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Bootstrapping to solve the limited data
problem in production control: an application

in batch process industries

V. Cristina Ivănescu∗, J. Will M. Bertrand∗, Jan C. Fransoo∗

and Jack P.C. Kleijnen†

Abstract

Batch process industries are characterized by complex precedence
relationships among operations, which makes the estimation of an ac-
ceptable workload very difficult. Previous research indicated that a
regression-based model that uses aggregate job set characteristics may
be used to support order acceptance decisions. Applications of such
models in real life assume that sufficient historical data on job sets and
the corresponding makespans are available. In practice, however, his-
torical data may be very limited and may not be sufficient to produce
accurate regression estimates. This paper shows that such a lack of
data significantly impacts the performance of regression-based order
acceptance procedures. To resolve this problem, we devised a method
that uses the bootstrap principle. A simulation study shows that
performance improvements are obtained when using the parameters
estimated from the bootstrapped data set, demonstrating that this
bootstrapping procedure can indeed solve the limited data problem in
production control.

Keywords: order acceptance, batch process industries, statistics

Introduction

Regression models have been used to estimate job set makespans and job
flowtimes in manufacturing environments. One of the key assumptions is
that a sufficient amount of (historical) data is available to construct such
regression models. In reality, it is unlikely that this assumption holds. We
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denote this problem as the limited data problem in production control. In this
paper, we solve this problem through a method based on the bootstrapping
principle. We further apply this method in a batch chemical plant setting.

Statistical methods have a long tradition in the field of Operations Re-
search (OR). Empirical studies by Ford et al. (1987) and Lane et al. (1993)
indicate that statistical methods - especially regression analysis - is one of the
top-three OR techniques that OR educators teach and practitioners find most
useful. Regression analysis is used in forecasting and prediction problems in
many areas, including manufacturing planning and control, projecting work-
force requirements, and development of project costs and cash flows. For
example, simple and multiple linear regression analyse are the most common
approaches in the due-date assignment literature. Researchers used numer-
ous job-related and shop-related factors as independent variables to predict
the flowtime (i.e. the total throughput time of a job in the production sys-
tem, which consists of processing time and waiting time) for arriving jobs,
and for setting the due date accordingly (see e.g. Ragatz and Mabert , 1984;
Cheng and Gupta , 1989; Vig and Dooley , 1991, 1993; Gee and Smith ,
1993).

A companion of the flowtime estimation problem is the estimation of
the makespan of a set of jobs (i.e., the completion time of the last job).
Raaymakers et al. (2000a) identified five aggregate job set characteristics
that were used - in addition to the workload of a job set - to accurately
predict the job set’s makespan by means of a multiple linear regression model.
This regression model is used to support order acceptance decisions in batch
process industries, featuring complex job and resource structures, in settings
with deterministic processing times. Ivanescu et al. (2002) extended this
model by considering Erlang distributed processing times.

The findings in these studies indicate that regression modelling does pro-
vide the decision makers with a powerful and relatively straightforward tool
for setting due-dates and/or supporting order acceptance decisions. However,
the question then arises whether this theoretical approach can be applied in
practice. In all these studies, the most common methodology for obtain-
ing the appropriate regression data is simulation. This allows a very large
amount of data to be explored to determine the coefficients of the regression
models. Although some authors indicate that historical information may also
be analyzed, application of such models in real life situations assumes that
sufficient historical data is available. Unfortunately, this assumption does
not always hold: the quantity of historical data at hand may be limited, or
not all the available data may be relevant. It is well known that a regression
model can be used reliably if and only if the relationship between the inde-
pendent variables and the dependent variable does not change. Changes in
technology, raw materials, customer attitudes and needs can have a lasting
impact on established relationships. If there are indications that the rela-
tionship between independent and dependent variables changes, it becomes
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necessary to collect a new set of data in order to re-estimate the regression
coefficients. This implies that predictions must be made from a small his-
torical base. To our knowledge, insights have not yet been developed as to
what extent a limited amount of historical data affects the performance of
the regression-based order acceptance models, and to what extent simulation
can help.

