gra92, HSRT91]. The objective is to specify serialization criteria or CCA's to 
create transactions which meet their deadlines. The here considered objects are only stored 
in memory. Recovery of objects from stable storage is a different topic treated separately. 
This restriction is the major difference with RT-databases. 

Transactions in RT-databases can be classified in three categories [Ram93]: 

• Write-Only (WO)-transactions which read data from the environment and store them 
(in the database), 

• Update transactions which read stored data and derive new data to be stored, 

• Read-Only (RO)-transactions which read stored data and send them to the environment. 

The addition of versions [Wei87] to objects increases the number of possible interleavings 
thus diminishing the probability that transactions need to be restarted and increasing the 
probability that they meet their deadlines. In this paper an algorithm based on versions 
is presented which diminishes the time that (RO )-transactions wait for other transactions. 
Consequently, the execution time of RO-transactions decreases. 

Typically a large part of the WO- and RO-transactions, which interact directly with the 
environment need to be HRT-transactions. The other transactions can for a larger part be 
SRT-transactions. Data between HRT- and SRT-transactions is exchanged via objects. It is 
shown that the requirement of non-perturbation of HRT-transactions by SRT transaction con
siderably reduces the number of possible interleavings of SRT- and HRT-transactions. When 
the HRT-transactions are designed such that the order in which the results of HRT-transaction 
are delivered is more important than the serialization order imposed by the CCA used for the 
HRT-transactions, the concept of transfer serializability can be introduced. Transfer serial
izability is a correct criterium iff the transfer of object-modifications by a given HRT(SRT)
transaction to an equivalent set of objects readable by SRT(HRT)-transactions does not lead 
to unwanted system behaviour. 

Within the actions of an object, invocations to actions of other objects can be specified. 
Such nested actions can also be declared atomic. However, the actions invoked by the atomic 
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action should in their turn also be atomic. These actions are called nested atomic actions 
similar to the concept of nested transactions [MosS7]. 

In section 2 a historical view on database CCA's is presented, followed by a informal 
description of transaction properties in section 3. The first presented algorithm is an exten
sion to Optimistic Concurrency Control with Time Intervals (OCC-TI) [LS93]. OCC-TI is 
a forward validation variation [HSRT91] on Optimistic Concurrency Control (OCC) [KRSl]. 
The here presented Versioned OCC-TI (OCC-VTI) algorithm is an extension of OCC-TI with 
versions and modified for execution on a distributed computer platform. A specification and 
proof of OCC-VTI is presented in sections 5 and 6. The extension to HRT /SRT communica
tion is made in section 7. The concept of nested transactions is discussed in section S. The 
same additions as discussed for OCC-VTI are added to several CCA's developed for nested 
transactions, followed by their proof of correctness in section 9. The rest of the paper dis
cusses implementation aspects of the different actions. A measure is calculated to decide the 
number of versions which are necessary to increase the performance of the RO-transactions. 

2 Database historial 

Actions on a database consist of a series of read or write actions on individual database 
elements. These actions are grouped in transactions, which can be executed in an inter
leaved fashion. An execution of a set of transactions is a serial execution iff for any pair of 
transactions Ti and Tj all actions of Ti(Tj) are terminated before any action of Tj(Ti) starts. 
Correct transactions executed in isolation, take the database from a given consistent state 
to a new consistent state. Consequently, starting from a consistent state, a serial execution 
of the transactions always leaves the database in a consistent state. In accordance, transac
tions executed in an interleaved fashion should only see values belonging to one and the same 
consistent database state and produce corresponding database values. The concept of seri
alizabilty states that the result, delivered by a set of interleaved transactions, should be the 
same as a given serial execution of these tran'sactions, called the equivalent serial execution. 
A lot of research has been done to specify the serializability criteria for databases. Simulta
neously, research has been done on the algorithms which assure that the implementation of 
the transactions satisfies these serializability criteria [BHGS7, PapS6]. 

Apart from serializability, another important aspect of databases is the permanency of 
the results even when failures occur such as processor or disk crashes [BHGS7, GMA87]. The 
requirement that the database is always in a consistent state has as consequence that all 
actions of a transaction should be executed or none. 

The concept of nested transactions was introduced to increase the parallellism inside a 
transaction and render recovery more efficient [MosS5, MosS7, BBGS9]. The individual read 
and write actions no longer needed to be executed in a fixed serial order, but could be 
grouped and be executed in parallel. When a subtransaction of a transaction fails, only the 
subtransaction needs to be recovered. 

The first concurrency control algorithms were based on locking. When two transactions 
simultaneously need to act on the same data-item and one of these actions is a write-action, 
the actions are said to conflict. When an action of one transaction conflicts with an action of 
another transaction, the transactions are said to be conflicting. When all conflicting actions 
are write-actions, the transactions are said to be WW-conflicting. When one ofthe conflicting 
actions is a read-action, the transactions are said to be RW-conflicting. The locking algorithm 
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should assure that for any two conflicting transactions the conflicting actions of the one are 
executed before those of the other. The algorithms based on this principle are known to 
realize conflict serializability [Pap86]. The concept of two phase locking (2PL) assures this 
even in the case of processor or disk failures. 2PL states that a transaction first acquires locks 
in a growing phase and acquires none once it has released a lock. The main problem is the 
possibility of dead-lock. Notoriously difficult dead-lock detection and repair algorithms have 
been specified [Kna87]. 

Deadlock prevention assigns to each transaction a unique priority, usually defined by its 
start time. When a conflicting action is recognized by a transaction, lower priority transac
tions wait for higher priority transactions. When a lower priority transaction arrives first, 
only one of the two transactions is allowed to continue and the other aborts and restarts the 
execution of the transaction from scratch. As the priorities are totally ordered, no cycles 
can occur in the wait-for graph and deadlock is prevented. Deadlock prevention leads to 
transaction aborts which are not always necessary and to continuously aborted transactions 
( starvation). 

The timestamp ordering (TSO)-approach completely abandons the lock concept. It is 
assumed that events in the distributed systems are totally ordered by logical clocks or syn
chronized clocks. Every transaction is assigned a timestamp that consists of the local time of 
the processor on which the transaction started suffixed with the processor identifier. Assum
ing that the processor-identifiers are totally ordered, also the timestamps are totally ordered. 
The CCA imposes the order prescribed by the timestamps on the equivalent serial order of 
the transactions. The algorithm aborts transactions or puts them in a wait state such that 
read actions only read values written by transactions with a lower timestamp and no values 
are written to data-items which have been read by transactions with higher timestamps than 
the timestamp of the writing transaction [Ree83]. Every data-item is typically equipped with 
a write-timestamp, that is the timestamp of the writing transaction, and a read-timestamp, 
that is the maximum of the timestamps of the transactions that have read this particular 
value of the item. 

The drawback of this method is that frequently updated values make it difficult for slow 
transactions to read a value corresponding with its usually too low timestamp. The solution 
to this problem is the addition of versions, such that also slow Read-Only(RO )-transactions 
can proceed independent of the frequent updates of the values by other transactions. This 
approach is called Multi Version TSO (MVTSO) [Wei87]. Each data-item consists of a set 
of versions and each version consists of a read-timestamp and a write-timestamp as specified 
for the TSO algorithm. 

For many databases, especially the large distributed ones, the number of conflicts will 
be relatively low. A more performant database system can then be created by assigning 
local copies of the database items to the transactions and let them execute their actions 
on these local copies. At the end of the transaction a serial order of the transactions is 
calculated and the validity of the values in the copies is verified against actions executed by 
other transactions on the same data-items. When an equivalent serial execution exists, the 
local copies are installed in the database. In case of invalid results, the copies are destroyed 
and the transaction is restarted. This approach is called Optimistic Concurrency Control 
(OCC) [KR81, Sch81]. At validation time, a timestamp is allocated to the transaction as 
explained for TSO and MVTSO. The algorithm assures that the order of an equivalent serial 
execution of the transactions corresponds with the order imposed by these timestamps. Two 
approaches exist: Backward Validation (BV) and Forward Validation (FV). In the BV variant, 
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the validating transaction only commits when all commits in the past allow this, otherwise 
the validating transactions aborts. In the FV variant, the validating transaction aborts still 
executing transactions which will not be allowed to commit in the future. More recent OCC
FV algorithms determine on the basis of additional criteria (e.g. meeting of deadlines) whether 
the executing or the validating transaction should be aborted. 

Most commercial database systems use the locking approach. The performance gain of 
the database system does not seem to outweigh the disadvantages of a new unchartered 
domain of concurrency control algorithms. However, Real-Time databases are gaining impor
tance and the performance characteristics of the algorithms described above are investigated 
[Gra92, HSRT91]. The performance issue is relatively important in Real-Time systems. Typ
ically, values will be updated with a relatively high frequency determined by the Real-Time 
environment. Relatively slow reads of the data-items follow a different time pattern. The 
introduction of versions is ideal to decouple the write frequencies from the read frequencies. 
However, in the inverse case, a frequent reading of the data at moments specified by the Real
Time environment can be seriously hampered by slow updates of these items. To solve this 
problem, an optimization of the RO-transactions supported by multiple versions is proposed 
in this paper. The performance improvement can be realized by specifying a different order 
for RO-transactions with respect to the other Writing(W)-transactions. RO-transactions will 
only read those versions of the data-items which have been validated by the writing transac
tions. This is enforced by allocating timestamps to RO-transactions equal to their start-time, 
and allocating timestamps to the W-transactions equal to their commit time plus an eventual 
constant. 

3 Transactions 

Concurrent actions on the atomic objects of a system meet the following two requirements: 

• Concurrency atomicity: Actions behave as if they are executed in one unique point in 
time . 

• Exception atomicity: All modifications of an action are visible to other actions or none. 

The more frequently used term failure atomicity implies exception atomicity and moreover 
that all modifications to the database remain available in spite of processor and memory 
failures (permanency of results [BHG87, GMA87]). In this paper, permanency of results is 
not considered. 

The concept of concurrency atomicity is equivalent with the isolation criterion used for 
transactions in databases. The serializability concept which characterizes transactions which 
conform to the isolation criterion applies equally well to the concurrency atomicity concept. 
Therefore, many results obtained by the research into RT-databases can be directly applied 
to atomic objects. 

A database consists of a set of database items D. A database is consistent iff a database 
dependent predicate P holds. Atomic Read and Write actions can be executed on the indi
vidual items. Items are composed of versions which reflect the history of values atributed to 
these items. A transaction, T;, is composed of a set of partially ordered actions. An execution 
of a set of transactions is called a serial execution iff for any two transactions T; and Tj all 
actions of T;(Tj) are finished before any action of Tj(T;) starts. 
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When Ti executes a write action on item X it creates a version Xi notated with Wi[X;]. 
When Ti reads an item, it reads the value of a version written by some transaction Tj, 
notated like: Ri[Xj]. Each element from I is read or written once by a given transaction. 
All read actions are executed before the write actions. This often justified simplification 
[Pap86] renders the algorithms and their accompanying proofs much simpler. An example 
of the execution of transaction Ti is Ti = Ri[Xj]Ri[Yk]Wi[Xi]Wi[Zi]. The values of j and k 
depend on the history of the data-items. A transaction Ti has a read set RSi and a write 
set WSi defined by: RSi = {Xj I Xj is a version of XED read by T;} and WSi = {Xi I xi 
is a version of XED written by Ti}. A transaction only composed of read(write) actions 
is called a RO(WO)-transaction. A transaction with one or more write-actions is called a 
W-transaction. Two transactions which have versions Xi, Xj of the same data-item X as 
argument in one of their actions are called related. Two related transactions of which at least 
one contains a write-action to a common data-item are called conflicting. 

T 
3 

ee---________ . 

e------------

.e~---------------· 

RO-transactions 

W -transactions 

--)(--- - - -e-' 

----~)*(---------------------------.-

Figure 1: transaction times and ordering 

In Fig. 1, transactions Ti, 0 < i :S 7, are shown which take a certain time as defined by the 
lines. A typical transaction is separated in a read-write phase denoted by the solid line and 
a commit or validation phase denoted with the broken lines. The transactions governed by 
the here presented algorithms behave with respect to RO-transactions as if they are executed 
in the timepoints denoted with large dots. W-transactions should behave with respect to 
W-transactions as if they are executed in the timepoints denoted with the crosses. The 
positions of the crosses and dots depend on the CCA. In current CCA's, the crosses and the 
dots coincide. With the presented RO variant of OCC-TI, the crosses are placed anywhere 
on the solid line. When a RO-transaction starts, the data for which no waits are needed 
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are the data of transactions that are finished. Therefore, the dots of the W-transactions 
are preferably placed at the end of the broken lines and the dots of the RO-transactions are 
placed at the beginning of the solid lines. In fig. 1, the RO serial execution, determined by 
the dots, is [T" T., T3 , Ts, T6, T2, T7] and the W serial execution, determined by the crosses, is 
[T., Ts, T7, T6]' RO-transaction TJ will read the results of none of the W-transactions T4 - T7 
as the ordering prescribes that TJ happens before T4 - T7. However, RO-transaction T2 may 
read results of T4, Ts and T6. 

Problems may arise in the case of transactions T6 and T7. According to the crosses, 
T6 happens before T7, but according to the dots T7 happens before T6. Consequently, the 
values of the database-items as seen by the RO-transactions can be different from the ones 
seen by the W-transactions. For example assume that the transactions T6 and T7 act on 
three items [X,Y,Z] with consistency constraint Z = X + Y. Suppose that T6 executes 
Y := Y + 2; Z := Z + 2; and T7 executes X := X + 5; Z := Z + 5. From the initial contents 
[2,3,5]' the contents of [X,Y,Z] will either pass via [2,5,7] or via [7,3,10] to [7,5,12]. The two 
different orderings then impose that a given transaction can read the values [7,3,10], while 
another can read [2,5,7]. However, only one of the two possiblities is physically executed. 
Therefore, the set of predecessors of a RO-transaction is determined in the following way. 
All W-transactions with dots placed after the dots of the RO-transactions succeed the RO
transaction. All W-transactions which have crosses placed before the crosses of all transactions 
belonging to the successor set are members of the predecessor set. In the example the dot of 
T7 is placed after the dot of T2 and T7 is part of the successor set of T2. Transactions T4 and 
Ts are in the predecessor set of transaction T2 because their dots are placed before the dot of 
T2 and their crosses are placed before the cross of T7. T6 does not belong to the predecessor 
set because its cross is placed after the cross of T7 . 

4 Informal description of OCC-VTI algorithms 

The following rules apply for OCC-VTI. A transaction Ti precedes transactions Tj iff Ti.Cf < 
Tj.Cf. The following precedence relations are assured between a validating and X-writing Tv 
and the currently X-writing transaction Tw and X-reading transaction TT: TT precedes Tv precedes Tw 
[LS93]. No precedence relations are maintained between a X-reading Tv and TT [LS93]. The 
precedence relation between a X-reading Tv and X-writing Tw is: Tv precedes Tw. 

The algorithm of Fig. 2 determines which transactions read the values last written by 
a preceding transaction. A validity interval [Cf, Cd is attributed to the transactions and a 
validity interval [Cb, Cel is attributed to the versions of all items XED. The relation between 
the [Cb, Ce] and the [Cf, Cd interval is the following. For a given version Xi written by Ti: 
Xi.Cb = Ti.Cf· The value of Xi.Ce is given by: Xi.Ce 2: max{Tj.Cf I Tj has read x;}. For a 
given version Xi holds that: Xi.Cb < Xi.Ce. For two consecutively committed versions Xi and 
Xi+! holds: Xi+J.Cb 2: Xi.Ce· 

The transaction is activated with the specification, RS and W S, of the actions it must 
execute and the data-items, I, on which they are executed. After the creation of the trans
action identifier, 7., the validity interval is [Cf, Cd is initialised to [0,00] and all read actions 
specified in RS are performed. The value read from each item X is stored in A[X]. Then the 
transaction can calculate results and store these into A[X]. The modified values are returned 
with the write actions specified in W S. At the end of the transaction Validate is executed in 
which the final Cf and Ct values are calculated and the end-time-stamp 7.. 
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1 PROCEDURE W-Transaction(RS: read items, WS: write items, I: data-items) 
2 VAR 
3 A/data-items}: values 
4 BEGIN 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 END 
15 

Create time-stamp Ts = time 0 pid 
Create interval [C"Cd = [0,00] 
'IX E RS , A-Tmd(X, 7"A[X]) 
execute calculations 
'IX E ws , A-WT;/'(X, 7"A[X]) 
Create time-stamp 'Te = 0 
Validate(I, Is, 'Te, G" C,) 
IF (C, < Cd THEN 'IX E I, A-Comm;t( X, 7" To,C,) 
ELSE 'IX E I, A-Aberl( X, 7,) 

16 PROCEDURE Validate(I: data-items, Ts, Te : Timestamp, CJ , Cj : Counter) 
17 VAR 
18 Cbl Ce : Gounter 
19 BEGIN 

C,:= O;C,:= 00 

V X E I DO 
20 
21 
22 
23 
24 
25 

A- Validate(X, Is, t, Cb, Ce) 
0, := max(Cb,C,);O, := min(C/,Ce} 
Ie = max('Te, t) 

OD 
26 END 

Figure 2: W-transaction Algorithm 

During the validation phase, a validating transaction, Tv, determines its own validity 
interval by taking the intersection of its validity interval [Cf, Cd with the validity intervals 
[Cb, C,] as returned by the A-Validate invocations. 

When the Validate has succeeded, i.e. a non-empty interval has been found, Tv commits 
and the versions written by Tv are installed with the modifications to the Cb and C, values 
of other versions. The time-stamp To attributed to each installed version for later use by the 
RO-transactions, is set equal to 'Fe that represents the maximum of the values returned by 
the A-Validate invocations. 

The composing actions A-Validate, A-Read, A-Write, A-Abort and A-Commit are ex
plained in more detail in section 5_ 

1 PROCEDURE RO-Transaction(I: data-items, t: time-stamp) 
2 VAR 
3 A/data-items]: values 
4 BEGIN 
5 Create time-stamp Is ;::;; time 0 PID 
6 IF (3X E I, (3x EX, 7, > 7,) V x.S # Comm;t) THEN 
7 em := (min X E I : (min x E X,x.S '# Commit V x.Tc. > ~ : x.Cb» 
8 ELSE Cm := (min X E I : (max x EX: x.Cb» 
9 'IX E L RO-".d(X, Cm, A[X]) 
10 execute calculations 
11 END 

Figure 3: RO-Transaction Algorithm 
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In Fig. 3, the algorithm for a RO-transaction is shown. At the start the identification 
time-stamp Ts is created. For all X E I with uncommitted versions or versions with a commit 
time-stamps larger than T" the minimum Cb value is determined. When no such versions 
exist the maximal Cb value is taken. This value is used to find the corresponding version as 
explained in section 3. 

This distributed version of OCC-TI has a disadvantage with respect to the uniprocessor 
one discussed in [LS93]. In the uniprocessor case, validating transactions will succeed because 
the intervals of still executing transactions are adjusted possibly leading to their immediate 
abort. This is no longer possible because global distributed knowledge on all relevant [Cb, Cel 
intervals becomes available after the Validation phase. 

5 Specification of OCC-VTI and RO-Read Actions 

A given data-item X consists of a set of versions X.V. Each version Xi is a tuple: 

(1) 

where (1) Cb is the begin counter of the validity interval, (2) Cr the maximum Cf of the 
transactions that read X, (3) Ce is the end counter of the validity interval, (4) To is the 
time-stamp of the commit action (5) 1;, is the time-stamp that identifies the writer of the 
version, (6) S is the state ofthe version, (7) list is a list of identifiers of transactions that read 
this version and (8) value is the value of the item's version. The state S of a version is (1) 
tentative: the version is created but not yet usable by other transactions than the creating 
one, (2) validating: the transaction that created this version has finished all write and read 
actions but has not yet asserted their validity and (3) commit: the version can be used by 
transactions different from the creating one. 

In Fig. 4, the specifications for the reading, writing, validating, and committing of one 
data-item are shown. 

A-Read returns the value of the last committed version, v, and adds the identifier, 7;, of 
the reading transaction to v.list. 

A-Write adds a new version, v, to the set of versions, X.V. The specified value is stored 
in v.value and v.1;, is set to the identifier of the writing transaction. 

A-Validate is executed when no other transaction is validating the specified item, X. A
Validate calculates the authorised Cf, CI value pairs for X. When the version, v, has been 
read, CI is set equal to v,Ce - 1, otherwise CI is set to 00. When version v has been written, 
C f is set equal to b,Cr + 1 where b is the last committed version of X. When no version has 
been written, a version v must have been read and C f is set equal to V.Cb + 1 with v the read 
version. A local end timestamp is calculated and returned in t. 

A-Commit sets the state of the written version, v, equal to Commit and V,Cb equal to Cf. 
When a version v is written, b.Ce is set to v.Cf where b is the last committed version. When 
a version, v, is read, v,Cr is set equal to the maximum of Cf and the former value of v.Cr · 

A-Abort removes all versions, X, owned by the aborting transaction, x.1;, = 7;. 
The specification of the RO-Read states that a committed version with the largest Cb 

value is selected that is smaller than the value, C, determined by the reading transaction (see 
Fig. 3). 
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ACTION A-Read( X: data-item, It: Time-stamp, var a: val'Ue) 
{PRE: v E X.V 1\ v.S = commit A v.list = LA v.value = A 

A("Ix E X.V,x.S = commit: x.Cb ::; v.Cb) 
POST: v.list = L u {'Ii} A a = A 
} 

ACTION A- Writer X: data-item, 'Ii: Time-stamp, a: val'Ue) 
{PRK X.V=QAa=A 
POST: v = newly created version 

Av.S = tentative A v.To = 'Ii A v.value = A A v.list = 01\ X. V = Q u {v} 
} 

ACTION A-Validate(X: data-item, 'Ti,t: Time-stamp, vaT C"C j : Co'Unter) 
{PRE: "Ix E X.V : x.S:f:. validating 
POST: A("Ix EX. V,x.To = 'Ii : x.S = validating) 

A«3v E X.V : v.To = It) => Of = (maxx E X.V,x.S = commit: x.Or + 1)) 
A((V'v E X.V, v.'To "# 7;) ~ G, = (maxx E X.v,7; E X.list, x.G, + 1)) 
A«3v E X.V: 7i E v.list) => 0, = v.Ce -1) 
A((V'v E X.V, 7; g v.list) ~ G, = 00) 
t = time 0 pid 

} 

ACTION A-Commit( X: data-item, 7i, Te: Time-stamp, C,: Co'Unte1') 
{PRK (V'v E X.V, v.Gr = Go) 

Ab E X.V 1\ b.S = commit A ("Ix E X.V,x.S = commit: x,Cb ::; b.Ob) 
POST, ((3x E X.V, x.To = 7;) ~ b.G, = G,) 

A("Iv E X.V,v.To = 'Ii : V.S = commit A v.Oe = 00 A V,Cb = 0, A v.Or = Of A v.Te = Te) 
I\(Vv EX. v, 7i E v.list : V.Or = max( Oll) OJ)) 

} 

ACTION A-Abo1't( X: data-item, 1i: Time-stamp) 
{PRE, X.V = Q A G = {v I v E X.V A 7; = v.'To )} 

POST, X. V = Q.G 
} 

ACTION RO-Read( X: data-item, C: Co'UntcT, va1' a: value} 
{PRE: v E X.V A V.Ob < C A v.S = commit A v.value = A 

A(V'x E X.V , (x.G,:s v.G, V x.G, > G)) 
POST, a = A 
} 

Figure 4: DCC· VTI read, write, validate, commit and abort specifications 

6 Proof of correctness 

A serial history h' =< To, TI, T 2, ••••• , Tn> T J > of transactions is represented by an ordered list 
of transactions Ti, 0 < i ::; n, preceded by a dummy transaction To = W[D] and terminated by 
a dummy transaction Tf = R[D]. A transaction set H consists of the transactions Ti , 1::; i :c; n, 
joint with the set {To, TJ}. The set H is composed of a set of RD·transactions Hro and a set 
of W·transactions HW, with H = HwuHro and HwnHro = 0. A write by a transaction Ti to 
a version Xi, that is not read by any transaction 1j is called a useless write, denoted by Tix· 

The set H U is defined by { Tix I none of the transactions Tj E H reads the value Xi written 
by Ti}. The read-from relation rf(h) in history, h, is defined by: { (Ti, Xi, Tj) I Tj reads the 
value Xi written by Ti }. 

