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Chapter 1

Introduction

The last decades have shown an increasing interest in the control of underactuated mechanical sys-
tems. These systems are characterized by the fact that there are more degrees of freedom than ac-
tuators,i.e., one or more degrees of freedom are unactuated. This class of mechanical systems are
abundant in real life; examples of such systems include, but are not limited to, surface vessels, space-
craft, underwater vehicles, helicopters, road vehicles, mobile robots, space robots and underactuated
manipulators. Underactuated mechanical systems generate interesting control problems which require
fundamental nonlinear approaches. The linear approximation around equilibrium points may, in gen-
eral, not be controllable and the feedback stabilization problem, in general,can not be transformed
into a linear control problem. Therefore linear control methods can not beused to solve the feedback
stabilization problem, not even locally. Also, the tracking control problem can not be transformed
into a linear control problem. However, it turns out that, under certain conditions, the tracking control
problem can be solved by linear time-varying control.

Many underactuated mechanical systems are subject to nonholonomic constraints. In classical
mechanics, nonholonomic constraints are defined as linear constraints of the typeΦ(q)q̇ = 0 which
are non-integrable, where the generalized coordinates are denoted byq. The constraint is called non-
integrable if it can not be written as the time-derivative of some function of thegeneralized coordi-
nates,i.e.,φ(q) = 0, and thus can not be solved by integration. Contrary to classical mechanics, a more
general characterization of nonholonomic constraints will be adopted in thisthesis. The nonholonomic
constraints are divided into two classes, the first-order nonholonomic constraints and the second-order
nonholonomic constraints. The first-order nonholonomic constraints are defined as constraints on the
generalized coordinates and velocities of the formΦ(q, q̇) = 0 that are non-integrable,i.e.,can not be
written as the time-derivative of some function of the generalized coordinates, i.e., φ(q) = 0. These
constraints include nonholonomic constraints arising in classical mechanics and nonholonomic con-
straints arising from kinematics. The second-order constraints are defined as constraints on the gen-
eralized coordinates, velocities and accelerations of the formΦ(q, q̇, q̈) = 0 which are non-integrable,
i.e., can not be written as the time-derivative of some function of the generalizedcoordinates and
velocities,i.e.,φ(q, q̇) = 0.

These first-order nonholonomic or second-order nonholonomic constraints most commonly arise
in mechanical systems where constraints are imposed on the motion, for example, underactuated ve-
hicles and underactuated robot manipulators. These constraints are non-integrable,i.e., can not be
solved by integration, and are therefore an essential part of the dynamics. The first-order nonholo-
nomic constraints, or velocity constraints, most commonly occur in, for example, wheeled mobile
robots and wheeled vehicles, including tractor with trailer systems. The second-order nonholonomic
constraints, or acceleration constraints, most commonly occur in, for example, surface vessels, under-
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water vehicles, spacecraft, space robots and underactuated manipulators.

In addition to classical formulations, nonholonomic constraints can arise in other ways. If the
motion of a mechanical system exhibits certain symmetry properties, there existconserved quanti-
ties. If these conserved quantities, for example the angular momentum, are non-integrable, this may
be interpreted as a nonholonomic constraint. It should be noted that, in classical mechanics, con-
served quantities are not regarded as constraints on a system. In the control community, however, it
has been commonly accepted to regard these conserved quantities as constraints that are imposed on
the system. Examples of such systems include multi-body spacecraft and underactuated symmetric
rigid spacecraft. Nonholonomic constraints also arise as a result of imposing design constraints on
the allowable motions of the mechanical system. Examples of such systems includethe case of kine-
matically redundant manipulators and underactuated manipulators. The general connection between
underactuated systems and nonholonomic systems is not completely understood. An introduction to
nonholonomic control systems is given in (Murray et al., 1994), and the formulation of nonholonomic
systems is considered in (Neimark and Fufaev, 1972). An overview of developments in nonholonomic
control problems can be found in (Kolmanovsky and McClamroch, 1995).

This thesis addresses the tracking and stabilization problem for underactuated mechanical sys-
tems with second-order nonholonomic constraints. Most publications on underactuated systems with
nonholonomic constraints have dealt with systems that exhibit first-order nonholonomic constraints.
For these systems an extensive amount of literature is available on the feedback stabilization problem
and research in this field is still continuing. In the last decade underactuated systems with second-
order nonholonomic constraints have received more interest, but so farthe interest was focused on the
feedback stabilization problem and the tracking problem has received less attention.

The interest in underactuated mechanical systems with second-order nonholonomic constraints
can be motivated by the fact that, in general, these systems have a structural obstruction to the ex-
istence of smooth (or even continuous) time-invariant stabilizing feedback laws; they do not meet
Brockett’s well-known condition for smooth time-invariant feedback stabilization (Brockett, 1983).
Typically, a first indication of this obstruction follows from the fact that the linearization around any
equilibrium point is uncontrollable. Furthermore, it follows that the tracking control problem can
only be solved by smooth feedback when additional requirements are imposed on the trajectory to
be tracked, see (Jiang and Nijmeijer, 1999). These underactuated mechanical systems, not satisfy-
ing Brockett’s condition, also satisfy certain nonlinear controllability properties, but these properties
are not sufficient to prove complete controllability of the mechanical system. In short, the control of
underactuated systems with second-order nonholonomic constraints is a challenging control problem
for which many open problems still exist. For instance, it is not clear whetherthe tracking control
problem can be solved by time-invariant feedback, as in the case of underactuated mechanical sys-
tems with first-order nonholonomic constraints. It is also not clear whether the feedback stabilization
problem can be solved by smooth time-varying feedback.

The interest in underactuated mechanical systems with second-order nonholonomic constraints is
also motivated from a more practical point of view. Underactuated mechanical systems are abundant
in real life and many of these systems exhibit nonholonomic constraints. Therefore control method-
ologies are needed that can be applied in practice. This means that the control methodologies should
satisfy some robustness properties,i.e., they should be able to deal with parameter uncertainties and
un-modelled dynamics. Therefore, the control methodologies should be tested in real-life experi-
ments.
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1.1 First-order nonholonomic constraints

x

y

θ

l (x′,y′)

Figure 1.1: A wheeled mobile robot (unicycle type)

For mechanical systems, first-order nonholonomic constraints are velocityconstraints that are
non-integrable. In order to clarify what the non-integrability condition means, consider a wheeled
mobile robot of unicycle type, shown in Figure 1.1. Assume that the forwardvelocity u and angular
velocity ω are inputs that can be controlled independently. It is assumed that the front castor wheel
and the rear wheels roll without slipping. When(x,y) denotes the coordinates of the center of mass
andθ the angle between the heading direction and thex-axis, the kinematic model of this mobile
robot is given by

ẋ = cos(θ)v

ẏ = sin(θ)v

θ̇ = ω
(1.1)

Consider a point(x′,y′) located at a distancel along the centerline of the mobile robot. The velocity
orthogonal to the centerline of the robot should be equal to the angular velocity at the point(x′,y′).
The velocity(ẋ′, ẏ′), orthogonal to the centerline, at the point(x′,y′) thus satisfies the constraint

ẋ′ sin(θ)− ẏ′ cos(θ) = −l θ̇ . (1.2)

The roll-without-slip condition of the rear-wheels, located on the axis through the point(x,y) and
perpendicular to the centerline, requires that the velocity orthogonal to thecenter line is equal to zero.
Thus equation (1.2) withl = 0 gives the constraint

ẋsin(θ)− ẏcos(θ) = 0 (1.3)

Consider the constraint (1.2). Using constraint (1.3), it follows that (1.2) is satisfied by

ẋ′ = ẋ− l sin(θ)θ̇
ẏ′ = ẏ+ l cos(θ)θ̇ .

(1.4)
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Integration of (1.4) leads to the relationship between the positions of the points(x,y) and(x′,y′) given
by

x′ = x+ l cos(θ)

y′ = y+ l sin(θ)
(1.5)

This means that constraint (1.4), which is equivalent to (1.2), can be integrated to obtain (1.5). There-
fore (1.2) defines a holonomic constraint. Unlike constraint (1.2), constraint (1.3) can not be inte-
grated,i.e., it can not be written as the time-derivative of some function of the state(x,y,θ). It is an
essential part of the dynamics of the system. The constraint (1.3) is therefore called a nonholonomic
constraint. As a result, the stabilization of the system (1.1) is far from trivial.In fact, it can be shown
that, in general, first-order nonholonomic systems can not be stabilized by any smooth time-invariant
static state-feedback.

To illustrate why the underactuated system (1.1) can not be stabilized by anysmooth time-invariant
static state-feedback, consider the problem of stabilizing the system (1.1) tothe origin. Suppose that a
time-invariant static state feedback exists that stabilizes the system to the origin by smooth functions
v(x,y,θ) andω(x,y,θ) with v(0,0,0) = 0, ω(0,0,0) = 0. The equilibria of the closed-loop system
are given by solutions ofv(x,y,θ) = 0 together withω(x,y,θ) = 0. Because we have three unknowns
in two equations, there exists (locally) a one-dimensional manifold of equilibriawhich passes through
the origin. Thus the origin of the system can not be stabilized by smooth static time-invariant state-
feedback. Only a manifold of dimension one can be stabilized by a smooth static time-invariant state-
feedback. A formal generalization of this observation is given by Brockett’s necessary condition.
It is a necessary condition for feedback stabilization by continuous time-invariant feedback. It was
presented in (Brockett, 1983) forC 1 time-invariant feedback laws and was shown in (Zabczyk, 1989)
to hold also for continuous time-invariant feedback laws.

1.2 Second-order nonholonomic constraints

As mentioned earlier, underactuated mechanical systems,i.e., systems with more degrees of free-
dom than inputs, can give rise to second-order nonholonomic constraints. Consider an underactuated
mechanical system and letq = (q1, . . . ,qn) denote the set of generalized coordinates. Partition the
set of generalized coordinates asq = (qa,qb), whereqa ∈

�m denotes the directly actuated part and
qb ∈ �n−m denotes the unactuated part. Withu ∈ �m denoting the vector of control variables, the
equations of motion of the underactuated mechanical system become:

M11(q)q̈a +M12(q)q̈b +F1(q, q̇) = B(q)u (1.6)

M21(q)q̈a +M22(q)q̈b +F2(q, q̇) = 0 (1.7)

The equations (1.7) definen−m relations involving the generalized coordinates as well as their first-
order and second-order derivatives. If there exists no non-trivial integral, i.e., a smooth function
σ(t,q, q̇) such that dσ/dt = 0 along all solutions of (1.7), then thesen−m relations can be inter-
preted as nonholonomic constraints. In (Reyhanoglu et al., 1996) a classof underactuated mechanical
systems was identified that exhibit second-order nonholonomic constraints. Examples of systems be-
longing to this class are given by underactuated robot manipulators (Orioloand Nakamura, 1991),
autonomous underwater vehicles (Egeland et al., 1994; Pettersen, 1996), underactuated surface ves-
sels (Pettersen and Nijmeijer, 1998), the Acrobot system (Spong, 1995)and the planar vertical/short
take-off and landing aircraft (V/STOL) (Hauser et al., 1992).
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In this thesis only underactuated mechanical systems which exhibit second-order nonholonomic
constraints are considered. In contrast to systems with first-order nonholonomic constraints, the
second-order nonholonomic constraints include drift-terms that make control of these systems more
difficult. Similar to the case of first-order nonholonomic systems, in certain cases second-order non-
holonomic systems also have a structural obstruction to the existence of smooth(or even continuous)
time-invariant stabilizing static state-feedbacks; they do not meet Brockett’snecessary condition for
feedback stabilization (Brockett, 1983). However, there do exist second-order nonholonomic systems
that are smoothly (or even linearly) stabilizable. These systems are, in general, directly influenced
by gravity and therefore the linearization around equilibrium points is controllable. The Acrobot, a
two link underactuated robot (Spong, 1995), and the planar vertical/short take off and landing aircraft
(V/STOL) are examples of such systems. As an example of second-ordernonholonomic systems,

x

y

ψ

u (surge)

v (sway)

r (yaw)

Figure 1.2: An underactuated surface vessel

consider underactuated vehicles described by the following model:

Mν̇ +C(ν)ν +D(ν)ν +g(ν) =

[

τ
0

]

(1.8)

η̇ = J(η)ν (1.9)

whereη ∈ �n, ν ∈ �m, n > m andτ ∈ �k, k < m. The inertia matrixM is nonsingular and constant,
i.e., Ṁ = 0, and the matrixJ(η) has full rank,i.e., rank(J(η)) = m, ∀η . Underactuated vehicles de-
scribed by (1.8,1.9) are underactuated surface vessels, underwatervehicles and spacecraft. The vector
ν = [u,v, r]T denotes the linear and angular velocities of the vehicle decomposed in the body-fixed
frame, see Figure 1.2,η = [x,y,ψ ]T denotes the position and orientation decomposed in the earth-
fixed frame, andτ denotes the control forces and torques decomposed in the body-fixed frame.M is
the inertia matrix including added mass,C(ν) is the Coriolis and centripetal matrix, also including
added mass,D(ν) is the damping matrix andg(ν) is the vector of gravitational and buoyant forces
and torques. The matricesC(ν) andD(ν) depend on the vector of linear and angular velocitiesν .
Equation (1.9) represents the kinematics of the vehicle.

Let Mu,Cu(ν),Du(ν) andgu(ν) denote the lastm−k rows of the matricesM,C(ν),D(ν) and the
vectorg(ν), respectively. Then the constraint imposed by the unactuated dynamics can be written as

Muν̇ +Cu(ν)ν +Du(ν)ν +gu(ν) = 0 (1.10)
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The gravitation and buoyancy vectorg(ν) is important for the stabilizability properties of underactu-
ated vehicles. If the vectorgu(ν) corresponding to the unactuated dynamics contains a zero function,
then the constraint (1.10) is a second-order nonholonomic constraint. Byusing Brockett’s condition,
it can be shown that there exists no continuous time-invariant feedback lawsuch that the equilibrium
(0,0) is asymptotically stable (Pettersen, 1996).

1.3 Contributions of this thesis

In this thesis the tracking and stabilization problems for underactuated mechanical systems with
second-order nonholonomic constraints are considered. A special class of underactuated mechanical
systems with second-order nonholonomic constraints is considered, namelythe class of underactuated
mechanical systems that can be transformed, by a suitable coordinate and feedback transformation,
into a special canonical form. This special canonical form,i.e., the so-called second-order chained
form, considerably simplifies the dynamical equations of the system and is therefore more suitable
for control design than the original dynamical equations. Moreover, thetransformation bringing the
system into the second-order chained form, in most cases, has a clear physical interpretation. To date,
studies concerning the control of nonholonomic systems have primarily beenlimited to tracking and
stabilization problems for first-order nonholonomic systems. When second-order nonholonomic sys-
tems have been considered, the interest has been focused on the stabilization problem and the tracking
control problem has received less attention. Although the dynamics of second-order nonholonomic
systems are quite well understood, the tracking and control problems for these systems still remain a
challenging task. For instance, it is not clear whether the tracking controlproblem can be solved by
time-invariant feedback, like in the case of underactuated mechanical systems with first-order non-
holonomic constraints. It is also not clear whether the feedback stabilizationproblem can be solved
by smooth (or even continuous) time-varying feedback.

To our knowledge, only a few results are available that have successfully solved the tracking
problem for second-order nonholonomic systems. In (Walsh et al., 1994) a result for tracking of first-
order nonholonomic systems has been given that may be extended to second-order nonholonomic
systems. The feedback stabilization problem has received more attention. In (Laiou and Astolfi,
1999) a discontinuous controller has been developed for the high-order chained-form system with
two inputs. The discontinuous controller does not stabilize the system, but only achieves exponential
convergence towards the the point to be stabilized. This means that the trajectories of the closed-loop
system converge exponentially towards the point to be stabilized. However, since the controller and
therefore the closed-loop system is discontinuous at the point to be stabilized, no stability property in
the sense of Lyapunov can be shown to hold.

The contribution of this thesis to the control of second-order nonholonomicsystems is as follows.
In this thesis the tracking control problem and the feedback stabilization problem for second-order
nonholonomic systems is considered. In the tracking control problem only smooth state-feedback are
considered and it is shown that the tracking control problem for the second-order chained form can be
solved by a linear time-varying feedback. In addition, the control design approach is extended to the
case of higher-dimensional chained form systems. The tracking controller has been first presented in
(Aneke et al., 2000) and has been published in (Aneke et al., 2003).

The feedback stabilization problem for second-order nonholonomic systems is shown to be solv-
able by using continuous feedback, namely a homogeneous time-varying feedback controller that ex-
ponentially stabilizes the system with respect to a homogeneous norm. This continuous time-varying
homogeneous controller has been first presented in (Aneke et al., 2002b). To date and to our knowl-
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edge, this homogeneous controller is the only one capable of ensuring Lyapunov stability as well
as exponential convergence,i.e., ρ-exponential stability. It is well-known that homogeneous con-
trollers are not robust with respect to parameter uncertainties and, therefore, a robust version of the
homogeneous stabilizing controller is presented. The periodically updated homogeneous controller is
designed by using a hybrid open-loop/feedback approach, in which thestates of the system are peri-
odically updated at discrete time instants. This approach results in a feedback stabilizer that is shown
to be robust with respect to a class of additive perturbations that includesperturbations resulting from
parameter uncertainties, but excludes non-smooth effects, such as friction, or measurement noise. To
our knowledge, this robust controller or feedback stabilizer, presented in (Lizárraga et al., 2003), is
one of the first capable of achieving robust stabilization of the second-order chained form system.

For both the tracking and stabilizing controllers, the robustness propertiesare investigated and
bounds for a specific class of perturbations of the second-order chained form system are given that
ensure robustness of the controllers. In addition, the proposed control methods are not only validated
by simulation but also through experiments. The experimental results show thevalidity of the control
approaches, but also reveal the need for controllers which are robust with respect to perturbations
resulting from non-smooth effects and non-vanishing disturbances.

1.4 Outline of the thesis

This thesis deals with the tracking and feedback stabilization problems for underactuated mechanical
systems with second-order nonholonomic constraints. In Chapter 2 the tracking problem and the
feedback stabilization problem are formulated. In Chapter 3 some preliminaries are presented that will
be used throughout this thesis. In Chapter 4 the controllability properties ofthe second-order chained
form system are investigated and motion planning methodologies are presented for generating state-to-
state trajectories. In Chapter 5 the tracking control problem is consideredand a cascaded backstepping
approach is proposed to stabilize the tracking-error dynamics. In Chapter 6 the feedback stabilization
problem is solved by using homogeneous time-varying feedback. In Chapter 7 the proposed control
methods are illustrated by computer simulations. The proposed control methodsare tested on an
experimental set-up of an underactuated H-Drive manipulator in Chapter 8. In Chapter 9 conclusions
are drawn and recommendations for further research are given. In Appendix A a stability result is
presented for cascaded systems. In Appendix B the methodology for tracking control in Chapter 5 is
extended to the case of higher-dimensional chained form systems,i.e.,second-chained form systems
with dimensionn > 3. Finally, in Appendix C, the dynamic model of the underactuated H-Drive
manipulator is presented.
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Chapter 2

Problem formulation

In this chapter, the tracking and feedback stabilization problems are formulated for a class of un-
deractuated mechanical systems. This class consists of underactuated mechanical systems that can
be transformed, by a suitable coordinate and feedback transformation, into the second-order chained
form.

2.1 Second-order chained form transformations

When designing controllers for underactuated systems with nonholonomic constraints, a commonly
used approach is to transform the system into some canonical form for which the control design
can be carried out more easily. The most important canonical forms are thetransformations into
the chained form (Murray and Sastry, 1991) and the power form (M’Closkey and Murray, 1993).
These canonical forms are equivalent; meaning that the chained form can be transformed into the
power form and vice versa. Transformations into chained or power form have mainly been used
when designing controllers for underactuated systems with first-order nonholonomic constraints, such
as mobile robots and car-trailer systems (Lefeber, 2000). The second-order chained form can be
used to design controllers for certain systems with second-order nonholonomic constraints, such as
underactuated robot manipulators and underactuated vehicles.

2.1.1 The first-order chained form system

First-order nonholonomic mechanical systems can be modeled using kinematic models or dynamic
models. A general form of a nonholonomic mechanical control system, expressed in kinematic form,
is given by a drift-less nonlinear control system of the form

ẋ = g1(x)u1 + · · ·+gm(x)um, (2.1)

where 2≤ m< n, x = (x1, . . . ,xn) is the state-vector andui , i ∈ (1, . . . ,m), are the control variables.
The system is supposed to satisfy some first-order nonholonomic constraints given ash(x) = 0. An
essential assumption is that the system (2.1) is completely controllable; it satisfies the controllability
Lie algebra rank condition. This assumption guarantees, see (Kolmanovsky and McClamroch, 1995),
that there exists no non-trivial integral to the nonholonomic constraintΦ(x) = 0, i.e.,when denoting
the state asx = [q, q̇]T with q the generalized coordinates, there does not exist a smooth functionφ(q)
such that dφ/dt = 0 along all solutions of (2.1).
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A general form of the dynamics of a first-order nonholonomic mechanicalcontrol system is given
by a nonlinear control system of the form

ẋ = g1(x)y1 + · · ·+gm(x)ym,

ẏi = ui , i = 1, . . . ,m,
(2.2)

where 2≤ m < n, x = (x1, . . . ,xn) and ui , i ∈ (1, . . . ,m), are the control variables. This drift-less
dynamic extension of the kinematic model (2.1) also includes the d’Alembert-Lagrange formulation,
which under a reasonable set of assumptions can be transformed into (2.2). Further generalization of
the kinematic system (2.1) and the dynamic system (2.2) are possible, but mostresearch is restricted
to this class of first-order nonholonomic systems.

In many applications, nonholonomic control systems are transformed into the chained-form sys-
tem given by

ξ̇1 = u1

ξ̇2 = u2

ξ̇3 = ξ2u1.

(2.3)

Many mechanical systems with first-order nonholonomic constraints can be locally or globally trans-
formed into the chained-form (2.3), or higher dimensional variants thereof, by a coordinate and feed-
back transformation. In fact, in (Murray and Sastry, 1993) it was shown that any kinematic model of
a first-order nonholonomic system with three states and two inputs can be converted into the chained-
form (2.3). The chained-form system can be used to facilitate control design because its structure
is simpler, or at least looks simpler, than that of the original system. Furthermore, it facilitates the
systematic construction of controllers for a wide range of nonholonomic mechanical systems.

For example, consider the system of a wheeled mobile robot illustrated in Figure 1.1:

ẋ = cos(θ)v

ẏ = sin(θ)v

θ̇ = ω
(2.4)

The kinematic model (2.4) of the wheeled mobile robot can be transformed into the chained-form
(2.3) by the coordinate and feedback transformation given by

ξ1 = θ u1 = ω
ξ2 = xcos(θ)+ysin(θ) u2 = v−ωx3

ξ3 = xsin(θ)−ycos(θ).
(2.5)

2.1.2 The second-order chained form system

A special canonical form called the generaln-dimensional second-order chained form system is given
by

ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2u1

...

ξ̈n = ξn−1u1

(2.6)
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It plays the same role for second-order nonholonomic systems as the chained form system for first-
order nonholonomic systems. In this thesis the dimensionn of the second-order chained is defined
as the number of equations. The number of degrees of freedom (DOF) of the mechanical system
is defined as the number of generalized coordinates. It has been shownthat certain 2-input and 3-
DOF systems with second-order nonholonomic constraints can be transformed into the 3-dimensional
second-order chained form given by

ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2u1.

(2.7)

To our knowledge, so far, no underactuated mechanical systems have been found that are trans-
formable into a second-order chained form system of dimension higher than 3. Therefore, the results
in this thesis will focus on the 3-dimensional second-order chained form. Contrary to the first-order
chained form system which contained first-order derivatives, the second-order chained form con-
tains second-order derivatives. The resulting drift vector-fieldf (ξ , ξ̇ ) = (ξ̇1,0, ξ̇2,0, ξ̇3,0)T makes
the second-order chained form system more difficult to control than the first-order chained form sys-
tem. Systems that can be transformed into the second-order chained form, or systems with a similar
structure, include, but are not limited to, an underactuated planar horizontal three-link serial-drive
PPR manipulator (Arai et al., 1998a) (where PPR denotes a manipulator with two prismatic and one
unactuated or passive revolute joint), an underactuated planar horizontal PPR manipulator with a
spring-coupled third link (Reyhanoglu et al., 1999), an underactuated planar horizontal three-link
serial-drive RRR manipulator (Yoshikawa et al., 2000), an underactuated planar horizontal parallel-
drive RRR manipulator with any two joints unactuated, a manipulator driven by end-effector forces
(Luca et al., 1998), a planar rigid body with an unactuated degree of freedom (Reyhanoglu et al.,
1998), an underactuated surface vessel (Reyhanoglu et al., 1999), a simplified underactuated under-
water vehicle (Egeland and Berglund, 1994; Rathinam and Murray, 1998) and the planar V/STOL
(vertical/short take-off and landing) aircraft in the absence of gravity(Aneke et al., 2002a). Addi-
tional examples are given by a planar rigid body with two thrusters moving on aflat horizontal plane
(M’Closkey and Morin, 1998), the planar motion of a rigid body with an internal degree of freedom
(McClamroch et al., 1998) and a hovercraft type vehicle (Tanaka et al.,2000). It should be noted that
all the transformations involved in these examples allow one to map an arbitrary equilibrium point to
the origin of the second-order chained form. Thereby, the stabilization ofarbitrary configurations can
be reduced to the stabilization of the origin of the second-order chained form.

In fact, there may be other systems that can be transformed into the second-order chained form, or
into a system that has a similar structure. For example, in (Reyhanoglu et al., 1996) the underactuated
surface vessel with two independent thrusters was shown to be feedback equivalent to the second-order
chained form, up to an additional term,i.e.,

z̈1 = v1

z̈2 = v2

z̈3 = z2v1 +cy/m(ż1z2− ż3),

(2.8)

wherecy is a positive constant representing the hydro-dynamic damping coefficient andm is the mass
of the vessel. In (Egeland and Berglund, 1994) an idealized underactuated underwater vehicle was
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shown to be transformable into the system given by

z̈1 = u1

z̈2 = u2 z̈4 = u3

z̈3 = z2u1 z̈5 = z4u1

z̈6 = u4.

(2.9)

This system consists of two interconnected second-order chained-form systems in conjunction with
the dynamics ¨z6 = u4.

2.2 The feedback stabilization problem

Consider the general second-order chained form (2.7), withn = 3 variables, in state-space form:

ẋ1 = x2 ẋ2 = u1

ẋ3 = x4 ẋ4 = u2

ẋ5 = x6 ẋ6 = x3u1

(2.10)

wherex2i−1 = ξi , x2i = ξ̇i , i = 1,2,3. Define the state vector byx = [x1, ...,x6]
T . The feedback

stabilization problem can be formulated as follows.

Problem 2.2.1 (Point stabilization problem).Design appropriate continuous or discontinuous time-
varying state feedback controllers of the form

u1 = u1(t,x), u2 = u2(t,x) (2.11)

such that the equilibriumx= 0 of the closed-loop system (2.10,2.11) is globally asymptotically stable.

In (Brockett, 1983) a necessary condition for stabilizability by continuoustime-invariant feed-
back was presented. It is often referred to as Brockett’s condition. Itwas shown to hold forC 1

time-invariant state feedback, and shown to also hold for continuous time-invariant state feedback by
(Zabczyk, 1989). It can be formulated as follows

Theorem 2.2.1. Assume that there exists a continuous time-invariant state feedback u:
�n → �m,

that renders the origin oḟx = f (x,u), with x∈ �n and u∈ �m, asymptotically stable. Then the
function f :

�n× �m → �n is locally surjective, i.e., the function f maps an arbitrary neighborhood
of (0,0) ∈ �n× �m onto a neighborhood of0 in

�n.

Since the image of the mapping(x,u) 7→ f (x,u) = (x4,x5,x6,u1,u2,x2u1) of the second-order
chained form does not contain any point(0,0,0,0,0,ε) for ε 6= 0, the system does not satisfy Brock-
ett’s condition. Therefore, the system can not be asymptotically stabilized bycontinuous time-
invariant feedback. In fact, it can not even be stabilized by discontinuous time-invariant feedback
when the Filippov solutions of the closed-loop system are considered (Coron and Rosier, 1994).

To our knowledge the asymptotic feedback stabilization problem for the second-order chained
form system (2.7) has not been solved yet. The second-order chained form system is a generalization
of the drift-less chained form (Murray and Sastry, 1993), in the sensethat it does contain a drift
vector field. The stabilization problem for the drift-less chained form system has received a lot of
attention in control literature, however, the stabilization problem for the second-order chained form
system has received less attention. In fact, it is well-known that the existence of a drift-term makes
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the stabilization of the second-order chained form more difficult. Nevertheless, several results for the
stabilization of the second-order chained form have been obtained, such as the references (Astolfi,
1996), (Laiou and Astolfi, 1999) and (Imura et al., 1996) in which discontinuous controllers were
presented that achieve exponential convergence towards the origin. However, due to the fact that
these controllers are discontinuous at the origin they are no feedback stabilizers as they do not achieve
stability of the origin in a Lyapunov sense. In the reference (Laiou and Astolfi, 1999) this result was
extended to obtain a weakened Lyapunov stability result called quasi-smoothexponential stability.

To our knowledge, one of the few feedback stabilizers was given in (Sørdalen and Egeland, 1993).
It consists of a hybrid feedback controller thatK -exponentially stabilizes the three-dimensional (n=3)
second-order chained form. However, the closed-loop system is not stable in a Lyapunov sense. It
is not yet clear whether the second-order chained form system can bestabilized by means of smooth
time-varying feedback. It is, however, clear that exponential stability ofthe origin can not be achieved
by smooth feedback, since the linearization around any equilibrium point is uncontrollable. In this the-
sis, it is investigated whether the second-order chained form system canbeρ-exponentially stabilized
by continuous periodic time-varying feedback. The notion ofρ-exponentially is weaker than expo-
nential stability and stronger than asymptotic stability in the sense that a system isρ-exponentially if
it is asymptotically stable with exponential convergence.

2.3 The tracking control problem

Consider the second-order chained form (2.10). Suppose that we want the system to follow a pre-
defined realizable trajectory, i.e. we want the statex = [x1, ...,x6]

T to follow a prescribed pathxd =
[x1d, ...,x6d]

T . This reference trajectoryxd thus satisfies

ẋ1d = x2d ẋ2d = u1d

ẋ3d = x4d ẋ4d = u2d

ẋ5d = x6d ẋ6d = x3du1d

(2.12)

The tracking-errorxe =
[

x1e,x2e, . . . ,x6e
]T

is given by

xie = xi −xid, i = 1,2, . . . ,6. (2.13)

The tracking-error dynamics in state-space form are derived from (2.10,2.12) and are given by

ẋ1e = x2e ẋ2e = u1−u1d

ẋ3e = x4e ẋ4e = u2−u2d

ẋ5e = x6e ẋ6e = x3eu1d +x3(u1−u1d)

(2.14)

Problem 2.3.1 (State feedback tracking control problem). The tracking control problem is solvable if
we can design appropriate continuous or discontinuous time-varying state feedback controllers of the
form

u1 = u1(t,xe, ūd), u2 = u2(t,xe, ūd) (2.15)

such that the closed-loop system (2.14,2.15) is globally uniformly asymptoticallystable. The vector
ūd containsud = [u1d,u2d] and higher order derivatives up to some orderk, i.e ūd = [ud, u̇d, . . . ,u

(k)
d ].

In this thesis, it will be investigated whether the tracking-error dynamics canbe asymptotically or
even exponentially stabilized. It follows that for smooth feedback tracking, additional constraints on
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the desired trajectory are required (Jiang and Nijmeijer, 1999). In (Lefeber, 2000) cascade type con-
trollers have successfully been applied to solve the trajectory tracking problem for an underactuated
surface vessel. However, this result was not based on a transformation into the second-order chained
form. There are very few results that have addressed the tracking problem for the second-order chained
form. One of these results is given in (Kobayashi, 1999), where a discontinuous and flatness-based
tracking controller could be derived for a class of trajectories of the second-order chained-form sys-
tem. In (Walsh et al., 1994) a result for tracking of first-order nonholonomic systems has been given
that may be extended to second-order nonholonomic systems. It consists of linearizing the chained
form system around the reference trajectory and designing a linear time-varying feedback that stabi-
lizes the resulting linear time-varying system. The reference trajectory should be chosen such that
the resulting time-varying system is uniformly completely controllable (Rugh, 1996) over intervals of
lengthδ . This approach means that one should also face the problem of finding feasible trajectories.
Moreover, the controller depends explicitly on the trajectory to be tracked,and should be re-computed
for different trajectories.

2.4 Robustness considerations

Consider the perturbed system
ẋ = f (t,x)+g(t,x) (2.16)

The unknown perturbation termg(t,x) can result from modeling errors, wear/aging, parameter un-
certainties, and disturbances. The system (3.13) can be thought of as aperturbation of the nominal
system

ẋ = f (t,x), (2.17)

where f (t,x) represents either the closed-loop system (2.10,2.11) in the case of the feedback stabi-
lization problem or the closed-loop tracking-error dynamics (2.14,2.15) in the case of the tracking
control problem. The perturbation to the system may result from unmodelled dynamics and param-
eter uncertainties. We can distinguish between vanishing perturbations,i.e., g(t,0) = 0 ∀ t > t0, and
non-vanishing perturbations,i.e., ∃ t > t0 : g(t,0) 6= 0. Suppose that the nominal system (3.14) has
a uniformly exponentially stable equilibrium at the origin. If the perturbationg(t,x) is vanishing at
the origin, the pointx = 0 is also an equilibrium of the perturbed system. In that case, we would
like to know whether the perturbed system (3.13) remains exponentially stable. On the other hand, if
the perturbation is non-vanishing, the originx = 0 may not be an equilibrium point of the perturbed
system (3.13). It is then no longer possible to investigate the stability properties of the origin as an
equilibrium point, nor should one expect the solution of the perturbed system to approach the origin
ast → ∞. The best we can hope for is that if the perturbationg(t,x) is small in some sense, then the
solutionx(t) approaches the origin for sufficiently larget. In the ideal case, the statex(t) remains
bounded while the bound depends on the magnitude of the perturbationg(t,x).

2.5 Summary

In this section we formulated the tracking control and the feedback stabilization problems. In the
tracking control problem the system should follow a pre-defined and realizable reference trajectory.
In the feedback stabilization problem the system should be stabilized to a certain equilibrium point. In
general, the tracking problem for underactuated mechanical systems hasnot received much attention,
but most researches focused on the feedback stabilization problem. Nevertheless, the tracking problem
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is more important, because, in general, one not only wants the system to move towards a certain
equilibrium point, but one also wants the system to move along a specified path.It is well-known that
the feedback stabilization problem can not be solved by any continuous time-invariant feedback. The
tracking control problem, however, can be solved by smooth feedback when additional constraints are
imposed on the trajectory to be tracked. In Chapter 4 some methodologies for motion planning of
nonholonomic mechanical systems will be presented.
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Chapter 3

Preliminaries

This chapter starts with recalling some basic definitions and results that will be used throughout this
thesis. First some fundamental definitions are given and the concept op Lyapunov stability is in-
troduced. Most of the definitions can be found in (Khalil, 1996). Also somerobustness results are
presented for the stability of perturbed systems. In addition, a result for asymptotic stability of time-
varying cascaded systems is presented. This result was given in (Lefeber et al., 2000) and will be used
in conjunction with a backstepping approach to solve the tracking control problem. Finally, the theory
of homogeneous systems, used to solve the feedback stabilization problem, isintroduced.

3.1 Mathematical preliminaries

The class ofn times continuously differentiable functions will be denoted byC n and the class of
smooth function byC ∞.

Definition 3.1.1. A continuous functionα : [0,a)→ [0,∞) is said to belong to classK (i.e.,α ∈ K )
if it is strictly increasing andα(0) = 0. It is said to belong to classK∞ (α ∈ K∞) if a = ∞ and
α(r) → ∞ asr → ∞.

Definition 3.1.2. A continuous functionβ : [0,a)× [0,∞) → [0,∞) is said to belong to classK L

(β ∈K L ) if, for each fixeds, the mappingβ (r,s) belongs to classK with respect tor and, for each
r, the mappingβ (r,s) is decreasing with respect tos andβ (r,s) → 0 ass→ ∞.

Definition 3.1.3. An open ball of radiusr around a pointx0 will be denoted byBr(x0), i.e.,

Br(x0) = {x∈ �n|‖x−x0‖ < r}
If x0 = 0 then the open ball is denoted byBr .

3.2 Lyapunov stability

Consider a non-autonomous system described by

ẋ = f (t,x) (3.1)

where f :
�

+ ×D → �n is piecewise continuous on
�

+ ×D and locally Lipschitz inx on
�

+ ×D,
andD ⊂ �n is a domain that contains the originx = 0. Assume that the originx = 0 is an equilibrium
point of the system,i.e., f(t,0) = 0, ∀t ≥ 0. The assumption thatf (t,x) is piecewise continuous int,
allows one to include the case in whichf (t,x) depends on a time-varying input that may experience
step changes in time. In that case, the solutionsx(t) of (3.1) are piecewise continuously differentiable.



26 Preliminaries

Definition 3.2.1. The equilibriumx = 0 of (3.1) is said to be

• (locally) stableif a constantr > 0 exists such that for allt0 ∈
�

+ a classK functionα(·) exists
such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0,∀x(t0) ∈ Br ;

• (locally) asymptotically stableif a constantr > 0 exists such that for allt0 ∈
�

+ a classK L

functionβ (·, ·) exists such that

‖x(t)‖ ≤ β (‖x(t0)‖, t − t0), ∀t ≥ t0,∀x(t0) ∈ Br ;

• (locally) exponentially stableif it is locally asymptotically stable and a constantr > 0 exists
such that for allt0 ∈

�
+ there exists constantsK > 0 andγ > 0 such that

‖x(t)‖ ≤ K‖x(t0)‖exp(−γ(t − t0)), ∀t ≥ t0,∀x(t0) ∈ Br ;

If the above definitions are valid for any initial statex(t0) ∈ D, then the equilibriumx = 0 of
(3.1) is said to be globally stable, globally asymptotically stable and globally exponentially stable,
respectively.

In the above definitions the solutions of the non-autonomous system may depend on botht and
t0. Therefore, the stability behavior of the equilibrium pointx = 0, in general, may depend on the
initial time t0. In fact, the constantsr, K, γ, the classK functionα(·) and the classK L function
β (·, ·) may be dependent on the initial timet0. Of course, the fact that such constants and functions
exist for everyt0, does not guarantee that there exists one pair of constants and functions such that
the conditions are fulfilled. In order to distinguish between the dependencyon the initial timet0, we
introduce the notion of uniformity.

Definition 3.2.2. The equilibriumx = 0 of (3.1) is said to be

• (locally) uniformly stable if a constantr > 0 and a classK function α(·) exists, both inde-
pendent ont0, such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0,∀x(t0) ∈ Br ;

• (locally) uniformly asymptotically stable if a constantr > 0 and a classK L functionβ (·, ·)
exists, both independent ont0, such that

‖x(t)‖ ≤ β (‖x(t0)‖, t − t0), ∀t ≥ t0,∀x(t0) ∈ Br ;

• (locally) uniformly exponentially stable if it is locally asymptotically stable and a constant
r > 0 and constantsK > 0 andγ > 0 such that

‖x(t)‖ ≤ K‖x(t0)‖exp(−γ(t − t0)), ∀t ≥ t0,∀x(t0) ∈ Br ;

If the above definitions are valid for any initial statex(t0)∈D, then the equilibriumx= 0 of (3.1) is
said to be globally uniformly stable, globally uniformly asymptotically stable and globally uniformly
exponentially stable, respectively. Unfortunately, uniform exponentialstability can not always be
achieved. A notion that is stronger than global uniform asymptotic stability, but weaker than uniform
exponential stability isK -exponential stability as defined in (Sørdalen and Egeland, 1995).
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Definition 3.2.3. (Sørdalen and Egeland 1995, Definition 2) The equilibriumx = 0 of (3.1) is said
to be globallyK -exponentially stableif a classK functionκ :

�→ �
and a constantγ > 0 exists

such that for all(t0,x(t0)) ∈
�

+× �n it holds that

‖x(t)‖ ≤ κ(‖x(t0)‖)exp(−γ(t − t0)), ∀t ≥ t0 ≥ 0. (3.2)

In some cases, stability in the sense of Lyapunov, as shown above, can not be achieved. This
commonly arises when discontinuous controllers are used to control the system. By using discon-
tinuous control, it may be possible to achieve exponential convergence towards the origin. However,
these discontinuous controllers only guarantee exponential convergence for all initial conditions in
an open and dense setΩ ⊂ D of the state space. Most commonly, see for example (Astolfi, 1996),
the closed-loop system exponentially converges towards the origin for allinitial conditions in the set
Ω = {x∈ D|x1 6= 0}, and is not defined or may grow unbounded outside the setΩ.

Definition 3.2.4. The system (3.1) is said toconverge exponentially towardsx = 0 if there exists an
open and dense setΩ ⊂ D and a constantγ > 0 such that for all(t0,x(t0)) ∈

�
+×Ω it holds that

‖x(t)‖ ≤ ‖x(t0)‖exp(−γ(t − t0)), ∀t ≥ t0 ≥ 0. (3.3)

The notions of uniform asymptotic and uniform exponential stability can be characterized in terms
of the existence of a so-called Lyapunov function. This is stated in the following theorem.