In this paper, we address this issue for batch chemical plants, and we
investigate whether the performance of a regression-based order acceptance
procedure - namely the regression policy developed by Ivanescu et al. (2002)
- is affected by limited availability of historical data. Although the problem
we address is of practical interest, the research presented in this paper is sim-
ulation based; i.e. we do not use real data but simulated data, allowing us
to conduct controlled experiments. We develop a simulation model that rep-
resents a hypothetical batch process industries production department, and
we generate shop-specific historical data by mimicking the planner’s actions.
After investigating the magnitude of the limited data problem, we develop a
procedure based on the bootstrap principle. The bootstrap was introduced
by Efron (1979) as a computer-based method for measuring the accuracy of
statistical estimates. It implies resampling - with replacement - of a given
(limited) sample of i.i.d. observations. In our paper, we use resampling to
generate additional data (namely job sets) with the right variety across the
job sets and with similar characteristics as the observed historical data. We
then investigate whether performance improvements are obtained through
this bootstrapped data set.

We conclude this introduction with an outline of the paper. The next
section details the problem setting. To make the paper self-contained, we
briefly describe the regression policy in the third section. In the fourth
section we investigate to what extent limited data affects the performance
of this policy. The fifth section proposes a bootstrap method to generate
additional data, while the sixth section investigates the performance of this
method in a setting with dynamic order arrivals and stochastic processing
times. The final section presents our conclusions.

Problem setting

The setting for this research is a real life inspired production department in
the batch process industries (see Raaymakers et al., 2000b). We consider
a hierarchical production control structure consisting of the following two
levels: (1) a planner who accepts or rejects orders that are requested by the
market for delivery at a specified date, and (2) a scheduler who allocates
the processing steps of a job (the order accepted by the planner) to specific
resources, and determines the exact sequencing and timing of the planned
execution of the processing steps on the resources.

The planning horizon (say) H is divided into nH time buckets or planning
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periods. A planning period t (t = 1, ..., nH) always starts with an empty
system; at the end of each period the system must be empty again.

In each planning period t, orders arrive at the planner randomly. The
planner has to decide online whether to accept or reject an incoming or-
der. We assume that each order consists of exactly one job and has a non-
negotiable, known due date equal to the end of the next planning period.
Each job j requires sj processing steps. These processing steps have an over-
lap in time when two resources are needed simultaneously. In batch process
industries, the product being processed is generally a fluid that needs con-
tainerization in order to be stored. If there are two consecutive processing
steps, these could be decoupled by storing the product in a silo or bin - but
this is often not possible due to the instability of the product. As a conse-
quence, the product is transferred from one resource to the next (e.g., from
a reactor to a distillation unit). The product will then occupy both units
during some time. This overlap of processing steps is modelled as the time
delay δi,j between the start time of processing step i (i = 1, 2, ..., sj) relative
to the start time of job j. An illustration of such a job is given in Figure 1.

Figure 1: Job definition
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The processing time Pij of processing step i of job j is a random variable
generated by a two-step sampling procedure (we use capital letters to denote
random variables, and lower case letters to denote their realizations, e.g. pij).
First, a value is generated from an uniform distribution on the interval [a, b].
This value is rounded up to an integer value and represents the expected
processing times (E[Pij]). Second, another value is generated by sampling
from an Erlang distribution with the mean E[Pij] and the shape parameter k.
The result is made integer to give the actual number of time units required
for processing step i of job j. We assume that the processing times are
statistically independent of each other. Note that the shape parameter k is
the same for all jobs in the job set.

The jobs that arrive and are accepted in period t, must be executed
in period t + 1; they form a job set - denoted by JS(t) (t = 1, 2, ..., nH).
Furthermore, there are no precedence relations among the jobs in the job
set.

