EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Control of underactuated mechanical systems

Citation for published version (APA):

Aneke, N. P. . (2003). Control of underactuated mechanical systems. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR559509

DOI:
10.6100/IR559509

Document status and date:
Published: 01/01/2003

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024


https://doi.org/10.6100/IR559509
https://doi.org/10.6100/IR559509
https://research.tue.nl/en/publications/60739b74-8dd1-4d2f-8f85-39d4d594867f

CONTROL OF UNDERACTUATED MECHANICAL SYSTEMS



CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Aneke, N.P. 1.

Control of underactuated mechanical systems / by N.P.I. Aneke. - Biadho

Technische Universiteit Eindhoven, 2003.

Proefschrift. - ISBN 90-386-2684-3

NUR 929

Trefwoorden: mechanische systemen; niet-lineaire regeltechniek fgeaitueerde mechanische
systemen / robotica; niet-holonome systemen

Subject headings: mechanical systems; non-linear control / undatedtonechanical systems /
robotics; non-holonomic systems

© 2002 by N.P. 1. Aneke

All rights reserved. This publication may not be translated or copied, iHemioin part, or used
in connection with any form of information storage and retrieval, electrodaptation, electronic
or mechanical recording, including photocopying, or by any similar oiirditar methodology now
known or developed hereafter, without the permission of the copyrigeh

This dissertation has been prepared with #igX2¢ documentation system.
Printed by University Press Facilities, Eindhoven, The Netherlands.

The research reported in this thesis is part of the research progrdma Dutch Institute of Systems
and Control (DISC).



CONTROL OF UNDERACTUATED MECHANICAL SYSTEMS

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven
op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor Promoties
in het openbaar te verdedigen op
15 april 2003 om 16.00 uur

door
Nnaedozie Pauling Ikegwuonu Aneke

geboren te Delft



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H. Nijmeijer
en
prof.dr.ir. M. Steinbuch

Copromotor:
dr.ir. A.G. de Jager



Contents

1

Introduction

1.1 First-order nonholonomic constraints
1.2 Second-order nonholonomic constraints
1.3 Contributions of this thesis
1.4 Outline ofthethesis. . ... ... .. ..

Problem formulation

2.1 Second-order chained form transformations
2.1.1 The first-order chained form system
2.1.2 The second-order chained form system

2.2 The feedback stabilization problem

2.3 The tracking control problem

2.4 Robustness considerations

25 Summary ... ...
Preliminaries

3.1 Mathematical preliminaries

3.2 Lyapunov stability ... .........
3.3 Conversetheorems . ... ........
3.4 Linear time-varying systems

3.5 Perturbationtheory . . ... ... ....

3.5.1 Vanishing perturbations
3.5.2 Non-vanishing perturbations
3.6 Cascadedsystems ... .........
3.7 Homogeneous systems
38 Summary ... ..............

Trajectory generation
4.1 Problem formulation

4.2 Controllability and stabilizability
4.3 Constructive proof of controllability

4.4 The flatness property

4.5 The point to point steering problem

4.6 A variational method

4.6.1 The SQP algorithm

4.7 A sub-optimal method

....................... 15



Contents

4.7.1 The Finite Differences Method

4.8 Summary

Tracking control

5.1 Cascaded backstepping control

5.1.1 Stabilization of théA;,Ay) subsystem
5.2 Stability of the tracking-error dynamics
5.3 Robustness considerations

5.4 Summary

Point stabilization

6.1 Homogeneous feedback stabilization
6.1.1 Stabilizing thé\; subsystem
6.1.2 Stabilizing théA;,Ay) subsystem

6.2 Robust stabilizers for the second-order chained form
6.2.1 Preliminaries and definition of the problem
6.2.2 Design of the periodically updated feedback law
6.2.3 Notational conventions
6.2.4 Stability and robustness analysis

6.3 Summary

Computer simulations
7.1 The dynamic model
7.2 The second-order chained form transformation
7.2.1 The influence of friction
7.3 Friction Compensation
7.4 Tracking Control
7.4.1 Simulation without friction in the rotational link
7.4.2 Simulation with friction in the rotational link
7.5 Feedback Stabilization
7.5.1 Simulation without friction in the rotational link
7.5.2 Simulation with friction in the rotational link
7.6 Conclusions

Experimental results
8.1 Parameter identification
8.1.1 The location of the Center of Percussion
8.1.2 Linear least-squares identification
8.2 Experiment with the Tracking Controller
8.3 Experiment with the Homogeneous Stabilizing Controller
8.4 A heuristic modification of the stabilizing controller
8.5 Extension to practical point-to-point control
8.6 Conclusions



Contents 7

9 Conclusions and Recommendations 127
9.1 ConclusSions . . . . . . . e e e 281
9.1.1 Thecontroldesignapproach . . . ... ... ... ... ......... 128
9.1.2 Thesimulationsandexperiments. . . .. .. .. .. .. ... ........
9.1.3 RObDUStNESSISSUES . . . . . . & o e e e e e e e 0 13
9.2 Recommendations. . . . . . . . . . e e e 0 13
9.2.1 The second-order chainedform . .. ... ... ... ... .. ... .. 130
9.2.2 Robustcontroldesign . . .. .. .. .. . .. ... e 113
9.2.3 Improving the experimentalset-up . . . . . . . . . . ... ..., 2 13
A A stability result for cascaded systems 135

A.1 A global 7 -exponential stability result for non-autonomous cascaded systems . 35.

B Tracking control of the higher-dimensional chained form 139
B.1 Cascaded backsteppingcontrol . . . . .. .. .. ... ... ... .. ..., 139
B.1.1 Stabilization of the;,A,) subsystem . . . . . . ... ... ... ...... 140
B.1.2 Stability of the tracking-errordynamics . . . . .. .. ... ... ...... 414
B.2 Robustness considerations . . . . ... ... ... e 147
C The underactuated H-Drive manipulator 153
C.1 Dynamic model of the underactuated H-Drive Manipulator . . . .. .. ... . 153
C.2 Theservocontrollers . . . . . . . . . . . . . . 155
C.3 MotionPlanning . . . . . . . . . 157
Bibliography 163
Summary 169
Samenvatting 171
Acknowledgements 173

Curriculum Vitae 175



Contents




Chapter 1

Introduction

The last decades have shown an increasing interest in the controtlefastuated mechanical sys-
tems. These systems are characterized by the fact that there are maresdefgfreedom than ac-
tuators,i.e., one or more degrees of freedom are unactuated. This class of medlaystems are
abundant in real life; examples of such systems include, but are not limjtedrface vessels, space-
craft, underwater vehicles, helicopters, road vehicles, mobile rolpsesobots and underactuated
manipulators. Underactuated mechanical systems generate interesting maitiems which require
fundamental nonlinear approaches. The linear approximation arowilibegm points may, in gen-
eral, not be controllable and the feedback stabilization problem, in gegarahot be transformed
into a linear control problem. Therefore linear control methods can noséé to solve the feedback
stabilization problem, not even locally. Also, the tracking control problemrua be transformed
into a linear control problem. However, it turns out that, under certaidions, the tracking control
problem can be solved by linear time-varying control.

Many underactuated mechanical systems are subject to nonholonomicagass In classical
mechanics, nonholonomic constraints are defined as linear constrainestygpéw(q)g = 0 which
are non-integrable, where the generalized coordinates are denoted by constraint is called non-
integrable if it can not be written as the time-derivative of some function ofjémeralized coordi-
natesj.e.,(q) =0, and thus can not be solved by integration. Contrary to classical meshamore
general characterization of nonholonomic constraints will be adopted ithggs. The nonholonomic
constraints are divided into two classes, the first-order nonholonomstreamts and the second-order
nonholonomic constraints. The first-order nonholonomic constraintsedireed as constraints on the
generalized coordinates and velocities of the far(q, q) = O that are non-integrablee., can not be
written as the time-derivative of some function of the generalized coordiriae ¢(q) = 0. These
constraints include nonholonomic constraints arising in classical mecharasoaholonomic con-
straints arising from kinematics. The second-order constraints aredefgconstraints on the gen-
eralized coordinates, velocities and accelerations of the fdfgng, §) = 0 which are non-integrable,
i.e., can not be written as the time-derivative of some function of the generalizedlinates and
velocities,i.e., ¢(q,q) = 0.

These first-order nonholonomic or second-order nonholonomic @dmstimost commonly arise
in mechanical systems where constraints are imposed on the motion, for exanggeactuated ve-
hicles and underactuated robot manipulators. These constraints anetegnable,i.e., can not be
solved by integration, and are therefore an essential part of the dymaifte first-order nonholo-
nomic constraints, or velocity constraints, most commonly occur in, for exampleeled mobile
robots and wheeled vehicles, including tractor with trailer systems. Thadexder nonholonomic
constraints, or acceleration constraints, most commonly occur in, for é&asupface vessels, under-
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water vehicles, spacecraft, space robots and underactuated mamgulato

In addition to classical formulations, nonholonomic constraints can arise ar othys. If the
motion of a mechanical system exhibits certain symmetry properties, therecerstrved gquanti-
ties. If these conserved quantities, for example the angular momentum,ranetegrable, this may
be interpreted as a nonholonomic constraint. It should be noted that, incalas®chanics, con-
served quantities are not regarded as constraints on a system. In tre community, however, it
has been commonly accepted to regard these conserved quantitiesteammisifat are imposed on
the system. Examples of such systems include multi-body spacecraft aachatuhted symmetric
rigid spacecraft. Nonholonomic constraints also arise as a result of ingpdsgign constraints on
the allowable motions of the mechanical system. Examples of such systems itieuziese of kine-
matically redundant manipulators and underactuated manipulators. Thelgemenection between
underactuated systems and nonholonomic systems is not completely undlefstoatroduction to
nonholonomic control systems is given in (Murray et al., 1994), and timeuiation of nonholonomic
systems is considered in (Neimark and Fufaev, 1972). An overviewelalements in nonholonomic
control problems can be found in (Kolmanovsky and McClamroch, 1995).

This thesis addresses the tracking and stabilization problem for undetesttonechanical sys-
tems with second-order nonholonomic constraints. Most publications aractdated systems with
nonholonomic constraints have dealt with systems that exhibit first-orddrohmnomic constraints.
For these systems an extensive amount of literature is available on thedkedabilization problem
and research in this field is still continuing. In the last decade underadtsgséems with second-
order nonholonomic constraints have received more interest, but seeferterest was focused on the
feedback stabilization problem and the tracking problem has receivedttestion.

The interest in underactuated mechanical systems with second-ordeslowomic constraints
can be motivated by the fact that, in general, these systems have a strabsiraction to the ex-
istence of smooth (or even continuous) time-invariant stabilizing feedback ey do not meet
Brockett's well-known condition for smooth time-invariant feedback statlittma(Brockett, 1983).
Typically, a first indication of this obstruction follows from the fact that thedirization around any
equilibrium point is uncontrollable. Furthermore, it follows that the trackingtml problem can
only be solved by smooth feedback when additional requirements are ichpasthe trajectory to
be tracked, see (Jiang and Nijmeijer, 1999). These underactuatedmuatisystems, not satisfy-
ing Brockett’s condition, also satisfy certain nonlinear controllability proesy but these properties
are not sufficient to prove complete controllability of the mechanical systershdrt, the control of
underactuated systems with second-order nonholonomic constraintsaleanging control problem
for which many open problems still exist. For instance, it is not clear whekigetracking control
problem can be solved by time-invariant feedback, as in the case ofaatdated mechanical sys-
tems with first-order nonholonomic constraints. It is also not clear whetbde#dback stabilization
problem can be solved by smooth time-varying feedback.

The interest in underactuated mechanical systems with second-orderlooomic constraints is
also motivated from a more practical point of view. Underactuated mediayistems are abundant
in real life and many of these systems exhibit nonholonomic constraintsefbinercontrol method-
ologies are needed that can be applied in practice. This means that thel owettrodologies should
satisfy some robustness properties,, they should be able to deal with parameter uncertainties and
un-modelled dynamics. Therefore, the control methodologies should tesl tesreal-life experi-
ments.
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1.1 First-order nonholonomic constraints

Figure 1.1: A wheeled mobile robot (unicycle type)

For mechanical systems, first-order nonholonomic constraints are vetmmistraints that are
non-integrable. In order to clarify what the non-integrability condition nsea@onsider a wheeled
mobile robot of unicycle type, shown in Figure 1.1. Assume that the forwelatity u and angular
velocity w are inputs that can be controlled independently. It is assumed that thecéstior wheel
and the rear wheels roll without slipping. Whény) denotes the coordinates of the center of mass
and 6 the angle between the heading direction andxtfais, the kinematic model of this mobile
robot is given by

x=cog0)v
y=sin(8)v (1.2)
0=w

Consider a pointx,y’) located at a distandealong the centerline of the mobile robot. The velocity
orthogonal to the centerline of the robot should be equal to the angutanityeat the point(X,y').
The velocity(X,y'), orthogonal to the centerline, at the poirt y') thus satisfies the constraint

X sin(6) —y cog8) = —186. (1.2)

The roll-without-slip condition of the rear-wheels, located on the axis thrahg point(x,y) and
perpendicular to the centerline, requires that the velocity orthogonal tetiter line is equal to zero.
Thus equation (1.2) with= 0 gives the constraint

xsin(@) —ycoq0) =0 (1.3)

Consider the constraint (1.2). Using constraint (1.3), it follows tha) (&.8atisfied by

X =x—1sin(6)6

Y =y+Icog6)6. (14)
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Integration of (1.4) leads to the relationship between the positions of the grigisand (X', y’) given
by

X =x+1cog0)
y =y-+Isin(6)

This means that constraint (1.4), which is equivalent to (1.2), can beatéebto obtain (1.5). There-
fore (1.2) defines a holonomic constraint. Unlike constraint (1.2), cainst(1.3) can not be inte-
grated,i.e., it can not be written as the time-derivative of some function of the gtate8). Itis an
essential part of the dynamics of the system. The constraint (1.3) isaheflled a nonholonomic
constraint. As a result, the stabilization of the system (1.1) is far from triidhct, it can be shown
that, in general, first-order nonholonomic systems can not be stabilizegytsnzooth time-invariant
static state-feedback.

To illustrate why the underactuated system (1.1) can not be stabilized lsyrannth time-invariant
static state-feedback, consider the problem of stabilizing the system (1h®) @oigin. Suppose that a
time-invariant static state feedback exists that stabilizes the system to the grigimaoth functions
v(x,y, 8) and w(x,y, 8) with v(0,0,0) = 0, w(0,0,0) = 0. The equilibria of the closed-loop system
are given by solutions of(x,y, 8) = 0 together withw(x,y, 8) = 0. Because we have three unknowns
in two equations, there exists (locally) a one-dimensional manifold of equilidrieh passes through
the origin. Thus the origin of the system can not be stabilized by smooth stati¢crnwgant state-
feedback. Only a manifold of dimension one can be stabilized by a smooth statimtian@nt state-
feedback. A formal generalization of this observation is given by Betitknecessary condition.
It is a necessary condition for feedback stabilization by continuous tinsiant feedback. It was
presented in (Brockett, 1983) f@i! time-invariant feedback laws and was shown in (Zabczyk, 1989)
to hold also for continuous time-invariant feedback laws.

(1.5)

1.2 Second-order nonholonomic constraints

As mentioned earlier, underactuated mechanical systeessystems with more degrees of free-
dom than inputs, can give rise to second-order nonholonomic constr@mtsider an underactuated
mechanical system and lgt= (qy,...,qn) denote the set of generalized coordinates. Partition the
set of generalized coordinates@s- (da,0p), Whereg, € R™ denotes the directly actuated part and
Op € R" ™ denotes the unactuated part. Witke R™ denoting the vector of control variables, the
equations of motion of the underactuated mechanical system become:

M11(d)6a+ M12(9) 8 + F1(,G) = B(q)u (1.6)
M21(Q)Ga + M22(0)dp + F2(0,9) =0 1.7)

The equations (1.7) defime— mrelations involving the generalized coordinates as well as their first-
order and second-order derivatives. If there exists no nonftiiviagral, i.e., a smooth function
o(t,q,q) such that & /dt = 0 along all solutions of (1.7), then these- m relations can be inter-
preted as nonholonomic constraints. In (Reyhanoglu et al., 1996) aoflasderactuated mechanical
systems was identified that exhibit second-order nonholonomic constlakamples of systems be-
longing to this class are given by underactuated robot manipulators (@maldNakamura, 1991),
autonomous underwater vehicles (Egeland et al., 1994; Petterser), @déractuated surface ves-
sels (Pettersen and Nijmeijer, 1998), the Acrobot system (Spong, 4885he planar vertical/short
take-off and landing aircraft (V/ISTOL) (Hauser et al., 1992).
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In this thesis only underactuated mechanical systems which exhibit secdadnonholonomic
constraints are considered. In contrast to systems with first-orderolamgmic constraints, the
second-order nonholonomic constraints include drift-terms that makeotomnthese systems more
difficult. Similar to the case of first-order nonholonomic systems, in certaiescsescond-order non-
holonomic systems also have a structural obstruction to the existence of sfooetien continuous)
time-invariant stabilizing static state-feedbacks; they do not meet Brockettisssary condition for
feedback stabilization (Brockett, 1983). However, there do existgkooder nonholonomic systems
that are smoothly (or even linearly) stabilizable. These systems are, inafjetieectly influenced
by gravity and therefore the linearization around equilibrium points is chade. The Acrobot, a
two link underactuated robot (Spong, 1995), and the planar verticditstke off and landing aircraft
(V/ISTOL) are examples of such systems. As an example of second+wwdanlonomic systems,

u (surge)

Figure 1.2: An underactuated surface vessel

consider underactuated vehicles described by the following model:

MV +C(v)V +D(v)V +g(v) = [ H (1.8)
n=Jnyv (1.9)

wheren € R", v € R™, n> mandrt € R¥, k < m. The inertia matrixM is nonsingular and constant,
i.e.,M = 0, and the matrixJ(n) has full rank,i.e.,rankJ(n)) = m, Vn. Underactuated vehicles de-
scribed by (1.8,1.9) are underactuated surface vessels, undevelaides and spacecraft. The vector
v = [u,v,r]T denotes the linear and angular velocities of the vehicle decomposed in tireixemti
frame, see Figure 1.2) = [x,y,y/]T denotes the position and orientation decomposed in the earth-
fixed frame, and denotes the control forces and torques decomposed in the body+ixed.M is
the inertia matrix including added mas3(v) is the Coriolis and centripetal matrix, also including
added mas9)(v) is the damping matrix and(v) is the vector of gravitational and buoyant forces
and torques. The matric€v) andD(v) depend on the vector of linear and angular velocities
Equation (1.9) represents the kinematics of the vehicle.

Let My,Cy(v),Dy(v) andgy(v) denote the lasih— k rows of the matriceM,C(v),D(v) and the
vectorg(V), respectively. Then the constraint imposed by the unactuated dynamibg eeitten as

MyV + Cy(V)V +Dy(V)V +gy(v) =0 (1.10)
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The gravitation and buoyancy vectg(v) is important for the stabilizability properties of underactu-
ated vehicles. If the vectay(v) corresponding to the unactuated dynamics contains a zero function,
then the constraint (1.10) is a second-order honholonomic constrainisiBg Brockett’s condition,

it can be shown that there exists no continuous time-invariant feedbadulgwthat the equilibrium
(0,0) is asymptatically stable (Pettersen, 1996).

1.3 Contributions of this thesis

In this thesis the tracking and stabilization problems for underactuated nieghaystems with
second-order nonholonomic constraints are considered. A spedalaflanderactuated mechanical
systems with second-order nonholonomic constraints is considered, niimelgss of underactuated
mechanical systems that can be transformed, by a suitable coordinateeiohdék transformation,
into a special canonical form. This special canonical form, the so-called second-order chained
form, considerably simplifies the dynamical equations of the system and efdremore suitable
for control design than the original dynamical equations. Moreovertrémsformation bringing the
system into the second-order chained form, in most cases, has a glsmapmterpretation. To date,
studies concerning the control of nonholonomic systems have primarilylineigzd to tracking and
stabilization problems for first-order nonholonomic systems. When seaated-nonholonomic sys-
tems have been considered, the interest has been focused on the stabizzblem and the tracking
control problem has received less attention. Although the dynamics ohdemrder nonholonomic
systems are quite well understood, the tracking and control problemsefs #ystems still remain a
challenging task. For instance, it is not clear whether the tracking cqerinblem can be solved by
time-invariant feedback, like in the case of underactuated mechani¢ahsysvith first-order non-
holonomic constraints. It is also not clear whether the feedback stabilizaidabem can be solved
by smooth (or even continuous) time-varying feedback.

To our knowledge, only a few results are available that have sucdlgsséilved the tracking
problem for second-order nonholonomic systems. In (Walsh et al.,) H9@sult for tracking of first-
order nonholonomic systems has been given that may be extended tal-s&den nonholonomic
systems. The feedback stabilization problem has received more attentigiaibu and Astolfi,
1999) a discontinuous controller has been developed for the high-ohdéned-form system with
two inputs. The discontinuous controller does not stabilize the system, lyuadmnieves exponential
convergence towards the the point to be stabilized. This means that théottiegof the closed-loop
system converge exponentially towards the point to be stabilized. Howstree the controller and
therefore the closed-loop system is discontinuous at the point to be stdpiizstability property in
the sense of Lyapunov can be shown to hold.

The contribution of this thesis to the control of second-order nonholonsystems is as follows.
In this thesis the tracking control problem and the feedback stabilizatidigmofor second-order
nonholonomic systems is considered. In the tracking control problem ordpth state-feedback are
considered and it is shown that the tracking control problem for thenseoaler chained form can be
solved by a linear time-varying feedback. In addition, the control degignoach is extended to the
case of higher-dimensional chained form systems. The tracking contnalebeen first presented in
(Aneke et al., 2000) and has been published in (Aneke et al., 2003).

The feedback stabilization problem for second-order nonholonomiersgss shown to be solv-
able by using continuous feedback, namely a homogeneous time-vargitigaiek controller that ex-
ponentially stabilizes the system with respect to a homogeneous norm. Thirsuows time-varying
homogeneous controller has been first presented in (Aneke et alh)20@Pdate and to our knowl-
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edge, this homogeneous controller is the only one capable of ensuripginga stability as well
as exponential convergendes., p-exponential stability. It is well-known that homogeneous con-
trollers are not robust with respect to parameter uncertainties andfdieegra robust version of the
homogeneous stabilizing controller is presented. The periodically updateddeneous controller is
designed by using a hybrid open-loop/feedback approach, in whicttdkes of the system are peri-
odically updated at discrete time instants. This approach results in a féesthbhdizer that is shown
to be robust with respect to a class of additive perturbations that inchestegbations resulting from
parameter uncertainties, but excludes non-smooth effects, suchtemfric measurement noise. To
our knowledge, this robust controller or feedback stabilizer, predenté_izarraga et al., 2003), is
one of the first capable of achieving robust stabilization of the secosel-chained form system.

For both the tracking and stabilizing controllers, the robustness propargesivestigated and
bounds for a specific class of perturbations of the second-ordarezhform system are given that
ensure robustness of the controllers. In addition, the proposed torgtioods are not only validated
by simulation but also through experiments. The experimental results shaalitigy of the control
approaches, but also reveal the need for controllers which aretrabith respect to perturbations
resulting from non-smooth effects and non-vanishing disturbances.

1.4 Outline of the thesis

This thesis deals with the tracking and feedback stabilization problems feractdated mechanical
systems with second-order nonholonomic constraints. In Chapter 2 théngggmroblem and the
feedback stabilization problem are formulated. In Chapter 3 some prelinsrzaggresented that will
be used throughout this thesis. In Chapter 4 the controllability propertibe second-order chained
form system are investigated and motion planning methodologies are ptEergenerating state-to-
state trajectories. In Chapter 5 the tracking control problem is considerkd cascaded backstepping
approach is proposed to stabilize the tracking-error dynamics. In Gteafite feedback stabilization
problem is solved by using homogeneous time-varying feedback. Int&haphe proposed control
methods are illustrated by computer simulations. The proposed control methmdssted on an
experimental set-up of an underactuated H-Drive manipulator in ChapteiGhapter 9 conclusions
are drawn and recommendations for further research are givenpperflix A a stability result is
presented for cascaded systems. In Appendix B the methodology fkingamontrol in Chapter 5 is
extended to the case of higher-dimensional chained form systemsecond-chained form systems
with dimensionn > 3. Finally, in Appendix C, the dynamic model of the underactuated H-Drive
manipulator is presented.
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Chapter 2

Problem formulation

In this chapter, the tracking and feedback stabilization problems are faeduiar a class of un-
deractuated mechanical systems. This class consists of underactuateahivecsystems that can
be transformed, by a suitable coordinate and feedback transformatiothénsecond-order chained
form.

2.1 Second-order chained form transformations

When designing controllers for underactuated systems with nonholonomstramts, a commonly

used approach is to transform the system into some canonical form foh uhe control design

can be carried out more easily. The most important canonical forms ateatileformations into

the chained form (Murray and Sastry, 1991) and the power form (d4Key and Murray, 1993).

These canonical forms are equivalent; meaning that the chained formectransformed into the
power form and vice versa. Transformations into chained or powen faave mainly been used
when designing controllers for underactuated systems with first-oradaohanomic constraints, such
as mobile robots and car-trailer systems (Lefeber, 2000). The sexded-chained form can be
used to design controllers for certain systems with second-order nommio constraints, such as
underactuated robot manipulators and underactuated vehicles.

2.1.1 The first-order chained form system

First-order nonholonomic mechanical systems can be modeled using kinematitsmo dynamic
models. A general form of a nonholonomic mechanical control systemess@d in kinematic form,
is given by a drift-less nonlinear control system of the form

X=0g1(X)us + - - - + Gm(X)Um, (2.2)

where 2<m< n, x= (x,...,Xy) is the state-vector ang|,i € (1,...,m), are the control variables.
The system is supposed to satisfy some first-order nonholonomic cotsgyaien ash(x) = 0. An
essential assumption is that the system (2.1) is completely controllable; it satisfieontrollability
Lie algebra rank condition. This assumption guarantees, see (KolmanawdMcClamroch, 1995),
that there exists no non-trivial integral to the nonholonomic const@(rj = 0, i.e., when denoting
the state ag = [q,q]" with g the generalized coordinates, there does not exist a smooth fugtipn
such that ¢/dt = 0 along all solutions of (2.1).
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A general form of the dynamics of a first-order nonholonomic mechaoaratol system is given
by a nonlinear control system of the form

X =g1(X)y1+ -+ Im(X)Ym,

2.2
yi:ui7 i:]-,-"am7 ( )

where 2< m< n, x= (Xg,...,X,) andu;,i € (1,...,m), are the control variables. This drift-less
dynamic extension of the kinematic model (2.1) also includes the d’Alemberahgg formulation,
which under a reasonable set of assumptions can be transformed intd&er generalization of
the kinematic system (2.1) and the dynamic system (2.2) are possible, butaseaich is restricted
to this class of first-order nonholonomic systems.

In many applications, nonholonomic control systems are transformed intd&ieed-form sys-
tem given by

él =U
&=y (2.3)
é3 = &ouy.

Many mechanical systems with first-order nonholonomic constraints carcéiéylor globally trans-
formed into the chained-form (2.3), or higher dimensional variants thdmg@ coordinate and feed-
back transformation. In fact, in (Murray and Sastry, 1993) it was shihvat any kinematic model of
a first-order nonholonomic system with three states and two inputs can bertazhinto the chained-
form (2.3). The chained-form system can be used to facilitate contsijuldecause its structure
is simpler, or at least looks simpler, than that of the original system. Furthmerritdacilitates the
systematic construction of controllers for a wide range of nonholonomic amécdl systems.
For example, consider the system of a wheeled mobile robot illustrated ineFiglir

x=cog0)v
y=sin(8)v (2.4)
0=w

The kinematic model (2.4) of the wheeled mobile robot can be transformed mmtchéined-form
(2.3) by the coordinate and feedback transformation given by

é1=16 U=
&> =xcog0)+ysin(0) Up = V— WX3 (2.5)
&3 =xsin(8) —ycog0).

2.1.2 The second-order chained form system

A special canonical form called the genemadimensional second-order chained form system is given
by

gl =U
gz =U
&3 =&uy (2.6)

=& 1y
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It plays the same role for second-order nonholonomic systems as thedHarm system for first-
order nonholonomic systems. In this thesis the dimensiohthe second-order chained is defined
as the number of equations. The number of degrees of freedom (DIQRg¢ onechanical system
is defined as the number of generalized coordinates. It has been shawcertain 2-input and 3-
DOF systems with second-order nonholonomic constraints can be tnexesfamto the 3-dimensional
second-order chained form given by

51 =U
Er=up (2.7)
&= &uy.

To our knowledge, so far, no underactuated mechanical systems baweféund that are trans-
formable into a second-order chained form system of dimension higheBthBEherefore, the results
in this thesis will focus on the 3-dimensional second-order chained foontrary to the first-order
chained form system which contained first-order derivatives, thenseorder chained form con-
tains second-order derivatives. The resulting drift vector-figlél, &) = (&1,0,&,,0,&3,0)" makes
the second-order chained form system more difficult to control thanrteofider chained form sys-
tem. Systems that can be transformed into the second-order chained faysteams with a similar
structure, include, but are not limited to, an underactuated planar htaizbree-link serial-drive
PFR manipulator (Arai et al., 1998a) (where Renotes a manipulator with two prismatic and one
unactuated or passive revolute joint), an underactuated planar hatiH#R manipulator with a
spring-coupled third link (Reyhanoglu et al., 1999), an underactudsethphorizontal three-link
serial-drive RRR manipulator (Yoshikawa et al., 2000), an underactuated planar htaizmarallel-
drive RRR manipulator with any two joints unactuated, a manipulator drivemtyeéfector forces
(Luca et al., 1998), a planar rigid body with an unactuated degree efidre (Reyhanoglu et al.,
1998), an underactuated surface vessel (Reyhanoglu et al.,, }9S@plified underactuated under-
water vehicle (Egeland and Berglund, 1994; Rathinam and Murray8)1&&d the planar V/STOL
(vertical/short take-off and landing) aircraft in the absence of grg#ityeke et al., 2002a). Addi-
tional examples are given by a planar rigid body with two thrusters movingfiat orizontal plane
(M’Closkey and Morin, 1998), the planar motion of a rigid body with an inéaegree of freedom
(McClamroch et al., 1998) and a hovercraft type vehicle (Tanaka &C4Q). It should be noted that
all the transformations involved in these examples allow one to map an arbigpaitjpgum point to
the origin of the second-order chained form. Thereby, the stabilizatiarbifary configurations can
be reduced to the stabilization of the origin of the second-order chaimned fo

In fact, there may be other systems that can be transformed into the semrathained form, or
into a system that has a similar structure. For example, in (Reyhanoglu €198),the underactuated
surface vessel with two independent thrusters was shown to be fdeelipaivalent to the second-order
chained form, up to an additional terie.,

Z1=V1

3= +C)/ M2z — 23),

whereg, is a positive constant representing the hydro-dynamic damping coeffasidm s the mass
of the vessel. In (Egeland and Berglund, 1994) an idealized undatadtunderwater vehicle was
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shown to be transformable into the system given by

21 = Uz
Zh=U Z4=U3
Z=2U Zs=2u;

Zs = Ug.

(2.9)

This system consists of two interconnected second-order chainedsf@tems in conjunction with
the dynamicgg = ug.

2.2 The feedback stabilization problem

Consider the general second-order chained form (2.7), w8 variables, in state-space form:

X1 =X Xo=uUg
X3 =X4 Xa=Up (2.10)
X5 =Xe Xo=XaU1

wherexgi_1 = &, Xoi = E. i = 1,2,3. Define the state vector by= [xl,...,xe]T. The feedback
stabilization problem can be formulated as follows.

Problem 2.2.1 (Point stabilization problem). Design appropriate continuous or discontinuous time-
varying state feedback controllers of the form

up = ug(t, ), Uy = Up(t, X) (2.12)
such that the equilibriumm = 0 of the closed-loop system (2.10,2.11) is globally asymptotically stable.

In (Brockett, 1983) a necessary condition for stabilizability by continutus-invariant feed-
back was presented. It is often referred to as Brockett's conditiomvast shown to hold fof*
time-invariant state feedback, and shown to also hold for continuous tiraednt state feedback by
(Zabczyk, 1989). It can be formulated as follows

Theorem 2.2.1. Assume that there exists a continuous time-invariant state feedbaBR 4 R™,
that renders the origin ok = f(x,u), with xe R" and ue R™, asymptotically stable. Then the
function f: R" x R™ — R" is locally surjective, i.e., the function f maps an arbitrary neighborhood
of (0,0) € R" x R™ onto a neighborhood d¥in R".

Since the image of the mappir(g,u) — f(X,u) = (X4, Xs, X, U1, U2,X2U1) Of the second-order
chained form does not contain any pofft0,0,0,0, ) for € # 0, the system does not satisfy Brock-
ett’s condition. Therefore, the system can not be asymptotically stabilizecbbinuous time-
invariant feedback. In fact, it can not even be stabilized by discontimdione-invariant feedback
when the Filippov solutions of the closed-loop system are consideredri@nd Rosier, 1994).

To our knowledge the asymptotic feedback stabilization problem for thendemaler chained
form system (2.7) has not been solved yet. The second-order difaime system is a generalization
of the drift-less chained form (Murray and Sastry, 1993), in the sémseit does contain a drift
vector field. The stabilization problem for the drift-less chained form sydias received a lot of
attention in control literature, however, the stabilization problem for thergkooder chained form
system has received less attention. In fact, it is well-known that the ezestafra drift-term makes
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the stabilization of the second-order chained form more difficult. Nevedbeseveral results for the
stabilization of the second-order chained form have been obtaineld,asuthe references (Astolfi,
1996), (Laiou and Astolfi, 1999) and (Imura et al., 1996) in which difooous controllers were
presented that achieve exponential convergence towards the origivevidr, due to the fact that
these controllers are discontinuous at the origin they are no feedbaidkzsta as they do not achieve
stability of the origin in a Lyapunov sense. In the reference (Laiou aridIffs1999) this result was
extended to obtain a weakened Lyapunov stability result called quasi-sexqmthential stability.

To our knowledge, one of the few feedback stabilizers was given irdéBen and Egeland, 1993).
It consists of a hybrid feedback controller thét-exponentially stabilizes the three-dimensional (n=3)
second-order chained form. However, the closed-loop system idatwesn a Lyapunov sense. It
is not yet clear whether the second-order chained form system cstaltibzed by means of smooth
time-varying feedback. It is, however, clear that exponential stabiliti@brigin can not be achieved
by smooth feedback, since the linearization around any equilibrium point@trollable. In this the-
sis, it is investigated whether the second-order chained form systebegaaxponentially stabilized
by continuous periodic time-varying feedback. The notiopafxponentially is weaker than expo-
nential stability and stronger than asymptotic stability in the sense that a systeexponentially if
it is asymptotically stable with exponential convergence.

2.3 The tracking control problem

Consider the second-order chained form (2.10). Suppose that wethesystem to follow a pre-
defined realizable trajectory, i.e. we want the state [xl,...,xa]T to follow a prescribed pathy =
[X1d, ...,xad]T. This reference trajectoryy thus satisfies

X1d = Xod  Xod = Uid
Xad = Xad Xad = Upqg (2.12)

Xsd = X6d Xed = XadUid
The tracking-erroke = | Xie, Xze, - - -, X6e ]T is given by
Xie =X —Xig, 1=1,2,...,6. (2.13)
The tracking-error dynamics in state-space form are derived frob®,212) and are given by

Xie = Xge Xge = U1 —Uiqg
X3e = Xde X4e = Uz — Uxqg (2.14)
Xse = Xge Xee = X3eU1d + X3(U1 — U1q)

Problem 2.3.1 State feedback tracking control problerithe tracking control problem is solvable if
we can design appropriate continuous or discontinuous time-varying seatbdck controllers of the
form

Up = Uy(t,Xe,Ug), Uz = Up(t, Xe,Ug) (2.15)
such that the closed-loop system (2.14,2.15) is globally uniformly asymptotitalbye. The vector

_ . . . . . — . k
Ug containsug = [uig, Uzg] @and higher order derivatives up to some orklgre ug = [ug, Ug, - - .,ufj )].

In this thesis, it will be investigated whether the tracking-error dynamicheasymptotically or
even exponentially stabilized. It follows that for smooth feedback tragkidditional constraints on
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the desired trajectory are required (Jiang and Nijmeijer, 1999). In Keef@000) cascade type con-
trollers have successfully been applied to solve the trajectory trackitmgondfor an underactuated
surface vessel. However, this result was not based on a transfonnrabadhe second-order chained
form. There are very few results that have addressed the trackibgprdor the second-order chained
form. One of these results is given in (Kobayashi, 1999), where amtiscmus and flatness-based
tracking controller could be derived for a class of trajectories of therskorder chained-form sys-
tem. In (Walsh et al., 1994) a result for tracking of first-order nonhaoic systems has been given
that may be extended to second-order nonholonomic systems. It corfdistsanizing the chained
form system around the reference trajectory and designing a linear &g feedback that stabi-
lizes the resulting linear time-varying system. The reference trajectornjdsbeuchosen such that
the resulting time-varying system is uniformly completely controllable (Rugh61&@er intervals of
lengthd. This approach means that one should also face the problem of findisipleetrajectories.
Moreover, the controller depends explicitly on the trajectory to be trackedishould be re-computed
for different trajectories.

2.4 Robustness considerations

Consider the perturbed system
x= f(t,x)+9(t,x) (2.16)

The unknown perturbation tergy(t,x) can result from modeling errors, wear/aging, parameter un-
certainties, and disturbances. The system (3.13) can be thought qfeaiebation of the nominal
system

x = f(t,x), (2.17)

where f (t,Xx) represents either the closed-loop system (2.10,2.11) in the case of dbad&estabi-
lization problem or the closed-loop tracking-error dynamics (2.14,2.15)drc#ise of the tracking
control problem. The perturbation to the system may result from unmodeltemhtcs and param-
eter uncertainties. We can distinguish between vanishing perturbateng(t,0) =0Vt > to, and
non-vanishing perturbationge., 3t > to : g(t,0) # 0. Suppose that the nominal system (3.14) has
a uniformly exponentially stable equilibrium at the origin. If the perturbati@nx) is vanishing at
the origin, the poink = 0 is also an equilibrium of the perturbed system. In that case, we would
like to know whether the perturbed system (3.13) remains exponentially s@blthe other hand, if
the perturbation is non-vanishing, the origie= 0 may not be an equilibrium point of the perturbed
system (3.13). It is then no longer possible to investigate the stability propeftide origin as an
equilibrium point, nor should one expect the solution of the perturbedmyst@pproach the origin
ast — . The best we can hope for is that if the perturbatifinx) is small in some sense, then the
solutionx(t) approaches the origin for sufficiently large In the ideal case, the statét) remains
bounded while the bound depends on the magnitude of the perturlpétiain

2.5 Summary

In this section we formulated the tracking control and the feedback stabilizatmblems. In the
tracking control problem the system should follow a pre-defined arizabte reference trajectory.
In the feedback stabilization problem the system should be stabilized to meaytalibrium point. In
general, the tracking problem for underactuated mechanical systemsthra@seived much attention,
but most researches focused on the feedback stabilization problemrtiNgess, the tracking problem



2.5 Summary 23

is more important, because, in general, one not only wants the system to nvarelsa certain
equilibrium point, but one also wants the system to move along a specifiedgativell-known that
the feedback stabilization problem can not be solved by any continuousnvamgant feedback. The
tracking control problem, however, can be solved by smooth feedblhehk additional constraints are
imposed on the trajectory to be tracked. In Chapter 4 some methodologies tionmtanning of
nonholonomic mechanical systems will be presented.
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Chapter 3

Preliminaries

This chapter starts with recalling some basic definitions and results that wilidzbtbroughout this
thesis. First some fundamental definitions are given and the conceptaguthov stability is in-
troduced. Most of the definitions can be found in (Khalil, 1996). Also soofeistness results are
presented for the stability of perturbed systems. In addition, a resulsyon@totic stability of time-
varying cascaded systems is presented. This result was given imérefieal., 2000) and will be used
in conjunction with a backstepping approach to solve the tracking contsblgm. Finally, the theory
of homogeneous systems, used to solve the feedback stabilization probietnodsced.

3.1 Mathematical preliminaries
The class ofn times continuously differentiable functions will be denoted4Yy and the class of
smooth function bys™>.

Definition 3.1.1. A continuous functiorr : [0,a) — [0, ) is said to belong to clas¥” (i.e.,a € %)
if it is strictly increasing and(0) = 0. It is said to belong to clas#. (a € ) if a= c and
a(r) — o asr — oo,

Definition 3.1.2. A continuous functiorB : [0,a) x [0,00) — [0, ) is said to belong to clas¥#” ¥
(B € & .2) if, for each fixeds, the mapping3(r,s) belongs to class?” with respect ta and, for each
r, the mapping3(r,s) is decreasing with respect $andf(r,s) — 0 ass — .

Definition 3.1.3. An open ball of radiug around a poinky will be denoted byB; (o), i.€.,
Br (%) = {x € R"[[[x—xo|| <r}
If Xo = 0 then the open ball is denoted By.

3.2 Lyapunov stability

Consider a non-autonomous system described by
x = f(t,x) (3.2)

wheref : R, x D — R" is piecewise continuous dR,. x D and locally Lipschitz inx on R, x D,
andD c R" is a domain that contains the origin= 0. Assume that the origin= 0 is an equilibrium
point of the systemi,e., f(t,0) = 0, Vt > 0. The assumption thdt(t, x) is piecewise continuous in
allows one to include the case in whi¢kit,x) depends on a time-varying input that may experience
step changes in time. In that case, the solutighjsof (3.1) are piecewise continuously differentiable.
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Definition 3.2.1. The equilibriumx = 0 of (3.1) is said to be

¢ (locally) stableif a constant > 0 exists such that for alh € R, a class#” functiona (-) exists
such that
XN < a(lix(to)l]), vt =to,¥X(to) € Br;

¢ (locally) asymptotically stableif a constant > 0 exists such that for alh € R, a class# ¥
function (-, -) exists such that

IXO < B(Ixto)[l,t—to), Yt =10,X(to) € Br;

o (locally) exponentially stableif it is locally asymptotically stable and a constant O exists
such that for alty € R, there exists constanks > 0 andy > 0 such that

IX(t)]l < Kx(to) [ exp(—y(t —to)), ¥t =1to,VX(to) € Br;

If the above definitions are valid for any initial statélg) € D, then the equilibriunx = 0 of
(3.1) is said to be globally stable, globally asymptotically stable and globally expiatly stable,
respectively.

