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The shape of a rotating fluid drop

1. Summary

In this article the problem of a rotating fluid drop, held together by surface-tension, will be stu-
died. A differential equation for the shape of the fluid surface is derived and the solution of this
differential equation, dependent on characteristic parameters is calculated numerically.

2. Formulation of the problem

A fluid drop, held together by surface-tension rotates around a fixed axis.
The following figure sketches the situation. Known parameters:

y -4

o~

w angular velocity
v surface-fension
p density of the fluid
V volume
>

Such problems are conveniently described in cylindrical coordinates, to utilize the rotational
symmetry in the (x,y)-plane. The surface of the drop will be described by a curve in the (r,2)-
plane rotating around the z-axis. Thus the curve in the first quadrant of the (r,z)-plane can be
written in the form

z=F(r) with r= ‘Ixz-!-yz .
In order to apply the boundary-condition
2.1 p=Y-divN

where
p  denotes the excess pressure at the surface and
N  the outward nommal field of the surface,

we want to find equations for p and div N in terms of F(r).
The following expression for N is given in reference [1]

N (N SR T
I R Tl R =i |

It should be mentioned, that this is only one of the many possible extensions of the normal field
on the surface S given by z = F(r). If we calculate the divergence of N and restrict it to S, the
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result is not dependent on the choice of the extension of N. For the divergence we get:

. 2 porr
@.3) divﬂ=-+[ l_p EYF }

\JH-(F')Z Ve +y? 1+(F)?
Restricting this to § we get:
@4  divN=-—at_-_F

rN1+(F? V142

Next we want to obtain an expression for the pressure p. Consider in the (x.y)-plane

y A )

Fig. 2.2.

The differential force (caused by the differential mass-element dm filling the volume
dV =dr- dA) is given by
2.5) dF =a-dm
where a is the centrifugal accelleration due to the rotation. It is given by
(2.6) ar;w)=o’-r.
Using dm = pdV = prddz dr we get fordF
dF =w?r- prdodzdr
and finally

@7 dp=%=pm2rdr.

which means, after integration

r r

p(r;m)=£¢v=£pw2rdr

>x



(2.8) =po(w) + %o prl.

The integration "constant” po will be calculated later. Note that we expect a 'smooth’ transition of
p(riw)foro— 0tothecase p(r)foro=0.
Then the fluid forms a ball. The divergence of the normal field of a sphere with radius R equals

. 2
2.9 divN ==

This means, that j =y. % on the surface of the ball. In this case R is given by R = 3/4n- V173,

Gathering all details, we arrive at a differential equation for F ='F )

N F} F”
2.10 +%elpri=- +
( ) Po pr Y P’(l +(Fr)2)!& ‘ (1 +(Fl)2)312
re [0r]
with boundary values

(2.11a) F'(0)=0
(2.11b) F(r)=0

2.11¢) F’(rﬂ:% F(r)y==—oce

(2.11d) V=4nJr-F(r)dr.
0

The constants »,p,V are given and ry and pg are upto now unknown. This is consistent with the
second order differential equation and the four boundary conditions.

3. Derivation of the final equation
Now we define g := F’ and notice, that

. & _1d}| rg
+ = .
14+g2 % Viag? T "’[ ng}

The differential equation (2.10) is thus transformed into

P, @0 | _d|_rg
o [ ge]-2|]

This can be easily integrated
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Po (02 4

3.2 I8 o 28,2, 80 4 k.

3.2) F—ng [ 2y 8y ] 0

The integration constant K o can be calculated by applying boundary condition (2.11a)

g(0)=0 = 0=Kp.

It means that g is given by:
Po ., @p 3
o3 [27r+ By r]
. g= AR B
1- &r+ﬂr3
2y 8y
If we introduce the constants

(.4) k=22 g, =9P

then g can be written in the following form:

—(X;J’-szfg)

G ST & 1K) At K r KN

Boundary condition (2.11c) says, that for a certain r the relation
g(r1)= '1%11 g(r)=—oo holds.

If we restrict ourselves to K; > =3/2(2K )3, then 14 (K r + K3 r*) has no positive zeros. This
means, that pg > ~3- E—-Z-— . Hence r, is the lowest positive zero of 1-(K; r+K; 3,
ie. 1=K, ry +K3ri. Now po can be calculated;

_2y_oert
(3.6) Po(&) = " 4 .
This, indeed, gives the desired result for © = 0 (compare (2.9)):
3.7 po0)= -%l =p (the pressure of the drop at rest).

1

We now define

(3.8) c:=x,r%=i”iﬁ-r§

and so



r
3.9) 1-C=K,r =221

The restriction on X'; means, that
Kiri>=-3202K, )3

= 1-C>-32QC)"»

and 5o C < 4.

The constant C has also a physical interpretation.