Theorem 3.2.1.(Khalil 1996, Theorem 3.8) Let x= 0 be an equilibrium point for(3.1)and E⊂ D ⊂�n be a domain containing x= 0. If V :
�

+ ×E → �
is a continuously differentiable function such

that

W1(x) ≤V(t,x) ≤W2(x)

∂V(t,x)
∂ t

+
∂V(t,x)

∂x
f (t,x) ≤−W3(x)

(3.4)

∀ t ≥ t0, ∀ x∈ E and where W1(x), W2(x) and W3(x) are continuous positive definite functions on E.
Then x= 0 is locally uniformly asymptotically stable. Moreover, if

W1(x) ≥ c1‖x‖c, W2(x) ≤ c2‖x‖c W3(x) ≥ c3‖x‖c, (3.5)

for some positive constants c1,c2,c3 and c, then x= 0 is locally uniformly exponentially stable.

A functionV(t,x) satisfying conditions (3.4) is said to be a Lyapunov function for the system (3.1).
Suppose that all conditions hold globally,i.e.,∀ x∈D, then the equilibriumx= 0 is globally uniformly
asymptotically stable. If additionally (3.5) holds, thenx = 0 is globally uniformly exponentially
stable. Similar to autonomous systems, (uniform) exponential stability of the lineairization of a non-
autonomous system is a necessary and sufficient condition for local (uniform) exponential stability of
the origin.

Theorem 3.2.2. (Khalil 1996, Theorem 3.13) Suppose that x= 0 is an equilibrium point for the
nonlinear system

ẋ = f (t,x),

where f:
�

+×D→ �n is continuously differentiable, D= {x∈ �n|‖x‖< r}, and the Jacobian matrix
[∂ f/∂x] is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂ f
∂x

(t,x)
∣

∣

∣

x=0
.
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Then the origin is a locally exponentially stable equilibrium point for the nonlinearsystem if and only
if it is an exponentially stable equilibrium point for the linear system

ẋ = A(t)x.

3.3 Converse theorems

We start by stating some converse theorems that prove the existence of a suitable Lyapunov function
when the system is (locally) uniformly asymptotically or (locally) uniformly exponentially stable,
respectively. These converse theorems will be used to prove stability of the controlled systems in
Chapter 5.

Theorem 3.3.1.(Khalil 1996, Theorem 3.14)Suppose x= 0 is an equilibrium point of the nonlinear
systeṁx = f (t,x), where f:

�
+×D → �n is continuously differentiable, D= {x∈ �n|‖x‖ < r}, and

the Jacobian matrix[∂ f/∂x] is bounded on D, uniformly in t. Let k,γ and r0 be positive constants
with r0 < r/k and D0 = {x∈ �n|‖x‖ < r0}. Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ β (‖x(t0)‖, t − t0), ∀ x(t0) ∈ D0,∀ t ≥ t0.

Then there exists aC 1 function V:
�

+×D0 →
�

that satisfies the inequalities

• α1(‖x‖) ≤ V(t,x) ≤ α2(‖x‖),
• V̇(t,x) ≤ −α3(‖x‖),

• ‖∂V(t,x)
∂x

‖ ≤ α4(‖x‖),
(3.6)

for all t ≥ t0 and all x∈ D and whereα1(·),α2(·),α3(·) andα4(·) are classK functions defined on
[0, r0]. Moreover, if r= ∞ and the origin is globally exponentially stable, then V(t,x) is defined on�

+× �n and the above inequalities are valid for all x∈ �n.

If the system is uniformly exponentially stable, the existence of a Lyapunov function is given by
the following theorem.

Theorem 3.3.2.(Khalil 1996, Theorem 3.12) Suppose x= 0 is an equilibrium point of the nonlinear
systeṁx = f (t,x), where f:

�
+×D → �n is continuously differentiable, D= {x∈ �n|‖x‖ < r}, and

the Jacobian matrix[∂ f/∂x] is bounded on D, uniformly in t. Let k,γ and r0 be positive constants
with r0 < r/k and D0 = {x∈ �n|‖x‖ < r0}. Assume that the trajectories of the system satisfy

‖x(t)‖ ≤ k‖x(t0)‖exp(−γ(t − t0)), ∀ x(t0) ∈ D0,∀ t ≥ t0 ≥ 0.

Then there exists aC 1 function V:
�

+×D0 →
�

that satisfies the inequalities

• c1‖x‖2 ≤ V(t,x) ≤ c2‖x‖2,

• V̇(t,x) ≤ −c3‖x‖2,

• ‖∂V(t,x)
∂x

‖ ≤ c4‖x‖ ,

(3.7)

for all t ≥ t0 and all x∈ D and where c1,c2,c3 and c4 are some positive constants. Moreover, if r= ∞
and the origin is globally exponentially stable, then V(t,x) is defined on

�n and the above inequalities
are defined on

�n.
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3.4 Linear time-varying systems

Consider the linear time-varying system given by

ẋ = A(t)x (3.8)

with x∈ �n andA(t) continuous for allt ≥ t0. From linear system theory (Rugh, 1996), the solution
of the system (3.8) is given byx(t) = φ(t, t0)x(t0), whereφ(t, t0) is the state transition matrix of (3.8).
For linear time-varying systems, in general, uniform asymptotic stability can notbe characterized
by the location of the eigenvalues of the matrixA(t). In fact, for a linear system to be uniformly
asymptotically stable, the following should hold for somek > 0 andγ > 0

‖φ(t, t0)‖ ≤ kexp(−γ(t − t0)), ∀t ≥ t0 ≥ 0. (3.9)

This shows that for linear systems uniform asymptotic stability (GUAS) and uniform exponential
stability (GUES) are equivalent. Similar to non-autonomous systems, uniform exponential stability
can be characterized in terms of the existence of a Lyapunov functionV(t,x). The following converse
theorem states that when the origin is uniformly exponentially stable, there exists a Lyapunov function
for the system.

Theorem 3.4.1.(Khalil 1996, Theorem 7.4) Suppose that the equilibrium x= 0 of the system(3.8) is
uniformly exponentially stable. Let Q(t) be a continuous, bounded, positive definite, symmetric matrix
Q(t), i.e., 0 < q3I ≤ Q(t) ≤ q4I ,∀ t ≥ t0. Then there exists a continuously differentiable, bounded,
positive definite, symmetric matrix P(t), i.e.,0 < c1I ≤ P(t) ≤ c2I ,∀ t ≥ t0, such that

Ṗ(t)+P(t)A(t)+A(t)TP(t) = −Q(t) (3.10)

Therefore V(t,x) = xTP(t)x is a Lyapunov function for the system as it satisfiesV̇(t,x) = −xTQ(t)x.

Remark 3.4.1. When the transition matrixφ(t, t0) of the linear system is known, it can be shown that
the matrix given by

P(t) =

∞
∫

t

φT(τ, t)Q(τ)φ(τ, t)dτ (3.11)

is a solution of (3.10), see Theorem 3.10 in (Khalil, 1996). When the matrixA(t) is uniformly
bounded,i.e.,‖A(t)‖ ≤ L,∀ t ≥ t0, then the matrixP(t) satisfies all conditions (3.5) (3.7) with

c1 =
q3

2L
, c2 =

q4k2

2γ
, c3 = q3, c4 =

q4k2

γ
. (3.12)

with q3 andq4 arbitrary positive constants satisfyingq3I ≤ Q(t) ≤ q4I . The constantsk andγ are
given by (3.9).

3.5 Perturbation theory

Consider the perturbed system
ẋ = f (t,x)+g(t,x) (3.13)

where f :
�

+ ×D → �n andg :
�

+ ×D → �n are piecewise continuous int and locally Lipschitz
in x on

�
+ ×D and D ⊂ �n is a domain that contains the originx = 0. Moreover, assume that
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f :
�

+×D→ �n is continuously differentiable, and the Jacobian[∂ f/∂x] is bounded onD, uniformly
in t. The system (3.13) can be thought of as a perturbation of the nominal system

ẋ = f (t,x). (3.14)

Suppose that the nominal system (3.14) has a uniformly exponentially stable equilibrium at the origin,
then we would like to know what the stability behavior of the perturbed system (3.13) is. Since the
equilibriumx = 0 is an exponentially stable equilibrium point of the nominal system, Theorem 3.3.2
states that a Lyapunov function exists for the nominal system. A commonly usedapproach to inves-
tigate the stability behavior of the perturbed system is to use a Lyapunov function candidate for the
perturbed system. Then one distinguishes between vanishing perturbations, i.e., g(t,0) = 0 ∀ t > t0,
and non-vanishing perturbations,i.e.,∃ t > t0 : g(t,0) 6= 0.

3.5.1 Vanishing perturbations

If the perturbation term is vanishing at the origin, the originx = 0 is still a equilibrium point of the
perturbed system. In the case thatx = 0 is a uniformly exponentially stable equilibrium point of the
nominal system, Theorem 3.3.2 guarantees the existence of a LyapunovV(t,x) for the nominal sys-
tem. By directly calculating the derivative of the Lyapunov function along solutions of the perturbed
system, we obtain the following result that can be used to investigate the stability properties of the
perturbed system.

Theorem 3.5.1. (Khalil 1996, Lemma 5.1) Suppose that x= 0 is an uniformly exponentially stable
equilibrium of the nominal system(3.14). Let V(t,x) be a Lyapunov function of the nominal system
that satisfies(3.7) in

�
+ ×D. Suppose that the perturbation term g(t,x) satisfies a linear growth

bound
‖g(t,x)‖ ≤ γ‖x‖, ∀ t ≥ t0,∀ x∈ D. (3.15)

Then the origin is a uniformly exponentially stable equilibrium point of the perturbed system(3.13)if

γ <
c3

c4
. (3.16)

Moreover, if all assumptions hold globally, then the origin is globally exponentially stable.

This theorem shows that uniform exponential stability of the origin is robustwith respect to a class
of perturbation that satisfy a linear growth condition (3.15)-(3.16). If a Lyapunov functionV(t,x) is
known explicitly, then the bound (3.16) can be calculated. If a Lyapunov functionV(t,x) is not
known explicitly, then the robustness conclusion becomes a qualitative one where one says that the
origin is uniformly exponentially stable for all perturbation satisfying (3.15) with sufficiently small
γ. It should be noted that the bound (3.15) could be conservative for a given perturbationg(t,x).
This conservatism results from the worst-case analysis performed in the analysis of the derivative
of the Lyapunov function for the nominal system along solutions of the perturbed system. If the
bound is required for allg(t,x) satisfying (3.15), including dynamic mappings, then this bound is not
conservative.

3.5.2 Non-vanishing perturbations

If the perturbation is non-vanishing at the origin, the originx = 0 may not be an equilibrium point of
the perturbed system (3.13) anymore. It is then no longer possible to investigate the stability properties
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of the origin as an equilibrium point, nor should one expect the solution of theperturbed system to
approach the origin ast → ∞. The best we can hope for is that if the perturbationg(t,x) is small
in some sense, then the solutionx(t) becomes ultimately bounded by a small bound; in other words,
‖x(t)‖ becomes small for sufficiently larget.

Definition 3.5.1. The solutions of ˙x = f (t,x) are said to be uniformly ultimately bounded if there
exist positive constantsb andc, and for everyα ∈ (0,c) there exists a positive constantT = T(α)
such that

‖x(t0)‖ < α =⇒‖x(t)‖ ≤ b, ∀ t ≥ t0 +T,∀ t0 > 0. (3.17)

The solutions of the system are said to be globally uniformly ultimately bounded if (3.17) holds for
arbitrary largeα .

Uniform ultimate boundedness of the solutions is usually referred to as practical stability. The
constantb in (3.17) is known as the ultimate bound. If the equilibriumx = 0 of the nominal system
is uniformly exponentially stable, the analysis of the perturbed system can beperformed with the
following theorem.

Theorem 3.5.2. (Khalil 1996, Lemma 5.2) Suppose that x= 0 is a uniformly exponentially stable
equilibrium point of the nominal system(3.14). Let V(t,x) be a Lyapunov function that satisfies(3.7)
on
�

+×D, where D= {x∈ �n|‖x‖ < r}. Suppose that the perturbation term g(t,x) satisfies

‖g(t,x)‖ ≤ δ <
c3

c4

√

c1

c2
θ r, ∀ t ≥ t0,∀ x∈ D (3.18)

for some positive constantθ < 1. Then for all initial conditions‖x(t0)‖ ≤
√

c1c2r, the solution x(t)
of the perturbed system(3.13)satisfies

‖x(t)‖ ≤ k‖x(t0)‖exp(−γ(t − t0)), ∀ t0 ≤ t ≤ t1,

and

‖x(t)‖ ≤ b, ∀ t ≥ t1,

for some finite time t1, where

k =

√

c2

c1
, γ =

(1−θ)c3

2c2
, b =

c4δ
c3θ

√

c2

c1
.

Furthermore, we can allow for arbitrary largeδ by choosing r large enough.

The previous result states that when the nominal system is globally uniformly exponentially stable,
the solution of the perturbed system will be uniformly bounded for any uniformly bounded perturba-
tion. If the system is only uniformly asymptotically stable, then a bounded perturbation could drive
the solutions of the perturbed system to infinity. This explains why uniform exponential stability is
a desirable property. It should be noted that exponential stability by itself isnot sufficient to achieve
the robustness result in Theorem 3.5.2; one needs uniformity. In this thesiswe will aim for uniform
exponential stability, or K-exponential stability, if possible.
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3.6 Cascaded systems

In (Lefeber et al., 1999, 2000) a result on exponential stability of cascaded systems was given that is
based on (Panteley and Loría, 1998). Consider the cascaded system with equilibrium(z1,z2) = (0,0)
given by

ż1 = f1(t,z1)+g(t,z1,z2)z2,

ż2 = f2(t,z2),
(3.19)

wherez1 ∈
�n, z2 ∈

�m; f1(t,z1) is continuously differentiable in(t,z1) and f2(t,z2),g(t,z1,z2) are
continuous in their arguments and locally Lipschitz inz2 and(z1,z2) respectively. The total system
(3.19) is a systemΣ1 with statez1 that is perturbed by the statez2 of the systemΣ2, where

Σ1 : ż1 = f1(t,z1) Σ2 : ż2 = f2(t,z2), (3.20)

and the perturbation term is given byg(t,z1,z2)z2. If Σ2 is asymptotically stable,z2 tends to zero
and the dynamics ofz1 reduces toΣ1. If Σ1 is also asymptotically stable we may investigate whether
this implies asymptotic stability of the cascaded system (3.19). We state the followingresult from
(Lefeber et al., 2000).

Theorem 3.6.1. (Lefeber et al., 2000) The cascaded system(3.19) is globally uniformly asymptoti-
cally stable (GUAS) if the following three assumptions hold:

(1) Σ1 subsystem:The subsysteṁz1 = f1(t,z1) is GUAS and there exists a continuously differen-
tiable function V(t,z1) :

�
+ × �n → �

and positive definite functions W1(z1) and W2(z1) such
that

(i) W1(z1) ≤V(t,z1) ≤W2(z1) ∀t ≥ t0,∀z1 ∈
�n,

(ii)
∂V(t,z1)

∂ t
+

∂V(t,z1)

∂z1
f1(t,z1) ≤ 0, ∀ ‖z1‖ ≥ η ,

(iii)

∥

∥

∥

∥

∂V
∂z1

∥

∥

∥

∥

‖z1‖ ≤ ζV(t,z1), ∀ ‖z1‖ ≥ η ,

(3.21)

whereζ > 0 andη > 0 are constants.

(2) interconnection:The function g(t,z1,z2) satisfies

‖g(t,z1,z2)‖ ≤ κ1(‖z2‖)+κ2(‖z2‖)‖z1‖, ∀ t ≥ t0, (3.22)

whereκ1,κ2 :
�

+ → �
+ are continuous functions.

(3) Σ2 subsystem:The subsysteṁz2 = f2(t,z2) is GUAS and satisfies

∞
∫

t0

‖z2(t0, t,z2(t0))‖dt ≤ β (‖z2(t0)‖), ∀ t0 ≥ 0, (3.23)

where the functionβ (·) is a classK function.



3.6 Cascaded systems 33

In (Panteley et al., 1998) the authors claimed that when both subsystemsΣ1 andΣ2 are globally
K -exponentially stable, the cascaded system (3.19) is alsoK -exponentially stable. To our knowl-
edge, the proof given in (Panteley et al., 1998) is incorrect. The claim that global K -exponential
stability, as defined in (Sørdalen and Egeland, 1995), is equivalent to having global uniform asymp-
totic stability (GUAS) and local uniform exponential stability (LUES) is not valid. Therefore, the fact
that both subsystemsΣ1 andΣ2 areK -exponentially stable does not imply that the cascaded system
(3.19) is alsoK -exponentially stable. It is only valid when both subsystems are globally uniformly
asymptotically stable (GUAS) and locally uniformly exponentially stable (LUES).

A stronger result for the stability of the cascaded system can be obtained when both subsystems
are globally exponentially stable. The result, stated in the following lemma, is based on the result in
(Panteley et al., 1998) and the proof is a slight modification of the proof therein, adapted to the case
when both subsystemsΣ1 andΣ2 are exponentially stable.

Lemma 3.6.2. If in addition to the assumptions in Theorem 3.6.1 bothΣ1 andΣ2 are globally expo-
nentially stable, then the cascaded system(3.19)is globallyK -exponentially stable.

Proof. Since theΣ2 subsystem is globally exponentially stable, it is also globallyK -exponentially
stable and the bound (3.2) is satisfied forz2(t). Therefore it suffices to show the result forz1(t). Since
all conditions of Theorem 3.6.1 are satisfied, the system 3.19 is GUAS andz= [z1,z2]

T satisfies

‖z(t)‖ ≤ β (‖z(t0)‖, t − t0), ∀t ≥ t0 ≥ 0,

whereβ (·) is a classK L function. For all initial conditions‖z(t0)‖ ≤ r, with z = [z1,z2]
T , the

function g(t,z1,z2) can be upper-bounded as‖g(t,z1,z2)‖ ≤ cg, wherecg = cg(r) > 0 is a constant.
Consider the subsystem

ż1 = f1(t,z1)+g(t,z1,z2)z2 (3.24)

By assumption, the systems ˙z1 = f1(t,z1) and ˙z2 = f2(t,z2) are globally exponentially stable. Using
converse Lyapunov theory,i.e., Theorem 3.3.2, there exists Lyapunov functionsV1(t,x) andV2(t,x)
such that

α1‖z1‖2 ≤V1(t,z1) ≤ α2‖z1‖2, V̇1(t,z1) ≤−α3‖z1‖2, ‖∂V1(t,z1)

∂x
‖ ≤ α4‖z1‖, (3.25)

and

β1‖z2‖2 ≤V2(t,z2) ≤ β2‖z2‖2, V̇2(t,z2) ≤−β3‖z2‖2, ‖∂V2(t,z2)

∂x
‖ ≤ β4‖z2‖. (3.26)

Taking the derivative ofV1(t,x) with respect to (3.24) we obtain

V̇1(t,x) ≤−α3‖z1‖2 +α4‖g(t,z1,z2)‖‖z1‖‖z2‖ ≤ −α3‖z1‖2 +α4cg(r)‖z1‖‖z2‖

≤ −α3

2
‖z1‖2 +

α2
4cg(r)2

2α3
‖z2‖2

Defineδg(r) =
α2

4cg(r)2

2α3
and consider the candidate Lyapunov function

V(t,z1,z2) = V1(t,z1)+ΓV2(t,z2), (3.27)

whereΓ > 0 is a constant which will be defined later. The derivative ofV(t,z1,z2) along the solutions
of (3.19) satisfies

V̇(t,z1,z2) ≤−α3

2
‖z1‖2 +(δg(r)−β3Γ)‖z2‖2 (3.28)
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There is still some choice of freedom for the parameterΓ. In order to modify the upper-bound of
(3.28), we selectΓ as

Γ =
2δg(r)

2β3− β̄3
δg(r),

with 0 < β̄3 < 2β3. Then equation (3.28) becomes

V̇ ≤− α3

2α2
V1(t,z1)−

β̄3

2β2
ΓV2(t,z2) ≤−γV, (3.29)

where

γ =
1
2

min(
α3

α2
,
β̄3

β2
).

Therefore, using the bound‖z1‖2 ≤ V(t,z1,z2)

α1
, we obtain

‖z1(t, t0,z10,z20)‖2 ≤ V(t0,z10,z20)

α1
exp(−γ(t − t0))

≤ α2‖z10‖2 +Γβ2‖z20‖2

α1
exp(−γ(t − t0))

≤ 2
max(α2,Γβ2)

α1
‖z0‖2exp(−γ(t − t0)),

wherez0 denotes the vectorz0 = [z1(0,z20]. Thus the solutionsz1(t, t0,z10,z20) satisfy

‖z1(t, t0,z10,z20)‖ ≤ k(r)‖z0‖exp(−γ
2
(t − t0)), (3.30)

with the continuous functionk(r) given by

k(r) =

√

2
max(α2,δg(r)β2)

α1
. (3.31)

The bound (3.2) is satisfied and we conclude that the system (3.19) is globally K -exponentially
stable.

Remark 3.6.1. Note that a stronger result than Lemma (3.6.2) is not feasible. If both subsystems
Σ1 andΣ2 are globally exponentially stable, the cascaded system (3.19) is not necessarily globally
exponentially stable. A counter example is the system given by,

ẋ1 = −x1 +x1x2

ẋ2 = −x2.

When both subsystems are globallyK -exponentially stable, and not globally exponentially stable,
additional assumptions are needed to conclude globalK -exponential stability of the cascaded system
(3.19). In fact, if both systems are globallyK -exponentially stable and admit Lyapunov functions
V1(t,z1) andV2(t,z2) that satisfy (3.21) with quadratic functionsWi = ci‖zi‖2 , and additionally

‖∂V1

∂x
‖ ≤ α4‖z1‖, α4 > 0,

then the cascaded system (3.19) is also globallyK -exponentially stable. This is shown in Proposi-
tion A.1.2 of the appendix.
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3.7 Homogeneous systems

In this section, homogeneous systems will be introduced. It is well-known that the stability analysis
of nonlinear time-varying systems can be quite involved and, in general, is very hard to solve. In these
situations, the theory of homogeneous systems may be used to investigate the stability properties of
a non-linear time-varying system. We use the elements ofC0(

�× �n;
�n), the set of continuous

mappings from
�× �n to

�n, to represent continuous (time-varying) vector fields on
�n. We start by

recalling some definitions and properties related to homogeneous systems.
Given a weight vectorr = (r1, . . . , rn) of real parametersr i > 0 (i = 1, . . . ,n) and a real number

λ > 0, the mappingδ r
λ :
�n → �n defined by

δ r
λ (x) = (λ r1x1, . . . ,λ rnxn)

is called a dilation of weightr. A continuous functionf :
�× �n → �

is said to be homogeneous of
degreeτ with respect to the dilationδ r

λ if

f (δ r
t,λ (x)) = λ τ f (t,x)

for every couple(t,x) ∈ �× �n.
A homogeneous norm associated with a dilationδ r

λ is a continuous positive-definite function
ρ :

�n → �
which is homogeneous of degree one with respect toδ r

λ . For example, a homogeneous
norm associated with the dilationδ r

λ is given by

ρ r
p(x) =

(

n

∑
j=1

|x j |p/r j

)1/p

, p > 0.

Definition 3.7.1. A (time-varying) vector fieldf :
�× �n → �n given by f (t,x) = ∑n

i=1 fi(t,x)∂/∂xi ,
is said to be homogeneous of degreeτ ≥ 0 with respect toδ r

λ if, for eachi = 1, . . . ,n, thei-th compo-
nent fi is a homogeneous function of degreeτ + r i with respect toδ r

λ . More precisely, fori = 1, . . . ,n,

fi(t,δ r
λ (x)) = λ τ+r i fi(t,x)

for all λ > 0 and every couple(t,x) ∈ �× �n.

Definition 3.7.2. Consider a homogeneous normρ :
�n → �

associated with a dilationδ r
λ . The origin

of the system ˙x = f (t,x) with f (t,0) = 0, ∀t, is said to be locallyρ-exponentially stable (with respect
to a dilationδ r

λ ) if there exist strictly positive constantsδ , K andγ such that for anyt0 ∈
�

and any
solutionx(t), with x(t0) = x0,

ρ(x0) < δ =⇒ ρ(x(t)) ≤ Kρ(x0)e
γ(t−t0).

Note that (local)ρ-exponential stability implies (local)K -exponential stability as defined in Sec-
tion 3.2. Let us recall a result that will be used to deduceρ-exponential stability of the controlled
system.

Proposition 3.7.1. (Pomet and Samson, 1994) Letδ r
λ be a dilation and assume that the vector fields

f ,h ∈ C0(
�× �n;

�n) are T-periodic in their first argument, f is homogeneous of degree zero with
respect toδ r

λ , and h can be written as a (possibly infinite) sum of homogeneous vector fields, of strictly
positive degree, with respect toδ r

λ . If the origin x= 0 is a locally asymptotically stable equilibrium
point for

ẋ = f (t,x)

then
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(i) the origin x= 0 is also globallyρ-exponentially stable

(ii) the origin x= 0 of the ‘perturbed’ system

ẋ = f (t,x)+h(t,x)

is locally ρ-exponentially stable with respect toδ r
λ .

The previous result states that for homogeneous systems local asymptotic stability and globalρ-
exponential stability are equivalent properties. The following averagingresult for (fast) time-varying
homogeneous systems will be used in the stability analysis of the controlled system in Chapter 6.

Proposition 3.7.2. (M’Closkey and Murray, 1993) Consider the system

ẋ = f (t/ε,x), (3.32)

with f :
�× �n → �n a continuous T-periodic vector field( f (t +T,x) = f (t,x)) and f(t,0) = 0, ∀t.

Assume that(3.32)is homogeneous of degree zero with respect to a dilationδ r
λ (x) and that the origin

y = 0 of the “averaged system”

ẏ = f̄ (y), f̄ (y) = 1/T

T
∫

0

f (t,y)dt, (3.33)

is a locally asymptotically stable equilibrium point. Then there existsε0 > 0 such that, for anyε ∈
(0,ε0), the origin x= 0 of (3.32)is exponentially stable with respect to the dilationδ r

λ (x).

The main result that will be used to proveρ-exponential stability of the controlled system is a
result for cascaded high-gain control of a class of homogeneous systems, given in (Morin and Samson,
1997). It concerns the classical problem of integrator backstepping for homogeneous time-varying
systems, and is given by the following proposition:

Proposition 3.7.3. (Morin and Samson, 1997) Consider the following system:

ẋ = f (t,x,v(t,x1)) (3.34)

with f :
�× �n× �→ �n a continuous T-periodic function in its first argument, x1 = (x1, . . . ,xm),

m≤ n and v:
�× �m → �

a continuous T-periodic function in its first argument, differentiable with
respect to t, of classC 1 on

�× (
�m\ {0}), homogeneous of degree q with respect to the dilation

δ r
λ (x).

Assume that(3.34) is homogeneous of degree zero with respect to the dilationδ r
λ (x) and that the

origin x = 0 is an asymptotically stable equilibrium point. Then for k positive and large enough, the
origin (x = 0,y = 0) is an asymptotically stable equilibrium point of the system

ẋ = f (t,x,y)

ẏ = −k(y−v(t,x1)).
(3.35)

Remark 3.7.1. Proposition 3.7.3 can be applied recursively to the asymptotic stabilization of the
system

ẋ = f (t,x,y1)

ẏ1 = y2

...

ẏn = u.

(3.36)
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Suppose that the feedbacky1 = v1(t,x1), x1 = (x1, . . . ,xm),m≤ n, asymptotically stabilizes thex-
subsystem,i.e., the first equation in (3.36). Then by recursive application of Proposition3.7.3 it
follows that the feedback

u = −kn(yn−vn−1(t,x
1,y1, . . . ,yn−1)), (3.37)

wherevi = −ki(yi −vi−1(t,x1,y1, . . . ,yi−1)) for i = 2, . . . ,n−1, asymptotically stabilizes the origin.

Remark 3.7.2. Note that if the system (3.36) is homogeneous of degree zero with respectto some
dilation δ̄ r

λ , then Proposition (3.7.1) implies that the closed-loop system (3.36,3.37) isglobally ρ-
exponentially stable.

3.8 Summary

In this chapter, some preliminaries were presented that will be used throughthe sequel of this thesis.
We presented some basic definitions of Lyapunov stability in Section 3.2. Besides the definitions of
asymptotic, exponential andρ-exponential stability, also a weaker result called exponential conver-
gence was treated. Some references have presented controllers that achieve exponential convergence
towards the desired equilibrium point, however, these approaches do not guarantee asymptotic stabil-
ity in a Lyapunov sense.

Furthermore, in Section 3.3 some converse theorems have been presentedthat can be used to
prove the existence of a suitable Lyapunov function of a system. In Section3.4 a similar result was
shown to hold in the case of linear time-varying systems. In Section 3.5 robustness properties of
uniformly exponentially stable systems were presented. It turns out that uniform exponential stability
is a desirable property, because it implies that solutions of the perturbed system remain uniformly
bounded for any uniformly bounded perturbation. In fact, if the perturbation vanishes at the origin,
specific bounds can be given for which the system remains exponentially stable, see Theorem 3.5.1.

In Section 3.6 we consider cascaded nonlinear systems. It is shown that under some additional
conditions, the stability of a cascaded system can be completely characterized in terms of the stability
of the two subsystems. This result will be used in Chapter 5 where a solution tothe tracking control
problem is given. In Section 3.7 the theory of homogeneous systems has been introduced. In this
section an averaging result and a backstepping or high-gain feedbackresult was presented for the class
of homogeneous systems, and will be used to solve the feedback stabilizationproblem in Chapter 6.
In the following chapter we will present some methodologies for generating state-to-state trajectories
that can be used in the tracking control problem.
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Chapter 4

Trajectory generation

In recent years, so-called nonholonomic motion planning problems have received increasing interest.
In these nonholonomic motion planning problems one tries to find open loop controls that steer a non-
holonomic system from an initial state to a final state over a given finite time interval. These open-loop
controls generate a feasible trajectory that connects the initial state and the final state. This feasible
trajectory can then be used in a trajectory tracking problem, where one wants the system to follow this
specified trajectory. To understand why nonholonomic motion planning is moreinvolved, it is useful
to compare it with holonomic motion planning. In holonomic motion planning, an arbitrary motion,
satisfying some continuity property, in the space of independent generalized coordinates is possible.
For example, a disk that rolls with slip can perform an arbitrary holonomic motionby transferring the
disk from a motion without slip to a motion with slip. In contrast, in nonholonomic motion planning
the trajectories of the system have to satisfy the nonholonomic constraint at each time-instant. This is
the case when the disk is constrained to roll without slip, resulting in a nonholonomic constraint that
relates the velocity of the center of mass to the angular velocity of the disk. Therefore, only motions
are possible that satisfy the nonholonomic constraint. Nevertheless, depending on the controllabil-
ity properties of the system, feasible motions do exist that connect an arbitrary initial state and an
arbitrary final state of the nonholonomic system.

A variety of motion planning techniques have been described in (Li and Canny, 1993) while
an introduction to motion planning for nonholonomic robots can be found in (Murray et al., 1994).
The motion planning methodologies can be classified into differential-geometric and differential-
algebraic methods, geometric phase (holonomy) methods and control parameterization methods, see
(Kolmanovsky and McClamroch, 1995). However, many of these approaches are only applicable to
kinematic models of nonholonomic control systems, such as, for example, wheeled mobile robots and
trailer systems. Since systems with second-order nonholonomic constraints,can only be described by
dynamic models, these techniques can not be applied to second-order nonholonomic systems, consid-
ered in this thesis. In fact, no general theory for planning trajectories for systems with second-order
nonholonomic constraints is yet available and most successful approaches have been tailored to spe-
cific cases. Nevertheless, some of the techniques for motion planning of systems with first-order
constraints may also be applicable to motion planning for systems with second-order constraints.

In differential-geometric and differential-algebraic approaches net motions are generated in the
direction of the iterated Lie-brackets of the systems input vectorfieldsgi , i = 1, . . . ,m. The majority
of these approaches consider only the motion planning problem for kinematicmodels,i.e., without
drift. The fact that the system satisfies a Lie algebra rank condition (LARC) then guarantees that
any initial state can be steered to an arbitrary final state. These techniquesalso include averaging
techniques, flatness-based approaches and techniques in which one steers the system by using piece-
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wise continuous inputs.
In the geometric phase methods, a special class of nonholonomic control systems are those of the

kinematic Chaplygin type given by

ż= g1(y)ẏ1 +g2(y)ẏ2 + · · ·+gm(y)ẏm

ẏi = ui , i = 1, . . . ,m.

When the base vectory undergoes a cyclic motion, the resulting change in the fiber vectorz can be
written as a line integral along the pathγ of the base vector:

z(t)−z(0) =
∮

γ

g(y)dy

The value of the line integral is independent of any specific parameterization and only depends on the
geometry of the path. Thus for Chaplygin systems the motion planning problem reduces to finding
an appropriate base pathγ which produces the desired change in the fiber vectorz, also referred to as
the geometric phase. For details and references to geometric phase methods, the reader is referred to
Kolmanovsky and McClamroch (1995).

The most elementary method for motion planning is based on parameterization of the inputs within
a given finite dimensional set of functions. Suppose that the inputu(t) is parameterized by a parameter
α ∈ �k. This parameterization reduces the problem of finding inputsu(t) in a infinite dimensional
function space, to finding a finite number,i.e., k, of decision variablesα . This simple idea has ap-
peared in many publications and has been very successful in solving a wide range of nonholonomic
motion planning problems. Because the control parameterization approach issuitable for both kine-
matic and dynamic models, it can also be used to solve motion planning problems forsystems with
second-order nonholonomic constraints.

As mentioned earlier, no general theory is available for motion planning of second-order nonholo-
nomic systems. Some results tackle the motion planning problem in specific cases.For example, in
(Arai et al., 1998b) a numerical motion planner was proposed for a planar underactuated 2R manipula-
tor with an unactuated base joint. The case of a planar horizontal underactuated three-link manipulator
has been considered in (Arai et al., 1998a). In that reference, rest-to-rest motions could be generated
by using a sequence of elementary maneuvers,i.e., maneuvers consisting of either a pure translation
of the third link or a pure rotation of the third link around its center of percussion. In (Lynch et al.,
1998) a motion planner is developed that can also generate collision-free paths amongst obstacles. In
(Luca and Oriolo, 2000), the motion planning problem for the planar horizontal underactuated three-
link manipulator has been solved by applying dynamic feedback linearization.The flatness property
of the system can then be used to generate state-to-state paths, provided that these paths do not cross
singularities of the inverse transformation induced by the flat outputs. In (Iwamura et al., 2000) a
near-optimal motion planning scheme is obtained by formulating the motion planning problem as an
optimal control problem. This optimal control problem is too difficult to solve, ingeneral, and it is
converted into a bidirectional fixed-domain optimal control problem by usinga different time-variable.
Then a numerical algorithm, based on the gradient method, is used to solve thisbidirectional optimal
control problem.

In this chapter, some trajectory generation methods will be presented for thesecond-order chained
form system (2.10). The goal of these methods is to generate inputsu1 andu2 that steer the states of
system (2.10) from an initial statexA to a final statexB. These inputs together with the corresponding
trajectoryx(t) can be used as a desired trajectory,e.g.(2.12), in the trajectory tracking problem. The
proposed methods consist of a control parameterization approach and acombined optimal control
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and control parameterization approach. The reader is referred to (Verhoeven, 2002) for details on the
proposed methods.

4.1 Problem formulation

The general goal of the motion planning strategies in this chapter is to derivetrajectories of motion for
the second-order chained form system that connect two arbitrarily chosen pointsA andB. Consider
the second-order chained form system given by

ẋ1 = x2 ẋ2 = u1

ẋ3 = x5 ẋ4 = u2

ẋ5 = x6 ẋ6 = x3u1,
(4.1)

with state vectorx∈ �6 given byx = [x1,x2, . . . ,x6]
T . The goal in this chapter is to develop a motion

planner that generates open-loop input functionsu1(t) and u2(t) which drive the statex(t) of the
system from some initial statexA to an arbitrary statexB, at some pre-specified timet = T. This
state-to-state motion planning problem can be formulated as follows

Problem 4.1.1. Given a final timeT > t0 and two statesxA ∈ �6 andxB ∈ �6, find input functions
u1(t) andu2(t) such that the resulting state trajectoryx(t) satisfiesx(t0) = xA andx(T) = xB.

An algorithm that generates the input functionsu1(t), u2(t) and the corresponding feasible trajec-
tory x(t), given arbitrary initial and final statesxA andxB, respectively, will be referred to as a motion
planner.

4.2 Controllability and stabilizability

In order to be able to generate inputs and corresponding feasible trajectories that connect an arbitrary
initial and arbitrary final state, the system must satisfy some controllability property. This section
investigates certain controllability properties of the second-order chainedform system. The control-
lability concepts used have been developed in (Nijmeijer and van der Schaft,1990) and (Sussmann,
1987). In fact, by using a Lie algebra approach, thelocal accessibilityand small-time local controlla-
bility (STLC) properties will be investigated.

Consider the second-order chained form system written as

ẋ = f (x)+g1(x)u1 +g2(x)u2, (4.2)

with x∈ �6 andu1,u2 ∈
�

and

f (x) = [x2,0,x4,0,x6,0]T ,g1(x) = [0,1,0,0,0,x3]
T ,g2(x) = [0,0,0,1,0,0]T (4.3)

The reachable set fromx0, given a neighborhoodV of x0, is defined as

RV
T(x0) =

⋃

τ≤T

RV(x0,τ)

where the reachable setRV(x0,T) from x0 at timeT > 0 is given by

RV(x0,T) ={x∈ �6 | there exists an admissible inputu : [0,T] → �2 such that the evolution of

(4.2) forx(0) = x0 satisfiesx(t) ∈V, 0≤ t ≤ T andx(T) = x}
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Definition 4.2.1. The system (4.2) is locally strongly accessible fromx0 if for any neighborhoodV of
x0 the setRV(x0,T) contains a non-empty open set for anyT > 0 sufficiently small. If this holds for
anyx0 ∈

�6 then the system is called locally strongly accessible.

Proposition 4.2.1. The system(4.2) is locally strongly accessible.

Proof. This claim can be verified by the strong accessibility rank condition. Consider the following
set of repeated Lie brackets̃C′ = {g1,g2, [ f ,g1], [ f ,g2], [g1, [ f ,g2]], [ f , [g2, [ f ,g1]]} given by

C̃0 ==


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Then dim(span(C̃0)) = 6 for all x ∈ �6 and we conclude that the system (4.2) is locally strongly
accessible, see Theorem 3.21 in (Nijmeijer and van der Schaft, 1990).

The fact that the system is locally strongly accessible means that, given anyneighborhoodV of
x0 ∈

�6, the reachable setRV(x0,T) from x0 at timeT contains a non-empty open set for anyT > 0
sufficiently small. Obviously, this is far from showing controllability of the system. A stronger result
that states that the reachable setRV(x0,T) from x0 at timeT contains a non-empty open set for all
T > 0 is the following.

Definition 4.2.2. The system (4.2) is small-time locally controllable (STLC) fromx0 if for any neigh-
borhoodV of x0 the setRV(x0,T) contains a non-empty open set for anyT > 0. If this holds for any
x0 ∈

�6 then the system is called small-time locally controllable.

In (Sussmann, 1987) a sufficient condition was given for small-time local controllability (STLC)
of nonlinear systems with drift. Consider a system ˙x = f (x)+ ∑m

i=1gi(x)ui , wherex ∈ D ⊂ �n and
ui ∈

�
, together with a pointp ∈ D such thatf (p) = 0. Let X = [ f ,g1, . . . ,gm] and denote the set

of all possible iterated Lie brackets involvingf ,g1, . . . ,gm by Br(X). Let the degree of a Lie bracket
B∈ Br(x), denoted byδ (B), be the sum

δ (B) = δ 0(B)+
m

∑
i=1

δ i(B),

whereδ 0 is the number of times thatf occurs inB andδ i , i = 1,2, . . . ,m, the number of times thatgi

occurs inB. A Lie bracketB is said to be “bad” ifδ 0(B) is odd andδ 1(B),δ 2(B), . . . ,δ m(B) are even.
The main lines of the sufficient condition for STLC can be formulated as follows. A nonlinear system
with drift is STLC if (1) the system is locally accessible,i.e.,satisfies the Lie algebra rank condition
and (2) all “bad” brackets can be written as linear combinations of “good”brackets of lower degree.
The reader is referred to (Sussmann, 1987) for the complete result.

Theorem 4.2.2. (Sussmann 1987, Corollary 7.2) Consider a systemẋ = f (x)+ ∑m
i=1gi(x)ui , where

x∈ D and ui ∈
�

, and a point p∈ D such that f(p) = 0. Assume that the system is locally accessible,
i.e., satisfies the Lie algebra rank condition. If whenever B is a “bad” bracket, there exist brackets
C1, . . . ,Ck with δ (Ci) < δ (B) such that

B =
k

∑
i=1

aiCi (4.4)

for some a1, . . . ,ak ∈
�

, then the system is STLC from p.
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Proposition 4.2.3. The second-order chained form system(4.2) is small-time locally controllable
from any equilibrium.

Proof. The system is locally strongly accessible, and thus satisfies the Lie algebra rank condition
(LARC). Since the highest degree of a bracket is 4 this means that all brackets of order higher than
4 can be written as a linear combination of lower order brackets. The “bad”brackets of degree
lower than 4 are the bracketsf , [g1, [ f ,g1]] and[g2, [ f ,g2]]. The bracketf vanishes at any equilibrium
points and the brackets[g1, [ f ,g1]] and[g2, [ f ,g2]] are identical zero vectorfields. Therefore the system
satisfies Sussmann’s sufficient condition, see Theorem 4.2.2, at any equilibrium. Thus the system (4.2)
is STLC from any equilibrium.