In the above definitions the solutions of the non-autonomous system magydiepéotht and
to. Therefore, the stability behavior of the equilibrium point 0, in general, may depend on the
initial time tp. In fact, the constants K, y, the class’#” functiona(-) and the class?.¥ function
B(-,-) may be dependent on the initial timke Of course, the fact that such constants and functions
exist for everyty, does not guarantee that there exists one pair of constants and fgnsticim that
the conditions are fulfilled. In order to distinguish between the dependendye initial timetp, we
introduce the notion of uniformity.

Definition 3.2.2. The equilibriumx = 0 of (3.1) is said to be

e (locally) uniformly stable if a constant > 0 and a class?” functiona(-) exists, both inde-
pendent ortp, such that

Xl < a(lxt)ll),  Vt=>to,X(to) € Br;

¢ (locally) uniformly asymptotically stable if a constant > 0 and a class?".¢ function3(-,-)
exists, both independent dg) such that

IXO < B(xto)[l,t—to), Yt =10, X(to) € Br;

¢ (locally) uniformly exponentially stable if it is locally asymptotically stable and a constant
r > 0 and constant& > 0 andy > 0 such that

X[ < KlIx(to) [lexp(—y(t —to)),  Vt >to,VX(to) € By;

If the above definitions are valid for any initial stad¢y) € D, then the equilibriunx=0 of (3.1) is
said to be globally uniformly stable, globally uniformly asymptotically stable andaiiplbiniformly
exponentially stable, respectively. Unfortunately, uniform exponestability can not always be
achieved. A notion that is stronger than global uniform asymptotic stabilityvbaker than uniform
exponential stability is# -exponential stability as defined in (Sgrdalen and Egeland, 1995).
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Definition 3.2.3. (Sgrdalen and Egeland 1995, Definition 2) The equilibriusa 0 of (3.1) is said
to be globally.# -exponentially stableif a class.#” functionk : R — R and a constant > 0 exists
such that for allto, X(tp)) € R4 x R" it holds that

X < k([Ix(to) || exp(—y(t —to)), ~ Vt=1to>0. (3.2)

In some cases, stability in the sense of Lyapunov, as shown aboveptée achieved. This
commonly arises when discontinuous controllers are used to control ttarsy8y using discon-
tinuous control, it may be possible to achieve exponential convergeneedswhe origin. However,
these discontinuous controllers only guarantee exponential coneergenall initial conditions in
an open and dense d@tC D of the state space. Most commonly, see for example (Astolfi, 1996),
the closed-loop system exponentially converges towards the origin fimitadl conditions in the set
Q = {x € D|x1 # 0}, and is not defined or may grow unbounded outside th@set

Definition 3.2.4. The system (3.1) is said tonverge exponentially towards< = O if there exists an
open and dense s@tC D and a constant > 0 such that for alltp, X(tg)) € R4 x Q it holds that

IXO] < [[x(to) [ exp(=¥(t —t0)),  Vt>1to>0. (3.3)

The notions of uniform asymptotic and uniform exponential stability can beaderized in terms
of the existence of a so-called Lyapunov function. This is stated in the fiigptheorem.

Theorem 3.2.1.(Khalil 1996, Theorem 3.8) Letx 0 be an equilibrium point fo3.1)and EC D C
R" be a domain containing ¥ 0. If V : R, x E — R is a continuously differentiable function such
that

WA (X) < V(t,X) <Wh(x)

V(t,x) AV(t,x) (3.4)
ot + X f(t,x) < —W5(X)

V't >tp, Vx € E and where \W(X), Wo(X) and W(x) are continuous positive definite functions on E.
Then x= 0is locally uniformly asymptotically stable. Moreover, if

Wi(X) > X%, Wa(x) < ca||X]|® Wh(x) > csl[X||% (3.5)

for some positive constantg,c;,,cs and ¢, then x= 0 is locally uniformly exponentially stable.

A functionV (t, x) satisfying conditions (3.4) is said to be a Lyapunov function for the sys3ehj. (
Suppose that all conditions hold globallg.,V x € D, then the equilibriunx = 0 is globally uniformly
asymptotically stable. If additionally (3.5) holds, thgn= 0 is globally uniformly exponentially
stable. Similar to autonomous systems, (uniform) exponential stability of the lirag#&in of a non-
autonomous system is a necessary and sufficient condition for lodtdrfuhexponential stability of
the origin.

Theorem 3.2.2. (Khalil 1996, Theorem 3.13) Suppose thatx0 is an equilibrium point for the
nonlinear system

x= f(t,x),
where f: R, x D — R" is continuously differentiable, B {x € R"|||x|| < r}, and the Jacobian matrix
[0f/0x] is bounded and Lipschitz on D, uniformly int. Let

ot

A = (X
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Then the origin is a locally exponentially stable equilibrium point for the nonlirsyatem if and only
if it is an exponentially stable equilibrium point for the linear system

x=A(t)x.

3.3 Converse theorems

We start by stating some converse theorems that prove the existenceitatdesiyapunov function
when the system is (locally) uniformly asymptotically or (locally) uniformly exgatially stable,
respectively. These converse theorems will be used to prove stabilitye afafitrolled systems in
Chapter 5.

Theorem 3.3.1.(Khalil 1996, Theorem 3.143uppose x 0 is an equilibrium point of the nonlinear
systenx = f(t,x), where f: R, x D — R" is continuously differentiable, B {x € R"|||x| < r}, and
the Jacobian matriXd f /0x] is bounded on D, uniformly in t. Let lg,and o be positive constants
with ro < r/k and Oy = {x € R"|||x|| < ro}. Assume that the trajectories of the system satisfy

XM < B(lIX(to)[l.t —to), ¥ X(to) € Do, ¥t >to.
Then there exists &@* function V: R, x Dy — R that satisfies the inequalities

o ai(X) V(X < ax(|X]),

. Vit < —as(x)) 36
. A A O)

for allt > tg and all xe D and whereay(-),az(-),a3(-) andas(-) are class#” functions defined on
[0,ro]. Moreover, if r= o and the origin is globally exponentially stable, thefit)x) is defined on
R, x R" and the above inequalities are valid for alkxR".

If the system is uniformly exponentially stable, the existence of a Lyapunustibn is given by
the following theorem.

Theorem 3.3.2.(Khalil 1996, Theorem 3.12) Suppose-X0 is an equilibrium point of the nonlinear
systemkx = f(t,x), where f: R, x D — R" is continuously differentiable, B {x € R"|||x|| < r}, and
the Jacobian matriXd f /dx] is bounded on D, uniformly in t. Let l,and rp be positive constants
with ro < r/k and Dy = {x € R"|||x|| < ro}. Assume that the trajectories of the system satisfy

IX(®)[| < K|x(to) || exp(—y(t —to)), V¥ X(to) € Do,Vt =1y >0.
Then there exists @ function V: R, x Dg — R that satisfies the inequalities

o alXP<V(tx) < clix|?

R V(t,x) < —cslx% (3.7)
oV (t,x
. 180 < el

forallt > tp and all xe D and where ¢, ¢y, c3 and ¢ are some positive constants. Moreover, # po
and the origin is globally exponentially stable, theft\X) is defined orfR" and the above inequalities
are defined orR".
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3.4 Linear time-varying systems
Consider the linear time-varying system given by
x=A(t)x (3.8)

with x € R" andA(t) continuous for alt > to. From linear system theory (Rugh, 1996), the solution
of the system (3.8) is given by(t) = @(t,to)x(to), where@(t,to) is the state transition matrix of (3.8).
For linear time-varying systems, in general, uniform asymptotic stability carb@atharacterized
by the location of the eigenvalues of the mat#it). In fact, for a linear system to be uniformly
asymptotically stable, the following should hold for sokte 0 andy > 0

o(t,to)]| < kexp(—y(t—to)),  Vt>to>0. (3.9)

This shows that for linear systems uniform asymptotic stability (GUAS) andumifexponential
stability (GUES) are equivalent. Similar to non-autonomous systems, unifgponential stability
can be characterized in terms of the existence of a Lyapunov funétior). The following converse
theorem states that when the origin is uniformly exponentially stable, thets axigapunov function
for the system.

Theorem 3.4.1.(Khalil 1996, Theorem 7.4) Suppose that the equilibriusa®of the systen3.8)is
uniformly exponentially stable. Let(Q be a continuous, bounded, positive definite, symmetric matrix
Q(t), i.e.,,0 < gsl <Q(t) <aal,Vt>tg. Then there exists a continuously differentiable, bounded,
positive definite, symmetric matrixXt}, i.e.,0 < c1l < P(t) < col,Vt > to, such that

P(t) +P(t)A(t) +A(t)TP(t) = —Q(t) (3.10)
Therefore \(t,x) = X" P(t)x is a Lyapunov function for the system as it satisfiésx) = —x Q(t)x.

Remark 3.4.1. When the transition matrig(t,to) of the linear system is known, it can be shown that
the matrix given by

P(t) = / 0" (1,)Q(T) (T, t)dr (3.11)

is a solution of (3.10), see Theorem 3.10 in (Khalil, 1996). When the maifix is uniformly
boundedi.e., ||A(t)|| < L,Vt > to, then the matriP(t) satisfies all conditions (3.5) (3.7) with

2 2
_ W - % C3 = O3, C1= % (3.12)

C1_2La 2 — 2y7 y

with gz andgs arbitrary positive constants satisfyimgl < Q(t) < qul. The constant& andy are
given by (3.9).

3.5 Perturbation theory

Consider the perturbed system
x= f(t,x)+9(t,x) (3.13)

wheref : Ry x D — R"andg: R, x D — R" are piecewise continuous tnand locally Lipschitz
in xon R, x D andD c R" is a domain that contains the origin= 0. Moreover, assume that
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f : Ry x D — R"is continuously differentiable, and the Jacobjiaf/dx| is bounded o, uniformly
int. The system (3.13) can be thought of as a perturbation of the nomiriahsys

%= f(t,X). (3.14)

Suppose that the nominal system (3.14) has a uniformly exponentially stphli@eum at the origin,
then we would like to know what the stability behavior of the perturbed sysBeh3)is. Since the
equilibriumx = 0 is an exponentially stable equilibrium point of the nominal system, Theorei@ 3.3
states that a Lyapunov function exists for the nominal system. A commonlyapgedach to inves-
tigate the stability behavior of the perturbed system is to use a Lyapunotidnrmmandidate for the
perturbed system. Then one distinguishes between vanishing pertushagorgt,0) =0Vt > to,
and non-vanishing perturbations.,3t >ty : g(t,0) # 0.

3.5.1 Vanishing perturbations

If the perturbation term is vanishing at the origin, the origis: O is still a equilibrium point of the
perturbed system. In the case tlkat 0 is a uniformly exponentially stable equilibrium point of the
nominal system, Theorem 3.3.2 guarantees the existence of a Lyagunay for the nominal sys-
tem. By directly calculating the derivative of the Lyapunov function alorigtems of the perturbed
system, we obtain the following result that can be used to investigate the staloiigrpes of the
perturbed system.

Theorem 3.5.1. (Khalil 1996, Lemma 5.1) Suppose that0 is an uniformly exponentially stable
equilibrium of the nominal syste(B8.14) Let V(t,x) be a Lyapunov function of the nominal system
that satisfieg3.7) in R x D. Suppose that the perturbation ternit ) satisfies a linear growth
bound

gt )l < ilx|,  Vt>to,¥xeD. (3.15)

Then the origin is a uniformly exponentially stable equilibrium point of the pbedrsysten3.13)if

y<—. (3.16)
Moreover, if all assumptions hold globally, then the origin is globally exptiaély stable.

This theorem shows that uniform exponential stability of the origin is robiibtrespect to a class
of perturbation that satisfy a linear growth condition (3.15)-(3.16). Ifadunov functiorV (t,x) is
known explicitly, then the bound (3.16) can be calculated. If a LyapuneetfonV (t,X) is not
known explicitly, then the robustness conclusion becomes a qualitative loaewne says that the
origin is uniformly exponentially stable for all perturbation satisfying (3.18hwufficiently small
y. It should be noted that the bound (3.15) could be conservative forem gerturbatiorg(t,x).
This conservatism results from the worst-case analysis performed imé#tgses of the derivative
of the Lyapunov function for the nominal system along solutions of the gmxtlisystem. If the
bound is required for aff(t, x) satisfying (3.15), including dynamic mappings, then this bound is not
conservative.

3.5.2 Non-vanishing perturbations

If the perturbation is non-vanishing at the origin, the origia 0 may not be an equilibrium point of
the perturbed system (3.13) anymore. Itis then no longer possible tdigateghe stability properties
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of the origin as an equilibrium point, nor should one expect the solution gbeneirbed system to
approach the origin as— «. The best we can hope for is that if the perturbatignx) is small

in some sense, then the solutix() becomes ultimately bounded by a small bound; in other words,
Ix(t)|| becomes small for sufficiently large

Definition 3.5.1. The solutions ofx = f(t,x) are said to be uniformly ultimately bounded if there
exist positive constants andc, and for everya € (0,c) there exists a positive constaht= T (a)
such that

IX(to)|| < o = [Ix(t)|| <b,  Vt>to+T,Vto>D0. (3.17)

The solutions of the system are said to be globally uniformly ultimately bound@dlif) holds for
arbitrary largea.

Uniform ultimate boundedness of the solutions is usually referred to atiqadastability. The
constant in (3.17) is known as the ultimate bound. If the equilibritra: O of the nominal system
is uniformly exponentially stable, the analysis of the perturbed system caerff@med with the
following theorem.

Theorem 3.5.2. (Khalil 1996, Lemma 5.2) Suppose thatx0 is a uniformly exponentially stable
equilibrium point of the nominal systeB.14) Let V(t,x) be a Lyapunov function that satisfigx7)
onR, x D, where D= {x € R"|||x|| < r}. Suppose that the perturbation terrft ) satisfies

||g(t,X)H§6<2—j1/§—;6r, Vt>1to,¥x€D (3.18)

for some positive constat < 1. Then for all initial conditions|x(to)|| < ,/C1C2r, the solution Xt)
of the perturbed syste(B.13)satisfies

X[ < Kl[x(to) [ exp(=¥(t —to)), ~ Vio<t<ty,

and
x®)] <b,  Vt>t,

for some finite time;t where

. C2 - (l— 9)C3 o ci0 /G
k_\/c’ Y= 2c, b_c36 c1

Furthermore, we can allow for arbitrary largé by choosing r large enough.

The previous result states that when the nominal system is globally uniformbnentially stable,
the solution of the perturbed system will be uniformly bounded for any umifpbounded perturba-
tion. If the system is only uniformly asymptotically stable, then a bounded ertion could drive
the solutions of the perturbed system to infinity. This explains why uniforpoeential stability is
a desirable property. It should be noted that exponential stability by itsedftisufficient to achieve
the robustness result in Theorem 3.5.2; one needs uniformity. In this thesisll aim for uniform
exponential stability, or K-exponential stability, if possible.
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3.6 Cascaded systems

In (Lefeber et al., 1999, 2000) a result on exponential stability ofadesd systems was given that is
based on (Panteley and Loria, 1998). Consider the cascaded syssteaguilibrium (z1,2,) = (0,0)
given by

=Nt z1)+9(t,z1,2)2,

A 1t z2) +9(t, 21, 2)22 (3.19)

7 = f(t, 2),
wherez; € R", z € R™, fi(t,z) is continuously differentiable ift,z ) and f,(t,2),9(t,z1,2) are
continuous in their arguments and locally Lipschitzzirand (z;,z,) respectively. The total system
(3.19) is a syster; with statez; that is perturbed by the statgof the systenk,, where

Liih=htza) 2=t z), (3.20)

and the perturbation term is given loyt,z;,2,)z,. If X, is asymptotically stablez, tends to zero
and the dynamics af reduces t&;. If ¥ is also asymptotically stable we may investigate whether
this implies asymptotic stability of the cascaded system (3.19). We state the folloggnty from
(Lefeber et al., 2000).

Theorem 3.6.1. (Lefeber et al., 2000) The cascaded sys(8rt9)is globally uniformly asymptoti-
cally stable (GUAS) if the following three assumptions hold:

(1) X1 subsystemThe subsystemy = f1(t,z;) is GUAS and there exists a continuously differen-
tiable function (t,z) : R, x R" — R and positive definite functions(¥¢;) and W(z) such

that
(I) W]_(Zl) < V(t,Z]_) < V\/z(Zl) Yt >1p,V7g € |Rn,
.. O0V(t,zz) 0JV(t,z)
(”) 0t + dZ]_ f]_(t,Z]_) é 07 \V/ H21H Z na (321)
ov
iy |55 |1l < aviea. e
VAl
where{ > 0andn > 0 are constants.
(2) interconnectionThe function @, z;,2,) satisfies
19(t,21,2)|| < Ka(l|2l]) + k2(l|2[D][zl],  VE=to, (3.22)
wherek1, K> : Ry — R, are continuous functions.
(3) X2 subsystemThe subsystey = f,(t,z) is GUAS and satisfies
/HZz(to,thz(to))Hdt <B(z)l), Vto=0, (3.23)
to

where the functiof(-) is a class#” function.
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In (Panteley et al., 1998) the authors claimed that when both subsy&teamsi2, are globally
¢ -exponentially stable, the cascaded system (3.19) is.dlsexponentially stable. To our knowl-
edge, the proof given in (Panteley et al., 1998) is incorrect. The claitrgthbal .7 -exponential
stability, as defined in (Sgrdalen and Egeland, 1995), is equivalent/iioghglobal uniform asymp-
totic stability (GUAS) and local uniform exponential stability (LUES) is not valitherefore, the fact
that both subsystends andX, are. z -exponentially stable does not imply that the cascaded system
(3.19) is alsaz -exponentially stable. It is only valid when both subsystems are globally ranlijo
asymptotically stable (GUAS) and locally uniformly exponentially stable (LUES).

A stronger result for the stability of the cascaded system can be obtaimed lvoth subsystems
are globally exponentially stable. The result, stated in the following lemma, isl logsthe result in
(Panteley et al., 1998) and the proof is a slight modification of the proo¢ithesidapted to the case
when both subsystenls andX, are exponentially stable.

Lemma 3.6.2. If in addition to the assumptions in Theorem 3.6.1 bttand %, are globally expo-
nentially stable, then the cascaded sys{8r9)is globally .7 -exponentially stable.

Proof. Since theX, subsystem is globally exponentially stable, it is also globa#fyexponentially
stable and the bound (3.2) is satisfiedZgt). Therefore it suffices to show the result fa(t). Since
all conditions of Theorem 3.6.1 are satisfied, the system 3.19 is GUAS-ang,, z|" satisfies

1z®)] < B(llzto)[l,t—to), ~ Vt=1to =0,

whereB(-) is a class#.Z function. For all initial conditiong|z(to)| < r, with z= [z,2)]", the
functiong(t,z,2) can be upper-bounded 8g(t,z,2)|| < cg, Wherecy = c4(r) > 0 is a constant.
Consider the subsystem

n="ftz)+9t,z,2)2 (3.24)
By assumption, the systeras= f1(t,z;) andz, = f,(t,z) are globally exponentially stable. Using
converse Lyapunov theoryge., Theorem 3.3.2, there exists Lyapunov functidag,x) andVa(t, x)
such that

: oVi(t,z
alal? <vitz) < wlal, ) <ozl [PUE) cqm) @)
and
. oVr(t,z
Bzl <Valt.22) < Bzl Valtzo) < Bzl |22 < gz (@26

Taking the derivative o¥; (t, x) with respect to (3.24) we obtain

Vi(t,X) < —asl|zil® + aallg(t, 21, 22) ||zl 22| < a3zl + tacg(r) |zl 2]

2 2
as 2, 04Cq(r) 2

< -2z e AN}

<~ Plal+ 22 Lz

2 2
Definedy(r) = a4;:z(r) and consider the candidate Lyapunov function
3

V(t721722) :V1(t,21)—|—FV2(t,22), (327)

wherel” > 0 is a constant which will be defined later. The derivativ¥/ (i z;, z,) along the solutions
of (3.19) satisfies

V(tz1,22) < - 512+ (&(r) ~ B ) || (3.28)
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There is still some choice of freedom for the paramé&ternn order to modify the upper-bound of
(3.28), we seledt as

20q(r
r= 250 50,
2Bs—Ps
with 0 < B3 < 233. Then equation (3.28) becomes
V< —ﬁvl(t 7)) — érVZ(t ) < —W (3.29)
— 2a2 ) 2B2 ) — )
where _
1 . as B3
—min(—, =
y= 5 min( a Bz)

(t,z1,20)
a

, \Y .
Therefore, using the bounj; || < , we obtain

Vo, 210,:220) o it —tg))

a 2 r 2
< %zl J;l Pallzeol” oyt —t0))

< zmax(az, rﬁz)
ai

|| 2(t, to, Z10, Z20)||2 <

|10 exp(—y(t — to)),

wherezg denotes the vecta@ = (210, Z20]. Thus the solutions (t,to, z10, 220) satisfy

1z2(t, %0, Z10, Z20) || < k(r)||Zo exp(—g(t —t)), (3.30)
with the continuous functiok(r) given by
K(r) = \/2ma><(a2(;69(r)32) . (3.31)
1

The bound (3.2) is satisfied and we conclude that the system (3.19) idlgloaexponentially
stable. 0

Remark 3.6.1. Note that a stronger result than Lemma (3.6.2) is not feasible. If both sigvsy
21 and 2, are globally exponentially stable, the cascaded system (3.19) is notsagbeglobally
exponentially stable. A counter example is the system given by,

X1 = —X1 +X1X2

Xz = —Xo.
When both subsystems are globallf-exponentially stable, and not globally exponentially stable,
additional assumptions are needed to conclude glatyaxponential stability of the cascaded system

(3.19). In fact, if both systems are globally -exponentially stable and admit Lyapunov functions
Vi(t,z1) andVa(t, 2) that satisfy (3.21) with quadratic functiod$ = ¢;||z||? , and additionally

oV
HWH < aaflzsl|, as>0,

then the cascaded system (3.19) is also gloh#tlyexponentially stable. This is shown in Proposi-
tion A.1.2 of the appendix.
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3.7 Homogeneous systems

In this section, homogeneous systems will be introduced. It is well-knowiritrteastability analysis
of nonlinear time-varying systems can be quite involved and, in generahyifiged to solve. In these
situations, the theory of homogeneous systems may be used to investigatdilitg ptaperties of
a non-linear time-varying system. We use the elemen8%R x R";R"), the set of continuous
mappings fronR x R" to R", to represent continuous (time-varying) vector field€R¥nWe start by
recalling some definitions and properties related to homogeneous systems.

Given a weight vector = (r1,...,rn) of real parameterg > 0 (i = 1,...,n) and a real number
A >0, the mapping;] : R" — R" defined by

Oy (X) = (A" xq, ..., A"Xy)

is called a dilation of weight. A continuous functiorf : R x R" — R is said to be homogeneous of
degreer with respect to the dilatiod; if

(AN (X)) =ATF(t,)

for every couplgt,x) € R x R".

A homogeneous norm associated with a dilat@jnis a continuous positive-definite function
p : R" — R which is homogeneous of degree one with respedi toFor example, a homogeneous
norm associated with the dilati@j is given by

n 1/p
P ={ Y XP) ,  p>o0.
P J; j
Definition 3.7.1. A (time-varying) vector fieldf : R x R" — R" given by f(t,x) = Y[, fi(t,x)d/9x;,
is said to be homogeneous of degree 0 with respect ta; if, for eachi = 1,...,n, thei-th compo-
nentf; is a homogeneous function of degree r; with respect tad; . More precisely, foi = 1,...,n,

fi(t, 8 (x)) = AT fi(t,x)
forall A > 0 and every couplé,x) € R x R".

Definition 3.7.2. Consider a homogeneous nopmR" — R associated with a dilatiod; . The origin
of the systenx = f(t,x) with f(t,0) = 0, Vt, is said to be locally-exponentially stable (with respect
to a dilationdy ) if there exist strictly positive constanfs K andy such that for anyo € R and any
solutionx(t), with x(tg) = Xo,

pxo) <& = p(X(t)) <Kp(x)et .

Note that (localjp-exponential stability implies (local)y -exponential stability as defined in Sec-
tion 3.2. Let us recall a result that will be used to dedpeexponential stability of the controlled
system.

Proposition 3.7.1. (Pomet and Samson, 1994) &t be a dilation and assume that the vector fields
f,h e CO(R x R";R") are T-periodic in their first argument, f is homogeneous of degres with
respect tad; , and h can be written as a (possibly infinite) sum of homogeneous vettis:; Bf strictly
positive degree, with respect &. If the origin x= 0 is a locally asymptotically stable equilibrium
point for

x= f(t,x)

then
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(i) the origin x= 0is also globallyp-exponentially stable
(i) the origin x= 0 of the ‘perturbed’ system
x = f(t,x) +h(t,x)
is locally p-exponentially stable with respect &.

The previous result states that for homogeneous systems local asymiatoilitysand globalp-
exponential stability are equivalent properties. The following averagisglt for (fast) time-varying
homogeneous systems will be used in the stability analysis of the controlledchsys@&hapter 6.

Proposition 3.7.2. (M’Closkey and Murray, 1993) Consider the system
x= f(t/g,x), (3.32)

with f: R x R" — R" a continuous T -periodic vector field (t + T,x) = f(t,x)) and f(t,0) = 0, Vt.
Assume thaf3.32)is homogeneous of degree zero with respect to a dilaf{¢r) and that the origin
y = 0 of the “averaged system”

.
y=fly. o =yT [y (3:39
0

is a locally asymptotically stable equilibrium point. Then there exists 0 such that, for any €
(0, £0), the origin x= 0 of (3.32)is exponentially stable with respect to the dilatidj(x).

The main result that will be used to progeexponential stability of the controlled system is a
result for cascaded high-gain control of a class of homogeneotessysgiven in (Morin and Samson,
1997). It concerns the classical problem of integrator backsteppingdmogeneous time-varying
systems, and is given by the following proposition:

Proposition 3.7.3. (Morin and Samson, 1997) Consider the following system:
x= f(t,xv(t,x})) (3.34)

with f: R x R" x R — R" a continuous T -periodic function in its first argument,= (xq,. .., Xm),
m< nandv: R x R™ — R a continuous T -periodic function in its first argument, differentiable with
respect to t, of clasg® on R x (R™\ {0}), homogeneous of degree q with respect to the dilation
0} (X).

’ Assume thaf3.34)is homogeneous of degree zero with respect to the dil&j¢r) and that the
origin x = 0 is an asymptotically stable equilibrium point. Then for k positive and large emahe
origin (x= 0,y = 0) is an asymptotically stable equilibrium point of the system

x= f(t,x,y)
y=—k(y—v(t,x")).

Remark 3.7.1. Proposition 3.7.3 can be applied recursively to the asymptotic stabilization of the
system

(3.35)

x = f(t,x,y1)

yi=Yo
(3.36)

yn:U.
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Suppose that the feedbagk = v (t,x!), xt = (X1,...,Xm),m < n, asymptotically stabilizes the-
subsystemij.e., the first equation in (3.36). Then by recursive application of ProposBi@rB3 it
follows that the feedback

u= _kn(yn_anl(taxlaylv---aynfl))a (337)

wherev; = —k;(yi —vi_l(t,xl,yl, ...,¥i1)) fori=2,...,n—1, asymptotically stabilizes the origin.

Remark 3.7.2. Note that if the system (3.36) is homogeneous of degree zero with rdspsame
dilation &}, then Proposition (3.7.1) implies that the closed-loop system (3.36,3.3ji9hslly p-
exponentially stable.

3.8 Summary

In this chapter, some preliminaries were presented that will be used thtoeigequel of this thesis.
We presented some basic definitions of Lyapunov stability in Section 3.2. é3etbid definitions of
asymptotic, exponential angtexponential stability, also a weaker result called exponential conver-
gence was treated. Some references have presented controllechibat &xponential convergence
towards the desired equilibrium point, however, these approached doar@antee asymptotic stabil-
ity in a Lyapunov sense.

Furthermore, in Section 3.3 some converse theorems have been prebeantedn be used to
prove the existence of a suitable Lyapunov function of a system. In Se&#oa similar result was
shown to hold in the case of linear time-varying systems. In Section 3.5 ra@sssproperties of
uniformly exponentially stable systems were presented. It turns out tiiatmrexponential stability
is a desirable property, because it implies that solutions of the perturlséshsyemain uniformly
bounded for any uniformly bounded perturbation. In fact, if the pedtion vanishes at the origin,
specific bounds can be given for which the system remains exponentalg ssee Theorem 3.5.1.

In Section 3.6 we consider cascaded nonlinear systems. It is showmtlet some additional
conditions, the stability of a cascaded system can be completely charatiarizems of the stability
of the two subsystems. This result will be used in Chapter 5 where a solutiba tcacking control
problem is given. In Section 3.7 the theory of homogeneous systems éasribeduced. In this
section an averaging result and a backstepping or high-gain feetdmdkwas presented for the class
of homogeneous systems, and will be used to solve the feedback stabilatimem in Chapter 6.
In the following chapter we will present some methodologies for generatite-t-state trajectories
that can be used in the tracking control problem.
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Chapter 4

Trajectory generation

In recent years, so-called nonholonomic motion planning problems hes®ed increasing interest.
In these nonholonomic motion planning problems one tries to find open looptotitat steer a non-
holonomic system from an initial state to a final state over a given finite time intdtvase open-loop
controls generate a feasible trajectory that connects the initial state anddhstéite. This feasible
trajectory can then be used in a trajectory tracking problem, where orte thasystem to follow this
specified trajectory. To understand why nonholonomic motion planning is maokred, it is useful
to compare it with holonomic motion planning. In holonomic motion planning, an arpitmation,
satisfying some continuity property, in the space of independent geregtaloordinates is possible.
For example, a disk that rolls with slip can perform an arbitrary holonomic motgdransferring the
disk from a motion without slip to a motion with slip. In contrast, in nonholonomic motlanming
the trajectories of the system have to satisfy the nonholonomic constraathatime-instant. This is
the case when the disk is constrained to roll without slip, resulting in a nontwlic constraint that
relates the velocity of the center of mass to the angular velocity of the diskefbine, only motions
are possible that satisfy the nonholonomic constraint. Neverthelesq)diegeon the controllabil-
ity properties of the system, feasible motions do exist that connect an gybititial state and an
arbitrary final state of the nonholonomic system.

A variety of motion planning techniques have been described in (Li anahyGar®93) while
an introduction to motion planning for nonholonomic robots can be found irri@et al., 1994).
The motion planning methodologies can be classified into differential-geometiiciéferential-
algebraic methods, geometric phase (holonomy) methods and control peniaai®n methods, see
(Kolmanovsky and McClamroch, 1995). However, many of these appesaare only applicable to
kinematic models of nonholonomic control systems, such as, for examplelegh®obile robots and
trailer systems. Since systems with second-order nonholonomic consttamtsnly be described by
dynamic models, these techniques can not be applied to second-ortietarmmic systems, consid-
ered in this thesis. In fact, no general theory for planning trajectoriesyltems with second-order
nonholonomic constraints is yet available and most successful appsohatie been tailored to spe-
cific cases. Nevertheless, some of the techniques for motion planningsteinsy with first-order
constraints may also be applicable to motion planning for systems with secdaedeonstraints.

In differential-geometric and differential-algebraic approaches net motioe generated in the
direction of the iterated Lie-brackets of the systems input vectorfiglds=1,...,m. The majority
of these approaches consider only the motion planning problem for kinemadels,i.e., without
drift. The fact that the system satisfies a Lie algebra rank condition (DAR€h guarantees that
any initial state can be steered to an arbitrary final state. These techuilgoeisiclude averaging
techniques, flatness-based approaches and techniques in whideenselse system by using piece-
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wise continuous inputs.
In the geometric phase methods, a special class of nonholonomic corstierinsyare those of the
kinematic Chaplygin type given by

Z=01(y)Y1+02(Y)Y2+ -+ Im(Y)¥Ym
yi=u, i=1...,m

When the base vectgrundergoes a cyclic motion, the resulting change in the fiber veatan be
written as a line integral along the pattof the base vector:

2(t) - 2(0) = f g(y)dy
Y

The value of the line integral is independent of any specific parameterizatithonly depends on the
geometry of the path. Thus for Chaplygin systems the motion planning proleléaces to finding
an appropriate base pagtwhich produces the desired change in the fiber vegtalso referred to as
the geometric phase. For details and references to geometric phase metaodader is referred to
Kolmanovsky and McClamroch (1995).

The most elementary method for motion planning is based on parameterizatienrgdits within
a given finite dimensional set of functions. Suppose that the impuis parameterized by a parameter
a € R*. This parameterization reduces the problem of finding inp(itsin a infinite dimensional
function space, to finding a finite numbee., k of decision variablesr. This simple idea has ap-
peared in many publications and has been very successful in solvingeaavige of nonholonomic
motion planning problems. Because the control parameterization approsuteisie for both kine-
matic and dynamic models, it can also be used to solve motion planning problesystems with
second-order nonholonomic constraints.

As mentioned earlier, no general theory is available for motion planningcohskeorder nonholo-
nomic systems. Some results tackle the motion planning problem in specific Easesxample, in
(Arai et al., 1998b) a numerical motion planner was proposed for aiplentkeractuated 2R manipula-
tor with an unactuated base joint. The case of a planar horizontal uhagisteat three-link manipulator
has been considered in (Arai et al., 1998a). In that referendetoresst motions could be generated
by using a sequence of elementary maneuvars maneuvers consisting of either a pure translation
of the third link or a pure rotation of the third link around its center of pelicussin (Lynch et al.,
1998) a motion planner is developed that can also generate collisiondifes gmongst obstacles. In
(Luca and Oriolo, 2000), the motion planning problem for the planar hot@anderactuated three-
link manipulator has been solved by applying dynamic feedback linearizaftonflatness property
of the system can then be used to generate state-to-state paths, proatidbdgb paths do not cross
singularities of the inverse transformation induced by the flat outputs.wanfura et al., 2000) a
near-optimal motion planning scheme is obtained by formulating the motion planribtem as an
optimal control problem. This optimal control problem is too difficult to solveg@meral, and it is
converted into a bidirectional fixed-domain optimal control problem by usitifferent time-variable.
Then a numerical algorithm, based on the gradient method, is used to solbaltféstional optimal
control problem.

In this chapter, some trajectory generation methods will be presented fee¢bad-order chained
form system (2.10). The goal of these methods is to generate inpatsdu, that steer the states of
system (2.10) from an initial statg to a final state. These inputs together with the corresponding
trajectoryx(t) can be used as a desired trajecterg.(2.12), in the trajectory tracking problem. The
proposed methods consist of a control parameterization approach @dlaned optimal control
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and control parameterization approach. The reader is referred tioo@¥een, 2002) for details on the
proposed methods.

4.1 Problem formulation

The general goal of the motion planning strategies in this chapter is to dexjeetories of motion for
the second-order chained form system that connect two arbitrarilgechpointsA andB. Consider
the second-order chained form system given by

X1 =X Xo=U
X3=X5 X4=Up (4.1)
X5 =X Xe = X3Up,

with state vectok € R® given byx = [X1,X2,...,%s]T. The goal in this chapter is to develop a motion
planner that generates open-loop input functiapd) and ux(t) which drive the statex(t) of the
system from some initial statey to an arbitrary stateg, at some pre-specified tinte= T. This
state-to-state motion planning problem can be formulated as follows

Problem 4.1.1. Given a final imeT > tg and two statega € R® andxg € R, find input functions
uz(t) anduy(t) such that the resulting state trajectacy) satisfiesx(tg) = xa andx(T) = Xg.

An algorithm that generates the input functian$t), ux(t) and the corresponding feasible trajec-
tory x(t), given arbitrary initial and final stateg andxg, respectively, will be referred to as a motion
planner.

4.2 Controllability and stabilizability

In order to be able to generate inputs and corresponding feasible tragedtwt connect an arbitrary
initial and arbitrary final state, the system must satisfy some controllabilityeptypp This section
investigates certain controllability properties of the second-order chédmedsystem. The control-
lability concepts used have been developed in (Nijmeijer and van der StB8€) and (Sussmann,
1987). In fact, by using a Lie algebra approach, lteal accessibilittand small-time local controlla-
bility (STLC) properties will be investigated.
Consider the second-order chained form system written as
X = f(X) +g1(X)us + G2(X) Uz, (4.2)

with x € R® anduz,u, € R and

f(X) = [X2a07X4707X670]T791(X) = [Oa 17 07 07 07X3]T792(X) = [07 07 07 17 07 O]T (43)
The reachable set fromy, given a neighborhood of X, is defined as

RY (%) = |J R (x%0,7)

<T
where the reachable &Y (xo, T) from xo at timeT > 0 is given by

R’ (%0, T) ={x € R® | there exists an admissible input [0, T] — R? such that the evolution of
(4.2) forx(0) = xp satisfiex(t) eV, 0<t <T andx(T) = x}
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Definition 4.2.1. The system (4.2) is locally strongly accessible foanif for any neighborhoo® of
Xo the setRY (xo, T) contains a non-empty open set for ahy> 0 sufficiently small. If this holds for
anyxo € R® then the system is called locally strongly accessible.

Proposition 4.2.1. The systend.2)is locally strongly accessible.
Proof. This claim can be verified by the strong accessibility rank condition. Contiéefollowing

set of repeated Lie braCkéé = {glng’ [f’gl]a [fag2]’ [gla [faQZH’ [fa [g27 [fvglﬂ} given by

(T 0 0 -1 0 0] 0
1 0 0 0 0 0
- 0 0 0 1 0 0
to== ol’l2|’l o |’ o f|’]o]|] o
0 0 X3 0 0 -1
L X3 | _O_ L X4 ] _O_ _l_ _0_

Then din’(spar\{éo)) = 6 for all x € R® and we conclude that the system (4.2) is locally strongly
accessible, see Theorem 3.21 in (Nijmeijer and van der Schaft, 1990). O

The fact that the system is locally strongly accessible means that, givemeaghyborhood/ of
xo € R®, the reachable s&’ (xo, T) from xo at timeT contains a non-empty open set for ahy> 0
sufficiently small. Obviously, this is far from showing controllability of the systé\ stronger result
that states that the reachable B¥txo, T) from xo at time T contains a non-empty open set for all
T > 0 is the following.

Definition 4.2.2. The system (4.2) is small-time locally controllable (STLC) fragif for any neigh-
borhoodV of xg the setRY (xo, T) contains a non-empty open set for ahy- 0. If this holds for any
Xo € R® then the system is called small-time locally controllable.

In (Sussmann, 1987) a sufficient condition was given for small-time lanatallability (STLC)
of nonlinear systems with drift. Consider a systers f(x) + ¥ gi(X)u;, wherex € D C R" and
Ui € R, together with a poinp € D such thatf(p) = 0. LetX = [f,01,...,0m] and denote the set
of all possible iterated Lie brackets involvirfggs, . .., gm by Br(X). Let the degree of a Lie bracket
B € Br(x), denoted by (B), be the sum

5(8) - 5°(8) + 3 51(8)

whered? is the number of times thdtoccurs inB andd', i = 1,2, ..., m, the number of times thaj
occurs inB. A Lie bracketB is said to be “bad” it5°(B) is odd and5*(B), 6%(B),...,5™(B) are even.
The main lines of the sufficient condition for STLC can be formulated as falléwnonlinear system
with drift is STLC if (1) the system is locally accessibi., satisfies the Lie algebra rank condition
and (2) all “bad” brackets can be written as linear combinations of “gbodtkets of lower degree.
The reader is referred to (Sussmann, 1987) for the complete result.

Theorem 4.2.2.(Sussmann 1987, Corollary 7.2) Consider a systemf (x) + ", gi(X)u;, where

xe D andy € R, and a point pe D such that fp) = 0. Assume that the system is locally accessible,
i.e., satisfies the Lie algebra rank condition. If whenever B is a “bad” kedcthere exist brackets
Ci,...,Ccwith 6(Ci) < &(B) such that

3= 3 ac @.4)

forsome @, ...,a € R, then the system is STLC from p.
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Proposition 4.2.3. The second-order chained form systéfR) is small-time locally controllable
from any equilibrium.

Proof. The system is locally strongly accessible, and thus satisfies the Lie algetkaondition
(LARC). Since the highest degree of a bracket is 4 this means that akdisaof order higher than

4 can be written as a linear combination of lower order brackets. The “beatkets of degree
lower than 4 are the brackets|gs, [f,01]] and[g, [f,d2]]. The brackef vanishes at any equilibrium
points and the brackefss, [f,01]] and[gy, [f,02]] are identical zero vectorfields. Therefore the system
satisfies Sussmann'’s sufficient condition, see Theorem 4.2.2, atailipegm. Thus the system (4.2)

is STLC from any equilibrium. O

Since the system is real analytic, the above proposition implies the existepieeefvise analytic
feedback laws (Sussmann, 1979) which asymptotically stabilize the clospdystem to an equilib-
rium point. In (Astolfi, 1996; Laiou and Astolfi, 1999) time-invariant disttonous controllers have
been presented that guarantee exponential convergence towaasildrium point. However, these
controllers do not asymptotically stabilize the equilibrium point in a LyapunogeeThe STLC prop-
erty of the system can be linked to a stabilizability property. In (Coron, 1@@5shown that analytic
systems can be locally stabilized by time-varying feedback. In fact, it is shbat STLC systems
are locally stabilizable in small time by means of almost smooth periodic time-varyeuipéek. In
this thesis, we will focus on the feedback stabilization problem by continperiedic time-varying
feedback.

4.3 Constructive proof of controllability

The STLC property can be used to show local controllability of genenalimear systems, but does
not imply complete controllability of the system. For the specific second-ofdgned form system,
however, complete controllability can be shown by a constructive proeeedwhich inputs and tra-
jectories are generated that steer the system from an initiabgtatgxia, Xoa, - . - ,XeA]T to a desired

final statexg = [X1, X2B, - - - ,x65]T. This constructive procedure shows great resemblance with the con-
structive procedure in (Arai et al., 1998a), where controllability of a@tdhorizontal underactuated
3-DOF manipulator was shown. This underactuated manipulator is equivaléme second-order
chained form by a suitable state and feedback transformation. The waihvarprocedure shown in
this section, will be based on the second-order chained-form.