It must be verified that a history h of read and write actions, as ordered by the algorithms 
and by the partial order prescribed by the transactions, is equivalent with a serial history 
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h' of these same transactions. This is proven by making a directed graph G with vertices 
V = H u H U and edges E, which represent the causal order of the read and write actions 
on individual items of D. For a given edge e E E, see) is the source vertex and dee) is the 
destination vertex. In [Vid85] it is shown that the graph of view serializable histories has 
certain characteristics. Edges are added to the graph G to demonstrate that the graphs 
describing the histories enforced by the CCA's have these characteristics. 

Before the correctness proof, a few hypotheses are made about the implementation of 
the actions described in section 4. Motivated by the distribution of the data-items over 
the processors, it is assumed that a monotonously increasing clock is associated with each 
data-item. These clocks represent the local times of the data-items. A generally accepted 
hypothesis on the specified actions needs to be stated. 

Hypothesis 1 The ACTIONs specified in section 4 are executed atomically. 

It is important that A-Validate and A-Commit constitute one concurrency atomic action. 
The following example will show that when this hypothesis is not met, inconsistent states can 
be reached. Suppose two transactions TI and Tz access two items {X,Y}. The transactions 
are defined by TI = RI[Y] WI[X] and T2 = R 2[X] W 2[Y] and they execute according to the 
unserializable schedule h = RI[xo] Rz[Yo] WI[xd W 2[Y2]. Both read the initial values Xo and 
Yo and want to install the values Xl and Y2. Both transactions first validate. The validation 
result is TRUE for both transactions having read the last installed values Xo and Yo. The 
ensuing commit of both transactions installs XI and Y2, which is an unwanted result as in a 
serial schedule either TI reads Yo and Tz reads Xl or Tz reads Xo and n reads yz. Therefore, 
a hypothesis is made on the atomicity of the validate and commit actions. 

Hypothesis 2 For all XED and for any transaction T, the action pair A- Validate ( X, 7;, 
t, Cj, Cl) and A-Commit(X, 7;, 7", Cf) constitutes one atomic action. 

A hypothesis is needed about the commit timestamps of X-writing transactions with 
respect to X-reading RO-transactions. For a given RO-transaction, Tro and a W-transaction, 
Tw, whiciJ conflict in X, the following hypothesis is made: 

Hypothesis 3 If Tro reads X at local time t and Tw commits at local time t' > t then 
Tro·T. < Tw.'Te. 

The transaction-graph G is constructed as described in [Vid85]. The edge set E of G has 
the following characteristics: 

• An edge labeled X from Ti to Tj for each (Ti, Xi, Tj) E r f(h), called useful X-edge. 

• An edge labeled X from Ti to Tix for each Tix E HU, called useless X-edge. 

• An unlabeled edge for each vertex Tix E HU to Tf. 

• An unlabeled edge from each RO-transaction other than Tf to Tf. 

• An unlabeled edge from To to each WO-transaction. 

Definition 1 (TP(h}) An acyclic Transaction Precedence graph TP(h) of history h has the 
following characteristics: 
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• The vertex set of TP(h) is the same as the vertex set G 

• The edge set of TP(h) includes the edge set of G joint with a (possibly empty) set of 
unlabelled edges. 

• For any two edges e, ef
, where e is a useful X-edge and ef another (useful or useless) 

X-edge with s( e) op s( ef
), there exists a directed path in TP(h) that contains them both. 

Theorem 1 [Vid85] A history h is serializable iff there exists an acyclic TP(h). 

The graph G is constructed as described above. Every transaction Ti E H has a start
timestamp T" and an end timestamp T" such that Ti.T" < Ti.T". T" and T" of transactions To 
and Tj are defined such that: 

IITi E H \ {To, Tj} : To.T" < Ti.T" < Tj.T" II To.T" < Ti.T" < Tj.T" (2) 

RO-transactions read their data from one or more W-transactions or To. For a given RO
transaction, TTo, a set of versions exists associated with the read set R5To ' The maximum 
M TO is defined as the minimum of all Cb-values of uncommited versions and the versions for 
which their commit-timestamp 'Tc > TTo.T,,: 

M ro = minX E R5ro : (minx E X, (x.'Tc > Tro.T" V x.5 op commit): X,Cb) (3) 
x 

Otherwise: M TO = (minX E I: (max x EX: X.Cb». An X-order, -<, can be defined for 
the transactions. 

( ) 
X ;ff Definition 2 X-order For any two transactions Ti and T j , Ti -< Tj • 

• Ti and Tj are conflicting W-transactions with X E R5i n W 5j V X E W 5i n R5j and 
Ti.Cj < Tj.Cj. 

• (i = 0 II X E RSj) or (j = f II X E WSi). 

• Ti is a W-transaction and Tj is a RO-transaction and X E W Si n R5j and Ti.C j ::; M j. 

• Tj is a W-transaction andTi is a RO-transaction and X E WSjnRSi and Mi < Tj.Cf. 

The consistency of these relations is proven in the following lemma: 

Lemma 1 The C f values of any two conflicting transactions Ti and T j differ. 

Proof. Suppose the transactions conflict in X. Suppose that both transactions are 
writing transactions. Assume without loss of generality that Ti has committed version, Xi 
after Tj validates and commits version Xj. In that case xj.To = T j and the post condition of 
A-Validate states: 

Cf = (maxx E X.V,x.5 = commit: x.Cr) + 1 (4) 

together with the calculation of the maximum C f value in the Procedure Validate, the calu
lation of Cr in the pre and post-conditions of A-Commit: 

PRE: 
POST: 

(liv E X.V : v,CT = Cv ) 

(liv E X.v, T; E v.list: v,Cr = max(Cv,Cf» 
(5) 
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and the postcondition in A-Commit: 

(Vv E X.V, v.'1;, = 7; : v.S = Commit II v.Ce = Cf II V.Cb = Cf) (6) 

assure that: 
(7) 

This holds for all XED. Consequently, the C f values of Ti and Tj differ when they write to 
the same item. 

Again without loss of generality assume that Ti writes version Xi of X and Tj reads X. 
When Tj reads Xi: x;.To oj Tj . The post-condition of A-Validate: 

(Vv E X.V : v.'1;, oj T; =} Cf = (maxx E X.V, T; E X.list : X.Cb + 1)) (8) 

assures that Tj.Cf > Xi.Cb = T;.Cf. 
Tj can read a version xp, with xp oj Xi. According to the post-condition of A-Read: Tj E 

xp.list. Suppose Xp-Cb > Xi.Cb. Similar to the reading of Xi: Tj.Cf > Xp.Cb > Xi.Cb = Ti.Cf. 
Suppose that Xp.Cb < Xi.Cb. In this case Tj reads xp before Ti commits. If Ti had committed 
before Tj's reading of X, Tj would have read Xi or another after Xi committed version. Two 
possibilities exist: T; commits after Tj or before. When Ti invokes A-Commit before Tj, the 
pre- and post-conditions of A-Commit: 

PRE: 
POST: 

bE X.v II b.S = commit II (Vx E X.V, x.S = commit: X.Cb ~ b.Cb) 
(3x E X.V : x.'1;, = 7;) =} b.Ce = Cf 

(9) 

assure that xp.Ce ~ Ti.Cf. The post condition of A-Validate assures that Tj.Cf ~ Tj.C/ < 
xp.Ce ~ Ti.Cf· 

When Tj invokes A-Commit before Ti, the post- and pre-conditions of A-Commit: 

PRE: 
POST: 

(Vv E X.V : v.CT = Cv) 
(Vv E X.V, T; E v.list: v.C, = max(Cv,Cf)) 

(10) 

assures that for the entry Tj E xp-list: xp.C, ~ Tj.Cf . The post condition of A-Validate 
assures that Tj.Cf ~ xp.C, < Ti.Cf. 

Consequently, the C f values of any two conflicting T; and Tj differ. 0 

Lemma 2 For two related transactions Ti and Tj, with {X, Y} ~ (RS;nW Sj)U(RSj nWSi ) 
X y 

:T;-<Tj<*T;-<Tj 

Proof. Assume both transactions to be conflicting W-transactions. According to lemma 
1 the Ct-values differ and according to the order definition 2 the transactions are ordered. 
The Cf values are independent of the item in which they conflict. Consequently, the lemma 
is true for W-transactions. 

When both transactions are RO-transactions, no order is defined and the lemma is trivially 
true. 

Consider that Tj E H'o and Ti E HW. No distinction exists between X and Y. Conse-
X y X 

quently, it is sufficient to prove that: Ti -< Tj =} Ti -< Tj. In the case Ti -< Tj, the third 
bullet in definition 2 applies. Because {X, Y} ~ WS; n RSj, X can be replaced by Y. This 
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T .ro 

• • Tw~ Tw2 
Z 

Figure 5: impossible cycle in transaction order 

y 
is exactly the definition for Ti -< Tj. The case that Tj E H W and Ti E H ro is treated in the 
same way. 0 

Lemma 3 The order of definition 2 is acyclic. 

Proof. According to lemma 1 and the ordering of the numbers assigned to the C j 
values, the sets of conflicting W-transactions are ordered without cycles. No order is de
fined between RO-transactions, but the ordering of RO-transactions with respect to W
transactions is different from the ordering between W-transactions. Consequently, cycles 
can occur when a RO-transaction Tro is ordered between two W-transactions, Twl and Tw2 ) 

Z X y 
such that Twl -< Tw2 1\ Tw2 -< Tro -< Twl , as shown in fig 5. From definition 2, the following 
relations can be derived: 

X 
Tw2 -< Tro =;. Tw2 .Cj < M ro 

y 
Tro -< Twl =;. M ro :s:: Twl.Cj 

(11) 

(12) 

Combining both relations leads to: Twl.Cj > Tw2 .Cj. Because (Z E RSwl nWSw2)V(Z E 
z 

W Swl n RSw2 ), it follows that Tw2 -< Twl and the cycle is impossible. 0 

The following abbreviation is used: 

X 
Ti -< Tj == 3X ED: Ti -< Tj (13) 

In the relation Ti -< Tj both Ti and Tj can be freely exchanged with s(e), s(e'), d(e) and d(e'). 
X 

A transaction Tj is the immediately related successor to a transaction Ti iff Ti -< Tj and 
X X 

there is no other transaction Tk such that Ti -< Tk -< Tj. The graph G' is constructed from 

14 



G by adding edges between related transactions. From each vertex Ti to its immediately 
related successors Ti+k and to Tix and from Tix to its immediately related successor Ti+k. It 
will be proven that the graph G' represents a serializable history for the transactions which 
constitute h. In Fig. 6, an example of G' is drawn. A history h is assumed for the transactions 
To, TlO - T13 , T j , where each transaction consists of the following read and write actions: 

TlO 
Tll 
Tl2 
Tl3 

= 

= 
= 

RIO[XO] RlO[yo] WlO[ZlO] 
Rll[XO] Rll[ZlO] Wll[Zll] 

R I2 [XO] WI2 [Y12] 
Rl3[ynj WdztJ] 

The following history, h, of actions is associated with the 4 transactions: 

(14) 

The graph G is represented in fig. 6 by the closed arrows. Remark that Wll [Zll] is a 
useless write. The graph G' is constructed by adding the dashed arrows to G. An arrow is 
added from TlO to Tl2 because they are immediate successors via Y and from TIl, Tllz to Tl3 
because they are immediate successors via Z. 
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Figure 6: Example of graph G' 

Lemma 4 For any labelled edge e from G, with s( e) = Ti and d( e) = Tj, Ti and Tj related 
X 

via X, it holds that Ti -< Tj. 
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Proof. A RO-transaction Tro is the destination of a given edge e, or is the source of an 
edge with destination Tf. In the first case, the pre-condition in RO-Read and the assignment 
to C in RO-Transaction: 

V,Cb < C /I v.S = commit /I C = M ro (16) 

assures that s(e).Cf < M ro and see) precedes dee) in the defined order. 
In the second case, Tf follows all other transactions per definition. Consequently, the 

lemma is true for all edges involving a RO-transaction. The same reasoning is valid for any 
edge involving Tix E HU. 

Edges which only involve W-transactions are now considered. The version X,(e) written 
and committed by see) is read by dee). The post-condition of A-Read assures that an entry 
dee) is added to x,(e).list. The POST condition of A-Validate: 

(ltv E X.V: v.To i- 7;) =;. Cf = (maxx E X.V, 7; E X.list: X,Cb + 1) (17) 

returns a Cf values that is larger than X,(e).Cb = s(e).Cf. The maximum of the returned 
Cf values is calculated by the Validate Procedure. It can be infered that: d(e).Cf > X,(e).Cb = 

s(e).Cf · 
From the order-definition 2 it follows that the source of a labelled edge is ordered before 

its destination. 0 

Theorem 2 (View serializability) The graph G' constructed from the ACTION specifica
tions of section 4 is an acyclic TP(h). 

Proof. By construction, the vertex set of G is equal to the vertex set of G' and the edge 
set of G' is equal to the edge set of G with the addition of some unlabelled edges. An acyclic 
order is defined on all transactions Ti and for all XED there is a directed path in G' that 
includes all X-edges. For two X-edges e and e' with different sources of which at least one 
is useful, their destinations are different, d( e) i- d( e'), because a transaction reads a given 
value only from one transaction at the time. From lemma 4 it is known that d( e) :- s( e) and 
d(e'):- see'). 

Suppose that one of them, e' is useless. The case s( e) -< s( e') is proven in the same way as 
the case that both edges are useful. When see') -< see), see) is either the direct successor of 
s( e') or ordered after the direct successor of s( e'). The destination of the useless write, d( e'), 
is defined to be ordered before the direct successor of the source: d( e') -< s( e). 

Suppose both e and e' are useful edges. In that case see) and see') are both W-transactions 
because no labelled edges exist from a RO-transaction or a from a vertex Tix E H U

• Without 
loss of generality it is assumed that s( e) -< s( e'). When d( e) = s( e'), the theorem is trivially 
true by taking the X-path from To to s( e) and via d( e) = s( e') to d( e') and finally to Tj. 
When dee) i- see'), the case that dee) is a W-transaction is treated first, followed by the case 
that d( e) is a RO-transaction. 

Assume dee) is a W-transaction. The proof is similar to the proof of lemma 1 when dee) 
reads a version xp with Xp.Cb < Xi.Cj with Xi written by Ti = see'). It was demonstrated 
that see') commits after the reading of X by dee). Two cases were considered: (1) dee) 
commits after see') and (2) dee) commits before see'). In both cases it was demonstrated that 
d(e).Cf < s(e').Cf. 

16 



Consider the case that d(e) is a RO-transaction. When s(e' ) is committed before d(e) 
reads, then according to the PRE-condition of RO-Read: 

'Ix E X.V : (X,Cb::; V,Cb V X,Cb > C) (18) 

and the selection of C = Md(,): 

(19) 

When s(e' ) commits after the reading by d(e), s(e' ) also commits after s(e) and according 
to the post-condition of A-Validate s(e'),Cf = Xs(e,).Cb > X,(,),Cb = s(e).Cf. According to 
hypothesis 3: s(e' ).7. > d(e).T., which means that the value of M d(,) before and after the 
commit of s(e' ) is the same and s(e').Cf > Md(,j' According to the order of definition 2: 
d( e) -< s( e'l in both cases. 

From the ordering and the additional unlabelled edges added to G' , an acyclic path can 
be constructed started at To from s(e) to d(e), from d(e) to s(e' ) and from s(e' ) to d(e' ) to 
end at Tf. 0 

7 HRT jSRT communication 

A Real-Time environment puts constraints on the moments actions have to be executed. 
Starting from the requirement that no actions are better than too late actions, each trans
action will have a deadline attribute. Transactions that do not finish before their deadlines 
loose their usefulness and may be aborted. 

A careful scheduling of the HRT transactions should prevent that HRT-transactions in
terfere with each other in such a way that some deadlines are not met, or that preconditions 
cannot be met. For the purpose of this paper, it is assumed that such a scheduling of HRT 
transactions is actually possible albeit imperfectly from an efficiency point of view. The 
separation between HRT- and SRT- transactions, as introduced in section 1, necessitates 
the formulation of conditions under which objects can be accessed by both HRT- and SRT
transactions. 

During the execution of the HRT schedule the meeting of the deadlines of the HRT
transactions is guaranteed as long as the schedule is not perturbed by the execution of the 
SRT-transactions. Consider two transactions Ti and Tj with Ti of a different type (HRT or 
SRT) from Tj. In the histories not only the Read and Write actions but also the Commit 
actions are included. C[X] stands for the commit of data-item XED and C[Q] for the commit 
of the set of data-items Q ~ D. The notation t(Ai[Xl) stands for the time on the local clock 
of item X at the moment of excution of action (A = R, W or C) by transaction Ti. 

Lemma 5 The HRT-transaction, Ti (Tj), is not perturbed by the SRT-transaction, Tj (Ti), 
if transactions are ordered such that: t( Rj [Xl) < t( Ci [Xl) => Tj -< Ti. 

Proof. Consider the case that Ti is a HRT-transaction and Tj a SRT transaction. At the 
commit of the HRT transaction Ti, Ti must be aborted if Ti has written a version Xi to be 
read by an already committed Tj. This is the case when t(Rj[Xl) < t(Ci[Xl) 1\ Ti -< Tj . The 
abort of a HRT transaction should be avoided and therefore t(Rj[Xl) < t(Ci[Xl) implies that 
Tj -< Ti. 
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Consider the case that Tj is a HRT transaction and Ti a SRT-transaction. Consider 
two transactions: Ti = .... Wi[Xi]Ci[X] and Tj = .... Rj[X]Cj[X]. A possible history, with 
Ti -< Tj II t(Rj[X]) < t(Ci[X]), is given by: h = .... Wi[Xi] Rj[Xi] CjlX] Ci[X]. In this case Tj 
should wait for the commit of Ti before it can read the value Xi written by Ti. As HRT
transactions should not wait for SRT-transactions (with unknown durations), Tj should have 
read an earlier value of X and Tj -< Ti should hold. 0 

For the following take Hh(HS) as the set of HRT(SRT)-transactions, Q is the set of items 
accessed by transactions from both Hh and H'. Take Th E Hh, T, E H S and p,q E Q. From 
the above lemma the following theorem can be concluded. 

Theorem 3 For all Th, T" q and p, with Th = .... Rh[q] .... Ch[q, p] and Ts = .... Rs[p] .... Cs[q, p], 
no interleaving is possible between the Read action and the Commit action. 

Proof. Assuming the theorem is not valid, try to construct a valid interleaved history. 
Suppose the Rs[q] is interleaved between Rh[q] and Ch[q, pl. The action Cs[q, p] can be sched
uled before or after Ch[P, q]. Independent of the position of Cs[q, p], an unwanted situation is 
created according to lemma 5 : 

t(Rh[q]) < t(Cs[P,q]) =} TH -< Ts 

t(Rs[P]) < t(Ch[P, q]) =} Ts -< TH 

This constitutes a cycle and leads to a non view-serializable history. The interleaving of 
Rh[q] between Rs[P] and Cs[q, p]leads to the same contradiction. Consequently, the only valid 
history is one without the discussed interleaving. 0 

A simple and valid way to solve this problem is to execute HRT - and SRT transactions 
in a perfect serial order. SRT-transactions which are preempted by HRT transactions must 
be aborted. The scheduling of the SRT transactions such that they never are executed 
concurrently with conflicting HRT-transactions restricts the possible schedules enormously 
and leads to many SRT-transaction aborts when conflicting HRT transactions are started 
during the SRT-transaction execution. Another option is to relax the view-serializability 
requirements. When HRT-transactions deliver sets of values such that not the serial order 
chosen by the CCA is important for the SRT-transactions but the order in which these sets are 
committed, another serializability criterium can be formulated. The same is true for values 
delivered by SRT transactions to HRT transactions. The concept of transfer serializability is 
introduced: 

Definition 3 (Transfer-serializability) A history of HRT- and SRT-transactions is trans
fer serializable iff in an equivalent view-serializable history the values written by a given HRT
transaction are transferred by a single transaction to reading SRT-transactions and vice-versa. 

A TR-Read action must be defined which obeys lemma 5. The RO-Read action does not 
influence the other W-transactions. Consequently, a modified version of the RO-Read action, 
shown in Fig. 7 as TR-Read, can be used by the SRT-transactions when the HW-objects 
are read. However, when a HRT-transaction invokes the TR-Read action on a data-item 
containing uncommitted versions for which the commit is already started, the transaction 
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is obliged to wait until the commit is finished. The use of TR-Read by HRT-transactions 
to read SW-objects prevents such intolerable waits when the time to execute a commit of 
a SRT-transaction is bounded. With bounded commit execution times the To values can be 
chosen such that no waiting ocurs. 