At the start of each period t + 1, JS(t) is released to be scheduled and
executed by the production system. The shop consists of five resource types,
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with two identical resources per type. Two reasons determined our choice of
this particular resource configuration. First, ten resources seem a realistic
size of a production department. Second, the size of the scheduling problem
remains reasonable with respect to the computational time for the simulation
experiments.

The scheduler constructs a schedule by using deterministic processing
times equal to their expectation (i.e., the expected processing times). We
refer to this schedule as the ex ante schedule, denoted by SJS(t). To construct
this schedule, we use the simulated annealing algorithm for no-wait job shops
developed by Raaymakers and Hoogeveen (2000). The resulting makespan,
called the ex ante makespan, is denoted by Cex ante

max (SJS(t)).
Next, the jobs in the job set are executed by the production department

according to this schedule. The actual processing times may differ from the
estimated durations used to obtain the ex ante schedule. Moreover, the pro-
cessing times are not known until realized; therefore, non-feasibility problems
may occur during execution, so rescheduling may be needed. The reschedul-
ing procedure used in this paper is a ”right-shift” control policy (Leon et al.,
1994) that entails a right-shifting of the schedule in order to restore the feasi-
bility on the resources while maintaining the original sequence. It can be used
for locally revising the schedule in real time. For details on the rescheduling
procedure we refer to Ivanescu et al. (2002). One of the difficulties in no-wait
job shop scheduling is that changes in the job sequence on one resource are
likely to affect several other resources. Because the actual processing times
are not exactly known at the time the schedule is determined, it is impos-
sible to satisfy all the no-wait restrictions throughout the job set execution.
Violations of the no-wait restrictions may cause product quality problems,
therefore violations are undesirable. This is measured by the feasibility per-
formance, defined as one minus the fraction of processing steps that violate
the no-wait restrictions. At the end of the planning period t + 1, the ex post
makespan is obtained - denoted by Cmax(SJS(t)).

Regression policy

The makespan of a job set JS(t) is clearly influenced by its workload. More
specifically, the workload on the bottleneck resource type imposes a lower
bound (say) LB(JS(t)) on the makespan. This bound is a single resource
lower bound on the makespan which is computed for each job set by dividing
the workload on the bottleneck resource type by the number of resources of
that type (see Carlier 1987). We round this number upwards, because all
processing times are integer values and no pre-emption is allowed.

The minimal makespan of a feasible schedule will often exceed this lower
bound because of job interactions (timing and no-wait sequencing constraints)
at the scheduling level. Job interactions result from relations among capac-
ity requirements on different resources and from scarcity of capacity. The
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capacity requirements for different resources have a fixed offset in time for
each job, due to the fixed time delay for each processing step. To obtain a
feasible schedule, some idle time on the resources is unavoidable. Job inter-
action is measured by the interaction margin defined as follows. Assuming
the existence of a number of scheduled job sets (i.e. historical data), for
each scheduled job set JS(t) the interaction margin I(SJS(t)) is defined as
the relative difference between the realized makespan and the lower bound
on the makespan:

I(SJS(t)) =
Cmax(SJS(t))− LB(JS(t))

LB(JS(t))
(1)

Ivanescu et al. (2002) estimated the relationship between the interaction
margin and a number of aggregate job set characteristics. The following
aggregate job set characteristics proved to significantly influence the amount
of job interaction: (i) average number of processing steps per job µs; (ii)
average overlap of processing steps µg; (iii) squared coefficient of variation of
the expected processing time cv2

E[p]; (iv) workload balance over the resource

types ρmax; (v) number of jobs in the job set njobs; (vi) squared coefficient of
variation of the actual processing time cv2

p. For detailed definitions of these
characteristics we refer to Ivanescu et al. (2002).