Consider a partitioning < t; <ty <tz <ts < T of the time intervalto, T], whereT is a finite time
instant at which the final statgy should be reached. First it should be noted that a double integrator
system

yi=Y2, Y2=uU
can be steered from an arbitrary initial statg, yoa| at timeta to an arbitrary statéysg, yog] at time
tg by the inputu given by
U(t) = a(t —tA) +b, ta<t<tg,
LAY+ Yoa Y1B —Y1a
a==6 —
(te—ta)? = (ta—ta)
bogYIB YA XB+2Yon
T (tg—ta)? tg —ta

with suitable coefficienta andb. Note that this is not the only way to steer a double integrator, many
other solutions exist. The constructive procedure that generatesibléetrajectory for the system
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(4.2) connecting the stat@g att =ty andxg att = T generates five trajectory segments. During these
trajectory segments, the states that are not excited by a control inpuhaagecdue to drift of the
system. The trajectory segments of the system (4.2) can be describdidwas:fo

1. to <t < ty: control of (x3,X4). During this segment; = 0 and the states, X2, X5, Xg) are not
excited. The inputi; is used to steer the states,x4) from their initial valuegxza, X4a) atto to
the final valueg1,0) at timet;.

2. t; <t <ty control of (xs,%g). During this segmenti, = 0 and the stateéxs,xs) are un-
changed. The input; is used to steer the states, xg) from their initial valuegxsa + Xga (t1 —
to),Xea) at timet; to (Xsg —Xes(T —12),Xeg) at timet,. Note that during this trajectory segment
the dynamics oks behave as a double integrator simgét) = 1,t; <t < ty.

3. to <t < t3: control of (x3,X4). During this segment; = 0 and the statels«, X2, Xs, Xg) are not
excited. The inputi; is used to steer the stateg, x4) from their initial values(1,0) at time
t =ty to the final valueg0,0) at timet = ts.

4. t3 <t <ty control of (x1,X2). During this segmeni, = 0, X3 = 0 and the states(, X4, X5, Xg)
are not excited. The input; is used to steer the stateg,x,) from their initial values at time
t = t3 to the final valuegxig — Xo(T —t4),X2B) at timet = t,.

5. t4 <t < T: control of (x3,X4). During this segmeni; = 0 and the state&, X, Xs, X) are not
excited. The inputy, is used to steer the statésg, x4) from their initial values(0,0) at time
t = t4 to the final valuegxsg,x4g) at timet =T. Attimet =T the stategx;,X) have drifted
from their initial values at time = t, to their desired valueé«g,Xos) and the stateéxs,Xs)
have drifted from their initial valuessg — xeg(T —t2), Xs8) at timet =t to their desired values

(XsB,X6B)-

This procedure generates input&) and trajectoriex(t) that steer the second-order chained form
system from an arbitrary initial staig to an arbitrary final stateg. The second-order chained form
system is thus controllable. In the following sections we will investigate morkisigated motion
planners.

4.4 The flatness property

In (Fliess et al., 1994) it has been shown that certain nonlinear systemmseceonverted to linear
systems at the cost of extending their dimensionality. For these systemaljesbftat outputsy(t)
can be assigned for which all state variabtés and inputsu(t) can be expressed in terms of the flat
outputs and a finite number of their time-derivatives.

Definition 4.4.1. A systemx'= f(x,u) with statex € R" and inputu € R™ is said to be differentially
flat if there exist outputy € R™ of the formy = y(x,u,0,...,u) such thax = x(y,y,...,y®) and

u= u(y7y7"'7y(k)>'

Since the behavior of the flat system is completely determined by the flat ouiajgstories of
the system can be obtained in terms of the flat outputs and these flat outpthsicéde mapped to the
required inputs. The flatness property is closely related to dynamic feletibaarization in the sense
that the flat outputs define a so-called endogenous transformation gndmid feedback that brings
the system into a linear controllable system that consistsioflependent chains of integrators, with
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m being the number of inputs to the system. A drawback of flathess-based mlationing method-

ologies is the fact that the flat outputs are not given a priori and cdreobmputed systematically.
In fact, it is not even clear which systems are flat and which systems ar#atoAlso, there exists no
test to check whether a system is flat. Moreover, the endogenousoimaasibn induced by the flat
outputs is not always a diffeomorphism, but may contain singularities. Thiasrikat the trajectories
to be planned must avoid these singular points. For example, possibletfiatoior the second-order

chained form system are
_ | _|x
=[n]-1e]

The statex and the inputsl can be expressed in terms of the flat outputs by

Y1

Y1

V2

Y1
yiys) —yasd |

(y1)?
Y2
Y2 i

M AAASIES

Y1
Y, YY) = | (5)250y5" — yoyi™) — 252y — ¥y ¥ gyt

L A

However, these equations are undefinedyipe="0. This restriction has severe consequences for
motion planning using the flatness property. Thus singularities ocgur=a0; which implies that the
input uy (t) is not allowed to be identically zero. Therefore the only way to avoid thespilsirities

in a state-to-state motion planning problem is to use a discontinuous or pieeeamsnuous input
functionuy (t). For this reason, the flatness property will not be considered heredtead we will
use alternative methods that do not suffer from singularities. It shautebted that, in certain cases, it
is possible to avoid the singularities in the flathess-based approach byiosiagcaling. For example

in the case of the car with n-trailers, singularities in the endogenous traratfon have been avoided
by time-scaling with respect to the arc-length of the trajectory of the mobild (fhiess et al., 1995).

4.5 The point to point steering problem

The main objective in this section is to generate input functinris) anduy(t) that steer the state
trajectories of the second-order chained form system from an initial state a final statexg. A
common approach is to parameterize the inputs of the system. This parameteniedtices the
problem of finding two inputs in a infinite dimensional function space to findifigiee number of
decision variables and basis functions.

Consider the second-order chained form systemf (x, Uy, Up), with statex = [x1, Xz, ..., Xs,Xs| ",
given by

f(X,U) = [X2, U1, X4, Uz, Xg, XaU1] . (4.5)

Suppose that the input functiong(t) andu,(t) can be written as a finite sum of basis functions:

q q

up(t) = .Zlalihi (t) =ah(t), ua(t) = ‘ZlaZi hi(t) = axh(t), (4.6)
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whereh(t) is aq dimensional vector of basis functions. For example, the basis functioriseazhosen
such that the inputs; (t) andux(t) are a finite sum of harmonic functiorisg., a Fourier series with
fundamental pulsatiow, by selecting

hit)=[ 1 sinwt) cofwt) ... sin((p—1wt) cog(p—L)wt) |, q=2p-1 (4.7)

This parametrization has reduced the problem of finding two input funatighsandu,(t) to finding
a set of 2 parametersy anda,. Suppose that we want to steer the system from an initial stcde
timet = 0 to a final stateg at timet = T, whereT > 0. In order to be able to find a set of parameters
that solve the motion planning problem, the set of basis functions has to bendcigh. This means
that for the set of basis functions, there should exist paramatexsda, such thaix(T) = xg. This
is however not possible for every combination of a set of basis funcliinsan initial statexa and
a final statexgs. Some necessary regularity conditions will be given for the set of basdibns such
that a solution to the motion planning problem exists.

By integration, it is easily seen that the solution of the open-loop system @).5timet =T
satisfies

[ al my +Xo0T + X410 |
al mp + Xz0
a)my + Xa0T + X30
X(T) = 2 4.8
(T) al mp + x40 (4.8)
al M1a +a] mg + XgoT + Xs0
al Mpap +al my + Xgo |
where
T t T
mlz//h(o)dadt, mz:/h(a)dt,
00 0
T t T
e = / / (0%a0+ Xao)h(0)dadt, my = / (txao+ Xao)h(t)dt (4.9)
00 0
T t oT T t o
M1:// h(a)//hT(s)dsdr doct, Mzz/ h(t)//hT(s)dsdr ot
00 00 0 00

wherexa = [X10, X20, X30, X40, X50, xeo]T represents the initial state. Because the six-dimensionalstate
has to be steered from its initial valygto an arbitrary final valugg = [xlT,XZT,x3T,x4T,x5T,x6T]T, at
least 6 coefficients are needed. Therefore we need at least tlsisdurections and the first regularity
condition isq > 3. Looking at the first four equations of (4.8), it is clear that in ordelafgolution to
exist the 2x q matrix B, given by

m!
By = [ 1 ] , 4.10
] o

should have full row rank. This is the case when the veatarandm, are linearly independent and

clearly the parameterization results in solving a system of nonlinear equafibissset of nonlinear
equations can be solved by using nonlinear optimization techniques. Uplerpaiate conditions,
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these nonlinear equations can be reduced to a linear set of equatidhst €od, consider the equa-
tions (4.8) written in a partially linear form as

{m{ ]— [ Xa1 — X20T —X10 |
T =
m, XoT — X20 |
c - B ]
{ m ]52: XoT — X40T —X30 (4.11)

m, I X4T — X40 |

[ mg }EEJF [ §|1—Mla:2 } _ [ XsT —Xe0T — X50 |
my al Moy XeT — X60

Suppose thaty andmy, are linearly independent. Suppose that we select a solution to the first two
linear equations in (4.11) as

X1T —X20T — X10

& — BI(&BI)*[ ] -

XoT — X
2T Tzo 4.12)
a_:BTBBT1|:X3T_X40 _X30:|+A :a— +A
2 =B (B1B;) e — Xao 1y1 = a0+ Aiy1

where the columns of thg x (q— 2) matrix A; form a basis for the nullspace &, andy; is an
arbitrary(g— 2) x 1 column vector. Then substitution of (4.12) into the last equation of (4.44)Jts
in a linear set of equations given by

alM1A m} azo+ al M1azo _ | X1 —XeoT — X0 (4.13)
al MoAy |2 | milago+al Moa: _ '
10VI2A1 , 10+ a1pM2a20 X6T — X60

This linear set of equations can be solved for all right hand sides d@)(#tien the matrixB, given
by

_ [ ajoMiA

has full row rank. This condition is met if and only if the matriddsandM, are linearly independent,
i.e.,there exists nar € R such thaM; = aM,, and additionallya;g # 0. The latter condition is met

if either o1 — Xo0T — X109 # 0 Or Xo1 — X209 # 0. These inequalities imply that the desired final state
(x17,X%21) €an not be reached by drifte., for u; = 0 andu, = O the initial velocitiesxyo can not be
used do transfer the statesfrom x;p to X371 While xor = X20. In other words, théx;,X2) dynamics
should be excited. Note thato = 0 impliesu; (t) = 0, Vt, while the second-order chained form is not
controllable foru; = 0. A solution to (4.13) is given by

XsT — X601 — X50 — ML 10— & oM1a20

=BJ(B,B}) ! ~ 2
y1=B;(B2B;) [ X6T — X60 — M} 10 — &l ;Maa20

} +Asy2 = Y10+ Aoy (4.15)
where the columns of thg x (q— 2) matrix A, form a basis for the nullspace &, andy, is an
arbitrary(g— 2) x 1 column vector. A class of solutions to the motion planning problem is thus given

by

_ _1| X1 —X20T — X
alzBI(BlBI) l|: 1T 20 10:|

XoT — X20 (4.16)

_ _1| XaT —X40T — X
& = AtAgy> + Aryio+ B (B1B]) 1{ ST 40 30]

Xa1 — X40
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whereyig is given in (4.15). In this section we have also found regularity conditiordeuwhich
there exists a solution, given by (4.16), of the motion planning problem. eTbesditions can be
summarized as follows.

R1 The number of basis functions should be at leage3,q> 3.

R2 The matriceB; andB, should have rank 4,e., the vectoram; andm, as well as the vectors
mg andmy should be linearly independent.

R3 The desired final statgs;1,Xo1) can not be reached by drifte., eitherxyt — X20T — X10 # 0
or Xot — X20 75 0.

In the next section, the set of nonlinear equations (4.11) will be usednuifate a constrained op-
timization problem, and numerical optimization algorithms will be used to solve thdgmobThe
solutions given by (4.16), or randomly computed vectmranday, can then be used as initial condi-
tions to the optimization problem.

4.6 A variational method

In this section calculus of variations will be used to solve the nonlinear segudtions that were
given in the previous section. First we will define a cost crited¢a). For simplicity, we select the
following cost criterion:

T

)
I /u1 Ut /h Tt | & +a3 /h(t)h(t)Tdt EH (4.17)
0 0

The motion planning problem can then be formulated as the following consdraptanization prob-

lem.
minimize  J(a)
ac R™ (4.18)
subjectto  r(@Q) =x(T)—-xg=0

wherea = [a;,ap]" andx(T) is given by
[ a_Imleron + X10
aj M +X20

a3 M1 +X40T + X3

ay Mz + Xa0

al M1a +a] mg + XgoT + Xs0
a] Maaz +a] My + Xgo

In the previous section the motion planning problem could be reduced to ¢héepr of solving a
set of linear equations, at the expense of reducing the parameterizhtitins section, the motion
planning problem is formulated as a constrained optimization problem in whigbettaenetrization
of the inputs is used to find a solution that is optimal with respect to the costianiter.17). The
advantage of formulating the problem as a constrained optimization problemfactithat it can be
solved using optimization algorithms. Of course, we assume that the basi®fsnare chosen such
that a solution exists. At the cost of some computational load, in generad, iiethiods can find local
extrema of the optimization problem.
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The numerical optimization algorithm that will be used is an SQP-type algorithmmdon’,
available through the optimization toolbox ofAViLAB . The ‘fmincon’ algorithm is a Sequential
Quadratic Programming (SQP) method. SQP methods resemble Newton’s mithodsstrained
optimization; at each iteration step the Hessian of a Lagrangian function iexapated by using
a quasi-Newton updating method. This approximation of the Hessian is thdnta$ermulate a
Quadratic-Programming problem that is based on the quadratic approxiratlmnLagrangian and
the linearized constraints. An overview of SQP methods can be found icliEle 1980; Gill et al.,
1981).

4.6.1 The SQP algorithm

Consider the constrained optimization problem given by (4.18). The bggma associated with the
constrained optimization problem is given by

L@EA) =@ +ATr(@

whereA is a 1x 6 column vector of Lagrange multipliers. The Lagrangian allows us to reptece
constrained optimization problem by an unconstrained optimization problesn giv

minimize L(a,A)
ac R™

A necessary condition for an optimal valaés:
Ual(a,A) =0
This condition can be written as the well-known Karush-Kuhn-Tuckeagqgus given by

Ox)(a)+A0ar(a) =0
r@=0
The Karush-Kuhn-Tucker (KKT) equations are necessary condifmmoptimality of the constrained

optimization problem. They are referred to as the first-order conditiongpimality. The sufficient
conditions, also known as the second-order conditions, are given by

(4.19)

yoiL(aA)y' >0,  Vye R"/{0} suchthay' Oz (&,A) =0 (4.20)

where[12L(a,A) denotes the Hessian of the Lagrangian. If the second-order cond#i@® are sat-
isfies, then the poird is a global minimizer of the cost functial{a). If the constrained optimization
problem is convex,e., J[@) andr(a) are convex functions, and the equaliti¢a) = O are linear then
the KKT equations (4.19) are both necessary and sufficient conditions.

In order to find a solution to the KKT equations, the equations (4.19) carabsftrmed into an
easier subproblem that can be solved and used as a basis of an ifgrati®ss. By using a quadratic
approximation of the Lagrangian and by linearizing the constraints, weararufate the following
Quadratic Programming problem

minimize  d"Hd+053(a))"d
de R™ (4.21)
subjectto  (Oar(@)")Td+r(a)=0
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whereHy is a positive definite approximation of the Hessian of the Lagrangigh(a, A) at iteration
k. The HessiarHk can be updated by any of the quasi-Newton methods, although the BFGSdmetho
(Bertsekas, 1995) appears to be the most successful. If the initial sofgtie sufficiently close to
a solution point, then the BFGS method has been shown to lead to super-bmgargence towards
a solution point. The resulting QP problem (4.21) can be solved using argig@Fithm, see for
example (Bertsekas, 1995). The solution is used to form a new iteratian= ax + ad where the
step lengthx is determined by an appropriate line search procedure.

The 'fmincon’ procedure is computationally quite intensive in the sense thay faactions have
to be evaluated at each iteration. Moreover, this SQP method does nahtgeathat a solution is
found; in some cases the method does not converge to a solution. If a sauigis, one has to
change the initial ‘guessy, otherwise one needs to increase the number of basis functions so that
a solution exists. If a solution can be found using the method in Section 4.5 tisesothtion may
be used as a feasible initial ‘guess’. The 'fmincon’ procedure careplaced by more efficient and
robust SQP implementations.

4.7 A sub-optimal method

In the previous section the motion planning problem could be transformed icbosirained opti-
mization problem by parameterizing the inpui$t) andu(t) with respect to a set of basis functions.
In this approach the parameterization parameters act as the decisiotegaat are used to mini-
mize a certain cost criterion. The optimal solution to the constrained optimizatidrepn and the
resulting value of the cost criterion are, however, completely depemudetite parametrization. In
this section, the inputs will not be parameterized but, instead, the motion plgmmuibigm is treated
as an optimal control problem, see (Lewis and Syrmos, 1995).

Consider a system = f(x,u) with f : R" x R™ — R". Again we consider a pre-defined time
T > 0 and consider a cost criterion

T
J(x,u) :/j(x,u)dt
0

wherex = [Xg,Xo,..., X" andu = [ug,up,...,un]’. Then formulate the following optimal control
problem:
minimize  J(x,u)

u
subjectto x° = f(xu)
X0 = Xa
X(T) = Xg,

whereu : R — R™. Associated with this system we consider the Hamiltonian function

where the co-state vectq(t) = [py(t),..., pn(t)]" is given by, to be defined, functions(t), i =
1,2,...,n. The minimum principle states that an optimal solutieyp:(t), Uopt(t), Popt(t)] satisfies

Xopt = f(Xopt, Uopt)
) JoH
Popt = _W(poptaxoptvUOPt) (4.22)

X(0) = xa
X(T) =xg
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and for almost any € [0, T]
H (Popt(t), Xopt(t), Uopt(t)) = MinH (Popt(t), Xopt(t), V), (4.23)

wherev: R — R™. The equations (4.22,4.23) are necessary conditionfx§g(t), Uopt(t)] to be an
optimal solution. In (Lee and Markus, 1967) a set of conditions whichglditen to (4.22,4.23), are
sufficient conditions fofXopt(t), Uopt(t)] to be a locally optimal solution are

A The(n+m) x (n+m) matrix

9%j(x.u) 9%j(x.u)

D— ox2 dxdu (4.24)
02j(x,u)  9%j(x,u)
duox ou?

is positive definite along the trajectopyppt(t), Uopt(t)].

9%f(x,u)  9%f(x,u)  9%f(x,u)

BAl.ongthetrajectory(xopt(t),uopt(t)] either I W e =0or
2i(xu _
ox
Condition (4.23) implies that
oH
55 (Popt(t), Xopt(t), Uopt(t)) = O (4.25)

Condition (4.25) only guarantees that the Hamiltonian is stationary for the opitimat ugpt(t). In
order to guarantee that the inpugty(t) is a global minimizer of the Hamiltonia ( popt(t), Xopt(t), -),
H(p,x,u) should be a convex function with respect to its argumentherefore condition (4.23) is
equivalent to (4.25), wheH (p, x,u) is convex in its argument.
In this thesis, the cost-criterioj(x, u) is selected ag(x,u) = uZ +u3. The Hamiltonian is then
given by
H (X, p,U) = P1Xa + P2X5 + PaXe + Pals + PsUz + PeXUiy + LS + U3

The equations (4.22,4.23) form a boundary value problem in which oséohfind an optimal input
Uopt(t). As the second-order chained form has been shown to be controkabtdytion is known
to exists. SinceH (x, p,u) is convex with respect to its argumemtwe can use equation (4.25) to
eliminateuopt(t) from these equations. Evaluating (4.25) gives

a_HT_ Pa+peXe+2ur | | O
Ju ps + 2up 10

This implies that the optimal input§™ andu3™ are given by

opt opt,opt
WOt _Pa TP %
opt_ P4 TT6 T2

2
ont (4.26)
Gt Ps™
2 2

Since the matrix in (4.24) is given by

O
Il

Os5 Osp
Oz 2I2
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whereOp, denotes an x m matrix with zeros and, denotes an x n identity matrix, it is positive
semi-definite. We conclude that conditiénis not satisfied and a solutiam(t) is not guaranteed

to be a local optimum. Note that if we choofg, u) to be given byj(x,u) = Xq(t)2 +--- + Xg(t)% +
up(t)2 + up(t)?, then condition A is satisfied, but condition B isn't. In order to check whethe
solutionugpt(t) is a local optimum, it is necessary to check a higher-order condition. kere;ll be
satisfied with finding one of these candidate solutides,we want to generate a candidate trajectory
[Xopt(t), Uopt(t)] that may or may not be a local optimum. This can be motivated by the fact that we
just want to find a trajectory that connects the stajeandxg and we do not care if the candidate
trajectory minimizes the cost function. Substituting (4.26) into the equations)@r2Rdefining the

3) Xopt

we obtain the system, with boundary conditions, given by
$=Db(s), (0) =xa, S(T)=1xs (4.27)

where
0

(S4+5658)S6/2

b(s) = —8 (4.28)

S12
— (4 +S6%8)%6/2
—5/2
| (4 +6%8)s6/2 |

If we can find a solution to the system (4.27), then a candidate optimal so[u{doh uc(t)] has been
found. This solution provides a trajectopy(t), uc(t)] from the initial statexa to the final stateg.
Finding a solution means solving the boundary value problem (BVP) (4lRig)very hard to solve
equations (4.27) analytically and we propose a numerical method in orded axfiapproximate solu-
tion. The numerical method that will be used to find an approximate solution igrfte Bifferences
Method (Ascher et al., 1988).

4.7.1 The Finite Differences Method
The Finite Differences Method consists of the following three steps (Astled., 1988):

1. Onthe time intervaD <t < T a uniform mesht of N+ 1 points is defined,e.,
mt=A>-1), viel?2,...,N+1

whereA = T /N. The approximate solution &ft) at timet = t; is denoted bys = [s];,];]"-
The approximate solutiosy, = [s[,S],..., Sy 4]" is @ 12x (N -+ 1) matrix.
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2. A set of algebraic equations is formed by replacing the derivative.&v{4y a trapezoidal
approximation scheme:
St1—S _ b(3+1)+b(s-)7 1<i<N
A 2 (4.29)
S,1 = XA, SoN+1=XB

Equations (4.29) constitute of (i + 1) equations.

3. The equations (4.29) can be written in vector notation as

F(sg) =0 (4.30)
where
[ =S b(s+b(s) 7]
A 2
-5  b(ss+b(s1)
A 2
F(sp) = : (4.31)
SN+1 =SSN P(sui1) +b(sn)
A 2
Sh,1 — XA
L SoN+1— XB J

An approximate solution of these equation is sought by using a damped Nalgitithm.
This Newton algorithm is an iterative root finding procedure for the linpar@ximation of the
(nonlinear) equation (4.30). The procedure is as follows:

a. Select an initial solutios?. This choice is a guess because no information about the
solution is available.
b. Find updates of the solution using the damped Newton procedure:

. . i -1 .
Sit=s—y| L& | TF(&y

wherey is the damping factor, which is determined empirically. The iterative solution is
stopped when some convergence criterion is satisfied. For example, #tieéterocedure
can be stopped wheh(s,)TF (s,,) < &, with € a small parameter.

The obtained approximate solutigp, defined on a uniform mestiof N + 1 points, can be interpo-
lated to construcs(t) at every time-instart € [0, T]. The resulting candidate solution is then given
by [Xc(t),uc(t)] = [8][(t), uc(t)] whereug(t) is obtained by substitution &f in (4.26). The term 'can-
didate solution’ implies that there is possibly more than one solution to the bouwalae problem
and the solution may or may not be a local optimum of the optimal control problenaddition,
‘shooting’ techniques may be much more effective in finding these candidhtgon.

4.8 Summary

In this chapter, two methods to solve the motion planning problem were prdsertiese methods
can be used to compute feasible trajectories, connecting two arbitrary, stiiek are optimal in
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some sense. In the variational method, the motion planning problem is formakdonstrained
optimization problem in which the norm of the inputs is minimized. By parameterizininfhes
over a set of basis functions, a numerical optimization algorithm can betosmnpute a feasible
state-trajectory that connects two arbitrary states. If the numerical optinmizajorithm converges,
the solution of the constrained optimization is a local minimizer of the optimization problkhe
variational method can be extended to incorporate obstacle avoidanem alfeasible trajectory
connecting two arbitrary states is to be found amongst obstacles. Ske€Ven, 2002) for details.

In the sub-optimal method, the motion planning problem is formulated as an optinabk
problem in which the norm of the inputs is minimized. The solution to the optimal dgmtoblem
can be found by solving a boundary value problem. Because the hywalae problem is hard to
solve, an approximate solution is sought by using the Finite Differencesddefrhe Finite Differ-
ences Method (FDM) finds an approximate solution to the boundary vabldeon by discretizing
the boundary value problem. The solution of the FDM is sub-optimal in theegbasit is an approx-
imation of the optimal solution. The presented sub-optimal methods may be exteEndeal with
time-optimal control problems in which the end tiffies also optimized. However, the extensions of
both methods to obstacle avoidance and time-optimal control problems fallseotitsidcope of this
thesis and will not be considered here.



Chapter 5

Tracking control

As mentioned in the introduction, only a few results are known that haveessiell the tracking
control problem for the second-order chained form, defined in Se2tidnin (Kobayashi, 1999), a
discontinuous and flatness-based tracking controller has been givarcfass of trajectories of the
extended chained-form system. These trajectories are not allowedstéhpasgh singular points of
the controller. Moreover, the error-dynamics are not stable in a Lyapsaense, but only converge
exponentially to the origin. In (Walsh et al., 1994), linear time-varying cdiet®were given that sta-
bilize the system to a class of trajectories. The trajectories should be chasgethat the time-varying
system, resulting form linearizing the system along the trajectory, is unifororyptetely control-
lable (Rugh, 1996) over intervals of lengéh This approach means that one should also face the
problem of finding feasible trajectories. Moreover, the error-dynaare®nly locally asymptotically
stable.

In this chapter, a linear time-varying controller will be developed that glokaslymptotically
stabilizes the second-order chained form system to a reference trgjéidiese reference trajectories
can not be chosen arbitrarily, but have to satisfy a so-called 'persestefrexcitation’ condition. In
fact, under this persistence of excitation condition, the syste##iiexponentially stabilized towards
the reference trajectory. The control design approach has bebéshmdiin (Aneke et al., 2000, 2003).

5.1 Cascaded backstepping control

In this section we apply a cascade design to stabilize the equilibxiesr0 of the error dynam-
ics (2.14). We start by rewriting the tracking dynamics into a more convefaemtgiven by

X31 = Xa2 Xo1 = X22
JAYR A A .

X32 = Xo1Uid + (Xo1+ &og)(Up — Ugg) Xo2 = Upx—Uyq 5.1)
As { >_<11 = X2

X12 = Ug—Uyg

whereé,q denotes the reference trajectory of the st (2.7). Suppose that the subsystAghas
been stabilized to the origifxi1,x12) = (0,0) by a controlleru; (uig,X11,X12). Then sinceqz =0 it
also holds thati; —u;q = 0. We design the remaining inpu¢ such that the remaining subsystem
(A1,4;) is stabilized foru; — uyg = 0.

Remark 5.1.1. The perturbation or interconnection teuit, z;, )z, of (5.1), as defined in Theo-
rem 3.6.1, is given byxp1 + &»¢)(up — Uyg). The perturbation term thus depends on the, to be de-
signed, feedback; (t,x). When consideringA;,A;) as the perturbed subsystetn andAs as the
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unperturbed subsystem, the resulting perturbation matrg(t, z;, z,) has to be linear with respect to
the variablezy = (X1, X22,X31, X32) in order to satisfy condition (2) in Theorem 3.6.1. This is the case
when choosing the feedbaak = ujg + k(X11, X12) with k: R? — R a linear function iIN(X11, X12).-

5.1.1 Stabilization of the (Aj1,A2) subsystem

Suppose that th&z subsystem has been stabilized by choosing
Uy = Uyg — KiXa1 — KoXa2, ki > 0,k2 >0, (5.2)

where the polynomiap(A) = A2 4 kiA + ko is Hurwitz. The time-varying subsystem with u; —
Uig = 0 can be written as
X31 = X32

) (5.3)
X32 = X21U1d

We aim at designing a stabilizing feedback for the subsystem (5.3). This stabilizing feedback is
designed using a backstepping procedure in wkighis a virtual input. First we need to make some
assumptions on the reference input signal

Assumption 5.1.1. Assume that the functionyq : R, — R is uniformly bounded it and continu-
ously differentiable. Moreover, assume thai(t) is persistently exciting,e.,for all r > 0 and for all
d > 0 there existg; > 0 ande; > 0 such that

t+8
g < / U2 (T)dr < &, vt > 0. (5.4)
t

Consider the first equatio; = X3 of the subsystem (5.3) and assume #aats the virtual input.
A stabilizing functionxs, = a1(x31) for thexz;-subsystem is

2d1+2

az(ugg(t),X31) = —C1Uyg “Xa1,

wherec; > 0 andd; > 0. This choice of the stabilizing functiam (x31) guarantees that thé\,A;)

subsystem can be stabilized by a backstepping procedure in whichisioasbyu;4(t) occur. Define

X32 = X32— 01(X31) = X32+ clufgl+2x31 and consider thgs,-subsystem

i 2d;+2 2d;+1 -
X32 = Xo1U1q + C]_uldl X32+ C1(2d1 4 2) uldl U1gX31-

3)

Suppose that,; is the virtual input and lety denote the vectary = (Uyqg, Usg, - - -, u<10| ). A stabilizing
functionxz; = a2 (Uig,X31,X32) for thexs,-subsystem is then given by
02 (Und, Xa1,X32) = —C1UsG " Xgp — €1(201 + 2) U3 Unaxar — CoUE s 5

20 +2c+3 20 - 2d;+1 20p+1
= — (clczuldl 2+ cy(2d1+2) u1d1u1d> X31 — (cluldl +Couff ) X32,
wherec, > 0, d, > 0 and the relations; = 32 + 125 "x31 has been substituted. Defirg = xa1
andxz; = Xo1 — a2(U1g, X31,X32). The closed-loofxs1, X32) subsystem is given by
= 20142~ | o
X31 = —C1Uyy" " “Xa1+ X32

20,42

h (5.6)
X32 = —Calyy

X32 + X21U14-
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Consider thexz1-subsystem
— d _
Xo1 = Xo2 — [02(U1d, X31,X32)] 5

wherexy, denotes a new virtual input. For clarity of the derivations, the time-devivati o, along
the trajectories of the system is written asid a2 (uig, X31, X32)] @and will not be expanded. We define
a new variablexs = X22 — a3(U1g, X21, X31, X32) Where the stabilizing functionorz(uig, X21, X31, X32) iS
given by

_ _ d _
03(U1g, X1, %31, X32) = —C3X21+ q [02(U1d, X31,X32)] -

Thexz1-subsystem is then given by, = —CaXo1 + X20. Consider thex,-subsystem

- d _ _
Xo2 = (Up — Upq) — o [03(U1d, X21,X31, X32)] -

This subsystem can be stabilized by choosing the inpas

_ d _
Up — Upg = —CaXoo + & [03(U1d, X201, X31, X32) ] (5.7)

_ d _
= —C3C4X21 — (C3+ Ca)X22+ C3C402(Usd, X31,X32) + (C3+ Ca) 0 [02(U1d, X31,X32)])
d? _
+ i [02(U1d, X1, X32)]

The closed-loodA;,A,) subsystem, after the coordinate change defined implicitly in the previous
equations, then becomes

o 20h+25- | o
X31 = —C1Uyy' " “Xa1+X32

= 2y 42 | o
X32 = —CoU 4’ “X32+ X21U14d

— d (5.8)
X21 = —C3X21+X22
X22 = —CaXp2
Under Assumption 5.1.1 we can prove that the closed-loop system given by
v 2d1+2- v
X31=—CU X31+ X32
1 1U14 1 (5.9)

o 20 +2
X32 = —Czuld2

X32

is globally exponentially stable (GES). This is shown in Proposition 5.1.2, plyg the following
lemma and some basic theory for linear time-varying systems (Rugh, 1996)nflirence of the term
X21U1g ON the stability of the system (5.6) will be considered in Section 5.2.

Lemma 5.1.1. Suppose that Assumption 5.1.1 holds, i.e., for all@ there exis® > 0andé&;, &, >0
such that(5.4)is satisfied. Then it holds that for allx 0 and for all {p > 0

t

t—t t—t
Toel—sl < /ui@*z(r)dr < TO£2+£2, Vt>to. (5.10)

o
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Proof. Fort = tp the result is trivial. Suppose that- to. Given anyd < (t —tp), defineN to be the
largest integer smaller than the real numbierto) /9, i.e.

_|t—1 _(t—to)_

Divide the intervaltp,t] into N equal subintervals of lengand a subinterval of length€Q p; < 4.

where 0< y; < d. This division intoN subintervalgto+id,to+ (i +1)9], i =0...N — 1 with length
0 and one intervaltp + N9, t] of lengthy, d yields

t N [ lo+(i+D)s t
/uf&*z(r)dr = % / w2 (t)dr | + / a3 (1)dr. (5.11)
fo =P\ totis to+NJ
The difference between the integral oyigrt] and the integral oveto, to + NJ] satisfies
t
0< / udr3(T)dt < &

to+NS

Substitution of (5.4) into (5.11) then gives

N—1 t N—1
Z) g < /uf&*z(r)dr < ZO &+ &
1= tO =

t

Nep < /uf&*z(r)dr <N&+ &
fo
By substitution oN = (t —tp)d~* — 1y we obtain
t
t—to t—1o
—5 - Hmé < /Uﬂfz(T)dT < —5 feta-wme

to

Since 0< 4 < 1 we finally obtain the desired result (5.10):

t

t—t t—t

Tosl— g < /uﬂ”(r)dr < Toaersz.
to

O

Remark 5.1.2. Equation (5.10) gives upper- and lower-bounds for the integraﬂﬁfz; there exist
two straight lines of the forngy = €1/A (t —to) — €1, Y2 = &2/A (t —tg) + €1, withd € Randg € R, i =
1,2 that upper- and lower-bound the integral. Note that the inequality is o@ise whert —tg < 9,
in the sense that the lower-bound is negative while the integral is alwayts/po

Proposition 5.1.2. Consider the system

2d1+2)?1 + )?2
2d2+2)?2

X1 = —CrUp g(t)
X = —CoUy 4(t)

Suppose that the reference inpyg () satisfies the persistence of excitation condi{dm) for some
r > 0. Suppose thahin(d;, d2) > r holds. Then the equilibrium O is globally exponentially stable
(GES).

(5.12)
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Proof. One can easily verify that the general solution of the linear time-varyingsy£5.12) with
initial conditionx(tg) = [X1(to), X2(to)] is given by

t
%i(t) = % (to) exp( / uiz,’l”(r)dr) +G(t),

to

. (5.13)
%2(t) = %(to) eXIO(Cz / u§§2+2<r>dr> ,
o
where the additional teri@(t) is given as
t t g
G(t) = /)?z(to) exp (cl/uigﬁz( )dr —c /uﬂﬁz( )dr) do (5.14)
to o) fo

We will use Lemma 5.1.1 to prove the exponential stability of the solutken,). By Lemma 5.1.1,
see (5.10), there exists positive constatande,, dependent od; andd, respectively, such that

t
t—t
t-t, £1</ 2d1+2
to
t_
082_£2</ 2d2+2

Therefore the solution (5.13) satisfies

Xu(t)] < [xa(to) [p2exp(—1a(t —to)) +|G(1)],

[X2(t)| < [X2(to) |p2€XP(—Ya(t — o)),

where we defined the coefficients= %, Yo = Co&2 and¢; = exp(—Ci1€1), P2 = exp(—Cz€2). Sim-

0
ilarly, using (5.10) in (5.14) gives

t

IG(t)] < ¢1¢2|%2(to) | €XP(—(Yat — Y5to)) / exp(—(y,—y)o)do,  Vt>to

to

We distinguish two case$i = y» andy, # V.
(1) In the casax = y» the perturbation terr®(t) satisfies

IG(t)] < ¢1¢2[%2(to)|(t —to) eXp(—Ya(t —10)),  Vt>to.

The term(t —tp) exp(—yi(t —to)) can be shown to be upper boundéd,, for an arbitrarily chosen
constant O< y5 < y; it holds that

(t—to)exp(—yi(t—to)) < (exp(—ys(t—to)) —exp(—n(t—to))), Vt>to.



60 Tracking control

This yields
6] < 220N, exp 1 —to)) - expl-at —10))
< 0N o it t0)

The general solutior = (X1, X2) then satisfies the inequality
Xa(t)] < rexp(—ya(t —to)) + {2€xp(—ys(t —to)),
Xa(t)| < dzexp(—yi(t—to)),

where we defined

= bil%alto)l, 22— udo 'VXZ“O;S" 2= bal%a(to).

The equilibriumx = 0 is thus globally uniformly exponentially stable (GUEES,,
(2) In the casas # y» the perturbation terr®(t) satisfies
¢192|x32(to) |

6(t)] < P22 exp(—pa(t o)) ~ exp(— it~ to)) ).

The right-hand term can be shown to be upper bounided,

9102
X[ < K[[x(to) [ exp(—y5(t —to)), H [ V1—

v (exp(—ya(t —to)) —exp(—yi(t —to)))) < (t —to) exp(—min(y1,2)(t —to))  Vt>to,

The perturbation terr®(t) then satisfies
G(t)] < ¢192(%(to)| exp(—y(t —to))(t —to)

wherey = min(y1, y2). The term(t —to) exp(— min(ya, y2) (t —to)) can be upper boundete., for an
arbitrarily chosery; < v, it holds that

(t~to)exp(—min(y)t ~10)) < = (exp(~alt ~to)) (Yt —t0)),  VE=to

The perturbation terr®(t) then satisfies

G| < % (exp(— st —t5)) — exp(—y(t —to)))
< 0] ot —1)

The general solutior = (X1, X2) then satisfies the inequality

X1(t)] < rexp(—yi(t —to)) + {2exp(—ya(t —to)),
X2(t)| < {zexp(—ya(t —to)),
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where we defined =t
(=o1xa(to)|, &= ¢1¢2%, {3 = 2|%2(to) .

The equilibriumx = 0 is thus globally exponentially stablies.,

p d19-
[X@®)[| < KlIx(to) || exp(—=y(t—to)), k= H [ Yy ] H
0 ¢

with y=min{y, y»}, as defined before, ang < y. Concluding, we have shown that the linear time-
varying system is exponentially stable in both the cages y» andy; # y». By definingys = y— ¢,
it can be shown that all solutions of the system satisfy

¥e>0,  [x(t)] <K|x(to)|exp(—(y—€)(t—t), Vt>t,
with y =min(yi, y2) = min(%, C%:Z) for a small numbee > 0 andk given by
$102 exp(—C11 — &
- H[ 5 & ]H B SR an) : lsl =
0 ¢ 0 exp(—C2€2)
This concludes the proof. O

Concluding, Proposition 5.1.2 states that the subsystem (5.12) is GUESe3hiswill be used in
the following section to prove global uniform asymptotic stability of the completgetidoop system.

5.2 Stability of the tracking-error dynamics

In this section we show that the complete tracking dynamics are globally expiaihestable. In the
previous sections we have stabilized the,{,)-subsystem when; = uyq and theAz subsystem in
(5.1). The influence of the termpiui;g was, however, not included. In this section Theorem 3.6.1
will be used to investigate the stability properties of the complete system. THeisestated in the
following proposition.

Proposition 5.2.1. Consider the syste®.1) and the controller w given by
Up = Ugg — Kixa1 — koXqo, p(s) = 2 + kos+ kg is Hurwitz (5.15)

and the controller g given by(5.7). Suppose that the reference inpui () satisfies Assumption 5.1.1.
If the reference trajector§,q(t) and the derivativel4(t) in (2.12)are uniformly bounded in t, then
the closed-loop system is globall -exponentially stable.

Proof. The closed-loop system ((5.1),(5.15),(5.7)), using (5.6) and (5.8\vés dpy

X1 = —Cill e+ Xao

X2 = —CQUEP X3+ XorUid — Ea(kixar + koXao)
Xo1 = —C3¥Xo1 + X2

X202 = —CaX22

X11 = X12

X12 = —KkiX11 — KoX12
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The closed-loop system can be written in the form (3.19) with
fi(t,z) =A(t)zs, Ta(t,20) = Aozp, (5.16)

wherez; = [Xa1,X32] T, 2o = [X21, %22, X11, X12] T and the matricesy (t), A are given by

—C3 1 0 0
2d;+2
—c1u (t) 1 0 -c O 0
Au(t) = 1d A=
1t 0 CoUP% (1) ] ’ 2 o 0 o0 1
0 0 -k -k

The perturbation matrig(t,z;,2) is given by

OOOO]{O 0 0O (5.17)

g(t,zl,zz):—(X21+52d)[0 0 ki ko ug(t) 0 0 O

In order to apply Theorem 3.6.1 and Lemma 3.6.2 we verify the three assusiption

(1) Due to Assumption 5.1.1 and Proposition 5.1.2Fhesubsystem (5.9) is globally exponentially
stable (GES). By converse Lyapunov theoms,, Theorem 3.3.2 in Section 3.3, the existence of
a suitable Lyapunov functiovi(t, z; ) is guaranteed when the matix(t) is uniformly bounded
int. Sincer = 0 and the system is globally exponentially stable, the Lyapunov funetioz; )
is defined orR; x R" and not only orR; x Do with Dy C R" a compact subset of the state-
space. By assumption the reference inpytis uniformly bounded and therefore also the matrix
A1 (1), which gives the desired result.