1 ACTION TR-Read( X: data-item, 7: Timestamp, vaT a: vaitLe) 
2 {PRE: v E X.V 1\ v.Te < 'T 1\ v.S = commit A v.value = A 
3 ,,('tIx E X.V - {v}, x.S = commit: (x.Ic < v.'4 V x.Tc > T)) 
4 POST, a ~ A 
5} 

Figure 7: TR-Read specification 

An additional constraint is generated on the use of data-items by this definition. When 
data-items can be read and written by both HRT- and SRT-transactions, the following sce
nario can be envisaged: the HRT-transaction TH writes to A and reads from A and the 
SRT-transaction Ts also reads from and writes to A. HRT-transactions must follow a differ
ent CCA to read the versions written by TH from the one to read the version written by Ts. 
A labelling of A's versions is then necessary. This actually points to a separation of A into a 
HRT-part and a SRT-part but may lead to badly understood side-effects for the programmer. 

Therefore, three sets of objects are defined: (1) SRT-objects only used by SRT-transac
tions, (2) HRT-objects only used by HRT-transactions and (3) HS-objects used by both types 
of transactions. The HS-objects are separated into two categories: Hard-Write (HW- )objects 
and Soft-Write (SW-)objects, where: 

HW-object can be written and read by HRT-transactions, but only read by SRT-transac
tions with the TR-Read action. 

SW-object can be written and read by SRT-transactions, but only read by HRT transactions 
with the TR-Read action. 

7.1 Proof of HRT/SRT serializability 

The hrt-graph, Ghr" is constructed in the same way as the graph G, described in section 
6, but includes both HRT and SRT transactions. All edges between HRT-transactions and 
between SRT-transactions are drawn as specified for the transaction-graph G. 

For each HRT-transaction that writes to a set of HW-objects HO, a transaction THO is 
imagined that copies all items from HO to another set of objects HO': THO = R[HOj W[HO'j. 
The same is done for each SRT-transaction that writes to a set of SW-objects: Tso = 
R[SOj W[SO'j. Tso and THO are called specification transactions. 

The definition of immediately related successor is restricted to transactions of the same 
class, HRT or SRT. The graph Ghrt is extended by adding vertices which represent the above 
mentioned Tso and THO and their connecting transfer-edges. Edges e labelled with X E HW 
with as destination a SRT-transaction Ts are replaced by an edge labelled X from s(e) = Th 
to a new HRT-vertex Thd and an edge labelled X' from Thd to d(e) = Ts. Edges e labelled 
with X E SW with as destination a HRT-transaction Th are replaced by an edge labelled X 
from s(e) = Ts to a neW SRT-vertex Tsd and an edge labelled X' from Tsd to d(e) = Th. The 
Te value of a specification transaction, Tid is defined as: 
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(20) 

The graph G hrt is constructed from Ghrt by adding edges from each vertex Ti to its 
immediately related successor Ti+k, to Tix and to Tid, from Tix to Ti's immediately related 
successor Ti+k and from Tid to Ti's immediately related successor Ti+k. 

In Fig. 8 this is visualised for the transactions of TH and Ts, acting on . 

(hrt :) TH == 
(srt :) Ts = 

RH[H] RH[S] WH[H] 
Rs[H] Rs[S] Ws[S] 

The order in which they can be executed by the CCA is: 

(21) 

(22) 

The addition of the specification transaction TOd makes that To is ordered with respect 
to TOd, TH and Ts via Hand S, Tf is ordered with respect to TH and Ts via Hand S, Tod 
is ordered with respect to TH and Ts via S' and H', but TH and Ts are not related and 
consequently no longer ordered with respect to each other. 
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Figure 8: An example of the graph Ghrt 

Now the order can be defined: 

s 

x 
Definition 4 (hrt-order) For any two transactions Ti and Tj , Ti -< Tj iff 

• Ti and Tj are transactions of the same class and ordered according to definition 2. 

• Ti writes X E HO U SO and Tj == Tid. 

• Tj accesses X E HO U SO and Ti is a specification transaction that writes X' and 
Ti.'T" < Tj.T,. 
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• Ti accesses X E H 0 U SO and Tj is a specification transaction that writes X, and 
Ti'Ts :s; Tj.T". 

It is important to note that the transfer-serializability concept is independent of the choice 
of CCA. The SRT-transactions may use a different CCA from the HRT-transacions. The order 
definition must then be adapted correspondingly. 

Lemma 6 The order of definition 4 is acyclic. 

Proof. Consider the ordering without the specification transactions. Two mutually un
ordered sets of HRT and SRT transactions exist. According to lemma 3 each individual set 
is ordered. The addition of the specification transactions can lead to cycles in two ways: 
(1) when a pair of HRT(SRT)-transactions are differently ordered with respect to each other 
than with respect to a given specification transaction and (2) when a cyclic ordering can be 
found from a specification transaction Tid via a set of HRT(SRT) transactions to another 
specification transaction Tjd -I Tid and from Tjd via a set of SRT(HRT) transactions back to 
Tid· 

X, yl 
ad 1) Consider that the following order is valid: Tj ..( Tid ..( Tk, with Tj and Tk HRT(SRT)-

transactions of the same class. According to definition 4: Tj.T" :s; Tid.T" < Tk.T". T j and Tk 
write to the same items and conflict. The condition Tj.T" < Tk.T" implies that Tk committed 
after Tj. As shown in the proof of lemma 1, this implies that Tj.CJ < Tk.CJ. For conflicting 
Tj and Tk this means that according to definition 2: Tj ..( Tk. Consequently, no cycle is 
possible. 

ad 2) Without loss of generality, assume that a chain of HRT(SRT)-transactions is ordered 
after the specification transaction Tid and before the specification transactions Tjd. According 
to the definition 4: Tid.T" < Tjd.T". To create a cycle, a chain of SRT(HRT)-transactions is 
ordered before the specification transaction Tid and after the specification transactions Tjd. 
According to the definition 4: Tid.T" > Tjd·T". This constitutes a contradiction. Consequently, 
the order is acyclic. 0 

For a given transaction, T" which uses TR-read and a W-transaction, Tw, of a different 
class which both access X E HO U SO, the following hypothesis, similar to hypothesis 3, is 
made: 

Hypothesis 4 IfTr reads X at local time t and Tw commits at local time t' > t then Tr.Ts < 
Tw·T". 

It is proven that the graph Ghrt represents a transfer-serializable history for the leaf
transactions which constitute h. 

Lemma 7 For any Y-labelled edge e from Ghrt, with Y = X or Y = X': s(e) ~ d(e). 

Proof. When s(e) and d(e) are both HRT- or SRT-transactions, lemma 4 applies and 
X 

s(e) ..( d(e). 
One of the two can be a specification transaction. When d( e) is a specification transac

tion, s( e) ..( d( e) is determined by the hrt-order definition 4. When s( e) is a specification 
transaction, there exists a Ti such that s(e) = Tid. When Ti is a HRT(SRT)-transactions then 
d(e) is a SRT(HRT)-transactions. 
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The transaction, d(e), only reads X' after the commit of Ti.From the precondition of TR
Read follows: d( e). 7:; > Ti. Ie. From the definition of Ie-value ofthe specification transaction: 

X' 
s( e). Ie < d( e ).7:;, which according to the definition 4 leads to the conclusion that s( e) -< d( e ). 

y 
Combining all cases, it follows that s(e) -< d(e). 0 

Theorem 4 (Transfer-serializability) The graph G~rt constructed from the ACTION spe
cifications of section 4 and transfer-edges is an acyclic TP(h). 

Proof. For two X-edges e and e' with different sources of which at least one is useful, 
say e' , their destinations are different, d(e) i d(e' ), because a transaction reads a given 
value only from one transaction at the time. Without loss of generality it is assumed that 
s( e) -< s( e'l. From lemma 7 it is known that d( e) :.- s( e) and d( e' ) :.- s( e'l. By construction 
and by the definition of the transfer-edges, HRT transactions access other data-items than 
SRT-transactions and are not related. The identical labels of e and e' imply that when one 
of the four transactions is a HRT(SRT) transaction then the other transactions are either 
HRT(SRT) transactions or specification transactions. 

When s(e), d(e), s(e' ) and d(e' ) are all HRT-transactions or SRT-transactions, theorem 2 
applies. 

Only two cases need to be considered: (1) d(e) is a specification transaction and (2) s(el
) 

is a specification transaction. 
Ad (I): According to the definition of transfer transactions, d( e) is ordered before the 

immediate successor of s( e). s( el
) belongs to the same class as s( e) (HRT or SRT) and is the 

immediate successor of s( e) or s( e' ) is ordered after the immediate successor and therefore: 
d(e) -< s(e' ). 

Ad (2): When s(el
) is a specification transaction, s(e) is necessarily also a specification 

transaction because both edges, e and e' are transfer-edges labeled with the same label X' and 
only specification transactions are the sources of transfer-edges. There exists a transaction Ti 
corresponding with the specification transaction Tid = s( e) and a transaction Tj corresponding 

with transaction Tjd = s(e' ). The precondition of TR-Read implies: Ti.Ie < d(e).7:; < Tj.Ie 
when Tj commits before d( e) reads. Hypothesis 4 assures that the same is true when Tj 
commits after the read-action of d(e). The definition of the Ie-value of the specification 
transaction Tid states: Tid.Ie = Ti.Ie. Substitution of the definition into the above equation 

x' 
results in: s( e). Ie < d( e). 7:; < s( e' ). Ie. According to definition 4: d( e) -< s( e' ). 

A path can be constructed from To via the acyclic order to s(e), from s(e) via d(e) and 
s( el

) to d( e' ) and from d( e' ) via the acyclic order to TJ. Which concludes the proof of the 
theorem. 0 

8 Nested atomic objects 

A simple object that does not invoke any other objects can be considered equivalent to a 
transaction. The execution of the methods of a set of simple objects should obey the same 
atomicity requirements as a set of distinct transactions. A nested object invokes other objects. 
Parts of the code ofthe class separated by invocations of other objects can be identified. A part 
of a nested object is defined by: (1) it is placed between two object invocations, (2) between 

22 



the PROCEDURE start and an obje~t invocation and (3) between an object invocation and 
the PROCEDURE end. The objects in'voked by an atomic object should be atomic as well. 
The concept of atomic nested objects is equivalent to the concept of nested transactions. In 
Fig. 9, a possible class structure is shown. The PROCEDURE Trans is identified with one 
transaction To. It is divided into three parts (T1 , T3 , Ts) delimited by two object invocations. 
The graph in the same figure represents the corresponding nested transaction graph. The 
invoked objects 0 1 and O2 are represented by T2 and T4 • 

PROCEDURE Trans 

DO onething 

CALL OlFl 

DO next 

CALL 02F2 

DO last 

END 

Figure 9: relation between object and nested transaction 

The concept of nested transactions was introduced to increase the parallellism inside a 
transaction and render recovery more efficient [Mos85, Mos87, BBG89]. The individual read 
and write actions no longer needed to be executed in a fixed serial order, but could be 
grouped and be executed in parallel. When a subtransaction of a transaction fails, only the 
su btransaction needs to be recovered. 

Although the code in the class should be executed in a serial fashion determined by the 
language semantics, it is not excluded that object invocations can be done in parallel. When 
no parallel object invocation are possible, a simplified CCA can be found. 

A nested transaction Ti either consists of a sequence of read-actions Ri and write-actions 
Wi, acting on items lED partially ordered in time, or consists of a set of transactions. 
When the transaction consists of a sequence of actions, it is called a leaf-transaction. When 
a transaction consists of a set of transactions and is part of another transaction, it is called 
an intermediate-transaction. A transaction that is not part of any other tranaction is called 
a root-transaction. A root-transaction is defined to be its own root. The function root(T) 
returns TRUE iff T is a root-transaction. Fig. 10 illustrates this further. Not shown are leaf
transactions which can be root-transactions at the same time. When a transaction Ti is part 
of a transaction Tj , Tj is called a parent of Ti, denoted by Tj = parent(Ti). The transaction 
Ti is an ancestor of Tj , denoted by Ti E ancestor(Tj), when Ti is a parent of Tj or when Ti is 
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Figure 10: diagram of nested transactions 

a parent of another transaction Tk which is an ancestor of Tj . The function ancestor has as 
domain the transactions and as range a set of transactions. The inverse functions are defined 
by: 

Tj = parent(Ti) ¢} Ti E child(Tj ) 

Tj E ancestor(Ti) ¢} Ti E descendant(Tj) 
(23) 

In the Fig. 10, Tl is an ancestor of [T2 .. T4] and Tf is an ancestor ofTJ, Tl, TJ and [Tt .. T7]. 
The nested structure limits the possible orders in which the leaf-transactions can be executed. 
For example, the order [Tw, Tn, T12 , Td in fig. 10 can be changed to [Tt2 , Tw, Tn, Td but 
not to [TlQ, Tt2 , Tn, Tt3]' 

A nested transaction T executes a set of transactions denoted by N. N consists of 1 or 
more transactions Tj. All root transactions are executed such that their result is the same as 
the result of some serial execution of the same transactions. For a given nested transaction, 
the transactions Ti E N are executed such that their result is the same as the result of some 
serial execution of these same transactions. In Fig 10, a serial execution of root transactions 
[Tf, TJ, Tf3] can be realized with the serial execution of the leaf-transactions [Tt , .. Td. 

The nesting of transactions has a consequence for the exception atomicity. The results of 
a leaf-transaction Ti are only visible to another leaf-transaction Tj iff: 

• Ti and Tj have different roots and the root of Ti has committed . 

• Ti and Tj have a common ancestor Tk which is composed of at least two transactions 
Tf and Tj with Ti = Tf or Tf E ancestor(Ti ), T j = Tj or Tj E ancestor(Tj ) and T[ has 
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committed. 

In Fig. 10, Ts sees the results of Ts when T'f has committed and Ts sees the results of T3 
when Tl has committed. 

8.1 Nested transaction algorithm 

In Fig. 11, the nested transaction algorithm for OCC-NVTI adapted from Fig. 2 is shown. At 
the beginning of the nested transaction a timestamp, Ta, as function of the parent timestamp 
and the current time is created. Ta uniquely identifies a given transaction. For all transactions 
of which this transaction is the parent, the leaf or nested procedure is invoked. (see Fig. 2 
for leaf-transaction) For all data-items that are accessed by the transaction, a commit is 
executed. 

1 PROCEDURE Nest· Trans(N: transactions, 7: timestamp) 
2 Create timestamp ~ = f( T, time) 
9 VTj EN: IF Ti is nested THEN Nest- Trans(Til 'Ta) 
4 ELSE W.Transaction(Ti.RS, Tj.WS, Tj.I,~) 
5 Fl 
6 Create timestamp Ie = 0 
7 Validate(I, T", Ie, C J, Cd 
8 !F(C, <G,) THEN"vXENL A-Gomm;t( X, T"T"G,J 
9 ELSE 'IX EN.!: A-Abort( X, I,) 
10 END 

Figure 11: Nested transaction algorithm for OCC-NVTI 

The visibility of the results within a nested transactions has a consequence for the spec
ification of the actions. Results of intermediate- and leaf-transactions are available to other 
transactions when they have an ancestor in common. At the commit of a leaf- or intermediate 
transaction, ownership of its version is passed to its parent; at the commit of the root, the 
version's state is passed to commit. The Read and Commit actions are adapted accordingly. 
The parameters for Validate and Commit depend on the CCA under consideration. In case of 
OCC-BV, Validate is only invoked for leaf-transactions. In case of2PL and MVTSO, Validate 
is not invoked at all. The actual implementation of the Validate and Commit procedures is 
discussed in section 10.3. 

8.2 Specification of nested transaction actions 

Four sets of actions based on 2PL, OCC-BV, OCC-NVTI and MVTSO are specified. All 
four incorporate versions to allow the ordering of the RO-transactions with respect to the W
transactions such that the values of data-items are available to RO-transactions with minimal 
waiting times. The read- and write-actions are specified with PRE- and POST-conditions. 

The representation of the data-elements contains attributes for all four types of CCAs. 
In case of 2PL, a given data-item X is a tuple < V, L >, which consists of a set of versions 

V and a lock L. Each version X; E V is a tuple < Tw , 70, Ta, S, value >. 
In case of OCC-BV, a given data-item X is a set of versions V. Each version X; E V is a 

tuple < Tw , 70, Ta, S, list, value >. 
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In case of MVTSO, a given data-item X is a set of versions V. Each version Xi E V is a 
tuple < Tw, T,., To, To, S, value >. 

In caSe of OCC-NVTI, a given data-item X is a set of versions V. Each version Xi E V is 
a tuple < Cb, C" Ce, To, To, S, list, value> 

The elements ofthe tuples are: (1) Tw is the timestamp of the writing W-transaction, (2) 
T,. is the largest timestamp of all the transactions that have read this version, (3) To is the 
timestamp created at commit time, (4) To is the timestamp that identifies the owner of the 
version, (5) Cb is the begin counter of the validity interval defined by the CJ value of the 
writing transaction, (6) Cr is the maximum of the CJ values of the transaction which read 
this version, (7) Ce is the end counter of the validity interval, (8) S is the state of the version, 
(9) list is a list of identifiers of transactions that read this version and (10) value is the value 
of the item's version. The state S of a version is (1) tentative: the version is created but 
not yet usable by other transactions than the creating one, (2) validating: the transaction 
that created this version has finished all write and read actions but has not yet asserted their 
validity and (3) commit: the version can be used by transactions with roots different from 
the creating one. A lock L is a tuple < s, I >, which consists of a state L.s and a list L.I of 
timestamps which uniquely identify the W-transactions using this lock. The lock-state L.s 
can be in three states: (1) free: no W-transaction uses this item, (2) write: one W-transaction 
uses this item for writing and (3) read: one or more W-transactions use this item for reading. 
A lock is only used by W-transactions; RO-transactions don't use the lock but only use the 
time-stamp T,. which determines if a version can be read. 

2 PROCEDURE RO-Transaction(RS: read actions, I: data-items, t: timestamp) 
:) Create timestamp Is :;:::: f( t, time} 
5 Vact[X] E RS, RO.read(X, 7" Ax) 
6 execute calc'Ulations 
7 END 
8 
9 ACTION RO-Read( X: data-item, T: Timestamp, vaT a: value) 
10 {PRE: v E X.V 1\ v.Te < T 1\ v.S:;::: commit 1\ v.value ::::: A 
11 A(\lx E X.V - {v}, x.S::::: commit: (x.Ie < v.Te V x.Te > T» 
12 POST: a = A 
I.} 

Figure 12: RO-Read specification and RO-Transaction Algorithm for 2PL and OCC-BV 

All the algorithms select a serial order of the transactions, which determines which trans
actions read the values last modified by a preceding transaction. MVTSO algorithms order 
with respect to the start time of the transactions, OCC algorithms order with respect to the 
validation time and 2PL algorithms order with respect to the first lock conflict between any 
two related transactions. 

In Fig. 12, the algorithm for a RO-transaction is shown in case of OCC-BV and 2PL. The 
specification of the RO-Read states that a version with the largest write timestamp is selected 
which has a commit timestamp smaller than the timestamp, T, of the reading transaction. 
For MVTSO (see Fig. 13), the version with the largest write-timestamp Tw is selected. For 
OCC-BV and 2PL (see Fig. 12), the version with the largest commit-timestamp T,. is selected. 
The value of the selected version is returned. In case of MVTSO, the T,. values of the versions 
X with x.Tw < T are set equal to the Tw value of their immediate successor x': x.T,. = x'Tw' 
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17 PROCEDURE RO-Transaction(RS: read actions, I: data-items, t: timestamp) 
18 Create timestamp ~ = J( t, time) 
19 IF 3x E I : x.Te > Is THEN 'Tm := (min x E I,x.S =I Commit V x.Te > ~ : x.'Tw) 
20 ELSE Tm := ~ 
21 "a,,[XI E RS, RO-"ad(X, Tm, Ax) 
22 execute calculations 
23 END 
24 
25 ACTION RO-Read( X: data-item, T: Timestamp, var a: value) 
26 {PRE: v E X.V 1\ v.Tw < T 1\ v.S;::; commit A v.value;::; A 
27 1\('Vx E X.V : (x.Tw :S v.Tw V x.Tw > 'T)) 
28 POST: a = A 1\ Close(v) 
29} 
30 FUNCTION Closer v : 1Jersion) 
31 {PRE: 3X ED: v E X.V A xm.Tw ;::; (max x E X.V,x.Tw < v.Tw ! x.Tw) 1\ v.Tw = T 
32 POST: Xm.r,. ;::; T 1\ Close(xm ) 
33} 

Figure 13: RO-Read specification and RO-Transaction Algorithm for MVTSO 

The case for OCC-VTI is already explained in section 4 

8.3 Two Phase locking 

The locking algorithm for nested transactions differs from traditional 2PL in the treatment 
of the locks [Mos85]. Locks set by transactions are inherited by the parents after commit of 
these transactions. Once a write-lock has been set, transactions can read write-locked data
items as long as the locking transaction is an ancestor of the read-requesting transaction. This 
strategy assures that when an intermediate transaction aborts, removing intermediate results, 
all modifications done by one or more transactions that read those intermediate results are 
also removed. Exception atomicity is maintained inside the nested transaction, because reads 
on new versions can only take place when these new versions are owned by an ancestor of the 
reading transaction. A write lock can be set by a leaf-transaction, when all owners of the lock 
are ancestors of the leaf-transaction. The only owner of the write-lock is the leaf-transaction 
until its commit. 

In Fig. 14, the specifications for the reading, writing and committing of one data-item 
are shown when the 2PL strategy is used. The last written version (identified by its commit 
timestamp Te) is always selected for reading. The reading can start when no tentative version 
exists and the lock-state is read or free, or a tentative version is selected of which the owner 
is an ancestor. After execution of A-Read, the value of v is returned, the reading transaction 
7 has been added to the lock list and the free lock-state is set to read. 

The writing can only start when the lock-state is free or the lock-list is occupied by 
the invoking transaction or by its ancestors. After execution of A-Write, a version v which 
contains the specified value is added to the data-item X. The lock-state is set to write with 7 
the only locking transaction specified in the lock-list and the version state is set to tentative. 
The writer and owner of the version identified by respectively 7w and To are set to 7. 