By using these six characteristics as regressors, Ivanescu et al. (2002)
developed a multiple linear regression model to predict the mean interaction
margin defined in (1). In this paper, however, we aim at a job set service
level (defined as the probability of on-time job set completion) equal to α,
so estimating only the mean interaction margin is not sufficient. Therefore,
we regress the (100 · α)th quantile of the distribution of I(SJS(t)) of a given
job set JS(t). To estimate this quantile - denoted by Iα(SJS(t)) - we use the
empirical distribution of I(SJS(t)) and the quantile estimator implemented in
the SPSS statistical package:

Iα(SJS(t)) = I(dn·αe)(SJS(t)) (2)

where dxe denotes the smallest integer that is greater than or equal to x and
I(1)(SJS(t)) ≤ I(2)(SJS(t)) ≤ ... ≤ I(n)(SJS(t)) are the order statistics obtained
by sorting the observations {I(i)(SJS(t)) : i = 1, .., n} in ascending order.

Then, the regression model has the following form:

Îα(SJS(t)) = β̂0 + β̂1 ·µs + β̂2 ·µg + β̂3 ·cv2
E[p] + β̂4 ·ρmax + β̂5 ·njobs + β̂6 ·cv2

p (3)

where β̂0, β̂1, ..., β̂6 are the ordinary least squares (OLS) estimates of the first-
order effects of the six characteristics listed above.

Next, this estimate Îα(SJS(t)) is used to determine the α-reliable comple-
tion time estimate of a given job set JS(t):
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Ĉα
max(JS(t)) = (1 + Îα(SJS(t))) · LB(JS(t)) (4)

Finally, under the regression policy, the planner accepts orders as long
as the α-reliable completion time estimate for the resulting job set is shorter
than the period length:

Ĉα
max(JS(t)) ≤ T (5)

The effect of limited data

The regression policy described in the previous section requires the estimation
of the regression coefficients. To determine these estimates, shop-specific
historical data are required. As we mentioned in the introduction, in real life
we may have only limited data. Therefore, we now investigate the sensitivity
of the order acceptance model is to the size of the database. We do so by
means of simulation; i.e., we generate shop-specific historical data by using
the production department described in the second section.

The simulation experiments are carried out in two stages: (1) data collec-
tion and estimation of the policy’s parameters, and (2) performance evalua-
tion of the order acceptance policy in a setting with dynamic order arrivals.
These stages are addressed in the following sub-sections.

Data collection

We generate a sufficiently large ”historical” database of the production de-
partment described in the second section, by means of simulation. This
database contains information on the customer orders and the production
system for a large number of planning periods. We refer to this database as
the construction data set.

We made the following additional assumptions. In each planning period,
orders arrive according to a Poisson arrival process. The arrival rate is con-
trolled by the demand/capacity ratio. We assume that the average demand
requirements for capacity are equal to the total available capacity per plan-
ning period, which represents a situation where demand effectively exceeds
available capacity. The arriving orders are generated with a high job mix
variety (i.e. sj ∼ U(1, 10) and E[Pij] ∼ U(1, 49)) and high uncertainty in the
processing times (i.e. Pij ∼ Erlang-2). We further assume a job set service
level target of 0.95 (α = 0.95) and that the shop has a balanced workload.

The length of a planning period is chosen such that the job set consists of
a realistic number of jobs. The empirical study of Raaymakers et al. (2000b)
showed that a job set of 40 to 50 jobs is realistic for this type of industrial
process. To realize such job sets, we fix the length of the planning period at
1300 time units (as additional experiments indicate). The absolute length of
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the planning period depends on the average processing time per job, which
is chosen arbitrarily in the simulation experiments.

Given that the construction data set contains the jobs accepted in a
certain planning period, there must exist a mechanism to accept or reject
arriving jobs. We use the following workload-based rule: orders are accepted
as long as (i) the total workload does not exceed a specified maximum work-
load, and (ii) the workload per resource type does not exceed the available
capacity per resource type.

The size of the construction data set is given by the number of planning
periods, namely nH . We expect the size of the construction data set to
affect the performance of the regression policy. To investigate this effect,
we consider six construction data sets with sizes ranging from 12 to 175
planning periods, namely nH ∈ {12, 25, 50, 100, 150, 175}. A construction
data set of size 12 corresponds with one year production, 25 with about two
years, etc. These construction data sets are obtained by randomly sampling
from the large ”historical” database we generated (see the first paragraph of
this subsection).