Since the system is real analytic, the above proposition implies the existence ofpiecewise analytic
feedback laws (Sussmann, 1979) which asymptotically stabilize the closed-loop system to an equilib-
rium point. In (Astolfi, 1996; Laiou and Astolfi, 1999) time-invariant discontinuous controllers have
been presented that guarantee exponential convergence towards anequilibrium point. However, these
controllers do not asymptotically stabilize the equilibrium point in a Lyapunov sense. The STLC prop-
erty of the system can be linked to a stabilizability property. In (Coron, 1995) it is shown that analytic
systems can be locally stabilized by time-varying feedback. In fact, it is shown that STLC systems
are locally stabilizable in small time by means of almost smooth periodic time-varying feedback. In
this thesis, we will focus on the feedback stabilization problem by continuousperiodic time-varying
feedback.

4.3 Constructive proof of controllability

The STLC property can be used to show local controllability of general nonlinear systems, but does
not imply complete controllability of the system. For the specific second-order chained form system,
however, complete controllability can be shown by a constructive procedure in which inputs and tra-
jectories are generated that steer the system from an initial statexA = [x1A,x2A, . . . ,x6A]T to a desired
final statexB = [x1B,x2B, . . . ,x6B]T . This constructive procedure shows great resemblance with the con-
structive procedure in (Arai et al., 1998a), where controllability of a planar horizontal underactuated
3-DOF manipulator was shown. This underactuated manipulator is equivalent to the second-order
chained form by a suitable state and feedback transformation. The constructive procedure shown in
this section, will be based on the second-order chained-form.

Consider a partitioningt0 < t1 < t2 < t3 < t4 < T of the time interval[t0,T], whereT is a finite time
instant at which the final statexB should be reached. First it should be noted that a double integrator
system

ẏ1 = y2, ẏ2 = u

can be steered from an arbitrary initial state[y1A,y2A] at timetA to an arbitrary state[y1B,y2B] at time
tB by the inputu given by

u(t) = a(t − tA)+b, tA ≤ t ≤ tB,

a = 6
y2B +y2A

(tB− tA)2 −12
y1B−y1A

(tB− tA)3

b = 6
y1B−y1A

(tB− tA)2 −2
x2B +2y2A

tB− tA

with suitable coefficientsa andb. Note that this is not the only way to steer a double integrator, many
other solutions exist. The constructive procedure that generates a feasible trajectory for the system
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(4.2) connecting the statesxA at t = t0 andxB at t = T generates five trajectory segments. During these
trajectory segments, the states that are not excited by a control input can change due to drift of the
system. The trajectory segments of the system (4.2) can be described as follows:

1. t0 ≤ t < t1: control of (x3,x4). During this segmentu1 = 0 and the states(x1,x2,x5,x6) are not
excited. The inputu2 is used to steer the state(x3,x4) from their initial values(x3A,x4A) at t0 to
the final values(1,0) at timet1.

2. t1 ≤ t < t2: control of (x5,x6). During this segmentu2 = 0 and the states(x3,x4) are un-
changed. The inputu1 is used to steer the states(x5,x6) from their initial values(x5A +x6A(t1−
t0),x6A) at timet1 to (x5B−x6B(T − t2),x6B) at timet2. Note that during this trajectory segment
the dynamics ofx5 behave as a double integrator sincex3(t) = 1, t1 ≤ t < t2.

3. t2 ≤ t < t3: control of (x3,x4). During this segmentu1 = 0 and the states(x1,x2,x5,x6) are not
excited. The inputu2 is used to steer the states(x3,x4) from their initial values(1,0) at time
t = t2 to the final values(0,0) at timet = t3.

4. t3 ≤ t < t4: control of (x1,x2). During this segmentu2 = 0, x3 = 0 and the states(x3,x4,x5,x6)
are not excited. The inputu1 is used to steer the states(x1,x2) from their initial values at time
t = t3 to the final values(x1B−x2B(T − t4),x2B) at timet = t4.

5. t4 ≤ t < T: control of (x3,x4). During this segmentu1 = 0 and the states(x1,x2,x5,x6) are not
excited. The inputu2 is used to steer the states(x3,x4) from their initial values(0,0) at time
t = t4 to the final values(x3B,x4B) at timet = T. At time t = T the states(x1,x2) have drifted
from their initial values at timet = t4 to their desired values(x1B,x2B) and the states(x5,x6)
have drifted from their initial values(x5B−x6B(T− t2),x6B) at timet = t2 to their desired values
(x5B,x6B).

This procedure generates inputsu(t) and trajectoriesx(t) that steer the second-order chained form
system from an arbitrary initial statexA to an arbitrary final statexB. The second-order chained form
system is thus controllable. In the following sections we will investigate more sophisticated motion
planners.

4.4 The flatness property

In (Fliess et al., 1994) it has been shown that certain nonlinear systems can be converted to linear
systems at the cost of extending their dimensionality. For these systems, so-called flat outputsy(t)
can be assigned for which all state variablesx(t) and inputsu(t) can be expressed in terms of the flat
outputs and a finite number of their time-derivatives.

Definition 4.4.1. A system ˙x = f (x,u) with statex∈ �n and inputsu∈ �m is said to be differentially
flat if there exist outputsy ∈ �m of the formy = y(x,u, u̇, . . . ,u(k)) such thatx = x(y, ẏ, . . . ,y(k)) and
u = u(y, ẏ, . . . ,y(k)).

Since the behavior of the flat system is completely determined by the flat outputs, trajectories of
the system can be obtained in terms of the flat outputs and these flat outputs can then be mapped to the
required inputs. The flatness property is closely related to dynamic feedback linearization in the sense
that the flat outputs define a so-called endogenous transformation and a dynamic feedback that brings
the system into a linear controllable system that consists ofm independent chains of integrators, with
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m being the number of inputs to the system. A drawback of flatness-based motionplanning method-
ologies is the fact that the flat outputs are not given a priori and cannotbe computed systematically.
In fact, it is not even clear which systems are flat and which systems are non-flat. Also, there exists no
test to check whether a system is flat. Moreover, the endogenous transformation induced by the flat
outputs is not always a diffeomorphism, but may contain singularities. This means that the trajectories
to be planned must avoid these singular points. For example, possible flat outputs for the second-order
chained form system are

y =

[

y1

y2

]

=

[

x1

x5

]

.

The statex and the inputsu can be expressed in terms of the flat outputs by

x(y, ẏ, ÿ,y(3)) =

























y1

ẏ1
ÿ2

ÿ1

ÿ1y(3)
2 − ÿ2y(3)

1

(ÿ1)2

y2

ẏ2

























,

u(y, ẏ, . . . ,y(4)) =





ÿ1

(ÿ1)
2(ÿ1y(4)

2 − ÿ2y(4)
1 )−2(ÿ1y(3)

2 − ÿ2y(3)
1 )ÿ1y(3)

1

(ÿ1)
4





However, these equations are undefined for ¨y1 = 0. This restriction has severe consequences for
motion planning using the flatness property. Thus singularities occur at ¨y1 = 0, which implies that the
input u1(t) is not allowed to be identically zero. Therefore the only way to avoid these singularities
in a state-to-state motion planning problem is to use a discontinuous or piece-wise continuous input
functionu1(t). For this reason, the flatness property will not be considered here, but instead we will
use alternative methods that do not suffer from singularities. It should be noted that, in certain cases, it
is possible to avoid the singularities in the flatness-based approach by usingtime-scaling. For example
in the case of the car with n-trailers, singularities in the endogenous transformation have been avoided
by time-scaling with respect to the arc-length of the trajectory of the mobile robot (Fliess et al., 1995).

4.5 The point to point steering problem

The main objective in this section is to generate input functionsu1(t) andu2(t) that steer the state
trajectories of the second-order chained form system from an initial statexA to a final statexB. A
common approach is to parameterize the inputs of the system. This parameterization reduces the
problem of finding two inputs in a infinite dimensional function space to finding afinite number of
decision variables and basis functions.

Consider the second-order chained form system ˙x= f (x,u1,u2), with statex= [x1,x2, . . . ,x5,x6]
T ,

given by
f (x,u) = [x2,u1,x4,u2,x6,x3u1]

T . (4.5)

Suppose that the input functionsu1(t) andu2(t) can be written as a finite sum of basis functions:

u1(t) =
q

∑
i=1

a1ihi(t) = ā1h(t), u2(t) =
q

∑
i=1

a2ihi(t) = ā2h(t), (4.6)
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whereh(t) is aq dimensional vector of basis functions. For example, the basis functions can be chosen
such that the inputsu1(t) andu2(t) are a finite sum of harmonic functions,i.e., a Fourier series with
fundamental pulsationω , by selecting

h(t) = [ 1 sin(ωt) cos(ωt) . . . sin((p−1)ωt) cos((p−1)ωt) ]T , q = 2p−1. (4.7)

This parametrization has reduced the problem of finding two input functionsu1(t) andu2(t) to finding
a set of 2q parameters ¯a1 andā2. Suppose that we want to steer the system from an initial statexA at
time t = 0 to a final statexB at timet = T, whereT > 0. In order to be able to find a set of parameters
that solve the motion planning problem, the set of basis functions has to be richenough. This means
that for the set of basis functions, there should exist parameters ¯a1 andā2 such thatx(T) = xB. This
is however not possible for every combination of a set of basis functionsh(t), an initial statexA and
a final statexB. Some necessary regularity conditions will be given for the set of basis functions such
that a solution to the motion planning problem exists.

By integration, it is easily seen that the solution of the open-loop system (4.5,4.6) at timet = T
satisfies

x(T) =

















āT
1 m1 +x20T +x10

āT
1 m2 +x20

āT
2 m1 +x40T +x30

āT
2 m2 +x40

āT
1 M1ā2 + āT

1 m3 +x60T +x50

āT
1 M2ā2 + āT

1 m4 +x60

















(4.8)

where

m1 =

T
∫

0

t
∫

0

h(σ)dσdt, m2 =

T
∫

0

h(σ)dt,

m3 =

T
∫

0

t
∫

0

(σx40+x30)h(σ)dσdt, m4 =

T
∫

0

(tx40+x30)h(t)dt

M1 =

T
∫

0

t
∫

0



h(σ)

σ
∫

0

τ
∫

0

hT(s)dsdτ



dσdt, M2 =

T
∫

0



h(t)

t
∫

0

σ
∫

0

hT(s)dsdτ



dt

(4.9)

wherexA = [x10,x20,x30,x40,x50,x60]
T represents the initial state. Because the six-dimensional statex

has to be steered from its initial valuexA to an arbitrary final valuexB = [x1T ,x2T ,x3T ,x4T ,x5T ,x6T ]T , at
least 6 coefficients are needed. Therefore we need at least three basis functions and the first regularity
condition isq≥ 3. Looking at the first four equations of (4.8), it is clear that in order for a solution to
exist the 2×q matrixB1 given by

B1 =

[

mT
1

mT
2

]

, (4.10)

should have full row rank. This is the case when the vectorsm1 andm2 are linearly independent and
clearly the parameterization results in solving a system of nonlinear equations. This set of nonlinear
equations can be solved by using nonlinear optimization techniques. Under appropriate conditions,
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these nonlinear equations can be reduced to a linear set of equations. Tothat end, consider the equa-
tions (4.8) written in a partially linear form as

[

mT
1

mT
2

]

ā1 =

[

x1T −x20T −x10

x2T −x20

]

[

mT
1

mT
2

]

ā2 =

[

x2T −x40T −x30

x4T −x40

]

[

mT
3

mT
4

]

ā1 +

[

āT
1 M1ā2

āT
1 M2ā2

]

=

[

x5T −x60T −x50

x6T −x60

]

(4.11)

Suppose thatm1 andm2 are linearly independent. Suppose that we select a solution to the first two
linear equations in (4.11) as

ā1 = BT
1 (B1BT

1 )−1
[

x1T −x20T −x10

x2T −x20

]

= ā10

ā2 = BT
1 (B1BT

1 )−1
[

x3T −x40T −x30

x4T −x40

]

+A1y1 = ā20+A1y1

(4.12)

where the columns of theq× (q− 2) matrix A1 form a basis for the nullspace ofB1, andy1 is an
arbitrary(q−2)×1 column vector. Then substitution of (4.12) into the last equation of (4.11), results
in a linear set of equations given by

[

āT
10M1A1

āT
10M2A1

]

y1 +

[

mT
3 ā10+ āT

10M1ā20

mT
4 ā10+ āT

10M2ā20

]

=

[

x5T −x60T −x50

x6T −x60

]

(4.13)

This linear set of equations can be solved for all right hand sides of (4.13) when the matrixB2 given
by

B2 =

[

āT
10M1A1

āT
10M2A1

]

(4.14)

has full row rank. This condition is met if and only if the matricesM1 andM2 are linearly independent,
i.e., there exists noα ∈ � such thatM1 = αM2, and additionally ¯a10 6= 0. The latter condition is met
if either x1T − x20T − x10 6= 0 or x2T − x20 6= 0. These inequalities imply that the desired final state
(x1T ,x2T) can not be reached by drift,i.e., for u1 = 0 andu2 = 0 the initial velocitiesx20 can not be
used do transfer the statesx1 from x10 to x1T while x2T = x20. In other words, the(x1,x2) dynamics
should be excited. Note that ¯a10 = 0 impliesu1(t) = 0,∀t, while the second-order chained form is not
controllable foru1 = 0. A solution to (4.13) is given by

y1 = BT
2 (B2BT

2 )−1
[

x5T −x60T −x50−mT
3 ā10− āT

10M1ā20

x6T −x60−mT
4 ā10− āT

10M2ā20

]

+A2y2 = y10+A2y2 (4.15)

where the columns of theq× (q− 2) matrix A2 form a basis for the nullspace ofB2, andy2 is an
arbitrary(q−2)×1 column vector. A class of solutions to the motion planning problem is thus given
by

ā1 = BT
1 (B1BT

1 )−1
[

x1T −x20T −x10

x2T −x20

]

ā2 = A1A2y2 +A1y10+BT
1 (B1BT

1 )−1
[

x3T −x40T −x30

x4T −x40

] (4.16)
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wherey10 is given in (4.15). In this section we have also found regularity conditions under which
there exists a solution, given by (4.16), of the motion planning problem. These conditions can be
summarized as follows.

R1 The number of basis functions should be at least 3,i.e., q≥ 3.

R2 The matricesB1 andB2 should have rank 2,i.e., the vectorsm1 andm2 as well as the vectors
m3 andm4 should be linearly independent.

R3 The desired final states(x1T ,x2T) can not be reached by drift,i.e., eitherx1T − x20T − x10 6= 0
or x2T −x20 6= 0.

In the next section, the set of nonlinear equations (4.11) will be used to formulate a constrained op-
timization problem, and numerical optimization algorithms will be used to solve the problem. The
solutions given by (4.16), or randomly computed vectors ¯a1 andā2, can then be used as initial condi-
tions to the optimization problem.

4.6 A variational method

In this section calculus of variations will be used to solve the nonlinear set ofequations that were
given in the previous section. First we will define a cost criterionJ(ā). For simplicity, we select the
following cost criterion:

J =

T
∫

0

(u1(t)
2 +u2(t)

2)dt = āT
1





T
∫

0

h(t)h(t)Tdt



 ā1 + āT
2





T
∫

0

h(t)h(t)Tdt



 ā2 (4.17)

The motion planning problem can then be formulated as the following constrained optimization prob-
lem.

minimize
ā∈
�2q

J(ā)

subject to r(ā) , x(T)−xB = 0
(4.18)

whereā = [ā1, ā2]
T andx(T) is given by

x(T) =

















āT
1 m1 +x20T +x10

āT
1 m2 +x20

āT
2 m1 +x40T +x30

āT
2 m2 +x40

āT
1 M1ā2 + āT

1 m3 +x60T +x50

āT
1 M2ā2 + āT

1 m4 +x60

















In the previous section the motion planning problem could be reduced to the problem of solving a
set of linear equations, at the expense of reducing the parameterization.In this section, the motion
planning problem is formulated as a constrained optimization problem in which theparametrization
of the inputs is used to find a solution that is optimal with respect to the cost criterion (4.17). The
advantage of formulating the problem as a constrained optimization problem is the fact that it can be
solved using optimization algorithms. Of course, we assume that the basis functions are chosen such
that a solution exists. At the cost of some computational load, in general, these methods can find local
extrema of the optimization problem.
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The numerical optimization algorithm that will be used is an SQP-type algorithm ’fmincon’,
available through the optimization toolbox of MATLAB . The ‘fmincon’ algorithm is a Sequential
Quadratic Programming (SQP) method. SQP methods resemble Newton’s methodsfor constrained
optimization; at each iteration step the Hessian of a Lagrangian function is approximated by using
a quasi-Newton updating method. This approximation of the Hessian is then used to formulate a
Quadratic-Programming problem that is based on the quadratic approximationof the Lagrangian and
the linearized constraints. An overview of SQP methods can be found in (Fletcher, 1980; Gill et al.,
1981).

4.6.1 The SQP algorithm

Consider the constrained optimization problem given by (4.18). The Lagrangian associated with the
constrained optimization problem is given by

L(ā,λ ) = J(ā)+λ Tr(ā)

whereλ is a 1×6 column vector of Lagrange multipliers. The Lagrangian allows us to replacethe
constrained optimization problem by an unconstrained optimization problem given by

minimize
ā∈
�2q

L(ā,λ )

A necessary condition for an optimal value ¯a is:

∇āL(ā,λ ) = 0

This condition can be written as the well-known Karush-Kuhn-Tucker equations given by

∇āJ(ā)+λ∇ār(ā) = 0

r(ā) = 0
(4.19)

The Karush-Kuhn-Tucker (KKT) equations are necessary conditions for optimality of the constrained
optimization problem. They are referred to as the first-order conditions foroptimality. The sufficient
conditions, also known as the second-order conditions, are given by

y∇2
āL(ā,λ )yT > 0, ∀ y∈ �n/{0} such thatyT∇āL(ā,λ ) = 0 (4.20)

where∇2
āL(ā,λ ) denotes the Hessian of the Lagrangian. If the second-order conditions(4.20) are sat-

isfies, then the point ¯a is a global minimizer of the cost functionJ(ā). If the constrained optimization
problem is convex,i.e., J(ā) andr(ā) are convex functions, and the equalitiesr(ā) = 0 are linear then
the KKT equations (4.19) are both necessary and sufficient conditions.

In order to find a solution to the KKT equations, the equations (4.19) can be transformed into an
easier subproblem that can be solved and used as a basis of an iterativeprocess. By using a quadratic
approximation of the Lagrangian and by linearizing the constraints, we can formulate the following
Quadratic Programming problem

minimize
d∈
�2q

dTHkd+∇āJ(ā))Td

subject to (∇ār(ā)T)Td+ r(ā) = 0
(4.21)
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whereHk is a positive definite approximation of the Hessian of the Lagrangian:∇2
āL(ā,λ ) at iteration

k. The HessianHk can be updated by any of the quasi-Newton methods, although the BFGS method
(Bertsekas, 1995) appears to be the most successful. If the initial solution ā0 is sufficiently close to
a solution point, then the BFGS method has been shown to lead to super-linear convergence towards
a solution point. The resulting QP problem (4.21) can be solved using any QPalgorithm, see for
example (Bertsekas, 1995). The solution is used to form a new iteration ¯ak+1 = āk + αd where the
step lengthα is determined by an appropriate line search procedure.

The ’fmincon’ procedure is computationally quite intensive in the sense that many functions have
to be evaluated at each iteration. Moreover, this SQP method does not guarantee that a solution is
found; in some cases the method does not converge to a solution. If a solution exists, one has to
change the initial ‘guess’ ¯a0, otherwise one needs to increase the number of basis functions so that
a solution exists. If a solution can be found using the method in Section 4.5 then this solution may
be used as a feasible initial ‘guess’. The ’fmincon’ procedure can be replaced by more efficient and
robust SQP implementations.

4.7 A sub-optimal method

In the previous section the motion planning problem could be transformed into aconstrained opti-
mization problem by parameterizing the inputsu1(t) andu2(t) with respect to a set of basis functions.
In this approach the parameterization parameters act as the decision variables and are used to mini-
mize a certain cost criterion. The optimal solution to the constrained optimization problem and the
resulting value of the cost criterion are, however, completely dependenton the parametrization. In
this section, the inputs will not be parameterized but, instead, the motion planningproblem is treated
as an optimal control problem, see (Lewis and Syrmos, 1995).

Consider a system ˙x = f (x,u) with f :
�n × �m → �n. Again we consider a pre-defined time

T > 0 and consider a cost criterion

J(x,u) =

T
∫

0

j(x,u)dt

wherex = [x1,x2, . . . ,xn]
T andu = [u1,u2, . . . ,um]T . Then formulate the following optimal control

problem:
minimize

u
J(x,u)

subject to ˙x = f (x,u)
x(0) = xA

x(T) = xB,

whereu :
�→ �m. Associated with this system we consider the Hamiltonian function

H(x, p,u) = j(x,u)+ pT f (x,u)

where the co-state vectorp(t) = [p1(t), . . . , pn(t)]T is given by, to be defined, functionspi(t), i =
1,2, . . . ,n. The minimum principle states that an optimal solution[xopt(t),uopt(t), popt(t)] satisfies

ẋopt = f (xopt,uopt)

ṗopt = −∂H
∂x

(popt,xopt,uopt)

x(0) = xA

x(T) = xB

(4.22)
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and for almost anyt ∈ [0,T]

H(popt(t),xopt(t),uopt(t)) = min
v

H(popt(t),xopt(t),v), (4.23)

wherev :
�→ �m. The equations (4.22,4.23) are necessary conditions for[xopt(t),uopt(t)] to be an

optimal solution. In (Lee and Markus, 1967) a set of conditions which, in addition to (4.22,4.23), are
sufficient conditions for[xopt(t),uopt(t)] to be a locally optimal solution are

A The(n+m)× (n+m) matrix

D =









∂ 2 j(x,u)

∂x2

∂ 2 j(x,u)

∂x∂u
∂ 2 j(x,u)

∂u∂x
∂ 2 j(x,u)

∂u2









(4.24)

is positive definite along the trajectory[xopt(t),uopt(t)].

B Along the trajectory[xopt(t),uopt(t)] either
∂ 2 f (x,u)

∂x2 =
∂ 2 f (x,u)

∂x∂u
=

∂ 2 f (x,u)

∂u2 = 0 or

∂ j(x,u)

∂x
= 0.

Condition (4.23) implies that

∂H
∂u

(popt(t),xopt(t),uopt(t)) = 0 (4.25)

Condition (4.25) only guarantees that the Hamiltonian is stationary for the optimalinput uopt(t). In
order to guarantee that the inputuopt(t) is a global minimizer of the HamiltonianH(popt(t),xopt(t), ·),
H(p,x,u) should be a convex function with respect to its argumentu. Therefore condition (4.23) is
equivalent to (4.25), whenH(p,x,u) is convex in its argumentu.

In this thesis, the cost-criterionj(x,u) is selected asj(x,u) = u2
1 + u2

2. The Hamiltonian is then
given by

H(x, p,u) = p1x4 + p2x5 + p3x6 + p4u1 + p5u2 + p6x2u1 +u2
1 +u2

2

The equations (4.22,4.23) form a boundary value problem in which one has to find an optimal input
uopt(t). As the second-order chained form has been shown to be controllable,a solution is known
to exists. SinceH(x, p,u) is convex with respect to its argumentu, we can use equation (4.25) to
eliminateuopt(t) from these equations. Evaluating (4.25) gives

∂H
∂u

T

=

[

p4 + p6x2 +2u1

p5 +2u2

]

=

[

0
0

]

This implies that the optimal inputsuopt
1 anduopt

2 are given by

uopt
1 = − popt

4 + popt
6 xopt

2

2

uopt
2 = − popt

5

2

(4.26)

Since the matrix in (4.24) is given by

D =

[

O55 O52

O25 2I2

]
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whereOnm denotes an×m matrix with zeros andIn denotes an× n identity matrix, it is positive
semi-definite. We conclude that conditionA is not satisfied and a solutionuopt(t) is not guaranteed
to be a local optimum. Note that if we choosej(x,u) to be given byj(x,u) = x1(t)2 + · · ·+ x6(t)2 +
u1(t)2 + u2(t)2, then condition A is satisfied, but condition B isn’t. In order to check whether the
solutionuopt(t) is a local optimum, it is necessary to check a higher-order condition. Here,we will be
satisfied with finding one of these candidate solutions,i.e.,we want to generate a candidate trajectory
[xopt(t),uopt(t)] that may or may not be a local optimum. This can be motivated by the fact that we
just want to find a trajectory that connects the statesxA andxB and we do not care if the candidate
trajectory minimizes the cost function. Substituting (4.26) into the equations (4.22) and defining the
augmented states(t) with

s=

[

sa

sb

]

=

[

popt

xopt

]

we obtain the system, with boundary conditions, given by

ṡ= b(s), sb(0) = xA, sb(T) = xB (4.27)

where

b(s) =











































0
(s4 +s6s8)s6/2

0
−s1

−s2

−s3

s10

s11

s12

−(s4 +s6s8)s6/2
−s5/2

−(s4 +s6s8)s8/2











































(4.28)

If we can find a solution to the system (4.27), then a candidate optimal solution[xc(t),uc(t)] has been
found. This solution provides a trajectory[xc(t),uc(t)] from the initial statexA to the final statexB.
Finding a solution means solving the boundary value problem (BVP) (4.27).It is very hard to solve
equations (4.27) analytically and we propose a numerical method in order to find an approximate solu-
tion. The numerical method that will be used to find an approximate solution is the Finite Differences
Method (Ascher et al., 1988).

4.7.1 The Finite Differences Method

The Finite Differences Method consists of the following three steps (Ascher et al., 1988):

1. On the time intervalO≤ t ≤ T a uniform meshπ of N+1 points is defined,i.e.,

π : ti = ∆(i−1), ∀ i ∈ 1,2, . . . ,N+1

where∆ = T/N. The approximate solution ofs(t) at timet = ti is denoted bysi = [sT
a,i ,s

T
b,i ]

T .
The approximate solutionsπ = [sT

1 ,sT
2 , . . . ,sT

N+1]
T is a 12× (N+1) matrix.
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2. A set of algebraic equations is formed by replacing the derivative in (4.27) by a trapezoidal
approximation scheme:

si+1−si

∆
=

b(si+1)+b(si)

2
, 1≤ i ≤ N

sb,1 = xA, sb,N+1 = xB

(4.29)

Equations (4.29) constitute of 12(N+1) equations.

3. The equations (4.29) can be written in vector notation as

F(sπ) = 0 (4.30)

where

F(sπ) =



























s2−s1

∆
− b(s2 +b(s1)

2
s3−s2

∆
− b(s3 +b(s1)

2
...

sN+1−sN

∆
− b(sN+1)+b(sN)

2
sb,1−xA

sb,N+1−xB



























(4.31)

An approximate solution of these equation is sought by using a damped Newtonalgorithm.
This Newton algorithm is an iterative root finding procedure for the linear approximation of the
(nonlinear) equation (4.30). The procedure is as follows:

a. Select an initial solutions0
π . This choice is a guess because no information about the

solution is available.

b. Find updates of the solution using the damped Newton procedure:

si+1
π = si

π − γ
[

∂F(si
π

∂si
π

]−1
F(si

π)

whereγ is the damping factor, which is determined empirically. The iterative solution is
stopped when some convergence criterion is satisfied. For example, the iterative procedure
can be stopped whenF(si

π)TF(si
π) < ε, with ε a small parameter.

The obtained approximate solutionsπ , defined on a uniform meshπ of N+1 points, can be interpo-
lated to constructs(t) at every time-instantt ∈ [0,T]. The resulting candidate solution is then given
by [xc(t),uc(t)] = [sπ

b(t), ūc(t)] whereūc(t) is obtained by substitution ofsπ
a in (4.26). The term ’can-

didate solution’ implies that there is possibly more than one solution to the boundary value problem
and the solution may or may not be a local optimum of the optimal control problem. In addition,
‘shooting’ techniques may be much more effective in finding these candidatesolution.

4.8 Summary

In this chapter, two methods to solve the motion planning problem were presented. These methods
can be used to compute feasible trajectories, connecting two arbitrary states, which are optimal in
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some sense. In the variational method, the motion planning problem is formulatedas a constrained
optimization problem in which the norm of the inputs is minimized. By parameterizing theinputs
over a set of basis functions, a numerical optimization algorithm can be usedto compute a feasible
state-trajectory that connects two arbitrary states. If the numerical optimization algorithm converges,
the solution of the constrained optimization is a local minimizer of the optimization problem. The
variational method can be extended to incorporate obstacle avoidance. Then a feasible trajectory
connecting two arbitrary states is to be found amongst obstacles. See (Verhoeven, 2002) for details.

In the sub-optimal method, the motion planning problem is formulated as an optimal control
problem in which the norm of the inputs is minimized. The solution to the optimal control problem
can be found by solving a boundary value problem. Because the boundary value problem is hard to
solve, an approximate solution is sought by using the Finite Differences Method. The Finite Differ-
ences Method (FDM) finds an approximate solution to the boundary value problem by discretizing
the boundary value problem. The solution of the FDM is sub-optimal in the sense that it is an approx-
imation of the optimal solution. The presented sub-optimal methods may be extended to deal with
time-optimal control problems in which the end timeT is also optimized. However, the extensions of
both methods to obstacle avoidance and time-optimal control problems falls outside the scope of this
thesis and will not be considered here.



Chapter 5

Tracking control

As mentioned in the introduction, only a few results are known that have addressed the tracking
control problem for the second-order chained form, defined in Section2.3. In (Kobayashi, 1999), a
discontinuous and flatness-based tracking controller has been given for a class of trajectories of the
extended chained-form system. These trajectories are not allowed to pass through singular points of
the controller. Moreover, the error-dynamics are not stable in a Lyapunov sense, but only converge
exponentially to the origin. In (Walsh et al., 1994), linear time-varying controllers were given that sta-
bilize the system to a class of trajectories. The trajectories should be chosensuch that the time-varying
system, resulting form linearizing the system along the trajectory, is uniformly completely control-
lable (Rugh, 1996) over intervals of lengthδ . This approach means that one should also face the
problem of finding feasible trajectories. Moreover, the error-dynamicsare only locally asymptotically
stable.

In this chapter, a linear time-varying controller will be developed that globallyasymptotically
stabilizes the second-order chained form system to a reference trajectory. These reference trajectories
can not be chosen arbitrarily, but have to satisfy a so-called ’persistence of excitation’ condition. In
fact, under this persistence of excitation condition, the system isK -exponentially stabilized towards
the reference trajectory. The control design approach has been published in (Aneke et al., 2000, 2003).

5.1 Cascaded backstepping control

In this section we apply a cascade design to stabilize the equilibriumx = 0 of the error dynam-
ics (2.14). We start by rewriting the tracking dynamics into a more convenientform given by

∆1

{ ẋ31 = x32

ẋ32 = x21u1d +(x21+ξ2d)(u1−u1d)
∆2

{ ẋ21 = x22

ẋ22 = u2−u2d

∆3

{ ẋ11 = x12

ẋ12 = u1−u1d

(5.1)

whereξ2d denotes the reference trajectory of the stateξ2 in (2.7). Suppose that the subsystem∆3 has
been stabilized to the origin(x11,x12) = (0,0) by a controlleru1(u1d,x11,x12). Then sincex12 ≡ 0 it
also holds thatu1−u1d ≡ 0. We design the remaining inputu2 such that the remaining subsystem
(∆1,∆2) is stabilized foru1−u1d ≡ 0.

Remark 5.1.1. The perturbation or interconnection termg(t,z1,z2)z2 of (5.1), as defined in Theo-
rem 3.6.1, is given by(x21+ ξ2d)(u1− u1d). The perturbation term thus depends on the, to be de-
signed, feedbacku1(t,x). When considering(∆1,∆2) as the perturbed subsystemΣ1 and∆3 as the
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unperturbed subsystemΣ2, the resulting perturbation matrixg(t,z1,z2) has to be linear with respect to
the variablez1 = (x21,x22,x31,x32) in order to satisfy condition (2) in Theorem 3.6.1. This is the case
when choosing the feedbacku1 = u1d +k(x11,x12) with k :

�2 → �
a linear function in(x11,x12).

5.1.1 Stabilization of the (∆1,∆2) subsystem

Suppose that the∆3 subsystem has been stabilized by choosing

u1 = u1d −k1x11−k2x12, k1 > 0,k2 > 0, (5.2)

where the polynomialp(λ ) = λ 2 + k1λ + k2 is Hurwitz. The time-varying subsystem∆1 with u1−
u1d ≡ 0 can be written as

ẋ31 = x32

ẋ32 = x21u1d
(5.3)

We aim at designing a stabilizing feedbackx21 for the subsystem (5.3). This stabilizing feedback is
designed using a backstepping procedure in whichx21 is a virtual input. First we need to make some
assumptions on the reference input signalu1d.

Assumption 5.1.1.Assume that the functionu1d :
�

+ → �
is uniformly bounded int and continu-

ously differentiable. Moreover, assume thatu1d(t) is persistently exciting,i.e., for all r ≥ 0 and for all
δ > 0 there existsε1 > 0 andε2 > 0 such that

ε1 ≤
t+δ
∫

t

u2r+2
1d (τ)dτ ≤ ε2, ∀t ≥ 0. (5.4)

Consider the first equation ˙x31 = x32 of the subsystem (5.3) and assume thatx32 is the virtual input.
A stabilizing functionx32 = α1(x31) for thex31-subsystem is

α1(u1d(t),x31) = −c1u2d1+2
1d x31,

wherec1 > 0 andd1 ≥ 0. This choice of the stabilizing functionα1(x31) guarantees that the(∆1,∆2)
subsystem can be stabilized by a backstepping procedure in which no divisions byu1d(t) occur. Define
x̄32 = x32−α1(x31) = x32+c1u2d1+2

1d x31 and consider the ¯x32-subsystem

˙̄x32 = x21u1d +c1u2d1+2
1d x32+c1(2d1 +2)u2d1+1

1d u̇1dx31.

Suppose thatx21 is the virtual input and let ¯ud denote the vector ¯ud = (u1d, u̇1d, . . . ,u
(3)
1d ). A stabilizing

functionx21 = α2(ū1d,x31,x32) for the x̄32-subsystem is then given by

α2(ū1d,x31,x32) = −c1u2d1+1
1d x32−c1(2d1 +2)u2d1

1d u̇1dx31−c2u2d2+1
1d x̄32

= −
(

c1c2u2d1+2d2+3
1d +c1(2d1 +2)u2d1

1d u̇1d

)

x31−
(

c1u2d1+1
1d +c2u2d2+1

1d

)

x32,
(5.5)

wherec2 > 0, d2 ≥ 0 and the relation ¯x32 = x32+c1u2d1+2
1d x31 has been substituted. Define ¯x31 = x31

andx̄21 = x21−α2(ū1d,x31,x32). The closed-loop(x̄31, x̄32) subsystem is given by

˙̄x31 = −c1u2d1+2
1d x̄31+ x̄32

˙̄x32 = −c2u2d2+2
1d x̄32+ x̄21u1d.

(5.6)
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Consider the ¯x21-subsystem

˙̄x21 = x22−
d
dt

[α2(ū1d,x31,x32)] ,

wherex22 denotes a new virtual input. For clarity of the derivations, the time-derivative of α2 along
the trajectories of the system is written as d/dt [α2(ū1d,x31,x32)] and will not be expanded. We define
a new variable ¯x22 = x22−α3(ū1d, x̄21,x31,x32) where the stabilizing functionα3(ū1d, x̄21,x31,x32) is
given by

α3(ū1d, x̄21,x31,x32) = −c3x̄21+
d
dt

[α2(ū1d,x31,x32)] .

The x̄21-subsystem is then given bȳ̇x21 = −c3x̄21+ x̄22. Consider the ¯x22-subsystem

˙̄x22 = (u2−u2d)−
d
dt

[α3(ū1d, x̄21,x31,x32)] .

This subsystem can be stabilized by choosing the inputu2 as

u2−u2d = −c4x̄22+
d
dt

[α3(ū1d, x̄21,x31,x32)] (5.7)

= −c3c4x21− (c3 +c4)x22+c3c4α2(ū1d,x31,x32)+(c3 +c4)
d
dt

[α2(ū1d,x31,x32)])

+
d2

dt2 [α2(ū1d,x31,x32)]

The closed-loop(∆1,∆2) subsystem, after the coordinate change defined implicitly in the previous
equations, then becomes

˙̄x31 = −c1u2d1+2
1d x̄31+ x̄32

˙̄x32 = −c2u2d2+2
1d x̄32+ x̄21u1d

˙̄x21 = −c3x̄21+ x̄22

˙̄x22 = −c4x̄22

(5.8)

Under Assumption 5.1.1 we can prove that the closed-loop system given by

˙̄x31 = −c1u2d1+2
1d x̄31+ x̄32

˙̄x32 = −c2u2d2+2
1d x̄32

(5.9)

is globally exponentially stable (GES). This is shown in Proposition 5.1.2, by applying the following
lemma and some basic theory for linear time-varying systems (Rugh, 1996). The influence of the term
x̄21u1d on the stability of the system (5.6) will be considered in Section 5.2.

Lemma 5.1.1.Suppose that Assumption 5.1.1 holds, i.e., for all r> 0 there existδ > 0 andε1,ε2 > 0
such that(5.4) is satisfied. Then it holds that for all r> 0 and for all t0 ≥ 0

t − t0
δ

ε1− ε1 ≤
t
∫

t0

u2r+2
1d (τ)dτ ≤ t − t0

δ
ε2 + ε2, ∀ t ≥ t0. (5.10)
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Proof. For t = t0 the result is trivial. Suppose thatt > t0. Given anyδ ≤ (t − t0), defineN to be the
largest integer smaller than the real number(t − t0)/δ , i.e.

N =

⌊

t − t0
δ

⌋

, µ1 =
(t − t0)

δ
−N.

Divide the interval[t0, t] into N equal subintervals of lengthδ and a subinterval of length 0≤ µ1 < δ .
where 0≤ µ1 < δ . This division intoN subintervals[t0 + iδ , t0 +(i +1)δ ], i = 0. . .N−1 with length
δ and one interval[t0 +Nδ , t] of lengthµ1δ yields

t
∫

t0

u2r+2
1d (τ)dτ =

N−1

∑
i=0





t0+(i+1)δ
∫

t0+iδ

u2r+2
1d (τ)dτ



+

t
∫

t0+Nδ

u2r+2
1d (τ)dτ. (5.11)

The difference between the integral over[t0, t] and the integral over[t0, t0 +Nδ ] satisfies

0≤
t
∫

t0+Nδ

u2r+2
1d (τ)dτ < ε2.

Substitution of (5.4) into (5.11) then gives

N−1

∑
i=0

ε1 ≤
t
∫

t0

u2r+2
1d (τ)dτ ≤

N−1

∑
i=0

ε2 + ε2

Nε1 ≤
t
∫

t0

u2r+2
1d (τ)dτ ≤ Nε2 + ε2

By substitution ofN = (t − t0)δ−1−µ1 we obtain

t − t0
δ

ε1−µ1ε1 ≤
t
∫

t0

u2r+2
1d (τ)dτ ≤ t − t0

δ
ε2 + ε2−µ1ε2.

Since 0≤ µ1 < 1 we finally obtain the desired result (5.10):

t − t0
δ

ε1− ε1 ≤
t
∫

t0

u2r+2
1d (τ)dτ ≤ t − t0

δ
ε2 + ε2.

Remark 5.1.2. Equation (5.10) gives upper- and lower-bounds for the integral ofu2r+2
1d ; there exist

two straight lines of the formy1 = ε1/λ (t− t0)−ε1, y2 = ε2/λ (t− t0)+ε1, with δ ∈ � andεi ∈
�

, i =
1,2 that upper- and lower-bound the integral. Note that the inequality is conservative whent− t0 < δ ,
in the sense that the lower-bound is negative while the integral is always positive.

Proposition 5.1.2. Consider the system

˙̄x1 = −c1u1,d(t)
2d1+2x̄1 + x̄2

˙̄x2 = −c2u1,d(t)
2d2+2x̄2

(5.12)

Suppose that the reference input u1d(t) satisfies the persistence of excitation condition(5.4) for some
r ≥ 0. Suppose thatmin(d1,d2)≥ r holds. Then the equilibrium x= 0 is globally exponentially stable
(GES).
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Proof. One can easily verify that the general solution of the linear time-varying system (5.12) with
initial condition x̄(t0) = [x̄1(t0), x̄2(t0)] is given by

x̄1(t) = x̄1(t0)exp



−c1

t
∫

t0

u2d1+2
1d (τ)dτ



+G(t),

x̄2(t) = x̄2(t0)exp



−c2

t
∫

t0

u2d2+2
1d (τ)dτ



,

(5.13)

where the additional termG(t) is given as

G(t) =

t
∫

t0

x̄2(t0)exp



−c1

t
∫

σ

u2d1+2
1d (τ)dτ −c2

σ
∫

t0

u2d2+2
1d (τ)dτ



dσ (5.14)

We will use Lemma 5.1.1 to prove the exponential stability of the solution(x̄1, x̄2). By Lemma 5.1.1,
see (5.10), there exists positive constantsε1 andε2, dependent ond1 andd2 respectively, such that

t − t0
δ

ε1− ε1 ≤
t
∫

t0

u2d1+2
1d (τ)dτ

t − t0
δ

ε2− ε2 ≤
t
∫

t0

u2d2+2
1d (τ)dτ

Therefore the solution (5.13) satisfies

|x̄1(t)| ≤ |x̄1(t0)|ϕ1exp(−γ1(t − t0))+ |G(t)|,
|x̄2(t)| ≤ |x̄2(t0)|ϕ2exp(−γ2(t − t0)),

where we defined the coefficientsγ1 =
c1ε1

δ
,γ2 =

c2ε2

δ
andϕ1 = exp(−c1ε1),ϕ2 = exp(−c2ε2). Sim-

ilarly, using (5.10) in (5.14) gives

|G(t)| ≤ ϕ1ϕ2|x̄2(t0)|exp(−(γ1t − γ2t0))

t
∫

t0

exp(−(γ2− γ1)σ)dσ , ∀t ≥ t0

We distinguish two cases;γ1 = γ2 andγ1 6= γ2.
(1) In the caseγ1 = γ2 the perturbation termG(t) satisfies

|G(t)| ≤ ϕ1ϕ2|x̄2(t0)|(t − t0)exp(−γ1(t − t0)), ∀t ≥ t0.