The commit is executed on data-items X which are locked by the executing transaction 
(7 E X.L.t). A-Commit starts with the definition of the set C of versions owned by the 
committing transaction 7. After A-Commit, the executing transaction identifier 7 is removed 
from the lock-list L.t of X. When the root commits, the state of the lock L.s is set to free. 
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ACTION A-Read( X: data-item, T: Timestamp, var a: value) 
{PRE: v E X.V A X.L.l;:: LA v.value;:: A A X.L.s;:: LS 

A(X .L.s 'I- write V (X.L.s;:: write A v.To E ancestor(T))) 
A(Vx E X.V : v·Ie ~ x.Te) 

POST: (LS;:: free ~ X.L.s;:: read) A a;:: A 
I\X.L.I = (L u {T)) 

} 

ACTION A- Writer X: data-item, 7: Timestamp, a: value) 
{PREe (X.L.s = free V X.L.l = {T} vVT, E X.L.I : T, E ancestoT(T)) 

1\ X. V = Q 1\ a=A 
POST: v = newly created version AX.V;:: Q U {v} 

Av.S;:: tentative A v.value ;:: A 1\ v.70 ;:: 7 1\ v.7..., ;:: 7 
I\X .L.s ;:: write A X .L.l ;:: {7} 

} 

ACTION A-Commit( X: data-item, T: Timestamp, t: Timestamp) 
{PRE, X.L.l=LI\X.V=QI\TEL 

I\C = {v I v E Q 1\ v.To = T} 
POST, (Vv E C : (v.Tw = T =} v.To = t) 

l\{root(7) ~ (v.S;:: commit A X.L.l;:: 0/\ X.L.s;:: free)) 
1\(~Toot(T) =} v.To = parent(T) 1\ X.L.l = (L - {T}) U {parent(T)}) 

} 

ACTION A-Abort( X: data-item, 7: Timestamp) 
{PREe X.v=QI\C={vlvEX.vl\v.To=T} 
POST, X. V = Q·C 
} 

Figure 14: 2PL read, write and commit specifications 

When the transaction is not the root, T's parent is added to the lock-list and the owners of all 
versions of C are set to the parent of T. The Commit times are set to t for all leaf-transactions 
which wrote this version (Tw = T). 

The A-Abort action specifies that the tentative versions owned by this transaction are 
removed. 

8.4 Multi-Version Timestamp ordering 

MVTSO assures that for a set of transactions, the order of the equivalent serialized set is equal 
to the order in which the transactions are started. For nested transactions, the order of the 
root-transactions is determined by the absolute start times of the root-transactions, but the 
order within a nested transaction is determined by the relative start times of the intermediate 
transactions. As for 2PL, transactions can only read values from versions committed by earlier 
root transactions or from versions which are owned by ancestors. Each version has a write 
timestamp of the writing transactions and a read timestamp that is the maximum of the 
timestamps of all transactions that read this version. A serializable schedule is enforced by 
the simple rule that for any two versions u and v with write-timestamps Tv < Tv and v the 
immediate successor of u, the timestamps T,. of the transactions that read version u obey: 
Tv :':: T,. < Tv. 

In Fig. 15, the specifications for the reading, writing and committing of one data-item 
are shown when the MVTSO strategy is used. The reading can start when there is a version, 
committed by an ancestor (identified with v.To E ancestor(T)) or by a root transaction, with 
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ACTION A-Read( X: data-item, T: Timestamp, var a: value) 
{PRE: v E X.V A v:r;.. = TRA v.Tw S T A v.value = A A (v.S = commit vv.To E ancestor(T)) 

A(Yx E X.V - {v} ,(x.Tw < v.Tw V x.Tw > T)) 
POST: v.Ir = max(TR) T) A a = A 
} 

ACTION A- Writer X: data-item, T: Timestamp, a: value) 
{PRE, X.V = Q A a = A A (Yx E Q ,(x.T, < T) V x.Tw > T) 
POST: v = newly created version 

Av.Tw = T A v.To = T A v.Ir = T A v.S = tentative 
Av.value = A A X.V = Q U {tI} 

} 

ACTION A-Commit( X: data-item, T: Timestamp, t: Timestamp) 
{PRK C = {v I v E X.V A T = v.'To} 
POST: "'Iv E C : (v.Tw = T => v.Te = t) 

} 

/\( (root(T)::::} v.S = commit) 
A(~root(T) => v.To = parent(T)) ) 

ACTION A-Abort( X: data-item, T: Timestamp) 
{PRK X.V=QAC={vlvEX.vAT=v.'To} 
POST, X.v = Q- C 
} 

Figure 15: MVTSO read, write and commit specifications 

a write-timestamp smaller than the timestamp of the executing transaction. The version v 
with the largest write-timestamp is selected. After execution of A-Read, the read-timestamp 
is updated with the timestamp of the executing transaction when this timestamp is larger 
than the original read-timestamp. The value of v is returned in a. 

The writing can start when there is no version with a write-timestamp smaller and a 
read-timestamp larger than the timestamp of the executing transaction. After execution of 
A- Write, a new version is created with the specified value and a write-timestamp, owner
timestamp and read-timestamp equal to the timestamp of the executing transaction. The 
state of the version is set to tentative. 

A-Commit is executed to make the versions accessible to other (root) transactions and 
their descendants. The set C contains the versions owned by the committing transaction. 
After A-Commit, the owners of the versions are equal to the parent of the committing trans
action. In case of a leaf-transaction (v.Tw = T), the commit timestamps of these versions are 
set equal to the specified commit timestamp. For root transactions, the states of C's versions 
are set to commit. 

The A-Abort action specifies that all versions owned by the executing transaction are 
removed. 

8.5 OCC-BV 

In Optimistic Concurrency Control with Backward Validation (OCC-BV), the results of all 
write actions of a given transaction are installed in one atomic step including a "validate" 
phase. Before, all write actions have taken place without any checks on their validity. The 
ordering of the serialized equivalent set of transactions is the same as the one dictated by 
the commit times. At validation time, each transaction verifies that no more recent version 
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is installed since its reading of the corresponding item. When new versions are installed, the 
transaction should have read this newer version. Aborts of transactions are then necessary. 

ACTION A~Re4d( X: data-item, T: Timestamp, vaT a: valtJ.e) 
{PRE: 11 E X. V A (v.S = commit V v.To E ancestor(T) A v.l·ist = LA v.value = A 

A('Vx E X.V - {v} : (x.8 = commit V x.To E ancestor(T)) => v.Te > x.Te) 
POST.. v.li,' = L u {T} A a = A 
} 

ACTION A- Writer X: data-item, T: Timestamp, a: value) 
{PRE.- X.V = Q Aa = A 
POST: 11 = newly created version 

I\v.S;:;: tentative 1\ v.70 = T 1\ v.Ir ;;:: T 1\ v.value ;;: A 1\ X.V;:::: Q U {v} 
} 

ACTION A- Validate(X: data-item, T: Timestamp, t: Timestamp) 
{PRE: ('<Ix E X.V : x.S =P validating) 1\ TL = (max x E X.V,(x.S = commit V x.To E ancestor(T» : x.Te) 

A(\fx E X.V : x.Io '" h "" I ~ x.li,'} 
POST: \Iv EX. V, v.To = T : v.S = validating 

1\(3v E X.V: 11.To = T) => t = time opid 
A(\fv E X.V : v.Io '" T} "" ,= TL 0 pid 

} 

ACTION A-Commit( X: data-item, To' Timestamp, t: Timestamp) 
{PRE.- C= {x I x E X.V Ax.Io = I}A\fx E C :X.S= ST. 

"Va:; E X.V - C : (x.7.: < (min v E C : v.7.:» V (x.T.: > (max v E C : v.7.:)) 
POST: Vx E C : ( (STx = validatin9 => x.7.: == t) 

A«root(T) A x.S = commit) V (...,root(T) A x.S = tentative A x.Io = parent(I))) ) 
} 

ACTION A-Abort( X: data-item, I: Timestamp) 
{PRE, X.V=QAC={vlvEX.VAI=v.Io)) 
POST.. x. V = Q·C 
} 

Figure 16: OCC-BV read, write, validate and commit specifications 

In Fig. 16, the specifications for the reading, writing, validating, and committing of 
one data-item are shown when the OCC-BV strategy is used. The reading can start by 
selecting a committed version or a tentative version owned by an ancestor of T (identified by 
(v. '1;, E ancestor(T)). The version v with the highest commit-timestamp is selected. After 
execution of A-Read, the value of v is returned and the timestamp of the executing transaction 
is added to the version's list. 

The writing can always start. A new version with a tentative state and the specified value 
is created. The owner is set to be the writing leaf-transaction. 

Only leaf-transactions validate their results. Validation can only start when no other 
versions are being validated. After execution of A-Validate, the state of the version written 
by this transaction, v.'1;, = T, is set to validating. The read-actions of the transaction are 
valid when at validation time there are no new versions created since the reading of the data
items. This is verified by looking at the lists of transactions that read a given version. Only 
the last validated version (defined by TL ) is allowed to be read by the validating transaction. 
A value for the local timestamp of Ie is returned in t. 

Each item X is represented by a list of versions ordered by the commit times of the leaf
transactions. A nested transaction T can own one or more versions of an item. All versions 
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not belonging to T must be ordered either before all versions of T or after. Consequently, 
A-Commit can only start when all versions created by leaf-transactions of the committing 
transaction, T, constitute one contiguous sequence. A-Commit is executed on all versions 
which are created by the committing transaction. When leaf-transactions (v.S = validating) 
are committed, the commit timestamp is replaced by the specified one. In case of a root trans
action, the version's state is set to commit; in the other case, the state is set to tentative and 
the owner-timestamp is set equal to the timestamp of the parent of the comitting transaction. 
In case this data-item was read, the reading timestamp is set equal to the maximum of the 
committing transaction and former read-timestamp. 

The A-Abort action specifies that all versions owned by the executing transaction are 
removed. 

8.6 OCC-NVTI 

ACTION A-Read( X: data-item, 'Ti: Timestamp, vaT a: value) 
{PRE: v E X.V A (v.s = commit V v.To E ancestor(1i» 1\ v.list := L t\ v.value = A 

A('ix E X.V, (:v.S = commit V x.To E ancestor(1i)) : x.Te :$ v.'Tc) 
POST: v.list = L u {1i} /\ a = A 
} 

ACTION A-Write( X: data-item, 'T;: Timestamp, vaT OJ: counter, 4: value) 
{PRE, X.V=QAa=A 
POST: 11 = newly created version 

Av.S = tentative A v.70 = 7i A v.value = A 1\ v,list = 0 /\ X.V = Q U {v} 
} 

ACTION A-Validate(X: data-item, 7;, t: Time-stamp, var G"O,: Counter) 
{PRE: 'Ix E X.V : x.S:j:. validating 

P(x) = (,root('1i) => x.To = parent(1i» /\ (root(7i) :::} x.S = commit) 
POST: ('Ix E X.V,x.To = 7i: x.S = validating) 

} 

A((3v E X.V, v.To = 70) '* Cf = (maxx E X.V,P(x) ,x.C, + 1)) 
/\«'<Iv E X.V: v.To of:. 7;)::} Of = (max x E X.V,P(x) /\ 7; E x.list : X.Ob + 1» 
A((3v E X.v,P(x) ,70 E v.li,') '* C, = v.C. - 1) 
A(('tv E X.V, 70 It v.li,tJ '* c, = 00) 
/\(3v E X.V : v.To = T) ::} t = time 0 pid 
A('tv E X.v 'v.To '" T) '* ,= (maxx E X.V, P(x) , x.To) 0 pid 

ACTION A~CQmmit( X: data~item, 'Ti,Te: Time-stamp, OJ: Co1t.ntel') 
{PRE: ('v'v E X.V : v.Or = C v /\ v.list = Lv /\ v.To = Tov) 

P(x) == (-.root(1i) ::::} x.To = parent(7;)) /\ (root(1i) ::::} X.S = commit) 
lib E X.V A P(b) A ('tx E X.V,P(x) 'X,Cb S b.Gb) 

POST, «3x E X.V, Tax = 70) '* b.G. = Cf) 

} 

/\('v'v E X.V, Tov = 1i : v.Oe = 00 /\ V.Ob = Of /\v.Or = Of /\ v.Te = Te) 
A('tv E X.v,7o E L. ,(P(v) '* v.c, = max(C.,C f)) A (~P(v) '* v.li,' = (L. \ 70) U paren'(7o))) 
I\('v'v E X.V, Tov = 1i : (l'oot(1i) ::::} v.S = commit) 1\ (-'l'oot(7i)::::} v.To = parent(1i»)) 

ACTION A~Abort( X: data-item, 7;: Timestamp) 
{PRE, X.v = Q A C = {v I v E X.V AT; = v.To)} 
POST, X. V = Q-C 
} 

Figure 17: nested OCC-NVTI read, write, validate, commit and abort specifications 
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Optimistic Conncurrency Control with Nested Versions and Time Intervals (OCC-NVTI) 
is based on OCC-VTI. Nesting is added by ordering all transactions with the same parent 
according to the C f values. Recursive application of the ordering until the roots are committed 
results in root transactions which are ordered like the unnested OCC-VTI transactions. 

Readable versions are the committed versions and the versions which are owned by an 
ancestor of the reading transactions. Reading takes place by selecting from all readable 
versions the last written one which has the largest To value. After reading, the value of the 
version is returned to the invoking transaction and the identifier of the reading transaction is 
added to the read-list of the selected version. 

Writing can always take place. The version is added to the list of versions with state 
tentative. 

When A-Validate starts, no other transactions can be validating the same item. For every 
item the valid interval is determined. Two cases are considered: (1) the transactions is a 
root-transaction and (2) the transaction is not a root-transaction. In case 2, the versions 
belonging to the parent transaction and in case 1, the committed versions are considered. 
Additionally the read versions are considered by looking at versions with a list containing the 
identifier of the validating transaction. The returned C f value is the maximum of all version's 
Cb; the returned CI value is the minimum of all CT values. 

A-Commit adjusts the Cb, CT and Ce values of the versions and the involved lists. When 
the Committing transaction is the root, the version's state is set to commit. When not a 
root, the owner is set to the parent of the committing transaction. The last readable version 
is identified and the C f values in the readers list are set equal to the Cb value of the currently 
committing transaction. The C f values of the transactions in the readers list of the versions 
owned by the committing transaction are set equal to Cb + 1. 

ACTION A-Commit( X: data-item, 'Ji,Te: Timestamp, Of: C01l.nkr) 
{PRE: X.V = Q 1\ Z = {v I 11 E X.V 1\ 'Ii = v.To}} 1\ Cma:r = (maxx E Z: x.Cb ) 

R= {v t v E Z I\v,Cb < Cma.1'} 
POST, X. V = Q·R 
} 

Figure 18: specification of version removal in A-Commit for OCC-NVTI 

Only the latest version of a set of versions owned by the same transaction can be read. All 
versions owned by the same transaction have the same Cb value which leads to ambiguities. 
Therefore, only the version with the largest Cb value will be retained; all others are removed 
(see Fig. 18). 

8.7 Commit 

The precedence relation together with view serializability make that when for a given data
item several versions are committed by one root-transaction, only one of those versions is 
actually read by other root-transactions or their descendants. To diminish the number of 
versions, all unused versions should be removed. The commit timestamp To of the last version 
has been modified to the current time plus some constant d. The post conditions of commit 
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have been extended as shown: 

PRE: 

POST: 

OCC-BV,2PL 
v.Te = (max x E C : x.Te) 
t = timestamp( time) + d 

AR = {x I x E C A x f. v} 

root(T) ~ X.v = Q - R 
v.Te = t 

9 Proof of correctness 

MVTSO 
v.Iw = (max x E C : x.Iw) 
t = timestamp( time) + d 
AR = {x I x E C A x f. v} 

root(T) ~ X.V = Q - R 
v.Te = t 

(24) 

For the proof of OCC-BV, OCC-NVTI and 2PL, the following hypothesis relates the commit 
timestamps of the transactions with the order in which the transactions execute the commit 
actions on the individual data-items. 

Hypothesis 5 In case of 2PL, OCC-BVand OCC-NVTI, two RW-conflicting transactions 
T and T', with commit-timestamps Te and I'e, execute their commit-actions at local times t 
and t' such that: t > t' {} T" > I' e. 

A last hypothesis on the implementation of timestamps must be stated for MVTSO. 

Hypothesis 6 (Ti.T" < parent(Tk).T" < Tj.T"ATj if; descendant(parent(Tk)) Aparent(Tk) if; 
descendant(Ti)) ~ Ti.T" < Tk.T" < Tj.T" 

RO-transactions read their data from one or more W-transactions or To. For a given 
RO-transaction, Tro, a set of versions exists associated with the read set RSro - In case of 
MVTSO, the maximum write-timestamp M ro is defined as the minimum of all Iw for which 
the versions have a commit-timestamp Te > Tro.T" when there are such versions: 

M ro = (min x E RSro , (x.Te > Tro.T" V x.S f. commit) : x.Iw) (25) 

x 
Otherwise: M ro = T". The X-order, -<, can be extended for MVTSO, OCC-BV and 2PL. 

x 
Definition 5 (Nested X-order!) For any two leaf-transactions Ti and Tj, Ti -< Tj iff 

• Ti and Tj are conflicting W-transactions with X E RSi n W Sj V X E W Si n RSj and 
Ti.Ty < Tj.Ty, where Ty = Ie for OCC-BV f3 2PL and Ty = T" for MVTSO. 

• (i=OAXERSj) or(j=fAXEWSi). 

• T, is a W-transaction and Tj is a RO-transaction and X E W Si n RSj and for OCC-BV 
f3 2PL: Ti.T" < Tj.T" and for MVTSO: Ti.T" < Mj. 

• Tj is a W-transaction and Ti is a RO-transaction and X E W Sj n RSi and for OCC-BV 
f3 2PL: Ti.T" < Tj.T" and for MVTSO: Mi :S Tj.T". 

A different order is defined in the case of OCC-NVTI. The root of transaction Ti is denoted 
with T;' 
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Definition 6 (Nested-X-order2) For any two transactions Ti and Tj, conflicting in X, 

Ti 3. Tj iff 

• Ti and Tj are root-transactions and ordered according to definition 2 

• Ti is a root-transaction and Tj is not a root-transactions and T;'C f > Ti.C f 

• Tj is a root-transaction and Ti is not a root-transactions and T:.C f < Tj.C f 

• Tj and Ti are not root-transactions and T;.C f > T:.C f 

• Ti and Tj have the same root and there is a transaction Tk with Ti, Tj E descendant(Tk) 
with children Tm and T/ such that Ti = Tm V Ti E descendant(Tm) and Tj = T/ V Tj E 

descendant(ll) and Tm.Cf < T/.Cf . 

The consistency of these relations is proven in the following lemma: 

Lemma 8 For two related transactions Ti and Tj, with {X, Y} <;; (RSi n W Sj)U (RSj n W Si) 
X Y 

: Ti -< Tj ¢>Ti -< Tj 

Proof. When both transaction are W-transactions, they are ordered by the same time
stamps independent of the variable with which they are related. Consequently, the lemma is 
true for W-transactions. 

The rest of the proof is identical to the proof of lemma 2. 
o 

Lemma 9 The order of definition 5 is acyclic. 

Proof. The W-transactions are ordered by their uniquely attributed timestamps. The 
total ordering of the timestamps assures that the set of W-transactions is ordered without 

cycles. In case of 2PL and OCC-BV the ordering criterium of RO-transactions and W
transactions is the same (defined by 7;,) and the union of both sets is also ordered without 
cycles. The case of MVTSO must be considered separately. No order is defined between 
RO-transactions, but RO-transactions are ordered with respect to W-transactions in two 
ways. Consequently, cycles can occur when a RO-transaction Tro is ordered between two 

Z X Y 
W-transactions, Twl and Tw2 , such that Twl -< Tw2 /I Tw2 -< Tro -< Tw1 , as shown in fig 5. 
From definition 2, the following relations can be derived: 

X 
Tw2 -< Tro =} Tw2 'T, < M ro 

y 
Tro -< TWI =} M ro ::; Tw1 ' T, 

(26) 

(27) 

Combining both relations leads to: Tw1.T, > TW2'T,. Because (Z E RSwl n W Sw2) V (Z E 
z 

W Swl n RSw2 ), it follows that Tw2 -< Twl and the cycle is impossible. 0 

The same needs to be proven for the order definition 6 of OCC-NVTI: 

Lemma 10 The order of definition 6 is acyclic. 
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such a version is commited by either a root transaction or a leaf transaction. It follows that 
v is committed by the writing leaf-transactions and one or more ancestors when d(e) reads 
v. According to the local clock of X, a reading leaf-transaction commits after the commit of 
the leaf-transactions that wrote the version. According to hypothesis 5: s(e).Ie < d(e).Ie. 

MVTSO A-Read proceeds by reading a version, v, with its state commit or by reading the 
tentative version, v, owned by an ancestor of the reading transaction. 

v.S = commit V v.To E ancestor(T) (31) 

The reading MVTSO leaf-transaction reads versions such that s( e). Ie < d( e ).7:;, as prescribed 
by the precondtion of the A-Read action: 

(32) 

with v.Tw = s(e).7:; and 7:; = d(e).7:;. 

OCC-BV A-Read proceeds by reading a version with its state commit or by reading the 
tentative version owned by an ancestor of the reading transaction. 

V.S = commit V v.To E ancestor(T) (33) 

According to the post condition of A-Commit 

(root(T) * (v.S = commit)) 1\ (,root(T) * (v.To = parent(T)) (34) 

such a version is committed by either a root transaction or a leaf transaction. According 
to the local clock of X, the reading leaf-transaction commits after the commit of the leaf
transactions that wrote the version. According to hypothesis 5: s(e).Ie < d(e).Ie. 

OCC-NVTI Assume that leaf-transaction Ti has written a version v read by leaf-transac
tion Tj. According to the precondition of A-Read 

v E X.v 1\ (v.S = commit V v.To E ancestor(7j)) (35) 

Tj can read either a committed version or a version owned by an ancestor. 
Assume the version is owned by an ancestor. According to the postcondition of A-Commit 

,root(7i) * v.To = parent(7i) (36) 

the ownership of v passes to the parent of Ti. At the commit of the parent or ancestor of Ti, 
ownership passes to another ancestor of Ti' When Tj reads v, the owner Tk of v is both an 
ancestor of T j and Ti. The postcondition of A-Read specifies that after the reading of v by 
Tj, an entry 7j is added to v.list. According to the postcondition of A-Commit 

PRE: 'Iv E X.V: v.list = Lv 

P(x) == (,root(7i) * x.To = parent(7i)) 

POST: ,P(v) * v.list = (Lv \ 7j) U parent(7j)) 
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Proof. The ordering between RO-transactions and W -transactions is already proven in 

lemma 3. Consider the case of ordered nested W-transactions with Ti ~ Tj ~ Tk. Assume that 
Ti and Tk conflict in Z. When all transactions are root-transactions: Ti.Cj < Tj.Cj < Tk.Cj. 

Z 
According to definition 6: Ti -< Tk. 

Assume Ti and Tj have different roots: T; -F TJ. According to the nested order definition: 
T;.Cj < TJ.Cj and TrCj ~ T/;.Cj. Combining both equations leads to T;.Cj < TrCj. 

According to the order definition it follows that Ti ~ Tk. 
Assume Ti and Tj have a common ancestor T/; Tj and Tk have a common ancestor Tm. 