L a?on? additional pressure
-0 pry . due to rotation
.1 =t =
(3.10) ¢ 2yiry ratio pressure of a drop of
the same diameters at rest

since : p(ry) = 2Y 41 w’pri.
ry 4

Our first goal was to say something explicitly about the shape of the drop. We could therefore as
well scale the whole problem with the radius ry (which is still unknown):

=r r* F:rlF*.
We get

~Kyryr* +K,ri r*®)

3.11 *_F¥ = )
G s (A=K rir* +Ko 7 1) %

If we now drop the % and use the definition of C we get

—((1-C)r+Crd)
Vi—(-0yr+Criy

This is exactly the same equation, that Chandresekhar gave in his appendi‘x/ to [1].

(3.12) F'=

We now integrate (3.12) from v to 1 and obtain:

T 3
FOy-F()=[=UCxrCX)
r V1=-(1-C)x+Cx7)
Application of boundary condition (2.11b) yields F(ry) = F*(1) =0, which results in the follow-
ing equation for F, with the only parameter C

, ,
_ (1-C)x+Cx*
@1 FO _! 1-((1-C)x +Cx*)?

C is implicitly given by



1
V=[rF(r;Cdr

0
(3.14)

This equation is also given in Chandresekhar’s paper [1].

Analysis of the equation (3.13)

In [1] the integral (3.13) is transformed by a substitution and rather complicated definitions for
the boundaries of the integral. In the end Chandraseklar gets a sum of elliptic integrals of first and
second kind for F.

We did not want to do this. However we want to say something about the integral by more ele-
mentary considerations.

There are four different regions for C

ay C=0
b) O0<C«l1
¢c) C=1
d 1<C

The case C =0 which f,onesponds to o =0 gives us another possibility to check the equation:

Fo(r) = \lle' dx = [-V1-x7 )}
r -X

=V1-r2,

4.1

This means that for C = 0(w=0) we get back the ball.

Now we look at the other three cases.

The equations are:
1 3
@2  F=]USQx*Cx g
y V1-((1-C)x +Cx*)?
a-cyr+Ccr?

@y PO aeorecry

(a-0)+3cr? __{a-O)r+Cr’)-{1-C)+3Cr?)
V1-(-C)r + () V1-(-C)r+Criy

We look for extremal points of F(r) for

4.4) F"(r)=-
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re0;11:F'(nN=0=(1-C)r+Cr?
= r=00fr=:tq1-—l/C.

— Inthecase 0 < C <1 the last two solutions are no real numbers and F'(r) <0 Vr ¢ (0,1).
-  For C =1 all zeros coincide. Le. F'(r)<0,r € (0,1).If we evaluate F ”(0) in this case, then
we get F(0) =~ (1-C) =0, meaning that for C = 1 the drop is flat at the top.
- IC>1we get two zeros of F’ that are relevant, viz. r=0 and r, = 1-—--2— with
reo€ (G, 1).
Evaluating F"(r,,) we get .
F'(re)=—4(C~1) <0,

which means that r; is a maximum.
The graph of F(r) is qualitatively plotted in the following diagram:

M

z

1:C=0
2:0<C«<1
3:C=1
4:C>1

v

D
=Y
- A
3

Fig. 4.1

5. Numerical results

From Fig. 4.1 the question arises:

For which value of C is F(0)=0?

In order to get this, we tried to integrate equation (4.2) numerically, and it turned out, that a
modified Simpson-method worked quite well. So we could test for which C it happens that
F@0)=0.

As a first approximation we got C ., =2,32. This is also the number given in [1] for the max-
imum C, if the drop is to enclose the origin.

Apparently, for C > Cp,, the drop surface becomes ’inverted’ and therefore unphysical. Maybe,
beyond C =4 other shapes become possible again. This is still an interesting subject of study.
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Plots of some typical drop shapes can be seen on the following figures. The corresponding
numerical results are listed in Tab. 5.1.

NUMERIC RESULTS

R JR)

' C=0500 C=100 C=1700 C=2320
0.0000 0.6450 0.4333 0.1969 0.0044
0.0800 0.6435 0.4328 0.1986 0.0083
0.1600 0.6387 0.4321 0.2047, 0.0204
0.2400 0.6305 0.4309 02144 - 0.0402
0.3200 0.6184 0.4286 0.2268 0.0667
04000  0.6018 0.4244 0.2404 0.0977
0.4800 0.5801 04171 0.2532 0.1304
0.5600 0.5522 0.4052 0.2628 0.1609
0.6100 0.5165 0.3870 0.2666 0.1847
0.7200 0.4706 0.3600 0.2614 0.1979
0.8000 0.4105 0.3204 0.2434 0.1963
0.8800 0.3276 0.2606 0.2056 0.1735
0.9600 0.1939 0.1569 0.1278 0.1114
1.0000 0.0000 0.0000 0.0000 0.0000

Tab. 5.1.
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