Each job set JS(t) in each of the construction data sets is scheduled
and executed by the production department (see Section ). All the process-
ing times in JS(t) are stochastic (namely, Erlang distributed with the same
shape parameter k = 2). A single simulated execution of the job set would
not be sufficient to properly capture the effect of stochastic processing times
when developing the regression models. Therefore, we repeat the execution
of each job set several times. Additional experiments showed that 250 repli-
cations were necessary to reduce the variability in the results. Therefore, we
performed 250 independent realizations of the processing times, which yields
i.i.d. observations {Cmax,i(SJS(t)); i = 1, ..., 250} for the ex post makespan
for each job set.

Regression parameters estimation

Each of the six construction data sets are now used to determine parameter
estimates for the regression policy. Note that the sixth regressor in (3), cv2

p,
is constant in our experiments since the processing times Pij in each job set
from each construction data set are identically distributed, namely Erlang-2.
Therefore, we consider only the first five characteristics. In the following we
detail our regression models. We used the SPSS software package for our
regression analyses.

For developing the regression model, we use a two-step process that can
be found in most statistics textbooks (e.g. Montgomery and Peck (1992)):
(i) model building and (ii) model evaluation. In the model building step,
a regression equation is determined that provides the best fit to the data
in the construction data set. At the model evaluation step we distinguish
between model adequacy checking and model validation. Model adequacy

8



checking use residual analysis to investigate the fit of the regression model to
the construction data set. However, there is no assurance that the equation
with the best fit will be a successful predictor. Therefore, the predictive
performance of the model has to be tested. For this purpose, new data are
considered that were not used in the model building step, called the testing
data set.

The estimation models are generated by means of multiple linear regres-
sion techniques. We denote by RegrnH

the regression policy that uses the
parameters estimated from a construction data set of size nH . To measure the
fit of the regression equations to the data in the construction data set we com-
puted the adjusted coefficient of multiple determination (adj. R2), and the
residual standard error (RSE, also called the standard error of the estimate).
Whereas the adj. R2 is a measure of relative fit and indicates how much of
the total variation in the dependent variable is explained by the estimated
regression equation, the standard error of estimate is an absolute measure
of the fit because its value depends on the scale of the response variable.
It specifies the amount of error incurred when the least-squares regression
equation is used to predict values of the dependent variable. Therefore, the
smaller the RSE value, the better the prediction is.

We check the regression models for multicollinearity, because a high de-
gree of multicollinearity gives high variance estimates. Multicollinearity ex-
ists whenever a regressor variable is highly correlated with one or more of
the other regressor variables; it can be detected by using variance inflation
factors (VIF’s)(see Montgomery and Peck (1992)). A rule of thumb is that
VIF’s larger than 10 imply serious multicollinearity. For all the models, the
VIF value for the njobs variable was larger than 10; therefore, we eliminate
this variable from the list of regressors.

Next, we perform a residual analysis to test the adequacy of the regression
models. The standardized residuals versus the predicted values plots we
examined indicate no violation of the basic regression assumptions.

Table 1 gives the name of the models, the adjusted coefficient of multiple
determination (adj. R2), residual standard error (RSE) and the regression
parameters’ least squares estimates.

Table 1: Regression models
Model adj. R2 RSE Regressors

Intercept µs µg cv2
E[p] ρmax

Regr12 0.85 0.044 -0.277 0.010 -0.766 -1.637 3.209
Regr25 0.82 0.065 -1.707 0.121 -0.025 0.842 2.722
Regr50 0.79 0.062 -0.896 0.117 0.110 -0.418 2.209
Regr100 0.85 0.061 -1.575 0.136 0.287 0.407 2.443
Regr150 0.79 0.068 -1.469 0.116 0.177 0.406 2.515
Regr175 0.80 0.069 -1.278 0.133 0.347 -0.269 2.340
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The relatively high adj. R2 values and low RSE values indicate that the
models we developed can be used to obtain accurate predictions. The pre-
dictive performance of the models is further evaluated on a testing data set.
This data set contains 100 new job sets that were generated independently
from the job sets in the construction data set. The quality of the estima-
tion models was evaluated using the mean prediction error (ME) and the
square root of the mean square prediction error (

√
MSE). Additionally, the

percentage of variability in the new data explained by the model (R2
pred) is

compared with the adj. R2 of the building model. The results are presented
in Table 2.