(2) By assumption the signalsy, U1q and&,g are bounded,e., [ug(t)| < My, [lhg(t)] < M2, and
|€24(t)| < M3 Wt > 0. Therefore we have

l9(t,z1, 22) || < [IKI| (|%22] + [E2a(t)]) + |uaa(t)| < [[K][ (|X21] +M3) + M.

wherek = [kq, ko]. Furthermore, using the stat&s = Xo1 — 02(U1d,X31,X32), X31 = X31 and

X390 = X32+C1U%gl+zx31 from the backstepping procedure in sections 5.1.1 yields

o 2. Ad;+3 2\ o 2d;+1
[X21| = ‘xﬂ— <c1u1d1 —c1(2d1 + 2)u1d1u1d> X31 — (cluldl

+ Czuigﬁl) fsz)
Using the boundedness oy (t) anduq(t) yields the inequality
Xoal < IRl + (%™ + ca(20h + 2MEEMy ) [Kaal + (i 4+ e ME% ) 5
< [1z2]| + (M3 4 cu(201 + 2ME" Mz + M+ coMEE )

Introducing the continuous functioky (||z||) = ||k|| (||z2|| +M3) + M1 and the parametet
given by

k2 = Ik (14 GEME% 34 ¢y (20 + ME Mg + M+ M%)
this finally gives the desired result

19(t,21,22)[| < Ka(l|z2]) + Kzllza ],
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(3) The characteristic polynomial of ti¥ subsystem is given by(s) = (s+c¢1)(s+¢2) p(s) where
p(s) is given in (5.15). Because the polynomj#k) is Hurwitz and the;’s are positive, the,
subsystem is GES. The existence of a clgssunction{ (-) satisfying condition (3.23) follows
directly from the GES of th&, subsystem.

By Theorem 3.6.1 and Lemma 3.6.2 we concludeexponentially stability of the complete closed
loop system. O

Summarizing, we have exponentially stabilized tAg,A;) and Az subsystems separately. We
then concluded by Theorem 3.6.1 and Lemma 3.6.2 that the combined systémeiponentially
stable when the reference inpufy satisfies Assumption 5.1.1 and its derivativg is uniformly
bounded ovet.

5.3 Robustness considerations

In this section we investigate the robustness properties of the closedystgms In the previous
section, we saw that the closed-loop system can be written in cascadg&f@8ynwith a>; subsystem
71 = A1(t)zg and aZp subsystenxy; = Axz. It was also shown that these closed-loop subsystems
>, andX, are uniformly exponentially stable. Uniform exponential stability is a desirpiuperty,
because it implies exponential stability with respect to bounded vanishinglpations and uniformly
bounded solutions with respect to bounded non-vanishing perturbations

In this section we will determine (conservative) bounds on the perturbdtiowhich the closed-
loop system&; andZ, are robust in some sense. This generally means that one has to finduiambayap
function for the system. Because thesubsystem is time-varying and depends on the reference input
uiq(t) and the to be defined parametefsi = 1,2, finding a Lyapunov function is quite difficult.
However, by using Proposition 5.1.2 in conjunction with the converse thedheorem 3.4.1, we can
find these bounds without explicitly calculating the Lyapunov function.

Consider the closed-loop subsyst&m z; = A;(t)z, given by

= 2h+25 | o
X31 = —CqUy g(t)* " *Xa1 + Xa2

Xa2 = —CoU1 (1) %2 2xa,

(5.18)

By Proposition 5.1.2, théxs;, X32) subsystem is exponentially stabiegs., with z; (t) = [Xa1,X32] " it
holds that

[z2(®)[ < [ID][[|z1(to) [| exp(=A (t — o)),

whereA = min(yi, y») — &1 and the matrbD is given by

$1¢
p—| % %]
0 ¢

with € a small parameter. Therefore, see Remark 3.4.1, a Lyapunov functitrefd; subsystem is
given by (3.11)j.e., i(t,z1) = Z] P(t)z with

00

P = [ o7 (t.0@(r.dr (5.19

t
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Along solutions of the&; subsystem the Lyapunov functid(t, z;) satisfies

0 alal?<vitz) < PFjE @ vtz <P G

oM(t,z1) _ D]
2A

o <=l

wherel||A.(t)]| <L, i.e., the parametek is an upper-bound for the norm of the time-varying matrix
A1 (t) that depends on the reference inpyf(t). The closed-loog>,) subsystem is given by

Q

3

2

1 0 0

—Cy 0 0
e (5.20)
0 —-ki —k

o O o

By solving (3.10) forQ(t) = | andP(t) = 0 we obtain the time-invariant Lyapunov functivg(z,) =
Z Pz with

- 1 1 -
= — 0 0
C3 C3(Ca+C3)
1 C3C4 + C% +1 0 0
P=1/2 C3(Cs+C3) C3Ca(Cs+C3)
0 0 k% + k% +ky i
Kiko Ky
0 0 1
L kq kiko

The time-invariant Lyapunov functiow(z,) satisfies

M) Ain(P)z)]? < Vo(zz) < Ama(P)|2?

(ii) Vao(z)) < —||z2|? (5.21)
(iif) L;ZZ) < 2Amax(P)| 2]l

whereAnin(-) andAmax(-) denote the smallest and largest eigenvalue, respectively. Now define

[z1,2,] and consider the Lyapunov functidf(t,z) = Vi (t,z) +Va(z2). Then the Lyapunov function
V(t,z) satisfies

() min (2—1L,)\min(P)> 12> < V(t,zg < max(‘zD/\Hz,/\max(P)> 12||?

(ii) Vit < —|7? (5.22)
d 2

(iii) V(;tz,z) < max(“j” ,ZAmax(P)> 12|

By Theorem 3.5.1 we conclude that the closed-loop sy$knk») is robust with respect to vanishing
perturbationsi.e., d(t,z) = 0 for z= 0, satisfying

1

18(t,2)[| <
max( ’3”2,2)\max(P)>

. VzeR" (5.23)




5.4 Summary 65

By Theorem 3.5.2 we conclude that solutions of the system are globally ultintaietded for non-
vanishing perturbationse., 4(t,z) # 0 for z= 0, satisfying

. 1
1 min (I’/\m"‘(P)> i
16(t,2)|| < D2 DI or, V|z|| <r,ze R". (5.24)
max( ) ,2Amax(P)) max< A ,)\max(P)>
5.4 Summary

In this section we have presented a linear time-varying controller for trajetctacking of the second-
order chained form system. The controller was designed by using adesbackstepping technique
in which the tracking error dynamics are treated as two separate subsytisimg a result for non-
linear cascade system in (Lefeber et al., 2000), exponential stabilityedfviin separate subsystems
implies.# -exponential stability of the complete system. The linear time-varying controdibilizes
the system to a desired reference trajectory with exponential conwergfete reference trajectory
satisfies a so-called persistence of excitation condition. This persistépgeitation condition im-
plies that the reference trajectory is not allowed to converge to a pointrddieng controllers may be
used to steer the system towards a certain equilibrium point, however hilitystzan be guaranteed.
This means that tracking controllers can not be used to solve the stabilizatiolemn, as in the case
of linear systems. Instead, the stabilization problem has to be treated wliffer&dditionally, con-
ditions were given under which the closed-loop system is robust witlectsp perturbations. These
conditions are given as uniform bounds on the perturbations. Theselgions can be caused by pa-
rameter uncertainties, disturbances or unmodelled dynamics. A generaliattti@ proposed control
design method to the case of high-order chained form systems (2.6) ¢anrtaein Appendix B.

The proposed design approach can be used to explicitly design a trackitrgller as a function
of the reference inputyq(t). This tracking controller globally? -exponentially stabilizes the closed-
loop system to a reference trajectory, whereas the tracking controfieemied in (Walsh et al., 1994)
only achieves local asymptotic stability of the error-dynamics. In contrakettracking controller of
(Walsh et al., 1994), the tracking controller presented in this thesis is givelosed form and does
not have to be re-computed when the reference trajectory changes.

The discontinuous and flatness-based tracking controller from (Kaibdy1999) can be used to
stabilize the system to trajectories that do not pass through points wf{éye= 0. In these singular
points the system is not controllable and these singular points coincide witlnthdas points of
the endogenous transformation induced by the flat outputs, see Sectiokldrdover, the closed-
loop error dynamics are not stable in a Lyapunov sense and only genggponentially towards the
trajectory to be stabilized. The tracking controller presented in this thesibeaised to stabilize
the system to reference trajectories passing through these singular gruihtim addition, achieves
Lyapunov stability of the closed-loop error dynamics. The stabilizationlprolwill be treated in the
following chapter.
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Chapter 6

Point stabilization

In this section we consider the feedback stabilization problem for the demaler chained form
system. It is well-known that the second-order chained form systenncibe stabilized by any
continuous time-varying feedback. From Theorem 3.2.2 it is known tha&gariibrium of a con-

tinuously differentiable system is only exponentially stable if and only if its lizeéipn around the
equilibrium point is also an exponentially stable system. This implies that an lmstgdiem can
only be exponentially stabilized by smooth feedback when its linearizatiomdrtne equilibrium is

stabilizable. Since the linearization of the second-order chained fori@nsysound any equilibrium
is not controllable, we conclude that it cannot be exponentially stabilizesh{pgmooth time-varying
feedback. The best we can hope for is a weaker notion of exponstatiility, calledp-exponential

stability.

In order to stabilize the system, discontinuous controllers or time-varyingattems are needed.
In references (Astolfi, 1996; Imura et al., 1996), discontinuous otlets that achieve exponential
convergence towards the origin, as defined in Definition 3.2.4, werdapma However, these dis-
continuous controllers are no feedback stabilizers in the sense thatriyeguarantee exponential
convergence on an open and dense set of the state-space. In @oaidAstolfi, 1999) this result
was extended to obtain a weakened Lyapunov stability result called quasits exponential sta-
bility. Moreover, due to Brockett's condition, the system can not be stabflilgeany continuous
time-invariant feedback.

In (M'Closkey and Morin, 1998) a homogeneous time-varying feedlweak designed thap-
exponentially stabilized the system of a planar body, with two thrusters, slating flat surface.
The planar body with two thrusters is equivalent to the second-ordémeth&orm system after a
suitable coordinate and feedback transformation. The continuous jgdrind-varying feedback was
designed in three steps. In the first step, one derived a homogermwosgiaation of the system. In
the second step, a continuous homogeneous controller is derivedythgitaically stabilizes a four-
dimensional subsystem of the homogeneous approximation. In the thirdsarstidp, the continuous
asymptotic stabilizer is scaled to an exponential stabilizer and a backstepgirghayain feedback
approach is applied to stabilize the complete system.

In this section we consider the feedback stabilization problem by contimpeicglic time-varying
feedback. We try to derive continuous periodic time-varying feedbidelitsz -exponentially stabilize
the second-order chained form (2.7). The idea is to use a homogefesmilsack, to stabilize a
subsystem of the second-order chained form, and use a backsteppigh gain approach to stabilize
the complete system. This approach has been presented in (Aneke edzh,lB@nd follows that of
(Morin and Samson, 1997).
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6.1 Homogeneous feedback stabilization

X4 X3 X6 X5
Uz ’—|>—|>—’@—|>—|>—‘
I X2 X1
up ‘ i >—| >—

Figure 6.1: The second-order chained form system (SCFJigt-&edback form

Consider the three-dimensionag., 6-state, second-order chained form system

51 =Uu
&= (6.1)
&3 =&y

The dynamics in state-space form are given by:

Xl = X2 Xz =Up
X3=X4 Xa=U (6.2)
X5 =Xg X6 = XaU1,

with state-vector = [x1,Xo, . .. ,x6]T given byx = &, X1 =&, i =1,3,5. The system does not satisfy
Brockett’s condition (Brockett, 1983) as the image of the mapgig) — (X2, Xa,Xs, U1, U2, X3U1 )
does not contain any poini0,0,0,0,0,¢) for € # 0. Therefore no continuous time-invariant state
feedback exists that asymptotically stabilizes the system to the origin.

Consider the equilibriunx = 0 of (6.2). The dynamics of théxs,Xs, X3, Xs)-part are in strict
feedback form as illustrated in Figure 6.1. Therefore we can apply lstegping approach, using
the inputu,, in order to stabilize the dynamics 0fs, s, X3,X4).

The idea of using a combined homogeneous and backstepping appasairgady been proposed
in (Morin and Samson, 1997). In the following sections this result will bereled to the case of the
second-order chained form system. First we rewrite the system into

Xs = Xs
Xe = XaUp X3 = Xg

R Sl Az{ S (6.3)
Xz = U

In the first part of the approach we consider the skgtas a “virtual input” and use it, along with
the inputu; to stabilize the origin of thé; subsystem. The second part of the approach consists of
using a backstepping technique to stabilize the origin of the complete syAtefy). This approach

is described in the following two sections.
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6.1.1 Stabilizing the A; subsystem

The subsystem\; with v = x3 as a virtual input is given by

Xs = Xe
Xe = Vu

A W o= % (6.4)
Xz = U

Notice that the vector field — f(x,(us,v)), which defines thé\; subsystem, is not affine in the
control variableguy,v). Nevertheless, if we define a dilatid) with weightr = (2,2,1,1) and apply
feedback functionsy = as(t,x) andv = a(t,x), with (a1, az) € C°(R x R*; R*) r-homogeneous of
degree one, then the closed-loop vector figld) — f(x, o1(t,x), a2(t,x)) becomes-homogeneous
of degree zero.

Definex! = (x1, %2, Xs,Xs). Consider the feedback laws;,v) € CO(R x R* R?) given by

up = —kixg — kax +h(x})g(t/¢)

ksXs + Ko (6.5)
V=" a9/

with k > 0,1 € {1,2,5,6} andg: R — R a T-periodic function satisfyinqoT g(t)dt =0 ando =

%fOT g?(1)dr > 0. The continuous functioh : R* — R is positive-definite and homogeneous of
degree one with respect & . As any homogeneous norm associated with a dilation is homogeneous
of degree one with respect to that dilation, an example of such a functiaveis gy h(x) = p(x),
wherep(x) denoted the homogeneous norm associated with the dil&figiven by

55 (<) = (A6, A 26, Axe, AX). (6.6)

Proposition 6.1.1. Consider the closed-loop system (6.4,6.5) witfRg— R a continuous T -periodic
function satisfying/’oT g(t)dt=0ando = %foT g?(1)dr > 0. Assume that the continuous function
h: R" — R is homogeneous of degree one with respect to the dila’ijcénl,t). Then there exists
& > 0 such that, for alle € (0, &), the origin of the closed-loop system (6.4,6.5pisxponentially
stable.

Proof. The closed-loop system is given by

X5 = Xg

KsXs +
- M TR6) gt koogit/e) + gt /)?)
oh(xt)

X]_ = X2

%o = —kixa —kax2 +h(x")g(t/€)
This system is homogeneous of order zero with respect to the dilgliica:md can be written as=
f(x,t) where f(x,t) is T-periodic int. By assumptiorh(x}) is homogeneous of degree one with
respect tod;. Therefore the closed-loop system is homogeneous of degree zercesjitict tod; .
The “averaged system”, see (3.33), is given by

X5 = X6
X5 = —ksX5 — KsXe 6.7)
Xl = X2 ’

Xz = —k1X1 — k2X2
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which is globally exponentially stable. The conclusion follows by applicatioRroposition 3.7.2.
O

Remark 6.1.1. The inputv(t,x}) in (6.5) is not defined fox! = 0, i.e., (x') = 0. However, any
functiong(t, x) that is homogeneous of degree- 0 with respect to a dilatiod; (x) and continuous
for all x # 0, can be extended by continuity to be continuous &t0. Thereforev(t,x!) becomes
continuous and boundedt= 0 by definingv(t,x') = lim,._Vv(t,x') = 0 forx! = 0.

6.1.2 Stabilizing the (A1,A2) subsystem

We now consider thA; subsystem. In the previous section we designed a feedhaela;(t,x) and
avirtual feedback = ax(t,x) that exponentially stabilized thig subsystem w.r.t. the dilatiod (x).
The inputu, can be obtained by using the backstepping approach given in Prop@&iti@n

By Proposition 6.1.1 th&; subsystem is asymptotically stabilized say.= v(t,x!), with v given
by (6.5). The(A1,A;) system can be written as

Xl = f(t’Xl,X?))

X3 = X4

X4 = Up.
By recursive application of Proposition 3.7.3, see Remark 3.7.1, we amthat the equilibrium
point x = 0 can be asymptotically stabilized by the feedbagk= —ks(x4 + ka(Xs — v(t,x))). By
substitution of (6.5) we obtain the continuous periodic time-varying feedback

o= k(s o+ L2 g1,

with ki > 0,i€1,2,...,6. By rewriting the last equation, we conclude that the continuous periodic
time-varying feedbacks thatexponentially stabilize the system are given by

u = —kixq — koxo +-h(x')g(t/€)

k 6.8
Up = —kakeXg — kaxa — kﬁ%g(t/e), ©8

The stability result is formulated in the following corollary.

Corollary 6.1.2. Consider the closed-loop system (6.2,6.8) wher g~ R a continuous T -periodic
function satisfyingy g(7)dr = 0ando = 1 [ g?(1)dr > 0 and the continuous function:IR" — R
is homogeneous of degree one with respect to the dilaijténl,t) given by(6.6). Then there exists
& > 0 such that, for alle € (0, &), the origin x= 0 is globally exponentially stable with respect to
the dilationd; given by

% (X) = (AX1, AX2, AX3, A Xq, A 2X5, A 2X6).. (6.9)

Proof. The weight vector is = (1,1,1,1,2,2). The vector fieldf (x) = (x2,0,%4,0,%s,0)" and the
input vector fieldsy; (x) = (0,1,0,0,0,x3)" andgy(x) = (0,0,0,1,0,0)" of (6.2) are of degree 051
and—1 respectively with respect to the dilatid). The control lawsi; andu; given in (6.8) are of
degree one with respect @ (x). The closed-loop system is therefore of degree zero with respect
to &;. By application of Proposition 3.7.1 we conclude that the origin of the clésegl-system is
globally p-exponentially stable with respect to the diIati@'((xl). O
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6.2 Robust stabilizers for the second-order chained form

In (Lizarraga et al., 1999) it was shown that continuous homogeneaxponential stabilizers are
not robust with respect to modelling errors. In this section a hybrid/¢épemfeedback controller will
be developed that not only exponentially stabilizes the system in a discrete, smit is also robust
with respect to a class of additive perturbations that represent modetlorg.eln the previous section
we derived homogeneous feedbacks fr&ixponentially stabilize the second-order chained form. In
this section we will present a modification of the controllers (6.8) that is tokitls respect to certain
modelling errors. By periodically updating the states in (6.8) the closed-lgstera can be given
certain robustness properties. We start with a problem formulation in wredatefine the problem of
designing a periodically updated homogeneous feedbacks of the f@jrit{ét is robust with respect
to a certain class of perturbations for the system (6.1). Then, we desgpetiodically updated
homogeneous feedbacks. Finally a stability and robustness analysitoisyeat in order to show that
the designed feedback laws solve the problem. The presented resultgpeidiran (Lizarraga et al.,
2003).

6.2.1 Preliminaries and definition of the problem

Prior to stating the problem, we start by defining the notions of stability andstobss used in this
context. Although the results presented here only apply to the secordabrained form, it is conve-
nient to define these notions in terms of the more general class of analytioleaffine systems. To
this end, consider the second-order chained form (6.1), regasdb@@ominal systemwritten as

X = bo(X) + Ulbl(X) + Uzbz(X), (6.10)
with
bo(X) = [X2,0,X4,0,%5,0]", bi(x)=1[0,1,0,0,0,x3]", by(x)=1[0,0,0,1,0,0]" (6.11)

As a result of model errors, such as parameter uncertainties, disterisactor fields may be present
in the system, and one way to model this is by consideringénturbed systergiven by

X = bo(X) + ho(X, s)+iui(bi(x)+hi (X,€)), (6.12)

whereh = (hg, hy, h,) is a 3-tuple of real-analytic mappings: U x E — R", andE C R is an interval
containing 0. The 3-tupll, referred to in the sequel as a disturbance, is assumed to $@ti8fg) =0

for everye € E, so that(x,u) = (0, 0) is an equilibrium point for the perturbed system. In other words,
the perturbation or disturbanbg(x, €) is a vanishing perturbation. The interpretatiorgd$ that of an
additional parameter that represents the magnitude of the perturbettiais¢ Remark 6.2.2(i) after
Proposition 6.2.1). For ease of reference we denot@bthe set of all disturbancds= (ho, hy, hy),
each defined on a sét x E (E may thus depend on the choiceldf In the sequel we also write
hf (x) = hi(x, €).

It is clear that not all disturbances can be modelled by additive vectos faaldn (6.12). In fact,
phenomena such as neglected modes, non-smooth effects (e.g. fricimaasurement noise would
require different representations. Therefore, the notion of robastone can aim at by considering
such disturbances is limited.

Suppose that a continuous, time-varyifgeriodic) feedback laver : U x R — R? is given.
As mentioned earlier, we intend to control the perturbed system (6.12)rindfmlly iterating this
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control law. When the initial tim& € R is a multiple of the update period (i.e.tp modT = 0) this
process is accurately described by considering that one applies thedteoatrolu(t) = o (X(kT),t),
wheret € KT, (k+1)T) andk € {[to/T |, [to/T] +1,...}. Whents modT # 0, however, causality
becomes an issue and a technical subtlety concerning the initial conditises, aramely the initial
valuex([to/T|) is not defined in advance (see Figure 6.2). This can be remedied byiadjain
signalt — y(t), which coincides with the statékT) at the update instants indexedloy {|to/T | +
1, |to/T] +2,...}, and then considering the dynamically extended perturbed system

2
X = bo(X)+ho(x,&)+ ¥ ai(y,t)(bi(x)+hi(x,€))
o =1 (6.13)
> O(t—KT)x(),
k:Lto/TJ+l
under the assumption that its initial condition be defined, given(agmyo) € R® x R®, by setting
(X(to),¥(to)) equal to(xg,X%p) if t modT = 0O, or equal tqxo, o) otherwise.

R'Il Rn
A il
R S NN L B AN
Yo f---- : Yo |-~ fypbeesee e
! ! Lo () !
to = kT (k+1)T KTt (k+1)T
o(KT) # y(kT)
(a) (d)

Figure 6.2: Initial conditions for system (6.13y) (f ty modT = 0, bothx(-) andy(-) are initialized taxy. (b)
If to modT # 0, X(-) andy(-) are initialized toxg andyp, respectively. Note that in the latter case
the solutions are in genenabt reversible in timgsince extending(t) andy(t) fort € [kT,tp), using
the dynamics (6.13), may lead to the conditigRT) # y(kT).

Remark 6.2.1. (i)The meaning of the initial conditions for system (6.13) is illustrated in Figure 6.2.
Clearly, the first sample instant after the initial timgeoccurs att = ([to/T| +1)T or, using the
notation in the figure, at= (k+1)T. This explains the initial value fdcin the second summation of
(6.13). Note also that the trajectories initialized in this way are defined fasfiar time ¢ > to), but
they may fail to be reversible in time. In other words, whgnmodT # 0, the solution(x(-),y(-))

may be extended to the interj&IT, tp) by using the dynamics (6.13), howevekT) may differ from
y(KT). (i) Up to minor differences in notation, the formulation of the perturbed systentigsamical
extension of the nominal one coincides with the formulation proposed in (MoinfSamson, 1999).

Let us point out that exponential stability of the origin for (6.13) doesingily exponential
stability of the origin forx'= bo(x) + h§(x) + ¥ 2., a (X(KT),t) (b (x) + hé(x)). For instance, a solution
to the latter system, initialized te(tg) = O whentp is not an integer multiple of, need not be
identically zero, so it may falil to satisfy the required inequality

X1l < Ki[x(to) | exp(—y(t —to))

The problem of robust stabilization may now be formulated as follows.
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Problem 6.2.1. (Robust stabilization) Design a control laver : U x R — R? which ensures that, for
every disturbanchin a given set C 22, there is a constamp > 0 such that the origifx,y) = (0,0)

of system (6.13) is locally exponentially stable wheneverE and|e| < &.

6.2.2 Design of the periodically updated feedback law

Fix T > 0 and setw = 271/T. Our goal is to design a feedback lawe CO(R® x R;R?), T-periodic

in its second argument, such that the solution to the controlled second-order chained form (SCF)

2
X = bo(x) + Zlai (o0,1)bi(X), x(0)=xo € RS, (6.14)
i=
with bp, by, b2 given in (6.11), satisfies

X(T) = Ax+o([[xl)), (6.15)

whereA € R®*® a discrete-time-stable matrix, i.e., a matrix with its spectrum containéd inC :
|zl < 1}. Motivated by the results of Section 6.1.2, we propose the following contsitiecture:

ai(x,t) = aiXy+axX +bp(x) coq wt) (6.16)
W 1
ax(xt) = a3x3+a4X4—Tm(aSX5+aGX6)COE<M), (6.17)

where the vector of control gairse R® is determined belowb > 0, andp is given byp(x) =
(z?:1|xi|%)%, with r =(1,1,1,1,2,2). In (6.16,6.17)p is a homogeneous norm with respect to a
dilation of weightr. In fact, as in the case of the homogeneous feedbacks (6.8), instgadre
can also use other continuous, positive-definite functRfis- R that are homogeneous of degree 1
with respect to the dilation. In this thesis, however, no further use is matthésaerminology or the
associated results, and the interested reader is referred to e.g. (H&®®EsKawski, 1995) for more
detailed discussions on that subject.

The closed-loop system can be explicitly integrated thanks to the simple s&ruétilme second-
order chained form and the fact that) = a(xo,t) is independent af(t) on the intervalO, T ). After
some calculations, one verifies the solutign is of the form

X(T) = Axo+W(Xo), (6.18)
whereA is a block-diagonal matrid = diag(A1, A2, Az) with blocks defined by

A = < 1+ %TzaZi_l T+ %Tzaz

. =123 6.19
Tagi 1 1+ Tay; ) (6.19)

The spectrum o is the union of the spectra of ti#, each of which can be made equafie;, kiz} C
{ze C: |7 < 1}-thus makingA a discrete-time-stable matrix—by setting
~ kin+ki2 —kizkio—1 ~ kin+ki2+kizkiz — 3

a1 = T2 and ag = o7 , 1=123. (6.20)

Of courseayi_1 anday must be real, for which it suffices to cholke, ki» to be complex conjugate.
On the other hand, it is readily checked that the funatiea (wi, ..., we) : R® — R®in (6.18) is given
byw;=---=ws=0and

(Ws, We) (X0) = P(X0)L (%) +p~*(¥0)P(%0) +Q(%0),
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whereL : R® — R? s linear andP,Q : R® — R? are quadratic. Sincp(xg) = O([|%o||2), it follows
thatw(xg) = O(on||%) and hencav(xp) = o(||Xol|), so the solutiorx(T) has the form (6.15). Sinok
is discrete-time-stable, there exists a symmetric, positive-definite nfagiR®*® and a real number
T € [0,1) such that|Ax||p < T||%o||p for everyxo € R®, with ||x||p = (x,PX) denoting the norm of
induced byP. This means that, locally around the origin, the mapping which assignsto X, is a
contraction in the norrfj - ||p.

It is important to remark that the frequenayof the time-varying terms in the control law (6.16)-
(6.17) does not have to be large; indeed it can be selected to be arbragly This is in contrast
with the control law (6.8) that has been presented in (Aneke et al., 2@d2ajore generally, with
previous results based on averaging of “highly oscillatory” systems, (@8i¢Closkey and Murray,
1993; Teel et al., 1992). In these control laws, the frequeney(f the time-varying part of the
controller) have to be chosen sufficiently large in order to be able to gigsrasymptotic stability
of the closed-loop system. In practice, however, there is quite someofreadthe choice of the
frequency Ye and it may still be possible to stabilize the system for low frequencies.

6.2.3 Notational conventions

Let us recall some definitions and properties about local order of mggpénnotion that simplifies
the proofs. In this paragraph,andm represent positive integeré,a nonnegative integer ard ||
represents Euclidean norm. Consider a neighborhbodithe origin inIR". We deal with mappings
defined onU x A, whereA c R, and view the elements @ as parameters (e.g. ‘time’ or other
parameter). Given a mappirfg U x A — IR™, we write f (x,A) = o(||x||¥) if, for every A € A,
A

lim

lim = e =0 (6.21)

We write f(x,A) = O(||x||¥) if for every A € A there is a constan > 0 and a neighborhodd’ c U
of the origin such that, for everye U’\{0},

[F(xA)
B2 < K. (6.22)
X%
Consider a mapping = (Xy, ..., %) : U x A — IR" representing a family ofector fields X-,A) :U —
R". We write X (x,A) = o(||X||¥) (resp.X(x,A) = O(||x|[€)) if Xi(x,A) = o(||x||**?) (resp.Xi(x,A) =
O(||x||**1)) fori =1,...,n. We shall also use the function Ord  Ord(f) € RU {4} defined by
Ord(f) =suplke R: f(x,A) = O(||x||)}.

6.2.4 Stability and robustness analysis

This section presents the main result, which characterizes the stability amtess properties of
the feedback law (6.16,6.17) applied to the second-order chained fdnenprbof shares the same
basic structure as that of Theorem 1 in (Morin and Samson, 1999),amne sther technical facts

are modifications of the proofs in (Sussmann, 1983) and (Khalil, 1996)the sake of conciseness,
we only prove those claims particular to our solution and explicitly refer thaereta the appropriate

references for the details.

Proposition 6.2.1. The control lawa defined in (6.16,6.17) is a local exponential stabilizer for the
origin of system (6.13), robust to disturbancesdh= {(h§,h¢,h5) € 23 : Ord(h§) > 1,0rd(h3) >
2andOrd(h?) > 0,i = 1,2}.
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Proof. Let us fix a disturbanck € .7 defined on an open setx E C R" x R. It must be shown that
there isgp > 0 such that the origin of (6.13) is locally exponentially stable wbheh|[—&p, ] NE.
The proof is divided into two main steps corresponding to the following two ctaims

Claim 1 For every compact interv@l’ C E there is a compact neighborhodd c U of 0 such that
if xo € U’ ande € E', the solutiort — x(t) = m(t,0,xo, €) to

2
K=bol)+ () + 5 a0 0000+ (), X(0) =6 (6.23)

satisfies

X(T) = Axo+ A (€, %) + U (€, %0) + O([|Xol]),
where the mappings, U (which need not be uniquely defined) are such that

1A (&, %0) |
[1%oll
k(e %)
[1%oll

—0 ase— 0, uniformly forxgeU’\ {0}, (6.24)
—0 asxo— 0, uniformlyfore c E'. (6.25)

Claim 2 (Morin and Samson, 1999, Theorem There exists a nonempty intenigf C E containing
0 such that, for every € Ey, the origin of system (6.13) is locally exponentially stable.

In (Morin and Samson, 1999, Theorem 1) it has been shown that Claimliegn@iaim 2. There-
fore the proof consists of showing that Claim 1 is valid. In (Lizarragd.e2803) it is shown that
Claim 1 holds by showing that the system’s solution at timean be represented by means of a
Chen-Fliess series expansion. For the details of the proof, we refaattoefierence. O

Remark 6.2.2. (i)In view of the definition ofe7, for h € A one can writen;(x, £) = wf(x) + hP(x),

with wf(-) = 0, h§(x) = O(|[x]|?) andh?(x) = O(||x[|°), (i = 1,2,3, j = 1,2). Hence each disturbance
vector field can be thought of as consisting of two parts, one containiyg'lugh-order” terms inx

and the other one vanishing identically when:- 0. The terms corresponding to these two parts may
have different origins. For instanog (x) may arise from uncertainty in the knowledge of the physical
parameters; i€ is a quantitative measure of the uncertainty, then these terms should vamists wh
equals zero. On the other hamfl(x) may include high-order terms truncated from a series expansion
of the system’s nominal model, and these terms do not necessarily vaniatzwhe. (ii) A measure

of the extent to which robustness is ensured by a feedbaclxldies in the nature of the se¥.
Roughly stated, the larger this set is, the more sources of disturbareastolerate. In this respect,
the control law in (Aneke et al., 2002a)nst robust to disturbances taken from, so the origin may

be destabilized by the addition of disturbancesdregardless of how small their magnitude is (i.e.,
for arbitrarily small|e| > 0). This lack of robustness, which can be checked by using the results in
(Lizarraga et al., 1999), is illustrated through numerical simulation in the Ebansection.

In Proposition 6.2.1, the condition that the disturbances belong ie sufficientbut not neces-
sary for stability and robustness. In particular, disturbances isatisfyhy(x, €) = O(]||x||) or, stated
otherwise, each component of the drift disturbance satisgies: O(||x||?). This is somewhat restric-
tive since in some cases the latter condition is not satisfied and yet the donabfighe previous
proposition seems to hold in simulations. Indeed, a refinement of that resatsglausible, although
the proof would require surmounting technical difficulties that we havdoaeh overcome yet. The
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presented result might be of interest when addressing the stabilizatigetefrss whose models can
be written as a second-order chained form with additional terms. For égamgReyhanoglu et al.,
1996) the underactuated surface vessel with two independent tisrugiershown to be feedback
equivalent to the second-order chained form with an additional terengiv(2.8). By viewing these
additional terms as disturbances, one might successfully use the comtso(d@d 6)-(6.17), without
modification, to stabilize some of those systems to a point. This has been shdvirgimgga et al.,
2003) for the underactuated surface vessel. A drawback of the statddion, however, is that testing
it may be difficult in practice.

6.3 Summary

This section was concerned with the feedback stabilization problem of¢bad@rder chained form.
The stabilizing controller has been designed by treating the system as teygstms. By using a
high-gain or backstepping result, the both subsystem can be stabilizeddmfiauous time-varying
feedback. This so-called homogeneous feedback stabilizer can dheouglbally p-exponentially
stabilize equilibrium points of the second-order chained form system. fEoaahal to our knowledge,
this homogeneous controller is the only one capable of ensuring Lyamtability as well aso-
exponential convergence of the second-order chained form sySteweral authorsf. (Imura et al.,
1996) and (Astolfi, 1996), have presented discontinuous feedloatiotiers that achieve exponential
convergence towards the origin, but all these controllers fail to gtegdryapunov stability of the
closed-loop system.

It is known from (Lizarraga et al., 1999) that, homogeneous controléérso be robust with
respect to modelling errors. Therefore, a periodically updated homneogsrfeedback law has been
presented that is robust with respect to a certain class of perturbalitiese perturbations can be
caused hy, for example, parameter uncertainties or modelling errors.

At this moment, it is unclear how the results of this chapter can be extendedfeetitgack sta-
bilization problem of higher-order chained form systems (2.6). In orepply the same method
as presented in Section 6.1.2, a stabilizing function for the virtual irpshould be known that sta-
bilizes the|xa,...,X2n]-subsystem. This stabilizing function is, in general, quite difficult to design.
In addition, it is not even clear whether the second-order chained $gstem can be stabilized by
smooth or continuous time-varying feedback. It is expected that a comhirtaél/open-loop ap-
proach may be more successful in controlling these high-order chaonedslystems. Nevertheless,
such an hybrid/open-loop approach would require the use of a controlke iterated periodically,
which to date is not available. In the following chapter, we will evaluate thegmted homogeneous
controllers in a simulation environment with the goal of applying them to an arpatal set-up.



Chapter 7

Computer simulations

In this chapter, we consider an example of an underactuated mechamstsghghat is subject to a
second-order nonholonomic constraint. This example consists of a mealsrstem also known as
the ‘H-Drive’ servo system, illustrated in Figure 7.1. The H-Drive is an-bé¥le with three linear
motors that has been built by Philips’ Centre for Industrial TechnolodyT{&s part of an Advanced
Component Mounter (ACM) for pick-and-place operations on Printedu@iBoards. It consists of
two parallel Y-axes that are connected by a beam, the X-axis. The beafraxas, is connected to
the Y-axes by two joints that allow rotations in the horizontal plane. Thezdfer positions Y1 and
Y2 along the Y-axes are not necessarily equal, tilting or rotation of the lieatso possible. The
position of the beam along the X-axis and the Y-axes is controlled by thres lnetors;j.e., Linear
Motion Motor Systems (LIMMS). Each linear motor has its own servo systenodansensors and is
current-controlled.

Interface
Host Controlier

Figure 7.1: The H-Drive servo system.

LiIMMS are widely used in high-speed applications and scanning motion sys#&imdIMS is
composed of two parts, a number of base-mounted permanent magnetsighessd a number of
iron-core coils (the translator). The permanent magnets are aligned thiersxes and the LIMMS
containing the iron-core coils are connected to a guiding rail along theusxeg ball bearings. By
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applying a three-phase current to the coils, a sequence of repellingtiaacting forces can be gen-
erated that can be used as a thrust force to move the system. In contraditional electro-motors,
i.e., with brushes, LIMMS allow for contactless transfer of electrical to transiatipower by the
Lorentz actuator principle. Therefore, compared to traditional electtonsoLiMMS have the ad-
vantage of less friction, resulting in higher accuracy, high velocity amélaation; the velocity is
mainly limited by the bandwidth of the encoder and the power supply, highebitélizand longer
life-time due to reduced wear. A disadvantage of a linear motor is the positiepahdency of the
thrust force and the cogging forces resulting from the permanent nsagne

In this chapter, it is assumed that an additional rotational link, together wigmemder for mea-
suring the link orientatior®, is attached on top of the LIMMS along the X-axis. In this manner, the
link is not actuated directly, but can rotate freely. Using the inputs curterttee X-motor and the
Y-motors, we wish to control the longitudinal and transversal position ofdtaional link, as well
as its orientation.

7.1 The dynamic model

The H-Drive with the additional rotational link, shown in Figure 7.2, is anaradtuated mechanical
system with three inputs.e., the currentsy, iy1 andiy, to the motors, and four coordinates., the
positions X, Y1, Y2 and the orientatiah of the rotational link. Denote the mass of the Y motors by
my1 andmy, respectively, the mass of thémotor bymy and the mass and inertia of the rotational
link by mg andls respectively. The longitudinal forces along the Y-axes are denotégbgndF
respectively, and the transversal force along the X-axiByoyThe distance from the rotational joint
at the positiorry, ry] to the center of mass of the rotational link is denoted bpd the length of the
X-axis beam is denoted ly. The system moves in a horizontal plane and is not influenced by gravity.

By using the Lagrange-Euler formulation it is straight-forward to calculaaltiamic model of
the H-Drive. The generalized coordinates gre [Yg, ¢, X, 6], whereYg(t) denotes the longitudinal
position of the center of mass of the beap(t) denotes the tilt-angle of the beam (see Figure C.1),
X(t) the transversal position of the motor along the X-axis. The dynamical maddie written as

M@+ Cada=| g | )

where the symmetric and positive-definite mass maitix), the matrix representing Coriolis and
centrifugal force<C(q,q) and the input(3 x 1)-matrix F are given in appendix C.1. By using the
coordinate transformation given by the relations

Y1(t)+Y2(t)
2

this dynamical model can be written in terms of the encoder measurementg= [Y1,Y2, X, 6].
Due to the complexity of the resulting equations, this will not be shown hertacthwe will make
an assumption which considerably simplifies the equations of motion of the\d-Dri

As mentioned earlier, the H-Drive is designed to be a servo-system. féreerboth the Y1- and
Y2-axis will be controlled using the servo-controllers given in Appendi®.CHere, the positions
Y1(t) andY2(t) will be controlled to follow the same reference position. Therefore, théipos
Y1(t) andY2(t) will be approximately equal and the tilt-angfgt) will be small. In fact, the joints
that connect the X-beam to the Y-axes only allows a difference g3 between the positions of
the Y-axes and the length of the X-axis beam is approximatgiy|1 In this thesis, the nonlinear

. t) = arcsir(Yl(t) —va)

Ya(t) = =,
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Figure 7.2: The coordinate system of the modified H-driveesyswith generalized coordinatés, ry, 6]. The
masses along the axes are denotethpymy1 andmy, respectively. The mass of the rotational link
is denoted byng and its moment of inertia about its axis of rotationlpyThe length denotes the
distance between the rotational joint and the center of m&i$e link (not shown).

rigid-body tilt-dynamics of the H-Drive are neglected by assuming that te&ipoY1(t) andY2(t)

are equalj.e., Y1(t) = Y2(t) Vt. This is illustrated in Figure 7.2, where the underactuated H-Drive
manipulator and the coordinate system is shown. By assumption, the érigfithe global coordinate
system is located atX,Y) = (—0.3,0.5) (near the center of the H-Drive setup). The generalized
coordinates are given by the joint coordinates and orientation of the knkg= [ry,ry, 6]. The joint
positionsry andry can be expressed in terms of the encoder measureif¥eivts, Y2] as follows

Yi(t)+Y2(t)

rx(t) = >

The rigid-body dynamics of the Y1- and Y2-motor are assumed to be identinapractice,
this is not true since the masses and electromagnetic properties of two LIMMSsnmo&y vary.
Moreover, the LIMMS are influenced by disturbances resulting frongitagforces, reluctance forces
and friction. The cogging forces are caused by the attraction betwegrethenent magnets and
the iron cores of the LIMMS. The reluctance forces are caused byyigaself-inductance of the
windings in the coils of the translator. The friction is present in the ball bgatietween the translator
and the guiding rail. If we assume true linear dynamics of the LIMMS, with motostamtk,,, then
the dynamic model (after solving fof; andiy») is given by

Mabd(t) — m (%-@)sm(e(t))é(t) — my (%-@)coe{@(t))é(t)z = Keivalt)

Mab(t) — rml(2+ry§))sn<e<t>>é<t> ~ (%Jyg))cos(e( NOMR = Kaivalt)
miy(t) + milcos8(1)B() - el SIO()0(? = —kinix(1)
18(t) — melsin(B(t))(t) " mal cosB(L)iy(t) = O

(7.2)
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where the masses and inertia are given by

mx1=r7m+%+(mx+ms) <%—%>
Mg 1 ()
My = My + ==+ (Mx + M) <§+T> (7.3)
my = My +mg
| =I5+ mgl?

Note that a positive curreit moves the LIMMS along the X-axis in the negative directiomyofThis
is caused by the choice of the coordinate system; the pogitiiection along théry,ry) coordinate
system, shown in Figure 7.2, points in the negagidirection of the(X,Y) coordinate system.