The term(t − t0)exp(−γ1(t − t0)) can be shown to be upper bounded,i.e., for an arbitrarily chosen
constant 0< γ3 < γ1 it holds that

(t − t0)exp(−γ1(t − t0)) ≤
1

γ1− γ3
(exp(−γ3(t − t0))−exp(−γ1(t − t0))) , ∀ t ≥ t0.
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This yields

|G(t)| ≤ ϕ1ϕ2|x̄2(t0)|
γ1− γ3

(exp(−γ3(t − t0))−exp(−γ1(t − t0)))

≤ ϕ1ϕ2|x̄2(t0)|
γ1− γ3

exp(−γ3(t − t0))

The general solution ¯x = (x̄1, x̄2) then satisfies the inequality

|x̄1(t)| ≤ ζ1exp(−γ1(t − t0))+ζ2exp(−γ3(t − t0)),

|x̄2(t)| ≤ ζ3exp(−γ1(t − t0)),

where we defined

ζ1 = ϕ1|x̄1(t0)|, ζ2 = ϕ1ϕ2
|x̄2(t0)|
γ1− γ3

, ζ3 = ϕ2|x̄2(t0)|.

The equilibriumx = 0 is thus globally uniformly exponentially stable (GUES),i.e.,

‖x(t)‖ ≤ k‖x(t0)‖exp(−γ3(t − t0)), k =

∥

∥

∥

∥

∥

[

ϕ1
ϕ1ϕ2

γ1− γ3
0 ϕ2

]∥

∥

∥

∥

∥

.

(2) In the caseγ1 6= γ2 the perturbation termG(t) satisfies

|G(t)| ≤ ϕ1ϕ2|x32(t0)|
γ1− γ2

(

exp(−γ2(t − t0))−exp(−γ1(t − t0))
)

.

The right-hand term can be shown to be upper bounded,i.e.,

1
γ1− γ2

(exp(−γ2(t − t0))−exp(−γ1(t − t0)))) ≤ (t − t0)exp(−min(γ1,γ2)(t − t0)) ∀ t ≥ t0,

The perturbation termG(t) then satisfies

|G(t)| ≤ ϕ1ϕ2|x̄2(t0)|exp(−γ̄(t − t0))(t − t0)

whereγ = min(γ1,γ2). The term(t − t0)exp(−min(γ1,γ2)(t − t0)) can be upper bounded,i.e., for an
arbitrarily chosenγ3 < γ, it holds that

(t − t0)exp(−min(γ)(t − t0)) ≤
1

γ − γ3
(exp(−γ3(t − t0))−exp(−γ(t − t0))) , ∀ t ≥ t0.

The perturbation termG(t) then satisfies

|G(t)| ≤ ϕ1ϕ2|x̄2(t0)|
γ − γ3

(exp(−γ3(t − t0))−exp(−γ(t − t0)))

≤ ϕ1ϕ2|x̄2(t0)|
γ − γ3

exp(−γ3(t − t0)).

The general solution ¯x = (x̄1, x̄2) then satisfies the inequality

|x̄1(t)| ≤ ζ1exp(−γ1(t − t0))+ζ2exp(−γ3(t − t0)),

|x̄2(t)| ≤ ζ3exp(−γ2(t − t0)),
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where we defined

ζ1 = ϕ1|x̄1(t0)|, ζ2 = ϕ1ϕ2
|x̄2(t0)|
γ − γ3

, ζ3 = ϕ2|x̄2(t0)|.

The equilibriumx = 0 is thus globally exponentially stable,i.e.,

‖x(t)‖ ≤ k‖x(t0)‖exp(−γ(t − t0)), k =

∥

∥

∥

∥

∥

[

ϕ1
ϕ1ϕ2

γ − γ3
0 ϕ2

]∥

∥

∥

∥

∥

with γ = min{γ1,γ2}, as defined before, andγ3 ≤ γ. Concluding, we have shown that the linear time-
varying system is exponentially stable in both the casesγ1 = γ2 andγ1 6= γ2. By definingγ3 = γ − ε,
it can be shown that all solutions of the system satisfy

∀ε > 0, ‖x(t)‖ ≤ k̄‖x(t0)‖exp(−(γ − ε)(t − t0)), ∀ t ≥ t0,

with γ = min(γ1,γ2) = min(
c1ε1

δ
,
c2ε2

δ
) for a small numberε > 0 andk given by

k =

∥

∥

∥

∥

∥

[

ϕ1
ϕ1ϕ2

ε
0 ϕ2

]∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





exp(−c1ε1)
exp(−c1ε1−c2ε2)

ε
0 exp(−c2ε2)





∥

∥

∥

∥

∥

∥

This concludes the proof.

Concluding, Proposition 5.1.2 states that the subsystem (5.12) is GUES. Thisresult will be used in
the following section to prove global uniform asymptotic stability of the complete closed-loop system.

5.2 Stability of the tracking-error dynamics

In this section we show that the complete tracking dynamics are globally exponentially stable. In the
previous sections we have stabilized the (∆1,∆2)-subsystem whenu1 = u1d and the∆3 subsystem in
(5.1). The influence of the term ¯x21u1d was, however, not included. In this section Theorem 3.6.1
will be used to investigate the stability properties of the complete system. The result is stated in the
following proposition.

Proposition 5.2.1. Consider the system(5.1)and the controller u1 given by

u1 = u1d −k1x11−k2x12, p(s) = s2 +k2s+k1 is Hurwitz, (5.15)

and the controller u2 given by(5.7). Suppose that the reference input u1d(t) satisfies Assumption 5.1.1.
If the reference trajectoryξ2d(t) and the derivativėu1d(t) in (2.12)are uniformly bounded in t, then
the closed-loop system is globallyK -exponentially stable.

Proof. The closed-loop system ((5.1),(5.15),(5.7)), using (5.6) and (5.8), is given by

˙̄x31 = −c1u2d1+2
1d x̄31 + x̄32

˙̄x32 = −c2u2d2+2
1d x̄32 + x̄21u1d −ξ2(k1x11+k2x12)

˙̄x21 = −c3x̄21 + x̄22
˙̄x22 = −c4x̄22

ẋ11 = x12

ẋ12 = −k1x11−k2x12
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The closed-loop system can be written in the form (3.19) with

f1(t,z1) = A1(t)z1, f2(t,z2) = A2z2, (5.16)

wherez1 = [x̄31, x̄32]
T , z2 = [x̄21, x̄22,x11,x12]

T and the matricesA1(t),A2 are given by

A1(t) =

[

−c1u2d1+2
1d (t) 1
0 −c2u2d2+2

1d (t)

]

, A2 =









−c3 1 0 0
0 −c4 0 0
0 0 0 1
0 0 −k1 −k2









.

The perturbation matrixg(t,z1,z2) is given by

g(t,z1,z2) = −(x21+ξ2d)

[

0 0 0 0
0 0 k1 k2

]

+

[

0 0 0 0
u1d(t) 0 0 0

]

(5.17)

In order to apply Theorem 3.6.1 and Lemma 3.6.2 we verify the three assumptions.

(1) Due to Assumption 5.1.1 and Proposition 5.1.2 theΣ1 subsystem (5.9) is globally exponentially
stable (GES). By converse Lyapunov theory,i.e.,Theorem 3.3.2 in Section 3.3, the existence of
a suitable Lyapunov functionV(t,z1) is guaranteed when the matrixA1(t) is uniformly bounded
in t. Sincer = ∞ and the system is globally exponentially stable, the Lyapunov functionV(t,z1)
is defined on

�
+ × �n and not only on

�
+ ×D0 with D0 ⊂

�n a compact subset of the state-
space. By assumption the reference inputu1d is uniformly bounded and therefore also the matrix
A1(t), which gives the desired result.

(2) By assumption the signalsu1d, u̇1d andξ2d are bounded,i.e., |u1d(t)| ≤ M1, |u̇1d(t)| ≤ M2, and
|ξ2d(t)| ≤ M3 ∀t ≥ 0. Therefore we have

‖g(t,z1,z2)‖ ≤ ‖k‖(|x21|+ |ξ2d(t)|)+ |u1d(t)| ≤ ‖k‖(|x21|+M3)+M1.

wherek = [k1,k2]. Furthermore, using the states ¯x21 = x21−α2(u1d,x31,x32), x̄31 = x31 and
x̄32 = x32+c1u2d1+2

1d x31 from the backstepping procedure in sections 5.1.1 yields

|x21| =
∣

∣

∣
x̄21−

(

c2
1u4d1+3

1d −c1(2d1 +2)u2d1
1d u̇1d

)

x̄31−
(

c1u2d1+1
1d +c2u2d2+1

1d

)

x̄32

∣

∣

∣

Using the boundedness ofu1d(t) andu̇1d(t) yields the inequality

|x21| ≤ |x̄21|+
(

c2
1M4d1+3

1 +c1(2d1 +2)M2d1
1 M2

)

|x̄31|+
(

c1M2d1+1
1 +c2M2d2+1

1

)

|x̄32|

≤ ‖z2‖+
(

c2
1M4d1+3

1 +c1(2d1 +2)M2d1
1 M2 +c1M2d1+1

1 +c2M2d2+1
1

)

‖z1‖

Introducing the continuous functionκ1(‖z2‖) = ‖k‖(‖z2‖+M3) + M1 and the parameterκ2

given by

κ2 = ‖k‖
(

1+c2
1M4d1+3

1 +c1(2d1 +2)M2d1
1 M1d +c1M2d1+1

1 +c2M2d2+1
1

)

this finally gives the desired result

‖g(t,z1,z2)‖ ≤ κ1(‖z2‖)+κ2‖z1‖,
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(3) The characteristic polynomial of theΣ2 subsystem is given byχ(s) = (s+c1)(s+c2)p(s) where
p(s) is given in (5.15). Because the polynomialp(s) is Hurwitz and theci ’s are positive, theΣ2

subsystem is GES. The existence of a classK functionζ (·) satisfying condition (3.23) follows
directly from the GES of theΣ2 subsystem.

By Theorem 3.6.1 and Lemma 3.6.2 we concludeK -exponentially stability of the complete closed
loop system.

Summarizing, we have exponentially stabilized the(∆1,∆2) and∆3 subsystems separately. We
then concluded by Theorem 3.6.1 and Lemma 3.6.2 that the combined system isK -exponentially
stable when the reference inputu1d satisfies Assumption 5.1.1 and its derivative ˙u1d is uniformly
bounded overt.

5.3 Robustness considerations

In this section we investigate the robustness properties of the closed-loop system. In the previous
section, we saw that the closed-loop system can be written in cascade form(3.19) with aΣ1 subsystem
ż1 = A1(t)z1 and aΣ2 subsystem ˙x2 = A2z2. It was also shown that these closed-loop subsystems
Σ1 andΣ2 are uniformly exponentially stable. Uniform exponential stability is a desirableproperty,
because it implies exponential stability with respect to bounded vanishing perturbations and uniformly
bounded solutions with respect to bounded non-vanishing perturbations.

In this section we will determine (conservative) bounds on the perturbation, for which the closed-
loop systemsΣ1 andΣ2 are robust in some sense. This generally means that one has to find a Lyapunov
function for the system. Because theΣ1 subsystem is time-varying and depends on the reference input
u1d(t) and the to be defined parametersdi , i = 1,2, finding a Lyapunov function is quite difficult.
However, by using Proposition 5.1.2 in conjunction with the converse theorem Theorem 3.4.1, we can
find these bounds without explicitly calculating the Lyapunov function.

Consider the closed-loop subsystemΣ1, ż1 = A1(t)z1, given by

˙̄x31 = −c1u1,d(t)
2d1+2x̄31+ x̄32

˙̄x32 = −c2u1,d(t)
2d2+2x̄32

(5.18)

By Proposition 5.1.2, the(x̄31, x̄32) subsystem is exponentially stable,i.e., with z1(t) = [x̄31, x̄32]
T it

holds that

‖z1(t)‖ ≤ ‖D‖‖z1(t0)‖exp(−λ (t − t0)),

whereλ = min(γ1,γ2)− ε1 and the matrixD is given by

D =

[

ϕ1
ϕ1ϕ2

ε
0 ϕ2

]

with ε a small parameter. Therefore, see Remark 3.4.1, a Lyapunov function for theΣ1 subsystem is
given by (3.11),i.e., V1(t,z1) = zT

1 P(t)z1 with

P(t) =

∞
∫

t

φT(τ, t)φ(τ, t)dτ (5.19)
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Along solutions of theΣ1 subsystem the Lyapunov functionV1(t,z1) satisfies

(i)
1

2L
‖z1‖2 ≤V1(t,z1) ≤

‖D‖2

2λ
‖z1‖2, (ii) V̇1(t,z1) ≤−‖z1‖2, (iii)

∂V1(t,z1)

∂z1
≤ ‖D‖2

λ
‖z1‖

where‖A1(t)‖ ≤ L, i.e., the parameterL is an upper-bound for the norm of the time-varying matrix
A1(t) that depends on the reference inputu1d(t). The closed-loop(Σ2) subsystem is given by

ż2 =









−c3 1 0 0
0 −c4 0 0
0 0 0 1
0 0 −k1 −k2









z2. (5.20)

By solving (3.10) forQ(t) = I andṖ(t) = 0 we obtain the time-invariant Lyapunov functionV2(z2) =
zT
2 Pz2 with

P = 1/2























1
c3

1
c3(c4 +c3)

0 0

1
c3(c4 +c3)

c3c4 +c2
3 +1

c3c4(c4 +c3)
0 0

0 0
k2

2 +k2
1 +k1

k1k2

1
k1

0 0
1
k1

k1 +1
k1k2























.

The time-invariant Lyapunov functionV2(z2) satisfies

(i) λmin(P)‖z2‖2 ≤ V2(z2) ≤ λmax(P)‖z2‖2

(ii) V̇2(z2) ≤ −‖z2‖2

(iii)
∂V(z2)

∂z2
≤ 2λmax(P)‖z2‖

(5.21)

whereλmin(·) andλmax(·) denote the smallest and largest eigenvalue, respectively. Now definez=
[z1,z2] and consider the Lyapunov functionV(t,z) = V1(t,z1)+V2(z2). Then the Lyapunov function
V(t,z) satisfies

(i) min

(

1
2L

,λmin(P)

)

‖z‖2 ≤ V(t,z) ≤ max

(‖D‖2

2λ
,λmax(P)

)

‖z‖2

(ii) V̇(t,z) ≤ −‖z‖2

(iii)
∂V(t,z)

∂z
≤ max

(‖D‖2

λ
,2λmax(P)

)

‖z‖

(5.22)

By Theorem 3.5.1 we conclude that the closed-loop system(Σ1,Σ2) is robust with respect to vanishing
perturbations,i.e.,δ (t,z) = 0 for z= 0, satisfying

‖δ (t,z)‖ <
1

max

(‖D‖2

λ
,2λmax(P)

) , ∀z∈ �n (5.23)
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By Theorem 3.5.2 we conclude that solutions of the system are globally ultimatelybounded for non-
vanishing perturbations,i.e.,δ (t,z) 6= 0 for z= 0, satisfying

‖δ (t,z)‖ <
1

max

(‖D‖2

λ
,2λmax(P)

)

√

√

√

√

√

√

√

min

(

1
2L

,λmin(P)

)

max

(‖D‖2

2λ
,λmax(P)

)θ r, ∀‖z‖ < r,z∈ �n. (5.24)

5.4 Summary

In this section we have presented a linear time-varying controller for trajectory tracking of the second-
order chained form system. The controller was designed by using a cascaded backstepping technique
in which the tracking error dynamics are treated as two separate subsystems. Using a result for non-
linear cascade system in (Lefeber et al., 2000), exponential stability of the two separate subsystems
impliesK -exponential stability of the complete system. The linear time-varying controller stabilizes
the system to a desired reference trajectory with exponential convergence if the reference trajectory
satisfies a so-called persistence of excitation condition. This persistence of excitation condition im-
plies that the reference trajectory is not allowed to converge to a point. Thetracking controllers may be
used to steer the system towards a certain equilibrium point, however, no stability can be guaranteed.
This means that tracking controllers can not be used to solve the stabilization problem, as in the case
of linear systems. Instead, the stabilization problem has to be treated differently. Additionally, con-
ditions were given under which the closed-loop system is robust with respect to perturbations. These
conditions are given as uniform bounds on the perturbations. These perturbations can be caused by pa-
rameter uncertainties, disturbances or unmodelled dynamics. A generalization of the proposed control
design method to the case of high-order chained form systems (2.6) can befound in Appendix B.

The proposed design approach can be used to explicitly design a trackingcontroller as a function
of the reference inputu1d(t). This tracking controller globallyK -exponentially stabilizes the closed-
loop system to a reference trajectory, whereas the tracking controller presented in (Walsh et al., 1994)
only achieves local asymptotic stability of the error-dynamics. In contrast tothe tracking controller of
(Walsh et al., 1994), the tracking controller presented in this thesis is givenin closed form and does
not have to be re-computed when the reference trajectory changes.

The discontinuous and flatness-based tracking controller from (Kobayashi, 1999) can be used to
stabilize the system to trajectories that do not pass through points whereu1(t) = 0. In these singular
points the system is not controllable and these singular points coincide with the singular points of
the endogenous transformation induced by the flat outputs, see Section 4.4. Moreover, the closed-
loop error dynamics are not stable in a Lyapunov sense and only converge exponentially towards the
trajectory to be stabilized. The tracking controller presented in this thesis canbe used to stabilize
the system to reference trajectories passing through these singular pointsand, in addition, achieves
Lyapunov stability of the closed-loop error dynamics. The stabilization problem will be treated in the
following chapter.
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Chapter 6

Point stabilization

In this section we consider the feedback stabilization problem for the second-order chained form
system. It is well-known that the second-order chained form system cannot be stabilized by any
continuous time-varying feedback. From Theorem 3.2.2 it is known that anequilibrium of a con-
tinuously differentiable system is only exponentially stable if and only if its linearization around the
equilibrium point is also an exponentially stable system. This implies that an unstable system can
only be exponentially stabilized by smooth feedback when its linearization around the equilibrium is
stabilizable. Since the linearization of the second-order chained form system around any equilibrium
is not controllable, we conclude that it cannot be exponentially stabilized byany smooth time-varying
feedback. The best we can hope for is a weaker notion of exponentialstability, calledρ-exponential
stability.

In order to stabilize the system, discontinuous controllers or time-varying controllers are needed.
In references (Astolfi, 1996; Imura et al., 1996), discontinuous controllers that achieve exponential
convergence towards the origin, as defined in Definition 3.2.4, were developed. However, these dis-
continuous controllers are no feedback stabilizers in the sense that they only guarantee exponential
convergence on an open and dense set of the state-space. In (Laiouand Astolfi, 1999) this result
was extended to obtain a weakened Lyapunov stability result called quasi-smooth exponential sta-
bility. Moreover, due to Brockett’s condition, the system can not be stabilized by any continuous
time-invariant feedback.

In (M’Closkey and Morin, 1998) a homogeneous time-varying feedbackwas designed thatρ-
exponentially stabilized the system of a planar body, with two thrusters, slidingon a flat surface.
The planar body with two thrusters is equivalent to the second-order chained form system after a
suitable coordinate and feedback transformation. The continuous periodic time-varying feedback was
designed in three steps. In the first step, one derived a homogeneous approximation of the system. In
the second step, a continuous homogeneous controller is derived that asymptotically stabilizes a four-
dimensional subsystem of the homogeneous approximation. In the third and last step, the continuous
asymptotic stabilizer is scaled to an exponential stabilizer and a backstepping or high gain feedback
approach is applied to stabilize the complete system.

In this section we consider the feedback stabilization problem by continuousperiodic time-varying
feedback. We try to derive continuous periodic time-varying feedbacksthatK -exponentially stabilize
the second-order chained form (2.7). The idea is to use a homogeneousfeedback, to stabilize a
subsystem of the second-order chained form, and use a backsteppingor high gain approach to stabilize
the complete system. This approach has been presented in (Aneke et al., 2002a,b) and follows that of
(Morin and Samson, 1997).
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6.1 Homogeneous feedback stabilization

x1

x3 x5

x2

x4 x6
u2

u1

Figure 6.1: The second-order chained form system (SCF) in strict-feedback form

Consider the three-dimensional,i.e.,6-state, second-order chained form system

ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2u1.

(6.1)

The dynamics in state-space form are given by:

ẋ1 = x2 ẋ2 = u1

ẋ3 = x4 ẋ4 = u2

ẋ5 = x6 ẋ6 = x3u1,

(6.2)

with state-vectorx= [x1,x2, . . . ,x6]
T given byxi = ξi , xi+1 = ξ̇i , i = 1,3,5. The system does not satisfy

Brockett’s condition (Brockett, 1983) as the image of the mapping(x,u) 7→ (x2,x4,x6,u1,u2,x3u1)
does not contain any point(0,0,0,0,0,ε) for ε 6= 0. Therefore no continuous time-invariant state
feedback exists that asymptotically stabilizes the system to the origin.

Consider the equilibriumx = 0 of (6.2). The dynamics of the(x5,x6,x3,x4)-part are in strict
feedback form as illustrated in Figure 6.1. Therefore we can apply a backstepping approach, using
the inputu2, in order to stabilize the dynamics of(x5,x6,x3,x4).

The idea of using a combined homogeneous and backstepping approach has already been proposed
in (Morin and Samson, 1997). In the following sections this result will be extended to the case of the
second-order chained form system. First we rewrite the system into

∆1















ẋ5 = x6

ẋ6 = x3u1

ẋ1 = x2

ẋ2 = u1

∆2

{

ẋ3 = x4

ẋ4 = u2.
(6.3)

In the first part of the approach we consider the statex3 as a “virtual input” and use it, along with
the inputu1 to stabilize the origin of the∆1 subsystem. The second part of the approach consists of
using a backstepping technique to stabilize the origin of the complete system(∆1,∆2). This approach
is described in the following two sections.
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6.1.1 Stabilizing the ∆1 subsystem

The subsystem∆1 with v = x3 as a virtual input is given by

∆1















ẋ5 = x6

ẋ6 = vu1

ẋ1 = x2

ẋ2 = u1

(6.4)

Notice that the vector fieldx 7→ f (x,(u1,v)), which defines the∆1 subsystem, is not affine in the
control variables(u1,v). Nevertheless, if we define a dilation̄δ r

λ with weightr = (2,2,1,1) and apply
feedback functionsu1 = α1(t,x) andv = α2(t,x), with (α1,α2) ∈C0(

�× �4;
�1) r-homogeneous of

degree one, then the closed-loop vector field(t,x) 7→ f (x,α1(t,x),α2(t,x)) becomesr-homogeneous
of degree zero.

Definex1 = (x1,x2,x5,x6). Consider the feedback laws(u1,v) ∈C0(
�× �4;

�1) given by

u1 = −k1x1−k2x2 +h(x1)g(t/ε)

v = −k5x5 +k6x6

σh(x1)
g(t/ε)

(6.5)

with ki > 0, i ∈ {1,2,5,6} andg :
�→ �

a T-periodic function satisfying
∫ T

0 g(τ)dτ = 0 andσ =
1
T

∫ T
0 g2(τ)dτ > 0. The continuous functionh :

�4 → �
is positive-definite and homogeneous of

degree one with respect tōδ r
λ . As any homogeneous norm associated with a dilation is homogeneous

of degree one with respect to that dilation, an example of such a function is given byh(x1) = ρ̄(x),
whereρ̄(x) denoted the homogeneous norm associated with the dilationδ̄ r

λ given by

δ̄ r
λ (x1) = (λ 2x5,λ 2x6,λx1,λx2). (6.6)

Proposition 6.1.1.Consider the closed-loop system (6.4,6.5) with g:
�→ �

a continuous T-periodic
function satisfying

∫ T
0 g(τ)dτ = 0 and σ = 1

T

∫ T
0 g2(τ)dτ > 0. Assume that the continuous function

h :
�n → �

is homogeneous of degree one with respect to the dilationδ̄ r
λ (x1, t). Then there exists

ε0 > 0 such that, for allε ∈ (0,ε0), the origin of the closed-loop system (6.4,6.5) isρ̄-exponentially
stable.

Proof. The closed-loop system is given by

ẋ5 = x6

ẋ6 = −(k5x5 +k6x6)

σh(x1)

(

−(k1x1 +k2x2)g(t/ε)+h(x1)g(t/ε)2)

ẋ1 = x2

ẋ2 = −k1x1−k2x2 +h(x1)g(t/ε)

This system is homogeneous of order zero with respect to the dilationδ̄ r
λ and can be written as ˙x =

f (x, t) where f (x, t) is T-periodic in t. By assumptionh(x1) is homogeneous of degree one with
respect toδ r

λ . Therefore the closed-loop system is homogeneous of degree zero withrespect toδ̄ r
λ .

The “averaged system”, see (3.33), is given by

ẋ5 = x6

ẋ5 = −k5x5−k6x6

ẋ1 = x2

ẋ2 = −k1x1−k2x2

(6.7)
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which is globally exponentially stable. The conclusion follows by application ofProposition 3.7.2.

Remark 6.1.1. The inputv(t,x1) in (6.5) is not defined forx1 = 0, i.e., h(x1) = 0. However, any
functiong(t,x) that is homogeneous of degreeτ > 0 with respect to a dilation̄δ r

λ (x) and continuous
for all x 6= 0, can be extended by continuity to be continuous atx = 0. Thereforev(t,x1) becomes
continuous and bounded atx1 = 0 by definingv(t,x1) = limx1→0v(t,x1) = 0 for x1 = 0.

6.1.2 Stabilizing the (∆1,∆2) subsystem

We now consider the∆2 subsystem. In the previous section we designed a feedbacku1 = α1(t,x) and
a virtual feedbackv = α2(t,x) that exponentially stabilized the∆1 subsystem w.r.t. the dilation̄δ r

λ (x).
The inputu2 can be obtained by using the backstepping approach given in Proposition3.7.3.

By Proposition 6.1.1 the∆1 subsystem is asymptotically stabilized byx3 := v(t,x1), with v given
by (6.5). The(∆1,∆2) system can be written as

ẋ1 = f (t,x1,x3)

ẋ3 = x4

ẋ4 = u2.

By recursive application of Proposition 3.7.3, see Remark 3.7.1, we conclude that the equilibrium
point x = 0 can be asymptotically stabilized by the feedbacku2 = −k4(x4 + k3(x3 − v(t,x1))). By
substitution of (6.5) we obtain the continuous periodic time-varying feedback

u2 = −k4(x4 +k3(x3 +
(k5x5 +k6x6)

σh(x1)
g(t/ε))),

with ki > 0, i ∈ 1,2, . . . ,6. By rewriting the last equation, we conclude that the continuous periodic
time-varying feedbacks thatρ-exponentially stabilize the system are given by

u1 = −k1x1−k2x2 +h(x1)g(t/ε)

u2 = −k3k4x3−k4x4−k3k4
(k5x5 +k6x6)

σh(x1)
g(t/ε),

(6.8)

The stability result is formulated in the following corollary.

Corollary 6.1.2. Consider the closed-loop system (6.2,6.8) where g:
�→ �

a continuous T-periodic
function satisfying

∫ T
0 g(τ)dτ = 0 andσ = 1

T

∫ T
0 g2(τ)dτ > 0 and the continuous function h:

�n → �

is homogeneous of degree one with respect to the dilationδ̄ r
λ (x1, t) given by(6.6). Then there exists

ε0 > 0 such that, for allε ∈ (0,ε0), the origin x= 0 is globally exponentially stable with respect to
the dilationδ r

λ given by
δ r

λ (x) = (λx1,λx2,λx3,λx4,λ 2x5,λ 2x6). (6.9)

Proof. The weight vector isr = (1,1,1,1,2,2). The vector fieldf (x) = (x2,0,x4,0,x6,0)T and the
input vector fieldsg1(x) = (0,1,0,0,0,x3)

T andg2(x) = (0,0,0,1,0,0)T of (6.2) are of degree 0,−1
and−1 respectively with respect to the dilationδ r

λ . The control lawsu1 andu2 given in (6.8) are of
degree one with respect toδ r

λ (x). The closed-loop system is therefore of degree zero with respect
to δ r

λ . By application of Proposition 3.7.1 we conclude that the origin of the closed-loop system is
globally ρ-exponentially stable with respect to the dilationδ r

λ (x1).
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6.2 Robust stabilizers for the second-order chained form

In (Lizárraga et al., 1999) it was shown that continuous homogeneousρ-exponential stabilizers are
not robust with respect to modelling errors. In this section a hybrid/open-loop feedback controller will
be developed that not only exponentially stabilizes the system in a discrete sense, but is also robust
with respect to a class of additive perturbations that represent modelling errors. In the previous section
we derived homogeneous feedbacks thatρ-exponentially stabilize the second-order chained form. In
this section we will present a modification of the controllers (6.8) that is robust with respect to certain
modelling errors. By periodically updating the states in (6.8) the closed-loop system can be given
certain robustness properties. We start with a problem formulation in which we define the problem of
designing a periodically updated homogeneous feedbacks of the form (6.8) that is robust with respect
to a certain class of perturbations for the system (6.1). Then, we design the periodically updated
homogeneous feedbacks. Finally a stability and robustness analysis is performed in order to show that
the designed feedback laws solve the problem. The presented results will appear in (Lizárraga et al.,
2003).

6.2.1 Preliminaries and definition of the problem

Prior to stating the problem, we start by defining the notions of stability and robustness used in this
context. Although the results presented here only apply to the second-order chained form, it is conve-
nient to define these notions in terms of the more general class of analytic control-affine systems. To
this end, consider the second-order chained form (6.1), regarded as thenominal system, written as

ẋ = b0(x)+u1b1(x)+u2b2(x), (6.10)

with

b0(x) = [x2,0,x4,0,x6,0]T , b1(x) = [0,1,0,0,0,x3]
T , b2(x) = [0,0,0,1,0,0]T (6.11)

As a result of model errors, such as parameter uncertainties, disturbance vector fields may be present
in the system, and one way to model this is by considering theperturbed systemgiven by

ẋ = b0(x)+h0(x,ε)+
2

∑
i=1

ui(bi(x)+hi(x,ε)), (6.12)

whereh= (h0,h1,h2) is a 3-tuple of real-analytic mappingshi : U ×E → �n, andE ⊂ �
is an interval

containing 0. The 3-tupleh, referred to in the sequel as a disturbance, is assumed to satisfyh0(0,ε) = 0
for everyε ∈E, so that(x,u) = (0,0) is an equilibrium point for the perturbed system. In other words,
the perturbation or disturbanceh0(x,ε) is a vanishing perturbation. The interpretation ofε is that of an
additional parameter that represents the magnitude of the perturbation (cf. also Remark 6.2.2(i) after
Proposition 6.2.1). For ease of reference we denote byD3 the set of all disturbancesh = (h0,h1,h2),
each defined on a setU ×E (E may thus depend on the choice ofh). In the sequel we also write
hε

i (x) = hi(x,ε).
It is clear that not all disturbances can be modelled by additive vector fields as in (6.12). In fact,

phenomena such as neglected modes, non-smooth effects (e.g. friction) or measurement noise would
require different representations. Therefore, the notion of robustness one can aim at by considering
such disturbances is limited.

Suppose that a continuous, time-varying (T-periodic) feedback lawα : U × �→ �2 is given.
As mentioned earlier, we intend to control the perturbed system (6.12) by periodically iterating this



72 Point stabilization

control law. When the initial timet0 ∈
�

is a multiple of the update periodT (i.e. t0 modT = 0) this
process is accurately described by considering that one applies the iterated controlu(t) = α(x(kT), t),
wheret ∈ [kT,(k+1)T) andk ∈ {bt0/Tc,bt0/Tc+1, . . .}. Whent0 modT 6= 0, however, causality
becomes an issue and a technical subtlety concerning the initial conditions arises, namely the initial
value x(bt0/Tc) is not defined in advance (see Figure 6.2). This can be remedied by adjoining a
signalt 7→ y(t), which coincides with the statex(kT) at the update instants indexed byk∈ {bt0/Tc+
1,bt0/Tc+2, . . .}, and then considering the dynamically extended perturbed system















ẋ = b0(x)+h0(x,ε)+
2
∑

i=1
αi(y, t)(bi(x)+hi(x,ε))

ẏ =
∞
∑

k=bt0/Tc+1
δ (t −kT)x(t),

(6.13)

under the assumption that its initial condition be defined, given any(x0,y0) ∈
�6 × �6, by setting

(x(t0),y(t0)) equal to(x0,x0) if t modT = 0, or equal to(x0,y0) otherwise.

(a) (b)

x0x0

y0y0

x(t)
x(t)

y(t)

y(t)

t0 = kT kT (k + 1)T(k + 1)T t0
x(kT ) 6= y(kT )

R
nR

n

RR

Figure 6.2: Initial conditions for system (6.13). (a) If t0 modT = 0, bothx(·) andy(·) are initialized tox0. (b)
If t0 modT 6= 0, x(·) andy(·) are initialized tox0 andy0, respectively. Note that in the latter case
the solutions are in generalnot reversible in time, since extendingx(t) andy(t) for t ∈ [kT, t0), using
the dynamics (6.13), may lead to the conditionx(kT) 6= y(kT).

Remark 6.2.1. (i)The meaning of the initial conditions for system (6.13) is illustrated in Figure 6.2.
Clearly, the first sample instant after the initial timet0 occurs att = (bt0/Tc+ 1)T or, using the
notation in the figure, att = (k+1)T. This explains the initial value fork in the second summation of
(6.13). Note also that the trajectories initialized in this way are defined for forward time (t ≥ t0), but
they may fail to be reversible in time. In other words, whent0 modT 6= 0, the solution(x(·),y(·))
may be extended to the interval[kT, t0) by using the dynamics (6.13), howeverx(kT) may differ from
y(kT). (ii) Up to minor differences in notation, the formulation of the perturbed system asa dynamical
extension of the nominal one coincides with the formulation proposed in (Morinand Samson, 1999).

Let us point out that exponential stability of the origin for (6.13) does notimply exponential
stability of the origin for ˙x = b0(x)+hε

0(x)+∑2
i=1 α(x(kT), t)(bi(x)+hε

i (x)). For instance, a solution
to the latter system, initialized tox(t0) = 0 when t0 is not an integer multiple ofT, need not be
identically zero, so it may fail to satisfy the required inequality

‖x(t)‖ ≤ K‖x(t0)‖exp(−γ(t − t0))

The problem of robust stabilization may now be formulated as follows.
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Problem 6.2.1. (Robust stabilization) Design a control lawα : U × �→ �2 which ensures that, for
every disturbanceh in a given setA ⊂D3, there is a constantε0 > 0 such that the origin(x,y) = (0,0)
of system (6.13) is locally exponentially stable wheneverε ∈ E and|ε| ≤ ε0.

6.2.2 Design of the periodically updated feedback law

Fix T > 0 and setω = 2π/T. Our goal is to design a feedback lawα ∈C0(
�6× �;

�2), T-periodic
in its second argument, such that the solutionx(·) to the controlled second-order chained form (SCF)

ẋ = b0(x)+
2

∑
i=1

αi(x0, t)bi(x), x(0) = x0 ∈
�6, (6.14)

with b0,b1,b2 given in (6.11), satisfies

x(T) = Ax0 +o(‖x0‖), (6.15)

whereA ∈ �6×6 a discrete-time-stable matrix, i.e., a matrix with its spectrum contained in{z∈ � :
|z| < 1}. Motivated by the results of Section 6.1.2, we propose the following controller structure:

α1(x, t) = a1x1 +a2x2 +bρ(x)cos(ωt) (6.16)

α2(x, t) = a3x3 +a4x4−
2ω2

b
1

ρ(x)
(a5x5 +a6x6)cos(ωt), (6.17)

where the vector of control gainsa ∈ �6 is determined below,b > 0, andρ is given byρ(x) =

(∑6
i=1 |xi |

2
ri )

1
2 , with r = (1,1,1,1,2,2). In (6.16,6.17)ρ is a homogeneous norm with respect to a

dilation of weightr. In fact, as in the case of the homogeneous feedbacks (6.8), instead ofρ one
can also use other continuous, positive-definite functions

�6 → �
that are homogeneous of degree 1

with respect to the dilation. In this thesis, however, no further use is made ofthis terminology or the
associated results, and the interested reader is referred to e.g. (Hermes, 1991; Kawski, 1995) for more
detailed discussions on that subject.

The closed-loop system can be explicitly integrated thanks to the simple structure of the second-
order chained form and the fact thatu(t) = α(x0, t) is independent ofx(t) on the interval(0,T). After
some calculations, one verifies the solutionx(·) is of the form

x(T) = Ax0 +w(x0), (6.18)

whereA is a block-diagonal matrixA = diag(A1,A2,A3) with blocks defined by

Ai =

(

1+ 1
2T2a2i−1 T + 1

2T2a2i

Ta2i−1 1+Ta2i

)

, i = 1,2,3. (6.19)

The spectrum ofA is the union of the spectra of theAi , each of which can be made equal to{ki1,ki2}⊂
{z∈ � : |z| < 1}–thus makingA a discrete-time-stable matrix–by setting

a2i−1 =
ki1 +ki2−ki1ki2−1

T2 and a2i =
ki1 +ki2 +ki1ki2−3

2T
, i = 1,2,3. (6.20)

Of course,a2i−1 anda2i must be real, for which it suffices to choseki1,ki2 to be complex conjugate.
On the other hand, it is readily checked that the functionw= (w1, . . . ,w6) :

�6 → �6 in (6.18) is given
by w1 = · · · = w4 = 0 and

(w5,w6)(x0) = ρ(x0)L(x0)+ρ−1(x0)P(x0)+Q(x0),
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whereL :
�6 → �2 is linear andP,Q :

�6 → �2 are quadratic. Sinceρ(x0) = O(‖x0‖
1
2 ), it follows

thatw(x0) = O(‖x0‖
3
2 ) and hencew(x0) = o(‖x0‖), so the solutionx(T) has the form (6.15). SinceA

is discrete-time-stable, there exists a symmetric, positive-definite matrixP∈ �6×6 and a real number
τ ∈ [0,1) such that‖Ax0‖P ≤ τ‖x0‖P for everyx0 ∈

�6, with ‖x‖P = 〈x,Px〉 denoting the norm ofx
induced byP. This means that, locally around the origin, the mapping which assignsx(T) to x0 is a
contraction in the norm‖ · ‖P.

It is important to remark that the frequencyω of the time-varying terms in the control law (6.16)-
(6.17) does not have to be large; indeed it can be selected to be arbitrarilysmall. This is in contrast
with the control law (6.8) that has been presented in (Aneke et al., 2002a)or, more generally, with
previous results based on averaging of “highly oscillatory” systems, e.g.(M’Closkey and Murray,
1993; Teel et al., 1992). In these control laws, the frequency 1/ε (of the time-varying part of the
controller) have to be chosen sufficiently large in order to be able to guarantee asymptotic stability
of the closed-loop system. In practice, however, there is quite some freedom in the choice of the
frequency 1/ε and it may still be possible to stabilize the system for low frequencies.

6.2.3 Notational conventions

Let us recall some definitions and properties about local order of mappings, a notion that simplifies
the proofs. In this paragraph,n andm represent positive integers,` a nonnegative integer and‖ · ‖
represents Euclidean norm. Consider a neighborhoodU of the origin inIRn. We deal with mappings
defined onU ×Λ, whereΛ ⊂ IR`, and view the elements ofΛ as parameters (e.g. ‘time’ or other
parameter). Given a mappingf : U ×Λ → IRm, we write f (x,λ ) = o(‖x‖k) if, for everyλ ∈ Λ,

lim
x→0

‖ f (x,λ )‖
‖x‖k = 0. (6.21)

We write f (x,λ ) = O(‖x‖k) if for every λ ∈ Λ there is a constantK > 0 and a neighborhoodU ′ ⊂U
of the origin such that, for everyx∈U ′\{0},

‖ f (x,λ )‖
‖x‖k ≤ K. (6.22)

Consider a mappingX = (X1, . . . ,Xn) :U×Λ→ IRn representing a family ofvector fields X(·,λ ) :U →
IRn. We writeX(x,λ ) = o(‖x‖k) (resp.X(x,λ ) = O(‖x‖k)) if Xi(x,λ ) = o(‖x‖k+1) (resp.Xi(x,λ ) =
O(‖x‖k+1)) for i = 1, . . . ,n. We shall also use the function Ord :f 7→ Ord( f ) ∈ IR∪{+∞} defined by
Ord( f ) = sup{k∈ IR : f (x,λ ) = O(‖x‖k)}.

6.2.4 Stability and robustness analysis

This section presents the main result, which characterizes the stability and robustness properties of
the feedback law (6.16,6.17) applied to the second-order chained form. The proof shares the same
basic structure as that of Theorem 1 in (Morin and Samson, 1999), and some other technical facts
are modifications of the proofs in (Sussmann, 1983) and (Khalil, 1996). For the sake of conciseness,
we only prove those claims particular to our solution and explicitly refer the reader to the appropriate
references for the details.