Table 2: Predictive quality of the regression models in the testing data set
Model ME

√
MSE R2

pred

Regr12 0.0061 0.1199 0.35
Regr25 0.0262 0.0910 0.62
Regr50 0.0242 0.0863 0.66
Regr100 0.0253 0.0835 0.68
Regr150 0.0244 0.0839 0.68
Regr175 0.0251 0.0839 0.68

The mean prediction error is nearly zero for all models, so the regression
models seem to produce unbiased predictions. Comparing Tables 1 and 2, we
observe that RSE is smaller than

√
MSE, for all models. Furthermore, the

percentage of variability in the new data explained by the models is less than
the adj. R2 in the construction phase. This indicates that the regression
models do not predict new data as well as they fit the existing (historical)
data. However, except for models Regr12 and Regr25, the degradation of
performance is not severe. We conclude that the regression models we devel-
oped are likely to be successful predictors, except for the models Regr12 and
Regr25. We expect a poorer performance of these two models when used to
support customer order acceptance decisions.

Performance evaluation

In this section, we perform experiments to examine if the performance of the
regression policy is indeed affected by the size of the construction data set.
The estimated parameters are now frozen and used by the regression policy.
We repeat the experimental setting of the data collection phase. This time,
however, the arriving orders are accepted/rejected according to each of the
six regression policies. We simulate a planning horizon of one year, i.e. 12
replications of a planning period.

Given that the parameters were determined under a 95% job set service
level target, when we investigate the effect of the construction data set size
we are interested in the ability of effectively meeting this target. This may
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be quantified through the average percentage of job sets completed on time
(POT) measure. The results are presented in Table 3.

Table 3: The average and 95% confidence interval for the actual % of job
sets on-time
Policy POT 95% conf. interval
Regr12 84.93 [77.07, 92.80]
Regr25 88.27 [83.89, 92.65]
Regr50 88.37 [83.52, 93.22]
Regr100 88.43 [84.60, 92.27]
Regr150 88.67 [84.90, 92.43]
Regr175 89.63 [84.99, 94.28]

Table 3 shows that none of the proposed policies reaches the pre-specified
target. However, the larger the construction data set, the better the perfor-
mance (i.e. the average POT is closer to the 95% target and the confidence
interval is tighter). We observe that the model developed in the case of lim-
ited data (nH = 12) realizes the poorest performance, as expected. Such
a small sample size is likely to be encountered in practice, because relevant
historical information about the accepted orders may be available only over
a horizon of one year or less (which means 12 observations or less).

Limited data problem: bootstrap solution

In the previous section we saw that the size of the construction data set
affects the performance of the regression policy. Therefore, in a situation with
limited historical data (e.g., nH ≤ 12), application of the regression policy
may be jeopardized. What is required is a large number of job sets with
the right variety across the jobs and similar characteristics as the observed
historical data. We propose a method based on the bootstrap principle to
generate these additional data.

The bootstrap principle consists of repeated random re-sampling of the
original observations with replacement, which is performed by a computer
(Efron and Tibshirani , 1993). Bootstrapping is an approach to statistical
inference that makes few assumptions about the underlying probability dis-
tribution that describes the data. This approach assumes that the empirical
cumulative distribution function is a reasonable estimate of the unknown,
population cumulative distribution function (in other words, the empirical
density function approximates the population density function). Using the
data as an approximation to the population density function, data is re-
sampled with replacement from the observed sample to create an empirical
sampling distribution for the statistic under consideration.