From (7.3) it is clear that the dynamics of the Y-motors are influenced bydbiéign of the X-
motor. If the X-motor is located close to the Y1-axis, then the effective magsg @@ Y1-direction
becomes larger and higher input-currents will be needed to move the tain$lae servo-controllers,
used to control the positions of the LIMMS, will be used to compensate thidiogugd mass between
the X-axis and the Y-axes. Therefore, it is assumed that this coupling £ o@a be neglected. By
using the average of the Y1- and Y2-dynamics, the dynamical modelesdoc

ma0 TR S0M)80) — "2 cok0m)BLE = Kkniv
myFy(t) + mlcog0(1)(t) — mglsin(8(1))8(t)2 = —kmix (7.4)
(I3+mgl?)B(t) — melsin(8(t))ix(t) + melcogB(t))iy(t) = O

whereiy denotes the average of the currents running through the LIMMS of thealvd.-Y2-axis.
The masses along thlxeandy direction reduce to

_ Mvat+my Mg (Mx+ng)
= T2t 3
m, = mx + Ny

| = I3+ mgl?

(7.5)

The model (7.4) represents an underactuated system with three gestei@iardinatesry,ry, 6],
denoting the joint position and orientation of the rotational link, and two inputentsix andiy to
the LIMMS. This model can be transformed into the second-order chaared $ystem, as will be
shown in the following section.

7.2 The second-order chained form transformation

In this chapter, the goal is to control the cartesian posifi(t),ry(t)] and the orientation of the
rotational link of the underactuated H-Drive manipulator. In order to aghdycontrol methods devel-
oped in the Chapter 5 and 6, the dynamic model needs to be transformed is¢adimel-order chained
form. In (Imura et al., 1996) a coordinate and feedback transforma@srprnoposed to transform the
system (7.4) into the second-order chained form. The coordinate draretion corresponds to the
position of the center of percussion (C.P.) of the rotational link. The ceffgrcussion of a link can
be interpreted as follows; if one would apply a force perpendicular to tlkeall at a certain point
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below or above the C.P., then a rotation of the link will occur. If howevegree perpendicular to
the link is applied exactly at the C.P., then no rotation of the link occurs. Theercehpercussion
can also be characterized as the point that stays at rest when the linktedralong a circle with
a radius equal to the distance between the joint and the C.P. The C.P. istherséful in order to
generate pure rotational motions of the link, in which the C.P. stays at regteyrming repeated
translational and rotational motions of the link, it is possible to move the unadtaatkfree rotating
link from any initial configuration to any final configuration.
The second-order nonholonomic constraint of the system (7.4) canitbenas

AB(t) — ix(t)sinB(t) +fy(t) cosB(t) = O, (7.6)

where |

msl
The parameteh equals the effective pendulum length of the rotational link, when treatediggd-
body pendulum suspended from the passive joint. This length also efealsstance from the joint
to the so-called 'center of percussion’ of the link. The constraint (7&8) shhown to be nonholonomic
in (Arai et al., 1998a). The first-order linear approximation of (7.4) isaumtrollable, since the dy-
namics are not influenced by gravity. However, it can be shown that ktsma local controllability
(STLC) property holds (Arai et al., 1998a).

Define the configuration variabte= [ry,ry, 8]. In this chapter the coordinate and feedback trans-
formation given in (Imura et al., 1996) will be used to map the equilibrignd) = (0,0) to the origin
(&,&) = (0,0) of the extended chained form. It follows that any equilibrium point, with zefocity,
contained in a certain configuration-sp&edefined hereafter, can be mapped to the orégia O of
the chained form. The feedback transformatidn(q, ¢,v) € € x R® x R?2 — 1 € R?is given by

(7.7)

o] 1 | TEoox)6 (e Tsit(o))uer (T sine)cose) v

ix K Mgl sin(6)62 — <%I sin(6) cos(@)) Vi — <n1y— %Icosz(6)> Vy

wherevy andvy are new inputs. This feedback transformation results in the following partesiy-
back linearized system:

(7.8)

'y = Vx
fy =V (7.9)
6 = )\1 (sin(B)vy — cog(B)vy) .

The mappingd: (q,q) € € x R3 — (&, é) € R® follows from the relations

El = rX"’)\ (Coqe) - 1)a
& =tan(6), (7.10)
é3=ry+Asin(0).

By taking the new inputsy andvy as follows, the system is transformed into the extended chained

form
Uz

Ve | _ [ cog6) sin(6) TR 62
{Vy } { sin(9) ~ —cog6) ] [ A (uzccoosg(ﬂ))—zéztane) | (7
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The coordinate transformation is only valid fére (—71/2+ ki, 1/2+km), for 6 = m/2+kmke N
the coordinate transformation is not well-defined. The configurationespaof the configuration
variablesq is thus given by

¢ = {(rx1y,0) € R®| 6 € (—m/2+km, /2 +km),k € N} (7.12)

The coordinate transformation (7.10) from local coordindgg) € € x R® to local coordinates
(£,8) e R®x R® is a diffeomorphism. Together with the feedback transformations (7.8,7.21) th
dynamics of the underactuated H-drive manipulator are transformed intgetioand-order chained
form system

51 =U
&= (7.13)
&3 =&y

By applying the coordinate transformation it follows that the nonholonomistcaimt (7.6) is trans-
formed into the last equation of (7.13). The nonholonomic constraint (7tBlsspreserved under the
coordinate and feedback transformation.

7.2.1 The influence of friction

In this section the influence of friction, present in the LIMMS and the rotatijoiva of the underactu-
ated link, will be investigated. If friction and cogging forces are includadémaodel, the transformed
system will not be equal to the second-order chained form systemideotise underactuated system
with friction given by

mi — sin0)d - ™ cot8)02 = kniy + Try

2 2
miy + melcog8)8 — mglsin(8)6? = —kmix+Trx (7.14)
10— mglsin(@)ix + mglcogB)iy, = Ty,

whererts j, i € {X,Y, 8} denote the friction forces of the LIMMS and the friction torque of the rota-
tional link. By recalculating the transformation, it can be shown that thersy&tel4) is transformed
into

- A T

&1=u— </\ — %) sin(arctar{é,))A(&, T x, Try, Tro) + %

Er=Up+ (L+EHA(E, Tr x, Try, Tt 9) (7.15)

&3 = &up+ (/\ - %) cogarctari&,))A(&, Tr x, Try, Tr,9) + %

where the perturbatiofl of the extended chained form system is given by

I . I
(% sm@) Try — <% cos@) Trx +Tig

| — (r;?‘—rrgz sirf(arctar{&)) — % cos (arctariéz)

(7.16)

A&, Tex, Try, Trg) =
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The third equation of (7.15) shows that any residual perturbation in thei¥-such as friction or cog-
ging forcesrs x that are not compensated, will directly act as an additive perturbation ahytiemics

of the chained form variablé&s. This makes it even more difficult to control ti§e-dynamics, since
the second-order chained form is uncontrollablefoe 0 oru; = 0 and, as a result, the perturbations
can not be fully compensated. Therefore it is essential to use a lowslemal system to compensate
friction, cogging forces and additional perturbations in both the X-axis\Yaaxes.

Note that designing the system such that the perturbaiénts x, Tt v, Tt g) iS not present in the first

and third equation of (7.15).e.,A — %’ — 0, is not possible. The term — %’ can be written as

'__E':'—u(l_@)l.
mgl m, mgl my

In the casamg < my, considered in this thesis, this term is always positive, and can not Iz &qu
zero. Moreover, ifmg > m, andA — %‘ = 0 holds, then the denominator of the perturbation (7.16)
would become zero for smajh = 0 and the perturbation would become infinitely large,asé, — 0

we have that\ — .

As mentioned earlier, the X-axis and the Y-axes are controlled directlyrp sentrollers. This
means that friction and cogging forces that are present in the LiIMMSparédlly) compensated for
by the servo-loop. Therefore, it is assumed that the friction foregsandts y can be neglected and
we focus on the friction torque that is present in the rotational joint of the Awlditionally, the servo
controllers (partially) compensate the influence of the link on the dynamicg &fithMS. Therefore,
in this section, only the partially feedback linearized system given by (7c@yisidered and the terms
with mgl are assumed to be negligible. The transformed mechanical syistery,.15), then reduces
to

&= U1+A1(52,éz)
&2 = Up+D02(82,&) (7.17)
&3 = &y +D3(82, &),

where the perturbation terms are given by,

& Tro(&,&)

o

D= (14 EZZ)M (7.18)

1 Tne(fz,éz).

g ™

In the previous equation the inverse coordinate transformatiend(t) = &(t)/(1+ &(t)2), has

been used to write the friction term ¢(8) in terms of (&2, &2) and the terms sifarctar{é,)) and

cogarctar{é;)) have been expressed &/ y/1+ &2 and 1/, /1+ &2 respectively. We conclude that
the additive perturbations, such as friction and cogging, present iot#igonal joint of the mechani-
cal system result in additive perturbations in the resulting second-onaé@med form system.

D=

Ny =
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7.3 Friction Compensation

In this section it will be investigated whether the perturbations in the pertsdsehd-order chained
form system can be compensated using the inpugédu,. Note that it makes no difference whether
we try to compensate the friction in the original mechanical system or we tryrtgpensate the
perturbation terms in the second-order chained form system, as thésmsyae related through a
coordinate and feedback transformation. In section 7.2.1 it was shownntar the influence of
friction, the coordinate and feedback transformation of section 7.2 tiansfthe dynamic model
of the underactuated H-Drive system, given by (7.14), into the pedwsbeond-order chained form
system given by (7.17). The resulting perturbation tefipandA; satisfy the relation
A3+ﬂ =0. (7.19)
&2

The mechanical system is thus transformed into a system which, in contrist second-order
chained form system, is not in strict-feedback form. Therefore, thkdteygping procedure that has
been adopted to design a linear time-varying tracking controller is not vajichere, and we ex-
pect that the tracking-error dynamic will not b€ -exponentially stable. Furthermore, the resulting
perturbed second-order chained form system is not homogenedeg@fe zero. Therefore, the ho-
mogeneity properties that were used to design a continuous time-varyitlgstglzontroller do not
hold anymore, and we expect that the closed-loop system will nptdégonentially stable.

From (7.17) it becomes clear that the perturbation telnandA, can be compensated directly
using the chained inputg andus, provided that these uncertain perturbation terms are exactly known.
By definingu; = u; — A7 andup = U — Ay, the perturbed chained form system becomes

L=
&= (7.20)
&3 = &l + D3(&2,&2) — E2b (&2, ).

where the perturbation term is given as

Bo(E2. &)~ Eaba(6a. o) = 1+ 022 (7.21)

This shows that compensating the perturbativpandA, actually increases the perturbation in fae
dynamics. This is generally not a good idea, since the last equation cha oontrolled directly. The
&3-dynamics are controlled using a backstepping procedure in whiha virtual input. This means
that the stateg&é,, &2) only converges to zero if the stat€s, &3) also converge to zero. Therefore the
perturbations acting in the third equation are expected to have a greatenadlan the robustness of
the closed-loop system, compared to the perturbations acting in the firstemmtdsequation. In fact,
the effect of the perturbations on stability of the first two equations can bieniaied by choosing the
gains of the controllerg; andu, sufficiently high.

At this moment it is not yet clear whether the perturbations irfthdynamics can be compensated
using the inputi; . The compensation of the perturbatidgis complicated by the fact that thég-
dynamics can not be controlled using the inpuivhené, = 0. Also compensating the perturbatit
using the inputi; will result in the perturbation term appearing in #yedynamics, which is coupled
with the £3-dynamics. Note that it is not possible to use the sgatm a backstepping procedure to
compensate the perturbatida. The perturbatiodz contains non-smooth effects such as friction.
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In order to apply a backstepping procedure the virtual ifpighould be at least twice continuously
differentiable. This is not the case when using the virtual ifpub compensate non-smooth effects
such as friction. More importantly, however, is the fact that no contralticgn be applied using the
virtual input é&; whenu; = 0. We conclude that due to coupling of the equations, it is not straight-
forward to compensate the perturbation terms in the second-order cliainedystem.

Concluding, we can state that using the current coordinate and fdetthasformation, it is not
clear how to compensate the perturbaiarby the chained inputs; andus. It is however possible to
compensate the effect of the perturbatidasandA,. However, through numerical simulation, it can
be shown that compensation of these perturbations, generally, rezhrdes performance because it
results in a larger perturbation term in tegdynamics. Therefore, no friction compensation will be
used in the simulations.

An important question one might ask is whether it is possible to transform thbaneal sys-
tem with friction into the second-order chained form. This would requirefardifit coordinate and
feedback transformation and, at this moment, it is not clear whether thissgfgoser not. In certain
situations, the friction force can be used in order to control the systemexamonple, in the case of
stabilization, the system can be transferred from one configuration tbeartwy first controlling the
link angle to its desired position, and then moving the system very slowly alongahey direction
such that stiction occurs in the rotational joint of the link. The link orientatiom #tays equal to
its desired value, due to the static friction in the joint of the link. It is not clear hatvextent the
friction torque can be used in order to stabilize the system or performitigackntrol. In the situation
described above, they can not be used to obtain true stabilization, boéassed for very slow point
to point motions. In this thesis, such approaches will not be considereel foCus is on obtaining
true asymptotic stabilization or at least a form of practical stability or pradtiaeking in which the
system can be moved arbitrary close to the a desired equilibrium or closesiraditrajectory.

High-level Control
Low-level Servo Loop

Tracking / Stabilizing Feedback Servo H-Drive .
3 Controller Transformation Controllers Manipulator q'
r
[ug, U] (Xe, Y, Yl lix,iv,ivyz]
[X,Y1,Y2]

Coordinate
: Transformation X,Y1,Y2,0]

Figure 7.3: The ‘virtual internal model following contrapproach in which the underactuated H-Drive ma-
nipulator is controlled by a combination of a high-level totler and a low-level servo-loop. The
feedback transformation block includes the double intégnathat is needed to obtain the refer-
ence inputsX, andY; to the servo controllers. The generalized coordingtes|ry,ry, 8] are thus
controlled by two reference inpu¥ andY, to the servo-loop, and the system is thus underactuated.
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7.4 Tracking Control

In this thesis, the so-called ‘virtual internal model following control’ agmto in (Kosuge et al.,
1987) is adopted. This means that tandY axes are not controlled directly, but by a combination
of a high-level controller and a low-level servo-loop depicted in FiguBe The inputsu; andu,,
generated by the tracking and stabilizing control laws of the second-ohdéned form system, are
transformed into desired accelerations forxhandY axes. These desired accelerations are integrated
twice to obtain desired position§ andY; which are commanded to the servo controllers for the
X andY-axes. These servo controllers are given in Appendix C.2. Compareaiputed-torque
methods, the local servo system of the ‘virtual internal model following nieib@ble to compensate
or suppress unknown disturbancegy.friction and cogging in the active joints, by the local servo
system. Moreover, the servo controllers are used to compensate theutliztritf the mass of th&
motor along the¥ motors.

The performance of the tracking and stabilizing controllers developedapt€h5 and Chapter 6
will be tested with and without the influence of friction in the joint of the rotatidimd. Compared
to parameter uncertainties and modelling errors, the frictional perturbatys p more dominant
role and considerably deteriorates the performance of the trackingtalpitizing controllers. The
tracking and stabilizing controllers do achieve some degree of robustiithssespect to parameter
uncertainties, however, the robustness with respect to friction in the jbititeorotational link is
marginal. Therefore, no parameter uncertainties will be consideredtheénee focus on the effect of
a friction torque acting in the joint of the rotational link. This allows us to investigiae robustness
properties of the tracking and stabilizing controllers with respect to frictBince the friction in the
actuated X-axis and Y-axes are suppressed by the servo-loop,al@sly consider the friction in
the unactuated rotational link. It is assumed that the friction of the rotatiokatdin be modelled by

2 . .
Trg= csl—Tarctariloo- 8)+c.0. (7.22)

wherec, andcs denote the static (Coulomb) and viscous friction coefficients, respectiVaby sim-
ulations of this chapter are performed using the dynamic model (7.2). Thelmatameters are
chosen such that they approximately match the parameters that have keiardfrom the identifi-
cation procedure in Chapter 8. These model parameters for the dynamat (n@&j, are summarized
in Table 7.1. It should be noted that the inettia: 13+ mgl2 has not been identified, but has been

parameter value unit parameter value unit
my/Km 0.3994 [A-s?/m] | my/km 0.1231 [A-s?/m|
A 0.1372  [m|] D 0.60 [m]

ms 0.04 [ka] I 0.15 [m]

I 0.0008 [kg-m?] Km 74.4 IN/A]

Cs/! 0.3 [1/57] o/l 0.1 [1/(rad-s)]

Table 7.1: Simulation parameters H-drive system

approximated using the identified valueotusing the known massi and length of the rotational
link. The only parameters that need to be identified are the paramgteng/kyn, my/km, cs/I and
c/l.
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In the simulations of this section we want the underactuated H-Drive maniptddialow a pre-
defined path(qq,dq) € € x R3. The joint position of the rotational link should follow a trajectory
(rxd(t),rya(t)) and the link orientation to follow a trajector§y(t). This reference trajectorg =
[rxd(t),ryq(t)], contained in the configuration-spéée can be transformed into a reference trajectory
&4 for the second-order chained form system. A feasible persistently expitiriodic trajectory, with
zero initial velocity, for the second-order chained form system is giyen

é14(t) =ricogant), &xq(t) =racogwpt),

r1ro0? raro? (7.23)
t)=——"-—=-co0 —wp)t) + ————cCo +wp)t).

£0(1) = Sy — g2 SN (@~ @) 5 v oS (@t @)t)

The corresponding inputs are given by (t) = —riw? cog wit) anduyg(t) = —rws cog wpt), with
w1 # wp. If w1 = wy, then the solution is not periodic and therefore the ease wy is omitted. This
reference trajectory is persistently exciting, and the resulting refeteajeetoryqgq for the mechanical
system (7.4) is given by

rd(t) =ricoqant) — A (coqarctarfrocogapt))) — 1), (7.24)
ryd(t) = Z(r%—ai)? cog(wy — wp)t) + Z(ra;r%ai)z cog(wy + wp)t) — A sin(arctarfrocog ant))),

64(t) = arctarfrocoq wyt)).

This previous equation defines a class of trajectories that depend oaltles vf the parameters,
r, wi andwy. In the simulations of this chapter, we have selected 0.4, r, = 0 andw; = 1 and
w, = 0. This means that we try to track a trajectory in which the joint of the rotationalnfioves
along a straight line while the link angle is zero. The resulting trajectory isdiye

rxd(t) =ricogwt), ryq(t)=0, 6q(t)=0. (7.25)

We selectd; = d» = 0 in the virtual inputxy; (5.5) anddz = d4 = 0 in the controllenu, (5.7). The
linear time-varying tracking controller is then given by

Up = Ugg — ka (&1 — &1d) — ko (&1 — E1)

L . 7.26
Uz = Upg — G3(t) (&2 — §2d) — Ga(t) (&2 — &2d) — Gs(t) (&3 — &3d) — Ge(t) (&3 — &3a)- (7:20)
The time-varying feedback coefficients in (7.26) are given by
Ga(t) = ksKeUiy(t) + (Ks + Ka) (Ks + kg Uiq (t) + (5ks + 3Kg) U (t) Uzq (t) + Kaka
Gy(t) = (ks + kG)UEd (t) + (ks +ka)
Gs(1) = kekekakati (1) + kst (1) + (Skskotily (1) + 2ks(ka +ka))ui (1) 727

+ (3kske (ka + ka)uZ, (t) + 2kskaka)U1g (t) + BkskeUig ()02, (t)
Gi(t) = ksks(Ka -+ Ka) U4 (t) + (Ks + ko) kakatsa (t) + (5ks -+ ke)uZ ()
+ (BkskeUy (t) + (K3 + Ka) (3Ks + Ks))Una (1),

whereu(l'é) (t) denotes thé&-th derivative ofuiq(t). The tuning of the control parameters requires some
effort because the parameters have to be chosen such that thelolmgagstem is# -exponentially
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stable and, additionally, such that the link angle stays betweef2 andr/2. Otherwise, the co-
ordinate transformation is not well-defined since a singularity occufs=att-/2. The tuning pro-
cedure proceeds as follows. First we determine paramkieasdk, that achieve good tracking of
the &,-subsystem. It suffices to seldgtandk, such that the characteristic polynom$H- kos+ kq
is Hurwitz. By choosing these values sufficiently large, we can assutdh@gerturbation term
&2(up — ugg) in (5.1) becomes small sufficiently fast. In the next step, we select panarkgite and
ks + k4 that stabilize the tracking-error dynamics&f Sinceé; is a virtual input in the backstepping
approach that is used to control thedynamics, the gainds, ks) should be chosen sufficiently large.
Finally, parameters valudg andks have to be selected that stabilize faedynamics. The latter step
is the most important one since they determine the convergence &f-thaamics, which can not be
controlled directly.

In the simulations, we have chosen the control parameters to be equal srdnegper values that
were used in the experimental results of the following chapter. Thesmptavalues are given by

ki =4, ko =22, kaka = 40, kg + ks =9, ks = 5, kg = 100.

The parameter; andk, can be chosen rather small since the perturbation fgrim small for small
values ofé, and the reference value &g is zero. The positive control parametégk, andkz + ks
resulting from the backstepping approach, determine the convergétimetoacking-error dynamics
of & and these dynamics correspond to the link orientaflonThese parameters are chosen such
that the tracking-error dynamics & contain a complex pole pair given by4.5+ 4.44i. Since the
dynamics off may be influenced by friction, which can not be compensated directly, weedtsen
kskq andks + kg sufficiently large in order to prevent stiction of the link. In the simulations withou
friction the gainksk,, typically, has to be chosen larger than 16 and the kaink, larger than 8.

The damping in théz-dynamicsj.e.,the parameteks, is chosen to be large in order to reduce the
magnitude of the excursions that the system makes in the direction gf teerdinate. The positive
parameterss andks also determine the convergence of the tracking-error dynamics of theecha
stateéz and its corresponding mechanical stgteThese values have been chosen sufficiently large
to guarantee convergence of the s@teBecause thés-subsystem is stabilized using a backstepping
procedure in which we back-step through fiedynamics, the>-dynamics only converge after the
tracking-error dynamics of; have been stabilized. However, choosing these values too large may
result in the link orientation passing through the singularity péirt +1/2 of the coordinate and
feedback transformation.

The initial condition of the system is chosen to[bgry, 6] = [0,0,—20rt/180, i.e., the joint of
the rotational link starts in the origin and the orientation of the link is -20 degiHgs corresponds
to an initial tracking-error o€ (0) — 4(0) = [-0.05,—0.36,—0.01,0,0, 0] for the chained states. The
robustness of the closed-loop system against parameter perturbatibnstwe tested. Although,
the closed-loop system is robust to sufficiently small parameter uncertathées/stem is not robust
with respect to perturbations such as friction and cogging. The frictiqquégrthat is present in the
rotational joint of the link, has a greater influence on the performanceecfytbtem than parameter
uncertainties. Therefore, only the robustness with respect to frictioneimafational link will be
considered.

As mentioned earlier, the numerical simulations are performed with and withadellimg the
influence of friction in the rotational joint. This allows us to investigate the rvtmss properties of
the controller. Note that the perturbatifn andA, affecting theé;- andé>-dynamics, see (7.17), can
be suppressed by choosifig, kz) and(ks, ks) sufficiently large. In fact they can even be compensated
directly, provided that the friction parameters are known. The paramg@els) should be chosen
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sufficiently large such that good convergence of the st&fes obtained in spite of the perturbation
Agz.

7.4.1 Simulation without friction in the rotational link

Consider the situation in which the joint of the rotational link is frictionless. Thiamsehat the
coordinate- and feedback transformation bring the mechanical systethégatended chained form.
The result of tracking the trajectory of a straight line with initial conditiiggry, 8] = [0,0, —2071/180

is shown in Figure 7.4. Note that the control currents from the servodo®pnly sent to the H-Drive
after 1 second. Disabling the control of the H-Drive beforel s allows us to check the initial value
of the input currents. These non-zero initial values of the input ctgren— iviq, iy1 — iy1qg together
with the non-zero initial values; — u;g andu; — uyq are caused by the non-zero initial valug(0)
of the reference input to the chained form system.

From the simulation it becomes clear that the trajectory is successfully traffezcapproximately
10 seconds. The corresponding chained form coordinates and swgushown in Figure 7.5. The
trajectories of the tracking-error dynamics are asymptotically stable aneigmnto the origin with
an exponential decay rate. Therefore it is concluded that the traekingdynamics of the extended
chained form system are globallye., on the complete state-spaR&, % -exponentially stable. The
original mechanical system is onl¥” -exponentially stable on the subspatevhere the coordinate
transformation is well-defined. The simulation result shows the validity of thiu&l internal model
control" approach in which the system is not controlled directly but by a gmatibn of a high-level
controller and a low-level servo-loop.

7.4.2 Simulation with friction in the rotational link

The performance of the tracking controller is also simulated under the igBuehfriction in the
joint of the rotational link. It is assumed that the friction can be modelled ussighplified model
given by (7.22). The friction parameters of the assumed friction chaistotg7.22) are normalized
with respect to the inertinand are given in Table 7.1. The values of the friction coefficientnd
¢y are in the order of magnitude of the normalized viscous and Coulomb frictieficents of an
H-Drive manipulator available in our lab. The result of tracking the trajgatoder the influence of
the friction torque is shown in Figure 7.6. The simulation model (7.2) includesdbpling of mass
between the X-axis and the Y-axes. However, the influence of this cgupiimass is very small and
the difference between the currents to the Y1- and Y2-axis is hardly visible

The coordinates of the extended chained form system are shown ireFigtwr Clearly, the
tracking-error dynamics are not -exponentially stable, and the trajectory is not perfectly tracked.
In fact, after about 10 seconds the system performs a stationary ijgariotion around the reference
trajectory. This periodic motion is caused by frictional perturbations actitkidrperturbed chained
form system given by (7.17). The perturbation terms in§heand ,-dynamics are suppressed by
time-invariant parts of the tracking control input andu,. The main difficulty, lies with the pertur-
bationAs in the é3-dynamics. Since this perturbation term can not be compensated thenmemfoe
of the tracking controller is considerably deteriorated. The perturb@tigorevents the coordinate
&3 from converging to zero. Moreover, this perturbation term can noobepensated by the virtual
input & since the perturbed chained form system is not in strict-feedback fosra donsequence,
the virtual inputé, from the backstepping procedure also does not converge to zeritheusgstem
performs a periodic motion around the desired reference trajectory.

Approximate cancellation of the perturbatifgis possible by selecting large values for the gains
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ks andkg (high gain reduction). The high gains may, however, cause the systgopttoazh the sin-
gularity of the coordinate and feedback transformatiofi at+71/2 and the influence of the gains on
the performance of the closed-loop system is not completely understoadrtain cases, increasing
the gainsks andkg results in a smaller tracking errdg — 39 but, in general, this will also results
in a larger tracking-erro€, — &,q. Similarly, increasing the gairigks andks + k4 does not improve
the performance since thig-subsystem is not asymptotically stable anymore. Since the tracking-
errors of&, — &g and &3 — &394 are coupled, simply increasing the gains may even result in larger
tracking-errors. In other words, due to the backstepping procedurrade-off has to be made be-
tween the tracking-error id3 and the tracking-error i§,. Although the closed-loop system is not
J -exponentially anymore, the tracking-error dynamics are globally unifoutilgnately bounded
(UUB), see Chapter 3, meaning that the tracking-errors remain bouhibée that this UUB property
only holds on a subspa& where the coordinate transformation is well-defined.

The closed-loop system is more susceptible to static friction than to viscotieririo the rota-
tional joint. This can be understood from the fact that the referencetoajeincludes a desired value
of zero for the orientatior®, and the magnitude of the viscous friction becomes smaller when the
system is closer to the desired reference trajectory. The magnitude dhtleefisction remains the
same even when the system is very close to the desired trajectory and oislyes(in the model) for
a zero angular velocity d.

7.5 Feedback Stabilization

This section is concerned with the feedback stabilization problem for theraciiated H-drive ma-
nipulator. In the simulations we wish to stabilize the joint position to the origiiry) = (0,0) and
the link orientation td@ = 0. The controller is given by

Up = —ki&1 — ko&y + (&1, &1, &3, E3) sin(t/g) (7.28)

. 2(ks€3+ koéa)
= —kakadz —kad —kaky —————=
o= —hokado —kado —koka R

whereé denotes the state of the second-order chained form and the homoge@oeoh (&1, &2, &5, &6)
is given by

sin(t/e€), (7.29)

(&, &1, &3, &) = \ €2+ E2+ (&3] + &, (7.30)

The controller parameters are chosen as
ki=4, ko =22, k=15 ks =15, ks =2, ks = 2, = 0.25.

The parameterk; andk, are the gains of the stabilizing part of the controller These should not
be chosen too large, since sufficient excitation of fielynamics is needed in order to be able to
stabilize theés-dynamics. The most important parameterslateks, ks andks. The parameterks
andk, are the gains of the backstepping or high-gain approach, and showldosen sufficiently
large. It is not clear which magnitude is sufficient, however vakges 10 andk, > 10 suffice. The
parametergs; andk, determine the convergence of the link orientation, wkilandkg determine the
convergence of thg-position of the unactuated link. Therefore, choodigagndks large will result in
large control effortal,. The frequency Ae has to be chosen sufficiently small. In simulation, values
of € < 0.25 work fine although the controller gains may be tuned to allow larger vafugs o

As in the case of tracking control, the gain-tuning procedure is complicatélebfact that the
system should not only be asymptotically stable, but also the mechanicalirnates should also



7.5 Feedback Stabilization

93

coordinatesy, ryq (-.) andry, ryq (-.)
0.5 T T T

0.25

[m]
o

-0.25

coordinated, 64 (-.)

0.9

[rad]

~0.4 I I I I I
0 5 10 15 20 25 30

(a) coordinates of the mechanical systegry, 6 (solid) andryg, ryg = 64 = 0 (dash-dotte}l

currentix —ixq

0.6 T

[A]
o

0.8

currentsy1 —iyiq andiyz —iyoq (-.)
T

~08 ! ! ! ! !
0 5 10 15 20 25 30

(b) inputs to the mechanical system,— ixg, iy1 —iy1d (solid) andiy, —iyoq (dash-dottejl

Figure 7.6: Tracking control of the H-drive system with fiom; coordinates and inputs of the mechanical

system



94 Computer simulations

coordinatesty, &14 (-.) and&s, &xq (-.)

0.5

0.25

[m]
o

-0.25

0 5 10 15 20 25 30

coordinatesty, &oq (-.)
0.9 ‘ ‘

~0.4 I I I I I
0 5 10 15 20 25 30

(a) coordinates of the chained form systdm,&», &3 (solid) andé&qg, &oq = &34 = 0 (dash-dotted

chained inputi; — uyg
0.04 T

0.02

[m/s?]
o

-0.02

-0.04 | | |
0 5 10 15 20 25 30
chained inputiy — Uyq
40 w w
20 -
N';‘ B
E. 0
_20 — -
—40 | | | | |
0 5 10 15 20 25 30

(b) inputs to the chained form system,— u;q anduy — uyq (solid)

Figure 7.7: Tracking control of the H-drive system with fion; coordinates and inputs of the chained form
system



7.5 Feedback Stabilization 95

control terméuy
0.2 T T T T T

[m/s?]

perturbation tern\ (&5, &)
T T

0.1 T T

0.05

[m/s?]
o

-0.05 .

01 I I I I I
0 5 10 15 20 25 30

Figure 7.8: Tracking control of the H-drive system with fian; inputé,u; and the frictional perturbation term
A3(&5, &) of the &3-dynamics, see (7.18)

remain inside a subspace Bf' in which the coordinate transformation is valid. This means that
choosing the controller gains to high, may result in the system passing thteegingular point at
0 = £11/2 of the coordinate and feedback transformation.

7.5.1 Simulation without friction in the rotational link

We start by considering the situation in which the joint of the rotational link isiémtess. This means
that coordinate- and feedback transformations bring the mechanitairsygo the extended chained
form. The result of stabilizing the H-drive system with an initial condition gi®y [ry,ry, 8] =
[0.2,0.25,—2571/180 is shown in Figure 7.9. The mechanical system is successfully stabilized to
the origin after approximately 40 seconds. The time-span of the plots is amestrto 40 second for
clarity of the plots. After 40 seconds, the systems performs a small and damspi#iatory motion
around the origin which vanishes asymptotically. Note that the controlmtgrfeom the servo-loop
are only sent to the H-Drive after one peridd= 11/2 of the time-varying part of the stabilizing
controller. Disabling the control of the H-Drive befdre- 11/2 s allows us to check the initial value
of the input currents.

The corresponding chained-form coordinates and inputs are sholigune 7.10. In Chapter 6
it was shown that the closed-loop systenpigxponentially stable with respect to the homogeneous
norm

P81, 61,80, 65) = €2+ E2+ 3+ E2+ |&s| + &, (7.31)

Therefore the homogeneous nohfx) (7.30), that is used in the controller (7.28), and the homoge-
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neous nornp(X) given in (7.31) have been shown in Figure 7.11 (a), from which we lodecthat
the homogeneous controller globaflyexponentially stabilizes the second-order chained-from.

Note that the convergence rate of the tracking controller is much fastetltbaonvergence rate
of the stabilizing controller. The tracking control problem was solved utige assumption that
the trajectories to be tracked are persistently exciting. The designed gammroller is a linear
time-varying feedback controller of which its convergence rate is detethbigehe persistence of
excitation condition. In the stabilization problem also a form of persistenex@fation is needed.
After all, the systems considered in this thesis can not be stabilized by anytsara@ven continuous
time-invariant state-feedback and the system is uncontrollable;fer0. The designed stabilizing
controller is a nonlinear controller with a time-varying part of which the amplitdglgends on the
magnitude of the state. This time-varying part is needed in order to be abléetiizstthe system.
However, the system becomes less persistently exciting as the systerackmsthe origin, i.e. the
magnitude of the state becomes smaller and therefore also the magnitude of thariing-part
of u;. Therefore, it is not surprising that the convergence rate of the litim@rvarying tracking
controller is better than that of the homogeneous stabilizing controller.

7.5.2 Simulation with friction in the rotational link

If we include friction in the unactuated linke,.g.(7.22), the performance of the stabilizing homoge-
neous controller is considerably deteriorated. As can be seen fromeRidi2, the closed-loop system
is not asymptotically stable. In fact, the system goes into a stable 'limit-cycle’ witingplitude that

is determined by the magnitude of the friction.

The corresponding chained coordinates and inputs are shown in Fidi8elt is clear that the
system is not asymptotically stable. Due to the perturbaligig,, &») the statefs does not converge
to zero, but instead, it performs a periodic motion around zero. Bedhas@me-varying parts of
the homogeneous controllers (7.28) depend on the homogeneous norrastitis in the oscillatory
behavior shown in the figure. In Figure 7.14, the values of the control {eu; and the perturbation
A3(&2, &2) of theés-dynamicscf. (7.18), have been plotted. The perturbation t&gt€2, &,) prevents
the statef; from being stabilized to the origin. It should be noted that, similar to the trackisg,the
coordinatest, and &3 are coupled due to the backstepping approach. This means that the amplitude
of the resulting "limit-cycle" can not be reduced by simply increasing the gditise controller. In
fact, since thes-dynamics are perturbed Hy;(&2, &2) there is a error in the stationary value &f
By increasing the gainls; andkg it may be possible to reduce this error, however, only at the cost of
increasing the magnitude of the oscillations in &elynamics.

It is not surprising that the continuous time-varying homogeneous comtdolés not stabilize the
system. Under the influence of friction in the joint of the rotational link, theéysbed second-order
chained form is given by (7.17). Itis clear that wherandu, are of degree one with respect to some
dilation, the system will not be homogeneous of degree zero with respea thlation with weight
r=(1,1,1,1,22). Moreover, the system is not in strict-feedback form. Therefore, teeaging
and backstepping results of Chapter 6 are not valid, and the homogeoeotroller may not be a
continuous stabilizer for the perturbed extended chained form.

At this point we have not included any simulations with the robust versienthe periodically
updated version, of the homogeneous controller. First of all, the refeusion is only robust with
respect to a class of perturbations that does not include friction. tnffam Proposition 6.2.1, it is
known that the perturbations for which the periodically updates controltebisst, only include drift
vector-fieldshg(x, £) = O(||x||), or in other words, every component of the drift vector-field satisfies
hoi = O(||x||?), which is clearly not the case when including static friction in the model. Asazge
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Figure 7.11: Stabilization of the H-drive system withouttion (left) and with friction (right); logarithm of the
homogeneous norms (7.30) (solid) and (7.31) (dashed)

the simulations with the robust homogeneous controller under the influerdetioin did not show
any improvement compared to the continuous homogeneous controllereffootie, the simulations
showed that the convergence rate of the robust homogeneous carnsrslightly worse than that of
the continuous homogeneous controller.

7.6 Conclusions

We have presented controllers for both tracking and feedback stabitizaitia second-order non-
holonomic system. This second-order nonholonomic system consists ofdemagtuated H-drive
manipulator. In the simulations, the performance of a linear time-varying trgadntroller and a
continuous periodic time-varying stabilizing controller has been investigdtied.performance was
tested with and without modelling friction in the joint of the rotational link.

The tracking controller yields#z -exponential convergence when the, to be tracked, trajectory
of the frictionless link satisfies a persistency of excitation condition. If friciio the joint of the
rotational link is modelled, the performance of the tracking controller is censioly reduced. In
fact, the tracking-error dynamics are not even asymptotically stable, dutabking errors remain
bounded.

The homogeneous time-varying feedback stabilizer achgegonentially stability of the closed-
loop system without friction. If however, friction is included in the model, tlesed-loop dynamics
are not even asymptotically stable. The closed-loop system performsoaipanotion around the
origin with an amplitude that is determined by the magnitude of the friction. The amglitiithese
oscillations around the origin may or may not be reduced by increasing the. ga some cases,
the amplitude can be reduced, but in general, reducing the oscillations iooonginate increases
the oscillations in another coordinate. Moreover, the gains can not beasen too much, since the
coordinate transformation is only valid fére (—7/2, 1/2) and this may lead to a singularity as the
link orientation reache8 = +11/2.

Concluding, the numerical simulations have shown that in the absence abdistes and un-
modelled dynamics, such as friction or cogging, the controllers achievexpgexted performance.
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A3(&2,&5) of the &3-dynamics, see (7.18)

However, if friction in the unactuated rotational link is included in the model, #dopmance is
considerably deteriorated. In the case of tracking, the closed-loaniga are not globally exponen-
tially stable. Instead, the friction term results in deviations from the desirgttoay. By performing
numerical simulations with different friction parameters, it turns out that kheed-loop system is
more susceptible to static friction than viscous friction in the rotational link. Thisiesin both the
tracking and stabilization case. Therefore, in an experimental setugatiefgction should be min-
imized. In the following chapter, the performance of the tracking and stalglizimtrollers will be
verified by application to a real-life set-up of an underactuated H-Driveipoéator.



Chapter 8

Experimental results

In this chapter, experimental results obtained with an underactuatedvd-Branipulator will be
presented. The experimental setup consists of an H-Drive servarsiisiehas been built by Philips’
Centre for Industrial Technology (CFT) as part of an Advanced Gorapt Mounter (ACM). This
H-Drive servo system is now available in the laboratory of the DynamicsCGuordrol Technology
Group. The H-Drive servo system is shown in Figure 8.1. In order taiolan underactuated system
that can be used for experimental verification of tracking and stabilizingra@lters, an additional
rigid rotational link is attached on top of the LIMMS along the X-axis. This uadtrated rotational
link is shown in Figure 8.2. The angle of the link is measured using an EROih8&fmental rotary
encoder manufactured by Haidenhain. This encoder outputs an indaeméh signal and has 5000
linecounts. An additional GEL214-TNOQO04 interpolator, manufactured éyord & Bauer, is used
with an interpolation factor of 10 to increase the resolution to 50000 couhesreBulting TTL signal
is used to obtain a readout in quarters of linecounts, giving the encaiheoeetical resolution of
3.14-10°° (211/200000) radians per count. A dSPACE system in combination with Matlab/Simulink
is used as a control system environment. The sampling rate of the systenoisasalue of 4 kHz,
higher sampling rates resulted in processor overrun errors.

Figure 8.1: The H-drive servo system.

In Figure 8.2 the unactuated rotational link is shown. The rotational link isrethto an alu-
minium plate that is attached on top of the LIMMS along the X-axis. It should bedrthat the joint
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connecting the link to the plate is passive, it has neither an actuator noke, laral the link rotates
freely. The incremental encoder is contained in a cylinder located jusivliBl plate. The link is
suspended using a conventional ball-bearing. The size of the beaasmghwosen to be as small as
possible in order to reduce friction. The plate containing the link together wéthaf-bearing and
the incremental encoder can be easily removed. The only additional cablis theeded is a cable
that transfers the encoder signal to the DSP and also supplies a voltadé|dfom the DSP to the
incremental encoder.

Figure 8.2: The unactuated rotational link.

At the tip of the link, an additional mass has been added to increase thenmassl inertia
| =13+ mgl? and, as a consequence, reduces the influence of the perturbatior(7.18). In the
numerical simulations of the previous chapter it was shown thattleeordinate of the link, and
its corresponding chained form coordindte are the most difficult to control. This is caused by a
perturbation term acting on the dynamics of the chained form coordfiatds can be seen from
(7.18), the influence of the perturbation is reduced by either an incoddlse massrg or the length
| between the joint and the center of mass (C.M.) of the link. By increasing tgéhlenthe link, the
distance from the joint to the center of percussion C.P. will also be inaed$e coordinate trans-
formation that brings the system into the second-order chained formesl lsesthe fact that a pure
rotational motion of the link can be obtained by rotating the joint along a circladifisA around
the center of percussion. If the distantgi.e. the distance from the joint to the C.P., is increased,
larger motions of the joint will be needed in order to control the position aiehtation of the link.
The H-Drive, however, only has a limited workspace in which the X-axdtae Y-axes can move
along a distance of approximately 50 and 100 centimeters, respectivelyefdre, in order to prevent
too large excursions of the joint positign, ry| during stabilization or tracking, we have chosen to
constrain the length of the link to a rather small value of approximately 15 cm.