Proposition 6.2.1. The control lawα defined in (6.16,6.17) is a local exponential stabilizer for the
origin of system (6.13), robust to disturbances inA = {(hε

0,h
ε
1,h

ε
2) ∈ D3 : Ord(hε

0) ≥ 1,Ord(h0
0) ≥

2 andOrd(h0
i ) ≥ 0, i = 1,2}.
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Proof. Let us fix a disturbanceh ∈ A defined on an open setU ×E ⊂ IRn× IR. It must be shown that
there isε0 > 0 such that the origin of (6.13) is locally exponentially stable whenε ∈ [−ε0,ε0]∩E.
The proof is divided into two main steps corresponding to the following two claims:

Claim 1 For every compact intervalE′ ⊂ E there is a compact neighborhoodU ′ ⊂U of 0 such that
if x0 ∈U ′ andε ∈ E′, the solutiont 7→ x(t) = π(t,0,x0,ε) to

ẋ = b0(x)+hε
0(x)+

2

∑
i=1

αi(x0, t)(bi(x)+hε
i (x)), x(0) = x0 (6.23)

satisfies

x(T) = Ax0 +λ (ε,x0)+ µ(ε,x0)+o(‖x0‖),

where the mappingsλ ,µ (which need not be uniquely defined) are such that

‖λ (ε,x0)‖
‖x0‖

→ 0 asε → 0, uniformly for x0 ∈U ′ \{0}, (6.24)

‖µ(ε,x0)‖
‖x0‖

→ 0 asx0 → 0, uniformly for ε ∈ E′. (6.25)

Claim 2 (Morin and Samson, 1999, Theorem 1). There exists a nonempty intervalE0 ⊂ E containing
0 such that, for everyε ∈ E0, the origin of system (6.13) is locally exponentially stable.

In (Morin and Samson, 1999, Theorem 1) it has been shown that Claim 1 implies Claim 2. There-
fore the proof consists of showing that Claim 1 is valid. In (Lizárraga et al., 2003) it is shown that
Claim 1 holds by showing that the system’s solution at timeT can be represented by means of a
Chen-Fliess series expansion. For the details of the proof, we refer to that reference.

Remark 6.2.2. (i) In view of the definition ofA , for h ∈ A one can writehi(x,ε) = wε
i (x)+ h0

i (x),
with w0

i ( · ) = 0, hε
0(x) = O(‖x‖2) andh0

j (x) = O(‖x‖0), (i = 1,2,3, j = 1,2). Hence each disturbance
vector field can be thought of as consisting of two parts, one containing only “high-order” terms inx
and the other one vanishing identically whenε = 0. The terms corresponding to these two parts may
have different origins. For instance,wε

i (x) may arise from uncertainty in the knowledge of the physical
parameters; ifε is a quantitative measure of the uncertainty, then these terms should vanish whenε
equals zero. On the other hand,h0

i (x) may include high-order terms truncated from a series expansion
of the system’s nominal model, and these terms do not necessarily vanish when ε = 0. (ii) A measure
of the extent to which robustness is ensured by a feedback lawα lies in the nature of the setA .
Roughly stated, the larger this set is, the more sources of disturbancesα can tolerate. In this respect,
the control law in (Aneke et al., 2002a) isnot robust to disturbances taken fromA , so the origin may
be destabilized by the addition of disturbances inA regardless of how small their magnitude is (i.e.,
for arbitrarily small|ε| > 0). This lack of robustness, which can be checked by using the results in
(Lizárraga et al., 1999), is illustrated through numerical simulation in the Examples section.

In Proposition 6.2.1, the condition that the disturbances belong toA is sufficientbut not neces-
sary for stability and robustness. In particular, disturbances inA satisfyh0(x,ε) = O(‖x‖) or, stated
otherwise, each component of the drift disturbance satisfiesh0,i = O(‖x‖2). This is somewhat restric-
tive since in some cases the latter condition is not satisfied and yet the conclusion of the previous
proposition seems to hold in simulations. Indeed, a refinement of that result seems plausible, although
the proof would require surmounting technical difficulties that we have notbeen overcome yet. The
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presented result might be of interest when addressing the stabilization of systems whose models can
be written as a second-order chained form with additional terms. For example, in (Reyhanoglu et al.,
1996) the underactuated surface vessel with two independent thrusters was shown to be feedback
equivalent to the second-order chained form with an additional term given in (2.8). By viewing these
additional terms as disturbances, one might successfully use the control laws (6.16)-(6.17), without
modification, to stabilize some of those systems to a point. This has been shown in (Lizárraga et al.,
2003) for the underactuated surface vessel. A drawback of the statedcondition, however, is that testing
it may be difficult in practice.

6.3 Summary

This section was concerned with the feedback stabilization problem of the second-order chained form.
The stabilizing controller has been designed by treating the system as two subsystems. By using a
high-gain or backstepping result, the both subsystem can be stabilized by acontinuous time-varying
feedback. This so-called homogeneous feedback stabilizer can be used to globallyρ-exponentially
stabilize equilibrium points of the second-order chained form system. To date and to our knowledge,
this homogeneous controller is the only one capable of ensuring Lyapunovstability as well asρ-
exponential convergence of the second-order chained form system.Several authors,cf. (Imura et al.,
1996) and (Astolfi, 1996), have presented discontinuous feedback controllers that achieve exponential
convergence towards the origin, but all these controllers fail to guarantee Lyapunov stability of the
closed-loop system.

It is known from (Lizárraga et al., 1999) that, homogeneous controllersfail to be robust with
respect to modelling errors. Therefore, a periodically updated homogeneous feedback law has been
presented that is robust with respect to a certain class of perturbations.These perturbations can be
caused by, for example, parameter uncertainties or modelling errors.

At this moment, it is unclear how the results of this chapter can be extended to thefeedback sta-
bilization problem of higher-order chained form systems (2.6). In orderto apply the same method
as presented in Section 6.1.2, a stabilizing function for the virtual inputx3 should be known that sta-
bilizes the[x4, . . . ,x2n]-subsystem. This stabilizing function is, in general, quite difficult to design.
In addition, it is not even clear whether the second-order chained formsystem can be stabilized by
smooth or continuous time-varying feedback. It is expected that a combinedhybrid/open-loop ap-
proach may be more successful in controlling these high-order chained form systems. Nevertheless,
such an hybrid/open-loop approach would require the use of a controller to be iterated periodically,
which to date is not available. In the following chapter, we will evaluate the presented homogeneous
controllers in a simulation environment with the goal of applying them to an experimental set-up.



Chapter 7

Computer simulations

In this chapter, we consider an example of an underactuated mechanical system that is subject to a
second-order nonholonomic constraint. This example consists of a mechanical system also known as
the ‘H-Drive’ servo system, illustrated in Figure 7.1. The H-Drive is an XY-table with three linear
motors that has been built by Philips’ Centre for Industrial Technology (CFT) as part of an Advanced
Component Mounter (ACM) for pick-and-place operations on Printed Circuit Boards. It consists of
two parallel Y-axes that are connected by a beam, the X-axis. The beam, or X-axis, is connected to
the Y-axes by two joints that allow rotations in the horizontal plane. Therefore the positions Y1 and
Y2 along the Y-axes are not necessarily equal, tilting or rotation of the beamis also possible. The
position of the beam along the X-axis and the Y-axes is controlled by three linear motors,i.e.,Linear
Motion Motor Systems (LiMMS). Each linear motor has its own servo system, encoder sensors and is
current-controlled.

Figure 7.1: The H-Drive servo system.

LiMMS are widely used in high-speed applications and scanning motion systems. A LiMMS is
composed of two parts, a number of base-mounted permanent magnets (the stator) and a number of
iron-core coils (the translator). The permanent magnets are aligned alongthe axes and the LiMMS
containing the iron-core coils are connected to a guiding rail along the axesusing ball bearings. By
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applying a three-phase current to the coils, a sequence of repelling andattracting forces can be gen-
erated that can be used as a thrust force to move the system. In contrast totraditional electro-motors,
i.e., with brushes, LiMMS allow for contactless transfer of electrical to translational power by the
Lorentz actuator principle. Therefore, compared to traditional electro-motors, LiMMS have the ad-
vantage of less friction, resulting in higher accuracy, high velocity and acceleration; the velocity is
mainly limited by the bandwidth of the encoder and the power supply, higher reliability and longer
life-time due to reduced wear. A disadvantage of a linear motor is the positionaldependency of the
thrust force and the cogging forces resulting from the permanent magnets.

In this chapter, it is assumed that an additional rotational link, together with anencoder for mea-
suring the link orientationθ , is attached on top of the LiMMS along the X-axis. In this manner, the
link is not actuated directly, but can rotate freely. Using the inputs currentsto the X-motor and the
Y-motors, we wish to control the longitudinal and transversal position of therotational link, as well
as its orientation.

7.1 The dynamic model

The H-Drive with the additional rotational link, shown in Figure 7.2, is an underactuated mechanical
system with three inputs,i.e., the currentsiX, iY1 andiY2 to the motors, and four coordinates,i.e., the
positions X, Y1, Y2 and the orientationθ of the rotational link. Denote the mass of the Y motors by
mY1 andmY2 respectively, the mass of theX-motor bymX and the mass and inertia of the rotational
link by m3 andI3 respectively. The longitudinal forces along the Y-axes are denoted byFY1 andFY2

respectively, and the transversal force along the X-axis byFX. The distance from the rotational joint
at the position[rx, ry] to the center of mass of the rotational link is denoted byl and the length of the
X-axis beam is denoted byD. The system moves in a horizontal plane and is not influenced by gravity.

By using the Lagrange-Euler formulation it is straight-forward to calculate the dynamic model of
the H-Drive. The generalized coordinates areq = [YB,φ ,X,θ ], whereYB(t) denotes the longitudinal
position of the center of mass of the beam,φ(t) denotes the tilt-angle of the beam (see Figure C.1),
X(t) the transversal position of the motor along the X-axis. The dynamical model can be written as

M(q)q̈+C(q, q̇)q̇ =

[

F
0

]

(7.1)

where the symmetric and positive-definite mass matrixM(q), the matrix representing Coriolis and
centrifugal forcesC(q, q̇) and the input(3× 1)-matrix F are given in appendix C.1. By using the
coordinate transformation given by the relations

YB(t) =
Y1(t)+Y2(t)

2
, φ(t) = arcsin(

Y1(t)−Y2(t)
L

),

this dynamical model can be written in terms of the encoder measurements,i.e., q= [Y1,Y2,X,θ ].
Due to the complexity of the resulting equations, this will not be shown here. Infact, we will make
an assumption which considerably simplifies the equations of motion of the H-Drive.

As mentioned earlier, the H-Drive is designed to be a servo-system. Therefore, both the Y1- and
Y2-axis will be controlled using the servo-controllers given in Appendix C.2. Here, the positions
Y1(t) andY2(t) will be controlled to follow the same reference position. Therefore, the positions
Y1(t) andY2(t) will be approximately equal and the tilt-angleφ(t) will be small. In fact, the joints
that connect the X-beam to the Y-axes only allows a difference of 30[mm] between the positions of
the Y-axes and the length of the X-axis beam is approximately 1[m]. In this thesis, the nonlinear
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X

Y
X

rx

ry θ
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Y1

Y2

D l

Figure 7.2: The coordinate system of the modified H-drive system with generalized coordinates[rx, ry,θ ]. The
masses along the axes are denoted bymX, mY1 andmY2 respectively. The mass of the rotational link
is denoted bym3 and its moment of inertia about its axis of rotation byI3. The lengthl denotes the
distance between the rotational joint and the center of massof the link (not shown).

rigid-body tilt-dynamics of the H-Drive are neglected by assuming that the positionY1(t) andY2(t)
are equal,i.e., Y1(t) = Y2(t) ∀t. This is illustrated in Figure 7.2, where the underactuated H-Drive
manipulator and the coordinate system is shown. By assumption, the originO of the global coordinate
system is located at(X,Y) = (−0.3,0.5) (near the center of the H-Drive setup). The generalized
coordinates are given by the joint coordinates and orientation of the link,i.e., q= [rx, ry,θ ]. The joint
positionsrx andry can be expressed in terms of the encoder measurements[X,Y1,Y2] as follows

rx(t) =
Y1(t)+Y2(t)

2
−0.5, ry(t) = −X(t)−0.3.

The rigid-body dynamics of the Y1- and Y2-motor are assumed to be identical.In practice,
this is not true since the masses and electromagnetic properties of two LiMMS motors may vary.
Moreover, the LiMMS are influenced by disturbances resulting from cogging forces, reluctance forces
and friction. The cogging forces are caused by the attraction between thepermanent magnets and
the iron cores of the LiMMS. The reluctance forces are caused by a varying self-inductance of the
windings in the coils of the translator. The friction is present in the ball bearings between the translator
and the guiding rail. If we assume true linear dynamics of the LiMMS, with motor constantkm, then
the dynamic model (after solving foriY1 andiY2) is given by

mx1r̈x(t) − m3l

(

1
2
− ry(t)

D

)

sin(θ(t))θ̈(t) − m3l

(

1
2
− ry(t)

D

)

cos(θ(t))θ̇(t)2 = kmiY1(t)

mx2r̈x(t) − m3l

(

1
2

+
ry(t)

D

)

sin(θ(t))θ̈(t) − m3l

(

1
2

+
ry(t)

D

)

cos(θ(t))θ̇(t)2 = kmiY2(t)

myr̈y(t) + m3l cos(θ(t))θ̈(t) − m3l sin(θ(t))θ̇(t)2 = −kmiX(t)

I θ̈(t) − m3l sin(θ(t))r̈x(t) + m3l cos(θ(t))r̈y(t) = 0

(7.2)
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where the masses and inertia are given by

mx1 = mY1 +
mB

2
+(mX +m3)

(

1
2
− ry(t)

D

)

mx2 = mY2 +
mB

2
+(mX +m3)

(

1
2

+
ry(t)

D

)

my = mX +m3

I = I3 +m3l2

(7.3)

Note that a positive currentiX moves the LiMMS along the X-axis in the negative direction ofry. This
is caused by the choice of the coordinate system; the positivey direction along the(rx, ry) coordinate
system, shown in Figure 7.2, points in the negativey direction of the(X,Y) coordinate system.

From (7.3) it is clear that the dynamics of the Y-motors are influenced by the position of the X-
motor. If the X-motor is located close to the Y1-axis, then the effective mass along the Y1-direction
becomes larger and higher input-currents will be needed to move the translator. The servo-controllers,
used to control the positions of the LiMMS, will be used to compensate this coupling of mass between
the X-axis and the Y-axes. Therefore, it is assumed that this coupling of mass can be neglected. By
using the average of the Y1- and Y2-dynamics, the dynamical model reduces to

mxr̈x(t) − m3l
2

sin(θ(t))θ̈(t) − m3l
2

cos(θ(t))θ̇(t)2 = kmiY

myr̈y(t) + m3l cos(θ(t))θ̈(t) − m3l sin(θ(t))θ̇(t)2 = −kmiX

(I3 +m3l2)θ̈(t) − m3l sin(θ(t))r̈x(t) + m3l cos(θ(t))r̈y(t) = 0

(7.4)

whereiY denotes the average of the currents running through the LiMMS of the Y1-and Y2-axis.
The masses along thex andy direction reduce to

mx =
mY1 +mY2

2
+

mB

2
+

(mX +m3)

2
my = mX +m3

I = I3 +m3l2

(7.5)

The model (7.4) represents an underactuated system with three generalized coordinates[rx, ry,θ ],
denoting the joint position and orientation of the rotational link, and two inputs currentsiX andiY to
the LiMMS. This model can be transformed into the second-order chained form system, as will be
shown in the following section.

7.2 The second-order chained form transformation

In this chapter, the goal is to control the cartesian position[rx(t), ry(t)] and the orientation of the
rotational link of the underactuated H-Drive manipulator. In order to applythe control methods devel-
oped in the Chapter 5 and 6, the dynamic model needs to be transformed into thesecond-order chained
form. In (Imura et al., 1996) a coordinate and feedback transformation was proposed to transform the
system (7.4) into the second-order chained form. The coordinate transformation corresponds to the
position of the center of percussion (C.P.) of the rotational link. The centerof percussion of a link can
be interpreted as follows; if one would apply a force perpendicular to the link and at a certain point



7.2 The second-order chained form transformation 81

below or above the C.P., then a rotation of the link will occur. If however, a force perpendicular to
the link is applied exactly at the C.P., then no rotation of the link occurs. The center of percussion
can also be characterized as the point that stays at rest when the link is rotated along a circle with
a radius equal to the distance between the joint and the C.P. The C.P. is therefore useful in order to
generate pure rotational motions of the link, in which the C.P. stays at rest. Byperforming repeated
translational and rotational motions of the link, it is possible to move the unactuated and free rotating
link from any initial configuration to any final configuration.

The second-order nonholonomic constraint of the system (7.4) can be written as

λ θ̈(t)− r̈x(t)sinθ(t)+ r̈y(t)cosθ(t) = 0, (7.6)

where

λ =
I

m3l
(7.7)

The parameterλ equals the effective pendulum length of the rotational link, when treated asa rigid-
body pendulum suspended from the passive joint. This length also equalsthe distance from the joint
to the so-called ’center of percussion’ of the link. The constraint (7.6) was shown to be nonholonomic
in (Arai et al., 1998a). The first-order linear approximation of (7.4) is not controllable, since the dy-
namics are not influenced by gravity. However, it can be shown that a small time local controllability
(STLC) property holds (Arai et al., 1998a).

Define the configuration variableq = [rx, ry,θ ]. In this chapter the coordinate and feedback trans-
formation given in (Imura et al., 1996) will be used to map the equilibrium(q, q̇) = (0,0) to the origin
(ξ , ξ̇ ) = (0,0) of the extended chained form. It follows that any equilibrium point, with zerovelocity,
contained in a certain configuration-spaceC , defined hereafter, can be mapped to the originξ = 0 of
the chained form. The feedback transformationΩ : (q, q̇,v) ∈ C × �3× �2 → τ ∈ �2 is given by







iY

iX






=

1
km









−m3l
2

cos(θ)θ̇ 2 +

(

mx−
m3l
2λ

sin2(θ)

)

vx +

(

m3l
2λ

sin(θ)cos(θ)

)

vy

m3l sin(θ)θ̇ 2−
(

m3l
λ

sin(θ)cos(θ)

)

vx−
(

my−
m3l
λ

cos2(θ)

)

vy









(7.8)

wherevx andvy are new inputs. This feedback transformation results in the following partiallyfeed-
back linearized system:

r̈x = vx

r̈y = vy

θ̈ =
1
λ

(sin(θ)vx−cos(θ)vy) .

(7.9)

The mappingΦ : (q, q̇) ∈ C × �3 → (ξ , ξ̇ ) ∈ �6 follows from the relations

ξ1 = rx +λ (cos(θ)−1),

ξ2 = tan(θ),

ξ3 = ry +λ sin(θ).

(7.10)

By taking the new inputsvx andvy as follows, the system is transformed into the extended chained
form

[

vx

vy

]

=

[

cos(θ) sin(θ)
sin(θ) −cos(θ)

]

[ u1

cos(θ)
+λ θ̇ 2

λ
(

u2cos2(θ)−2θ̇ 2 tanθ
)

]

. (7.11)
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The coordinate transformation is only valid forθ ∈ (−π/2+kπ,π/2+kπ), for θ = π/2±kπ,k∈�
the coordinate transformation is not well-defined. The configuration-space C of the configuration
variablesq is thus given by

C =
{

(rx, ry,θ) ∈ �3 | θ ∈ (−π/2+kπ,π/2+kπ),k∈ �
}

(7.12)

The coordinate transformation (7.10) from local coordinates(q, q̇) ∈ C × �3 to local coordinates
(ξ , ξ̇ ) ∈ �3 × �3 is a diffeomorphism. Together with the feedback transformations (7.8,7.11) the
dynamics of the underactuated H-drive manipulator are transformed into thesecond-order chained
form system

ξ̈1 = u1

ξ̈2 = u2

ξ̈3 = ξ2u1.

(7.13)

By applying the coordinate transformation it follows that the nonholonomic constraint (7.6) is trans-
formed into the last equation of (7.13). The nonholonomic constraint (7.6) isthus preserved under the
coordinate and feedback transformation.

7.2.1 The influence of friction

In this section the influence of friction, present in the LiMMS and the rotational joint of the underactu-
ated link, will be investigated. If friction and cogging forces are included inthe model, the transformed
system will not be equal to the second-order chained form system. Consider the underactuated system
with friction given by

mxr̈x − m3l
2

sin(θ)θ̈ − m3l
2

cos(θ)θ̇ 2 = kmiY + τ f ,Y

myr̈y + m3l cos(θ)θ̈ − m3l sin(θ)θ̇ 2 = −kmiX + τ f ,X

I θ̈ − m3l sin(θ)r̈x + m3l cos(θ)r̈y = τ f ,θ ,

(7.14)

whereτ f ,i , i ∈ {X,Y,θ} denote the friction forces of the LiMMS and the friction torque of the rota-
tional link. By recalculating the transformation, it can be shown that the system (7.14) is transformed
into

ξ̈1 = u1−
(

λ − m3l
mx

)

sin(arctan(ξ2))∆(ξ ,τ f ,X,τ f ,Y,τ f ,θ )+
τ f ,Y

my

ξ̈2 = u2 +(1+ξ 2
2 )∆(ξ ,τ f ,X,τ f ,Y,τ f ,θ )

ξ̈3 = ξ2u1 +

(

λ − m3l
my

)

cos(arctan(ξ2))∆(ξ ,τ f ,X,τ f ,Y,τ f ,θ )+
τ f ,X

mx
.

(7.15)

where the perturbation∆ of the extended chained form system is given by

∆(ξ ,τ f ,X,τ f ,Y,τ f ,θ ) =

(

m3l
mx

sinθ
)

τ f ,Y −
(

m3l
my

cosθ
)

τ f ,X + τ f ,θ

I − (m3l)2

2mx
sin2(arctan(ξ2))−

(m3l)2

my
cos2(arctan(ξ2))

(7.16)
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The third equation of (7.15) shows that any residual perturbation in the X-axis, such as friction or cog-
ging forcesτ f ,x that are not compensated, will directly act as an additive perturbation in thedynamics
of the chained form variableξ3. This makes it even more difficult to control theξ3-dynamics, since
the second-order chained form is uncontrollable forξ2 ≡ 0 oru1 ≡ 0 and, as a result, the perturbations
can not be fully compensated. Therefore it is essential to use a low-levelservo system to compensate
friction, cogging forces and additional perturbations in both the X-axis and Y-axes.
Note that designing the system such that the perturbation∆(ξ ,τ f ,X,τ f ,Y,τ f ,θ ) is not present in the first
and third equation of (7.15),i.e.,λ − m3l

my
= 0, is not possible. The termλ − m3l

my
can be written as

I
m3l

− m3l
my

=
I3

m3l
+

(

1− m3

my

)

l .

In the casem3 < my, considered in this thesis, this term is always positive, and can not be equal to
zero. Moreover, ifm3 > my andλ − m3l

my
= 0 holds, then the denominator of the perturbation (7.16)

would become zero for smallξ2 = 0 and the perturbation would become infinitely large,i.e.,asξ2 → 0
we have that∆ → ∞.

As mentioned earlier, the X-axis and the Y-axes are controlled directly by servo controllers. This
means that friction and cogging forces that are present in the LiMMS are (partially) compensated for
by the servo-loop. Therefore, it is assumed that the friction forcesτ f ,X andτ f ,Y can be neglected and
we focus on the friction torque that is present in the rotational joint of the link. Additionally, the servo
controllers (partially) compensate the influence of the link on the dynamics of the LiMMS. Therefore,
in this section, only the partially feedback linearized system given by (7.9) isconsidered and the terms
with m3l are assumed to be negligible. The transformed mechanical system,i.e., (7.15), then reduces
to

ξ̈1 = u1 +∆1(ξ2, ξ̇2)

ξ̈2 = u2 +∆2(ξ2, ξ̇2)

ξ̈3 = ξ2u1 +∆3(ξ2, ξ̇2),

(7.17)

where the perturbation terms are given by,

∆1 = − ξ2
√

1+ξ 2
2

τ f ,θ (ξ2, ξ̇2)

m3l

∆2 = (1+ξ 2
2 )

τ f ,θ (ξ2, ξ̇2)

I

∆3 =
1

√

1+ξ 2
2

τ f ,θ (ξ2, ξ̇2)

m3l
.

(7.18)

In the previous equation the inverse coordinate transformation,i.e., θ̇(t) = ξ̇2(t)/(1+ ξ2(t)2), has
been used to write the friction termτ f ,θ (θ̇) in terms of(ξ2, ξ̇2) and the terms sin(arctan(ξ2)) and

cos(arctan(ξ2)) have been expressed asξ2/
√

1+ξ 2
2 and 1/

√

1+ξ 2
2 respectively. We conclude that

the additive perturbations, such as friction and cogging, present in the rotational joint of the mechani-
cal system result in additive perturbations in the resulting second-orderchained form system.
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7.3 Friction Compensation

In this section it will be investigated whether the perturbations in the perturbedsecond-order chained
form system can be compensated using the inputsu1 andu2. Note that it makes no difference whether
we try to compensate the friction in the original mechanical system or we try to compensate the
perturbation terms in the second-order chained form system, as these systems are related through a
coordinate and feedback transformation. In section 7.2.1 it was shown that under the influence of
friction, the coordinate and feedback transformation of section 7.2 transforms the dynamic model
of the underactuated H-Drive system, given by (7.14), into the perturbed second-order chained form
system given by (7.17). The resulting perturbation terms∆1 and∆3 satisfy the relation

∆3 +
∆1

ξ2
= 0. (7.19)

The mechanical system is thus transformed into a system which, in contrast tothe second-order
chained form system, is not in strict-feedback form. Therefore, the backstepping procedure that has
been adopted to design a linear time-varying tracking controller is not valid anymore, and we ex-
pect that the tracking-error dynamic will not beK -exponentially stable. Furthermore, the resulting
perturbed second-order chained form system is not homogeneous ofdegree zero. Therefore, the ho-
mogeneity properties that were used to design a continuous time-varying stabilizing controller do not
hold anymore, and we expect that the closed-loop system will not beρ-exponentially stable.

From (7.17) it becomes clear that the perturbation terms∆1 and∆2 can be compensated directly
using the chained inputsu1 andu2, provided that these uncertain perturbation terms are exactly known.
By definingu1 = ū1−∆1 andu2 = ū2−∆2, the perturbed chained form system becomes

ξ̈1 = ū1

ξ̈2 = ū2

ξ̈3 = ξ2ū1 +∆3(ξ2, ξ̇2)−ξ2∆1(ξ2, ξ̇2).

(7.20)

where the perturbation term is given as

∆3(ξ2, ξ̇2)−ξ2∆1(ξ2, ξ̇2) =
√

1+ξ 2
2

τ f ,θ (ξ2, ξ̇2)

m3l
(7.21)

This shows that compensating the perturbations∆1 and∆2 actually increases the perturbation in theξ3-
dynamics. This is generally not a good idea, since the last equation can notbe controlled directly. The
ξ3-dynamics are controlled using a backstepping procedure in whichξ2 is a virtual input. This means
that the states(ξ2, ξ̇2) only converges to zero if the states(ξ3, ξ̇3) also converge to zero. Therefore the
perturbations acting in the third equation are expected to have a greater influence on the robustness of
the closed-loop system, compared to the perturbations acting in the first and second equation. In fact,
the effect of the perturbations on stability of the first two equations can be minimized by choosing the
gains of the controllersu1 andu2 sufficiently high.

At this moment it is not yet clear whether the perturbations in theξ3-dynamics can be compensated
using the inputu1 . The compensation of the perturbation∆3 is complicated by the fact that theξ3-
dynamics can not be controlled using the inputu1 whenξ2 ≡ 0. Also compensating the perturbation∆3

using the inputu1 will result in the perturbation term appearing in theξ1-dynamics, which is coupled
with theξ3-dynamics. Note that it is not possible to use the stateξ2 in a backstepping procedure to
compensate the perturbation∆3. The perturbation∆3 contains non-smooth effects such as friction.
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In order to apply a backstepping procedure the virtual inputξ2 should be at least twice continuously
differentiable. This is not the case when using the virtual inputξ2 to compensate non-smooth effects
such as friction. More importantly, however, is the fact that no control input can be applied using the
virtual input ξ2 whenu1 ≡ 0. We conclude that due to coupling of the equations, it is not straight-
forward to compensate the perturbation terms in the second-order chainedform system.

Concluding, we can state that using the current coordinate and feedback transformation, it is not
clear how to compensate the perturbation∆3 by the chained inputsu1 andu2. It is however possible to
compensate the effect of the perturbations∆1 and∆2. However, through numerical simulation, it can
be shown that compensation of these perturbations, generally, reducescontrol performance because it
results in a larger perturbation term in theξ3-dynamics. Therefore, no friction compensation will be
used in the simulations.

An important question one might ask is whether it is possible to transform the mechanical sys-
tem with friction into the second-order chained form. This would require a different coordinate and
feedback transformation and, at this moment, it is not clear whether this is possible or not. In certain
situations, the friction force can be used in order to control the system. Forexample, in the case of
stabilization, the system can be transferred from one configuration to another by first controlling the
link angle to its desired position, and then moving the system very slowly along thex andy direction
such that stiction occurs in the rotational joint of the link. The link orientation then stays equal to
its desired value, due to the static friction in the joint of the link. It is not clear to what extent the
friction torque can be used in order to stabilize the system or perform tracking control. In the situation
described above, they can not be used to obtain true stabilization, but canbe used for very slow point
to point motions. In this thesis, such approaches will not be considered. The focus is on obtaining
true asymptotic stabilization or at least a form of practical stability or practicaltracking in which the
system can be moved arbitrary close to the a desired equilibrium or close to a desired trajectory.

H-Drive

Manipulator
+_ +_

Servo

Controllers

Coordinate

Transformation

Low-level Servo Loop

High-level Control

Feedback

Transformation

Tracking / Stabilizing

Controller

[Xr,Yr,Yr]

[X,Y1,Y2]

[X,Y1,Y2,θ ]

[u1,u2] [iX , iY1, iY2]
ξr

ξ

q

Figure 7.3: The ‘virtual internal model following control’approach in which the underactuated H-Drive ma-
nipulator is controlled by a combination of a high-level controller and a low-level servo-loop. The
feedback transformation block includes the double integration that is needed to obtain the refer-
ence inputsXr andYr to the servo controllers. The generalized coordinatesq = [rx, ry,θ ] are thus
controlled by two reference inputsXr andYr to the servo-loop, and the system is thus underactuated.
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7.4 Tracking Control

In this thesis, the so-called ‘virtual internal model following control’ approach in (Kosuge et al.,
1987) is adopted. This means that theX andY axes are not controlled directly, but by a combination
of a high-level controller and a low-level servo-loop depicted in Figure 7.3. The inputsu1 andu2,
generated by the tracking and stabilizing control laws of the second-order chained form system, are
transformed into desired accelerations for theX andY axes. These desired accelerations are integrated
twice to obtain desired positionsXr andYr which are commanded to the servo controllers for the
X andY-axes. These servo controllers are given in Appendix C.2. Compared tocomputed-torque
methods, the local servo system of the ‘virtual internal model following method’ is able to compensate
or suppress unknown disturbances,e.g. friction and cogging in the active joints, by the local servo
system. Moreover, the servo controllers are used to compensate the distribution of the mass of theX
motor along theY motors.

The performance of the tracking and stabilizing controllers developed in Chapter 5 and Chapter 6
will be tested with and without the influence of friction in the joint of the rotationallink. Compared
to parameter uncertainties and modelling errors, the frictional perturbation plays a more dominant
role and considerably deteriorates the performance of the tracking and stabilizing controllers. The
tracking and stabilizing controllers do achieve some degree of robustnesswith respect to parameter
uncertainties, however, the robustness with respect to friction in the joint of the rotational link is
marginal. Therefore, no parameter uncertainties will be considered here, but we focus on the effect of
a friction torque acting in the joint of the rotational link. This allows us to investigate the robustness
properties of the tracking and stabilizing controllers with respect to friction.Since the friction in the
actuated X-axis and Y-axes are suppressed by the servo-loop, we shall only consider the friction in
the unactuated rotational link. It is assumed that the friction of the rotational link can be modelled by

τ f ,θ = cs
2
π

arctan(100· θ̇)+cvθ̇ . (7.22)

wherecv andcs denote the static (Coulomb) and viscous friction coefficients, respectively. The sim-
ulations of this chapter are performed using the dynamic model (7.2). The model parameters are
chosen such that they approximately match the parameters that have been obtained from the identifi-
cation procedure in Chapter 8. These model parameters for the dynamic model (7.2), are summarized
in Table 7.1. It should be noted that the inertiaI = I3 + m3l2 has not been identified, but has been

parameter value unit parameter value unit

mx/km 0.3994 [A ·s2/m] my/km 0.1231 [A ·s2/m]

λ 0.1372 [m] D 0.60 [m]

m3 0.04 [kg] l 0.15 [m]

I 0.0008 [kg·m2] km 74.4 [N/A]

cs/I 0.3 [1/s2] cv/I 0.1 [1/(rad·s)]

Table 7.1: Simulation parameters H-drive system

approximated using the identified value ofλ using the known massm3 and lengthl of the rotational
link. The only parameters that need to be identified are the parametersλ , mx/km, my/km, cs/I and
cv/I .
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In the simulations of this section we want the underactuated H-Drive manipulator to follow a pre-
defined path(qd, q̇d) ∈ C × �3. The joint position of the rotational link should follow a trajectory
(rxd(t), ryd(t)) and the link orientation to follow a trajectoryθd(t). This reference trajectoryq =
[rxd(t), ryd(t)], contained in the configuration-spaceC , can be transformed into a reference trajectory
ξd for the second-order chained form system. A feasible persistently exciting periodic trajectory, with
zero initial velocity, for the second-order chained form system is givenby

ξ1d(t) = r1cos(ω1t), ξ2d(t) = r2cos(ω2t),

ξ3d(t) =
r1r2ω2

1

2(ω1−ω2)2 cos((ω1−ω2)t)+
r1r2ω2

1

2(ω1 +ω2)2 cos((ω1 +ω2)t).
(7.23)

The corresponding inputs are given byu1d(t) = −r1ω2
1 cos(ω1t) andu2d(t) = −r2ω2

2 cos(ω2t), with
ω1 6= ω2. If ω1 = ω2, then the solution is not periodic and therefore the caseω1 = ω2 is omitted. This
reference trajectory is persistently exciting, and the resulting referencetrajectoryqd for the mechanical
system (7.4) is given by

rxd(t) = r1cos(ω1t)−λ (cos(arctan(r2cos(ω2t)))−1) , (7.24)

ryd(t) =
r1r2ω2

1

2(ω1−ω2)2 cos((ω1−ω2)t)+
r1r2ω2

1

2(ω1 +ω2)2 cos((ω1 +ω2)t)−λ sin(arctan(r2cos(ω2t))),

θd(t) = arctan(r2cos(ω2t)).

This previous equation defines a class of trajectories that depend on the values of the parametersr1,
r2, ω1 andω2. In the simulations of this chapter, we have selectedr1 = 0.4, r2 = 0 andω1 = 1 and
ω2 = 0. This means that we try to track a trajectory in which the joint of the rotational link moves
along a straight line while the link angle is zero. The resulting trajectory is given by

rxd(t) = r1cos(ωt), ryd(t) = 0, θd(t) = 0. (7.25)

We selectd1 = d2 = 0 in the virtual inputx21 (5.5) andd3 = d4 = 0 in the controlleru2 (5.7). The
linear time-varying tracking controller is then given by

u1 = u1d −k1(ξ1−ξ1d)−k2(ξ̇1− ξ̇1d)

u2 = u2d −G3(t)(ξ2−ξ2d)−G4(t)(ξ̇2− ξ̇2d)−G5(t)(ξ3−ξ3d)−G6(t)(ξ̇3− ξ̇3d).
(7.26)

The time-varying feedback coefficients in (7.26) are given by

G3(t) = k5k6u4
1d(t)+(k3 +k4)(k5 +k6)u

2
1d(t)+(5k5 +3k6)u̇1d(t)u1d(t)+k3k4

G4(t) = (k5 +k6)u
2
1d(t)+(k3 +k4)

G5(t) = k5k6k3k4u3
1d(t)+2k5u(3)

1d (t)+(3k5k6u2
1d(t)+2k5(k3 +k4))u

(2)
1d (t)

+(3k5k6(k3 +k4)u
2
1d(t)+2k5k3k4)u̇1d(t)+6k5k6u1d(t)u̇

2
1d(t)

G6(t) = k5k6(k3 +k4)u
3
1d(t)+(k5 +k6)k3k4u1d(t)+(5k5 +k6)u

(2)
1d (t)

+(6k5k6u2
1d(t)+(k3 +k4)(3k5 +k6))u̇1d(t),

(7.27)

whereu(k)
1d (t) denotes thek-th derivative ofu1d(t). The tuning of the control parameters requires some

effort because the parameters have to be chosen such that the closed-loop system isK -exponentially
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stable and, additionally, such that the link angle stays between−π/2 andπ/2. Otherwise, the co-
ordinate transformation is not well-defined since a singularity occurs atθ = ±π/2. The tuning pro-
cedure proceeds as follows. First we determine parametersk1 andk2 that achieve good tracking of
theξ1-subsystem. It suffices to selectk1 andk2 such that the characteristic polynomials2 + k2s+ k1

is Hurwitz. By choosing these values sufficiently large, we can assure that the perturbation term
ξ2(u1−u1d) in (5.1) becomes small sufficiently fast. In the next step, we select parameters k3k4 and
k3 +k4 that stabilize the tracking-error dynamics ofξ2. Sinceξ2 is a virtual input in the backstepping
approach that is used to control theξ3-dynamics, the gains(k3,k4) should be chosen sufficiently large.
Finally, parameters valuesk5 andk6 have to be selected that stabilize theξ3-dynamics. The latter step
is the most important one since they determine the convergence of theξ3-dynamics, which can not be
controlled directly.

In the simulations, we have chosen the control parameters to be equal to the parameter values that
were used in the experimental results of the following chapter. These parameter values are given by

k1 = 4, k2 = 2
√

2, k3k4 = 40, k3 +k4 = 9, k5 = 5, k6 = 100.

The parametersk1 andk2 can be chosen rather small since the perturbation term∆1 is small for small
values ofξ2 and the reference value forξ2 is zero. The positive control parametersk3k4 andk3 + k4

resulting from the backstepping approach, determine the convergence of the tracking-error dynamics
of ξ2 and these dynamics correspond to the link orientationθ . These parameters are chosen such
that the tracking-error dynamics ofξ2 contain a complex pole pair given by−4.5±4.44i. Since the
dynamics ofθ may be influenced by friction, which can not be compensated directly, we have chosen
k3k4 andk3 + k4 sufficiently large in order to prevent stiction of the link. In the simulations without
friction the gaink3k4, typically, has to be chosen larger than 16 and the gaink3 +k4 larger than 8.

The damping in theξ3-dynamics,i.e.,the parameterk6, is chosen to be large in order to reduce the
magnitude of the excursions that the system makes in the direction of thery coordinate. The positive
parametersk5 andk6 also determine the convergence of the tracking-error dynamics of the chained
stateξ3 and its corresponding mechanical statery. These values have been chosen sufficiently large
to guarantee convergence of the stateξ3. Because theξ3-subsystem is stabilized using a backstepping
procedure in which we back-step through theξ2-dynamics, theξ2-dynamics only converge after the
tracking-error dynamics ofξ3 have been stabilized. However, choosing these values too large may
result in the link orientation passing through the singularity pointθ = ±π/2 of the coordinate and
feedback transformation.

The initial condition of the system is chosen to be[rx, ry,θ ] = [0,0,−20π/180], i.e., the joint of
the rotational link starts in the origin and the orientation of the link is -20 degrees. This corresponds
to an initial tracking-error ofξ (0)−ξd(0) = [−0.05,−0.36,−0.01,0,0,0] for the chained states. The
robustness of the closed-loop system against parameter perturbations will not be tested. Although,
the closed-loop system is robust to sufficiently small parameter uncertainties, the system is not robust
with respect to perturbations such as friction and cogging. The friction torque, that is present in the
rotational joint of the link, has a greater influence on the performance of the system than parameter
uncertainties. Therefore, only the robustness with respect to friction in the rotational link will be
considered.

As mentioned earlier, the numerical simulations are performed with and without modelling the
influence of friction in the rotational joint. This allows us to investigate the robustness properties of
the controller. Note that the perturbation∆1 and∆2 affecting theξ1- andξ2-dynamics, see (7.17), can
be suppressed by choosing(k1,k2) and(k3,k4) sufficiently large. In fact they can even be compensated
directly, provided that the friction parameters are known. The parameters(k5,k6) should be chosen
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sufficiently large such that good convergence of the statesξ3 is obtained in spite of the perturbation
∆3.

7.4.1 Simulation without friction in the rotational link

Consider the situation in which the joint of the rotational link is frictionless. This means that the
coordinate- and feedback transformation bring the mechanical system intothe extended chained form.
The result of tracking the trajectory of a straight line with initial condition[rx, ry,θ ] = [0,0,−20π/180]
is shown in Figure 7.4. Note that the control currents from the servo-loopare only sent to the H-Drive
after 1 second. Disabling the control of the H-Drive beforet = 1 s allows us to check the initial value
of the input currents. These non-zero initial values of the input currents iY1− iY1d, iY1− iY1d together
with the non-zero initial valuesu1−u1d andu2−u2d are caused by the non-zero initial valueu1d(0)
of the reference input to the chained form system.
From the simulation it becomes clear that the trajectory is successfully trackedafter approximately

10 seconds. The corresponding chained form coordinates and inputsare shown in Figure 7.5. The
trajectories of the tracking-error dynamics are asymptotically stable and converge to the origin with
an exponential decay rate. Therefore it is concluded that the tracking-error dynamics of the extended
chained form system are globally,i.e.,on the complete state-space

�n, K -exponentially stable. The
original mechanical system is onlyK -exponentially stable on the subspaceC where the coordinate
transformation is well-defined. The simulation result shows the validity of the "virtual internal model
control" approach in which the system is not controlled directly but by a combination of a high-level
controller and a low-level servo-loop.