In this paper, however, we use the bootstrap principle not for statistical
inference, but for generating additional job sets, denoted bootstrap job sets.
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Bootstrap assumes that the observed data is a good estimate of the popu-
lation density function. Following this principle, we assume that the sample
consisting of the jobs from all the accepted job sets is a good estimate of the
population consisting of the jobs that are accepted. Therefore, we re-sample
with replacement from this observed sample and we generate a number of
B additional job sets. The bootstrap principle assure us that this set of B
bootstrap job sets is a proxy for a set of B independent real job sets.

Let {ji : i = 1, ..., n} denote the sample of all accepted jobs, where
n =

∑nH

t=1 nJS(t) and nJS(t) = |JS(t)| denotes the number of jobs in a job set
JS(t) (t = 1, ..., nH). Since we consider independent planning periods, and
assume that each job arriving into the system may be different and there are
no precedence relations among jobs, the job arriving stream across all the
planning periods is a sample with independent observations. However, given
that a workload-based order acceptance procedure is used to accept/reject
the arriving jobs, the accepted jobs contained in each job set may not be a
random sample from the arriving job stream. Nevertheless, we do not expect
this characteristic to violate the independence assumption. The proposed
procedure is as follows.

1. Arrival moments are generated, according to a Poisson arrival process.

2. At each arrival moment, we randomly select a job - with replacement
- from the observed sample {j1, ..., jn} of accepted jobs. A decision to
either accept or reject the job has to be made. This decision is based
on the same acceptance procedure that was used to accept the jobs in
the original historical data set (i.e., a workload based procedure). The
result is a new job set denoted by JS∗. This job set is next scheduled
and we denote its corresponding ex ante makespan by Cexante

max (SJS∗).

3. We simulate the execution of the bootstrap job set JS∗. As in the data
collection section, 250 independent realizations of the processing times
are made that yield i.i.d. observations {Cmax,i(SJS∗); i = 1, ..., 250} for
the ex post makespan.

4. We repeat steps 1, 2 and 3 B times; we take B = 500. The replicate b,
b = 1, ..., B gives the bootstrap job set JS∗b .

This procedure generates B bootstrap job sets. These job sets, together
with the original job sets forming the historical data set, form the new con-
struction data set. Based on this construction data set, we estimate the
parameters of the regression policy. We hypothesize that the regression pol-
icy that uses parameter estimates based on this bootstrapped construction
data set performs better. We test this hypothesis in the next section.
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Evaluating the bootstrap solution

In this section we investigate to what extend a regression model estimated
from a bootstrapped construction data set improves system performance
when used to support order acceptance decisions as compared to a regres-
sion model induced on a small size construction data set. Let the smallest
construction data set (size 12) in the fourth section be the original historical
data set. Applying the bootstrap procedure described in the previous section,
we generate B = 500 additional job sets. Adding these job sets to the ini-
tial construction data set gives the bootstrapped construction data set, with
512 job sets. Applying the procedure of Section , we compute the parameter
estimates for the regression policy. We obtain the following regression model:

Î0.95(JS) = −1.480 + 0.125 ·µs + 0.582 ·µg − 0.043 · cv2
E[p] + 2.434 · ρmax (6)

Because our ”real” historical data set is simulated, we can also create an
ideal situation with a construction data set with 512 independent job sets.
The regression model estimated from this data set is:

Î0.95(JS) = −1.425 + 0.130 · µs + 0.337 · µg + 0.087 · cv2
E[p] + 2.402 · ρmax (7)

The adj. R2 (RSE) is 0.76 (0.076 ) for (6) and 0.79 (0.068) for (7).
Comparing these values with the values in Table 1, we observe a smaller adj.
R2 and a higher RSE for the regression model given by (6). However, the
decrease in performance is small and gives us no reason for concern with
respect to the predictive performance of this model.

We denote the regression policy that uses estimates based on the boot-
strapped construction data set by Regrb. We compare the performance of the
three policies - namely Regrb, Regr12 and Regr512 - by means of simulation
experiments - using the same experimental setting as in the fourth section.