As in the previous chapter, the tracking and stabilizing controllers are impteohasing a virtual
internal model following control’ approach. In this way, the servo-aultdrs can be used to compen-
sate the effect of the cogging forces, reluctance forces and frictitheiX and Y motors. Moreover,
the servo-controllers compensate the distribution of the mass of the X-maoth®/Y-motors. The
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dynamics of the LIMMS are assumed to be identical, and the Y1- and Y2-agetherefore con-
trolled by the same servo-controller given in (C.6). These servo-dersaesult in position- and
acceleration errors smaller than Gén and 015 m/s? along the X-axis and Y-axes. In different ap-
plications, a servo-accuracy up to approximatejyrd has been shown to be possible. In this thesis,
however, no feed-forward loop has been implemented and it is expeetethéhservo-accuracy can
be improved by adding feed-forward to the servo-controllers. In th&gheo sensitivity analysis has
been performed and it is not clear how the accuracy in the servo-ldeqtsathe control of the link
anglef. From simulations that have been performed with friction in the LIMMS and ttetiomal
joint, it follows that the influence of this servo-error along ¥andY axes is negligible compared to
the effect of friction in the rotational joint.

The origin & of the coordinate system is located(&t Y) = (—0.3,0.5) (near the center of the
H-drive setup) and the displacementsindry may be written asy = (Y1+Y2—-1)/2,ry=—-X—-0.3.
The coordinate system of the resulting underactuated manipulator, is §hBwgure 7.2. Because the
link is not actuated, but rotates freely, we obtain an underactuated meahsystem with three inputs,
i.e.,the currentsy, iy1 andiy» to the motors, and four generalized coordinaies, the positions X,
Y1, Y2 and the orientatio® of the link. Using the inputs currents to the X and Y motors, we wish
to control the longitudinal position, and transversal positiory of the rotational link, as well as its
orientationf. As mentioned earlier, the rotational link is connected to the X-motor with a batiige
and its dynamics are therefore influenced by friction. The nonholonomigti@nt is thus given by

Ti.0 (9)
mgl

whereA = | /(mgl) equals the effective pendulum length of the rotational link emddenotes the
mass of the link andl denotes the distance between the joint and the center of mass of the link. The
friction torque acting at the rotational joint is denotedtb)g(é). In order to reduce the influence of

the friction 1y g, the producf (mgl) = | should be large. This justifies the placement of an additional
an additional mass at the tip of the link in order to increase the moment of iheftla+ mgl? about

the vertical axis through the joint.

AB(t) —ix(t)sinB(t) +Fy(t) cosB(t) = , (8.1)

8.1 Parameter identification

Consider the underactuated H-Drive manipulator shown in Figure 7.2mBlsems of the rotational
link is much smaller than the masses of the LIMMS. Moreover, the X and Y moterscantrolled by
a servo-loop and the influence of the dynamics of the rotational link on thandigs of the X-motor
and Y-motors is assumed to be negligible. Therefore it suffices to cornbidgrartially feedback
linearized model given by (7.9)g.,

rx = Vx
fy =Vy (8.2)

§ = A (sin(8)vy — cos O)v,) + ?
The inputsvy, andvy represent the desired accelerations alongthandry-direction. These desired
accelerations are integrated twice, in order to obtain desired positionef&rahd Y motors, and the
resulting position error is used as an input to the servo controllers (Cdi¢. tNat the coordinate is
controlled by the two LIMMS along the Y-axes, while thecoordinate of the joint is controlled by the
LIMMS along the X-axis. In the experiments it is thus assumed that the sentmters compensate
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all nonlinearities and perturbations like friction, cogging, reluctancesend the distribution of the
mass along the X-axis over the Y-axes. These servo controllers coatpehs friction in the X and
Y motors, however, the friction of the rotational link can not be compensitedtly. The model

to be identified and the corresponding coordinate and feedback traragfon, needed to bring the
system into the second-order chained form, then only depend on ommgtar,i.e., the parameter

A=1/(m).

8.1.1 The location of the Center of Percussion

The distance\ between the passive joint and the center of percussion (C.P.) of theofegimg link

is the most important parameter in the proposed control design method. ohdinade transfor-
mation needed to transform the mechanical coordin@sgs,, 8) into the chained form coordinates
(é1,€2,&3) and to transform the chained form inputsandus into the desired acceleratiomsandvy

is given in Section 7.2 and only dependsonSinceA equals the effective pendulum length of the
link when treated as a rigid body pendulum suspended from the pasisiatfovalue can be obtained
form the periodl of the pendulum by the relation

2
A=g <l> (8.3)

21

with g denoting the gravitational acceleration. For the experimental underattdedzive manipu-
lator we obtain the parameter values= 0.745 andA = 0.138.

8.1.2 Linear least-squares identification

The parametek can also be identified by moving the X and Y motors along specified periodictraje
tories and recording the angfeof the link. Suppose that the friction g can be approximated by a
continuous model given by

Trg = —Cyg- 0 —Csp <7—2_[> arctar{100- 6). (8.4)

The system is then linear in the parametprs [1/A,cve/1,Cs0/1]T. We rewrite the system into the
linear form8 = A(vy, vy, 6,0)p as

6= (sin(B)v—cogB)v) —6 — (7_21> arctar{100- 6) ] p. (8.5)

By performing sinusoidal motion$xq(t),ryq(t)] along thex andy direction and recording the posi-
tionsry andry, the accelerations, ‘andry can be obtained by differentiation. The resolution of the
encoders of the LIMMS is sufficient high, and the level of the measurerase is sufficiently low,
to obtain reliable identification results without additional filtering. The accéterd can also be ob-
tained by numerical differentiation, but this amplifies the measurement ndmefbre, depending
on the measurement data, it may be necessary to filter the accelerationvagitpndbr example, a
fourth-order Butterworth filter. This filtering is done in forward and b&akd direction in order to
obtain zero phase distortion.

By recording the link anglé, differentiating twice and performing additional filtering, we can
collectn samples and form a set of linear equations

®-p=y, (8.6)
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with unknown parameter vectqr= [1/A,cy/l,Csp/1]" and

AV (t) Vy(tr), B(tr) 8(ty)

By selecting the sinusoidal trajectory such that the resulting meatiix nonsingular, an estimate of
the parameter vectgr can be found by using the pseudo-inveise,

p=®*y (8.7)

where
¢ =T (PpT) L

Initially, we performed sinusoidal motiong(t) = —0.3cogmt) andry(t) = —0.2cogt) in the x
andy direction respectively. Using this trajectory, we identified the normalizedianand friction
parameters of the link, as well as the normalized parameters ix dnely direction. The obtained
parameters are summarized below.

A = 01364 [m], cp/l = 0.1552 [1/(rad-s)], cs/l = 1.3185 [1/&)] (8.8)

The viscous friction in the rotational joint is much smaller than the static frictiorsussng a link
massmg = 0.04 [kg] and a length = 0.15 [m] between the joint and the center of mass of the link,
i.e., using the relation = (mgl)A, these parameters correspond to a viscous friction torque of about
0.12-10°3 [Nms/rad and a static friction torque of aboutQl 103 [Nm.

Through numerical simulations it follows that the tracking and stabilizing cbetsoare more
susceptible to the static friction torque in the rotational joint than to the visca®fr torque. In
some initial tracking and stabilization experiments, it turned out to be very ulfffic find control
parameters for which the closed-loop system was stable and additionallyhich the system re-
mained inside the workspace of the H-Drive. Therefore we tried to eethe static friction in the
rotational joint by removing all grease from the ball-bearing and replatimigh a different lubricant.
This considerably reduced the static and viscous friction in the rotationa) gswill be seen in the
sequel.

The link dynamics are not only influenced by friction but also by a gravitatirque resulting
from a misalignment of the plane of rotation of the link with the horizontal plaaethe equipoten-
tial plane of gravity. The misalignment can be caused by flexibility inside theblealfing resulting
in a misalignment of the axis of rotation, or from a misalignment of the plate thahatdhbe link to
the LIMMS of the X-axis with the equipotential plane of gravity, see Figure Blizse perturbations
result in a preference of the rotational link to rotate in the direction of the fEatential energy. In
the current experiments, this gravitational perturbation is compensatdittiyrs resulting from the
static friction in the link, and therefore does not influence the existencguiliteria. Additionally, the
friction characteristic of the link may not be symmetiie,,when rotating in the positive direction the
magnitude of the friction torque may be larger than its magnitude when rotating e gjadive direc-
tion. These perturbations can be understood from the following expetifgmperforming a tracking
experiment with the initially identified parameters and using the measured daltedda the param-
eters given in Table 8.1. For completeness, we have also included the atepsifametensy, andm,,
denoting the effective mass in the directiorrpéndry, which have been used in the simulations of the
previous chapter. The corresponding condition number and deternohting information matrix®
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parameters value unit parameters value unit
my/Km 0.3263 [A-&*/m] | m,/knm 0.1406 [A-s*/m]
A 0.1373 [m] I 0.0008 [kg-m?]
Cvg /| 0.0217 [1/(rad-s)] | csp/I 0.3320 [1/7]

Table 8.1: Parameters of the dynamic model (7.14) of the nawtigated H-Drive manipulator

are given by con@p) = 9.62384 and log 10®|) = 7.7633. This identification result shows that both
the static and viscous friction torques have been considerably redyaeglacing the grease in the
ball-bearing by a finer lubricant. The friction is reduced to a viscous fridiioque of approximately
1.78-107° [Nms/rad and a static friction torque of approximately73- 10~4 [Nm]. The measured
and estimated acceleration and the identified friction torque (8.4) together witlesidual friction
torque given by

~  Sin(8)iy—cog )iy

06—

Ae

whereA¢ denotes the identified value af, are shown in Figure 8.3. It is clear from the figure that

(8.9)
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Figure 8.3: Identification of the symmetric friction chaexistic (8.4)

an additional negative disturbance torque is present. This disturbarmpestbas a magnitude of
approximately QL535[1/s%] when normalized with respect to the ineittiar equivalently a magnitude

of about 1264-107° [Nm]. It is expected that this identified friction characteristic is caused by a
combination of gravitational perturbations, resulting from a misalignment gbldree of rotation of

the link with the horizontal plane, and an asymmetric friction characteristic abtladéional joint.
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In order to capture the gravitational perturbations it is necessary to igentibnlinear friction
model. Suppose that the plane of rotation of the link is misaligned with the horizdate by a
rotation angleg, about the positivec-axis and an angley, about the positivg-axis. The additional
gravitational torque that is generated can be written as

T, = —mggl(cog0)sin(¢,) —sin(0) sin(¢)) (8.10)

whereg denotes the gravitational acceleration. Sigeandg, are constants, the least-squares method
can be used to identify this gravitational disturbance torque. An Extendédat Filter (EKF) can

be used to identify the nonlinear friction characteristic of the link, includingStridbeck effect, in
combination with the additional gravitational disturbance (8.10). This casdéfiuwhen it is possible

to compensate the friction and gravitational disturbances in the rotational Jtiistmay be done by
adding a small motor at in rotational joint of the link, that is only used to compenba effect of
perturbations.

Remark 8.1.1. Instead of adding an additional motor at the rotational joint to compensateithe f
tional and gravitational perturbations, which makes the system fully actuiatedght be possible
to compensate the frictional disturbances by using the currgrdadiy to the LIMMS. In fact, by
transforming the system to the second-order chained form given bg)(The perturbations affecting
the &;- and é;-dynamics can be fully compensated provided that the friction characteasstreell
as the gravitational disturbance torque are known. Because the clsé@est; andé, correspond
to the mechanical coordinategand 8, respectively, this means that the perturbations affecting the
dynamics of the longitudinal positiag(t) and the link orientatio®(t) can be compensated. In view
of the results in Section 7.3, it is not yet clear whether the perturbations iéstdgnamics or its
corresponding transversal positioncan be compensated using the input curreatandiy to the
LIMMS. As the linearization of the second-order chained form systerarat@quilibrium points is
not controllable, no compensation is possible at equillibrium points. Thexeiliois expected that
compensation of the perturbations is not possible and no identification resmtltgere obtained with
an EKF will be presented.

8.2 Experiment with the Tracking Controller

The friction torque and the gravitational disturbance torque, acting in thigjitine rotational link, act

as perturbations to the second-order chained form system. Thene®do not expect the tracking-
error dynamics to be globally? -exponentially or even asymptotically stable. However, we do expect
the system to be uniformly ultimately bounded (UUB), meaning that the systemsnadorg the
trajectory with bounded tracking-errors.

In this section, the results of an experiment with the tracking controller iepted. In the experi-
ment, we intend to stabilize the underactuated H-Drive manipulator to a petlsisteriting trajectory
given by (7.24). The parameters of this trajectory are selectegd-a9€.35 ,r, =0 andw = 0.5. The
resulting reference trajectory in mechanical coordinate and chainedcimordinates is given by

rxd(t) = 0.4sin(t), ryd(t) =0, B4(t) =0
1d(t) = 04sinlt),  &aq(t)=0,  &ua(t)=0
The trajectory is thus persistently exciting., (5.4) holds, and we can apply the tracking controller

(7.26) to stabilize the system to the reference trajectory. The equationd3 (8ptesent a trajectory
along thex direction in which the Y motors perform a sinusoidal motion with a frequendy/@2m)

(8.11)
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Hz while the angle of the link remains equal to zero. This trajectory can bgliofias representing
a pendulum on which a varying gravitational field aéts,, when the acceleration in thedirection
is positive, the system acts as an inverted pendulum and when the atioelé@rahe x direction
is negative, the system acts as a conventional pendulum. The gravitdt@das maximal at the
end-points of the trajectory and is zero at points whiefe = 0.

Initially, it was very hard to find a set of control parameters for which tlosex-loop tracking-
error dynamics were uniformly ultimately bounded (UUB), see Definition 3.5deuthe influence
of the perturbations and, additionally, would keep the system within the laowiod the workspace.
In fact, for some control parameters, thyecoordinate would become too small and the system would
reach the boundary neaf= —0.3. In order to reduce the motion in tlyedirection, it is necessary
to increase the damping in ti§g-dynamics by choosing a large vallae The control parameters are
chosen as follows

ki =14, ko =2V2, k3 =40, ks =9, ks = 5, ks = 100

Before the start of the experiment, the system is initialized to the equilibrium poiah by
[rx,ry, 8] = [0,0,—0.35], i.e., the joint position error is zero and the link has an orientation error of
approximately—20 degrees. The experiment is started after the servo-controllerbbanesnabled
at timet = 1 [g]. The result of stabilizing the system to this trajectory is shown in Figures 8 #hid
figure, the tracking-errar, — ryq is small and the difference betwegnandryg is hardly visible. The
tracking-errorgy —ryq and 6 — 6y are larger and do not converge towards zero and thus imply that
the tracking-error dynamics are not asymptotically stable. The systemrperfa periodic motion
around the desired trajectory with a maximal deviation &fé@d 12 cm in the coordinategandry
respectively. The maximal deviation in the orientatift) of the link is approximately 35 degrees.
By comparing the experimental results in Figure 8.4 to the simulations results ireFidiit follows
that the experimental result correspond well with the simulation results. d@tiedic motion due to
the perturbations, around the periodic reference trajectory, is quaditative same and the maximal
deviations are almost equal. The main difference between the experimentiisrand the simulation
is visible in the currentsc —ix g, iy —ly1,4 andiy —iy2 4. The currents in the experiment are generally
larger and show the influence of un-modelled dynamics such as, coggingeasurement noise.

In Figure 8.5 the chained form coordinates and inputs have been shidwentracking-errors of
the chained coordinates reach their maximal values after the system Isasl plas pointy(t) = 0
whereuyg(t) = 0. At this point the persistently exciting signajq(t) reaches its zero value and
the tracking error of thés coordinate increases. This induces an increase of the tracking érror o
&, since the system uses the coordingtei.e., the virtual input in the backstepping procedure, to
reduce the tracking errors in tigg coordinate. By comparing the experimental results in Figure 8.5
to the simulation results in Figure 7.7 it follows that the experimental resultsspmne well with
the simulation results. The input — uq corresponds very well to the simulation results. The main
difference is visible in the input, — uyq. The inputu, — Uyq is influenced by measurement noise and
guantization errors in the measurement of the link-aigl8ince the damping has been increased by
choosing a large value; = 100, these measurement noise and quantization errors are amplified. The
chained input$u;, u,] are transformed into desired accelerations and integrated twice. Tiegrtbiis
amplification does not cause any problems because the integration stepssagthe high-frequent
dynamics that are present in the desired accelerations. In order to epeovisibility of the signals,
the the inputgus, up] in Figure 8.5(b), have been filtered (off-line) using an 8th-order Butigth
filter with a cut-off frequency at 1kHz].

As expected from the simulation study, the main difficulty lies with stabilizingrgher, equiv-
alently, theés coordinates. The system tries to reduce the tracking error irf4lemordinate by



8.2 Experiment with the Tracking Controller

111

coordinatesy, ryq (-.) andry, ryq (-.)
0.5 T T T

0.25

[m]
o

-0.25

coordinated, 64 (-.)
0.9 T

[rad]

~0.4 I I I I I
0 5 10 15 20 25 30

(a) coordinates of the mechanical systegnry and8 (solid), ryq, ryqg = 64 = 0 (dash-dotteyl

currentix —ixqg
0.6 T

0.3 n

5 10 15 20 25 30

currentsy1 —iyiq andiyz —iyoq (-.)
0.8 T T T

(b) inputs to the mechanical system,— ixg, iy1 —iy1d (solid) andiy, —iyoq (dash-dottejl

Figure 8.4: Tracking experiment of the underactuated H&Dmanipulator; coordinates and inputs of the me-

chanical system
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Figure 8.6: Tracking experiment of the underactuated Hdmanipulator; inpug,u; and the perturbation
A3(&5,&2) (dashed) versus the estimated perturbatig(é,, &>) using the friction characteristic
(8.4) withc, = 0.1 andcs = 0.3

performing a periodic motion in which the link orientati@qt) acts as a virtual input in the back-
stepping approach. The perturbation tekggiven in (7.17) prevents the stafge from converging to
the origin. The system thus goes into a stable limit cycle with an amplitude that isnileteirby the
magnitude of the friction. In Figure 8.6, the perturbation tésn= 3 — &,u; of the perturbed chained
form system is shown together with the estimated perturbé!j;onThe estimated perturbati(ﬁg is
obtained from (7.18) by assuming a continuous symmetric friction charaatgBs4) with friction
parameters given by, = 0.1 andcs = 0.3. The difference between the actual and estimated value of
A3 are caused by a gravitational disturbance torque, measurement ndigeedact that the friction
characteristic can not be perfectly modelled by (8.4). To check whetharrthctuated link is influ-
enced by a gravitational disturbance torque, the experiment has hgsatad with a positive initial
angle. If the friction characteristic of the rotational link is symmetric and neitational disturbance
torque is present, then the response of the system should show a simadaidoebut mirrored with
respect to the time-axis. It turns out that if we repeat the experiment withsigiye initial angle
8(0) = 20 degrees, then the system still ends up in the lower-half of the workggac 0), similar to
the case with a negative initial ang®&0). This is an indication that the link dynamics are influenced
by an additional gravitational disturbance torque.

The errors in position and acceleration of the low-level servo-looplarens in Figure 8.7. The
position errors are in the order of magnitude of[5@n] and the acceleration errors are in the order
of magnitude of QL [m/s?]. These acceleration-errors may be reduced by adding feed-fbowar
cogging compensator to the servo-loop. However, based on numendhsons with comparable
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Figure 8.7: Tracking experiment of the underactuated H«manipulator; position and acceleration errors in
the servo control loop

acceleration-errors, we do not expect smaller acceleration-erromptove the control performance.

Remark 8.2.1. An important question that might be asked is how to improve the performance of
the controller. First of all, the performance may be improved by additiorialtgaing in which the
control parameters of the tracking controller, as well as the servoatlensy, are fine-tuned to improve
performance by reducing the tracking and/or stabilization errors. Beasimg the proportional gain
ks, it is possible to reduce the tracking error in the transversal posifionits corresponding chained
stateés. However, in most cases, this results in larger deviations from zero in thargle6(t) or the
chained staté,. Therefore, the tuning of the controller gains should be a subject thffuresearch.
Secondly, the performance may be improved by increasing the progudty increasing either the
massyg or the lengthl, or both. Since the workspace of the H-Drive is limited we would like to
maintain the same lengthand only increase the masg by adding a larger weight at the tip of the
link. A problem which occurs is that this additional weight also increasesfteet of gravitational
disturbance torques acting in the rotational joint. Finally, the performantieeofontroller can be
improved by reducing the friction and gravitational perturbation torquiisgain the rotational joint.
This would require the use of either a magnetic bearing or an air-bearing.

8.3 Experiment with the Homogeneous Stabilizing Controller

In the following experiment, we consider the stabilization problem for the natigated H-Drive
manipulator. The system is to be stabilized to the originry, 6] = [0,0,0]. Since the homoge-
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neous stabilizing controller has been designed under the assumption tphattabations, such as
friction and gravitational torques, act on the system, we do not expeslygiem to be globally-
exponentially stable. Instead, we aim at achieving a form of practicalistab which the system
stays sufficiently close to the origin. In the simulations, the closed-loop sysgnshown to exhibit
a form of limit-cycling behavior under the influence of friction in the rotatiolnal. In the exper-
iments, besides friction and the fore-mentioned gravitational disturbangpeemrwe also expect to
have perturbations such as measurement noise, quantization errarthé&dink angle encoder, nu-
merical errors resulting from differentiation and filtering of signals, defagm the dSPACE system
including the amplifier and cables and accelerations errors in the serpolloie assumed that fric-
tion, cogging and reluctance forces in the LIMMS are completely compenbgtide servo-loop. By
achieving a form of practical stability, it may be possible to bring the systemairgtable motion
around the desired equilibrium point.

Before the start of the experiment, the system is initialized to the equilibrium poiah by
[rx,ry, 8] = [0.20,0.20,—0.36]. This corresponds to an initial joint error of 20 cm in each direction
and an initial link orientation error of approximately20 degrees. The stabilizing homogeneous
controller is given byf. (7.28)),

Up = —ki&1 — kolp + \/ff-ir 5124‘ | &3] + |&3]sin(t/¢)
VER+HE & +1&)

The control parameters are equal to those in the simulations and given by

Up = —kaka&s — ka2 — kaks

ki=4, kp=2V2, kg =15, kg = 15, ks = 2, kg = 2,& = 0.25.

In Figure 8.8 we have shown the result of stabilizing the system with the hareoge controller.
The simulation is only started after one complete pefiod 2rte of the time-varying part of the con-
trollers. Att = 11/2 the servo-controllers are enabled and the system tries to stabilize tha sysie
coordinatesy oscillates around the origin with an amplitude of approximatebyc?n and the coordi-
natery oscillates around an average value of approximately -3 cm with an amplitegpodximately
2.5 cm. The orientatio(t) of the link oscillates around the origin with an amplitude of 11 degrees.

By comparing the experimental results in Figure 8.8 to the simulations results ireFgLe it
follows that the experimental results correspond well with the simulation restilie results are
gualitatively the same, but the magnitude of the signals are different. Until tharistant of approx-
imatelyt = 12 [s] the results are similar, but after that time-instant the coordigdiecomes negative
while it became positive in the simulations. Additionally, the maximal deviation in thedmile 6
is approximately 10 degrees smaller in the positive direction and approximgisdy ie the negative
direction. This is an indication that the system is also influenced by an addigiawitational distur-
bance torque. After approximately= 20 [s], the system performs a periodic motion around the origin
with slightly larger deviations than in the simulation. The currégidy; andiy, correspond quite
well with the qualitative results that were obtained in numerical simulation. Therts are, how-
ever, larger than the values in simulation. This is caused by the influencerbdelled dynamics
such as, cogging and measurement noise.

The chained form coordinates and inputs are shown in Figure 8.9. Itds ttlat the system is
neither asymptotically stable, ngrexponentially stable. Instead, the system performs a periodic
motion or limit cycle around the origin. At approximately= 20 [g] the coordinat&s has converged
to a nearly constant negative value. In the simulations, the chained catrdinconverged to a
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nearly constant and positive value. This is an indication that the systenmueno#d by an additional
gravitational torque and the friction characteristic can not be modelled Iyjrtiified characteristic
that is used in the simulations. The perturbatiencan not be compensated and prevents&he
coordinate from converging to zero. The amplitude of the resulting limit-cyctietermined by
the magnitude of the perturbatidy and the controller gains. Note that the servo controllers do
not compensate the perturbatiofis and A, resulting from the friction in the rotational joint. The
perturbationg\; andA; are only suppressed by the time-invariant part of the stabilizing controllers

In Figure 8.10 the inpug,u; is shown and the perturbatiaky has been plotted together with
the estimated perturbaticfkg. The estimated perturbatid}g is obtained from (7.18) by assuming a
continuous symmetric friction characteristic (8.4) with friction parametersidiye, = 0.1 andcs =
0.3. The inputé,u; tries to increase the value % but does not compensate for the perturbatign
that prevents convergence of the s@jéo zero. In Figure 8.10itis clear that the system is influenced
by an additional gravitational disturbance torque and, additionally, theofricharacteristic may
not be symmetric. This gravitational disturbance torque is negative as beudpected from the
parameter identification procedure at the beginning of this chapter.

The homogeneous noré&) given in (7.30) angb(x) given in (7.31) of the second-order chained
form system are shown in Figure 8.14(a). The system is clearly not dastiogly stable, however it
is uniformly ultimately bounded.

8.4 A heuristic modification of the stabilizing controller

The convergence of the chained coordingieowards the origin can be improved by increasing the
gainsks andkg of the controller. Although the deviation of the coordin&tgrom zero is decreased,
the oscillations in the chained coordindtethat acts as a virtual input in the backstepping approach,
are increased. An additional problem that occurs when increasingiihgkg andks is the fact that the
guantization errors and measurement noise of the incremental rotargezribat measures the link
angled(t) are amplified. In situations where the homogeneous n\(/nxﬁJr X3+ |Xs| + | x| becomes
small, the gains multiplyings andés become even larger. These amplified disturbances prevent the
system from remaining close to the origin, since they induce high-freaseiitations in the control
inputsu; anduy, as well the input currents andiy. The effect is more noticeable in the curreits
andiy; since, for small angle@, the dependence of these inputs on the angular vel6cisylarger
than in the inputy, see (7.11). In order to prevent the gains from becoming too largamearigin,

we modify the homogeneous stabilizing controller as follows

Up = —ki&1 — koly + \/512+ 512+ | &3] + | &3 sin(t /&)
max(M,\/Eeréer &3]+ 1&])

Up = —kaKa&s — ka2 — kaky

The control parameters are selected as
ki=4, kp=2V2 ks=15 ks =15 ks =9, kg = 6, = 0.25, M = 1,

showing that we have increased the g&inandks and lower bounded the denominator in the expres-
sion ofu,. This modification affects the convergence of the controller, in the seaséhih proof of
asymptotic stability, given in Chapter 6 is not valid anymore. In fact, the clasmal system is not
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Figure 8.8: Stabilization experiment of the underactudtedrive manipulator; coordinates and inputs of the
mechanical system



118

Experimental results

coordinates; and

&3 (-)

-0.2
5 10 15 20 25 30 35
coordinatel,
0.4 T T
0.2 s
T of
-0.2| .
-0.4 | | I I ! |
0 5 10 15 20 25 30 35
(a) coordinates of the chained form systém, &3 (solid) andé&, (dash-dotteyl
chained inputiy
15 T T
0.75 .
g ° I
-0.75 —

-15

100

50

-100
0

5 10 15 20 25 30 35
chained inputiy
T T
| | | | | |
5 10 15 20 25 30 35

(b) inputs to the chained form system,andu,

Figure 8.9: Stabilization experiment of the underactudtedrive manipulator; coordinates and inputs of the
chained form system



8.5 Extension to practical point-to-point control 119

control termé,uy
0.4 T T T T T T

0.2 : -

[mis?]

0 5 10 15 20 25 30 35

-0.2

perturbation tern\(&, &) (-.)
T T

0.2 T T

[mis?]

-0.4
0 5 10 15 20 25 30 35

Figure 8.10: Stabilization experiment of the underaciiddeDrive manipulator with the modified controller
(8.13); inputéou; and the perturbatiol\; (&, &) (dashed) versus the estimated perturbation
A3(&2, &) using the friction characteristic (8.4) with = 0.1 andcs = 0.3.

homogeneous of degree zero anymore. Using equal control gainsprtliergence of the states to-
wards the origin becomes slower when compared to the original controllearherical simulations,
performed with the modified controllers, the closed-loop system is not astiogbpstable, but only
achieves convergence towards a certain ball around the origin. Thi&edazbntroller, however, has
the advantage that additional perturbations such as measurement rbigeatization errors are not,
or at least less, amplified.

The performance of the modified controller of (8.13) is shown in Figure.8t@m the plots it
is clear that the system converges faster to the origin due to the incretise gdinsks andks; the
system is close to the origin after 10 seconds. At tim€l5 s, the system performs a stable limit-cycle
with an amplitude that is lower than in the previous experiment.rfleeordinate oscillates between
approximately-0.6 and 22 cm, while thery coordinate oscillates between approximatefy@nd 25
cm. The maximal deviation of the link orientati@tt) is reduced to a value between approximately
—7 degrees and 3 degrees. By additional gain-tuning the amplitude of thigrmgdimit-cycle may
be reduced even further, but at this moment no quantitative resultsaitade.

8.5 Extension to practical point-to-point control

As mentioned in the beginning of this chapter, we did not expect to be abléhtevacasymptotic
stability of the underactuated H-Drive manipulator. Due to the effect dbiggations such as friction
and gravitational perturbations, the system can only be brought insidk arbund the origin. The
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Figure 8.11: Stabilization experiment of the underactidieDrive manipulator with the modified controller
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radius of this ball is determined by the magnitude of the perturbations anditteeajahe controllers.
This means that we have actually achieved a form of practical stability insfeld intended asymp-
totic stability. In the control community, several definitions of practical stabiliéyawvailable. In this
thesis, the notion of practical stability as presented in (de Wit et al., 19%&r§en and Nijmeijer,
2000) is considered.

In certain applications, asymptotic stability may not be required or may notasébfe. In these
cases, instead of achieving practical stability in which the system oscillatesdathe origin, it may
be desirable to bring the system to a stand-still. This would make it possible to timesystem
from one configuration to another, whereas the error between thectinéijuration and the desired
configuration are bounded and preferably small. The final configuratior depends on the control
gains and perturbations acting on the system. This approach will be illusinatezifollowing exper-
iment. In this experiment we do not try to achieve practical stability but we trghdiese practical
convergence. This means that the system converges towards the& @esifiguration, and when the
error between the actual and desired configuration is small in some seas®ntroller is stopped.
This means that we only have a form of practical convergence in the seaisthe system converges
towards the origin, and when it is close enough the controller is switcheahdfthe system reaches
an equilibrium state that is close to the origin.

In the following experiments, the modified controller (8.13) is used to bringytkes close to
the origin. The control parameters are selected as

ki=4, kp=2V2, k3=15 ks =15 ks =9, kg =6, = 0.25, M = 1.

The system is brought to a stop by setting the desired acceleration, whichtegrated twice and
fed to the servo-loop, to zero when the following condition is satisfied. Byotieg the desired

configuration by{ryg, ryd, 64], where in our casfyq, ryd, 6] = [0,0, 0], the conditions that have to be
satisfied simultaneously are given by

Irx —rxal <0.01 [ry—ryg| <0.01, |6—64] <0.02

These conditions have been empirically determined by performing subdeseeriments in which
the bounds of the conditions are varied. The result of this experimenbvensim Figure 8.15. The
figure shows that after approximately- 6.5 s the system has converged to an equilibrium point with
afinal position error less than 1 cm in theandry coordinate, while the error in the orientation angle
of the link is less than @ degrees. Note that the servo-loop is still enabled after the condition) (8.14
is fulfilled. This is necessary in order to keep the position errors andry small. As can be seen
from the control inputs in Figure 8.15, the input currents to the LIMMS ddoegbme equal to zero
but instead adopt a constant value that is needed to compensate thegosffigin present between
the permanent magnets and the iron-core coils. If the servo-loop is apgmestthen the final position
errors may be even larger. It should be noted that the dynamics of thariglked are only stable in
the sense that small perturbations may drive the angle away from its deaiued If the perturbation
causes the conditions (8.14) to be violated, then the stabilizing controlleecamalbled again and the
system may be brought back to an equilibrium close to the origin. The tragiarchained form
coordinates are shown in Figure 8.16.

(8.14)

8.6 Conclusions

In this chapter several experiments with an underactuated H-Drive mardphave been presented.
As expected from the simulation study, the objective of asymptotic stability caildenreached. It
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8.6 Conclusions 125

coordinates; andés (-.)

-0.2 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
coordinatel,
0.8 T T T
0.4 .
T o
04 .
-0.8 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
(a) coordinates of the chained form systém, &3 (solid) andé&, (dash-dotteyl
chained inputiy
25 T T
1.25 1
%
E 0
-1.25 —
-25 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
chained inputiy
100 T T
50 .
g o
_50 — —
-100 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

(b) inputs to the chained form system,andu,

Figure 8.16: Practical point-to-point control of the uratuated H-Drive manipulator; coordinates and inputs
of the chained form system



126 Experimental results

turns out that in both the case of tracking and stabilization, the closed-stgns is not robust with
respect to a specific, but relevant, class of perturbations. The Ipatitums, resulting from friction
in the rotational joint and gravitational disturbance torques due to a misalignohéine plane of
rotation of the link with the horizontal planég., the equipotential plane of gravity, measurement
noise and cogging forces in the LIMMS, prevent the system from beipmpitically stable. In
the case of tracking control, the system performs a periodic motion aroendetired reference
trajectory. The magnitude of the periodic motion is determined by the magnitude pétturbations
and the controller gains. In the case of stabilization, the system enterdealistettcycle of which the
amplitude is also determined by the magnitude of perturbations and the contaitisr 4lthough the
closed-loop system is not asymptotically stable, a form of practical stabiltyban obtained. This
means that the system can be brought inside a ball with a certain distamcth&origin, in which the
system performs an oscillatory motion. This oscillatory behavior under theemtke of perturbations
has also been identified in, for example (Pettersen and Nijmeijer, 2000),iah wractical stability
of an underactuated surface vessel was obtained.

The non-robustness of the controllers was expected since the pédongrasult in a second-order
chained form system that is not in strict-feedback form and additionaliyjoabe made homogeneous
of degree zero by controllerg andu,. Therefore, the stability proofs in Chapter 5 and Chapter 6
are not valid anymore. Besides the friction in the rotational joint, the dynanhidedink are influ-
enced by an additional constant gravitational torque. These perturbatimsiderably deteriorate the
performance of the controllers and result in oscillations around the desipalibrium or trajectory.
In the case of stabilization, the system could be controlled to an equilibriuny thainis sufficiently
close to the origin by extending the stabilizing controller with a discrete evevtiiah the controllers
are disabled when the system is sufficiently close to the origin. When thersisi® converged to a
point close to the origin, small perturbations may move the system away frotesired equilibrium
point. This behavior can be overcome by re-enabling the controllers thikesystem moves out of the
ball around the origin. The system then tries to bring the system close ®Werdrigin again. This
means that a form of practical convergence has been obtained by ingdHg stabilizing controller.

The conducted experiments correspond well with the simulation study in tee #Heat the quali-
tative and quantitative behavior in the simulations and experiments is similar. d&tditional simu-
lations that were done, it follows that the closed-loop system is more dildedp static-friction than
to viscous friction torques. This may be understood from the fact thatifieews friction vanishes
much faster when approaching the desired equilibrium point and dodsametany discontinuities.
Therefore, in order to improve the performance of the controllers, thie $tietion that is present
in the rotational joint should be reduced. Furthermore, the influence gddttarbations can be re-
duced by increasing the mass of the rotational link and the length betweentiégs oEmass and the
joint. It should be noted that additional gain-tuning may be used to improveetiermance even
further, however, form our experiences with the experiments the lbim@Erovement is expected to
be limited.



Chapter 9

Conclusions and Recommendations

In this thesis, the trajectory tracking and feedback stabilization problem étass of underactuated
mechanical systems has been considered. This class consists ofctunakeh mechanical systems
with second-order nonholonomic constraints that can be transformed asetond-order chained
form. The control of these systems has proved to be a challenging tagkssiob systems, gener-
ally, can not be stabilized by any continuous, static state-feedback. Aualltiothe inclusion of a
drift-term in the dynamics makes the stabilization and tracking of these systeraddiffault. The
trajectory tracking problem for second-order nonholonomic mechasysséms is, in general, easier
to solve. In fact, linear time-varying controllers can be used to track flessdjectories. However,
additional conditions on the reference trajectory have to be made sudhetteacking-error dynam-
ics are asymptotically stable. In general, the trajectories need to satisfgiatpece of excitation
condition, meaning that the trajectory is not allowed to converge to a pointefhie, the tracking
and stabilization problems for second-order nonholonomic system redjffeeent approaches and
have to be considered separately. Examples of such systems are pldesatiuated manipulators,
including a PR manipulator (Arai et al., 1998a) (RRlenotes a manipulator with two prismatic and
one revolute joint and the bar aboRalesignates the unactuated or passive joint), a serial-drive RR
manipulator (Yoshikawa et al., 2000) and a parallel-drive RRR manipulatbramy two joints un-
actuated, manipulators driven by end-effector forces (Luca et &8)1@ planar rigid body with an
unactuated degree of freedom and underactuated surface v&ssgisiioglu et al., 1998, 1999), un-
deractuated underwater vehicles (Egeland et al., 1994), the plana®©\V/&iicraft in the absence of
gravity (Aneke et al., 2002a) and a hovercraft type vehicle (Tanidia 2000). For these systems, the
linearization around any equilibrium point is uncontrollable. In certains;asben the dynamics of
the second-order nonholonomic system is influenced by gravity, theiliaéan of the system around
an equilibrium point is controllable and the system can be stabilized by a consirar even smooth
time-invariant state-feedback. The Acrobot (Spong, 1995) and th&®/Saircraft (Hauser et al.,
1992) are examples of such systems. To date, no conditions are availatdsting whether a given
underactuated mechanical system can be transformed into the sedendfwined form. Neverthe-
less, finding a coordinate and feedback transformation that brings stensynto the second-order
chained form really facilitates control design. The transformation into tbenskorder chained form
considerably simplifies the dynamics of the system. Also, it generalizes tigddshe controllers
in the sense that controllers for the second-order chained-form eapplied to a whole class of
second-order nonholonomic systems instead of one specific undeéegctoechanical system.
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9.1 Conclusions

9.1.1 The control design approach

In Chapter 5, the tracking control problem has been solved by usingnhioed backstepping and
cascade approach. The tracking-error dynamics can be written asadeasystem consisting of a
linear time-invariant subsystem and a linear time-varying subsystem. The fimeainvariant part
has been stabilized by a linear time-invariant controller, while the time-vargrtdips been stabilized
by using a backstepping procedure in which the link orientaffiants as a virtual input. This approach
results in a linear time-varying controller that globallg/-exponentially stabilizes the tracking-error
dynamics. The tracking-error dynamics are only globa#tyrexponentially stable if the trajectory to
be tracked is persistently exciting, meaning that the trajectory is not allowezht@ige to a point.
Furthermore, the second-order chained form is globatlyexponentially; the mechanical system
is only globally 7 -exponentially on a subspace (or sub-manifoldR3fwhere the coordinate and
feedback transformation are well-defined.

To date, most researchers have considered the feedback stabilizatitenpfor the second-order
chained form system, and the tracking control problem has receivedtiestion. In certain practical
applications, the tracking control problem may be more important than the saibitiproblem since
it is not only required that the system moves to a different configuratiatnthie system also has to
follow a pre-specified path in order to avoid design constraints or obstatle tracking controller
has been first presented in (Aneke et al., 2000) and has been pdbtigiaeke et al., 2003). The de-
signed tracking controller can be seen as an extension of the resultsig &did Nijmeijer, 1999) and
(Lefeber et al., 2000), in which linear time-varying controllers have loseloped for the drift-less
chained-form, to tracking control of the second-order chained foittm dvift. A robustness analysis
was performed which allowed us to conclude that the robustness prabéngy tracking-controller is
limited and depends on the trajectory to be tracked; the robustness of tkiegraontroller depends
on the level of the persistency of excitation of the reference accelenatjdt). In appendix B the
control design approach for the tracking control problem has beemésd to the case of higher-
dimensional chained form systems. At this moment, to our knowledge, no éesuame known of
underactuated mechanical systems that can be transformed into a higkesidnal chained form.

In Chapter 6, the stabilization problem has been solved by using a combackstépping and
averaging approach for homogeneous systems. Instead of usingsadpguing approach that requires
the construction of a Lyapunov function, a high-gain approach has &gepted. This resulted in a
continuous, periodic, time-varying homogeneous stabilizing controller tbhatly p-exponentially
stabilizes the closed-loop system. This continuous time-varying homogenentrsller has been
first presented in (Aneke et al., 2002b). To date and to our knowledigehomogeneous controller
is the only one capable of ensuring Lyapunov stability as well as expoheaotigergencei.e., p-
exponential stability. It is well-known that homogeneous controllers ateatmst with respect to
parameter uncertainties. Therefore a periodically updated version dfotmegeneous stabilizing
controller was presented in which the states of the system are periodicdbyegpat discrete time
instants. This controller is robust with respect to a class of additive jpations that includes per-
turbations resulting from parameter uncertainties, but excludes nontisrafbects, such as friction,
or measurement noise. To our knowledge, the controller of Section @gemed in (Lizarraga et al.,
2003), is one of the first capable of achieving robust stabilization ofeébersl-order chained form
system.



9.1 Conclusions 129

9.1.2 The simulations and experiments

In Chapter 7 the performance of the controllers has been investigatedrinrming a simulation
study. In these simulations, a servo-system also known as the undezdcti+®rive Manipulator
was considered that represents the dynamics of an underactu®Resh@pulator. Instead of con-
trolling the LIMMS (Linear Motion Motor Systems) directly, using the designedkirag and stabi-
lizing controllers, a so-called virtual internal model following control aygwh was adopted. This
means that the chained form inputsg, u,) are transformed, using the feedback transformation, into
desired accelerations of the LIMMS. These desired accelerations aréntegrated twice to obtain
desired positions that are used in a low-level servo-loop to control thigigus of the LIMMS. The
objective in the simulations is to control the joint position and orientation of tres riv&ating link.
It turned out that both the tracking controller and the stabilizing controllbieae the objective of
asymptotic stability when no perturbations act on the system. If, howewturlpations such as fric-
tion are included in the model then the performance is considerably detedaad the closed-loop
system is not asymptotically stable anymore. Instead, the closed-loop gyestirms a periodic mo-
tion around the desired trajectory or desired equilibrium point. The stabilizatid tracking errors
are bounded and the magnitude of the oscillations are determined by the magfitine pertur-
bations and the magnitude of the controller gains. This means that a formacifgat stability has
been achieved in which the system can be stabilized into a ball around ¢heneé trajectory or the
desired equilibrium point. By modifying the gains, it is possible to influence thgnitede of the
oscillations, however, the relation between the control gains and the magwoituide oscillations is
not completely understood.