7.4.2 Simulation with friction in the rotational link

The performance of the tracking controller is also simulated under the influence of friction in the
joint of the rotational link. It is assumed that the friction can be modelled using asimplified model
given by (7.22). The friction parameters of the assumed friction characteristic (7.22) are normalized
with respect to the inertiaI and are given in Table 7.1. The values of the friction coefficientscs and
cv are in the order of magnitude of the normalized viscous and Coulomb friction coefficients of an
H-Drive manipulator available in our lab. The result of tracking the trajectory under the influence of
the friction torque is shown in Figure 7.6. The simulation model (7.2) includes thecoupling of mass
between the X-axis and the Y-axes. However, the influence of this coupling of mass is very small and
the difference between the currents to the Y1- and Y2-axis is hardly visible.

The coordinates of the extended chained form system are shown in Figure 7.7. Clearly, the
tracking-error dynamics are notK -exponentially stable, and the trajectory is not perfectly tracked.
In fact, after about 10 seconds the system performs a stationary periodic motion around the reference
trajectory. This periodic motion is caused by frictional perturbations acting inthe perturbed chained
form system given by (7.17). The perturbation terms in theξ1- andξ2-dynamics are suppressed by
time-invariant parts of the tracking control inputu1 andu2. The main difficulty, lies with the pertur-
bation∆3 in theξ3-dynamics. Since this perturbation term can not be compensated the performance
of the tracking controller is considerably deteriorated. The perturbation∆3 prevents the coordinate
ξ3 from converging to zero. Moreover, this perturbation term can not be compensated by the virtual
input ξ2 since the perturbed chained form system is not in strict-feedback form. As a consequence,
the virtual inputξ2 from the backstepping procedure also does not converge to zero andthe system
performs a periodic motion around the desired reference trajectory.

Approximate cancellation of the perturbation∆3 is possible by selecting large values for the gains
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k5 andk6 (high gain reduction). The high gains may, however, cause the system to approach the sin-
gularity of the coordinate and feedback transformation atθ = ±π/2 and the influence of the gains on
the performance of the closed-loop system is not completely understood. In certain cases, increasing
the gainsk5 andk6 results in a smaller tracking errorξ3− ξ3d but, in general, this will also results
in a larger tracking-errorξ2− ξ2d. Similarly, increasing the gainsk3k4 andk4 + k4 does not improve
the performance since theξ3-subsystem is not asymptotically stable anymore. Since the tracking-
errors ofξ2 − ξ2d and ξ3 − ξ3d are coupled, simply increasing the gains may even result in larger
tracking-errors. In other words, due to the backstepping procedure, a trade-off has to be made be-
tween the tracking-error inξ3 and the tracking-error inξ2. Although the closed-loop system is not
K -exponentially anymore, the tracking-error dynamics are globally uniformlyultimately bounded
(UUB), see Chapter 3, meaning that the tracking-errors remain bounded. Note that this UUB property
only holds on a subspaceC where the coordinate transformation is well-defined.

The closed-loop system is more susceptible to static friction than to viscous friction in the rota-
tional joint. This can be understood from the fact that the reference trajectory includes a desired value
of zero for the orientationθ , and the magnitude of the viscous friction becomes smaller when the
system is closer to the desired reference trajectory. The magnitude of the static friction remains the
same even when the system is very close to the desired trajectory and only vanishes (in the model) for
a zero angular velocity ofθ .

7.5 Feedback Stabilization

This section is concerned with the feedback stabilization problem for the underactuated H-drive ma-
nipulator. In the simulations we wish to stabilize the joint position to the origin(rx, ry) = (0,0) and
the link orientation toθ = 0. The controller is given by

u1 = −k1ξ1−k2ξ̇1 +h(ξ1, ξ̇1,ξ3, ξ̇3)sin(t/ε) (7.28)

u2 = −k3k4ξ2−k4ξ̇2−k3k4
2(k5ξ3 +k6ξ̇3)

h(ξ1, ξ̇1,ξ3, ξ̇3)
sin(t/ε), (7.29)

whereξ denotes the state of the second-order chained form and the homogeneous normh(ξ1,ξ2,ξ5,ξ6)
is given by

h(ξ1, ξ̇1,ξ3, ξ̇3) =

√

ξ 2
1 + ξ̇ 2

1 + |ξ3|+ |ξ̇3|. (7.30)

The controller parameters are chosen as

k1 = 4, k2 = 2
√

2, k3 = 15, k4 = 15, k5 = 2, k6 = 2,ε = 0.25.

The parametersk1 andk2 are the gains of the stabilizing part of the controlleru1. These should not
be chosen too large, since sufficient excitation of theξ1-dynamics is needed in order to be able to
stabilize theξ3-dynamics. The most important parameters arek3, k4, k5 andk6. The parametersk3

andk4 are the gains of the backstepping or high-gain approach, and should bechosen sufficiently
large. It is not clear which magnitude is sufficient, however valuesk3 > 10 andk4 > 10 suffice. The
parametersk3 andk4 determine the convergence of the link orientation, whilek5 andk6 determine the
convergence of they-position of the unactuated link. Therefore, choosingk5 andk6 large will result in
large control effortsu2. The frequency 1/ε has to be chosen sufficiently small. In simulation, values
of ε ≤ 0.25 work fine although the controller gains may be tuned to allow larger values of ε.

As in the case of tracking control, the gain-tuning procedure is complicated by the fact that the
system should not only be asymptotically stable, but also the mechanical coordinates should also
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remain inside a subspace of
�n in which the coordinate transformation is valid. This means that

choosing the controller gains to high, may result in the system passing through the singular point at
θ = ±π/2 of the coordinate and feedback transformation.

7.5.1 Simulation without friction in the rotational link

We start by considering the situation in which the joint of the rotational link is frictionless. This means
that coordinate- and feedback transformations bring the mechanical system into the extended chained
form. The result of stabilizing the H-drive system with an initial condition given by [rx, ry,θ ] =
[0.2,0.25,−25π/180] is shown in Figure 7.9. The mechanical system is successfully stabilized to
the origin after approximately 40 seconds. The time-span of the plots is constrained to 40 second for
clarity of the plots. After 40 seconds, the systems performs a small and damped oscillatory motion
around the origin which vanishes asymptotically. Note that the control currents from the servo-loop
are only sent to the H-Drive after one periodT = π/2 of the time-varying part of the stabilizing
controller. Disabling the control of the H-Drive beforet = π/2 s allows us to check the initial value
of the input currents.

The corresponding chained-form coordinates and inputs are shown inFigure 7.10. In Chapter 6
it was shown that the closed-loop system isρ-exponentially stable with respect to the homogeneous
norm

ρ(ξ1, ξ̇1,ξ3, ξ̇3) =

√

ξ 2
1 + ξ̇ 2

1 +ξ 2
2 + ξ̇ 2

2 + |ξ3|+ |ξ̇3|. (7.31)

Therefore the homogeneous normh(x) (7.30), that is used in the controller (7.28), and the homoge-
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neous normρ(x) given in (7.31) have been shown in Figure 7.11 (a), from which we conclude that
the homogeneous controller globallyρ-exponentially stabilizes the second-order chained-from.

Note that the convergence rate of the tracking controller is much faster thanthe convergence rate
of the stabilizing controller. The tracking control problem was solved under the assumption that
the trajectories to be tracked are persistently exciting. The designed tracking controller is a linear
time-varying feedback controller of which its convergence rate is determined by the persistence of
excitation condition. In the stabilization problem also a form of persistence ofexcitation is needed.
After all, the systems considered in this thesis can not be stabilized by any smooth or even continuous
time-invariant state-feedback and the system is uncontrollable foru1 = 0. The designed stabilizing
controller is a nonlinear controller with a time-varying part of which the amplitudedepends on the
magnitude of the state. This time-varying part is needed in order to be able to stabilize the system.
However, the system becomes less persistently exciting as the system approaches the origin, i.e. the
magnitude of the state becomes smaller and therefore also the magnitude of the time-varying part
of u1. Therefore, it is not surprising that the convergence rate of the lineartime-varying tracking
controller is better than that of the homogeneous stabilizing controller.

7.5.2 Simulation with friction in the rotational link

If we include friction in the unactuated link,e.g.(7.22), the performance of the stabilizing homoge-
neous controller is considerably deteriorated. As can be seen from Figure 7.12, the closed-loop system
is not asymptotically stable. In fact, the system goes into a stable ’limit-cycle’ with an amplitude that
is determined by the magnitude of the friction.

The corresponding chained coordinates and inputs are shown in Figure7.13. It is clear that the
system is not asymptotically stable. Due to the perturbation∆3(ξ2, ξ̇2) the stateξ3 does not converge
to zero, but instead, it performs a periodic motion around zero. Becausethe time-varying parts of
the homogeneous controllers (7.28) depend on the homogeneous norm, thisresults in the oscillatory
behavior shown in the figure. In Figure 7.14, the values of the control term ξ2u1 and the perturbation
∆3(ξ2, ξ̇2) of theξ3-dynamics,cf. (7.18), have been plotted. The perturbation term∆3(ξ2, ξ̇2) prevents
the stateξ3 from being stabilized to the origin. It should be noted that, similar to the tracking case, the
coordinatesξ2 andξ3 are coupled due to the backstepping approach. This means that the amplitude
of the resulting "limit-cycle" can not be reduced by simply increasing the gainsof the controller. In
fact, since theξ3-dynamics are perturbed by∆3(ξ2, ξ̇2) there is a error in the stationary value ofξ3.
By increasing the gainsk5 andk6 it may be possible to reduce this error, however, only at the cost of
increasing the magnitude of the oscillations in theξ2-dynamics.

It is not surprising that the continuous time-varying homogeneous controller does not stabilize the
system. Under the influence of friction in the joint of the rotational link, the perturbed second-order
chained form is given by (7.17). It is clear that whenu1 andu2 are of degree one with respect to some
dilation, the system will not be homogeneous of degree zero with respect tothe dilation with weight
r = (1,1,1,1,2,2). Moreover, the system is not in strict-feedback form. Therefore, the averaging
and backstepping results of Chapter 6 are not valid, and the homogeneous controller may not be a
continuous stabilizer for the perturbed extended chained form.

At this point we have not included any simulations with the robust version,i.e., the periodically
updated version, of the homogeneous controller. First of all, the robustversion is only robust with
respect to a class of perturbations that does not include friction. In fact, from Proposition 6.2.1, it is
known that the perturbations for which the periodically updates controller isrobust, only include drift
vector-fieldsh0(x,ε) = O(‖x‖), or in other words, every component of the drift vector-field satisfies
h0,i = O(‖x‖2), which is clearly not the case when including static friction in the model. As expected,
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Figure 7.11: Stabilization of the H-drive system without friction (left) and with friction (right); logarithm of the
homogeneous norms (7.30) (solid) and (7.31) (dashed)

the simulations with the robust homogeneous controller under the influence offriction did not show
any improvement compared to the continuous homogeneous controller. Furthermore, the simulations
showed that the convergence rate of the robust homogeneous controller is slightly worse than that of
the continuous homogeneous controller.

7.6 Conclusions

We have presented controllers for both tracking and feedback stabilization of a second-order non-
holonomic system. This second-order nonholonomic system consists of an underactuated H-drive
manipulator. In the simulations, the performance of a linear time-varying tracking controller and a
continuous periodic time-varying stabilizing controller has been investigated.The performance was
tested with and without modelling friction in the joint of the rotational link.

The tracking controller yieldsK -exponential convergence when the, to be tracked, trajectory
of the frictionless link satisfies a persistency of excitation condition. If friction in the joint of the
rotational link is modelled, the performance of the tracking controller is considerably reduced. In
fact, the tracking-error dynamics are not even asymptotically stable, but the tracking errors remain
bounded.

The homogeneous time-varying feedback stabilizer achievesρ-exponentially stability of the closed-
loop system without friction. If however, friction is included in the model, the closed-loop dynamics
are not even asymptotically stable. The closed-loop system performs a periodic motion around the
origin with an amplitude that is determined by the magnitude of the friction. The amplitude of these
oscillations around the origin may or may not be reduced by increasing the gains. In some cases,
the amplitude can be reduced, but in general, reducing the oscillations in onecoordinate increases
the oscillations in another coordinate. Moreover, the gains can not be increased too much, since the
coordinate transformation is only valid forθ ∈ (−π/2,π/2) and this may lead to a singularity as the
link orientation reachesθ = ±π/2.

Concluding, the numerical simulations have shown that in the absence of disturbances and un-
modelled dynamics, such as friction or cogging, the controllers achieve the expected performance.
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Figure 7.14: Stabilization of the H-drive system with friction; input ξ2u1 and the frictional perturbation term
∆3(ξ2, ξ̇2) of theξ3-dynamics, see (7.18)

However, if friction in the unactuated rotational link is included in the model, the performance is
considerably deteriorated. In the case of tracking, the closed-loop dynamics are not globally exponen-
tially stable. Instead, the friction term results in deviations from the desired trajectory. By performing
numerical simulations with different friction parameters, it turns out that the closed-loop system is
more susceptible to static friction than viscous friction in the rotational link. This istrue in both the
tracking and stabilization case. Therefore, in an experimental setup, the static friction should be min-
imized. In the following chapter, the performance of the tracking and stabilizing controllers will be
verified by application to a real-life set-up of an underactuated H-Drive manipulator.



Chapter 8

Experimental results

In this chapter, experimental results obtained with an underactuated H-Drive manipulator will be
presented. The experimental setup consists of an H-Drive servo system that has been built by Philips’
Centre for Industrial Technology (CFT) as part of an Advanced Component Mounter (ACM). This
H-Drive servo system is now available in the laboratory of the Dynamics andControl Technology
Group. The H-Drive servo system is shown in Figure 8.1. In order to obtain an underactuated system
that can be used for experimental verification of tracking and stabilizing controllers, an additional
rigid rotational link is attached on top of the LiMMS along the X-axis. This underactuated rotational
link is shown in Figure 8.2. The angle of the link is measured using an ERO 1324incremental rotary
encoder manufactured by Haidenhain. This encoder outputs an incremental TTL signal and has 5000
linecounts. An additional GEL214-TN004 interpolator, manufactured by Lenord & Bauer, is used
with an interpolation factor of 10 to increase the resolution to 50000 counts. The resulting TTL signal
is used to obtain a readout in quarters of linecounts, giving the encoder atheoretical resolution of
3.14·10−5 (2π/200000) radians per count. A dSPACE system in combination with Matlab/Simulink
is used as a control system environment. The sampling rate of the system is set to a value of 4 kHz,
higher sampling rates resulted in processor overrun errors.

Figure 8.1: The H-drive servo system.

In Figure 8.2 the unactuated rotational link is shown. The rotational link is attached to an alu-
minium plate that is attached on top of the LiMMS along the X-axis. It should be noted that the joint
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connecting the link to the plate is passive, it has neither an actuator nor a brake, and the link rotates
freely. The incremental encoder is contained in a cylinder located just below the plate. The link is
suspended using a conventional ball-bearing. The size of the bearing was chosen to be as small as
possible in order to reduce friction. The plate containing the link together with the ball-bearing and
the incremental encoder can be easily removed. The only additional cable that is needed is a cable
that transfers the encoder signal to the DSP and also supplies a voltage of5 [V] from the DSP to the
incremental encoder.

Figure 8.2: The unactuated rotational link.

At the tip of the link, an additional mass has been added to increase the massm3 and inertia
I = I3 + m3l2 and, as a consequence, reduces the influence of the perturbation∆3 in (7.18). In the
numerical simulations of the previous chapter it was shown that thery coordinate of the link, and
its corresponding chained form coordinateξ3, are the most difficult to control. This is caused by a
perturbation term acting on the dynamics of the chained form coordinateξ3. As can be seen from
(7.18), the influence of the perturbation is reduced by either an increaseof the massm3 or the length
l between the joint and the center of mass (C.M.) of the link. By increasing the length of the link, the
distance from the joint to the center of percussion C.P. will also be increased. The coordinate trans-
formation that brings the system into the second-order chained form is based on the fact that a pure
rotational motion of the link can be obtained by rotating the joint along a circle of radiusλ around
the center of percussion. If the distanceλ , i.e. the distance from the joint to the C.P., is increased,
larger motions of the joint will be needed in order to control the position and orientation of the link.
The H-Drive, however, only has a limited workspace in which the X-axis and the Y-axes can move
along a distance of approximately 50 and 100 centimeters, respectively. Therefore, in order to prevent
too large excursions of the joint position[rx, ry] during stabilization or tracking, we have chosen to
constrain the length of the link to a rather small value of approximately 15 cm.

As in the previous chapter, the tracking and stabilizing controllers are implemented using a ’virtual
internal model following control’ approach. In this way, the servo-controllers can be used to compen-
sate the effect of the cogging forces, reluctance forces and friction inthe X and Y motors. Moreover,
the servo-controllers compensate the distribution of the mass of the X-motor over the Y-motors. The
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dynamics of the LiMMS are assumed to be identical, and the Y1- and Y2-axes are therefore con-
trolled by the same servo-controller given in (C.6). These servo-controllers result in position- and
acceleration errors smaller than 50µm and 0.15 m/s2 along the X-axis and Y-axes. In different ap-
plications, a servo-accuracy up to approximately 5µm has been shown to be possible. In this thesis,
however, no feed-forward loop has been implemented and it is expected that the servo-accuracy can
be improved by adding feed-forward to the servo-controllers. In this thesis, no sensitivity analysis has
been performed and it is not clear how the accuracy in the servo-loop affects the control of the link
angleθ . From simulations that have been performed with friction in the LiMMS and the rotational
joint, it follows that the influence of this servo-error along theX andY axes is negligible compared to
the effect of friction in the rotational joint.

The originO of the coordinate system is located at(X,Y) = (−0.3,0.5) (near the center of the
H-drive setup) and the displacementsrx andry may be written asrx = (Y1+Y2−1)/2, ry =−X−0.3.
The coordinate system of the resulting underactuated manipulator, is shownin Figure 7.2. Because the
link is not actuated, but rotates freely, we obtain an underactuated mechanical system with three inputs,
i.e., the currentsiX, iY1 andiY2 to the motors, and four generalized coordinates,i.e., the positions X,
Y1, Y2 and the orientationθ of the link. Using the inputs currents to the X and Y motors, we wish
to control the longitudinal positionrx and transversal positionry of the rotational link, as well as its
orientationθ . As mentioned earlier, the rotational link is connected to the X-motor with a ball-bearing
and its dynamics are therefore influenced by friction. The nonholonomic constraint is thus given by

λ θ̈(t)− r̈x(t)sinθ(t)+ r̈y(t)cosθ(t) =
τ f ,θ

(

θ̇
)

m3l
, (8.1)

whereλ = I/(m3l) equals the effective pendulum length of the rotational link andm3 denotes the
mass of the link andl denotes the distance between the joint and the center of mass of the link. The
friction torque acting at the rotational joint is denoted byτ f ,θ (θ̇). In order to reduce the influence of
the frictionτ f ,θ , the productλ (m3l) = I should be large. This justifies the placement of an additional
an additional mass at the tip of the link in order to increase the moment of inertiaI = I3 +m3l2 about
the vertical axis through the joint.

8.1 Parameter identification

Consider the underactuated H-Drive manipulator shown in Figure 7.2. Themassm3 of the rotational
link is much smaller than the masses of the LiMMS. Moreover, the X and Y motors are controlled by
a servo-loop and the influence of the dynamics of the rotational link on the dynamics of the X-motor
and Y-motors is assumed to be negligible. Therefore it suffices to considerthe partially feedback
linearized model given by (7.9),i.e.,

r̈x = vx

r̈y = vy

θ̈ = λ (sin(θ)vx−cos(θ)vy)+
τ f ,θ

I
.

(8.2)

The inputsvx andvy represent the desired accelerations along therx- andry-direction. These desired
accelerations are integrated twice, in order to obtain desired positions for the X and Y motors, and the
resulting position error is used as an input to the servo controllers (C.6). Note that therx coordinate is
controlled by the two LiMMS along the Y-axes, while thery coordinate of the joint is controlled by the
LiMMS along the X-axis. In the experiments it is thus assumed that the servo controllers compensate
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all nonlinearities and perturbations like friction, cogging, reluctance forces and the distribution of the
mass along the X-axis over the Y-axes. These servo controllers compensate the friction in the X and
Y motors, however, the friction of the rotational link can not be compensateddirectly. The model
to be identified and the corresponding coordinate and feedback transformation, needed to bring the
system into the second-order chained form, then only depend on one parameter,i.e., the parameter
λ = I/(m3l).

8.1.1 The location of the Center of Percussion

The distanceλ between the passive joint and the center of percussion (C.P.) of the freerotating link
is the most important parameter in the proposed control design method. The coordinate transfor-
mation needed to transform the mechanical coordinates(rx, ry,θ) into the chained form coordinates
(ξ1,ξ2,ξ3) and to transform the chained form inputsu1 andu2 into the desired accelerationsvx andvy

is given in Section 7.2 and only depends onλ . Sinceλ equals the effective pendulum length of the
link when treated as a rigid body pendulum suspended from the passive joint, its value can be obtained
form the periodT of the pendulum by the relation

λ = g

(

T
2π

)2

(8.3)

with g denoting the gravitational acceleration. For the experimental underactuated H-Drive manipu-
lator we obtain the parameter valuesT = 0.745 andλ = 0.138.

8.1.2 Linear least-squares identification

The parameterλ can also be identified by moving the X and Y motors along specified periodic trajec-
tories and recording the angleθ of the link. Suppose that the frictionτ f ,θ can be approximated by a
continuous model given by

τ f ,θ = −cvθ · θ̇ −csθ

(

2
π

)

arctan(100· θ̇). (8.4)

The system is then linear in the parametersp = [1/λ ,cvθ/I ,csθ/I ]T . We rewrite the system into the
linear formθ̈ = A(vx,vy,θ , θ̇)p as

θ̈ =

[

(sin(θ)vx−cos(θ)vy) −θ̇ −
(

2
π

)

arctan(100· θ̇)

]

p. (8.5)

By performing sinusoidal motions[rxd(t), ryd(t)] along thex andy direction and recording the posi-
tions rx andry, the accelerations ¨rx and ¨ry can be obtained by differentiation. The resolution of the
encoders of the LiMMS is sufficient high, and the level of the measurementnoise is sufficiently low,
to obtain reliable identification results without additional filtering. The acceleration θ̈ can also be ob-
tained by numerical differentiation, but this amplifies the measurement noise. Therefore, depending
on the measurement data, it may be necessary to filter the acceleration signalwith, for example, a
fourth-order Butterworth filter. This filtering is done in forward and backward direction in order to
obtain zero phase distortion.

By recording the link angleθ , differentiating twice and performing additional filtering, we can
collectn samples and form a set of linear equations

Φ · p = y, (8.6)
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with unknown parameter vectorp = [1/λ ,cvθ/I ,csθ/I ]T and

Φ =











A(vx(t0),vy(t0),θ(t0))
A(vx(t1),vy(t1),θ(t1))

...
A(vx(tn),vy(tn),θ(tn))











y =











θ̈(t0)
θ̈(t1)

...
θ̈(tn)











By selecting the sinusoidal trajectory such that the resulting matrixΦ is nonsingular, an estimate of
the parameter vectorp can be found by using the pseudo-inverse,i.e.,

p = Φ∗y (8.7)

where
Φ∗ = ΦT(ΦΦT)−1.

Initially, we performed sinusoidal motionsrx(t) = −0.3cos(πt) and ry(t) = −0.2cos(πt) in the x
andy direction respectively. Using this trajectory, we identified the normalized inertia and friction
parameters of the link, as well as the normalized parameters in thex andy direction. The obtained
parameters are summarized below.

λ = 0.1364 [m], cvθ /I = 0.1552 [1/(rad·s)], csθ /I = 1.3185 [1/s2] (8.8)

The viscous friction in the rotational joint is much smaller than the static friction. Assuming a link
massm3 = 0.04 [kg] and a lengthl = 0.15 [m] between the joint and the center of mass of the link,
i.e., using the relationI = (m3l)λ , these parameters correspond to a viscous friction torque of about
0.12·10−3 [Nms/rad] and a static friction torque of about 1.0·10−3 [Nm].

Through numerical simulations it follows that the tracking and stabilizing controllers are more
susceptible to the static friction torque in the rotational joint than to the viscous friction torque. In
some initial tracking and stabilization experiments, it turned out to be very difficult to find control
parameters for which the closed-loop system was stable and additionally, for which the system re-
mained inside the workspace of the H-Drive. Therefore we tried to reduce the static friction in the
rotational joint by removing all grease from the ball-bearing and replacingit with a different lubricant.
This considerably reduced the static and viscous friction in the rotational joint, as will be seen in the
sequel.

The link dynamics are not only influenced by friction but also by a gravitational torque resulting
from a misalignment of the plane of rotation of the link with the horizontal plane,i.e., the equipoten-
tial plane of gravity. The misalignment can be caused by flexibility inside the ball-bearing resulting
in a misalignment of the axis of rotation, or from a misalignment of the plate that attaches the link to
the LiMMS of the X-axis with the equipotential plane of gravity, see Figure 8.2.These perturbations
result in a preference of the rotational link to rotate in the direction of the least potential energy. In
the current experiments, this gravitational perturbation is compensated by stiction, resulting from the
static friction in the link, and therefore does not influence the existence of equilibria. Additionally, the
friction characteristic of the link may not be symmetric,i.e.,when rotating in the positive direction the
magnitude of the friction torque may be larger than its magnitude when rotating in thenegative direc-
tion. These perturbations can be understood from the following experiment. By performing a tracking
experiment with the initially identified parameters and using the measured data resulted in the param-
eters given in Table 8.1. For completeness, we have also included the identified parametersmx andmy,
denoting the effective mass in the direction ofrx andry, which have been used in the simulations of the
previous chapter. The corresponding condition number and determinantof the information matrixΦ
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parameters value unit parameters value unit
mx/km 0.3263 [A ·s2/m] my/km 0.1406 [A ·s2/m]
λ 0.1373 [m] I 0.0008 [kg·m2]
cvθ /I 0.0217 [1/(rad·s)] csθ /I 0.3320 [1/s2]

Table 8.1: Parameters of the dynamic model (7.14) of the underactuated H-Drive manipulator

are given by cond(Φ) = 9.62384 and log10(|Φ|) = 7.7633. This identification result shows that both
the static and viscous friction torques have been considerably reduced by replacing the grease in the
ball-bearing by a finer lubricant. The friction is reduced to a viscous friction torque of approximately
1.78·10−5 [Nms/rad] and a static friction torque of approximately 2.73·10−4 [Nm]. The measured
and estimated acceleration and the identified friction torque (8.4) together with the residual friction
torque given by

θ̈ − sin(θ)r̈x−cos(θ)r̈y

λe
(8.9)

whereλe denotes the identified value ofλ , are shown in Figure 8.3. It is clear from the figure that
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Figure 8.3: Identification of the symmetric friction characteristic (8.4)

an additional negative disturbance torque is present. This disturbance torque has a magnitude of
approximately 0.1535[1/s2] when normalized with respect to the inertiaI or equivalently a magnitude
of about 12.64· 10−5 [Nm]. It is expected that this identified friction characteristic is caused by a
combination of gravitational perturbations, resulting from a misalignment of theplane of rotation of
the link with the horizontal plane, and an asymmetric friction characteristic of therotational joint.
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In order to capture the gravitational perturbations it is necessary to identify a nonlinear friction
model. Suppose that the plane of rotation of the link is misaligned with the horizontal plane by a
rotation angleφx about the positivex-axis and an angleφy about the positivey-axis. The additional
gravitational torque that is generated can be written as

τz,d = −m3gl(cos(θ)sin(φy)−sin(θ)sin(φx)) (8.10)

whereg denotes the gravitational acceleration. Sinceφx andφy are constants, the least-squares method
can be used to identify this gravitational disturbance torque. An Extended Kalman Filter (EKF) can
be used to identify the nonlinear friction characteristic of the link, including theStribeck effect, in
combination with the additional gravitational disturbance (8.10). This can be useful when it is possible
to compensate the friction and gravitational disturbances in the rotational joint.This may be done by
adding a small motor at in rotational joint of the link, that is only used to compensate the effect of
perturbations.

Remark 8.1.1. Instead of adding an additional motor at the rotational joint to compensate the fric-
tional and gravitational perturbations, which makes the system fully actuated, it might be possible
to compensate the frictional disturbances by using the currentsiX and iY to the LiMMS. In fact, by
transforming the system to the second-order chained form given by (7.17), the perturbations affecting
the ξ1- andξ2-dynamics can be fully compensated provided that the friction characteristicas well
as the gravitational disturbance torque are known. Because the chainedstatesξ1 andξ2 correspond
to the mechanical coordinatesrx andθ , respectively, this means that the perturbations affecting the
dynamics of the longitudinal positionrx(t) and the link orientationθ(t) can be compensated. In view
of the results in Section 7.3, it is not yet clear whether the perturbations in theξ3-dynamics or its
corresponding transversal positionry can be compensated using the input currentsiX and iY to the
LiMMS. As the linearization of the second-order chained form system around equilibrium points is
not controllable, no compensation is possible at equillibrium points. Therefore, it is expected that
compensation of the perturbations is not possible and no identification resultsthat were obtained with
an EKF will be presented.

8.2 Experiment with the Tracking Controller

The friction torque and the gravitational disturbance torque, acting in the joint of the rotational link, act
as perturbations to the second-order chained form system. Therefore, we do not expect the tracking-
error dynamics to be globallyK -exponentially or even asymptotically stable. However, we do expect
the system to be uniformly ultimately bounded (UUB), meaning that the system moves along the
trajectory with bounded tracking-errors.

In this section, the results of an experiment with the tracking controller is presented. In the experi-
ment, we intend to stabilize the underactuated H-Drive manipulator to a persistently exciting trajectory
given by (7.24). The parameters of this trajectory are selected asr1 = 0.35 , r2 = 0 andω = 0.5. The
resulting reference trajectory in mechanical coordinate and chained form coordinates is given by

rxd(t) = 0.4sin(t), ryd(t) = 0, θd(t) = 0
ξ1d(t) = 0.4sin(t), ξ3d(t) = 0, ξ2d(t) = 0

(8.11)

The trajectory is thus persistently exciting,i.e., (5.4) holds, and we can apply the tracking controller
(7.26) to stabilize the system to the reference trajectory. The equations (8.11) represent a trajectory
along thex direction in which the Y motors perform a sinusoidal motion with a frequency of1/(2π)
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Hz while the angle of the link remains equal to zero. This trajectory can be thought of as representing
a pendulum on which a varying gravitational field acts,i.e., when the acceleration in thex direction
is positive, the system acts as an inverted pendulum and when the acceleration in the x direction
is negative, the system acts as a conventional pendulum. The gravitationalfield is maximal at the
end-points of the trajectory and is zero at points whererx(t) = 0.

Initially, it was very hard to find a set of control parameters for which the closed-loop tracking-
error dynamics were uniformly ultimately bounded (UUB), see Definition 3.5.1 under the influence
of the perturbations and, additionally, would keep the system within the boundary of the workspace.
In fact, for some control parameters, thery coordinate would become too small and the system would
reach the boundary nearry = −0.3. In order to reduce the motion in they direction, it is necessary
to increase the damping in theξ3-dynamics by choosing a large valuek6. The control parameters are
chosen as follows

k1 = 4, k2 = 2
√

2, k3 = 40, k4 = 9, k5 = 5, k6 = 100.

Before the start of the experiment, the system is initialized to the equilibrium pointgiven by
[rx, ry,θ ] = [0,0,−0.35], i.e., the joint position error is zero and the link has an orientation error of
approximately−20 degrees. The experiment is started after the servo-controllers havebeen enabled
at timet = 1 [s]. The result of stabilizing the system to this trajectory is shown in Figures 8.4. In this
figure, the tracking-errorrx− rxd is small and the difference betweenrx andrxd is hardly visible. The
tracking-errorsry− ryd andθ − θd are larger and do not converge towards zero and thus imply that
the tracking-error dynamics are not asymptotically stable. The system performs a periodic motion
around the desired trajectory with a maximal deviation of 2.5 and 12 cm in the coordinatesrx andry

respectively. The maximal deviation in the orientationθ(t) of the link is approximately 35 degrees.
By comparing the experimental results in Figure 8.4 to the simulations results in Figure 7.6 it follows
that the experimental result correspond well with the simulation results. The periodic motion due to
the perturbations, around the periodic reference trajectory, is qualitatively the same and the maximal
deviations are almost equal. The main difference between the experimental results and the simulation
is visible in the currentsiX − iX,d, iY− iY1,d andiY− iY2,d. The currents in the experiment are generally
larger and show the influence of un-modelled dynamics such as, cogging and measurement noise.

In Figure 8.5 the chained form coordinates and inputs have been shown.The tracking-errors of
the chained coordinates reach their maximal values after the system has passed the pointrx(t) = 0
whereu1d(t) = 0. At this point the persistently exciting signalu1d(t) reaches its zero value and
the tracking error of theξ3 coordinate increases. This induces an increase of the tracking error of
ξ2, since the system uses the coordinateξ2, i.e., the virtual input in the backstepping procedure, to
reduce the tracking errors in theξ3 coordinate. By comparing the experimental results in Figure 8.5
to the simulation results in Figure 7.7 it follows that the experimental results correspond well with
the simulation results. The inputu1−u1d corresponds very well to the simulation results. The main
difference is visible in the inputu2−u2d. The inputu2−u2d is influenced by measurement noise and
quantization errors in the measurement of the link-angleθ . Since the damping has been increased by
choosing a large valuek6 = 100, these measurement noise and quantization errors are amplified. The
chained inputs[u1,u2] are transformed into desired accelerations and integrated twice. Therefore, this
amplification does not cause any problems because the integration step suppresses the high-frequent
dynamics that are present in the desired accelerations. In order to improve the visibility of the signals,
the the inputs[u1,u2] in Figure 8.5(b), have been filtered (off-line) using an 8th-order Butterworth
filter with a cut-off frequency at 1[kHz].

As expected from the simulation study, the main difficulty lies with stabilizing thery or, equiv-
alently, theξ3 coordinates. The system tries to reduce the tracking error in theξ3 coordinate by
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Figure 8.4: Tracking experiment of the underactuated H-Drive manipulator; coordinates and inputs of the me-
chanical system
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performing a periodic motion in which the link orientationθ(t) acts as a virtual input in the back-
stepping approach. The perturbation term∆3 given in (7.17) prevents the stateξ3 from converging to
the origin. The system thus goes into a stable limit cycle with an amplitude that is determined by the
magnitude of the friction. In Figure 8.6, the perturbation term∆3 = ξ̈3−ξ2u1 of the perturbed chained
form system is shown together with the estimated perturbation∆̂3. The estimated perturbation̂∆3 is
obtained from (7.18) by assuming a continuous symmetric friction characteristic (8.4) with friction
parameters given bycv = 0.1 andcs = 0.3. The difference between the actual and estimated value of
∆3 are caused by a gravitational disturbance torque, measurement noise and the fact that the friction
characteristic can not be perfectly modelled by (8.4). To check whether the unactuated link is influ-
enced by a gravitational disturbance torque, the experiment has been repeated with a positive initial
angle. If the friction characteristic of the rotational link is symmetric and no gravitational disturbance
torque is present, then the response of the system should show a similar behavior, but mirrored with
respect to the time-axis. It turns out that if we repeat the experiment with a positive initial angle
θ(0) = 20 degrees, then the system still ends up in the lower-half of the workspace (ry < 0), similar to
the case with a negative initial angleθ(0). This is an indication that the link dynamics are influenced
by an additional gravitational disturbance torque.

The errors in position and acceleration of the low-level servo-loop are shown in Figure 8.7. The
position errors are in the order of magnitude of 50[µm] and the acceleration errors are in the order
of magnitude of 0.1 [m/s2]. These acceleration-errors may be reduced by adding feed-forward or a
cogging compensator to the servo-loop. However, based on numerical simulations with comparable
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Figure 8.7: Tracking experiment of the underactuated H-Drive manipulator; position and acceleration errors in
the servo control loop

acceleration-errors, we do not expect smaller acceleration-errors toimprove the control performance.

Remark 8.2.1. An important question that might be asked is how to improve the performance of
the controller. First of all, the performance may be improved by additional gain tuning in which the
control parameters of the tracking controller, as well as the servo-controllers, are fine-tuned to improve
performance by reducing the tracking and/or stabilization errors. By increasing the proportional gain
k5, it is possible to reduce the tracking error in the transversal positionry or its corresponding chained
stateξ3. However, in most cases, this results in larger deviations from zero in the link angleθ(t) or the
chained stateξ2. Therefore, the tuning of the controller gains should be a subject of further research.
Secondly, the performance may be improved by increasing the productm3l by increasing either the
massm3 or the lengthl , or both. Since the workspace of the H-Drive is limited we would like to
maintain the same lengthl , and only increase the massm3 by adding a larger weight at the tip of the
link. A problem which occurs is that this additional weight also increases theeffect of gravitational
disturbance torques acting in the rotational joint. Finally, the performance ofthe controller can be
improved by reducing the friction and gravitational perturbation torques acting in the rotational joint.
This would require the use of either a magnetic bearing or an air-bearing.

8.3 Experiment with the Homogeneous Stabilizing Controller

In the following experiment, we consider the stabilization problem for the underactuated H-Drive
manipulator. The system is to be stabilized to the origin[rx, ry,θ ] = [0,0,0]. Since the homoge-
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neous stabilizing controller has been designed under the assumption that noperturbations, such as
friction and gravitational torques, act on the system, we do not expect thesystem to be globallyρ-
exponentially stable. Instead, we aim at achieving a form of practical stability in which the system
stays sufficiently close to the origin. In the simulations, the closed-loop systemwas shown to exhibit
a form of limit-cycling behavior under the influence of friction in the rotationallink. In the exper-
iments, besides friction and the fore-mentioned gravitational disturbance torques, we also expect to
have perturbations such as measurement noise, quantization errors from the link angle encoder, nu-
merical errors resulting from differentiation and filtering of signals, delays from the dSPACE system
including the amplifier and cables and accelerations errors in the servo-loop. It is assumed that fric-
tion, cogging and reluctance forces in the LiMMS are completely compensatedby the servo-loop. By
achieving a form of practical stability, it may be possible to bring the system intoa stable motion
around the desired equilibrium point.

Before the start of the experiment, the system is initialized to the equilibrium pointgiven by
[rx, ry,θ ] = [0.20,0.20,−0.36]. This corresponds to an initial joint error of 20 cm in each direction
and an initial link orientation error of approximately−20 degrees. The stabilizing homogeneous
controller is given by (cf. (7.28)),

u1 = −k1ξ1−k2ξ̇1 +

√

ξ 2
1 + ξ̇ 2

1 + |ξ3|+ |ξ̇3|sin(t/ε)

u2 = −k3k4ξ2−k4ξ̇2−k3k4
2(k5ξ3 +k6ξ̇3)

√

ξ 2
1 + ξ̇ 2

1 + |ξ3|+ |ξ̇3|)
sin(t/ε).

(8.12)

The control parameters are equal to those in the simulations and given by

k1 = 4, k2 = 2
√

2, k3 = 15, k4 = 15, k5 = 2, k6 = 2,ε = 0.25.

In Figure 8.8 we have shown the result of stabilizing the system with the homogeneous controller.
The simulation is only started after one complete periodT = 2πε of the time-varying part of the con-
trollers. Att = π/2 the servo-controllers are enabled and the system tries to stabilize the system. The
coordinatesrx oscillates around the origin with an amplitude of approximately 2.5 cm and the coordi-
natery oscillates around an average value of approximately -3 cm with an amplitude ofapproximately
2.5 cm. The orientationθ(t) of the link oscillates around the origin with an amplitude of 11 degrees.

By comparing the experimental results in Figure 8.8 to the simulations results in Figure 7.12 it
follows that the experimental results correspond well with the simulation results. The results are
qualitatively the same, but the magnitude of the signals are different. Until the time-instant of approx-
imatelyt = 12 [s] the results are similar, but after that time-instant the coordinatery becomes negative
while it became positive in the simulations. Additionally, the maximal deviation in the link-angleθ
is approximately 10 degrees smaller in the positive direction and approximately equal in the negative
direction. This is an indication that the system is also influenced by an additional gravitational distur-
bance torque. After approximatelyt = 20 [s], the system performs a periodic motion around the origin
with slightly larger deviations than in the simulation. The currentsiX, iY1 and iY2 correspond quite
well with the qualitative results that were obtained in numerical simulation. The currents are, how-
ever, larger than the values in simulation. This is caused by the influence of un-modelled dynamics
such as, cogging and measurement noise.

The chained form coordinates and inputs are shown in Figure 8.9. It is clear that the system is
neither asymptotically stable, norρ-exponentially stable. Instead, the system performs a periodic
motion or limit cycle around the origin. At approximatelyt = 20 [s] the coordinateξ3 has converged
to a nearly constant negative value. In the simulations, the chained coordinate ξ3 converged to a
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nearly constant and positive value. This is an indication that the system is influenced by an additional
gravitational torque and the friction characteristic can not be modelled by thesimplified characteristic
that is used in the simulations. The perturbation∆3 can not be compensated and prevents theξ3

coordinate from converging to zero. The amplitude of the resulting limit-cycle isdetermined by
the magnitude of the perturbation∆3 and the controller gains. Note that the servo controllers do
not compensate the perturbations∆1 and∆2 resulting from the friction in the rotational joint. The
perturbations∆1 and∆2 are only suppressed by the time-invariant part of the stabilizing controllers.

In Figure 8.10 the inputξ2u1 is shown and the perturbation∆3 has been plotted together with
the estimated perturbation̂∆3. The estimated perturbation̂∆3 is obtained from (7.18) by assuming a
continuous symmetric friction characteristic (8.4) with friction parameters given bycv = 0.1 andcs =
0.3. The inputξ2u1 tries to increase the value ofξ3 but does not compensate for the perturbation∆3

that prevents convergence of the stateξ3 to zero. In Figure 8.10 it is clear that the system is influenced
by an additional gravitational disturbance torque and, additionally, the friction characteristic may
not be symmetric. This gravitational disturbance torque is negative as couldbe expected from the
parameter identification procedure at the beginning of this chapter.