Then there are two children Til and T/z of T/ with Ti = Tn V Ti E descendant(Tn) and 
Tj = T/z V Tj E descendant(T/z) and Tn.Cj < T/z,Cj. There are also two children Tml and 
Tmz ofTm with Tj = Tml VTj E descendant(Tml ) and Tk = Tmz VTk E descendant(Tmz ) and 

x 
Tml.Cj < Tmz.Cj. If Tml = T/z then it follows immediately that Ti -< Tk. If Tml -F T/z then 
Tm E ancestor(T/) V T/ E ancestor(Tm). Both cases are treated in the same way. Consider 
Tm E ancestor(T/). Then either Tml = T/ or Tml E ancestor(T/). From the definition of 
Til it follows that Tml E ancestor(Ti). From the order definition, Tk E ancestor(Tmz) and 

z 
Tml.Cj < Tmz.Cj it follows that Ti -< Tk. 0 

Based on order definitions 6 and 5 the view-serializability of the nested CCA's can be 
proven. It is first demonstrated that the history of leaf-transactions is serializable. 

Lemma 11 For any labelled edge e from G, with s( e) = Ti and d( e) = Tj, Ti and Tj both 
X 

leaf-transactions related via X, it holds that Ti -< Tj . 

Proof. A RO-transaction Tro is the destination of a given edge e, or is the source of an 
edge with destination Tj. In the first case, the pre-condition in RO-Read and the assignment 
to the parameters, T or C , of RO-Read in RO-Transaction: 

2PL & OCC-BV 
MVTSO 
OCC-NVTI 

v.Te < T /\ v.S = commit /\ T = Is 
v.Tw < T /\ v.S = commit /\ T = M ro 
V.Cb < C /\ v.S = commit /\ C = M TO 

(28) 

assure that s(e).Te < d(e).Is in case of OCC-BV & 2PL, s(e).Is < M ro for MVTSO and 
s(e).Cj < M TO for OCC-NVTI. For all four CCA's, s(e) precedes d(e) in the defined order. 

In the second case, Tj follows all other transactions per definition. Consequently, the 
lemma is trne for all edges involving a RO-transaction. The same reasoning is valid for any 
edge involving Tix E H U

• 

Edges which only involve W-transactions are considered for all four types of CCA sepa
rately. 

2PL A-Read proceeds by reading the item that is free, read-locked or write-locked but 
owned by a parent: 

X.L.s -F write V (X.L.s = write /\ v.To E ancestor(T)) (29) 

According to the post condition of Commit 

(root(T) =} (v.S = commit)) /\ (.root(T) =} (v.To = parent(T)) (30) 
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ancestors may have locked the item when A-Write starts. 

X.L.s = free V X.L.l = {T} V VTi E X.L.t: Ti E ancestor(T) (43) 

Consequently, no new versions of an item X can be created with A-Write as long as leaf
transactions reading the same item have not yet committed. According to the postcondition 
of A-Commit: 

root(T) ~ (X.L.t = 011 X.L.s = free) 

lI.root(T) ~ (X.L.t = (L - {T)) U {parent(T)}) 

(44) 

The state of X is set to free or the reading leaf-transaction identifier is replaced by its 
parent in the lock list. A new version of an item X can only be created by s(e') when the 
transaction d( e) that reads an earlier version has committed. At the local clock of X, d( e) 
commits at time t before s( e'l writes, after which s( e/) commits at time t' > t. After the 
writing and commit by s( e/), the precondition of A-Read assures that no transactions can 
read the version written by s(e). 

Vx E X.V: v.To:::: x.To (45) 

Together with hypothesis 5: d( e) -< s( e'l. 

OCC-BY Suppose that d(e) is a W-transaction. The precondition of A-Validate and hy
pothesis 2 prevent that a new version is written and committed by s( e'l before the transaction 
d( e) that reads an earlier version has committed. 

TL = (max x E X.v, (x.S = commit V x.To E ancestor(T)) : x.To) 
II(Vx E X.V : x·To I- TL ~ T if. x.list) 

(46) 

According to the local clock of X, s( e'l writes after the validate/commit of d( e). From 
hypothesis 5 follows: s(e/).T" > d(e).T". After the commit by s(e/) no transaction will read 
the version written by s(e) as specified in the precondition of A-Read. 

Vx E X.V - {v}: (x.S = commitvx.To E ancestor(T)) ~ v.To > x.To (47) 

Consequently, before and after the commit moment of s( e'l and according to the order defi
nition: d( e) -< s( el). 

OCC-BY & 2PL Suppose d(e) is a RO-transaction. The RO-Read precondition 

v·To < Til V.S = commit II (Vx E X.V - {v}, x.S = commit: x.To < v.To V x·To > T) (48) 

assures that the committed version of X with the largest timestamp To is chosen. Assume 
that this version was read at time t on the local clock of X. Suppose the transaction s( e/) 
commits at time t' < t on the local clock of X. The precondition of RO-Read assures that 
s(e).T" < d(e).T" < s(e/).T". Suppose the transaction s(e') commits at time t' > t on the 
local clock of X. According to hypothesis 3, s( e'l commits with timestamp s( e/).T" > d( e ).T". 
According to the order definition 2 for OCC-BV and 2PL: d(e) -< s(e/). 
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the entry is changed to the parent of Tj. Define Tr, Tm as children of the owning transaction 
Tk with Tj = T/ or T/ is an ancestor of Tj and Tm = Ti or Tm is an ancestor of Ti. The pre
and post-conditions A-Validate 

PRE: P(x) '= (~root(1i) =? x.To = parent(1i)) (40) 

POST: ("Iv E X.v : v.To # 1i) =? c, = (max x E X.V, P(x) II 1i E x.list : x.Cd 1) (41) 

together with the C, calculation in the Validate PROCEDURE assure that T/.C, > V.Cb' The 
postcondition of A-Commit assures that the value of V,Cb = Tm.C,. From the order definition 
6, Tm.C, < T/.C" Tk is the parent of both Tm and T/ and Tj E ancestor(T/) V Tj = T/ and 
Ti E ancestor(Tm) V Ti = Tm follows: Ti -< Tj 

Assume that Tj reads a committed version. The root of Ti has committed because the 
version has the state commit. Tj has not committed yet and has a different root: T; # Tr 
The same reasoning is valid as above. When the root of Tj commits the C, value calculated 
for Tj in the Validate PROCEDURE is larger than the Cb value of v; T;.C, = V,Cb > TrC,. 

common From the order-definitions 6 and 5 it follows that the source of a labelled edge is 
ordered before its destination for all four CCA's. 0 

Theorem 5 (Leaf serializability) The gmph G' constructed from the ACTION specifica
tions of section 8 is an acyclic TP(h). 

Proof. By construction, the vertex set of G is equal to the vertex set of G' and the edge 
set of G' is equal to the edge set of G with the addition of some unlabelled edges. An acyclic 
order is defined on all leaf-transactions Ti and for all XED there is a directed path in G' 
that includes all X-edges. For two X-edges e and e' with different sources of which at least 
one is useful, their destinations are different, d( e) # d( e'), because a transaction reads a given 
value only from one transaction at the time. From lemma 11 it is known that d( e) >-- s( e) 
and d( e') >-- s( e'). 

Suppose that one ofthem, e' is useless. The case s( e) -< s( e') is proven in the same way as 
the case that both edges are useful. When s( e') -< s( e), s( e) is either the direct successor of 
s( e') or ordered after the direct successor of s( e'). The destination of the useless write, d( e'), 
is defined to be ordered before the direct successor of the source: d( e') -< s( e). 

Suppose both e and e' are useful edges. In that case see) and see') are both W-transactions 
because no labelled edges exist from a RO-transaction or a from a vertex Tix E HU. Without 
loss of generality it is assumed that see) -< see'). When dee) = see'), the theorem is trivially 
true by taking the X-path from To to s( e) and via d( e) = s( e') to d( e') and finally to Tf. 
When dee) # see'), the case that dee) is a W-transaction is treated first, followed by the case 
that dee) is a RO-transaction. 

The four CCA's are considered separately 

2PL Suppose that dee) is a W-transaction. The postcondition of A-Read: 

X.L.1 = (L u {T}) II (LS = free =? X.L.s = read) (42) 

states that the lock-list, X.L.I, contains the identifier of the reading leaf-transaction and 
the state is unequal to free. The precondition of A-Write states that apart from itself only 
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MVTSO Suppose that d(e) is a W-transaction. When s(e') has already written a version 
before d(e) reads, it follows for the precondition of A-Read that: s(e') >- d(e). When s(e') 
writes a version after the reading by d(e) the precondition in A-Write states: 

'Ix E X.V : (x.Tw < Ts II x.I,. < Ts) V x.Tw > Ts (49) 

Consequently, after the reading by d( e) only versions can be created by transaction s( e') if 
s(e')·Ts < s(e).Ts V s(e').Ts > d(e).Ts > s(e).Ts. According to s(e) -( s(e') and the ordering 
definition: d(e) -( s(e'). 

Suppose d(e) is a RO-transaction. The precondition of RO-Read 

v.Tw < Til v.S = commit II ('Ix E X.V : (x.Tw ::; v.Tw V x.Tw > Ts)) (50) 

assures that s(e).Ts < M TO and s(e').Ts > M TO when s(e) and s(e') are committed before 
d(e) reads at time t on the local clock of X. The postcondition of RO-Read 

Close(v) (51) 

assures that transactions writing a version, x, after the invocation of RO-Read cannot create 
this version with x.Tw < d(e).Ts. Consequently, the value of M TO is not modified by transac
tions which commit after the execution of RO-read. When s( e') commits at a time t' > t on 
the local clock of X, hypothesis 3 states: s(e').Ts > d(e).Ts. Together with s(e').Ts > M TO it 
follows that: d(e) -( s(e'). 

OCC-NVTI The case RO-Read has been proven in theorem 2 
Suppose that d(e) is a W-transaction. From the assumption that s(e) -( s(e') it follows 

that s(e).Cf < s(e').Cf and V,Cb < V'.Cb. Suppose s(e') writes version v' which is an 
immediate successor of version v written by s(e). 

Assume that s(e) and s(e') have a common ancestor Tk , then d(e) must have the same 
common ancestor. If this is not the case d( e) has a root different from Tk or d( e) and Tk share 
a common ancestor. In both cases d( e) can only read the version written by s( e) after the 
commit ofthe ancestor ofTk or its root. According to the precondition of A-Read, d(e) would 
have read the version with the largest To value which is v'. This contradicts the assumption 
that d(e) reads v. Consequently, d(e) has the same ancestor Tk as s(e) and s(e'). 

Introduce three transactions Tt, Tm, Tn E child(Tk), with T/ = s( e) V T/ E ancestor(s( e)) 
and Tm = d(e)VTm E ancestor(d(e)) and Tn = s(e')VTn E ancestor(s(e')). After the reading 
of v by d(e), an entry d(e) is entered in v.list. When Tm commits before Tn the pre- and 
post-conditions of A-Commit: 

PRE: 'Iv E X.V: v,CT = Cv II v.list = Lv II P(v) == (X.To = parent(Ti)) (52) 

POST: VVEX.V,7;ELv :P(v)=}v.CT =max(Cv,Cf) (53) 

assures that v,CT ~ TwCf. The postcondition of A-Validate and the calculation of the Cf
value in Validate assures that after invocation of A-Validate by Tn: Tn.Cf > v,CT ~ Tm.Cf. 
From the order definition it follows that: d( e) -( s( e'). 

When Tn commits before Tm, d(e) must already have read v, otherwise d(e) would have 
read v'. Because v' is an immediate successor of v, the pre- and post-conditions of A-Commit: 

PRE: bE X.V II P(b) II ('Ix E X.V,P(x): X,Cb::; b,Cb) 

'Iv E X.v : v·To = Tov 
POST: (3x E X.V: Tox = 7;) =} b.Ce = Cf 
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assure that Tl,Cf = b.Cb < b.C,::; Tn.Cf . The post-condition of A-Validate and the calcula
tion of Cf assures that Tm.Cj < Tm.Cl ::; b.C, = Tn.Cj. From the order definition it follows 
that dee) -< see'). 

When see) and see') have no common ancestors, their roots are different. Exactly the 
same reasoning applies as for the case that both have the same ancestor. 

When s( e') is not an immediate sucessor to s( e) an immediate successor T", -< s( e') can 
be found. Above it is proven that dee) -< T",. Combining both equations leads to dee) -< see'). 

common From the ordering and the additional unlabelled edges added to C', an acyclic 
path can be constructed started at To from s( e) to d( e), from d( e) to s( e') and from s( e') to 
dee') to end at Tj. Consequently the graph C' constitutes a acyclic TP(h). 0 

It remains to prove that the intermediate transactions and the root transactions constitute 
a serializable history. In the graph C, the set N of vertices representing transactions which 
are children of a given transaction Can be collapsed to form a single vertex. The vertex set 
N is replaced with one vertex T,!. All edges with both their source and their destination in 
N are removed. All edges with their source in N and their destination outside N have their 
source replaced by T~; all edges with their destination in N and their sources outside N have 
their destination replaced with T,!. The thus created graph is called C(1). All edges in the 
graph C(1) with the same source, destination and label are replaced by one single edge with 
an identical label. In the graph C(1), unlabelled edges are drawn which connect the nested 
transactions and the leaf-transaction as specified for the construction of C' from G. This new 
graph is called C(1)'. It then needs to be proven that this graph also represents a TP(h). This 
is a called L-serializability in [Vid91]. 

One of the requirements on the nested transactions are pointed out in section 4: when a 
nested transaction Ti precedes nested transaction Tj, then all descendants of Ti also precede 
Tj and all its descendants. The order number n of T~ is chosen such that n = (max i: Ti E 
child( T,!) : i). This order is reflected by the value of the timestamps attributed by the OCC 
and MVTSO algorithms. 

Definition 7 (nested timestamps) The start timestamp T,'" of an intermediate/root trans
action at level x is defined to be the minimum of the timestamps of all leaf-transactions which 
are descendants of this transaction. The end timestamp T,,'" of an intermediate/root transac
tion at level x is defined to be the maximum of the timestamps of all leaf-transactions which 
are descendants of this transaction. 

T,'" = (min T E descendant(T,f) : T.T,) 
T"x = (max T E descendant(T,f) : T.Te) 

(57) 

The transactions TIO and Tn of the fig. 11 are collapsed to TIl' Graph C' shown in fig. 
6 is modified to graph C(l)' shown in fig. 19. For the remainder of this paper: TP '" Ti. The 
following theorem is used: 

Theorem 6 (L-serializability) {Vid91} A history h is (L}-serializable iff both C(1)' and the 
history of the collapsed transaction are an acyclic TP(h). 

It is easily demonstrated that the history of the collapsed transaction is serializable. Re
move in G all vertices and edges which have neither source nor destination in the collapsed 
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Figure 19: Example of graph C(!ll with collapsed TlO and Tn 

transaction. Replace the source of the iugoing edges by To and the destinations of the outgo
ing edges by Tf . View serializability (theorem 5) has already been proven for all edges with 
both vertices representing leaf-transactions of the collapsed transaction. For the other edges, 
the lemma is trivially true from the definition of the ordering of To and Tf. The serializability 
of the history of the collapsed transaction follows. Below it is proven that C(!ll is an acyclic 
TP(h). 

s(e)= T~ TJ = d(e) 

" / t \ "'" , ,~ k 
... _-----

e 
~ l=d(e) ., 

" 

Figure 20: Collapsing of either s( e) or d( e) 

Lemma 12 For any labelled edge e from C(!l, with see) = Tt and dee) = TI, where one is 
a collapsed parent transaction and the other a leaf-transaction not a descendant of the first 
((x = 0 II Y = 1) V (x = 1 II Y = 0)), it holds that T{ -< TJ. 

Proof. Consider the first alternative that TJ = d( e) is a collapsed parent with children 
Tk. For every labelled edge ek with s( ek) = Ti and d( ek) = Tk, lemmas 4 and 11 state that 
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Ti -< Tk. All these edges, ek with s( ek) 0= Ti and d( ek) 0= Tk, are replaced by the edges e with 
s(e) 0= Ti and d(e) 0= TJ. Edges with the same label and source are collapsed to one edge (see 
fig. 20). It is then required that for all ek with the label X, every X-writing s(e) is ordered 
before all X-reading Tk • 

2PL The collapsed transaction can belong to a different root from Ti or to the same one. If 
the roots are different, the version of Ti can only be read when the root has committed. The 
reading transactions, Tk, commits after the commit of Ti and from hypothesis 5 it follows 
that the above condition is satisfied. When the collapsed transaction belongs to the same 
root, Ti is not a descendant of TJ. All Tk can only start reading when the version written 
by Ti is owned by an ancestor of Tk. This has as consequence that an ancestor of Ti has 
committed. Tk can only commit after this ancestor and this one in turn can only commit 
after Ti. Consequently, Ti is ordered before all Tk. 

OCC-BV Similar to 2PL proof. 

MVTSO TJ rf. descendant(Ti) and Ti·T, < TJ.T, 
hypothesis 6 that: Ti -< Tk. 

parent(Tk).T, implies according to 

OCC-NVTI Suppose that s(e) and d(e) have different roots s(e)* and d(e)*. According to 
definition 6: s( e)*.C, < d( e)*.C,. All children Tk of d( e) have the same root. According to 
the order definition: 'iTk : s( e) -< Tk. When s( e) and d( e) have the same root, they have a 
common ancestor with two children Tm and Tl with Tm.C, < TI.C, and s(e) = Tm V s(e) E 
descendant(Tm) and d( e) = Tl V d( e) E descendant(TI). The same reasoning as developed for 
s(e)* and d(e)* apllies to Tm and Tl, which leads to the same conclusion: 'iTk : s(e) -< Tk. 

common Consequently, the lemma is satisfied for all four CCA's when the destination is 
the collapsed transaction. 

Consider the second alternative that Tl = s( e) is a collapsed parent with children Tk. For 
every labelled edge ek with d(ek) = Tj and s(ek) = Tk, lemma 4 states that Tk -< Tj . Again, 
edges with the same label X and the same destination d( e) are collapsed. Consequently, for 
all ek with the same label X, all Tk must be ordered before every d(e). 

2PL When Tl and Tj have different roots, all leaf transactions Tk must have committed 
before Tj can read them. Tj commits after Tl and (hypothesis 5) each Tj is ordered after all 
Tk. 

Suppose the collapsed transaction and the reading transaction Tj have the same root. The 
version wriiten by one of the descendants of s( e) has the state write when it is read by d( e). 
According to the precondition of A-Read: 

X.L.s = write 1\ v.To E ancestor(Y) (58) 

the leaf-transaction Tj can only read the versions ofthe children of Tl when an ancestor of Tj 
is owner of these versions. This happens after the commit of Tl which only occurs after the 
last commit of all children Tk of Tl. Consequently, Tj can only commit after the last commit 
ofTk. 

42 



aCC-BV When Tl and Tj have different roots, all leaf transactions Tk must have com
mitted before Tj can read them. Tj commits after Tl and (hypothesis 5) each Tj is ordered 
after all Tk. . 

Suppose the collapsed transaction and the reading transaction Tj have the same root. A 
leaf-transaction can only read a version that is committed or a tentative version that has a 
common ancestor. The latter implies that Tl has committed and consequently all its children 
Tk have committed before the versions can be read. The reading transactions Tj commits 
after Tl and it follows that Tk -< Tj for all k. 

MVTsa parent(Tk).T,. = Tl-T,. < Tj.T,. and Tj Ii descendant(Tll implies according to 
hypothesis 6 that: Tk -< Tj. 

aCC-NVTI Identical to the OCC-NVTI proof for the collapsed s(e). o 

Lemma 13 (Collapsed serializability) The graph G(1)1 constructed from G(1) where a set 
of leaf-transactions is replaced by their parent, is an acyclic TP(h). 

Proof. The part of the proof that concerns RO-transactions and useless writes, is identical 
to the proof oftheorem 2. Consider two X-edges e and e' where both sources and destinations 
are W-transactions. When all edges are simple leaf-transactions, theorem 2 applies. The cases 
that one of the four vertices are collapsed parents is of interest. Without loss of generality 
take s( e) -< s( e'l. When s( e) or d( e' ) is a collapsed parent the theorem is trivially true by 
applying theorem 2 and lemma 12. Two cases are left: (1) s( e' ) is a collapsed parent and d( e) 
is a leaf-transaction and (2) d(e) is a collapsed parent and s(el

) is a leaf-transaction. 

Ad 1) When d(e) is a child of s(e' ), d(e) = s(e' ) after the collapse of d(e). Applying the 
lemma 12 twice proves the lemma. Take the case that d(e) is not a child of s(el

). It must be 
proven that d( e) -< s( e'l. This is equivalent with proving that all children Tk of s( el

) obey 
d(e) -< Tk for every d(e). 

2PL d( e) reads before any descendant of s( e' ) commits, otherwise d( e) would have read a 
version written by a descendant of s( e'l. A child of s( el

) can only write a version when the 
lock is held by its ancestors or is free. This means that either d( e) has committed and the 
lock is passed to a common ancestor of d(e) and 8(e' ), or that the lock is released and d(e) 
is the descendant of a root different from the root of s(e' ). In both cases d(e) has committed 
before all writing children of s( e'l. 

aCC-BV The precondition on A-Commit 

I;fx E X.V - C : (x.Te < (min vEe: v·Te)) V (x.Te > (max vEe: v.Te)) (59) 

assures that all commit by children of s( el
) occur either before or after the commit of s( e). 

From the assumption that s( e) -< s( e' ) it follows that all children Tk of s( e' ) commit after 
s(e). The pre-condition of A-Validate 

TL = (max x E X.V, (x.S = commit V x·To E ancestor(T)) : x.Te) 
1\(l;fx E X.V : x·Te i TL '* T 9! x.list) 

43 

(60) 



assures that all children of s( e'l commit after the the commit of d( e). From hypothesis 5 it 
follows that: 

VTk,Tk E child(s(e' )): d(e).7;, < Tk.7;, 

Consequently, s( e) -< d( e) -< s( e'l. 

MVTSO The application of hypothesis 6 validates the lemma. 

OCC-NVTI The same reasoning as used in lemma 12 applies. 

Ad 2) d(e) is a collapsed parent. 

(61) 

2PL The precondition of A-Write states that all locking transactions are ancestors of s( e'l. 

VTi E X.L.l : Ti E ancestor( T) (62) 

Consequently, all leaf-transactions Tk of d(e) must have committed before the write can start. 
Because d(e) commits later than the committed leaf-transactions, it follows that for all Tk , 

Tk -< s( e'l. 

OCC-BV The precondition on A-Validate 

T£ = (max x E X.V, (x.S = commit V x.To E ancestor(T)) : x.Te) 
A(Vx E X.V : x.Ie -I T£ '* T rf. x.list) 

(63) 

assures that no new version can be added between the commit of the reading transactions and 
the commit of the writing transaction s(e). Consequently, all children of d(e) have committed 
before the new version of s( e'l can be installed. Together with hypothesis 5, this implies that 
s(e' ) >- d(e). 