In Chapter 8 the performance of the tracking and stabilizing controllers bagn validated on
an experimental underactuated H-Drive Manipulator available in the ladygraf the Dynamics and
Control Technology department. This H-Drive manipulator is used asehbgark set-up for testing
tracking or stabilizing controllers for a wide range of underactuated nmécdlasystems including
underactuated ships, underwater vehicles and underactuated tlkreealimipulators. The friction
and cogging forces of the LIMMS were shown to appear as additive rpattans in the second-
order chained form. Therefore it is essential to compensate these tednis/arsing a low-level
servo-loop to control the position of the LIMMS, the influence of these fricdad cogging forces
can be practically eliminated. The main disturbances in the system are the fiactibpossible
gravitational torques in the joint of the rotational link. The experiments qurtfie observations that
were made during the simulation study, namely that the designed controllemstai@bust and the
closed-loop system is not asymptotically stable. In both the tracking and sadibitizZxperiments,
the closed-loop system exhibited stationary oscillatory behavior similar to thevime obtained in
the numerical simulations. This means that asymptotic convergence towamssiled equilibrium
or trajectory can not be achieved with the presented controllers. Alththegblosed-loop systems
are not asymptotically stable, a form of practical stability does hold. This st the closed-loop
system can be driven inside a ball (but not a ball of arbitrary size)rattdhe desired equilibrium or
desired trajectory. The experimental results correspond well with theriexents, both qualitatively
as quantitatively. The differences between the simulations and experintentsainly caused by
a gravitational disturbance torque and the nonlinear friction characteoistiee link. By using a
more sophisticated friction model in conjunction with a model of the gravitatioistitbance, the
correspondence between the simulations and the experiments can be ungteveentioned earlier,
the periodically updated version of the homogeneous stabilizing controllet i®bust with respect
to gravitational disturbance torques or non-smooth effects such asriridtierefore, no simulations
or experiments have been conducted using the periodically updated hoeoogecontroller. For a
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comparison of the homogeneous controller and its periodically updatadveitse reader is referred
to (Lizarraga et al., 2003).

Compensating the perturbations acting on the extended chained form dystsmout to be very
difficult due to the existence of a second-order nonholonomic constaphthe fact that the link
orientation can not be controlled directly. In fact, it is expected that thest o asymptotically sta-
bilizing controllers for the second-order chained that are robust wstiere to vanishing perturbations
such as parameter uncertainties as well as non-vanishing perturbatitressfriction or gravitational
disturbance torques. However, it may be possible to use a modified cataradind feedback trans-
formation to transform the model of the system including the disturbanaesxémnple friction, into
a, possibly different, canonical form. It may even be possible to desigtrailers that utilize the
dissipative nature of the frictional perturbations to stabilize the system tqualibeium point.

9.1.3 Robustness issues

In many researches dealing with the control of underactuated mechaystains with second-order
nonholonomic constraints the influence of perturbations on the closeddiommics has generally
not been taken into account.

In some references dealing with second-order nonholonomic systema&sufor example, un-
deractuated surface vessels, underactuated autonomous undeetétéss or underactuated robot
manipulators, robustness issues have been investigated. Howeyefieweeferences have consid-
ered the design of robust controllers for the second-order chéimadsystem. To our knowledge, the
controller in (Lizarraga et al., 2003) is one of the first capable of aafgenobust stabilization of the
second-order chained form system. There have been authors whadvsidered the robust control
problem for underactuated manipulators without using a transformation gaonanical form such as
the second-order chained form. In (Shin and Lee, 2000) the caresimdinates of an experimental
underactuated manipulator were controlled by application of robust adagtntrol. In (Kim et al.,
2001) variable structure based, model reference adaptive comtRAC) has been used to control
a two-link planar underactuated manipulator. The numerical simulations ofefeaence showed
severe chattering which is undesirable in practice. Other referensemaghe presence of brakes
in the passive joints of the manipulator. In (Bergerman and Yangshefd),ifér example, a robust
variable structure controller (VSC) was developed for controlling ther@gtints and the brakes of
the passive joints.

9.2 Recommendations

In this section recommendations for further research are given. Fiadit @ short discussion on the
use of the second-order chained form in the control design for antiexted mechanical systems will
be given. After that, recommendations will be given for the design ofsiotmntrollers for the class of
second-order nonholonomic systems. Finally, some recommendations fovingpthe experimental
underactuated H-Drive manipulator will be given.

9.2.1 The second-order chained form

In recent years, many underactuated mechanical systems with sec@rdionholonomic constraints
have been shown to be transformable into the second-order chainedTfoe transformation into the
chained form considerably simplifies the dynamics of the system. The uses#¢bnd-order chained
form also facilitates control design because tracking or feedbackatientrthat have been designed
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for the second-order chained form can be applied to any system thas$drmable into the second-
order chained form.

The main difficulty in the current control design approach is the fact thdirfg a coordinate
and feedback transformation that brings the system into the secondebialeed form may be dif-
ficult or even impossible. In fact, there exists no sufficient conditionsghatantee the existence
of a coordinate and feedback transformation that brings a given dewder nonholonomic system
to the second-order chained form. Therefore, control design appes that utilize the second-order
chained form are only useful if a coordinate and feedback transf@mmare known in advance.
In the case of mechanical systems with first-order nonholonomic systeffisiesti conditions for
converting the system into the first-order chained form are availableMimréy, 1993) necessary
and sufficient conditions have been derived for converting a nonbat@ system into the first-order
chained form. In (Murray and Sastry, 1991) a constructive praeefitur finding the coordinate and
feedback transformation has been presented. One of the results feowotlk is that all two-input
drift-less nonholonomic systems in three and four dimensions can be pugtiotfiter chained form.
However, the existence of a drift-term makes the generalization of thi teshe case of second-
order nonholonomic system very difficult. To our knowledge, no sufficéd necessary conditions
have been presented for converting nonholonomic systems into the sex@rdchained form sys-
tems. Therefore, the derivation of these sufficient and necessadjtions is a challenging field of
research that requires further investigation.

In certain cases, second-order nonholonomic system can be traesfanto the second-order
chained form system with some additional terms. By regarding these adtiidoma as perturbations,
it may still be possible to successfully control the system with controllers thed @esigned for the
non-perturbed second-order chained form system. However, in o@s®s the nonholonomic system
is influenced by additional dynamics such as, for example, friction, meamsnt errors or external
disturbances. These additional dynamics result in perturbations of toaderder chained form
which considerably deteriorate the performance. Therefore thesglpsiions are an essential part of
the dynamics and can not be neglected. In these situations, it would besiimgr® know whether
the mechanical system including these disturbances can be transforméistmond-order chained
form. This may be checked by using the, to be developed, necessasufiltient conditions for
transformability into the second-order chained form discussed abitres turns out to be possible,
then the controllers for the second-order chained form are still apjdieadol asymptotic stabilization
or tracking is still possible under the influence of the perturbations.

9.2.2 Robust control design

An interesting field for further research is the development of robubiligers and tracking con-
trollers for second-order nonholonomic systems. This requires therdeEigtabilizing or tracking
controllers which are robust with respect to a class of perturbationftingsfrom parameter or mod-
elling errors. Besides parameter or modelling errors, nonholonomic ¢@ystems can also be in-
fluenced by additional perturbations resulting from non-smooth effeats) as friction, cogging or
measurement errors. The design of such controllers turns out to bey diffecult task, due to the
existence of the nonholonomic constraint and the fact that the lineandapyation around equilibria
is generally not controllable. To this date, and to our knowledge, no stabilizéracking controllers
have been presented that are robust with respect to perturbatiomscihde cogging, measurement
errors and non-smooth effects such as friction.

In order to cope with external disturbances such as gravitationatffee practical stabilization
problem should be considered. It is clear that due to the fact that theiliattan around equilibrium
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points is not controllable, it is impossible to achieve asymptotic stability under thiendé of persis-
tent or non-vanishing disturbances. In general, these persistenbdistes will result in instability
or give rise to bounded errors. By allowing for controlled oscillations siystem can be stabilized to
a ball around the desired equilibrium or reference trajectory. In faetabults presented in (Do et al.,
2002) can be used to extend the results in Chapter 5 to achieve practiditystéthe tracking-error
dynamics. This means that under additional conditions on the gain, the waaitrollers can be
shown to globally exponentially stabilize the system to a ball around the desijectory.

Besides the control design methods presented in Chapters 5 and G&mditipproaches may be
promising in achieving robust controllers for trajectory tracking or fee#tstabilization. A few of
these approaches are summarized below. In (Luca and Oriolo, 2008% ishown that a planar un-
deractuated manipulator can be fully feedback linearized and input-cdegotupled by means of a
nonlinear dynamic feedback, provided that singularity is avoided. Tharliring output is the center
of percussion of the link. More recently, the authors of (Ge et al., 288dyed conditions for 2-input
nonholonomic systems with drift to be feedback-linearizable by non-smaathdventually discon-
tinuous) coordinate and feedback transformations. In (Mita and Nam,) 2@friable period deadbeat
control, in other words multi-rate digital control, was used to stabilize higleracbained form sys-
tems. The authors of (Lucibello and Oriolo, 2001) consider a large clagystems, including systems
with drift, in the framework of iterative state steering control. Although no @tlgm is presented to
construct any such controller, it is assumed that a controller is knovwordletnd, conditions have
been pointed out for discrete-time stability and robustness with respediitovadlisturbance vector
fields.

In view of our experiences with the experiments, it is expected that itersttite steering control
is the most promising method for designing robust controllers with respeatléss of perturbations
including parameter uncertainties, modelling errors and possibly non-sreffetits such as friction
and measurement errors. The combined hybrid/open-loop contraagpmay be able to cope with
a larger class of perturbations than the presented controllers. Althougtivigestate steering control
iS not expected to result in controllers that are robust with respect sispet disturbances, it may
result in a high level of robustness by guaranteeing bounded earoaddirge class of perturbations.

9.2.3 Improving the experimental set-up

There are three possibilities to improve the experimental performance ofdésented controllers
under the influence of perturbations. First of all, an improvement cacdmrglished by additional
gain-tuning of the controllers. The tuning of the gains turned out to be a tjmiéeconsuming task,
This is caused by the fact that values for the control parameters haeeféaibd which assure good
convergence of the closed-loop system, but also guarantee that thigétstays inside the boundaries
of its limited workspace. In Chapter 8 the experimental results correspetidwth the numerical
simulations. The differences between the experiments and the simulationsialg caased by the
nonlinear friction characteristic of the link, the servo acceleration eandsperturbations such as
measurement noise and gravitational disturbance torques. It may bblpdssperform the gain-
tuning procedure through numerical simulation, provided that a more aecfuriction model of the
rotational link is available and the gravitational disturbance torque is eliminatetbdelled. As it
turns out to be very difficult to compensate the perturbations in the sesraled-chained form system,
the overall improvement in performance that can be obtained by additiaimatuning is, however,
expected to be limited.

The second possibility for improving the control performance, is reduttiegnfluence of the
perturbations by increasing the inertia of the rotational link, as well as its arasength between
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the joint and its center of mass. The main difficulty with this approach is the fattrtbreasing the
length or the mass of the link increases the effect of gravitational petimmisa These gravitational
disturbance torques result from a misalignment of the plane of rotation dhtheith the horizontal
plane,i.e., the equipotential plane of gravity. In the experiments, increasing the male bk by

a factor 25, frommg = 0.04 to approximatelyns = 0.10 [kg] already results in rotations of the link
when no external torque is applied. This indicates that gravitational déstaebtorques have to be
eliminated before the mass can be increased. This becomes even more whgcateducing the
friction level in the rotational joint, since these gravitational disturbanceiesgnay not be cancelled
by the static friction torque, and the origin may not be an equilibrium point afitteentrolled system
anymore.

The final possibility for improving the performance is, of course, by cgaythe friction in the
link. As mentioned earlier, the performance of the tracking and stabilizintraltars is more sus-
ceptible to static friction in the joint than to viscous friction. In fact, in simulation, ghesented
tracking controller still achieves asymptotic stability for a normalized viscaasdn coefficient of
up to approximately, g/l = 7 [1/(rad-s)]. The closed-loop system, however, does not appear to be
asymptotically stable for any value of the normalized static friction coefficiggntl. Therefore, in
order to improve the control performance, it is essential to reduce theitmdgmof the static friction
in the rotational link. In numerical simulations, reducing the static friction atiefit csg/l by a
factor 10, from its current value.® to 003 [1/5%], reduces the maximal error of the joint position
to less than Jcm| in the longitudinal and transversal direction, while the maximal error in the link
orientation is reduced to less tharb 2legrees. The desired coefficient corresponds to a static friction
coefficient of approximately.2-10-° [Nm]. By multiplying the desired coefficiert g/ = 0.03,
normalized with respect to the inertiawith the valueA = 0.1372 gives us the desired static fric-
tion coefficientcs g /(mgl) = 0.4- 1072 [1/%], normalized with respect to the produagl. By further
increasing the massy the maximal deviations from the desired equilibrium or trajectory may be
reduced even further.

The most important recommendation for improving the control performanceésitae the fric-
tion by using an air-bearing to suspend the rotational link. This should e claly after the gravita-
tional disturbances have been eliminated. The non-contacting propentyedf bearing — air bearings
utilize a thin film of pressurized air to provide a friction-less load bearing fiaterbetween the sur-
faces — would practically eliminate all friction in the rotational joint. The friction ie tbtational
joint can also be reduced by using a magnetic bearing. Although suchiagsanon-contacting and
reduces the effect of friction to a minimum, it also introduces drag or codoirgs resulting from
eddy-currents generated by the changing magnetic fields.
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Appendix A

A stability result for cascaded
systems

A.1 Aglobal 7 -exponential stability result for non-autonomous
cascaded systems

In Chapter 3 we concluded that if in addition to the assumptions in Lemma 3.6.3/sees> 1 and
>, are globally exponentially stable, the cascaded system (3.19) is glalakxponentially stable.
This result can be strengthened to include the case in which the syEiesnsl>, are globally.7 -
exponentially stable. In that situation, under some additional assumptiors) ecshown that the
cascaded system is also globalfy-exponentially.

First we formulate an additional lemma that will be needed in the proof. Thistreen be found
in Theorem 3.6.10 of (Lakshmikantham and Leela, 1969), and has sedrinu(Panteley and Loria,
2001).

Lemma A.1.1. If the systenx = f(t,x) is GUAS, then for eact > 0, the system admits a'C@ya-
punov function’ (t,z;) such that for all t> to and for all xe R",

() aa(lxl) <7 (tx) < az([Ix])),

(A1)
() 2+t < v %)

wherea; and a, are class’#,, functions.

The stability result is presented in the following proposition. The proofgeds along the same
lines as the proof given in (Panteley et al., 1998).

Proposition A.1.2. If in addition to the assumptions in Theorem 3.6.1 bbthand X, are globally
¢ -exponentially stable, and there exist Gyapunov function Mt, z;) and \4(t,z) satisfying for all
t >toforallz; € R",

() aiflzs|® <Va(t,z) < azl|z %,

. oV oV
(i) S5+ 5 fit,z) < —p¥ (z),

ot ' oz (A.2)

oV
iy | 5| < aulml
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with a1, a, and a, positive constants, and for altt to for all z, € R™
() Bullzl? <Va(t,z2) < Bollz2|%,

N, Y (A3)
(ii) T 0 fa(t,22) < —u7(z),

with B, and [3; positive constants, respectively, then the cascaded sy&d®) is globally .7 -
exponentially stable.

Proof. Since theX, subsystem is globally? -exponentially stable, it suffices to show the result for
z1(t). Since all conditions of Theorem 3.6.1 are satisfied, the system 3.19 is QUAS= [z;,2]"
satisfies

lzt)]| <B(llzto)[l,t —to), ~ Vt=1to >0,

wheref(-) is a class# .Z function. For all initial conditiong|z(to)|| < r the functiong(t,z;,z2) can
be upper-bounded dg)(t,z,22)|| < cg, wherecy = cy4(r) > 0 is a constant. Consider the subsystem

21 = fl(t7 Zl) + g(t7 Z, 22)22 (A4)

By assumption, the systemzs = f1(t,z;) andz = f,(t,z) are globally exponentially stable. By
assumption the Lyapunov functiolg(t, x) satisfies such that

. oV
ol|ze)? <At z) < a|zlf?, VA(t,zn) < —V(t,z0), Ha—XlH < agl|z ], (A.5)

wherea; anday are positive constants amg(-) is a class’#., function. Since th&, system is also
GUAS, it follows from Lemma A.1.1 that there exists Lyapunov functi(t, x) such that

Bil|z|? < Val(t,22) < Bo||22|[% Valt,z2) < —Va(t,22), (A.6)
Taking the derivative o¥ (t, x) with respect to (A.4), and using (A.5,A.5) we obtain

Vi < -VA(t,z1) + aa||9(t, 22, 22) |||z || | 22| < —0na]|za]|? + atacy(r) ||z ||| 22|

ay, 2, acg(r)® o ai ajcy(r)? (A7)
<—= = < —=—W(t ———\)(t
< —< "+ 20, [22]] < 20, 1(t,z1) + 2016, o(t, 22)
. azcy(r)? . . .
Definedy(r) = 3011,82 and consider the candidate Lyapunov function
V(t,z1,22) =Vi(t,z1) + TVa(t, 22). (A.8)

with I > 0 a to be defined positive constant. The derivativé along the solutions of (3.19) satisfies

V< -5Vt 2) + (E() - DValt.2) (n.9)
az

Suppose that we chooBeas
I (r).
2B>— B
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Then we have

: o B
<L - <— Al
V< 2a2V1(t’Zl> ZBZFVZ(t’ZZ) <-W (A.10)
where 1 8
. a1
= —min(—, =>).
V=75 (Or2 Bz)
V(t,z1,20)

Therefore, using the bounj; || < , We obtain

2 < V (to, Z10, Z20)
= a

|za(t, to, Z10, 220 exp(—y(t —to))

02| 210|124 T || Z20]|?

< ar exp(—y(t—to)) (A.11)
<22 1 2oyt to)
1
Thus v
[|21(t, to, Z10, Z20) | < K(r)||zo| eXp(—E(t —to)) (A.12)
with
K(r) = 2%. (A.13)
1

The bound (3.2) is satisfied and we conclude that the system (3.19) idlglobaexponentially
stable. O
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Appendix B

Tracking control of the
higher-dimensional chained form

B.1 Cascaded backstepping control

In this thesis, so far, only the second-order chained form (2.7) of diraem = 3 has been con-
sidered. This was motivated by the fact that, up to now, no mechanicahsystee known that are
transformable into a second-order chained form of dimensisr8. In this appendix, the results pre-
sented in Chapter 5 will be extended to the case of higher-order secdadehained form systems of
the form (2.6). Although, different definitions of the general secordkr chained form system may
exist, only systems of the form (2.6) will be considered here.

Consider the trajectory tracking problem for the general second-ohdéned form system (2.6).
Define the vecto€ = (&1,¢>,...,&,). Consider a reference trajectafy, the tracking error is denoted

]
by X = [X11, X12, X21, X22, . . . , Xn1, Xn2]  Where

Xi1=2¢&—&d,  X2=¢& —&ad. (B.1)
The tracking dynamics in state-space form can be written as
X1 = %n2
Xn2 = Xn—11U1d+én—1(U1—U1q) _
X = X
Ay A, { 21 2,2
. X202 = Ux—Uxq
X31 = X32 (B.2)
X32 = XoqUpd+&2(Up—Uig)
X = X
Ngd L1 1.2
X12 = Ui1—Upgd

Suppose that the subsysteky has been stabilized to the origimy 1,%12) = (0,0) by a controller
U1(U1d,X1,1,X1,2). Thenxy o =0 and thereforei, —uy g = 0. We design the remaining input such
that the remaining subsystef#y;, ;) is stabilized foru; — uyq = 0. In order to make conclusions on
the exponential stability of the complete closed-loop system we use Theosen 3

Remark B.1.1. In (B.2) the perturbation termy(t, z;, z2)z depends on the, to be designed, feedback
ui(t,x). When choosing = [X1 1, X1 2], the perturbation matrig(t, z1, z) has to be linear with respect
to the variablez; given byz; = (Xn1,X%n2,...,X31,X32). This is the case when choosing the feedback

Up asuy = Ugg + kg 1X1,1 + Ky 2X1 2.
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B.1.1 Stabilization of the ( Aj,A») subsystem
Suppose that th&; subsystem in (B.2) has been stabilized by choosing

U = Urd — Kg,1X1,1 — K 2X1,2, k1> 0,ky2 >0, (B.3)

where the polynomiap(A) = A2 +kiA + ko is Hurwitz. Thenx; 1 = %12 =0 andu; —u; g =0 and
the time-varying subsystefy can be written as

Xn1 = Xn2
Xn2 = Xn—1,1U1d

X31=X32 (B.4)
X32 = X21U1 ¢
X21=X22

Xo2=Ux—Upg

We aim at designing a stabilizing feedbagkby applying a backstepping procedure to the system
(B.4). This stabilizing feedback is obtained by using a backstepping guoe¢o design a stabilizing
virtual inputxz;. Assume that the reference signgj(t) satisfies Assumption 5.1.1. The procedure
for obtaining the stabilizing feedbaclg, consisting oh — 1 steps, is given as follows.

step 1 Definex, 1 = xn 1. Consider the first equatio'?r\,l = Xn,2 and assume tha, » is the virtual input.
A stabilizing functionx, 2 = an 1(n.1) for thex, 1-subsystem is

20n1+25

An1(t,Xn1) = —Cn1urd(t) Xn,1,

wherecp 1 > 0,dn 1 € N. Definexn 2 = Xn2 — n 1(Xn,1) @and consider thg, >-subsystem

— d _
Xn2 = Xn—1,1U14(t) — p [On1(t, Xn,1)] -

Suppose that,_1 1 is the virtual input. A stabilizing functiomy_11 = dn2(t,Xn1,Xn2) for the
Xn2-subsystem is given by

& o) )
Upqd(t)

wherecy 2 > 0,d2 € N. Definexn_11 =Xn—1,1 — 0n2(t,Xn1,%n2). The (X 1,%n2) subsystem is
then given by

0n2(t, %01, Xn2) = —Cn2Upd(t) 22 5 o 4

o 2001425 -
Xn1 = —Cn1U1d(t)* " X0 1 + Xn 2
— 200 2+25 —
Xn,2 = —Cn,2U1,d(t) """ Xn 2 + Up g (t)Xn-11
step 2 For notational convenience, define the vect@sx = (%,1,%72,...,%71,@72)? Consider the
Xn—1,1 dynamics

o d _ _
Xn-11=Xn-12~ [On,2(t, Xn,1,%n.2)] -
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Assume thax,_1 2 is the virtual input. A stabilizing functior,_1 2 = an_1,1(t,X) for thexn_1 1-
subsystem is
200-11+2—

an-11(t,X) = —Cn-1,1U7 4 Xn—11+ =

@ [On2(t, Xn,1,%n.2)] ,

wherecy_11 > 0,dy_11 € N. Definexn_12 = Xn-12 — 0n-1,1(Xn1) and consider then_1 »-
subsystem

— d

Xn—12 = Xn—2,1U14(t) — i [On—1,1(t,X)].
Suppose that,_» 1 is the new virtual input. A stabilizing functioxy_2 1 = an_12(t,X) for the
Xn_1,2-Subsystem is given by

d
dt [an,171(t,)6] (BG)

Urd ('[)

2dn_12+15

on-12(t,X) = —Cn-12U1,4(t) Xn_12+

wherec,_12 > 0,dn_12 € N. Definexn_21 =Xn—21— dh—12(t,X). The(Xn1,%n 2, Xn-1,1,X—1.2)
subsystem is then given by
= 201425
Xn1 = —CnaU1d(t)* %01+ Xn 2
= 202425 —
Xn.2 = —Cn2U1d(t)“ 2 X024+ Urd(t)Xn-11
20 11425
Lt 114 Xn-12

Xn—12 4+ Ur.d(t)Xn—2.1

—11= —Cn_1,1U14(t)

2= —Cn_12Ug g(t)%h12+2g

stepi (3<i < n-—2) Assume that after th@ — 1)-th step, we have designed stabilizing functions
An—j+11(t,X), On—j112(t,X), (1 < j <i—1) of the form

2dn— +2 d
An-j+1.1(tX) = —Cn- j+11ly g S Xn—j+1,1+a[an—j+2,2(t7>z)],
B.7
2d 1— [an*j+271(t7)z)] ( )
On—j112(t,X) = —Cn—j1.2U1,d(t) 127010+ 7
Uz,a(t)

wherec,_j 1k > 0,dn_j11k € N,k e {1,2}, such that the€Xn 1,Xn 2, .. ., Xn—i1+2,1, Xn—i+2,2) Sub-
system withxy 1 = Xn,1,Xn2 = Xn—2 — On 1(Xn,1) and

Xn-j1 = Xn-ji—0On-jr12(tX), (1<j<i-2)
Xn-j2 = Xn-j+12— On-j+11(t,X),
is given by
v 2d 25
Xn1 = —Cn1U1.d(t)“" X0 1 + Xn 2
2dn2+25

Xn2 = —Cn2Upq(t) Xn2 + Urd(t)Xn-11

('[)Zd” i+2, 1+2X

Xn—i+2,1 = —Cn—i4+2,1U1d —it21+ Xn—it22

(t)Zd” i+2, 2+2X

Xn-i+22 = —Cn—i4+2,2U1d “it22+ Uy d(t)Xn—it11
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We wish to prove that théX, 1,%n2,...,Xn—i+1.1, %n—i+12) Subsystem has a similar structure.
Therefore consider the,_i1 1 subsystem

- d

Xn-i+11 = Xn-i+12~ g [On—it22(t,X)].
Suppose that,_i;12 is a virtual input. A stabilizing functiom,_j12 = an_i+11(t,X) for the
Xn_i+1,1-Subsystem is

20 i411+2— d
On-i+11(6,X) = —Cnipralyg an|+1,1+&[anfi+2,2(t,>3],

wherecn_i+11 > 0,0n_i+11 € N. DefineXo_it+12 = Xn—i+1,2 — tn-i+1,1(t,X). The dynamics of
%oi+12 is given by

— d

Xn—i+1,2 = U1 d(t)Xn—i.1 — a [On—it1,1(t,X)].
Suppose that,_1 1 is a virtual input. A stabilizing functiomn_; 1 = an_i+1.2(t,X) is given by

& o 1112t

Urd (t) ’

wherecy_iy11 > 0,dn_i1+11 € N. Definexp_j = Xn—i — dn_i+1.2(t,X). Consider the dynamics of
the (Xn,1,%n.2, - - -, Xn—i+1,1, Xn—i+1,2) Subsystem which is given by
2001425

On—it1,2(t,X) = —Cn—i+1,1U1,d(t)2d” R RIS

Xn, 1+Xn2
Xn2+ Urd(t)Xn-11

Xn1= —CnaU1d(t)
Xn2 = —Cn Uy d(t)?h2 2,

. 24 2
Xn—i+11 = —Cn_it+1,1Upd(t)* 2114

va 2d, 25
Xn—i+12 = —Cnit+1,2U1.d(t) 227X i1 2+ Up g (t)Xn—ia

i1+ Xnoig12

step n-1 After then — 2-th step we have designed stabilizing functiong (t, x), as 2(t, x) of the form

d
031(t,%) = ~C31ty " Foa + g [da(t, K,
d B.8
o102, (&9
a32(t,X) = —Ca oty g(t) 2 g+
| ’ Ud(t)

wherecz1 > 0,ds1 € N andcz 2 > 0,d3 2 € N, such that théxn 1, %n2, ..., X31,X32) Subsystem
with )?n,l = Xn,1 and

¥-j1 = Xnj1—On-ji12(tX), (1<j<n-3)
Xn—j2 = Xn—j2— an—j,l(t,)zjv
is given by
Y. . — 20n1+25
Xn1 = —Cn1U1d(t) Xn.1+ Xn.2
Xn2 = —Cn2U1d(t)?%2 2% 5+ up g(t) %11

o 2031425
X31 = —C31U1,d(t)* 31 Xz1+ X322

Xa2 = —C32U1.d(t)°%2 X5 4+ Uy 4 () X1
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Definexp 1 = xp1 — 032(t,X). Then

o d
X1 =X~ o [a32(t,X)].
Suppose that, » is a virtual input. A stabilizing functiomy » = a2 1(t, X) for thexy 1-subsystem
is
_ d
az1(t,X) = —Co1X01 + I [a32(t,X)],
wherec, 1 > 0,d21 € N. Definexp 2 = X2 2 — a21(t, X). The dynamics oky is given by
— d
X2 = Uz —Ud ~ [02.1(t,X)].
A stabilizing input is given by
_ d
Uz —Uza = —Co2Xe2+ & laz1(t,X)] (B.9)

wherecp 2 > 0,d22 € N. Definexz1 = X211 — a22(t,X). The(Xn1,Xn2,...,%X2.1,%22) subsystem
is then given by

X1 = —Cn1Ua ()P0 1 + X2

Xn2 = —Cn2U1d(t)?%2 2% 5+ up ()% 11

)?37 = —Cz1Urq(t )2d31+2X31+X32 (B.10)
Xa2 = —Ca.2U1.d(t)?%272%5 5+ up g ()Xo

X201 = —C21X21+X22

X202 = —C22X22

Remark B.1.2. The stabilizing functiona, 1 is obtained by differentiating the stabilizing function
as2(t,X) two times with respect to time The stabilizing functioroz »(t,x) depends on bothy g(t)
and it's higher order derivativeslkd( t) up to some ordek. It is obtained by differentiating each
stabilizing functiona; 1(t,X) 2(i — 3) + 1 times and each stabilizing functien(t,x) 2(i — 3) times.

In each step K i <n—1 we also divide by 4. Therefore, the stabilizing functiom, ; may not be
defined wheruy 4(t) = 0. By carefully selecting the parameteks anddi , the stabilizing function
az2(t,x) can be made smooth with respect to its argunuggtt), i.e., no divisions byu; 4(t) occur.
This is possible by choosingj ; > i — 3 andd; » > i — 3. Then each stabilizing functiam 1(t,x) and

ai 1(t,x) can be written as

Qi 1(t,X) = Ui 1(U1d)X,1+Ui2(U1.d)X 2+ - +Un 1(U1,d)Xn,1 +Un2(U.d)%n 2

(B.11)
Qi 2(t,X) = Ui 2(U,q)Xi 2+ - - - +Un1(U1,d)Xn 1 +Un 2(U1,d)Xn 2

whereUj,11,Uj 12 are functions depending an 4(t) and its derivativeﬂ(llfz,(t), k>1,ie,uq=

[Urd,U1d,- .., u(lkc),]T. Subsequently, — U g becomes equal to linear time-varying feedbacks of the
form

Up — U g = k2,1 (U1 .d)X2,1 + Ko 2(U1.d) X224 - - - 4+ Kn 1 (U1,d)Xn,1 + Kn,2(U1,d)Xn 2 (B.12)

wherek; 1,k; » are functions depending an 4(t) and its derlvatlves(l()j( t), k> 1.
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B.1.2 Stability of the tracking-error dynamics

In this section we show that the complete tracking dynamics are globally exfiihestable. In the
previous sections we have stabilized thg,{,)-subsystem when; = uyq and theAz subsystem in
(B.2). We can now use Theorem 3.6.1 to investigate the stability properties obthplete system.
The result is stated in the following proposition.

Proposition B.1.1. Suppose that the reference inpuf(t) satisfies Assumption 5.1.1. Consider the
systen(B.2) in closed-loop with the controlleragiven by(B.9) and u given by

Up = Urg — KiXa1 — koxao, p(s) = %+ kos+ ky is Hurwitz (B.13)

Suppose that all parameters @re chosen such thahini_1 ,(di) >rand d > i— 3, Vi. Moreover,
the signaIsEZd(t) and the derivativelq in (2.12)are uniformly bounded in t. Then the closed-loop
system is globally# -exponentially stable.

Proof
Definez; = [Xn1,%n.2, - - -, X31,Xa2] | @andzz = [X21, %22, X11,X12] 7. The system (B.10) can then be written
in the form (3.19),f1(t,z1) = A1(t)z, fa(t, 22) = Apzp, as

z=AMt)z+9t,z,2)2

21 = Ao

The (n—2) x (n—2) matrix A (t) and the 4x 4 matrix A, are given by

—ga(t) 1 0 0

0 — @, (t) Uig 0 0

Ag(t) = : . . :

0 —@3a(t) 1 0 0

0 0 —@2(1) Uig 0

0 0 —@a(t) 1

| 0 . 0 0 —@2(t)

i —C21 1 0 0
B 0 —C22 0 0
=1 0 0 1
| O 0 ki1 —kip

whereg; 1(t) = ¢j 1Up.a(t) 2172 and @, 2(t) = ¢ 2uy ¢(t)?%2+2, The(2(n— 2) x 4) perturbation matrix
o(t,z1,2) is given by

[0 O 0 0 ] 0 0 0 0]
0 0 ki(Xn-11+én-1d) ke(Xn-11+én-14) 0 00O
gt.z,z2)=—| 1 : : + : S
00 0 0 0 0 0O
| 0 0 Ka(xor+&2q) ko(Xo14+¢&2d) | | uw(t) O O O |
(B.14)

In order to apply Theorem 3.6.1 we verify the three assumptions.
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(1) Consider the; subsystemz; = A;(t)z, given by

2dnl+2Xn 1+ Xn2

Xn2 4+ Upd(t)%n—1.1

)?n,l = —Cn1U14(t)

X2 = —Cn2Upg(t t)2hat2x,

. 20514+22
X31 = —C31U1,d(t)* B X3 1 +X32

(t)2d3 2+2X3 )

>'73,2 = —Cz2U14d
By recursively applying Theorem 3.6.1 it will be shown that the system is&WBecause the
system is linear time-variant, we conclude GES,Theorem 6.13 in (Rugh, 1996). Consider
the ()E’)la )?32a )?417 X_42) SUbSyStem'
= —CaqUp g ()22 1 + X0

2= —Ca Uy a(t)?M272% 5 + Uy 4(t)Xa 1

;E |. QE |.

2d31+2X3 1+X32

X3,2

= —Cz1U14(t)
(t)2d32+2

7

8§I' &<I‘

= —Cz2U1d

7

Suppose that; = (Xa.1,%2) andy» = (X3,1,X32) and that the perturbation term is

9(t,y1.y2) = { ulj(t) 8 ]

By Assumption 5.1.1 and Proposition 5.1.2 fhesubsystem
X1 = —Cg1U14(t)

Xa.2 = —Ca2Up g(t)?%2+2x;

2d41+25
%1+ Xa 2

Xn,2

is GES and assumption (1) in Theorem 3.6.1 is satisfied. By Assumption 5.1.1gtis s
uiq(t) is necessarily bounded, and the interconnection tinz;, z>) satisfies|g(t,y1,y2)|| <
lupa(t)|| <M and assumption (2) in Theorem 3.6.1 is satisfied. BecausEtlsebsystem,

e., (Xa1,X32) subsystem is GES assumption (3) in Theorem 3.6.1 also satisfied and we con-
clude that théXs 1,X32,Xa,1,Xa2) Subsystem is GES. Continuing in this manner it can be shown
that the completéxs 1,X3 2, . .., Xn.1,%n2) Subsystem is GES. This done by induction:

Suppose that théxz 1,X32, . . ., X 1,X,2), (4 < j < n) subsystem is GES. It remains to be shown
that the(Xs 1,X32, - - -, Xj+1, 1,x,+1 2) subsystem is GES. TH#31,X32, - . ., Xj+1.1, Xj+1,2) SUbsys-
tem can be wrltten in the form (3.19) with tie subsystem given by

(t)Zdl“ 1+2g

Xj+1,1 = —Cjy11U1d Xj+1,1+ Xj+1,2

(t)2d1+1 2+2

Xj+1,2 = —Cj41,2U1d Xj11,2

which is GES by Assumption 5.1.1 and Proposition 5.1.2. Thesubsystem given by the
(X31,%3,2,---,Xj,1,%j,2), (4 < j <n)subsystem which is GES. The perturbation term is given
by the(2 x 2(j — 3)) matrix

0 0o ...
g(t7Y1,YZ): uld(t) 0O ... 0

o
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and satisfiegg(t,y1,¥2)|| < |lura(t)|| < M. By Theorem 3.6.1, th€Xz 1,X3.2, - - -, Xj+1.1, X 11.2)
subsystem is GES. By converse Lyapunov theicgy,Theorem 3.12 in (Khalil, 1996), a suitable
Lyapunov functiorV (t,z;) for the Z; subsystem is guaranteed to exist when the ma¥fix)

is uniformly bounded irt. By assumption the reference input is uniformly bounded and
therefore also the time-varying mate (t), which gives the desired result.

(2) The(2(n—2) x 4) matrixg(t,z,2) is given by

0 0 0 0 0 0 0O
0 0 ki(Xn—11+én-1d) ko(¥n-11+é&n-14) 0O 000
9t,z,z2)=—| ¢ : : + : : :
00 0 0 0 0 0O
| 0 0 Kki(Xo1+&2q) ko(Xo1+&2q) | | Uw(t) O O O]
and can be written as
n-1
9(t,21,2) = — ZZ(XH +&n-14)E5n_j) 3.4+ Uta()Ers (B.15)
J:

whereE; 1 is a(2(n—2) x 4) matrix with the(1, 1)-th entryE[1, 1] = 1 and all remaining entries
Ek 1] =0k#LAl#1 Ez3.a4isa(2(n—2)x4) matrix with the(i, 3)-th entry and(i,4)-th
entryE[i, j] =1, j = 3,4 and all remaining entrigs[k,1] = 0,k #i,A | # 3,4. Theng(t,z,2)
satisfies

n—1
l9(t, 21, 2)[| < — ;(\Xj,ﬂ +1&5.dDIIES ;1)1 all +[Ura(t)[[|Exal
J:
n—-1
< —Kz ZZ‘Xj’l‘ + (KlMd —+ MKz)
j=

(B.16)

where we used the fact thti 4(t)|| < M and||&j 4| < ||&d]| < Mg andK; andK; denote
the norms of the matrices upper-bounds on the matftgsand E; 3 4. We can write for
(2<j<n-1)

Xj.1] = [Xj1+ ajr2(tX)| < [Xja] +|aji12(t, X)) (B.17)
20142 — .
wheredn 1(t,X) = —Ch1U; ;7 Xp1andfor(2<j<n-2)

2di4114+2— d
aj11(t,X) = —Cj+1.,1ul,o'|+l’1 Xj+1,1+ at [ 422(t,X)],

d [0 +1,1(t,X)] (B.18)

aj12(t,X) = —Cjr1Una(t)* 22X 1 5 +
Uzd(t)

with Cj;1.1,Cj+12 > 0 anddj11,dj;+12 € N. All stabilizing functions, see Remark B.1.2, can
be written as

Aj12(t,X) =Uj111(Urd)Xj+1,1 +Ujr12(Uid)Xjr12+ - +Un1(Urd)Xn1 +Un2(U1d)Xn 2
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for all (2 <j<n-1) and whereU;,11,Uj;1 are functions depending am q4(t) and its
derivativesuEl'f()j (t),k>1,i.e,u g =[urqg,U1g,-.., u(llf()j]T. The signaluy 4(t) and its derivatives
u(lké (t),k> 1 are bounded. Therefore we conclude that

0 2(t,%X) <Un1[%n1| +Un2lXn2| + - +Uj1]%] 1] +Uj 2[X] 2| (B.19)

whereU; 1 andUj 1, j € 2,...,n—1 are constants depending on the boujdg(t)| <M and
ufy(®)] < M.

(3) The characteristic polynomial of ti¥ subsystem is given by(s) = (s+c¢1)(s+¢2) p(s) where
p(s) is given in (5.15). Because the polynom#k) is Hurwitz and the;’s are positive, the,
subsystem is GES. The existence of a clgssunction{ (-) satisfying condition (3.23) follows
directly from the GES of th&, subsystem.

By Theorem 3.6.1 and Lemma 3.6.2 we concludeexponentially stability of the complete
closed loop system.

a

Summarizing, we have exponentially stabilized tiAg,A;) and A3 subsystems separately. We
then conclude by Theorem 3.6.1 and Lemma 3.6.2 that the combined syst&freigoonentially
stable when the reference inpu satisfies Assumption 5.1.1 and its derivativé% are uniformly
bounded ovet.

B.2 Robustness considerations

In this section we investigate the robustness properties of the closedylsigons Uniform exponen-
tial stability is a desirable property because it implies exponential stability wifleotdo bounded
vanishing perturbations and uniformly bounded solutions with respectuiodaal non-vanishing per-
turbations. In this section we will show that the closed-loop systEmZ,) are uniformly expo-
nentially stable and determine (conservative) bounds, on the perturbatioshich the closed-loop
system is robust in some sense.

In order to show that the closed-loop syst&mis exponentially stable, we need the following
lemma. It gives a result for asymptotic stability of a scalar perturbed system.

LemmaB.2.1 (Lemma lin (Sgrdalen and Egeland, 1995) onsider the nonlinear, one-dimensional,
time-varying system
X = —a(X,t)x+d(x,t) t >to,X(to) € R (B.20)

under the following assumptions:

e There exists a solution® for any Xtp) and any t> to; when gx,t) and dx,t) are continuous
in x and t, there exists at least one solution.

e a(x,t) has the property that for all solutiongty, there exits positive constamsand P such
that
t
P At —to) g/a(x(r),r)drg Pt dolt—to), Vt>toVio>0.  (B.21)

to
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e The signal dx,t) is bounded for any b to and any Xt) by

[d(x(t),t)] < Dexp(—y(t —to)) (B.22)
for some positive constants D apd
Then
Ve>D0, IX(t)| < c(|x(to)| + D) exp(—(a — €)(t —tg)) (B.23)

wherea = min(A4,y) > 0 and c= maxexp(P.),exp(P1)/¢€).