The homogeneous normsh(x) given in (7.30) andρ(x) given in (7.31) of the second-order chained
form system are shown in Figure 8.14(a). The system is clearly not asymptotically stable, however it
is uniformly ultimately bounded.

8.4 A heuristic modification of the stabilizing controller

The convergence of the chained coordinateξ3 towards the origin can be improved by increasing the
gainsk5 andk6 of the controller. Although the deviation of the coordinateξ3 from zero is decreased,
the oscillations in the chained coordinateξ2 that acts as a virtual input in the backstepping approach,
are increased. An additional problem that occurs when increasing the gainsk5 andk6 is the fact that the
quantization errors and measurement noise of the incremental rotary encoder that measures the link

angleθ(t) are amplified. In situations where the homogeneous norm
√

x2
1 +x2

2 + |x5|+ |x6| becomes

small, the gains multiplyingξ5 andξ6 become even larger. These amplified disturbances prevent the
system from remaining close to the origin, since they induce high-frequentoscillations in the control
inputsu1 andu2, as well the input currentsiX andiY. The effect is more noticeable in the currentsiY1

and iY2 since, for small anglesθ , the dependence of these inputs on the angular velocityθ̇ is larger
than in the inputiX, see (7.11). In order to prevent the gains from becoming too large nearthe origin,
we modify the homogeneous stabilizing controller as follows

u1 = −k1ξ1−k2ξ̇1 +

√

ξ 2
1 + ξ̇ 2

1 + |ξ3|+ |ξ̇3|sin(t/ε)

u2 = −k3k4ξ2−k4ξ̇2−k3k4
2(k5ξ3 +k6ξ̇3)

max(M,
√

ξ 2
1 + ξ̇ 2

1 + |ξ3|+ |ξ̇3|)
sin(t/ε).

(8.13)

The control parameters are selected as

k1 = 4, k2 = 2
√

2, k3 = 15, k4 = 15, k5 = 9, k6 = 6,ε = 0.25, M = 1,

showing that we have increased the gainsk5 andk6 and lower bounded the denominator in the expres-
sion ofu2. This modification affects the convergence of the controller, in the sense that the proof of
asymptotic stability, given in Chapter 6 is not valid anymore. In fact, the closed-loop system is not
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Figure 8.10: Stabilization experiment of the underactuated H-Drive manipulator with the modified controller
(8.13); input ξ2u1 and the perturbation∆3(ξ2, ξ̇2) (dashed) versus the estimated perturbation
∆̂3(ξ2, ξ̇2) using the friction characteristic (8.4) withcv = 0.1 andcs = 0.3.

homogeneous of degree zero anymore. Using equal control gains, theconvergence of the states to-
wards the origin becomes slower when compared to the original controller. In numerical simulations,
performed with the modified controllers, the closed-loop system is not asymptotically stable, but only
achieves convergence towards a certain ball around the origin. The modified controller, however, has
the advantage that additional perturbations such as measurement noise and quantization errors are not,
or at least less, amplified.

The performance of the modified controller of (8.13) is shown in Figure 8.11. From the plots it
is clear that the system converges faster to the origin due to the increase ofthe gainsk5 andk6; the
system is close to the origin after 10 seconds. At timet = 15 s, the system performs a stable limit-cycle
with an amplitude that is lower than in the previous experiment. Therx coordinate oscillates between
approximately−0.6 and 2.2 cm, while thery coordinate oscillates between approximately 0.5 and 2.5
cm. The maximal deviation of the link orientationθ(t) is reduced to a value between approximately
−7 degrees and 3 degrees. By additional gain-tuning the amplitude of the resulting limit-cycle may
be reduced even further, but at this moment no quantitative results are available.

8.5 Extension to practical point-to-point control

As mentioned in the beginning of this chapter, we did not expect to be able to achieve asymptotic
stability of the underactuated H-Drive manipulator. Due to the effect of perturbations such as friction
and gravitational perturbations, the system can only be brought inside a ball around the origin. The
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radius of this ball is determined by the magnitude of the perturbations and the gains of the controllers.
This means that we have actually achieved a form of practical stability insteadof the intended asymp-
totic stability. In the control community, several definitions of practical stability are available. In this
thesis, the notion of practical stability as presented in (de Wit et al., 1994; Pettersen and Nijmeijer,
2000) is considered.

In certain applications, asymptotic stability may not be required or may not be feasible. In these
cases, instead of achieving practical stability in which the system oscillates around the origin, it may
be desirable to bring the system to a stand-still. This would make it possible to movethe system
from one configuration to another, whereas the error between the finalconfiguration and the desired
configuration are bounded and preferably small. The final configuration error depends on the control
gains and perturbations acting on the system. This approach will be illustratedin the following exper-
iment. In this experiment we do not try to achieve practical stability but we try to achieve practical
convergence. This means that the system converges towards the desired configuration, and when the
error between the actual and desired configuration is small in some sense,the controller is stopped.
This means that we only have a form of practical convergence in the sense that the system converges
towards the origin, and when it is close enough the controller is switched offand the system reaches
an equilibrium state that is close to the origin.

In the following experiments, the modified controller (8.13) is used to bring the system close to
the origin. The control parameters are selected as

k1 = 4, k2 = 2
√

2, k3 = 15, k4 = 15, k5 = 9, k6 = 6,ε = 0.25, M = 1.

The system is brought to a stop by setting the desired acceleration, which are integrated twice and
fed to the servo-loop, to zero when the following condition is satisfied. By denoting the desired
configuration by[rxd, ryd,θd], where in our case[rxd, ryd,θd] = [0,0,0], the conditions that have to be
satisfied simultaneously are given by

|rx− rxd| < 0.01 |ry− ryd| < 0.01, |θ −θd| < 0.02
|ṙx− ṙxd| < 0.07 |ṙy− ṙyd| < 0.07 |θ̇ − θ̇d| < 0.07.

(8.14)

These conditions have been empirically determined by performing subsequent experiments in which
the bounds of the conditions are varied. The result of this experiment is shown in Figure 8.15. The
figure shows that after approximatelyt = 6.5 s the system has converged to an equilibrium point with
a final position error less than 1 cm in therx andry coordinate, while the error in the orientation angle
of the link is less than 0.5 degrees. Note that the servo-loop is still enabled after the condition (8.14)
is fulfilled. This is necessary in order to keep the position errors inrx andry small. As can be seen
from the control inputs in Figure 8.15, the input currents to the LiMMS do notbecome equal to zero
but instead adopt a constant value that is needed to compensate the cogging effect present between
the permanent magnets and the iron-core coils. If the servo-loop is also stopped then the final position
errors may be even larger. It should be noted that the dynamics of the link-angleθ are only stable in
the sense that small perturbations may drive the angle away from its desiredvalue. If the perturbation
causes the conditions (8.14) to be violated, then the stabilizing controller can be enabled again and the
system may be brought back to an equilibrium close to the origin. The trajectories in chained form
coordinates are shown in Figure 8.16.

8.6 Conclusions

In this chapter several experiments with an underactuated H-Drive manipulator have been presented.
As expected from the simulation study, the objective of asymptotic stability could not be reached. It
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turns out that in both the case of tracking and stabilization, the closed-loop system is not robust with
respect to a specific, but relevant, class of perturbations. The perturbations, resulting from friction
in the rotational joint and gravitational disturbance torques due to a misalignment of the plane of
rotation of the link with the horizontal plane,i.e., the equipotential plane of gravity, measurement
noise and cogging forces in the LiMMS, prevent the system from being asymptotically stable. In
the case of tracking control, the system performs a periodic motion around the desired reference
trajectory. The magnitude of the periodic motion is determined by the magnitude of the perturbations
and the controller gains. In the case of stabilization, the system enters a stable limit cycle of which the
amplitude is also determined by the magnitude of perturbations and the controller gains. Although the
closed-loop system is not asymptotically stable, a form of practical stability has been obtained. This
means that the system can be brought inside a ball with a certain distance from the origin, in which the
system performs an oscillatory motion. This oscillatory behavior under the influence of perturbations
has also been identified in, for example (Pettersen and Nijmeijer, 2000), in which practical stability
of an underactuated surface vessel was obtained.

The non-robustness of the controllers was expected since the perturbations result in a second-order
chained form system that is not in strict-feedback form and additionally can not be made homogeneous
of degree zero by controllersu1 andu2. Therefore, the stability proofs in Chapter 5 and Chapter 6
are not valid anymore. Besides the friction in the rotational joint, the dynamics of the link are influ-
enced by an additional constant gravitational torque. These perturbations considerably deteriorate the
performance of the controllers and result in oscillations around the desired equilibrium or trajectory.
In the case of stabilization, the system could be controlled to an equilibrium point that is sufficiently
close to the origin by extending the stabilizing controller with a discrete event atwhich the controllers
are disabled when the system is sufficiently close to the origin. When the system has converged to a
point close to the origin, small perturbations may move the system away from thedesired equilibrium
point. This behavior can be overcome by re-enabling the controllers whenthe system moves out of the
ball around the origin. The system then tries to bring the system close towards the origin again. This
means that a form of practical convergence has been obtained by modifying the stabilizing controller.

The conducted experiments correspond well with the simulation study in the sense that the quali-
tative and quantitative behavior in the simulations and experiments is similar. Fromadditional simu-
lations that were done, it follows that the closed-loop system is more susceptible to static-friction than
to viscous friction torques. This may be understood from the fact that the viscous friction vanishes
much faster when approaching the desired equilibrium point and does nothave any discontinuities.
Therefore, in order to improve the performance of the controllers, the static friction that is present
in the rotational joint should be reduced. Furthermore, the influence of theperturbations can be re-
duced by increasing the mass of the rotational link and the length between its center of mass and the
joint. It should be noted that additional gain-tuning may be used to improve the performance even
further, however, form our experiences with the experiments the overall improvement is expected to
be limited.



Chapter 9

Conclusions and Recommendations

In this thesis, the trajectory tracking and feedback stabilization problem fora class of underactuated
mechanical systems has been considered. This class consists of underactuated mechanical systems
with second-order nonholonomic constraints that can be transformed into the second-order chained
form. The control of these systems has proved to be a challenging task since such systems, gener-
ally, can not be stabilized by any continuous, static state-feedback. Additionally, the inclusion of a
drift-term in the dynamics makes the stabilization and tracking of these systems more difficult. The
trajectory tracking problem for second-order nonholonomic mechanicalsystems is, in general, easier
to solve. In fact, linear time-varying controllers can be used to track feasible trajectories. However,
additional conditions on the reference trajectory have to be made such thatthe tracking-error dynam-
ics are asymptotically stable. In general, the trajectories need to satisfy a persistence of excitation
condition, meaning that the trajectory is not allowed to converge to a point. Therefore, the tracking
and stabilization problems for second-order nonholonomic system requiredifferent approaches and
have to be considered separately. Examples of such systems are planar underactuated manipulators,
including a PPR manipulator (Arai et al., 1998a) (PPR denotes a manipulator with two prismatic and
one revolute joint and the bar aboveR designates the unactuated or passive joint), a serial-drive RRR̄
manipulator (Yoshikawa et al., 2000) and a parallel-drive RRR manipulator with any two joints un-
actuated, manipulators driven by end-effector forces (Luca et al., 1998), a planar rigid body with an
unactuated degree of freedom and underactuated surface vessels (Reyhanoglu et al., 1998, 1999), un-
deractuated underwater vehicles (Egeland et al., 1994), the planar V/STOL aircraft in the absence of
gravity (Aneke et al., 2002a) and a hovercraft type vehicle (Tanaka et al., 2000). For these systems, the
linearization around any equilibrium point is uncontrollable. In certain cases, when the dynamics of
the second-order nonholonomic system is influenced by gravity, the linearization of the system around
an equilibrium point is controllable and the system can be stabilized by a continuous or even smooth
time-invariant state-feedback. The Acrobot (Spong, 1995) and the V/STOL aircraft (Hauser et al.,
1992) are examples of such systems. To date, no conditions are available for testing whether a given
underactuated mechanical system can be transformed into the second-order chained form. Neverthe-
less, finding a coordinate and feedback transformation that brings the system into the second-order
chained form really facilitates control design. The transformation into the second-order chained form
considerably simplifies the dynamics of the system. Also, it generalizes the design of the controllers
in the sense that controllers for the second-order chained-form can be applied to a whole class of
second-order nonholonomic systems instead of one specific underactuated mechanical system.
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9.1 Conclusions

9.1.1 The control design approach

In Chapter 5, the tracking control problem has been solved by using a combined backstepping and
cascade approach. The tracking-error dynamics can be written as a cascade system consisting of a
linear time-invariant subsystem and a linear time-varying subsystem. The linear time-invariant part
has been stabilized by a linear time-invariant controller, while the time-varying part has been stabilized
by using a backstepping procedure in which the link orientationθ acts as a virtual input. This approach
results in a linear time-varying controller that globallyK -exponentially stabilizes the tracking-error
dynamics. The tracking-error dynamics are only globallyK -exponentially stable if the trajectory to
be tracked is persistently exciting, meaning that the trajectory is not allowed to converge to a point.
Furthermore, the second-order chained form is globallyK -exponentially; the mechanical system
is only globallyK -exponentially on a subspace (or sub-manifold) of

�n where the coordinate and
feedback transformation are well-defined.

To date, most researchers have considered the feedback stabilization problem for the second-order
chained form system, and the tracking control problem has received less attention. In certain practical
applications, the tracking control problem may be more important than the stabilization problem since
it is not only required that the system moves to a different configuration, but the system also has to
follow a pre-specified path in order to avoid design constraints or obstacles. The tracking controller
has been first presented in (Aneke et al., 2000) and has been published in (Aneke et al., 2003). The de-
signed tracking controller can be seen as an extension of the results in (Jiang and Nijmeijer, 1999) and
(Lefeber et al., 2000), in which linear time-varying controllers have beendeveloped for the drift-less
chained-form, to tracking control of the second-order chained form with drift. A robustness analysis
was performed which allowed us to conclude that the robustness propertyof the tracking-controller is
limited and depends on the trajectory to be tracked; the robustness of the tracking controller depends
on the level of the persistency of excitation of the reference accelerationu1d(t). In appendix B the
control design approach for the tracking control problem has been extended to the case of higher-
dimensional chained form systems. At this moment, to our knowledge, no examples are known of
underactuated mechanical systems that can be transformed into a higher-dimensional chained form.

In Chapter 6, the stabilization problem has been solved by using a combined backstepping and
averaging approach for homogeneous systems. Instead of using a backstepping approach that requires
the construction of a Lyapunov function, a high-gain approach has been adopted. This resulted in a
continuous, periodic, time-varying homogeneous stabilizing controller that globally ρ-exponentially
stabilizes the closed-loop system. This continuous time-varying homogeneouscontroller has been
first presented in (Aneke et al., 2002b). To date and to our knowledge,this homogeneous controller
is the only one capable of ensuring Lyapunov stability as well as exponential convergence,i.e., ρ-
exponential stability. It is well-known that homogeneous controllers are not robust with respect to
parameter uncertainties. Therefore a periodically updated version of thehomogeneous stabilizing
controller was presented in which the states of the system are periodically updated at discrete time
instants. This controller is robust with respect to a class of additive perturbations that includes per-
turbations resulting from parameter uncertainties, but excludes non-smooth effects, such as friction,
or measurement noise. To our knowledge, the controller of Section 6.2, presented in (Lizárraga et al.,
2003), is one of the first capable of achieving robust stabilization of the second-order chained form
system.
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9.1.2 The simulations and experiments

In Chapter 7 the performance of the controllers has been investigated by performing a simulation
study. In these simulations, a servo-system also known as the underactuated H-Drive Manipulator
was considered that represents the dynamics of an underactuated PPR manipulator. Instead of con-
trolling the LiMMS (Linear Motion Motor Systems) directly, using the designed tracking and stabi-
lizing controllers, a so-called virtual internal model following control approach was adopted. This
means that the chained form inputs(u1,u2) are transformed, using the feedback transformation, into
desired accelerations of the LiMMS. These desired accelerations are then integrated twice to obtain
desired positions that are used in a low-level servo-loop to control the positions of the LiMMS. The
objective in the simulations is to control the joint position and orientation of the free rotating link.
It turned out that both the tracking controller and the stabilizing controller achieve the objective of
asymptotic stability when no perturbations act on the system. If, however, perturbations such as fric-
tion are included in the model then the performance is considerably deteriorated and the closed-loop
system is not asymptotically stable anymore. Instead, the closed-loop systemperforms a periodic mo-
tion around the desired trajectory or desired equilibrium point. The stabilization and tracking errors
are bounded and the magnitude of the oscillations are determined by the magnitude of the pertur-
bations and the magnitude of the controller gains. This means that a form of practical stability has
been achieved in which the system can be stabilized into a ball around the reference trajectory or the
desired equilibrium point. By modifying the gains, it is possible to influence the magnitude of the
oscillations, however, the relation between the control gains and the magnitude of the oscillations is
not completely understood.

In Chapter 8 the performance of the tracking and stabilizing controllers have been validated on
an experimental underactuated H-Drive Manipulator available in the laboratory of the Dynamics and
Control Technology department. This H-Drive manipulator is used as a benchmark set-up for testing
tracking or stabilizing controllers for a wide range of underactuated mechanical systems including
underactuated ships, underwater vehicles and underactuated three-link manipulators. The friction
and cogging forces of the LiMMS were shown to appear as additive perturbations in the second-
order chained form. Therefore it is essential to compensate these terms and by using a low-level
servo-loop to control the position of the LiMMS, the influence of these friction and cogging forces
can be practically eliminated. The main disturbances in the system are the frictionand possible
gravitational torques in the joint of the rotational link. The experiments confirm the observations that
were made during the simulation study, namely that the designed controllers arenot robust and the
closed-loop system is not asymptotically stable. In both the tracking and stabilization experiments,
the closed-loop system exhibited stationary oscillatory behavior similar to the behavior obtained in
the numerical simulations. This means that asymptotic convergence towards thedesired equilibrium
or trajectory can not be achieved with the presented controllers. Althoughthe closed-loop systems
are not asymptotically stable, a form of practical stability does hold. This means that the closed-loop
system can be driven inside a ball (but not a ball of arbitrary size) around the desired equilibrium or
desired trajectory. The experimental results correspond well with the experiments, both qualitatively
as quantitatively. The differences between the simulations and experiments are mainly caused by
a gravitational disturbance torque and the nonlinear friction characteristicof the link. By using a
more sophisticated friction model in conjunction with a model of the gravitational disturbance, the
correspondence between the simulations and the experiments can be improved. As mentioned earlier,
the periodically updated version of the homogeneous stabilizing controller is not robust with respect
to gravitational disturbance torques or non-smooth effects such as friction. Therefore, no simulations
or experiments have been conducted using the periodically updated homogeneous controller. For a
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comparison of the homogeneous controller and its periodically updated version, the reader is referred
to (Lizárraga et al., 2003).

Compensating the perturbations acting on the extended chained form systemturns out to be very
difficult due to the existence of a second-order nonholonomic constraintand the fact that the link
orientation can not be controlled directly. In fact, it is expected that there exist no asymptotically sta-
bilizing controllers for the second-order chained that are robust with respect to vanishing perturbations
such as parameter uncertainties as well as non-vanishing perturbations such as friction or gravitational
disturbance torques. However, it may be possible to use a modified coordinate and feedback trans-
formation to transform the model of the system including the disturbances, for example friction, into
a, possibly different, canonical form. It may even be possible to design controllers that utilize the
dissipative nature of the frictional perturbations to stabilize the system to an equilibrium point.

9.1.3 Robustness issues

In many researches dealing with the control of underactuated mechanicalsystems with second-order
nonholonomic constraints the influence of perturbations on the closed-loopdynamics has generally
not been taken into account.

In some references dealing with second-order nonholonomic systems such as, for example, un-
deractuated surface vessels, underactuated autonomous underwatervehicles or underactuated robot
manipulators, robustness issues have been investigated. However, very few references have consid-
ered the design of robust controllers for the second-order chained-form system. To our knowledge, the
controller in (Lizárraga et al., 2003) is one of the first capable of achieving robust stabilization of the
second-order chained form system. There have been authors who have considered the robust control
problem for underactuated manipulators without using a transformation into acanonical form such as
the second-order chained form. In (Shin and Lee, 2000) the cartesiancoordinates of an experimental
underactuated manipulator were controlled by application of robust adaptive control. In (Kim et al.,
2001) variable structure based, model reference adaptive control (MRAC) has been used to control
a two-link planar underactuated manipulator. The numerical simulations of thatreference showed
severe chattering which is undesirable in practice. Other references assume the presence of brakes
in the passive joints of the manipulator. In (Bergerman and Yangsheng, 1994), for example, a robust
variable structure controller (VSC) was developed for controlling the active joints and the brakes of
the passive joints.

9.2 Recommendations

In this section recommendations for further research are given. First of all, a short discussion on the
use of the second-order chained form in the control design for underactuated mechanical systems will
be given. After that, recommendations will be given for the design of robust controllers for the class of
second-order nonholonomic systems. Finally, some recommendations for improving the experimental
underactuated H-Drive manipulator will be given.

9.2.1 The second-order chained form

In recent years, many underactuated mechanical systems with second-order nonholonomic constraints
have been shown to be transformable into the second-order chained form. The transformation into the
chained form considerably simplifies the dynamics of the system. The use of the second-order chained
form also facilitates control design because tracking or feedback controllers that have been designed
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for the second-order chained form can be applied to any system that is transformable into the second-
order chained form.

The main difficulty in the current control design approach is the fact that finding a coordinate
and feedback transformation that brings the system into the second-order chained form may be dif-
ficult or even impossible. In fact, there exists no sufficient conditions thatguarantee the existence
of a coordinate and feedback transformation that brings a given second-order nonholonomic system
to the second-order chained form. Therefore, control design approaches that utilize the second-order
chained form are only useful if a coordinate and feedback transformation are known in advance.
In the case of mechanical systems with first-order nonholonomic systems, sufficient conditions for
converting the system into the first-order chained form are available. In (Murray, 1993) necessary
and sufficient conditions have been derived for converting a nonholonomic system into the first-order
chained form. In (Murray and Sastry, 1991) a constructive procedure for finding the coordinate and
feedback transformation has been presented. One of the results from this work is that all two-input
drift-less nonholonomic systems in three and four dimensions can be put in first-order chained form.
However, the existence of a drift-term makes the generalization of this result to the case of second-
order nonholonomic system very difficult. To our knowledge, no sufficient and necessary conditions
have been presented for converting nonholonomic systems into the second-order chained form sys-
tems. Therefore, the derivation of these sufficient and necessary conditions is a challenging field of
research that requires further investigation.

In certain cases, second-order nonholonomic system can be transformed into the second-order
chained form system with some additional terms. By regarding these additional terms as perturbations,
it may still be possible to successfully control the system with controllers that were designed for the
non-perturbed second-order chained form system. However, in manycases the nonholonomic system
is influenced by additional dynamics such as, for example, friction, measurement errors or external
disturbances. These additional dynamics result in perturbations of the second-order chained form
which considerably deteriorate the performance. Therefore these perturbations are an essential part of
the dynamics and can not be neglected. In these situations, it would be interesting to know whether
the mechanical system including these disturbances can be transformed intothe second-order chained
form. This may be checked by using the, to be developed, necessary andsufficient conditions for
transformability into the second-order chained form discussed above. If this turns out to be possible,
then the controllers for the second-order chained form are still applicable and asymptotic stabilization
or tracking is still possible under the influence of the perturbations.

9.2.2 Robust control design

An interesting field for further research is the development of robust stabilizers and tracking con-
trollers for second-order nonholonomic systems. This requires the design of stabilizing or tracking
controllers which are robust with respect to a class of perturbations resulting from parameter or mod-
elling errors. Besides parameter or modelling errors, nonholonomic control systems can also be in-
fluenced by additional perturbations resulting from non-smooth effects,such as friction, cogging or
measurement errors. The design of such controllers turns out to be a very difficult task, due to the
existence of the nonholonomic constraint and the fact that the linear approximation around equilibria
is generally not controllable. To this date, and to our knowledge, no stabilizers or tracking controllers
have been presented that are robust with respect to perturbations thatinclude cogging, measurement
errors and non-smooth effects such as friction.

In order to cope with external disturbances such as gravitational effects, the practical stabilization
problem should be considered. It is clear that due to the fact that the linearization around equilibrium
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points is not controllable, it is impossible to achieve asymptotic stability under the influence of persis-
tent or non-vanishing disturbances. In general, these persistent disturbances will result in instability
or give rise to bounded errors. By allowing for controlled oscillations, thesystem can be stabilized to
a ball around the desired equilibrium or reference trajectory. In fact, the results presented in (Do et al.,
2002) can be used to extend the results in Chapter 5 to achieve practical stability of the tracking-error
dynamics. This means that under additional conditions on the gain, the tracking controllers can be
shown to globally exponentially stabilize the system to a ball around the desiredtrajectory.

Besides the control design methods presented in Chapters 5 and 6, different approaches may be
promising in achieving robust controllers for trajectory tracking or feedback stabilization. A few of
these approaches are summarized below. In (Luca and Oriolo, 2000) it was shown that a planar un-
deractuated manipulator can be fully feedback linearized and input-outputdecoupled by means of a
nonlinear dynamic feedback, provided that singularity is avoided. The linearizing output is the center
of percussion of the link. More recently, the authors of (Ge et al., 2001)derived conditions for 2-input
nonholonomic systems with drift to be feedback-linearizable by non-smooth (and eventually discon-
tinuous) coordinate and feedback transformations. In (Mita and Nam, 2001), variable period deadbeat
control, in other words multi-rate digital control, was used to stabilize high-order chained form sys-
tems. The authors of (Lucibello and Oriolo, 2001) consider a large class of systems, including systems
with drift, in the framework of iterative state steering control. Although no algorithm is presented to
construct any such controller, it is assumed that a controller is known beforehand, conditions have
been pointed out for discrete-time stability and robustness with respect to additive disturbance vector
fields.

In view of our experiences with the experiments, it is expected that iterativestate steering control
is the most promising method for designing robust controllers with respect to aclass of perturbations
including parameter uncertainties, modelling errors and possibly non-smootheffects such as friction
and measurement errors. The combined hybrid/open-loop control approach may be able to cope with
a larger class of perturbations than the presented controllers. Although iterative state steering control
is not expected to result in controllers that are robust with respect to persistent disturbances, it may
result in a high level of robustness by guaranteeing bounded errors for a large class of perturbations.

9.2.3 Improving the experimental set-up

There are three possibilities to improve the experimental performance of the presented controllers
under the influence of perturbations. First of all, an improvement can be accomplished by additional
gain-tuning of the controllers. The tuning of the gains turned out to be a quitetime-consuming task,
This is caused by the fact that values for the control parameters have to be found which assure good
convergence of the closed-loop system, but also guarantee that the H-Drive stays inside the boundaries
of its limited workspace. In Chapter 8 the experimental results correspond well with the numerical
simulations. The differences between the experiments and the simulations are mainly caused by the
nonlinear friction characteristic of the link, the servo acceleration errorsand perturbations such as
measurement noise and gravitational disturbance torques. It may be possible to perform the gain-
tuning procedure through numerical simulation, provided that a more accurate friction model of the
rotational link is available and the gravitational disturbance torque is eliminated or modelled. As it
turns out to be very difficult to compensate the perturbations in the second-order chained form system,
the overall improvement in performance that can be obtained by additional gain tuning is, however,
expected to be limited.

The second possibility for improving the control performance, is reducingthe influence of the
perturbations by increasing the inertia of the rotational link, as well as its massand length between
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the joint and its center of mass. The main difficulty with this approach is the fact that increasing the
length or the mass of the link increases the effect of gravitational perturbations. These gravitational
disturbance torques result from a misalignment of the plane of rotation of thelink with the horizontal
plane,i.e., the equipotential plane of gravity. In the experiments, increasing the mass ofthe link by
a factor 2.5, from m3 = 0.04 to approximatelym3 = 0.10 [kg] already results in rotations of the link
when no external torque is applied. This indicates that gravitational disturbance torques have to be
eliminated before the mass can be increased. This becomes even more criticalwhen reducing the
friction level in the rotational joint, since these gravitational disturbance torques may not be cancelled
by the static friction torque, and the origin may not be an equilibrium point of theuncontrolled system
anymore.

The final possibility for improving the performance is, of course, by reducing the friction in the
link. As mentioned earlier, the performance of the tracking and stabilizing controllers is more sus-
ceptible to static friction in the joint than to viscous friction. In fact, in simulation, thepresented
tracking controller still achieves asymptotic stability for a normalized viscous friction coefficient of
up to approximatelycv,θ /I = 7 [1/(rad·s)]. The closed-loop system, however, does not appear to be
asymptotically stable for any value of the normalized static friction coefficientcs,θ /I . Therefore, in
order to improve the control performance, it is essential to reduce the magnitude of the static friction
in the rotational link. In numerical simulations, reducing the static friction coefficient cs,θ /I by a
factor 10, from its current value 0.3 to 0.03 [1/s2], reduces the maximal error of the joint position
to less than 1[cm] in the longitudinal and transversal direction, while the maximal error in the link
orientation is reduced to less than 2.5 degrees. The desired coefficient corresponds to a static friction
coefficient of approximately 2.5 · 10−5 [Nm]. By multiplying the desired coefficientcs,θ /I = 0.03,
normalized with respect to the inertiaI , with the valueλ = 0.1372 gives us the desired static fric-
tion coefficientcs,θ /(m3l) = 0.4·10−2 [1/s2], normalized with respect to the productm3l . By further
increasing the massm3 the maximal deviations from the desired equilibrium or trajectory may be
reduced even further.

The most important recommendation for improving the control performance is toreduce the fric-
tion by using an air-bearing to suspend the rotational link. This should be done only after the gravita-
tional disturbances have been eliminated. The non-contacting property ofan air bearing – air bearings
utilize a thin film of pressurized air to provide a friction-less load bearing interface between the sur-
faces – would practically eliminate all friction in the rotational joint. The friction in the rotational
joint can also be reduced by using a magnetic bearing. Although such a bearing is non-contacting and
reduces the effect of friction to a minimum, it also introduces drag or coggingforces resulting from
eddy-currents generated by the changing magnetic fields.
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Appendix A

A stability result for cascaded
systems

A.1 A global K -exponential stability result for non-autonomous
cascaded systems

In Chapter 3 we concluded that if in addition to the assumptions in Lemma 3.6.2, the systemsΣ1 and
Σ2 are globally exponentially stable, the cascaded system (3.19) is globallyK -exponentially stable.
This result can be strengthened to include the case in which the systemsΣ1 andΣ2 are globallyK -
exponentially stable. In that situation, under some additional assumptions, it can be shown that the
cascaded system is also globallyK -exponentially.

First we formulate an additional lemma that will be needed in the proof. This result can be found
in Theorem 3.6.10 of (Lakshmikantham and Leela, 1969), and has been used in (Panteley and Loría,
2001).

Lemma A.1.1. If the systeṁx = f (t,x) is GUAS, then for eachµ > 0, the system admits a C1 Lya-
punov functionV (t,z1) such that for all t≥ t0 and for all x∈ �n,

(i) α1(‖x‖) ≤ V (t,x) ≤ α2(‖x‖),

(ii)
∂V

∂ t
+

∂V

∂x
f (t,x) ≤−µV (t,x),

(A.1)

whereα1 andα2 are classK∞ functions.

The stability result is presented in the following proposition. The proof proceeds along the same
lines as the proof given in (Panteley et al., 1998).

Proposition A.1.2. If in addition to the assumptions in Theorem 3.6.1 bothΣ1 and Σ2 are globally
K -exponentially stable, and there exist C1 Lyapunov function V1(t,z1) and V2(t,z1) satisfying for all
t ≥ t0 for all z1 ∈

�n,
(i) α1‖z1‖2 ≤V1(t,z1) ≤ α2‖z1‖2,

(ii)
∂V1

∂ t
+

∂V
∂z1

f1(t,z1) ≤−µV (z1),

(iii)

∥

∥

∥

∥

∂V1

∂z1

∥

∥

∥

∥

≤ α4‖z1‖,

(A.2)
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with α1, α2 andα4 positive constants, and for all t≥ t0 for all z2 ∈
�m

(i) β1‖z2‖2 ≤V2(t,z2) ≤ β2‖z2‖2,

(ii)
∂V2

∂ t
+

∂V

∂z2
f2(t,z2) ≤−µV (z2),

(A.3)

with β1 and β2 positive constants, respectively, then the cascaded system(3.19) is globally K -
exponentially stable.

Proof. Since theΣ2 subsystem is globallyK -exponentially stable, it suffices to show the result for
z1(t). Since all conditions of Theorem 3.6.1 are satisfied, the system 3.19 is GUASandz= [z1,z2]

T

satisfies
‖z(t)‖ ≤ β (‖z(t0)‖, t − t0), ∀t ≥ t0 ≥ 0,

whereβ (·) is a classK L function. For all initial conditions‖z(t0)‖ ≤ r the functiong(t,z1,z2) can
be upper-bounded as‖g(t,z1,z2)‖ ≤ cg, wherecg = cg(r) > 0 is a constant. Consider the subsystem

ż1 = f1(t,z1)+g(t,z1,z2)z2 (A.4)

By assumption, the systems ˙z1 = f1(t,z1) and ˙z2 = f2(t,z2) are globally exponentially stable. By
assumption the Lyapunov functionsV1(t,x) satisfies such that

α1‖z1‖2 ≤V1(t,z1) ≤ α2‖z1‖2, V̇1(t,z1) ≤−V(t,z1), ‖∂V1

∂x
‖ ≤ α4‖z1‖, (A.5)

whereα1 andα4 are positive constants andα2(·) is a classK∞ function. Since theΣ2 system is also
GUAS, it follows from Lemma A.1.1 that there exists Lyapunov functionV2(t,x) such that

β1‖z2‖2 ≤V2(t,z2) ≤ β2‖z2‖2, V̇2(t,z2) ≤−V2(t,z2), (A.6)

Taking the derivative ofV1(t,x) with respect to (A.4), and using (A.5,A.5) we obtain

V̇1 ≤−V1(t,z1)+α4‖g(t,z1,z2)‖‖z1‖‖z2‖ ≤ −α1‖z1‖2 +α4cg(r)‖z1‖‖z2‖

≤ −α1

2
‖z1‖2 +

α2
4cg(r)2

2α1
‖z2‖2 ≤− α1

2α2
V1(t,z1)+

α2
4cg(r)2

2α1β2
V2(t,z2)

(A.7)

Defineδg(r) =
α2

4cg(r)2

2α1β2
and consider the candidate Lyapunov function

V(t,z1,z2) = V1(t,z1)+ΓV2(t,z2). (A.8)

with Γ > 0 a to be defined positive constant. The derivative ofV along the solutions of (3.19) satisfies

V̇ ≤− α1

2α2
V1(t,z1)+(δg(r)−Γ)V2(t,z2) (A.9)

Suppose that we chooseΓ as

Γ =
2β2

2β2−β1
δg(r).
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Then we have

V̇ ≤− α1

2α2
V1(t,z1)−

β1

2β2
ΓV2(t,z2) ≤−γV (A.10)

where

γ =
1
2

min(
α1

α2
,
β1

β2
).

Therefore, using the bound‖z1‖2 ≤ V(t,z1,z2)

α1
, we obtain

‖z1(t, t0,z10,z20)‖2 ≤ V(t0,z10,z20)

α1
exp(−γ(t − t0))

≤ α2‖z10‖2 +Γ‖z20‖2

α1
exp(−γ(t − t0))

≤ 2
max(α2,Γ)

α1
‖z0‖2exp(−γ(t − t0))

(A.11)

Thus
‖z1(t, t0,z10,z20)‖ ≤ k(r)‖z0‖exp(−γ

2
(t − t0)) (A.12)

with

k(r) =

√

2
max(α2,Γ)

α1
. (A.13)

The bound (3.2) is satisfied and we conclude that the system (3.19) is globally K -exponentially
stable.
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Appendix B

Tracking control of the
higher-dimensional chained form

B.1 Cascaded backstepping control

In this thesis, so far, only the second-order chained form (2.7) of dimension n = 3 has been con-
sidered. This was motivated by the fact that, up to now, no mechanical systems are known that are
transformable into a second-order chained form of dimensionn > 3. In this appendix, the results pre-
sented in Chapter 5 will be extended to the case of higher-order second-order chained form systems of
the form (2.6). Although, different definitions of the general second-order chained form system may
exist, only systems of the form (2.6) will be considered here.

Consider the trajectory tracking problem for the general second-order chained form system (2.6).
Define the vectorξ = (ξ1,ξ2, . . . ,ξn). Consider a reference trajectoryξd, the tracking error is denoted
by x = [x11,x12,x21,x22, . . . ,xn1,xn2]

T where

xi,1 = ξi −ξid, xi,2 = ξ̇i − ξ̇id. (B.1)

The tracking dynamics in state-space form can be written as

∆1



























ẋn,1 = xn,2

ẋn,2 = xn−1,1u1,d +ξn−1(u1−u1,d)
...

ẋ3,1 = x3,2

ẋ3,2 = x2,1u1,d +ξ2(u1−u1,d)

∆2

{ ẋ2,1 = x2,2

ẋ2,2 = u2−u2,d

∆3

{

ẋ1,1 = x1,2

ẋ1,2 = u1−u1,d

(B.2)

Suppose that the subsystem∆3 has been stabilized to the origin(x1,1,x1,2) = (0,0) by a controller
u1(u1d,x1,1,x1,2). Thenx1,2 ≡ 0 and thereforeu1−u1,d ≡ 0. We design the remaining inputu2 such
that the remaining subsystem(∆1,∆2) is stabilized foru1−u1d ≡ 0. In order to make conclusions on
the exponential stability of the complete closed-loop system we use Theorem 3.6.1.

Remark B.1.1. In (B.2) the perturbation termg(t,z1,z2)z2 depends on the, to be designed, feedback
u1(t,x). When choosingz2 = [x1,1,x1,2], the perturbation matrixg(t,z1,z2) has to be linear with respect
to the variablez1 given byz1 = (xn,1,xn,2, . . . ,x3,1,x3,2). This is the case when choosing the feedback
u1 asu1 = u1d +k1,1x1,1 +k1,2x1,2.



140 Tracking control of the higher-dimensional chained form

B.1.1 Stabilization of the ( ∆1,∆2) subsystem

Suppose that the∆3 subsystem in (B.2) has been stabilized by choosing

u1 = u1d −k1,1x1,1−k1,2x1,2, k1,1 > 0,k1,2 > 0, (B.3)

where the polynomialp(λ ) = λ 2 + k1λ + k2 is Hurwitz. Thenx1,1 = x1,2 ≡ 0 andu1−u1,d ≡ 0 and
the time-varying subsystem∆1 can be written as

ẋn,1 = xn,2

ẋn,2 = xn−1,1u1,d

...

ẋ3,1 = x3,2

ẋ3,2 = x2,1u1,d

ẋ2,1 = x2,2

ẋ2,2 = u2−u2,d

(B.4)

We aim at designing a stabilizing feedbacku2 by applying a backstepping procedure to the system
(B.4). This stabilizing feedback is obtained by using a backstepping procedure to design a stabilizing
virtual inputx21. Assume that the reference signalu1d(t) satisfies Assumption 5.1.1. The procedure
for obtaining the stabilizing feedbacku2, consisting ofn−1 steps, is given as follows.

step 1 Definex̄n,1 = xn,1. Consider the first equation̄̇xn,1 = xn,2 and assume thatxn,2 is the virtual input.
A stabilizing functionxn,2 = αn,1(x̄n,1) for the x̄n,1-subsystem is

αn,1(t,xn,1) = −cn,1u1,d(t)
2dn,1+2x̄n,1,

wherecn,1 > 0,dn,1 ∈ �. Definex̄n,2 = xn,2−αn,1(x̄n,1) and consider the ¯xn,2-subsystem

˙̄xn,2 = xn−1,1u1,d(t)−
d
dt

[αn,1(t, x̄n,1)] .

Suppose thatxn−1,1 is the virtual input. A stabilizing functionxn−1,1 = αn,2(t, x̄n,1, x̄n,2) for the
x̄n,2-subsystem is given by

αn,2(t, x̄n,1, x̄n,2) = −cn,2u1,d(t)
2dn,2+1x̄n,2 +

d
dt

[αn,1(x̄n,1)]

u1,d(t)
, (B.5)

wherecn,2 > 0,dn,2 ∈�. Definex̄n−1,1 = xn−1,1−αn,2(t, x̄n,1, x̄n,2). The(x̄n,1, x̄n,2) subsystem is
then given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

step 2 For notational convenience, define the vector ¯x as x̄ = (x̄n,1, x̄n,2, . . . , x̄3,1, x̄3,2)
T . Consider the

x̄n−1,1 dynamics

˙̄xn−1,1 = xn−1,2−
d
dt

[αn,2(t, x̄n,1, x̄n,2)] .
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Assume thatxn−1,2 is the virtual input. A stabilizing functionxn−1,2 = αn−1,1(t, x̄) for thex̄n−1,1-
subsystem is

αn−1,1(t, x̄) = −cn−1,1u
2dn−1,1+2
1,d x̄n−1,1 +

d
dt

[αn,2(t, x̄n,1, x̄n,2)] ,

wherecn−1,1 > 0,dn−1,1 ∈ �. Define x̄n−1,2 = xn−1,2 −αn−1,1(x̄n1) and consider the ¯xn−1,2-
subsystem

˙̄xn−1,2 = xn−2,1u1d(t)−
d
dt

[αn−1,1(t, x̄)] .