MVTSO Hypothesis 6 assures that d(e) -< s(e' ). 

OCC-NVTI The same reasoning as applied in lemma 12 applies. 

common In all cases it is true that s( e) -< d( e) and s( e'l -< d( e'l and d( e) -< s( e'l V d( e) = 
s( el

), which proves the lemma. 0 

Transactions can be collapsed to their parents and in their turn these parents can be 
collapsed to their parents. Root-transactions cannot further be collapsed. A completely 
collapsed history is the history of the root-transactions. The set which consists of history h 
of leaf-transactions and all collapsed histories derived from h is called the collapsed history 
set, CH(h). 

Theorem 7 [Nested Serializability} All collapsed histories ch E CH(h) with h a history gov
erned by the ACTION specifications of section 4 are serializable histories. 

44 



Proof. For theorem 5 it is proven that h is a serializable history. In lemma 13, it is proven 
that a singly collapsed history h(l) is a serializable history because the derived graph G(l)1 is 
a acyclic TP(h). Remove in G for all XED all write and read actions on X where W[X] 
precedes R[X] in the collapsed parent and replace them with equivalent write and read actions 
on internal variables of the collapsed parent. The modified collapsed parent has now all the 
characteristics of a leaf-transaction. G(l) can be considered a graph of leaf-transactions. 

Consider a given graph G(k+l) recursively constructed by collapsing a parent of the graph 
constructed in G(k). Assume that G(k) consists of leaf-transactions and that a graph G(k)1 

can be constructed which is a TP(h). Collapsing a parent in G(k) creates the graph G(k+l). 

The graph G(k+I)1 can then be proven to be a TP(h) as shown by lemma 13. In the graph 
G(k+l), the single collapsed transaction can be replaced by an equivalent leaf-transaction as 
shown for G(l). 0 

Theorem 8 (Exception atomicity) The versions created by a tmnsaction are visible to 
all following tmnsactions or to none. 

Proof. A version's state can be committed or tentative. When the version's state is 
committed, the version cannot be removed and is consequently visible to all transactions 
following the committing transaction. According to all A-Read preconditions 

v.S = commit V v.To E ancestor(T) (64) 

versions with the state tentative are only visible to transactions which are a descendant of 
the owning transaction. Other transactions see the version only after its commit. According 
to the A-Abort pre- and post-conditions, 

PRE: X.V = Q II C = {v I v E X.v II v.To = T} 
POST: X.v = Q - C 

(65) 

versions are removed when the owning transaction is aborted. The owning transaction 
owns the versions written by all descendants as specified by the postcondition of A-Commit: 

,root( T} =} v. To = parente T) (66) 

When the owning transaction aborts, the results of all its descendants are removed as 
well. The removed version was only read by aborted descendants of the owning transaction. 
Consequently, no transaction has had access to the version under consideration. 0 

9.1 Proof of HRT/SRT serializability 

The hrt-order is already defined for OCC-VTI in section 7. The hrt order can be defined for 
2PL, OCC-BV and MVTSO: 

Definition 8 (hrt-order extension) For any two tmnsactions T, and Tj,T, ~ Tj iff 

• T, and Tj are leaf-transactions of the same class and ordered according to definitions 5 
and 2. 
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• Ti writes X E Ha u sa and Tj = Tid. 

• Tj accesses X E H a usa and Ti is a specification transaction and Ti. I. < Tj. I., with 
I. = Is for MVTsa and I. = T, for 2PL B aCC-BV. 

• Ti accesses X E H a usa and Tj is a specification transaction and Ti. I. < Tj. I., with 
I. = Is for MVTsa and I. = T, for 2PL B aCC-Bv. 

It is important to note that the transfer-serializability concept is independent of the choice 
of CCA. The SRT-transactions may use a different CCA from the HRT-transacions. 

Lemma 14 The order of definition 8 is acyclic. 

Proof. Consider the ordering without the specification transactions. Two mutually un
ordered sets of HRT and SRT transactions exist. According to theorem 7 each individual 
set is ordered. The addition of the specification transactions can lead to cycles in two ways: 
(1) when a pair of HRT(SRT)-transactions are differently ordered with respect to each other 
than with respect to a given specification transaction and (2) when a cyclic ordering can be 
found from a specification transaction Tid via a set of HRT(SRT) transactions to another 
specification transaction Tjd ~ Tid and from Tjd via a set of SRT(HRT) transactions back to 

Tid· 
X, Y' 

ad 1) Consider that the following order is valid: Tj -< Tid -< Tk, with Tj and Tk 
HRT(SRT)-transactions of the same class. In case of MVTSO, Tj.Is < Tid.Is < Tk.Is implies 
that for conflicting Tj and Tk: Tj -< Tk. In case of OCC-BV and 2PL, Tj.T, :S Tid.T, < Tk.T, 
implies that for conflicting Tj and Tk: Tj -< Tk. Consequently, no cycle is possible. 

ad 2) Without loss of generality, assume that a chain of HRT(SRT)-transactions is ordered 
after the specification transaction Tid and before the specification transactions Tjd. According 
to the definition 4: Tid.I. < Tjd.I. with I. = Is for MVTSO and I. = T, for OCC-BV and 
2PL. To create a cycle, a chain of SRT(HRT)-transactions is ordered before the specification 
transaction Tid and after the specification transactions Tjd. According to the definition 4: 
Tid.Ty > Tjd.Ty with Ty = T, for MVTSO and Ty = T, for OCC-BV and 2PL. This constitutes 
a contradiction. Consequently, the order is acyclic. 0 

It is proven that the graph G~Tt represents a transfer-serializable history for the leaf
transactions which constitute h. 

Lemma 15 For any V-labelled edge e from GhTt, with Y = X or Y = X', see) and dee) both 
y 

leaf-transactions, it holds that s( e) -< d( e). 

Proof. When see) and dee) are both HRT- or SRT-transactions, lemma 12 applies and 
X 

see) -< dee). 
One of the two can be a specification transaction. When d( e) is a specification transaction, 

s( e) -< d( e) is determined by the hrt-order extension definition. When s( e) is a specification 
transaction, there exists a Ti such that see) = Tid. When Ti is a HRT(SRT)-transactions then 
d( e) is a SRT(HRT) transactions. Consequently, they cannot have a common ancestor. 

In case of 2PL and OCC-BV, dee) only reads X' after the commit of Ti at local time t. 
According to the precondition of TR-Read, the commit of d( e) at local time t' > t and hypoth
esis 5: d(e).T, > Ti.T,. According to the definition of specification transaction timestamps: 

x' 
s(e).T, = Ti.T,. Combination of both conditions leads to the conclusion that see) -< dee). 
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In case of MVTSO, dee) reads X' after the commit ofTi. From the precondition of TR
Read follows: d(e).T" > Ti.T" and from the definition of the specification transaction follows: 

.', . X' 

s(e).T" = Ti.T". Their combination leads to the conclusion that see) -< dee). Consequently, 
y 

combining all cases, it follows that see) -< dee). 0 

Theorem 9 (Transfer-serializability) The graph G~rt constructed from the ACTION spe
cifications of section 4 and transfer-edges is an acyclic TP(h). 

Proof. For two X-edges e and e' with different sources of which at least one is useful, 
say e', their destinations are different, dee) i' dee'), because a transaction reads a given 
value only from one transaction at the time. Without loss of generality it is assumed that 
see) -< see'). From lemma 7 it is known that dee) )- see) and dee') )- see'). By construction 
and by the definition of the transfer-edges, HRT transactions access other data-items than 
SRT-transactions and are not related. The identical labels of e and e' imply that when one 
of the four transactions is a HRT(SRT) transaction then the other transactions are either 
HRT(SRT) transactions or specification transactions. 

When see), dee), see') and dee') are all HRT-transactions or SRT-transactions, theorem 7 
applies. 

When s( e) is a specification transaction, s( e') is necessarily also a specification transaction 
because both edges, e and e' are transfer-edges labeled with the same label X' and only 
specification transactions are the sources of transfer-edges. Consequently, only two cases 
need to be considered: (1) dee) is a specification transaction and (2) see') is a specification 
transaction. 

Ad (1): According to the definition of transfer transactions, dee) is ordered before the 
immediate successor of see). see') belongs to the same class as see) (HRT or SRT) and is the 
immediate successor of s( e) or s( e') is ordered after the immediate successor and therefore: 
dee) -< see'). 

Ad (2): There exists a transaction Ti corresponding with the specification transaction 
Tid = s( e) and a transaction Tj corresponding with transaction Tjd = s( e'). The SRT(HRT)
transaction d( e) has a different root from the HRT(SRT)-transactions Ti and Tj. Ti has a 
different root from Tj as d( e) considers them as two separate transactions. 

In case of OCC-BV and 2PL, the ordering s( e) -< s( e') implies that Ti'T" < Tj .T". Assume 
that TR-Read is invoked at local time t. Ti has committed before TR-Read is invoked, 
otherwise dee) could not have read the value written by Ti. Two cases must be discerned: 
(1) Tj commits before t and (2) Tj commits after t. In case 1 the precondition of TR
Read stipulates that Ti.T" < d(e).T" < Tj.T". In case 2 hypothesis 4 assures also: Ti.T" < 
d(e).T" < Tj.T". Using the definition of specification transaction timestamps, the substitution 

s(e').T" = Tj.T" yields: d(e).T" < s(e').T". Which leads to: s(e):';: d(e):';: s(e')~' dee'). 
In case of MVTSO, The precondition of TR-Read implies: s(e).T" = Ti'T" < d(e).T" < 

Tj. T" when Tj commits before d( e) reads. Hypothesis 4 assures that the same is true when Tj 
commits after the read-action of d( e). Further, the definition of the specification transaction 
timestamp implies: s(e').T" = Tj.T". Combining the two equations above yields: s(e).T" < 
d(e).T" < s(e').T". 

A path can be constructed from To via the total order to see), from see) via dee) and see') 
to d( e) and from d( e) via the acyclic order to Tj . Which concludes the proof of the theorem. 
o 
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10 Implementation 

10.1 Timestamp creation 

During run-time, transactions are identified with a timestamp. 

PROCEDURE TimeStamp( T: Timestamp): TimeStamp 
BEGIN 

END 

IF T =0 THEN TimeStamp := time 0 PIn 
ELSE TimeStamp := To DID 

Figure 21: Creation of Timestamps 

In Fig. 21, the creation of a timestamp is shown. A root-transaction invokes TimeStamp 
with T = 0 as parameter. The timestamp is returned as the local time suffixed with the Pro
cessor IDentifier (PID). This establishes unique timestamps. Hypothesis 6 requires that when 
root transaction Tl precedes T2, all descendants of Tl precede T2 and precede all descendants 
of T2 . When the timestamp is generated for an intermediate transaction, the timestamp of 
the parent-transaction suffixed with the Object identifier OlD is returned. It is assumed that 
(possibly in time) unique OlD can be generated. These timestamps allow to check if a given 
timestamp 7i is the ancestor of another transaction represented with timestamp 'Tj. This 
relation is recursively represented with: 

Ti E ancestor(T) {} { 'Tj = 7i 0 a I D 
J 'Tj = 'h 0 OlD 1\ Tk E ancestor(Ti) 

(67) 

A relation is defined for any two timestamps 7i and 'Tj where J(i and J(j are integer values: 

{ 

'Tj = 7i 07' (a) 
7i < 'Tj {} 7i = J( 0 Iii 1\ 'Tj = J( 0 T'j 1\ T'i < I' j (b) 

7i = J(i 0 7 1\ 'Tj = J(j 0 7 ' 1\ J(i < J(j ( c) 
(68) 

The above relation for the timestamps satisfies the hypothesis 6 for MVTSO discussed in 
section 6. 

Lemma 16 (Ti.T, < parent(Tk).T, < Tj.T, 1\ Tj rj. descendant(parent(Tkll 1\ parent(Tk) rj. 
descendant(Till * Ti.T, < Tk.T, < Tj.T, 

Proof. From Ti.T, < parent(Tk)'T, and equations 67 and 68 follows that 

Ti rj. descendant(parent(Tk II (69) 

Similarly it follows that parent(Tk) rj. descendant(Tj). The line (a) of equation 68 which 
defines the order for descendants does not apply: 

Tj.T, i- parent(lk).T, 07 
parent(Tk).T, i- Ti'T, 0 7 

(70) 

The lines (b) and (c) of equation 68 apply. This means that the timstamps of Ti and 
parent(Tk) consist of an equal number (n > 0) of identical integers followed by integer values 

48 



Ki and Kk, with Ki < K k, followed by an undetermined number of integer values. 
applies to parent(Tk) and Tj. 

parent(Tk).T, = Io Kk 0 r" < I 0 Kj 0 Ij = Tj.T, 
Ti.T, = I' 0 Ki 0 T; < T' 0 Kk 0 T'k = parent(Tk).T, 

The same 

(71) 

where I, I', T;, Ij, I'k and r" are possibly empty sequences of integers and Ki and Kj are 
integer values. According to the construction of the timestamp shown in fig. 21: 

(parent(Tk).T,) 0 Ak = Tk.T, 

Inserting in equation 71 the result from eq. :68, T; < T; 0 Ak yields: 

parent(Tk).T, = IoKk or" < IaKkar"oAk < IoKj oIj = Tj.T, 
Ti.T, = T' 0 Ki 0 T; < T' 0 Kk 0 T'k < I' 0 K" 0 I'k 0 Ak = Tk.T, 

Substituting equations 72 and 71 the final result is obtained: 

parent(Tk).T, < Tk.T, < Tj.T, 
Ti.T, < parent(Tk).T, < Tk.T, 

Their combination and removal of parent(Tk).T, leads to the wanted result. 

10.2 System model 

(72) 

(73) 

(74) 

o 

In this section the underlying assumptions and services are discussed. It is assumed that 
the underlying system is composed of processors interconnected via links. Processors are 
fail-silent: they behave according to specification until the moment of failure after which they 
perform no detectable actions. The following services are available. 

Multicast service delivers messages to a set of processes with the following characteristics: 

Integrity A message received by a receiver is sent by a sender. 

Order Two HRT commit messages m and m' sent at local times t, and t~, with ts < t~, 
will be received at local times tr < t~. 

Validity Messages from a correct sender are received by all correct receivers. 

Unanimity A message is received by all correct receivers or by none. 

Timeliness A message sent by a HRT sender arrives within bounded time at all correct 
HRT receivers. 

Clock synchronization service assures that correct processors have local docks which are 
approximately synchronized with a known maximum deviation L Clock values read at 
different instants are monotonically increasing. Cp(t) denotes for each processor pits 
dock value at real time t. For any two processors p and q, it holds that 1 Cp(t)-Cq(t) 1< 
E. 

Online HRT scheduler maintains a list of executions, processors, start-times and dead
lines, that constitutes the HRT schedule. The online scheduler starts and stops execu
tions to assure that the executions obey the online schedule. Processors are replicated 
and a replicated group is assumed not to fail such that all scheduled actions can be 
succesfully completed. 
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Communication delay The communication duration LI. of a multicast and the commu
nication duration C of a point to point message is related to the clock deviations. 
When a message is sent (multicast) by sender, p, at local clock time Cp(t) and re
ceived by receiver, q, at local clock time Cq(t') then the following relation holds: 
0< Cq(t') - Cp(t) ::; LI.(c). 

Hypothesis 5 can be restated as lemma 17. 

Lemma 17 In case of 2PL, OCC-NVTI and OCC-BV, two RW-conflicting transactions T 
and T', with commit-timestamps Te and T'e execute their commit-actions at local times Cq(t) 
and Cq(t') such that: Cq(t) > Cq(t') ¢> Te > T'e' 

Proof. Suppose two RW-conflicting transaction T and T' exist. 

2PL Without loss of generality, T' has locked the conflicting item on processor q before 
T. The precondition of T is only fulfilled after the liberation of the data-item by T'. The 
execution by T' of A-Commit on processor q at local time Cq(t') liberates the item. The 
commits of T and T' will be initiated by the coordinator c' at a local time Cc,(t~) and at 
coordinator c at a local time Cc(tc). Due to the clock synchronization and the communication 
delay, c' sent this message at local time Cc,(t~) 2: Cq(t'). The value of the data-item will 
be read by T at a local time Cq(ts) > Cq(t'). Due to the clock synchronization and the 
communication delay, the message will be received by c at a local time CC(tT) 2: Cq(ts). This 
means that 

(75) 

Inversely, when Cc,(t~) < Cc(tc) the liberation of the item occurs before the the start of 
the commit: Cc,(t~) > Cq(t). Using Cq(t) > Cc(tc) leads to: 

(76) 

According to the construction of the timestamps at local times Cc,(t~) and Cc(tc), the 
accompanying commit timestamps will obey: Cc,(t~) < Cc(tc) ¢> TS(Cc,(t~)) < TS(Cc(tc)) 
and TS(Cc,(t~)) < TS(Cc(tc)) ¢> T'e < Te. Combining the two last equations with equations 
75 and 76 yields the wanted result. 

aCC-BV & aCC-NVTI The validate/ commit action pair of two transactions that write 
to the same item X is done in a strictly serial order because only one transaction at the 
time can add a new version with state validating to the set of versions of X. The minimum 
difference between the timestamps, Te, r; of two consecutively created versions is determined 
by the maximum deviations between the local clocks and the minimum communication delay 
c. The difference between local time t of the creation of the timestamp Te and the local 
time t' of the creation of the next timestamp T: is determined by the sending of a message 
to the coordinator and the sending of the commit message by the coordinator: t' - t > 2.c. 
The chosen timestamp Te is taken from the maxima of the returned timestamps such that 
Te = timestamp(ts) 1\ ts - t < f < c. For a minimum difference between Te and T:: r; = 
timestamp(t'). This has as consequence that for any two consecutively created version with 
Te = timestamp( t) and T: = timestamp( t') that t' - t > C 
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Two cases must be proven to be impossible: (1) a writing transaction commits after the 
commit of a reading transaction with alarger commit-timestamp and (2) a reading transaction 
commits after the commit of a writing transaction with a larger commit-timestamp. 

Ad 1) The timestamps of the reading transaction 7,. and the writing transaction Tw, with 
Tw > 7,., are generated from local times tr and tw respectively. In this case the reading 
transaction has read an earlier version with timestamp To generated at local time te. Due 
to the precondition of A-Validate the writing transaction with the larger commit timestamp 
invokes A-Validate after the invocation of A- Validate by the reading transaction. In this case 
tr - te < 8 and tw - te > 8 as stated by the lemma. 

Ad 2) A reading transaction that commits with timestamp 7,. after another writing trans
action with commit timestamp Tw has either read the version written by this transaction or 
has invoked A-Validate before the writing transaction. In the first case the creation of the 
commit timestamp assures by construction that 7,. > Tw. The second case is similar to the 
one treated in ad 1). 0 

10.3 Commit algorithms 

The correctness of the specified transactions strongly depends on a timely commit imple
mentation. During a commit all versions created by the transaction under consideration are 
either installed and committed or removed. It is important that all related versions reach 
the same state after the commit. In addition, the commit should be executed in bounded 
time. The here presented commit algorithms depend on the above presented services. It is 
assumed that there is one coordinator process which initiates the transaction and at the end 
of the transaction also initiates the commit. By construction only one coordinator exists and 
when no faults occur, a coordinator will be present. When needed, the coordinator waits 
a fixed time on answers from the participants in the commit protocol. When this time has 
elapsed without response from some participant, the coordinator will assume that a failure 
occurred. Participants will also wait for the coordinator's response on their answer to the 
coordinator. When this time has elapsed, participants will assume a failure occurred and 
will send an "abort" message to all participants. This way the non-blocking property of the 
commit protocol is acquired. 

The requirements on the Commit are: 

Unanimity All participants that decide reach the same decision. 

Integrity Only when all (correct) participants agree to commit, can a participant commit. 

Validity When all participants agree to commit and no failures occur, then all participants 
commit. 

Ordering Two transactions T and T' that execute A-Commit at local times Cp(t) and Cp(t') 
with commit timestamps, To and T'e such that Cp(t) < Cp(t') {o} To < T'e. 

Timeliness When the coordinator starts the commit at time Ce ( t) at its local clock, then 
there is a constant d such that all correct participants have either committed or aborted 
at a local time Cp(t') = Ce(t) + d . 

In addition, hypotheses 2, 3 and 4 must be met. 

51 



Timely behavior is solved in three ways: (1) the HRT transactions commit according to a 
schedule and their commit times are known, (2) the commit of a finite number of SW-objects 
is done in finite time by reserving timeslots in the HRT-schedule and (3) the commit of SRT
objects is scheduled in the time slots left by the HRT transactions and no guarantee can 
be given for the timeliness requirement of the Commit. After the execution of the Commit 
procedure, all participants will have set the same value of To in the versions associated with 
the transaction. 

10.3.1 HRT Commit 

The example of OCC-NVTI is taken. In Fig. 22 pseudo code for the implementation of a HRT
Commit procedure is indicated. The Commit procedure for the other CCA's is similar but for 
the specified A-Commit parameters. At every processor one process executes the Procedure 
Wait-Mess. This process permanently listens for Commit messages sent by coordinators. 
When a Commit message is received, the Commit is executed for all data-items owned by the 
committing transaction 

1 PROCEDURE HRT-Commit( N: set transactions, Ts,Te: Timestamp, Of: Counter) 
2 BEGIN 
3 

4 
5 END 
6 

Ie:= Timestamp(time+ delay) 
Multicast( N tIl Te ffi Cj , participants) 

7 PROCEDURE Wait-M",O 
8 VAR 
9 Dp : data-items on processor p 
10 BEGIN 
11 WHILE TRUE DO 
12 ON reception of " N ffi 'Te EEl C f" 
13 'TIT EN: 'T/X E T.! n Dp: A-Commit(X,T.Ts, 'Te,G,) 
'4 OD 
15 END 

Figure 22: HRT-Commit algorithm 

It is assumed that HRT transactions are scheduled such that their interleaving always 
generates view-serializable schedules. When a component of a HRT system fails, often the 
schedule cannot be met and whole system shuts down or fails. By rendering the components 
very reliable the probability of such an event is made acceptably small. A hypothesis must 
be formulated about the consequences of a component failure. 

Hypothesis 7 When a HRT component fails, the whole system fails. 

The correctness of the protocol of Fig. 22 is rather trivially proven. 

Theorem 10 The procedures HRT-Commit and Wait-Mess together satisfy the five commit 
requirements and hypotheses 2 and 3. 

Proof. Unanimity, Integrity, Validity, Ordering and Timeliness: they are based on Mul
ticast properties and availability of coordinator and participants. 
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Hypothesis 2: this is assured by the HRT schedule. The schedule should be constructed 
such that A-Validate always succeeds. In that case, the Validate Procedure is empty and the 
atomicity of A-Validate, A-Commit action pairs is assured. 