We use the following performance measures: (i) realized capacity utiliza-
tion (RCU), (ii) percentage of job sets on time (POT ), (iii) job set tardiness
(JST ), and (iv) feasibility (FEB). The realized capacity utilization per pe-
riod is measured by

RCU =

∑nJ

j=1

∑sj

i=1 θpij

N · T (8)

where

θpij
=





pij if stij ≤ T and cij ≤ T
pij − (cij − T ) if stij ≤ T and cij > T
0 if stij > T

(9)

where pij denotes the processing time, stij the start time, and cij the com-
pletion time of the processing step i of the job j.
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Job set tardiness occurs when the ex post makespan (Cmax(SJS)) of the
job set JS exceeds its due-date (T):

JST = (Cmax(SJS)− T )+ (10)

The feasibility performance is one minus the fraction of processing steps
that violate the no-wait restrictions throughout the entire planning period.
Unavoidable non-feasibility problems will occur due to the no-wait restric-
tions between the processing steps of a job, and because the actual processing
times differ from the expected processing times. Obviously, a smaller number
of violations of the no-wait constraints is preferred.

Table 4 reports these performance measures averaged over the 12 planning
periods.

Table 4: Computational results
Policy RCU POT JST FEB
Regrb 0.3357 92.67 3.84 0.805
Regr12 0.3432 84.93 9.57 0.802
Regr512 0.3439 88.70 6.28 0.804

To compare the performance of Regrb with the performance of Regr12

and Regr512, we use paired t-test. That is, for each performance measure,
we make two pairwise comparisons. The individual test level is set at 95%.
The results showed that for all performance measures, except FEB, there are
significant differences between Regrb and both Regr512 and Regr12. Table 4
reveals that with respect to the ability of meeting customer requirements, the
Regrb performs best: this policy manages to determine job sets that result in
a delivery performance very close to the 95% target, and a much smaller job
set tardiness. Furthermore, Regrb realizes lower RCU than either Regr12 or
Regr512. However, this difference is very small. We conclude that, in case
of limited historical data, our re-sampling procedure gives a similar or even
improved system performance compared with a situation with a very large
historical data set.

Summary and conclusions

Regression models show good performance when used to support customer
order acceptance decisions in complex plants with dynamic order arrivals and
either deterministic or stochastic processing times (e.g. Raaymakers et al.,
2000a; Ivanescu et al., 2002). These models have been tested extensively
through simulation. These simulations, however, used a large variety of shops
and job sets to estimate the coefficients of the regression models. Applications
of such models in real life assume that sufficient historical data (regarding
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customer orders and production system) is available for estimating these
coefficients with acceptable accuracy. In practice, however, relevant historical
data may be limited. In this study, we investigated to what extent this
limited data problem in production control impacts the performance of a
regression-based acceptance procedure.

For batch process industries, featuring complex job and resource struc-
tures, we first generated shop-specific historical data by simulation. This
initial simulation study shows that a regression policy performs less well if
the size of the construction data set is small. To overcome the limited data
problem, we developed a procedure based on the bootstrap principle. In
general, bootstrap randomly re-samples the original observations with re-
placement. Our procedure bootstraps the original set of accepted jobs, to
generate additional job sets. We assessed the performance of our bootstrap
procedure by means of simulation. The results showed that the performance
of the bootstrap regression policy clearly improves. Moreover, we found that
this policy reaches performance levels similar to those of a regression policy
that uses a very large historical data to estimate its parameters.

The results clearly demonstrate the power of extending the bootstrap
principle by applying this to the basic elements of a data set in production
control, namely the individual jobs. Rather than re-sampling the job sets,
we used the individual jobs for re-sampling. This allowed us to construct
new jobs sets. We believe that this principle can be further extended to
other production control environments where the limited data problem may
occur, and encourage further research to investigate the possible impact and
limitations beyond the boundaries of our study.
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