The previous lemma shows that a solutigh) of (B.20) converges exponentially to zeraif,t)
andd(x,t) satisfy conditions (B.21) and (B.22) respectively.
Consider the closed-lodp; subsystemz; = Aq(t)z, given by

Xn1 = —Cn1Uz.d(t)?® 142X 1 4 X0 2
Xn2 = —Cn2U1d(t) 2% 2725 5+ up g(t) % 11
(B.24)

o 251420 | o
X31 = —C31U1d(t)*® X1+ X32

Xa2 = —Cg2Up d(t)°®2 23,
By Proposition 5.1.2, théxs 1,X32) subsystem is exponentially stabie,,
X3.2| < @32/x32(to) | eXP(—Y52(t —t0))
Using Lemma(B.2.1) we obtain
X3.1] < D31exp(—Az1)(t —to))

)+ $3,2/%32(to)| )

whereAz 1 =min(ys 1, ¥s2) — €31 andD3 1 = ¢3 1(|X31(to £21

i.e., ugd(t) <M,Vt, we obtain in a similar way that

. Sinceuy q4(t) is bounded,

Xa,2] < Dg2exp(—As2)(t —to))

D31
€42

a1 < Dggexp(—(Ag1)(t —to))

with A2 = min(ya2,A31) — €42 andDa 2 = ¢4.2(|xa2(t0)| + M ). Then

. . D o

with Az1 = min(ys1,A42) — €41 andDa1 = @a1(|Xa1(to)| + %). Continuing in this manner, we
4,1

obtain for 3< k<n

Xi1| < Dy 1exp(— (A1) (t —to))
X 2| < Dy2exp(—(Ak2)(t —to))

wherey 1 = €10k 1, Y2 = €10k 2 and¢y 1 = exp(—cx 10€1), Pk 2 = exp(—cy20¢&1) and
A1 =min(V1,Ak2) — &1, A2 = MiN(Vk2,Ak-11) — &2

Di1 = $i1([Xca(to)| + —2), Dk = fr2(Xk2(to)| + ——1).
&1 &2

)
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The parameterds 1, A3, D31 andD3 in the previous equation are given By, = min(ys1, y32) —

3.2|X3,2(to .
€31, )\372 = Y32, D371 = ¢371(|X371(t0)| + %) and D3,2 = ¢3’2(|X3’2(t0)|. Further substitution

gives, for4<k <n
A1 = MiN(Yie1 — &1, W2 — &1 — &k 2, Ak—1,1 — Ek 1 — Ek.2)
A2 = MiN(Yie1 — &2, 1.1 — Ek—1.1 — Ek 2, Ak—1.2 — Ek—1,1 — &k 2)

K19k, K19k,
Di1 = @k 1% 1(to)] + ¢ 1¢ 2!Xk (to)| + ¢kif 2MDy 11,
k2Pk— k2Pk-1,
Di2 = B2 |Xc2(to)| + ¢ ,2¢ LM e 1a(to)] + P20 LMDy 1o
&2 &k, 28k-1,1

% 1] < Dy 1exp(—An1(t —tg))
X 2| < Dy 2exp(—An2(t —tg))

Since
k—3 ¢ .
k—j,2
Dk1= %allé—j,l‘xk*ji(to)‘ + 8—,”05_1,1|Xk71,2(to)\
= k*],l
Pk 2 k3 Pr—j2
=0y 11X (to)| + —ak1|Xk2 to)| + Z af j.%j1(to)] +£k—_0’kfj,1|xk—j,2(t0)\
k3 ¢k j,2
Di2 = Bea/X2(to) |+Zﬁk 1l Jl(tO)H‘ Bk j.1X—j2(to),
where we defined
J'*ld) i 10K_i 2M
k—i,1Pk—i 2 .
01 = Pk, alk(—j,lz(l_!)%)(pk—j,la 121
i=0  &k—i1&k—i2
2 b i oPk-i—1aM | Pk jr120kj1 :
BIEZ = ¢k~,2a Bll((fj,l - (l_!) e = J E M, | = 1,
iy Ek—i28k-i-11 &k—j+1,2
Ox20k-1,1M .
where we define@f]_, = 1 for k < 0 such thapX_ =g Moreover, it holds that
k2
Ok S deiobio1aM | B 1ok Pr1 k .
ak—j,l——(l_L ) M="—"==Bcj1, 1>1,
&1 o Ek—i2&k—-i-11 E—j+1,2 &1

and therefore fok > 3 we have

Pr2Pi 1 ¢k 1
&1

pealto)] + 2l ol

)

Dk1 = ¢1X1(to)| + Z [ <|Xk jato)l +

k-3
Dk 2 = Pk 2/%2(to) H—Zﬁk 11<|Xk Jl(tO)H'

—j,2
L \Xk—j,z(to)!> ,

Consider the upper-triangulafr?— 2) x 2(n— 2) matrix D given by

¢n7k1 n—k
n—j,1»

Enk1. D
Pn k1Pn k 12 o k
n—j,1»

En KkiEn k 12 "

Doki1,2k+1 = Pn—k1, Doi12j+1= >k
_ (B.25)
Doki2.2kt2 = Pnk2, Doxi22j42= j >k
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0 <k < n—3. The matrixD has the following structure

[ Pn,1¢n2 )

Py ———= * *
&n1 brod
0 ¢np ToELIy %
' &n
D= Pa1042 Ga1042031,, P41022¢031032
0o ... P M M
€41 &g, 1«2}4 2 ¢3€4 154 2&31
0 0 ¢ 42731\ MM
’ €42 €42831
31 3,2
0 0 ¢3_’1 -
€31
0o .. 0 0 $az
" o PniPn2  Pn1 On, 1¢n Pnadn-12 50 Pt n P 1¢32B
n‘ —— .« o Y —— 3
: £ £ 11 En1n 1o ML En1 3 gniggg PO
% 1,2 ¢h-12
’ &n-1,1
- . 041 Pa1Qa> W14 G132 4
.« ... DR y — 371
€41 €41 €41831
P2 na
0 0 $a2 [33‘,1,1 Pt
$31¢32
0 0 ¢31 —
€31
L O 0 0 $32 i
Sincezi(t) = [Xn1,%n2; - --,X31,%3 2], We can write

|1(t)| < Dfzi(to)|exp(—A (t —to)),
wherey = min(yn 1, n.2) and therefore
[z2(t)|] < [IDI|]|ze(to) || exp(—A (t —to)).
By Remark 3.4.1, a Lyapunov functidf(t,z) = z] P(t)z; for the Z; subsystem is given by (3.11),
i.e.,

P(t) = /(pT(r,t)(p(r,t)dr (B.26)
t

whereg(t,tp) denotes the unknown transition matrix of the system. Along solutions afsebsys-
tem the Lyapunov functioW (t,z;) satisfies

1
—||21||2 <Vi(z) <

V2(Zl —H21H2 (827)
IIDH2H 2
021
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The closed-loogZ,) subsystem is given by

S| 0 0
. 0 —C22 0 0
2=1 o 0 0 1 | %
0 0  —kus —kiz

By solving (3.10) forQ(t) = | andP(t)
obtained that is given by

i 1 1

— - 0
C21 C21(C22+ C21)
1 Co1C22+ G5, + 1 0
p—1/2| Caa(Ca+Ca1) C21C22(C22+Co1)
0 0 Ko+ K1 +kan
k111k12
0 0 =
- K11

The Lyapunov functioW, satisfies

Amin(P)[|z2? < V2(22) < Amax(P)122]?

Vo(22) < —||22|?
oV
oz < 2Amax(P)|z2||

Now consider the Lyapunov functiov(t, z)
satisfies

=Vi(t,z1) + Va(22).

0

0
1
K11

kin+1

Kiikio

2
min(ar Amn(P)I2° < Vo(2) < maxt D () 2P

Vo(2) < 2]
oV D|2
9 < max 1O 24(p) 2

(B.28)

= 0, a time-invariant Lyapunov functiovh(x) = x"Px is

(B.29)

Then the Lyapunov functiol

(B.30)

By Theorem 3.5.1 we conclude that the closed-loop sy$kank,) is robust with respect to vanishing

0 forx = 0, satisfying

1

D2 |
= 2ma(P)

perturbationsi.e., d(t,z) =

10(t,x)|| < vze R"

(B.31)

By Theorem 3.5.2 we conclude that solutions of the system are globally ultintaiethded for non-

vanishing perturbationsge., d(t,x) # 0 for x = 0, satisfying

1 min(z—lL Amin(P))

mM\IDHZZAM(P)) maX(H I° P))
)\ ’ m ma’

13(t, )] <

or, V||Z| <r,ze R

(B.32)
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Appendix C

The underactuated H-Drive
manipulator

C.1 Dynamic model of the underactuated H-Drive Manipulator

In this appendix, a dynamic model for the underactuated H-Drive Martgoubéll be derived. This
dynamic model is used as a starting point for a simplified dynamic model prdsar@hapter 7.

Figure C.1: The coordinate system of the modified H-driveesyswith generalized coordinatés,ry, @, 8].
The masses along the axes are denotetkigymy; andmy; respectively. The mass of the rotational
link is denoted byng and its moment of inertia about its axis of rotationlpyThe length denotes
the distance between the rotational joint and the centeraskmof the link (not shown).

The coordinate system of the underactuated H-Drive Manipulator is iltestia Figure C.1.
Denote the mass of thé motors bymy, andmy, respectively, the mass of themotor bymy, the
mass and inertia of the beam by andlg and the mass and inertia of the rotational linkrbyand
I3 respectively. The longitudinal forces from tNeaxes are denoted Wy 1 and Ry, respectively,
while the transversal force from th€ axis is denoted b¥x. The distance from the rotational joint
at the positioriry(t),ry(t)] to the center of mass of the rotational link is denoted by the lehgtid
the length of theX-axis beam is denoted dy. The system moves in a horizontal plane and is not
influenced by gravity. The generalized coordinates are giveq by[Yg(t), ¢(t), X(t),8(t)], where
Yg(t) denotes the position along tieaxis of the center of mass of the beap(t) the tilt-angle X(t)
the position of theX motor along theX axis and@(t) the orientation of the rotational link.
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Assume that the center of mass of eaxis beam moves along a straight line through the origin
0 in the direction of thér axis. The position vectors, ifX,Y) coordinates, from the origir¥ to the
center of mass of the rigid bodies are given by

Ya(b)],

B(t

=10
rya(t) =[(D/2)cogg(t)), Ya(t) + (D/2) sin(e(t)],
rya( )=[ (D/2)coqg(t)), Y(t) — (D/2) sin(e(t)].,
) = [(X(t) +D/2)cog@(t)), Ya(t) + (X(t) + D/2) sin(g(t))].
rnn = [(X(t) +D/2)cog(t)) —I'sin(B(t)), Ya(t) + (X(t) +D/2) sin(e(t)) +1 cog B(t))] -

Note that the positioX(t) along theX axis is given byX € [-0.613 0.059. By assumption, the
center of mass of the beam is located at the pos)i@n = —D/2, where the lengtb of the beam is
approximately equal to.8 m. The kinetic energy of the system is

T = 1/2 (mefd + myady + myvoid, + mx g + 1s@? + a2+ IafE,) - (C.1)

Using the Euler-Lagrange formulatiore.,

d/oT oT .
— | = ——:F’7 | = l,...,4,
dt(aqi> ag " {4}

the dynamic model of the underactuated H-Drive Manipulator can be writtédneiform

M(a)4+C(a,q)q = [ E ] (C.2)

The (4 x 4) symmetric and positive-definite mass matXq) is given by

1,1] = My1+ My2 +Mx + Mg + Mg,
Mi12) = ((X(t) +D/2)(mx +mg) + (D/2)(my1 — my2)) cog (1)),

M1 3 = (mx + mg)sin(@(t)),

M14 = —mgl sin(6(t)),

Mp2 = I8+ (Mx +me) (X (t) +D/2)+ (D/2)%(mMy1 + My2), c3)
Mi2.4) = —mgl (X(t) + D/2)sin(6(t) — @(t)),

'V|33] My + Mg,
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The (4 x 4) matrix representing Coriolis and centrifugal for€s), g) is given by

Ci1,yy =C21) =C31 =C33 =Ca,) =Cia4 =0,

Crz = (Mx +mg) COS((p(t)>dXT(t) — ((mx +mg)(X(t) +D/2) + (D/2)(my1 — m))sin(rp(t»d%(t),
Crg = (Mx +ms) COS((P(I))d(pT(t),
Cq = —mdl 008(90))%“)

dx(t)
Craz) = (Mx +Me) (X(t) +D/2) ==
Casy = (mc-+mo)(x(1)+0/2) 4L,

do )

Caq = ~mel(X(t) +D/2) cot0(1) - 9(t) 25,
oz = —(mi+me) (X(1) +D/2) 0L,
Cag = ml(sin(0(1) — 01t)) "1
Ciaz = Mel (X(t) + D/2) cog B(t) — ())d(fT(t)—nblsin(e(t)_(p(t))de(t),
Caz = ~mil sin@(t) - o(t) 2.

(C.4)

The matriceM andC satisfy the property tha¥l — 2C is skew-symmetric. Théd x 1) input matrix
F is given by

Foy=HFi1+Ha2,

F21 = (D/2)(Fv1—Fr2)cog (1)), (C.5)
Fz. = Fx,

Fay =0

C.2 The servo controllers

Suppose that two controller = a1(&,t) andu, = az(&,t) have been designed for the second-order
chained form (7.13). Using relation (7.11) these inputs can be transflantedesired accelerations
V¢ andvy for the X- andY-axes,cf. (7.9). In order to compensate for the friction and cogging forces
in the X andY-axes, these desired accelerations are integrated twice to obtain desigongryqy
andryq for the position of the unactuated joint. These desired positions are then catadi servo
controllers for theX andY-axes. This approach, depicted in Figure 7.3, can been identified @mlvir
internal model following control’ (Kosuge et al., 1987), in which a localveesystem is used to
control the system. The desired positions of the servo system are obltginaegrating the desired
accelerations which are commanded from a top-level controller.

In (van der Voort, 2002) the frequency responses ofXhendY axes have been measured. In
order to reduce the effect of static friction and cogging, the motors anslated along a trajectory
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with a constant speed of@ [m/s?] and covers about.D [m]. During this motion a band-limited
white-noise signal generated afldz|, i.e., the sampling-rate of the system, with a power-intensity
of 10-° [Nm/9| is injected at the input of the PID controller. As mentioned earlier, the dynamfics
theY-axes are influenced by the position along ¥haxis. Therefore, the frequency responses have
been measured for different positions along ¥yaxis. This makes it possible to develop a Linear
Parameter-Varying (LPV) model which incorporates the coupling othandY-dynamics. In this
thesis, however, it is assumed that XeandY-axes are decoupled, and PID controllers are used to
control theX andY axes independently.

measured and estimated) FRF X-axis . measured and estimated) FRF Y-axis
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Figure C.2: Frequency responses function (FRF) oihéeft) andY1-axis (right) of the H-drive system

The frequency response of theaxis with theY-axis located a¥ = 0.5 [m] and the frequency re-
sponse of th& 1 axis with theX-axis located aX = 0.3 [m] are shown in Figure (C.2). For frequencies
below 100[Hz], the system behaves like a double integrater,the magnitude shows a slope-ef0
[dB/decadéand a phase around180 degrees. By fitting the frequency response for these lower fre-
quencies with a double integrator, we conclude that the lumped massegaréginy /kn = 0.12066
andmy1/ky = 0.21914[A - $?/m]. In (Hendriks, 2000) the motor constant of the LIMMS was calcu-
lated and given b¥, = 74.4 [N/A], thus these lumped masses correspond to magses3.98 [kg|
andm, = 16.30 [kg], respectively.

The frequency response of the X-axis shows that there are resofraquencies at 149, 161, 210
and 223 Hz. The frequency response of the Y-axis shows reseri@yuencies at 93, 102, 246 and
300[Hz|. As mentioned earlier, the dynamics of tfi@xes are influenced by the dynamics of ¥ie
axes. In fact, in (van der Voort, 2002) frequency responses of tirees have been measured with the
X axis located at different positions. In that reference it is shown treitlee the resonance frequency
at 102[Hz|, a second resonance frequency occurs at#i2b The damping of this eigenfrequency is
highly position dependent.g., it is well damped when the mass of temotor is located far away
from theY axis and poorly damped when the mass ofth@otor is located near to théaxis.

In (van der Voort, 2002), the position dependency of the dynamics of thes has been captured
by developing a Linear Parameter Varying (LPV) model, in which the positidheoX axis acts as
the varying parameter. In this manner it is possible to desigedhtrollers and LPV controllers that
compensate the position dependency of the resonance frequency [&tz.31t turns out, however,
that the H, controllers are only locally stablege., when one of the controllers is used for the whole
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operating range of the H-Drive, then instability may occur. It is howewssible to design PID
controllers that guarantee stability over the whole operating range. fohereve assume that the
dynamics of theX andY axes are decoupled and design PID controllers foXtladY axes which
are globally asymptotically stable. These controllers are of the type Pl LagdfLseries with a
second-order low-pass with a cut-off frequency at 300 Hz, andiges by

. B 0.675%° + 106.1s+ 4000
1.1825% + 185.7s+ 7000 '
CservqY =

4.4806- 1093 + 1.6892- 10-°s2 + 1.5920- 102s

Since the LIMMS motors for th&X andY-axes are of the same type, it is assumed that all three
motors have similar dynamics. The structure of the controllers thereforediffdy in gains, since
the mass in the direction of thé-axes is larger than in thé-direction. We aim at compensating the
resonance frequencies by adding notches to these PID controllerfotile diagrams of the resulting
PID controllers are shown in Figure C.3. The frequency response oétulting open-loop transfer

H-Drive servo controller X-axis H-Drive servo controller Y-axis
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Figure C.3: Bode diagram of the servo controller for ¥igleft) andY-axes (right)

is shown in Figure C.4. ThX-axis has a bandwidth of around §8z] with a phase-margin of 50
degrees and a gain-margin of {dB]. TheY-axis has a bandwidth of around 52 Hz and a phase-
margin of 35 degrees and a gain-margin of [@B]. Using the frequency responses of texis
measured at different positions of theaxis, see (van der Voort, 2002), it can be verified that the
closed-loop systems are asymptotically stable over the whole operating range

C.3 Motion Planning

In Chapter 4 a number of trajectory generation methods have been f@edenthe second-order
chained form. In Section 7.2, it was shown that the underactuated H-Manipulator is trans-
formable into the second-order chained form. In this section, the trajegégration methods will
be illustrated by application to the underactuated H-Drive Manipulator. uigecthese methods are
used to generate point-to-point motions, the resulting trajectories arenstpatly exciting. There-
fore, the trajectory generation methods have not been used to geredesmnce trajectories for the
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H-Drive open loop transfer X-axis H-Drive open loop transfer Y-axis

N
=3

Amplitude [dB]
@ oNoh .
& 8 o o o
T 1
Amplitude [dB]
IS
S

!
IS
S

;
10° 10 10"

=
S.

-100 . -100f

-300

-200

Phase [Degrees]
Phase [Degrees]
N
[=]
]

|
@
S
=]

-400 L -400
10" 10° 10° 10"

10° 10°
Frequency [Hz] Frequency [Hz]

Figure C.4: Frequency response of the open-loop systened-tfieft) andY-axes (right)

tracking problem, presented in Chapter 7 and 8. The flatness-bagsedeppresented in Section 4.4,
can not be used to generate trajectories that pass through singularttiesesidogenous transforma-
tion and the solution (4.16) of the point-to-point steering method, presentgddtion 4.5, can not
be used to generate trajectories when the desired final value of thé:stategual to its initial value,
i.e., &10 = &1. Therefore, the focus will be on the variational method and the sub-optivatdod,
presented in Section 4.6 and 4.7 respectively, and the flatness-basexdi meththe solution (4.16)
will not be considered here.

Consider the problem of moving the rotational link form an initial zero-velooitgfigurationga
to a desired final zero-velocity configuratigs. By transforming these configurations to the second-
order chained form, we obtain an initial zero-velocity positignand a desired final zero-velocity
position &g for the second-order chained form. Here, we consider the motion plapnablem for
the configurations given by

qA = [07 _037 0]7 QB = [07 037 0]7

£a=1[0,0,-0.3), & =1[0,0,0.3]. (€D

This trajectory can be interpreted as the equivalent of a parallel pankinign, often encountered in
mobile robotics, for an underactuatedPmManipulator. This desired motion of the rotational link is
interesting because, due to the nonholonomic constraint, it is difficult toatdh& &3 coordinate of
the system. Moreover, the trajectory passes through the singularitiesnded in the flatness-based
approach and the solution (4.16) of the point-to-point steering problem.

The variational method and the sub-optimal methods will be compared on tisedba®mpu-
tational effort, control effort and the length of the trajectory. Theseswes will be evaluated for
the chained form coordinates as well as the original mechanical cotedin®ote that the coor-
dinate transformation into the second-order chained form is only deforelihk angles in the set
{6(t) | |6(t)| < m/2}. In this thesis, a 'virtual internal model following control’ approach hastb
adopted to control the underactuated H-Drive Manipulator. Therefoesdesired input currents to
the LIMMS will not be generated, but instead the coordinate transformatioseid to transform the
desired inputs$us, U] into desired acceleratior,, vy| of the LIMMS along thex- andy-direction. In
order to compare the variational and the sub-optimal methods, we also thefiftdlowing measures:

e the computational effort in seconds of computing time is denoted by the me&sure
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e the control effortzz in terms of the inputs of the second-order chained form and the control
effort 7" in terms of the accelerations of the underactuated H-Drive manipulator:

]
u - /(ul(t)2+uz(t)2)dt

: (C.8)
V= +v dt

0/ J(t

¢ the lengthZ of the trajectory in terms of the chained form states and the lefaigtinterms of
the mechanical states of the underactuated H-Drive manipulator::

)
7= / (E1(t)2 + ()2 + E3(t))ct
] (C.9)
9 = 2 1 iy ()2 4+ B(1)2)dt
0/ y(t

In the variational method the motion planning problem is formulated as a sehbhear equalities
given by (4.18). The basis functions are chosen as a finite numbermbhg functionsj.e.,

h(t)=[ 1 sinfwt) cojJwt) sin(2wt) coq2wt) sin(3wt) cog3wt) | (C.10)

A SQP method available through the 'fmincon’ procedure in the Matlab Optimizatotbox has
been used to solve the resulting nonlinear optimization problem. In the sub-bpigttaod (FDM),

the optimal control problem has been formulated by a boundary valuéeepndBVP) given by (4.27).

In order to solve this BVP the Finite Differences Method (FDM) is applied witméorm mesh of

200 points to approximate the solution. In both methods, the desired finatjomatfon is reached
after one seconde., T=1g]. The initial conditions in both methods are chosen as a set of randomly
generated numbers.

Remark C.3.1. Suppose that a trajectod/t) connecting the point§s and &g is available on the
time-intervalt € [0, T]. Consider the 'stretched’ trajectoéyt) = & (t/a) defined on the time-interval
t € [0,aT]. The corresponding inputs are given (by differentiationy@$ = u(t/a)/a?. The cost-

criterionJ for the stretched trajectory is given as

aT aT

;
I= / ()2 +BO)D)dt = (1/a?) / (U (t/a)? + Ua(t/a)2)dt = (1/a) / )2 4 Up(t)2) .
0 0

0

The stretched trajectory thus remains optimal for the cost—criteirio-@rfoT (U (t)? +up(t)?)dt. In fact,
this property holds for any quadratic cost-criterion

-
I= [E0TQEW +un R
0

where & (t) = [E1(t), &1(1), ..., &s(t), &6(t)], u(t) = [ua(t), Ux(t)] and Q and R are constant positive-
definite symmetric matrices.
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(a) The variational method (SQP) (b) The sub-optimal method (FDM)

Figure C.5: Stroboscopic visualization of the motion plagrsolutions; the black dot() denotes the position
of the center of percussion at a distance ofdf] from the joint.

The solution of the variational method (SQP) to the motion planning problem igrshoFig-
ure C.6 and the solution of the sub-optimal method (FDM) is shown in Figurel@dtder to trans-
form the chained form states and inputs to the mechanical states and aiioetsthe parameter value
A =0.13[m] has been used. This value is in the order of magnitude of the valliéoTable 8.1. In
Figure C.5 a stroboscopic visualization of the solutions is given, by assuarinkg length of 01725
[m].

method Tle ZLIm  %[m/s] Z[mrad ¥ [m/s
variational | 17.14 5.76 273.85 4.93 175.66
sub-optimal | 4597  5.23 244.13 4.59 151.03

Table C.1: Measures of the motion planning methods

The corresponding measures have been summarized in Table C.1. t®ral methods does
not guarantee a solutione., in some cases the design variables may not converge to a solution. In
addition, the variational method only generates a feasible trajectory domméue pointséa andég
and is not uniquely definedle., more than one solution may exists. In fact, when using a different
initial condition for the same motion planning problem, a second solution carubd that resembles
the trajectory from the sub-optimal method.

The sub-optimal method only generates sub-optimal solutions in the sensalghatlocal min-
imum to the optimal control problem can be found, since the Hamiltonian of the dptionérol
problem is non-convex. This means that there may exist multiple solutions arrtonima to the
optimal control problem. If a different initial condition is chosen then the FBisly converge to a
different local minimum. For the current motion planning problem, howevifferdnt initial con-
ditions did not result in different trajectories and the calculated solution raay ddobal minimum.

If the Hamiltonian of the optimal control problem is convex, then the FDM cagesto a global
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minimum and an optimal solution has been found.

chained states chained inputs
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Figure C.6: The solution of the variational method (SQPheorhotion planning problem (C.#),&1, up (solid),
ry, &2, Uz (dashed) and, &3 (dash-dotted).

As expected the sub-optimal methods generates a trajectory that is closeotithal solution,
i.e., the measurez is smaller, than the variational method. The required computational effort is
however larger. It should be noted that both methods can be used tasaivetion planning problem
in terms of the dynamics of the mechanical system without using a transforniatiiothe second-
order chained form. In certain cases, the resulting trajectories will loolptiely different from the
trajectories that are based on the second-order chained form. Thedwairtage of using the second-
order chained form is that it considerably reduces the computational tietkeddo solve the motion
planning problem. Furthermore, the presented trajectory generation reetteydbe generalized to
include obstacle avoidance, see (Verhoeven, 2002) for more informatio
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Figure C.7: The solution of the sub-optimal method (FDM)he motion planning problem (C.7¥x,&1,u;
(solid), ry, &, u> (dashed) and, &3 (dash-dotted).
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Summary

Underactuated mechanical systems, or system having more degreegdurfr than actuators, are
abundant in real-life. Examples of such systems include, but are not limiteckit vehicles such as
cars and trucks, mobile robots, underactuated robot manipulatoracsuréssels, underwater vehi-
cles, helicopters and spacecraft. In certain cases, these underdcehexhanical systems are subject
to second-order nonholonomic constraints. A second-order nortmlorconstraint is known as an
acceleration constraint which is non-integrable, which means that th&r@ionhsan not be written
as the time-derivative of some function of the generalized coordinategednaities. Therefore, the
second-order nonholonomic constraint can not be eliminated by integeattbthis constraint forms
an essential part of the dynamics.

The interest for underactuated mechanical systems with second-amdgolonomic constraints
can be motivated by the fact that, in general, the stabilization problem carersuilved by smooth
(or even continuous) time-invariant state feedbacks. Typically, a fidstation for this obstruction
follows form the fact that the linearization around equilibrium points is nottrotlable. The con-
trol of this class of underactuated mechanical system is thus a challenginigm for which many
open problems exist. To date, many researches have only considergdlifization problem and
the tracking control problem has received less attention. Howeverautipe, the tracking control
problem is more important than the stabilization problem because one doaslyieiant the system
to move from one point to another, but the system should also move aloregifiep path. This spec-
ified path may be necessary in order to avoid obstacles or to satisfy neguite which are imposed
on the motion of the system. The tracking control problem can be solved bysingpadditional re-
quirements on the trajectory to be tracked. In general, the referenaedrgjbas to satisfy a so-called
persistence of excitation condition, meaning that the reference trajectuoydflowed to converge to
a point. This means that the tracking and stabilization problems require difflgspproaches and have
to be treated separately.

In this thesis, the tracking and stabilization problem are considered foss afainderactuated
mechanical systems. This class consists of second-order nonholonoantiamtal systems that can
be transformed into a canonical form, called the second-order chainadify a suitable coordinate-
and feedback transformation. The second-order chained form feeslitantroller design for second-
order nonholonomic systems because the dynamics of the system areecallsicimplified and
provides the possibility to design controllers for a whole class of secoel-aonholonomic systems
instead of a specific mechanical system. The tracking control problethdaecond-order chained
form, in which the controlled system should move along a specified refeteajectory, can be solved
by application of a combined cascade and backstepping approacijqudkat the trajectory to be
tracked does not converge to a point. This approach results in a lineavdiryieg controller that
stabilizes the second-order chained form system to the desired trajedtbrgxponential conver-
gence. In addition to the tracking control problem, also some methods ferajemy state-to-state



trajectories are presented which additionally give an explicit way of stgpaamtrollability for such
underactuated mechanical systems. These methods allow the generagasiblief trajectories that
connect an initial state and a desired final state and which are optimal in sose €., by formulat-
ing the trajectory generation as an optimal control problem the resultingttajés a local minimum
of a certain cost-criterion.

The stabilization problem for the second-order chained form, in whichytbterm should be sta-
bilized to a desired equilibrium point, can also be solved by application of aiceehlveraging and
backstepping approach for homogeneous systems.

Itis well-known that the stability analysis of nonlinear time-varying systemseayuite involved
and, in general, is very hard to solve. If the nonlinear time-varying sysdramogeneous, the the-
ory of homogeneous systems can be used, under additional requiretoentestigate its stability
properties. A homogeneous system is associated with a correspondmg@oeous norm. In addi-
tion, a homogeneous system, under certain conditions, shares the sqr@dipsaas a linear system
in the sense that asymptotic stability implies exponential stability and local stability ingitbal
stability. The combined averaging and backstepping approach resultoitiaubus homogeneous
controller that stabilizes the system to a desired equilibrium point. To date and kmowledge, this
homogeneous controller is the only one capable of ensuring Lyapuruiitgtas well as exponential
convergence of the second-order chained form system with respdéiot corresponding homoge-
neous norm. It is well-known that homogeneous controllers are nostelith respect to parameter
uncertainties. Therefore a periodically updated version of the homogsra&abilizing controller
has been given in which the states of the system are periodically updadéstiste time instants.
This controller is robust with respect to a class of additive perturbatiatsnbludes perturbations
resulting from certain parameter uncertainties, but excludes non-smibetksesuch as friction, or
measurement noise.

In order to successfully apply the controllers, they should first be téstexperiments with real-
life second-order nonholonomic systems. The developed tracking abitizitg controllers have
been validated on an experimental set-up that consists of an underdd#sBiéve manipulator. This
experimental set-up has the same dynamics as a planar horizontal unae@®R manipulator, or
in other words a manipulator with two prismatic and one unactuated rotationaljaiistexperimental
setup can be used as a benchmark set-up for controllers of seatgrdranholonomic systems. In
the experiments the goal is to use the two control inputs to control the two pasdions as well
as the orientation of the link. The experimental results correspond to the sonulesults and show
the validity of the control design approaches in the sense that the systdme cantrolled to a region
around the desired trajectory or equilibrium. Due to disturbances, mainkjtingsfrom friction in
the rotational link, measurement noise and gravitational disturbancedptezldoop system is not
asymptotically stable, but instead, oscillates around the desired trajectequitibrium. The size of
the region around the desired trajectory or equilibrium, to which the systeomisotied, depends on
the magnitude of the disturbances. This shows the need for controlleer¢hatbust with respect to
perturbations, including non-smooth effects such as friction, or contsodlbich include disturbance
adaptation or compensation.

In most research dealing with the control of underactuated mechanstahsy with second-order
nonholonomic constraints the influence of perturbations on the closeddiptgmics has generally
not been taken into account. Nevertheless, the experimental resultstisiiounderactuated me-
chanical systems are more susceptible to perturbations than fully actuatbdnioat systems. This
is caused by the fact that no actuator is available to directly compensatefptre perturbations
acting on the un-actuated degree of freedom. Therefore, the develbpfebust controllers for
underactuated mechanical systems is an important issue that should eca sltoirther research.



Samenvatting

Ondergeactueerde systemen, of systemen met meer vrijheidsgradectwitoran, zijn veel voor-
komende mechanische systemen. Voorbeelden van dergelijke ondesgzde systemen zijn onder
andere wegvoertuigen zoals auto’s en vrachtwagens, mobiele robhdergeactueerde robot mani-
pulatoren, schepen, onderwatervoertuigen, helicopters en ruintidgear In bepaalde gevallen,
zZijn deze systemen onderhevig aan tweede-orde niet-holonome beperkiign tweede-orde niet-
holonome beperking is een versnellings-beperking die niet-integradshaftewel de beperking kan
niet geschreven worden als een functie van de gegeneralizeendéneten en snelheden. Daardoor
is de tweede-orde beperking niet elimineerbaar door middel van integnati@mt de constraint dus
een essentieel onderdeel van de dynamica van het systeem.

De interesse in deze specifieke klasse van ondergeactueerde metohayistem kenmerkt zich
door het feit dat, over het algemeen, deze systemen niet gestabilisegrenkworden door middel
van een gladde (of zelfs continue) tijd-invariante toestandsterugkogpddien eerste indicatie hier-
voor is het feit dat de linearisatie rond een evenwichtspunt niet reelba Het regelen van deze
klasse van ondergeactueerde system is een uitdagend onderiboe#tsgearin vele open problemen
bestaan. Tot op heden is in veel onderzoek alleen het stabilisatieprobksshouwd en heeft het
volgprobleem minder aandacht gekregen. Dit terwijl, in de praktijk, higgprobleem belangrijker is
dan het stabilisatieprobleem omdat het systeem niet alleen van punuma@epracht moet worden,
maar vaak ook een bepaald pad moet volgen. Dit is met name van belangendeh systeem ob-
stakels moet vermijden of wanneer er bepaalde voorwaarden wordeidg@an de beweging van het
systeem. Het volgprobleem voor deze klasse van systemen kan opgefdsh wanneer bepaalde
restricties worden gesteld aan het te volgen traject. Over het algemedhwsoondersteld dat het
systeem aan een bepaalde persistente excitatie conditie voldoet, hetgrett ddt het referentietra-
ject niet naar een punt convergeert. Dit betekent dat het volg- bilisasieprobleem verschillende
benaderingen vereisen en afzonderlijk beschouwd moeten worden.

In dit proefschrift, beschouwen we het volg- en stabilisatieprobleeon @en klasse van onder-
geactueerde mechanische systemen. Deze klasse bestaat uit tweedeisholonome mechanische
systemen die getransformeerd kunnen worden naar een kanoniekebeater bekend als de tweede-
orde “chained form”, door middel van een geschikte codrdinaten- emgsjransformatie. Het volg-
of tracking probleem, waarin het systeem langs een bepaald referajgiet jeregeld moet worden,
kan opgelost worden door toepassing van een gecombineerde e€astdoackstepping’ methode
onder de voorwaarde dat de te volgen trajectorie niet naar een powvergeert. De resulterende
regelaar is een lineaire tijd-variante toestands-terugkoppeling die heesysiaar de te volgen tra-
jectorie brengt met exponentiele convergentie. Naast het trackingeprobworden ook een aantal
methoden gepresenteerd voor het genereren van een trajectorie eitobstanden van de tweede-
orde “chained form” verbindt, waarmee dus op een expliciete manier désegheid van dergelijke
ondergeactueerde systemen wordt aangetoond. Met deze methodemagelijk om een trajectorie



te vinden die een begintoestand en een gewenste eindtoestand varndehsyerbindt en daarnaast
optimaal is in een bepaalde zine., door het trajectoriegeneratieprobleem als een optimaal bestu-
ringsprobleem te formuleren is de trajectorie een locaal minimum van eealtdqastencriterium.

Het stabilisatieprobleem kan ook opgelost worden door een gecomitinedgddelings en ‘back-
stepping’ methode voor homogene systemen. Homogeniteit is een eigenéelygbruikt kan wor-
den voor stabiliteitsanalyse van tijdsafhankelijke niet-lineaire systemen. Higtadmeen bekend dat
de stabiliteitsanalyse van tijdsafhankelijke systemen vaak erg complex en moglitigbaar is. Als
het systeem homogeen is, kan door gebruik te maken van de homogenileit,aamvullende voor-
waarden, toch een stabiliteitsanalyse uitgevoerd worden. Een homogteens wordt geassocieerd
met een bijbehorende homogene norm. Daarnaast bezit een homogeamsgnder bepaalde voor-
waarden dezelfde eigenschappen als een lineair systeem, in de zilymiptatssche stabiliteit ook
exponentiele stabiliteit impliceert en lokale stabiliteit ook globale stabiliteit. De geic@®itzle mid-
delings en ‘backstepping’ methode methode resulteert in een homogesiaaredie in staat is elk
gewenst evenwichtspunt van de tweede-orde “chained form” te stabiliz&ot op heden en voor
zover bekend, is deze homogene regelaar de enige die naast Lyagiahiiteit ook exponentiéle
convergentie met betrekking tot de bijpehorende homogene norm kandgaen. Het is algemeen
bekend dat homogene regelaars niet robuust zijn met betrekking stdosegen die veroorzaakt wor-
den door, bijvoorbeeld, parameteronzekerheden. Daarom wdkdteroperiodiek aangepaste versie
van de regelaar gepresenteerd waarbij de toestanden periodieknvaadgepast op discrete tijd-
stippen. Deze regelaar is robuust met betrekking tot een bepaalde Wasadditieve verstoringen,
waaronder verstoringen veroorzaakt door bepaalde paramet&ssheden vallen, maar geen niet-
gladde effecten, zoals wrijving, en meetruis.

Om de ontwikkelde regelstrategieén in de praktijk te kunnen toepassemdiererst getest te
worden. De ontwikkelde tracking en stabilizerende regelaars zijn tosgepaeen experimentele
opstelling bestaande uit een ondergeactueerde H-brug manipulatoryraenida van de experi-
mentele opstelling is vergelijkbaar met de dynamica van een planair horizontalelergeactueerde
PPR manipulator, of met andere woorden een manipulator met twee prismatisctsegipieen on-
geactueerde roterende joint in het horizontaal platte vlak. Deze expael@@pstelling kan gebruikt
worden voor validatie van regelaars voor tweede-orde niet-holonostersgn. In de experimenten
wordt getracht, door middel van de twee ingangen op het systeem, devixgke planaire posities als
de oriéntatie van de roterende link te regelen. De experimentele resultabem kmed overeen met
de simulaties en tonen de geldigheid van de gekozen aanpak in de zin dgsteetm geregeld kan
worden naar een gebied rond de gewenste trajectorie of het gewgastgiehtspunt. Ten gevolge
van verstoringen in het systeem, zoals met name de wrijving in het scheaniete roterende link,
de meetruis en een verstoringskoppel ten gevolge van de zwaarteksdwdt geregelde systeem niet
asymptotisch stabiel maar oscilleert rond de gewenste trajectorie of hehg@revenwichtspunt. De
grootte van het gebied waarin deze oscillaties plaatsvinden hangt aé vanatte van de perturbaties.
Hierdoor is er behoefte aan regelaars die robuust zijn met betrekkingtstioringen, waaronder
niet-gladde effecten zoals wrijving, of regelaars die een bepaalde vammrerstorings-adaptatie of
-compensatie bevatten.

In veel onderzoek naar het regelen van tweede-orde niet-holongsteen wordt de invioed
van verstoringen of perturbaties niet in beschouwing genomen. Ediitele experimenten blijkt
dat ondergeactueerde systemen gevoeliger zijn voor verstoringeroliieaig geactueerde systemen
omdat er geen actuator beschikbaar is waarmee de perturbaties, avepkda niet-geactueerde vrij-
heidsgraad, (gedeeltelijk) gecompenseerd kunnen worden. Hiesdderontwikkeling van robuus-
te regelaars voor ondergeactueerde mechanische systemen eenijkedadgrzoeksgebied dat een
onderwerp voor verder onderzoek zou moeten zijn.
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Propositions

accompanying the thesis

Control of Underactuated Mechanical Systems

1. Although the yaw dynamics of a car can not be decoupled from distoeb@rques by means
of a static or dynamic state feedback, it is possible when using state{derivdormation in
the feedback loop.

In: Application of nonlinear disturbance decoupling to active car steeNné\neke, J. Acker-
mann, T. Buente, H. NijmeijetProceedings of the European Control Confereialsruhe,
Germany, 1999.

2. The second-order chained form for second-order nonholongystems plays the same role as
the chained form system for first-order nonholonomic systems, in the skeasthe transfor-
mation into chained form facilitates control design by simplifying the systemrmdijagg This
thesis: Chapter 1.

3. The tracking control problem for the second-order chained f@mbe solved by linear time-
varying feedback, provided that the reference trajectory doesoneecge to a point. Therefore,
the tracking problem and the stabilization problem require different @gpes and have to be
treated separately. This thesis: Chapter 5.

4. The feedback stabilization problem for the second-order chaimeddan not be solved by any
smooth or continuous time-invariant feedback. It can be solved whesid@ing continuous
periodic time-varying feedback. This thesis: Chapter 6.

5. In order to cope with non-vanishing external perturbations, suéficien and possible gravi-
tational effects, the practical stabilization problem for underactuatedanéwi systems could
be considered instead of the asymptotic stabilization problem. This thesiste€Bap

6. Engineering is making a flawed early version and then refining to makdait rig

In: T. DeMarco, Structured analysis and systems specification, Yalrdess, 1979.

7. When somebody says that something can’t be done, he or she is wstaaity.
In: S. Maguire: Debugging the Development Process, MicrosofsPi€94.

8. Failure is the opportunity to begin again more intelligently.
By: Henry Ford, 1863 - 1947.

9. Engineering is sometimes like applying a sticker: if there’s a bubble antrytmiget rid of it,
it always appears elsewhere.

10. Do not be afraid to try new things. Remember, the Ark of Noah was byi#trbateurs; the
Titanic by professionals.

Edo Aneke.
Eindhoven, 11th March 2003.
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