Hypothesis 3: from the timeliness property it is known that the commit protocol is 
bounded. Equate the constant L':.c with the time from the determination of the timestamp 
to the termination of the last Commit action. Take the" delay" in the setting at line 2 of 
Ie equal to L':.c. The timestamp, I, '" Cpr t,) 0 p, of transaction Tro is generated at local 
time Cp(t,) on processor p. The commit timestamp, I, '" (Cg(te) + L':.c) 0 q of transaction 
Tw is generated at processor q at local time Cg(te). Tro reads a data-item, X, located at 
processor d, at local time CAtr). Due to the communication delay Cp(t,) < Cd(tr). A 
version of data-item, X, is committed by Tw at time Cd(te). From the timeliness prop
erty of the multicast and the choice of the value of "delta" Cq(te) + L':.c ~ Cd(te). The 
monotonicity of the clock function implies te > tr {o} Cd(te) > Cd(tr). It follows that 
for a RO-transaction Tro reading X at time tr and a transaction Tw committing at time 
te > tr : Cq(te) + L':.c ~ Cd(te) > Cd(tr) > Cp(t,) ~ Tro.I, :<::: Tw.Ie, which concludes the 
proof. 0 

10.3.2 HRT/SRT Commit 

When a SRT transaction reads a value produced by a HRT transaction, the TR-Read pro
cedure is used. The commit of the HW-objects by the HRT transactions can be done with 
above described HRT-commit protocol (see Fig. 22). The proof of hypothesis 4 for a SRT
transaction reading a data-item from the set HW-objects is similar to the proof of hypothesis 
3 in the proof of theorem 10. The commit of the HW-objects by the HRT transactions can 
be done with above described HRT-commit protocol. 

Data-items from the set of SW-objects can be read and written by SRT transactions and 
read by HRT transactions. When a root SRT-transaction writes an item to be read by a 
HRT-transaction, another commit protocol is needed than the one used for HRT because the 
timeliness of the underlying SRT multicast can no longer be guaranteed. The timeliness of 
the commit of the SW-objects is essential. Without special measures the commit protocol can 
be preempted. In such a case, part of the involved objects has the state commit and another 
part is left with the state tentative. The verification of these unwanted consequences by the 
HRT transactions takes a lot of time from the HRT-schedule which can be spent differently. 
The timeliness of the Commit can be guaranteed by executing the Commit protocol for one 
or more SRT-transactions in sufficiently large and frequent gaps in the HRT schedule. 

To guarantee the timeliness of the commits involving SW-objects, one process per pro
cessor executes the COMPROC Procedure in a repetitive gap of the HRT-schedule (see Figs 
23 and 24). This process has access to all data-items connected to the processoJ. The coor
dinators of completed SRT-transactions fill a queue, RQ, at the coordinator's processor with 
their commit requests. A time-out is associated with each request. When the gap is met in 
the schedule, all processors execute the COMPROC procedure. 

2PL & MVTSO The requests which exceed their deadline are removed from RQ (line 15). 
A limited amount of requests is read from the queue and stored in nr (line 16). 

All processors multicast their requests to all correct processors, where they are received 
in nr (lines 17-19). The commits of the transactions are executed in the same order (in 
this case the time-out order) for the data-items associated with the executing processor (line 

53 



1 VAR 
2 
3 RS = {pid I pid is identifier oj correct processor} 
4 RQ = {< I,t,ws,TS >1 T is identifier oj currently active transaction with time-oui vai'Uc t and write(readJ-set ws(rs)} 
5 Dp = { q I q is data-item resident on proceSSQr p } 
6 
7 PROCEDURE COMPROC() 
8 VAR 
9 nr: set of requests; 
10 rqst : request; 
11 cntr: Integer; Ie : timestamp 
12 
13 BEGIN 
14 WHILE ingap DO 
15 'trq E RQ DO IF rq.t ~ endgap THEN RQ ,= RQ\rq FI OD; 
16 nr := {rq I rq E RQ/\ I nr 1< K /\ rq.t > endgap}; 
11 Multicast( nT, RS) 
18 nr :::::;; 0; cntr := Ii 
19 '<:/pERSDOnr:;:::nrureceive(p)OD 
20 Ie := timestamp(endgap)i 
21 WHILE nr -# 0 DO 
22 rqst.t := (min rq E nr : rq.t); nr := nr\rqst; 
23 wtT:= cntr +l;'VdE ((rqst.wsUrqst.rs)nDp) DO A-Commit(d, rqst.T, Tcocntr} OD 
24 OD; OD 
25 END 

Figure 23: SW-Commit process COMPROC for 2PL & MVTSO 

22-23). All SRT-transactions verify that their requests have been executed in time. When 
the time-out expires, they are aborted following the SRT -commit protocol rules described in 
section 10.3.3. 

aCC-BV The A-Commit action needs some modifications with respect to the original 
specification. In contrast to former requirements, a transaction that is committed in gap 9 
can afterwards still be aborted in the same gap g. A transaction that is committed in gap g 

cannot be aborted in gap g + k with k > O. 
When the gap is met in the schedule, all processors execute the COMPROC procedure 

(see Fig. 24). The requests which exceed their deadline are removed from RQ (line 16). A 
limited amount of requests is read from the queue and stored in nr (line 17). 

All processors multicast their requests to all correct processors, where they are received in 
Ir (lines 18-19). A-Validate is executed for all requests on the local data-items. When no data 
exist locally, A-Validate returns TRUE. When A-Validate succeeds, A-Commit is executed 
and the requests is added to nr (line 25-26). The set of committed reqnests is broadcast to all 
participants. All participants receive the same request sets from all participants (line 28-29). 
For requests that are removed at at-least one processor, a local A-Abort is executed (line 30). 

The later Abort removes versions that are not yet read by any other transactions. Trans
actions read versions that are installed in one of the earlier terminated gaps. 

Theorem 11 COMPROC satisfies the five commit requirements and hypotheses 2, 3 and 4. 

Proof. Unanimity: the Unanimity requirement is met by the unanimity property of the 
supporting multicast. All requests are sent to all participants. When a participant receives a 
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1 VAR 
2 
3 RS = {pid I pid is identifier of correct processor} 
4 RQ = { < 'Ii, t, W8, 1'8, Ie > I 'Ii is identifier of currently active transaction with time- out value t and write(read)-set ws(rs)} 
5 Dp = { q I q is data-item resident on processor p } 
6 
7 PROCEDURE COMPROC() 
8 VAR 
9 tr, nr, IT.' set of requests; 
10 rq : request; 
11 wsl .' set of data-items; 
12 b: boolean, cntT: integer; 
13 Ie .' Timestamp; 
14 BEGIN 
15 WHILE ingap DO 
16 'Irq E RQ DO IF rq.t ~ endgap THEN RQ'~ RQ\rq Fl OD,. 
17 nr := {rq 1 rq E RQA I n1' 1< K 1\ rq.t > endgap}; 
18 Multicast( nr, RS) 
19 IT := 0;'v'p E RS DO IT:::::; IT U receive(p) on 
20 tT := 11'; n1' := 0; cntT := 1 
21 Tc := timestamp( endgap) 

22 WHILE Ir '" 0 DO 
23 rq.t := (min q E IT : q,t); IT :;::; lr\rq; b:= TRUE 
24 'r;fd E ((rq.wsUrq.Ts) nDp) DO b:= b/\ A- Validate(d, rq.7i,rq.Te) OD 
25 IF b THEN cniT := cntr+l,' 'tid E ((rq.ws Urq.rs) n Dp) DO A.Commit(d,rq.'T;,rq.Tc 0 cntr) 
26 nr := nr U {rq}; FI 
27 OD,. OD 
28 M1I.lticast( nr, RS) 
29 lr:= 0;'Vp E RS DO lr:= lr ureceive(p) OD 
30 'Irq E tr -lr, 'Vd E (rq.ws n Dp) DO A.Abort(d, rq.'T;) OD 
!l1 OD 
32 END 

Figure 24: SW-Commit process COMPROC for OCC-BV 

multicast message, all participants receive it. At line 19 of both COMPROC procedures, all 
processors have the same commit requests in the variable lr. In case of OCC-BV, Validate 
requests are executed in the order determined by the time-out values at line 24 and all 
processors execute the Validate requests in the same order. When a transaction cannot be 
validated, the request is not added to nT. All processors send the contents of nr to all 
processors. From the unanimity of the multicast it follows that all processors receive the 
same values and end up with the same requests in lr at line 29. At all processors the same 
transactions are aborted at line 30. At line 25 all remaining data-items of a given transaction 
are committed with the same Ie value. This concludes the unanimity part. 

Integrity: in case of 2PL & MVTSO, all participants agree to commit all received re
quests due to hypothesis 7 and the requirement is met for all requests. In case of OCC-BV, 
participants only agree when A-Validate returns TRUE at line 22. Refused requests are not 
inserted into nr. All participants send each other their nr lists and abort all transactions 
that are refused by any processor. Agreement depends on the former commits. The removal 
of a committed version in a given gap g does not change the agreement of later transactions 
committed in the same gap g. 

Validity: in case of 2PL & MVTSO all participants agree to participate in the Commit 
due to hypothesis 7 and their requests to commit are stored in nT. Once stored in nr, the 
Commit acctions are executed at line 23. In case of OCC-BV, the requests validated by all 
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participants are maintained in nr. All participants receive the same lists of validated requests. 
When all participants agree, their requests are maintained in Ir at line 28. For those requests 
no Aborts are executed. 

Ordering: the Ordering is trivially met by choosing the commit time at the end of the 
gap and postfixing the value of counter cntr. 

Timeliness: the Timeliness property of the underlying multicast assures that messages are 
sent within bounded time. From the moment that the request is transmitted, all participants 
will receive this request in bounded time. They only receive a bounded number of requests 
and will send a bounded number of commit requests to the participants. Within bounded 
time the participants receive the message and will execute the commit. Consequently, the 
timeliness requirement is met. 

Hypothesis 2: the proof of hypothesis 2 is separated in two parts. 
Exception atomicity: for each transaction either an Abort or a Commit action is executed. 

After the execution of COMPROC all versions belonging to a given transactions have the state 
commit or have been removed. 

Concurrency atomicity: an order is established by the time-out values .. The A-Validate 
and A-Commit actions are sequentially executed in this same order on all processors. 

Hypotheses 4 and 3: new HRT or SRT transactions will start after the gap and will find 
the appropriate versions ready and committed. Tentative versions will be committed in one of 
the following gaps with a timestamp larger than the starting times of the active transactions. 
o 

The COMPROC procedure for OCC-BV leads to unwanted Aborts. A transaction Tl 
that aborts on site p and but writes an item on site q may lead to the abort of a transaction 
T2 that read q. The later global abort of Tl permits the Commit of T2 that is not performed 
in COMPROC. Remedies to this situation can be envisaged by sending information about all 
accessed data by all committable transactions to all sites. This additional information can 
be used to construct a commit order that allows the minimum number of aborts. However, 
such a strategy leads to many messages. 

In case of OCC- NVTI, the determination of a globally correct C f value leads to the 
exchange of even more information. In this case it is probably wiser to execute the Validate 
and Commit pairs one after the other and not group them as is the case in COMPROC. 

10.3.3 SRT Commit 

The example of OCC-NVTI is taken. Other CCA's can be treated similarly. The SRT-Commit 
(shown in figs 26 and 25) depends on the clock-synchronization and the Multicast facilities. 
The major difference with the former two protocols is the invalidity of the timeliness property 
of the underlying multicast protocol. Therefore, extra measures must be taken to validate 
hypothesis 3. A "validate" message is sent to all participants. Each participant calculates an 
appropriate commit timestamp based on its local clock. The transaction identifier with the 
calculated timestamp is stored in the history H : identifier .... Timestamp. Each participant 
initiates a time-out> Time + delay and returns the calculated Commit timestamp. When all 
results are returned and validated, a "commit" together with the maximum of the received 
timestamps is sent by the coordinator. Commits that take too long are aborted. The timelines 
of the "Commit" is verified by each participant. When a participant sees that the time-out has 
passed, it sends an "abort" message to all participants including itself. Because all multicast 
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messages are ordered, all participants will receive the same messages in the same order and 
will execute either A-Abort or A-Commit. After arrival of the "commit" message, the entry 
in H is removed and the commit is executed on all data-items belonging to T. On arrival of 
an "abort" message the corresponding item is removed from H and the abort is executed on 
the with T associated data-items. When a sequence of messages arrives for one transaction, 
the first request specified in the message is executed and the transaction identifier is removed 
from H, after which all messages for this transaction are ignored. 

VAR 
H : identifier _ Timestamp 
Dp = { q I q is data-item resident on processor p } 

PROCEDURE Wa;t-M",O 
BEGIN 

END 

H,=0 
WHILE TRUE DO 

OD 

ON reception oj I EIl7i ffi C! ffi GIEEl "validate" 
set Time-Out; 
'V1JE IUDp DO A-Validate(v, Ti,Cj,C1) OD 
H ,= H u {T; ~ TS(T;me + delay)} 
"nd( T; Ell TS(T;me + delay)) 

ON reception of I ffi 7; \II Te Ell G jffi "commit" 
IF T; E dom(H) THEN 

dom(H) ,= dom(H) - {T;} 
'VvE InDp DO A-Commit(v, 7;, 'Fe, OJ} aD 

FI 
ON reception of 1 EEl 'liEIl "abort" 

IF T; E dom(H) THEN 

FI 

'Iv E In Dp DO A-AhoTt( V, T;) OD 
dom(H) ,= dom(H) - {T;} 

ON OCCUITence of "time-out" 
Multicast(I E9 ~$ "abort", participants) 

Figure 25: Wait-Mess for SRT-Commit 

The precondition of the RO- Read action must be extended with: 

T < (min s E dom(H): H(s)) (77) 

to assure that hypothesis 3 is met. The RO-Read action may only be started when no 
transaction waits to be committed with a '4 smaller than the '4 of the RO-Read invoking 
RO-transactions. 

Theorem 12 The procedures SRT-Commit, SRT- Validate and Wait-mess satisfy the first 
four commit requirements and hypotheses 2 and 3. 

Proof. Unanimity: the Unanimity requirement is met by the unanimity and ordering 
properties of the underlying multicast. All correct participants will receive the same multicast 
messages in the same order. The first decision on a given transaction is received by all 
participants and consecutively executed. All participants will take the same decision for any 
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PROCEDURE SRT-Commit( I: data-items, ~) Te: Timestamp, Cf : Co'Unter) 
BEGIN 

M'Ulticast( I ffi ~ EEl Te ffi C,ffi "commit", participants) 
END 

PROCEDURE SRT- Validate(I: data-items, Ta. Te : Timestamp, C f • Cj : Counter) 
VAR 

BEGIN 

END 

CblOe : Counter 
T: Timestamp 

M'Ulticast( I $ ~ EB C f EB 0 1$ "validate", participants) 
Ie:= a 
'V participants DO receive{T)j Ie := max(T, Te) OD 

Figure 26: SRT -Commit algorithm 

given transaction. Once a A-Commit or A-Abort has been executed for a transaction T, this 
transaction is removed from H. Later messages in connection with transaction T are ignored. 

Integrity: participants only receive "commit" requests from the coordinator when all 
participants have returned an answer, implying their agreement. 

Validity: when no failures or time-outs occur, all participants will send their answers to 
the coordinator. The " commit" message of the coordinator arrives at all destinations after 
which A-Commit is executed. 

Ordering: See proof of lemma 17. 
Hypothesis 2: follows directly from proof of lemma 17. 
Hypothesis 3: the RO-Read precondition assures that when RO-Read is executed at local 

time t with a given 7" all committing transactions will have a Ie < 7,. After t, commit 
requests are added to H with a Ie that is larger than 7,. Consequently, all transactions 
committing at local time t' > t have a Ie > 7,. 0 

Transactions can be aborted when the precondition of A-Validate is not met because 
another transaction has put the state of the specified item X equal to validating, or the 
"validate" request can be put in a wait-queue till the state of the data-item has changed. 
In the latter case, the total ordering of all multicast messages prevents deadlocks. When a 
transaction T, waits for the commit of another transaction T2 , The validate request ofT, was 
sent before the request of T2 • The total ordering of the "validate" requests prevents cycles in 
the wait-for graph. 

11 Implementation restrictions 

11.1 finite number of versions 

In the above it has been assumed that once created versions remain permanently available. 
This is not realistic and a fixed number of versions per object is assumed. 

The conditions under which a RO-transaction based on A-Read outperforms the RO
transaction based on the RO-Read action need to be investigated. 

RO-transactions can be aborted for two reasons: (1) missing of the deadline and (2) un-
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RO-Read transactions 

Figure 27: RO- Read versus Read with two versions 

availability of the required version. In Fig. 27, the different behaviours are shown schemati
cally. Time progresses from left to right. In the upper part the A-Read action behaviour and 
in the lower part the RO- Read action behaviour is shown. The evolution of the versions are 
shown by the sequence of rectangles and the evolution of the transactions by the full and dot
ted lines. At time Tw version n of a given item is created. At time Te the version is committed 
and from the following time T;" the versions n + 1 and n + 2 are created. For this example it 
is assumed that only two versions are kept per item. Therefore, version n + 2 is drawn with 
a dotted line because at its creation time version n is removed. When A-Read is used (upper 
part of figure), transactions which are started between the creation times, Tw < Ie < T'w, 
of version nand n + 1 will select version n. When version n is selected at the beginning of 
the transaction, the version can only be accessed after time Te. In the Figure this is shown 
with the dotted line. The transaction can be so delayed that it meets its deadline before it 
terminates and is aborted. The transaction started with L < T. < T'w, will not wait and 
terminate before its deadline (shown by the dotted line between Te and 7J). 

In the lower part of the figure the behaviour of the RO-Read actions is visualized. A 
transaction starting between the commit-times, To < T. < Tic, of version n and version n + 1 
selects version n. Transactions will not wait and terminate correctly assuming that they are 
not preempted. This is shown by the uninterrupted line at the bottom of the figure. When 
this transaction accesses version n at the end of the transaction, the version has been replaced 
by version n + 2 and the transaction needs to be aborted. 

Performance in the case of the A-Read action is limited by the longer duration of the 
transaction and in the case of the RO- Read actions is limited by the shorter availability of 
a given version for the transactions. A criterion can be established when one method will 
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outperform the other. 
Assume that k versions of all items are regularly updated with a fixed update interval 0: 

(78) 

It is assumed that the distribution, P(Ts), of start times of transactions which need version 
n is flat. 

A-Read RO-Read 
P(Ts) = 1/0 if Tw < Ts < T;" Te < Ts < T~ (79) 
P(Ts) = 0 otherwise 

The probability, P(Ts < X), that Ts has a value lower than a given value, X, is given by: 

A-Read RO-Read 
=0 X <Tw =0 X < Te 

P(Ts < X) = i: P(Ts) dT, = X-Tw Tw :0; X < T;" _ X-Tc Te:O;X<T~ 
(80) 

8 - 8 

=1 X> T' _ w = 1 X> T' _ e 

When an item is read with A-Read, the selected version may be committed or still ten
tative. The probability, P(WI > 0), that the transaction needs to wait for time, WI, on the 
first item is given by the probability that Ts < Te: 

(81) 

Assume that the reading of a data-item takes a fixed time, 0 (including eventual preemp
tion times), and that each transaction reads a fixed number, n, of data-items. The transaction 
execution time, !!.T, is then given by: 

!!.T = n.o (82) 

It is possible that the reading of a data-item is shorter than the time between the start 
and commit of a transaction; 

(83) 

Assume that the creation times of versions of different data-items are not related. In that 
case after the access of the first data-item the transaction may wait for the commit of the 
second data-item and after the access of the nth for the commit of the (n + 1 )th. PI (w) is 
the probability that a transaction waits an interval of length WI for the commit of item l. 
PI (w) is equal to the probability P(Te - Ts = WI) if T, < Te and is equal to the probability 
P( WI = 0) = P(T, 2: Te): 

(84) 

This can be rewritten as: 

(85) 
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where each term is given by: 

Pt(O) = P(Ts > Te) = Ji:' 1/0 dTs = neTe if Wt = 0 (86) 

P(Wt) = 1/0 if 0 < Wt ::; Te - Tw (87) 

Pz( w) is the probability that a transaction waits a time interval Wz for the commit of 
item 2. Pz(w) can be calculated with the aid of Pt(w). The probability, Pz(w), must be 
separated in two parts: (1) when Ts+o+wt > T" then Pz( w) is determined by the probability 
distribution Pt ( w) and (2) when Ts+o +Wt ::; T" then Pz( w) is determined by the probability 
that Te - Ts - 0 = Wz for item 2: 

(88) 

Each of these terms must be considered for the case that Wt = 0 and the case Wt > O. 

Pz(W I Ts + Wt + 0 > Te) = 

Pz(w I Ts + 0 > Te II Wt = 0) + Pz(w I Ts + Wt + 0> Te II Wt > 0) (89) 

Pz(w I Ts + Wt + 0::; Te) = 

Pz( wiTs + 0 ::; Te II Wt = 0) + Pz( wiTs + Wt + 0 ::; Te II Wt > 0) (90) 

Each of these terms can be calculated: 

if W = 0 
(91) 

= P(wtJ.P(Ts + Wt + 0> Te) = 
== T:',-Tc +6+w 

0' if 0 < W < Te - Tw 
(92) 

Pz(wITs+o::;TeIlWt=O) = 
Pt(O).P(wz = Te - Ts - 0) = (T:" - Te)/Oz if 0 < W < Te - Tw - 0 

(93) 

Pz(w I Ts + Wt + 0::; Te II WI> 0) 
J;'P(wt)dWtP(wz=Te-o-Ts) =w/Oz ifO<w<Te-Tw-o 

(94) 

The wait distribution after two items, under the condition: (Tw + 8 < Te), is given by: 

= (T:" - Te)(T:" - Te + o)/Oz 
Pz(w) = (2(w + T:" - Te) + 8)/02 

= (T:" + 0 + w - Te)/Oz 

if w = 0 
if 0 < w < Te - T w - 0 (95) 
if Te - Tw - 0::; w < Te - Tw 

The wait distribution after i items, under the condition: (Tw + (i - 1).0 < Te), is given 
by: 
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if W = 0 
if 0 < W < Te-Tw - (i-1).0 

Fi(W) = 
ifTe-Tw - (i-1).o:o; W < Te -Tw - (i- 2).0 

"i-I A k 
L-<k=O i,k,lW 

(96) 
The coefficients Ai,k,j will be recursively defined. Again separate the probability of waiting 

on the ith item in two parts: 

Fi(W) = F(w ITs + Wi-I + (i - 1).0 > Te) + Fi(W I Ts + Wi-l + (i - 1).0 :0; Te) (97) 

Each ofthese terms must be considered for the case that Wi-l = 0 and the case Wi-I> O. 

Fi(W I Ts + Wi_l + (i - 1) . .1 > Te) = (98) 

Fi(W I Ts + (i - 1) . .1 > Te 1\ Wi-l = 0) + Fi(W I Ts + Wi-l + (i - 1).0 > Te 1\ Wi-I> 0) 

Fi(W I Ts + Wi-I + (i - 1) . .1:0; Te) = (99) 

F;(w ITs + (i - 1) . .1:0; Te 1\ Wi-l = 0) + Fi(W I Ts + wi-l + (i - 1) . .1:0; Te 1\ Wi-I> 0) 

Each of these terms can be calculated: 

= Fi_I(O).F(Ts + (i - 1).0 > Te) = 

= Fi_I(O).(T:" - Te + (i - l).t1)jlJ = 

if W = 0 

(100) 

Fi(W I Ts + WI + (i - 1) . .1 > Te 1\ Wi-I> 0) = F(Wi_I).F(Ts + Wi-l + (i - 1).0 > Te) = 
T' 

F( Wi-t)o JTo"-(i-I).S-W;_l 1jIJ dTs = 
Fi_I(W).(T:"-Te +(i-1).t1+w)jlJ ifO<w<Te-Tw 

(101) 

Fi(W I Ts + (i - 1).0:0; Te 1\ wi-l = 0) = 
Fi_I(O).F(Wi = Te - Ts - (i - 1).0) = Fi_I(O)jlJ = (102) 
(1jlJi).TI:;;-~I(T:" -Te +(m-1).t1) if 0 < W < Te -Tw - (i-1).0 

Fi(W I Ts + Wi-l + (i - 1).0:0; Te 1\ wi-I> 0) = 
J({, F(Wi-l) dWi-IF(Wi = Te - (i - 1).0 - T,) (103) 
1jlJ. Jo

w F(Wi-t) dWi_1 if 0 < W < Te - Tw - (i - 1) . .1 

From the above equations the values of Ai k J' can be determined: , , 
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if1:'Oj<iAi<k<0 

Ai,k,j = Ai-l,k,j.(T~ - Tc + (i - 1).6)/11+ Ai- 1,k-1,j/1I 

if1:'Oj<iAk=0 

Ai,D,j = Ai-1,D,j.(T~ - Tc + (i - 1).6)/11 

if j = i A i < k < 0 

Ai,k,i = Ai_1,k,;.(T~ - Tc + (i - 1).6)/11 + Ai-1,k-1,dll + Ai- 1,k-1,d(k.lI) 

ifj=iAk=O 
i-I 

(104) 

(105) 

(106) 

Ai,D,i = Ai_1,D,;.(T~ - Tc + (i - 1).6)/11 + (l/lIi ). II (T~ - Tc + (m - 1).6) (107) 
m=l 

The mean duration, 6T', of a transaction which uses A-Read and waits for the versions 
to commit is determined by: 

(108) 

Next the probability must be calculated that a transaction, using A-Read, is aborted 
because its waiting time is unacceptably long. Transactions can only be aborted when the 
worst case wait-time, Tc - Tw, plus the total execution time, 6T, is larger than the for 
execution allocated time period Td - T,: 

(109) 

The maximum time, W, that a transaction, using A-Read, may wait is defined by: 

W = Td - Ts - 6T > 0 (1l0) 

Negative values of W imply that all transactions will be aborted. The probability that a 
transaction which uses A-Read, executes beyond its deadline is given by: Pn(w > W): 

Pn(W>W) =fwPn(w)dw ifO:'OW<Tc-Tw 
= 0 otherwise 

(111) 

The chances P f(P 1') that a transaction using A-Read(RO-Read) cannot find the appro
priate version of the last, kth, item is calculated now. The probability, PI', of abort of a 
transaction using Ro-Read is equal to the probability peTs +!:;'T > Tw + k.II): 

PI' = roo peT,) dT, = 
JTw +kJJ-n.6 

o 
T;-T w-k.8+n.8 

8 

1 

if Tw + k.1I - n.6 > T~ 

if Tc < Tw + k.1I - n.6 :'0 T~ 

if Tc ~ T w + k.1I - n.6 

(112) 

The probability, P f, that under the same circumstances a transaction does not find the 
appropriate version using A-Read is equal to the probability peTs + W + 6T > Tw + k.II). 
This is equivalent to the probability Pn( W > Tw + k.1I - T, - n.6) for all possible values of Tw. 
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l T' 100 Pf= W P(T,)dT, Pn(w)dw 
Tw Tw +k.8-Ts -n.8 

(113) 

Assume that the aborts due to the unavailability of versions is independent of the aborts 
due to missing of deadlines. The RO-Read actions will result in less aborts than the Read 
actions when 

(1- Pn(w > W))(1- PJ) < 1- PI' (114) 

11.2 Implementation of RO-Read Action 

The RO-Read implementation for SRT transactions is straightforward in the case of OCC-BV 
and 2PL. Care must be taken in the case of MVTSO and OCC-NVTI, as the value of M ro 

must be determined in an efficient way. Three possibilities exist: (1) requesting the values 
from the provider when needed in two phases, (2) requesting the values from the provider in 
one phase and (3) regularly providing the values to requester at the moment they are available. 
The third option is a valid one for Real-Time systems which have a periodic behaviour and 
often transactions require values on a repetitive basis. 

11.2.1 2 phase communication 

The RO-transaction as shown in figures 3, 12 and 13 need to be refined to calculate the M ro 

value. The algorithm for requesting a value in two phases is shown in fig. 28. Two functions 
loc and ident are introduced. The function loc returns the identifier of the processor where 
data-item X is located, and ident returns the identifier of data-item X. 

MVTSO The function Close, with version parameter v, assures that for all versions, x, with 
x.Tw < v.Tw: the read timestamp, T" is equal to the write Timestamp Tw of its immediate 
successor. Consequently, no more versions can be added between the versions created before 
version v. 

In the RO-Transaction, for every required data-item, X, the minimum, Tm, is determined 
of the not yet committed versions and the maximum of the Tw values of the committed 
versions, x, with x.Tw < Tm is returned. At line 36 these Tm values are stored in the set ST. 
For all returned data-item, X, no new version, x, can be created with a x.Tw < Tm because 
all T" values are made equal to all the Tw values of their immediate successors. 

At line 38, for all data-items, X, RO-Read is invoked with a parameter, M ro , which is 
equal to the minimum of the set ST. The returned values are stored in the local variables 
A[X] at line 39. At every processor the Procedure Wait-Mess is permanently waiting to 
receive the messages of the RO-transactions. 

OCC-NVTI In the RO-Transaction, for every required data-item, X, the minimum, em, 
is determined of the not yet committed versions and the versions with a 7; value larger than 
7". The minimum of em and the maximum of the Cb values of the committed versions, x, 
with X,Cb < em is returned. At line 30 of Fig. 29 these em values are stored in the set SC. 
The calculated em value stays correct because new versions are created by A-Write with Cb 
values larger than all existing ones. 
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1 FUNCTION Closer v : version) 
2 {PRE: (3X ED: v E X,V) A xm.Tw = (max x E X.V!x.Tw < v.Tw : x.Tw) Av.Tw = T 
3 POST: Xm.T,. = T A Close(xm } . 

4} 
5 

6 PROCEDURE ROiime( X: data~item): Timestamp 
7 {PRE: 7m = (min x E X.V!x.S:f:. commit: x.Tw) 
8 Au E X.V A v.7w = (max x E X .V!x.7w < 7 m !x.S = Commit: x.7w) 
9 POST: Close(v} A RET: Tm 
10 } 
11 
12 PROCEDURE RO~Read( X: data~item, 7: Timestamp, var a: value) 
13 {PRE: v E X.V A v.7w ::; (max x E X.V!x.S:::; commit l x.7w $ 7 : x.Tw) A v.value = A 
14 POST, a = A 
15} 
16 
17 PROCEDURE Wa;t-M",O 
18 BEGIN 
19 WHILE TRUE DO 
20 ON reception of ident(X) 
21 T ,= ROtime(X) 
22 "nd( T) 
23 ON reception of ident(X) Ell T 
24 RO-Read(X, T, v) 
25 send( v) 
26 OD 
27 END 
28 
29 PROCEDURE RO~Transaction(RS: read actions, I: data~items, t: timestamp) 
30 VAR 
91 ST: set of Timestamps, Is l M ro : Timestamp 
32 Afdata~itemsJ: values 
33 BEGIN 
34 
35 
36 
37 
38 
39 
40 
41 END 

7s = J( t, time); ST ;= 0 
V'act[XI E RS, "nd( /,,(X), ;dent(X)) 
\fact[X] E RS: receiver Tm); ST := ST u Tm 
M ro := min(ST) 
V'act[XI E RS, "nd( /,,(X), ident(X) ill M,o) 
V'act[XI E RS, n"ive( A); A[XI ,= A 
execute calculations 

Figure 28: RO-Read requests for MVTSO, two communication phases 

At line 32 of Fig. 29, RO-Read is invoked with a parameter, M ro which is equal to the 
minimum of the set SC. The returned values are stored in the local variables A[X]. 

Iu these algorithms the communication is done in two phases. In the first phase, requests 
for the minima are sent to all participating processors. Based on the returned values, M ro is 
calculated. In the second phase the RO- Read Procedure is invoked at all participants with 
the communicated M ro value. The returned values are used. This method is quite expensive 
in messages. 

11.2.2 1 phase communication 

MVTSO In Fig. 30, a one phase algorithm is shown for MVTSO. It is assumed that a 
lower limit on the age of the acquired values can be specified. Older values are assumed to 
be unusable for the application. This age parameter is sent over to the participants which 
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1 PROCEDURE ROtime( X: data· item, Ts: Timestamp): Counter 
2 {PRE: Cm = ( min x E X.V, (x.5 =f:. commit V x.Ts > Te ! x.Cb» 
3 POST: RET: min(Cm, (max x E X.V,x.S = Commit: x.Cb)) 
4} 
5 
6 PROCEDURE RO-Read( X: data-item, C: Cou'T!.ter, var a: value} 
7 {PRE: v E X.V A (Vx E X.V,x.S = commit, X.Cb :S C : X.Ob S V.Cb) 1\ v.value = A 1\ V.Cb :S C 1\ v.S = commit 
8 POST .. a = A 
9} 
JO 
11 PROCEDURE Wait-Me.,O 
J2 BEGIN 
J3 WHILE TRUE DO 
14 ON reception of ident(X) 
15 Cm := ROtime(X} 
16 send( Cm } 

17 ON reception of ident(X) EEl C 
J8 RO-Read(X, C, v) 
19 send( v) 
20 OD 
2J END 
22 
23 PROCEDURE RO-Transaction(RS: read actions, I: data-items, t: timestamp} 
24 VAR 
25 SC: set of Timestamps, Ts,M ro : Timestamp 
26 Afdata-items): values 
27 BEGIN 
28 T, = J( t, t;me); se .. = 0 
29 Vact[XI E RS .. scnd( loc(X), ;dent(X)) 
30 Vact[X] E RS: receiver Cm); SO := SO U Cm 
31 M ro := min(SO) 
32 Vact[XI E RS .. scnd( IQc(X), ident(X) Ell Mea) 
33 Vact[X] E RS .. receive( A); A[XI ,= A 
34 exeC1Lte calc1Llations 
35 END 

Figure 29: RO- Read requests for OCC- NVTI, two communication phases 

return committed versions which are younger than the specified age-limit and which are older 
than the oldest not yet commited version. On the base of the returned sets of versions the 
M ro value can be calculated and the required values can be selected locally because they are 
already available at the requesting processor. 

In the Procedure VClose, the minimum, Tm, of all Tw values of the uncommitted versions 
is determined. The set of versions is determined which have a Tw values which lies between 
this minimum and the specified age-limit T. This set is returned and the T, values of the 
committed versions are set equal to the Tw values of their immediate committed successor 
versions. The Close function in the POST condition of VClose is the same as specified in 
Fig. 28. The Procedure RO-Read has the same specification as the RO-Read of the former 
algorithm with the exception that the data-item parameter is replaced by a set of versions. 

Again at every processor the Wait-Mess procedure is started which waits for messages. 
On reception of a message, the Function VClose is invoked and the result set is sent back to 
the requester. 

The RO-Transaction sends a request for the set of versions to all participants and waits for 
the results which consecutively are stored in the set X S. For every data-item the maximum 
of all Tw values of the versions is calculated. The minimum of all maxima is stored in Tm and 

66 



1 PROCEDURE VClose( X: data-item, T: Timestamp) : set oj versions 
2 {PRE: Tm::;; (min x E X.V,x.S i= commit .: x.Tw ) 1\ A ~ X.V /\ ('Ix E A : T ~ x.Tw ~ Tm) 
3 /\v.Tw ::;; (max x E A: x.Tw) 1\ ('Ix E X.V - A,x.S::;; commit: x.Tw < T) 
4 POST, Close( v) A RET, A 
5 } 
6 
1 PROCEDURE RO-Read( V: set oj versions, T; Timestamp, var a: value) 
8 {PRE: v E V /\ v.Tw::;; (max x E X.V,x.S= commit,x.Tw :5 T: x.Tw) I\v.value:::; A 
9 POST, a; A 
10 } 
11 
12 PROCEDURE Wa;.-M",() 
13 BEGIN 
14 WHILE TRUE DO 
15 ON reception oj ident(X) ffi T 
16 V ,= VClose(X, T) 
17 "nd( V) 
18 aD 
19 END 
20 
21 PROCEDURE RO-Transaction(RS: read actions, I: data-items, t: timestamp) 
22 VAR 
23 XS: set oj set oj versions, Ts,Mro : Timestamp 
24 Afdata-itemsJ: values 
25 BEGIN 
26 
27 
28 
29 
30 
31 
32 END 

Ts = J( t, time - interval); XS := 0 
\tact[X) E RS, "nd( loo( X), idon.(X}EfjT.} 
Vact[X] E RS: receiver V); X S:= X S u V 
M ro :::;; (min: V E X S : (max: x E V: x.Tw)) 
\tV E X S , RO-Read(V, M.a, A[V)) 
execute calculations 

Figure 30: RO-Read requests for MVTSO, one communication phase 

constitutes the M ro value. The RO- Read procedure is invoked with this M ro values for each 
set of versions present in X S. 

OCC-NVTI In Fig. 31, a one phase algorithm for OCC-NVTI is shown. It is assumed that 
a lower limit, To, on the age of the acquired values can be specified. Older values are assumed 
to be unusable for the application. This age parameter is sent over to the participants which 
return committed versions which are younger than the specified age-limit and which are older 
than the oldest not yet commited version. On the base of the returned sets of versions, the 
M ro value can be calculated and the required values can be selected locally because they are 
already available at the requesting processor. 

The Procedure RO-Read has the same specification as the RO-Read of the former algo
rithm with the exception that the data-item parameter is replaced by a set of versions. 

Again at every processor the Wait-Mess procedure is started which waits for messages. 
On reception of a message, the relevant versions are selected in V and the result set is sent 
back to the requester. 

The RO-Transaction sends a request for the set of versions to all participants and waits for 
the results which consecutively are stored in the set X S. For every data-item the maximum 
of all Cb values of the versions is calculated. The minimum of all maxima is stored in em and 
constitutes the M ro value. The RO-Read procedure is invoked with this M ro values for each 
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1 PROCEDURE RO-Read( V: set oj versions, C: Counter, var Q.: value) 
2 {PRE: v E V A v.S = commit A V,Cb:S C A ('<tx E X.V,x.S = commit: x.Cb:S v.Cb) A v.value = A 
3 POST, a = A 

" } 
5 
6 PROCEDURE Wait-M",O 
7 VAR 
8 
9 BEGIN 
10 
11 

V: set oj Version 

WHILE TRUE DO 
ON reception oj ident(X) ffi Ta ffi Is 

12 
13 

V := {v I v E X.V A v.S = commit Av.Ie < Is Av.Ie > Tan 
s,nd( V) 

14 OD 
15 END 
16 
11 PROCEDURE RO-Transaction(RS: read actions, J: aata-items, t: timestamp) 
18 VAR 
19 XS: set oj set of versions, Ta, Ta: Timestamp,M ro : Counter 
20 Afdata-items}: values 
21 BEGIN 
22 Is := time 0 pidj Ta = (time - interval) 0 pidj X S:= 0 
23 'o'a,,[XI E RS, "nd( /,,( X), ;d,nt(X)E!l'T. Ell 7,) 
24 Vact[X} E RS: receiver V),. X S:= X S u V 
25 Mro:= (min V E XS: (max x E V: X,Cb)) 
26 'o'V E X S , RO-R,ad(V, M,o, A[Vl) 
21 execute calculations 
28 END 

Figure 31: RO-Read requests for OCC-NVTI, one communication phase 

set of versions present in X S. 

11.2.3 Repetitive update 

MVTSO In Fig. 32 the last alternative for MVTSO is shown. Every time a Commit 
action is executed on a data-item X, relevant versions are sent to all destinations which 
want to acquire X on a regular basis. For that reason the data-item structure is extended 
with another field, req, in which all requesting processors are stored. In all processors the 
identifier to data-item mapping, XS, is stored. The Procedure Wait-Mess, executing on every 
processor, waits for messages and adds new versions to the version lists of the specified data
item replicated in XS. 

In RO-transaction the maximum Tw values of the versions of a given identifier locally 
stored in X S are determined for all required data-item. The minimum of these values rep
resents M ro • RO-Read is invoked on the versions of the data-items replicated in X S. The 
specification of RO- Read is the same as for the RO- Read in Fig. 30. 

Every time a version of a requested data-item (X.req f 0) is committed, the Procedure 
PCommit is invoked with the Commit timestamp. Pcommit invokes XClose and sends the 
returned versions to the requesting processors. The Function XC lose returns the last com
mitted versions which have not been sent to the r"questers. At any given moment a series of 
already communicated versions exists. They can be identified from their T,. values which are 
equal to the Tw values of their immediate successors. 

When a version commits, it can be a version which is the immediate successor of an 
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1 PROCEDURE XClou( X: set of versions, 7: Timestamp, var V: set of versions): boolean 
2 {PRE: v.7m == (max x E X.V: x.Tw) /\ 7 == TS /\ TR == v.7;. 
3 POST, (v.T,. =TS"" V=0/\RET,TRUE) 
4 /\(v.T. ;t TS "" V = W u {v} /\ RET, (v.S = commit /\ XClose(X \ v,v.Tw, W)) 
5 } 
6 
7 PROCEDURE RO.Read( V: set of versions, 7: Timestamp, var a: value) 
8 {PRE: 11 E V /\ v.7w = (max x E V,x.7w :S 7: x.7w) /\ v.value = A 
9 POST, 0 = A 
10} 
11 
12 VAR 
13 XS : ident -+ data· item 
14 
15 PROCEDURE PCommit( X: data·item, 'T: Timestamp) 
16 VAR 
17 W: set of versions 
18 BEGIN 
19 "Idest E X.req: IF XClose(X, 7, W) THEN Send( dest, W) FI 
20 END 
21 
22 PROCEDURE Woit-M",() 
23 BEGIN 
24 WHILE TRUE DO 
25 ON reception of ident(X) EEl W 
26 XS(ident(X)). V ,= XS(ident(X)). V U W 
27 OD 
28 END 
29 
30 PROCEDURE RO.Transaction(RS: read actions, I: data· items, t: timestamp) 
31 VAR 
32 M ro : Timestamp 
33 Afdata.items}: Values 
34 BEGIN 
35 M'Q ,= (min' act[X] E RS, (max, x E XS(X).V, x.Tw)) 
36 Vact[X] E RS , RO-Road( XS(X). V, M'Q, A[X]) 
37 execute calculations 
38 END 

Figure 32: RO-Read updates for MVTSO 

uncommitted version. In that case, XClose returns the empty set. When the committed 
version is the immediate successor to an already communicated version, then XClose returns 
this version and the committed immediate successors. The read timestamp of the returned 
versions are adjusted such that the T,. values of their immediate precessors are equal to their 
Tw value. 

OCC-NVTI In Fig. 33 the last alternative is shown. Every time A-Commit is executed 
on a data-item X, relevant versions are sent to all destinations that want to acquire X on 
a regular basis. For that reason the data-item structure is extended with another field, req, 
in which all requesting processors are stored. In all processors the identifier to data-item 
mapping, XS, is stored. The Procedure Wait-Mess, executing on every processor, waits for 
messages and adds new versions to the version lists of the specified data-item replicated in 
XS. 

In RO-transaction the maximum Cb values of the versions of a given identifier locally 
stored in X S are determined for all required data-item. The minimum of these values rep-
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1 PROCEDURE RO-Read( V: set of versions, C: Counter, var a: value) 
2 {PRE: v E V A v.G& s: G 1\ (Yx E V : X.Gb s: v.G&) 1\ v.value = A 
9 POST, a = A 
4} 
5 
6 VAR 
7 XS : ident _ data-item 
8 
9 PROCEDURE PCommit( X: data-item, 7: Timestamp) 
10 VAR 
11 V: set of Version 
12 BEGIN 
13 V:={v!vEX.VAv.S=commit} 
14 "'dest E X.req: Send( dest, V) 
15 END 
16 
17 PROCEDURE Wa;t-M",O 
18 BEGIN 
19 WHILE TRUE DO 
20 ON reception of ident(X) ffi W 
21 XS(;d<nt(X)). V ,= XS(;d,nt(X)). V U W 
22 OD 
23 END 
24 
25 PROCEDURE RO-Transaction(RS: read actions, I: data-items, t: timestamp) 
26 VAR 
27 M ro : Co'Unter 
£8 Afdata-items}: values 
29 BEGIN 
30 Mr. ,= (min X E I, (max x E XS(X).V, x.C,)) 
31 VX E I , RO-R,ad( XS(X). V, Mro, A[X]) 
3£ execute calculations 
33 END 

Figure 33: RO-Read updates for OCC-NVTI 

resents M ro . RO-Read is invoked on the versions of the data-items replicated in X S. The 
specification of RO-Read is the same as for the RO-Read in Fig. 3l. 

Every time a version of a requested data-item (X.req i' 0) is committed, the Procedure 
PCommit is invoked with the Commit timestamp. Pcommit sends the returned versions to 
the requesting processors 

12 Conclusions 

An application consisting of transactions acting on a database is divided in two parts: a 
HRT and a SRT part. HRT- and SRT-transactions communicate via database items. The 
presented extensions to existing algorithms allow RO-transactions to proceed without waiting 
or with considerably reduced wait-times. The coneept of transfer serializability is formulated 
to increase the number of interleavings between HRT and SRT transactions. 
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