Suppose thatxn−2,1 is the new virtual input. A stabilizing functionxn−2,1 = αn−1,2(t, x̄) for the
x̄n−1,2-subsystem is given by

αn−1,2(t, x̄) = −cn−1,2u1,d(t)
2dn−1,2+1x̄n−1,2 +

d
dt

[αn−1,1(t, x̄)]

u1,d(t)
, (B.6)

wherecn−1,2 > 0,dn−1,2 ∈�. Definex̄n−2,1 = xn−2,1−αn−1,2(t, x̄). The(x̄n,1, x̄n,2, x̄n−1,1, x̄n−1,2)
subsystem is then given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

˙̄xn−1,1 = −cn−1,1u1,d(t)
2dn−1,1+2x̄n−1,1 + x̄n−1,2

˙̄xn−1,2 = −cn−1,2u1,d(t)
2dn−1,2+2x̄n−1,2 +u1,d(t)x̄n−2,1

step i (3 ≤ i ≤ n− 2) Assume that after the(i − 1)-th step, we have designed stabilizing functions
αn− j+1,1(t, x̄), αn− j+1,2(t, x̄), (1≤ j ≤ i−1) of the form

αn− j+1,1(t, x̄) = −cn− j+1,1u
2dn− j+1,1+2
1,d x̄n− j+1,1 +

d
dt

[αn− j+2,2(t, x̄)] ,

αn− j+1,2(t, x̄) = −cn− j+1,2u1,d(t)
2dn− j+1,2+1x̄n− j+1,2 +

d
dt

[αn− j+2,1(t, x̄)]

u1,d(t)
,

(B.7)

wherecn− j+1,k > 0,dn− j+1,k ∈ �,k∈ {1,2}, such that the(x̄n,1, x̄n,2, . . . , x̄n−i+2,1, x̄n−i+2,2) sub-
system with ¯xn,1 = xn,1, x̄n,2 = xn−2−αn,1(x̄n,1) and

x̄n− j,1 = xn− j,1−αn− j+1,2(t, x̄), (1≤ j ≤ i−2)
x̄n− j,2 = xn− j+1,2−αn− j+1,1(t, x̄),

is given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄xn−i+2,1 = −cn−i+2,1u1,d(t)
2dn−i+2,1+2x̄n−i+2,1 + x̄n−i+2,2

˙̄xn−i+2,2 = −cn−i+2,2u1,d(t)
2dn−i+2,2+2x̄n−i+2,2 +u1,d(t)x̄n−i+1,1
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We wish to prove that the(x̄n,1, x̄n,2, . . . , x̄n−i+1,1, x̄n−i+1,2) subsystem has a similar structure.
Therefore consider the ¯xn−i+1,1 subsystem

˙̄xn−i+1,1 = xn−i+1,2−
d
dt

[αn−i+2,2(t, x̄)] .

Suppose thatxn−i+1,2 is a virtual input. A stabilizing functionxn−i+1,2 = αn−i+1,1(t, x̄) for the
x̄n−i+1,1-subsystem is

αn−i+1,1(t, x̄) = −cn−i+1,1u
2dn−i+1,1+2
1,d x̄n−i+1,1 +

d
dt

[αn−i+2,2(t, x̄)] ,

wherecn−i+1,1 > 0,dn−i+1,1 ∈ �. Definex̄n−i+1,2 = xn−i+1,2−αn−i+1,1(t, x̄). The dynamics of
x̄n−i+1,2 is given by

˙̄xn−i+1,2 = u1,d(t)xn−i,1−
d
dt

[αn−i+1,1(t, x̄)] .

Suppose thatxn−1,1 is a virtual input. A stabilizing functionxn−i,1 = αn−i+1,2(t, x̄) is given by

αn−i+1,2(t, x̄) = −cn−i+1,1u1,d(t)
2dn−i+1,1+1x̄n−i+1,1 +

d
dt

[αn−i+1,1(t, x̄)]

u1,d(t)
,

wherecn−i+1,1 > 0,dn−i+1,1 ∈�. Definex̄n−i = xn−i −αn−i+1,2(t, x̄). Consider the dynamics of
the(x̄n,1, x̄n,2, . . . , x̄n−i+1,1, x̄n−i+1,2) subsystem which is given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄xn−i+1,1 = −cn−i+1,1u1,d(t)
2dn−i+1,1+2x̄n−i+1,1 + x̄n−i+1,2

˙̄xn−i+1,2 = −cn−i+1,2u1,d(t)
2dn−i+1,2+2x̄n−i+1,2 +u1,d(t)x̄n−i,1

step n-1 After then−2-th step we have designed stabilizing functionsα3,1(t, x̄),α3,2(t, x̄) of the form

α3,1(t, x̄) = −c3,1u
2d3,1+2
1,d x̄3,1 +

d
dt

[α4,2(t, x̄)] ,

α3,2(t, x̄) = −c3,2u1,d(t)
2d3,2+1x̄3,2 +

d
dt

[α3,1(t, x̄)]

u1,d(t)
,

(B.8)

wherec3,1 > 0, d3,1 ∈� andc3,2 > 0,d3,2 ∈�, such that the(x̄n,1, x̄n,2, . . . , x̄3,1, x̄3,2) subsystem
with x̄n,1 = xn,1 and

x̄n− j,1 = xn− j,1−αn− j+1,2(t, x̄), (1≤ j ≤ n−3)
x̄n− j,2 = xn− j,2−αn− j,1(t, x̄),

is given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄x3,1 = −c3,1u1,d(t)
2d3,1+2x̄3,1 + x̄3,2

˙̄x3,2 = −c3,2u1,d(t)
2d3,2+2x̄3,2 +u1,d(t)x̄2,1.
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Definex̄2,1 = x2,1−α3,2(t, x̄). Then

˙̄x2,1 = x2,2−
d
dt

[α3,2(t, x̄)] .

Suppose thatx2,2 is a virtual input. A stabilizing functionx2,2 = α2,1(t, x̄) for thex̄2,1-subsystem
is

α2,1(t, x̄) = −c2,1x̄2,1 +
d
dt

[α3,2(t, x̄)] ,

wherec2,1 > 0,d2,1 ∈ �. Definex̄2,2 = x2,2−α2,1(t, x̄). The dynamics of ¯x2,2 is given by

˙̄x2,2 = u2−u2,d −
d
dt

[α2,1(t, x̄)] .

A stabilizing input is given by

u2−u2,d = −c2,2x̄2,2 +
d
dt

[α2,1(t, x̄)] (B.9)

wherec2,2 > 0,d2,2 ∈ �. Definex̄2,1 = x2,1−α2,2(t, x̄). The(x̄n,1, x̄n,2, . . . , x̄2,1, x̄2,2) subsystem
is then given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄x3,1 = −c3,1u1,d(t)
2d3,1+2x̄3,1 + x̄3,2

˙̄x3,2 = −c3,2u1,d(t)
2d3,2+2x̄3,2 +u1,d(t)x̄2,1

˙̄x2,1 = −c2,1x̄2,1 + x̄2,2

˙̄x2,2 = −c2,2x̄2,2

(B.10)

Remark B.1.2. The stabilizing functionα2,1 is obtained by differentiating the stabilizing function
α3,2(t, x̄) two times with respect to timet. The stabilizing functionα3,2(t, x̄) depends on bothu1,d(t)

and it’s higher order derivativesu(k)
1,d(t) up to some orderk. It is obtained by differentiating each

stabilizing functionαi,1(t, x̄) 2(i −3)+1 times and each stabilizing functionαi,2(t, x̄) 2(i −3) times.
In each step 1≤ i ≤ n−1 we also divide byu1,d. Therefore, the stabilizing functionα2,1 may not be
defined whenu1,d(t) = 0. By carefully selecting the parametersdi,1 anddi,2 the stabilizing function
α3,2(t, x̄) can be made smooth with respect to its argumentu1,d(t), i.e.,no divisions byu1,d(t) occur.
This is possible by choosingdi,1 ≥ i −3 anddi,2 ≥ i −3. Then each stabilizing functionαi,1(t, x̄) and
αi,1(t, x̄) can be written as

αi,1(t, x̄) = Ui,1(ū1,d)x̄i,1 +Ui,2(ū1,d)x̄i,2 + · · ·+Un,1(ū1,d)x̄n,1 +Un,2(ū1,d)x̄n,2

αi,2(t, x̄) = Ui,2(ū1,d)x̄i,2 + · · ·+Un,1(ū1,d)x̄n,1 +Un,2(ū1,d)x̄n,2
(B.11)

whereU j+1,1,U j+1,2 are functions depending onu1,d(t) and its derivatives ˙u(k)
1,d(t), k ≥ 1, i.e., ū1,d =

[u1,d, u̇1,d, . . . ,u
(k)
1,d]

T . Subsequentlyu2−u2,d becomes equal to linear time-varying feedbacks of the
form

u2−u2,d = k2,1(ū1,d)x̄2,1 +k2,2(ū1,d)x̄2,2 + · · ·+kn,1(ū1,d)x̄n,1 +kn,2(ū1,d)x̄n,2 (B.12)

wherek j,1,k j,2 are functions depending onu1,d(t) and its derivatives ˙u(k)
1,d(t), k≥ 1.
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B.1.2 Stability of the tracking-error dynamics

In this section we show that the complete tracking dynamics are globally exponentially stable. In the
previous sections we have stabilized the (∆1,∆2)-subsystem whenu1 = u1d and the∆3 subsystem in
(B.2). We can now use Theorem 3.6.1 to investigate the stability properties of the complete system.
The result is stated in the following proposition.

Proposition B.1.1. Suppose that the reference input u1d(t) satisfies Assumption 5.1.1. Consider the
system(B.2) in closed-loop with the controller u2 given by(B.9) and u1 given by

u1 = u1d −k1x11−k2x12, p(s) = s2 +k2s+k1 is Hurwitz. (B.13)

Suppose that all parameters di are chosen such thatmini=1..n(di) ≥ r and di ≥ i −3, ∀i. Moreover,
the signalsξ d

2 (t) and the derivativėu1d in (2.12)are uniformly bounded in t. Then the closed-loop
system is globallyK -exponentially stable.

Proof
Definez1 = [x̄n,1, x̄n,2, . . . , x̄31, x̄32]

T andz2 = [x̄21, x̄22,x11,x12]
T . The system (B.10) can then be written

in the form (3.19),f1(t,z1) = A1(t)z1, f2(t,z2) = A2z2, as

ż1 = A1(t)z1 +g(t,z1,z2)z2

ż1 = A2z2.

The(n−2)× (n−2) matrixA1(t) and the 4×4 matrixA2 are given by

A1(t) =





























−φn,1(t) 1 0 . . . . . . . . . 0
0 −φn2(t) u1,d 0 . . . . . . 0
...

... .. . . . .
.. .

...
...

.. . . . . . . .
.. .

...
0 . . . . . . −φ3,1(t) 1 0 0
0 . . . . . . 0 −φ3,2(t) u1d 0
0 . . . . . . . . . 0 −φ3,1(t) 1
0 . . . . . . . . . 0 0 −φ3,2(t)





























A2 =









−c2,1 1 0 0
0 −c2,2 0 0
0 0 0 1
0 0 −k1,1 −k1,2









.

whereφ j,1(t) = c j,1u1,d(t)2d j,1+2 andφ j,2(t) = c j,2u1,d(t)2d j,2+2. The(2(n−2)×4) perturbation matrix
g(t,z1,z2) is given by

g(t,z1,z2) = −















0 0 0 0
0 0 k1(xn−1,1 +ξn−1,d) k2(xn−1,1 +ξn−1,d)
...

...
...

...
0 0 0 0
0 0 k1(x21+ξ2d) k2(x21+ξ2d)















+















0 0 0 0
0 0 0 0
...

...
...

...
0 0 0 0

u1d(t) 0 0 0















(B.14)

In order to apply Theorem 3.6.1 we verify the three assumptions.



B.1 Cascaded backstepping control 145

(1) Consider theΣ1 subsystem, ˙z1 = A1(t)z1, given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄x3,1 = −c3,1u1,d(t)
2d3,1+2x̄3,1 + x̄3,2

˙̄x3,2 = −c3,2u1,d(t)
2d3,2+2x̄3,2

By recursively applying Theorem 3.6.1 it will be shown that the system is GUAS. Because the
system is linear time-variant, we conclude GES,cf. Theorem 6.13 in (Rugh, 1996). Consider
the(x̄31, x̄32, x̄41, x̄42) subsystem.

˙̄x4,1 = −c4,1u1,d(t)
2d4,1+2x̄n,1 + x̄4,2

˙̄x4,2 = −c4,2u1,d(t)
2d4,2+2x̄n,2 +u1,d(t)x̄3,1

...

˙̄x3,1 = −c3,1u1,d(t)
2d3,1+2x̄3,1 + x̄3,2

˙̄x3,2 = −c3,2u1,d(t)
2d3,2+2x̄3,2

Suppose thaty1 = (x̄4,1, x̄4,2) andy2 = (x̄3,1, x̄3,2) and that the perturbation term is

g(t,y1,y2) =

[

0 0
u1,d(t) 0

]

By Assumption 5.1.1 and Proposition 5.1.2 theΓ1 subsystem

˙̄x4,1 = −c4,1u1,d(t)
2d4,1+2x̄n,1 + x̄4,2

˙̄x4,2 = −c4,2u1,d(t)
2d4,2+2x̄n,2

is GES and assumption (1) in Theorem 3.6.1 is satisfied. By Assumption 5.1.1 the signal
u1,d(t) is necessarily bounded, and the interconnection termg(t,z1,z2) satisfies‖g(t,y1,y2)‖ ≤
‖u1,d(t)‖ ≤ M and assumption (2) in Theorem 3.6.1 is satisfied. Because theΓ2 subsystem,
i.e., (x̄3,1,x3,2) subsystem is GES assumption (3) in Theorem 3.6.1 also satisfied and we con-
clude that the(x̄3,1, x̄3,2, x̄4,1, x̄4,2) subsystem is GES. Continuing in this manner it can be shown
that the complete(x̄3,1, x̄3,2, . . . , x̄n,1, x̄n,2) subsystem is GES. This done by induction:

Suppose that the(x̄3,1, x̄3,2, . . . , x̄ j,1, x̄ j,2), (4≤ j ≤ n) subsystem is GES. It remains to be shown
that the(x̄3,1, x̄3,2, . . . , x̄ j+1,1, x̄ j+1,2) subsystem is GES. The(x̄3,1, x̄3,2, . . . , x̄ j+1,1, x̄ j+1,2) subsys-
tem can be written in the form (3.19) with theΓ1 subsystem given by

˙̄x j+1,1 = −c j+1,1u1,d(t)
2d j+1,1+2x̄ j+1,1 + x̄ j+1,2

˙̄x j+1,2 = −c j+1,2u1,d(t)
2d j+1,2+2x̄ j+1,2

which is GES by Assumption 5.1.1 and Proposition 5.1.2. TheΓ2 subsystem given by the
(x̄3,1, x̄3,2, . . . , x̄ j,1, x̄ j,2), (4 ≤ j ≤ n) subsystem which is GES. The perturbation term is given
by the(2×2( j −3)) matrix

g(t,y1,y2) =

[

0 0 . . . 0
u1,d(t) 0 . . . 0

]
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and satisfies‖g(t,y1,y2)‖ ≤ ‖u1,d(t)‖ ≤ M. By Theorem 3.6.1, the(x̄3,1, x̄3,2, . . . , x̄ j+1,1, x̄ j+1,2)
subsystem is GES. By converse Lyapunov theory,i.e.,Theorem 3.12 in (Khalil, 1996), a suitable
Lyapunov functionV(t,z1) for the Σ1 subsystem is guaranteed to exist when the matrixA1(t)
is uniformly bounded int. By assumption the reference inputu1d is uniformly bounded and
therefore also the time-varying matrixA1(t), which gives the desired result.

(2) The(2(n−2)×4) matrixg(t,z1,z2) is given by

g(t,z1,z2) = −















0 0 0 0
0 0 k1(xn−1,1 +ξn−1,d) k2(xn−1,1 +ξn−1,d)
...

...
...

...
0 0 0 0
0 0 k1(x21+ξ2d) k2(x21+ξ2d)















+















0 0 0 0
0 0 0 0
...

...
...

...
0 0 0 0

u1d(t) 0 0 0















and can be written as

g(t,z1,z2) = −
n−1

∑
j=2

(x j,1 +ξn−1,d)E
k
2(n− j),3..4 +u1d(t)E1,1 (B.15)

whereE1,1 is a(2(n−2)×4) matrix with the(1,1)-th entryE[1,1] = 1 and all remaining entries
E[k, l ] = 0,k 6= 1,∧ l 6= 1. Ei,3..4 is a(2(n−2)×4) matrix with the(i,3)-th entry and(i,4)-th
entryE[i, j] = 1, j = 3,4 and all remaining entriesE[k, l ] = 0,k 6= i,∧ l 6= 3,4. Theng(t,z1,z2)
satisfies

‖g(t,z1,z2)‖ ≤ −
n−1

∑
j=2

(|x j,1|+ |ξ j,d|)‖Ek
2( j−1)−1,3..4‖+ |u1d(t)|‖E1,1‖

≤ −K1

n−1

∑
j=2

|x j,1|+(K1Md +MK2)

(B.16)

where we used the fact that‖u1,d(t)‖ ≤ M and ‖ξ j,d‖ ≤ ‖ξd‖ ≤ Md and K1 and K2 denote
the norms of the matrices upper-bounds on the matricesE1,1 and Ei,3..4. We can write for
(2≤ j ≤ n−1)

|x j,1| = |x̄ j,1 +α j+1,2(t, x̄)| ≤ |x̄ j,1|+ |α j+1,2(t, x̄)| (B.17)

whereαn,1(t, x̄) = −cn,1u
2dn,1+2
1,d x̄n,1 and for(2≤ j ≤ n−2)

α j+1,1(t, x̄) = −c j+1,1u
2d j+1,1+2
1,d x̄ j+1,1 +

d
dt

[α j+2,2(t, x̄)] ,

α j+1,2(t, x̄) = −c j+1,2u1,d(t)
2d j+1,2+1x̄ j+1,2 +

d
dt

[α j+1,1(t, x̄)]

u1,d(t)
,

(B.18)

with c j+1,1,c j+1,2 > 0 andd j+1,1,d j+1,2 ∈ �. All stabilizing functions, see Remark B.1.2, can
be written as

α j+1,2(t, x̄) = U j+1,1(ū1,d)x̄ j+1,1 +U j+1,2(ū1,d)x̄ j+1,2 + · · ·+Un,1(ū1,d)x̄n,1 +Un,2(ū1,d)x̄n,2



B.2 Robustness considerations 147

for all (2 ≤ j ≤ n− 1) and whereU j+1,1,U j+1,2 are functions depending onu1,d(t) and its

derivatives ˙u(k)
1,d(t),k≥ 1, i.e., ū1,d = [u1,d, u̇1,d, . . . ,u

(k)
1,d]

T . The signalu1,d(t) and its derivatives

u̇(k)
1,d(t),k≥ 1 are bounded. Therefore we conclude that

α j,2(t, x̄) ≤ Ūn,1|x̄n,1|+Ūn,2|x̄n,2|+ · · ·+Ū j,1|x̄ j,1|+Ū j,2|x̄ j,2| (B.19)

whereU j,1 andU j,1, j ∈ 2, . . . ,n−1 are constants depending on the bounds|u1,d(t)| ≤ M and

|u(k)
1,d(t)| ≤ Md.

(3) The characteristic polynomial of theΣ2 subsystem is given byχ(s) = (s+c1)(s+c2)p(s) where
p(s) is given in (5.15). Because the polynomialp(s) is Hurwitz and theci ’s are positive, theΣ2

subsystem is GES. The existence of a classK functionζ (·) satisfying condition (3.23) follows
directly from the GES of theΣ2 subsystem.

By Theorem 3.6.1 and Lemma 3.6.2 we concludeK -exponentially stability of the complete
closed loop system.

2

Summarizing, we have exponentially stabilized the(∆1,∆2) and∆3 subsystems separately. We
then conclude by Theorem 3.6.1 and Lemma 3.6.2 that the combined system isK -exponentially
stable when the reference inputu1d satisfies Assumption 5.1.1 and its derivativesu(k)

1d are uniformly
bounded overt.

B.2 Robustness considerations

In this section we investigate the robustness properties of the closed-loop system. Uniform exponen-
tial stability is a desirable property because it implies exponential stability with respect to bounded
vanishing perturbations and uniformly bounded solutions with respect to bounded non-vanishing per-
turbations. In this section we will show that the closed-loop system(Σ1,Σ2) are uniformly expo-
nentially stable and determine (conservative) bounds, on the perturbation, for which the closed-loop
system is robust in some sense.

In order to show that the closed-loop systemΣ1 is exponentially stable, we need the following
lemma. It gives a result for asymptotic stability of a scalar perturbed system.

Lemma B.2.1 (Lemma 1 in (Sørdalen and Egeland, 1995)).Consider the nonlinear, one-dimensional,
time-varying system

ẋ = −a(x, t)x+d(x, t) t ≥ t0,x(t0) ∈
�

(B.20)

under the following assumptions:

• There exists a solution x(t) for any x(t0) and any t≥ t0; when a(x, t) and d(x, t) are continuous
in x and t, there exists at least one solution.

• a(x, t) has the property that for all solutions x(t), there exits positive constantsλ and P such
that

−P1 +λ1(t − t0) ≤
t
∫

t0

a(x(τ),τ)dτ ≤ P2 +λ2(t − t0), ∀ t ≥ t0,∀ t0 ≥ 0. (B.21)
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• The signal d(x, t) is bounded for any t≥ t0 and any x(t) by

|d(x(t), t)| ≤ Dexp(−γ(t − t0)) (B.22)

for some positive constants D andγ.

Then
∀ ε > 0, |x(t)| ≤ c(|x(t0)|+D)exp(−(α − ε)(t − t0)) (B.23)

whereα = min(λ1,γ) > 0 and c= max(exp(P1),exp(P1)/ε).

The previous lemma shows that a solutionx(t) of (B.20) converges exponentially to zero ifa(x, t)
andd(x, t) satisfy conditions (B.21) and (B.22) respectively.

Consider the closed-loopΣ1 subsystem, ˙z1 = A1(t)z1, given by

˙̄xn,1 = −cn,1u1,d(t)
2dn,1+2x̄n,1 + x̄n,2

˙̄xn,2 = −cn,2u1,d(t)
2dn,2+2x̄n,2 +u1,d(t)x̄n−1,1

...

˙̄x3,1 = −c3,1u1,d(t)
2d3,1+2x̄3,1 + x̄3,2

˙̄x3,2 = −c3,2u1,d(t)
2d3,2+2x̄3,2

(B.24)

By Proposition 5.1.2, the(x̄3,1, x̄3,2) subsystem is exponentially stable,i.e.,

|x̄3,2| ≤ ϕ3,2|x3,2(t0)|exp(−γ3,2(t − t0))

Using Lemma(B.2.1) we obtain

|x̄3,1| ≤ D3,1exp(−λ3,1)(t − t0))

whereλ3,1 = min(γ3,1,γ3,2)−ε3,1 andD3,1 = ϕ3,1(|x3,1(t0)|+
ϕ3,2|x3,2(t0)|

ε3,1
). Sinceu1,d(t) is bounded,

i.e., u1,d(t) < M,∀ t, we obtain in a similar way that

|x̄4,2| ≤ D4,2exp(−λ4,2)(t − t0))

with λ4,2 = min(γ4,2,λ3,1)− ε4,2 andD4,2 = ϕ4,2(|x4,2(t0)|+M
D3,1

ε4,2
). Then

|x̄4,1| ≤ D4,1exp(−(λ4,1)(t − t0))

with λ4,1 = min(γ4,1,λ4,2)− ε4,1 andD4,1 = ϕ4,1(|x4,1(t0)|+
D4,2

ε4,1
). Continuing in this manner, we

obtain for 3≤ k≤ n

|x̄k,1| ≤ Dk,1exp(−(λk,1)(t − t0))

|x̄k,2| ≤ Dk,2exp(−(λk,2)(t − t0))

whereγk,1 = ε1ck,1, γk,2 = ε1ck,2 andϕk,1 = exp(−ck,1δε1), ϕk,2 = exp(−ck,2δε1) and

λk,1 = min(γk,1,λk,2)− εk,1, λk,2 = min(γk,2,λk−1,1)− εk,2

Dk,1 = ϕk,1(|xk,1(t0)|+
Dk,2

εk,1
), Dk,2 = ϕk,2(|xk,2(t0)|+

MDk−1,1

εk,2
).
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The parametersλ3,1, λ3,2, D3,1 andD3,2 in the previous equation are given byλ3,1 = min(γ3,1,γ3,2)−
ε3,1, λ3,2 = γ3,2, D3,1 = ϕ3,1(|x3,1(t0)|+

ϕ3,2|x3,2(t0)|
ε3,1

) andD3,2 = ϕ3,2(|x3,2(t0)|. Further substitution

gives, for 4≤ k≤ n

λk,1 = min(γk,1− εk,1,γk,2− εk,1− εk,2,λk−1,1− εk,1− εk,2)

λk,2 = min(γk,1− εk,2,γk−1,1− εk−1,1− εk,2,λk−1,2− εk−1,1− εk,2)

Dk,1 = ϕk,1|xk,1(t0)|+
ϕk,1ϕk,2

εk,1
|xk,2(t0)|+

ϕk,1ϕk,2

εk,1εk,2
MDk−1,1,

Dk,2 = ϕk,2|xk,2(t0)|+
ϕk,2ϕk−1,1

εk,2
M|xk−1,1(t0)|+

ϕk,2ϕk−1,1

εk,2εk−1,1
MDk−1,2.

|x̄k,1| ≤ Dk,1exp(−λn,1(t − t0))

|x̄k,2| ≤ Dk,2exp(−λn,2(t − t0))

Since

Dk,1 =
k−3

∑
j=0

αk
k− j,1|xk− j,1(t0)|+

ϕk− j,2

εk− j,1
αk

k− j,1|xk− j,2(t0)|

= αk
k,1|xk,1(t0)|+

ϕk,2

εk,1
αk

k,1|xk,2(t0)|+
k−3

∑
j=1

αk
k− j,1|xk− j,1(t0)|+

ϕk− j,2

εk− j,1
αk

k− j,1|xk− j,2(t0)|

Dk,2 = β k
k,2|xk,2(t0)|+

k−3

∑
j=1

β k
k− j,1|xk− j,1(t0)|+

ϕk− j,2

εk− j,1
β k

k− j,1|xk− j,2(t0)|,

where we defined

αk
k,1 = ϕk,1, αk

k− j,1 = (
j−1

∏
i=0

ϕk−i,1ϕk−i,2M

εk−i,1εk−i,2
)ϕk− j,1, j ≥ 1,

β k
k,2 = ϕk,2, β k

k− j,1 = (
j−2

∏
i=0

ϕk−i,2ϕk−i−1,1M

εk−i,2εk−i−1,1
)
ϕk− j+1,2ϕk− j,1

εk− j+1,2
M, j ≥ 1,

where we defined∏k
i=0 = 1 for k < 0 such thatβ k

k−1,1 =
ϕk,2ϕk−1,1M

εk,2
. Moreover, it holds that

αk
k− j,1 =

ϕk,1

εk,1
(

j−1

∏
i=0

ϕk−i,2ϕk−i−1,1M

εk−i,2εk−i−1,1
)
ϕk− j+1,2ϕk− j,1

εk− j+1,2
M =

ϕk,1

εk,1
β k

k− j,1, j ≥ 1,

and therefore fork≥ 3 we have

Dk,1 = ϕk,1|xk,1(t0)|+
ϕk,2ϕk,1

εk,1
|xk,2(t0)|+

ϕk,1

εk,1

k−3

∑
j=1

β k
k− j,1

(

|xk− j,1(t0)|+
ϕk− j,2

εk− j,1
|xk− j,2(t0)|

)

Dk,2 = ϕk,2|xk,2(t0)|+
k−3

∑
j=1

β k
k− j,1

(

|xk− j,1(t0)|+
ϕk− j,2

εk− j,1
|xk− j,2(t0)|

)

,

Consider the upper-triangular 2(n−2)×2(n−2) matrixD given by

D2k+1,2k+1 = ϕn−k,1, D2k+1,2 j+1 =
ϕn−k,1

εn−k,1
β n−k

n− j,1, j > k

D2k+2,2k+2 = ϕn−k,2, D2k+2,2 j+2 =
ϕn−k,1ϕn−k−1,2

εn−k,1εn−k−1,2
β n−k

n− j,1, j > k,
(B.25)
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0≤ k≤ n−3. The matrixD has the following structure

D =













































ϕn,1
ϕn,1ϕn,2

εn,1
∗ . . . . . . . . . ∗

0 ϕn,2
ϕn,2ϕn−1,1

εn,1
M ∗ . . . . . . ∗

...
. .. . . . . . .

.. .
...

...
. . . . . . . . .

. . .
...

0 . . . . . . ϕ4,1
ϕ4,1ϕ4,2

ε4,1

ϕ4,1ϕ4,2ϕ3,1

ε4,1ε4,2
M

ϕ4,1ϕ4,2ϕ3,1ϕ3,2

ε4,1ε4,2ε3,1
M

0 . . . . . . 0 ϕ4,2
ϕ4,2ϕ3,1

ε4,2
M

ϕ4,2ϕ3,1ϕ3,2

ε4,2ε3,1
M

0 . . . . . . . . . 0 ϕ3,1
ϕ3,1ϕ3,2

ε3,1
0 . . . . . . . . . 0 0 ϕ3,2













































=













































ϕn,1
ϕn,1ϕn,2

εn,1

ϕn,1

εn,1
β n

n−1,1
ϕn,1ϕn−1,2

εn,1εn−1,2
β n

n−1,1 . . . . . .
ϕn,1

εn,1
β n

3,1
ϕn,1ϕ3,2

εn,1ε3,2
β n

3,1

0 ϕn,2 β n
n−1,1

φn−1,2

εn−1,1
βn−1,1 . . . . . . β n

3,1
φn−1,2

εn−1,1
β n

3,1

...
. .. .. . . . . . . .

. . .
...

...
.. . .. . . . . . . .

.. .
...

0 . . . . . . . . . ϕ4,1
ϕ4,1ϕ4,2

ε4,1

φ4,1

ε4,1
β 4

3,1
φ4,1φ3,2

ε4,1ε3,1
β 4

3,1

0 . . . . . . . . . 0 ϕ4,2 β 4
3,1

φ3,2

ε3,1
β 4

3,1

0 . . . . . . . . . . . . 0 ϕ3,1
ϕ3,1ϕ3,2

ε3,1
0 . . . . . . . . . . . . 0 0 ϕ3,2













































Sincez1(t) = [x̄n,1, x̄n,2, . . . , x̄3,1, x̄3,2]
T , we can write

|z1(t)| ≤ D|z1(t0)|exp(−λ (t − t0)),

whereγ = min(γn,1,γn,2) and therefore

‖z1(t)‖ ≤ ‖D‖‖z1(t0)‖exp(−λ (t − t0)).

By Remark 3.4.1, a Lyapunov functionV1(t,z1) = zT
1 P(t)z1 for theΣ1 subsystem is given by (3.11),

i.e.,

P(t) =

∞
∫

t

φT(τ, t)φ(τ, t)dτ (B.26)

whereφ(t, t0) denotes the unknown transition matrix of the system. Along solutions of theΣ2 subsys-
tem the Lyapunov functionV1(t,z1) satisfies

1
2L

‖z1‖2 ≤V1(z1) ≤
‖D‖2

2λ
‖z1‖2

V̇2(z1) ≤−‖z1‖2

∂V
∂z1

≤ ‖D‖2

λ
‖z1‖

(B.27)
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The closed-loop(Σ2) subsystem is given by

ż2 =









−c2,1 1 0 0
0 −c2,2 0 0
0 0 0 1
0 0 −k1,1 −k1,2









z2. (B.28)

By solving (3.10) forQ(t) = I and Ṗ(t) = 0, a time-invariant Lyapunov functionV2(x) = xTPx is
obtained that is given by

P = 1/2























1
c21

1
c21(c22+c21)

0 0

1
c21(c22+c21)

c21c22+c2
21+1

c21c22(c22+c21)
0 0

0 0
k2

12+k2
11+k11

k11k12

1
k11

0 0
1

k11

k11+1
k11k12























.

The Lyapunov functionV2 satisfies

λmin(P)‖z2‖2 ≤V2(z2) ≤ λmax(P)‖z2‖2

V̇2(z2) ≤−‖z2‖2

∂V
∂z2

≤ 2λmax(P)‖z2‖
(B.29)

Now consider the Lyapunov functionV(t,z) = V1(t,z1) +V2(z2). Then the Lyapunov functionV
satisfies

min(
1

2L
,λmin(P))‖z‖2 ≤V2(z) ≤ max(

‖D‖2

2λ
,λmax(P))‖z‖2

V̇2(z) ≤−‖z‖2

∂V
∂z

≤ max(
‖D‖2

λ
,2λmax(P))‖z‖

(B.30)

By Theorem 3.5.1 we conclude that the closed-loop system(Σ1,Σ2) is robust with respect to vanishing
perturbations,i.e.,δ (t,z1) = 0 for x = 0, satisfying

‖δ (t,x)‖ <
1

max(
‖D‖2

λ
,2λmax(P))

, ∀z∈ �n (B.31)

By Theorem 3.5.2 we conclude that solutions of the system are globally ultimatelybounded for non-
vanishing perturbations,i.e.,δ (t,x) 6= 0 for x = 0, satisfying

‖δ (t,x)‖ <
1

max(
‖D‖2

λ
,2λmax(P))

√

√

√

√

√

√

min(
1

2L
,λmin(P))

max(
‖D‖2

2λ
,λmax(P))

θ r, ∀‖z‖ < r,z∈ �n. (B.32)
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Appendix C

The underactuated H-Drive
manipulator

C.1 Dynamic model of the underactuated H-Drive Manipulator

In this appendix, a dynamic model for the underactuated H-Drive Manipulator will be derived. This
dynamic model is used as a starting point for a simplified dynamic model presented in Chapter 7.

X

X

Y

rx

ry θ

φO

Y2

Y1

D l

Figure C.1: The coordinate system of the modified H-drive system with generalized coordinates[rx, ry,φ ,θ ].
The masses along the axes are denoted bymX, mY1 andmY2 respectively. The mass of the rotational
link is denoted bym3 and its moment of inertia about its axis of rotation byI3. The lengthl denotes
the distance between the rotational joint and the center of mass of the link (not shown).

The coordinate system of the underactuated H-Drive Manipulator is illustrated in Figure C.1.
Denote the mass of theY motors bymY1 andmY2 respectively, the mass of thex motor bymX, the
mass and inertia of the beam bymB andIB and the mass and inertia of the rotational link bym3 and
I3 respectively. The longitudinal forces from theY axes are denoted byFY1 and FY2 respectively,
while the transversal force from theX axis is denoted byFX. The distance from the rotational joint
at the position[rx(t), ry(t)] to the center of mass of the rotational link is denoted by the lengthl and
the length of theX-axis beam is denoted byD. The system moves in a horizontal plane and is not
influenced by gravity. The generalized coordinates are given byq = [YB(t),φ(t),X(t),θ(t)], where
YB(t) denotes the position along theY axis of the center of mass of the beam,φ(t) the tilt-angle,X(t)
the position of theX motor along theX axis andθ(t) the orientation of the rotational link.
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Assume that the center of mass of theX axis beam moves along a straight line through the origin
O in the direction of theY axis. The position vectors, in(X,Y) coordinates, from the originO to the
center of mass of the rigid bodies are given by

rB(t) = [0,YB(t)] ,

rY1(t) = [(D/2)cos(φ(t)),YB(t)+(D/2)sin(φ(t)] ,

rY2(t) = [−(D/2)cos(φ(t)),YB(t)− (D/2)sin(φ(t)] ,

rX(t) = [(X(t)+D/2)cos(φ(t)),YB(t)+(X(t)+D/2)sin(φ(t))] ,

r link = [(X(t)+D/2)cos(φ(t))− l sin(θ(t)),YB(t)+(X(t)+D/2)sin(φ(t))+ l cos(θ(t))] .

Note that the positionX(t) along theX axis is given byX ∈ [−0.613,0.059]. By assumption, the
center of mass of the beam is located at the positionX(t) = −D/2, where the lengthD of the beam is
approximately equal to 0.6 m. The kinetic energy of the system is

T = 1/2
(

mBṙ2
B +mY1ṙ2

Y1 +mY2ṙ2
Y2 +mX ṙ2

X + IBφ̇2 +m3ṙ2
3 + I3ṙ2

link

)

. (C.1)

Using the Euler-Lagrange formulation,i.e.,

d
dt

(

∂T
∂ q̇i

)

− ∂T
∂qi

= Fi , i = {1, . . . ,4},

the dynamic model of the underactuated H-Drive Manipulator can be written inthe form

M(q)q̈+C(q, q̇)q̇ =

[

F
0

]

. (C.2)

The(4×4) symmetric and positive-definite mass matrixM(q) is given by

M[1,1] = mY1 +mY2 +mX +mB +m3,

M[1,2] = ((X(t)+D/2)(mX +m3)+(D/2)(mY1−mY2))cos(φ(t)),

M[1,3] = (mX +m3)sin(φ(t)),

M[1,4] = −m3l sin(θ(t)),

M[2,2] = IB +(mX +m3)(X(t)+D/2)2 +(D/2)2(mY1 +mY2),

M[2,3] = 0,

M[2,4] = −m3l(X(t)+D/2)sin(θ(t)−φ(t)),

M[3,3] = mX +m3,

M[3,4] = −m3Lcos(θ(t)−φ(t)),

M[4,4] = I3 +m3l2.

(C.3)
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The(4×4) matrix representing Coriolis and centrifugal forcesC(q, q̇) is given by

C[1,1] = C[2,1] = C[3,1] = C[3,3] = C[4,1] = C[4,4] = 0,

C[1,2] = (mX +m3)cos(φ(t))
dX(t)

dt
− ((mX +m3)(X(t)+D/2)+(D/2)(mY1−mY2))sin(φ(t))

dφ(t)
dt

,

C[1,3] = (mX +m3)cos(φ(t))
dφ(t)

dt
,

C[1,4] = −m3l cos(θ(t))
dθ(t)

dt
,

C[2,2] = (mX +m3)(X(t)+D/2)
dX(t)

dt
,

C[2,3] = (mX +m3)(X(t)+D/2)
dφ(t)

dt
,

C[2,4] = −m3l(X(t)+D/2)cos(θ(t)−φ(t))
dθ(t)

dt
,

C[3,2] = −(mX +m3)(X(t)+D/2)
dφ(t)

dt
,

C[3,4] = m3l(sin(θ(t)−φ(t))
dθ(t)

dt
,

C[4,2] = m3l(X(t)+D/2)cos(θ(t)−φ(t))
dφ(t)

dt
−m3l sin(θ(t)−φ(t))

dX(t)
dt

,

C[4,3] = −m3l sin(θ(t)−φ(t))
dX(t)

dt
.

(C.4)

The matricesM andC satisfy the property thaṫM−2C is skew-symmetric. The(4×1) input matrix
F is given by

F[1,1] = FY1 +FY2,

F[2,1] = (D/2)(FY1−FY2)cos(φ(t)),

F[3,1] = FX,

F[4,1] = 0.

(C.5)

C.2 The servo controllers

Suppose that two controlleru1 = α1(ξ , t) andu2 = α2(ξ , t) have been designed for the second-order
chained form (7.13). Using relation (7.11) these inputs can be transformed into desired accelerations
vx andvy for theX- andY-axes,cf. (7.9). In order to compensate for the friction and cogging forces
in the X andY-axes, these desired accelerations are integrated twice to obtain desired positionsrxd

andryd for the position of the unactuated joint. These desired positions are then commanded to servo
controllers for theX andY-axes. This approach, depicted in Figure 7.3, can been identified as ’virtual
internal model following control’ (Kosuge et al., 1987), in which a local servo system is used to
control the system. The desired positions of the servo system are obtainedby integrating the desired
accelerations which are commanded from a top-level controller.

In (van der Voort, 2002) the frequency responses of theX andY axes have been measured. In
order to reduce the effect of static friction and cogging, the motors are translated along a trajectory
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with a constant speed of 0.02 [m/s2] and covers about 0.1 [m]. During this motion a band-limited
white-noise signal generated at 5[kHz], i.e., the sampling-rate of the system, with a power-intensity
of 10−5 [Nm/s] is injected at the input of the PID controller. As mentioned earlier, the dynamicsof
theY-axes are influenced by the position along theX axis. Therefore, the frequency responses have
been measured for different positions along theX-axis. This makes it possible to develop a Linear
Parameter-Varying (LPV) model which incorporates the coupling of theX- andY-dynamics. In this
thesis, however, it is assumed that theX- andY-axes are decoupled, and PID controllers are used to
control theX andY axes independently.
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Figure C.2: Frequency responses function (FRF) of theX- (left) andY1-axis (right) of the H-drive system

The frequency response of theX-axis with theY-axis located atY = 0.5 [m] and the frequency re-
sponse of theY1 axis with theX-axis located atX = 0.3 [m] are shown in Figure (C.2). For frequencies
below 100[Hz], the system behaves like a double integrator,i.e., the magnitude shows a slope of−40
[dB/decade] and a phase around−180 degrees. By fitting the frequency response for these lower fre-
quencies with a double integrator, we conclude that the lumped masses are given bymX/km = 0.12066
andmY1/km = 0.21914[A ·s2/m]. In (Hendriks, 2000) the motor constant of the LiMMS was calcu-
lated and given bykm = 74.4 [N/A], thus these lumped masses correspond to massesmx = 8.98 [kg]
andmy = 16.30 [kg], respectively.

The frequency response of the X-axis shows that there are resonance frequencies at 149, 161, 210
and 223 Hz. The frequency response of the Y-axis shows resonance frequencies at 93, 102, 246 and
300 [Hz]. As mentioned earlier, the dynamics of theY axes are influenced by the dynamics of theX-
axes. In fact, in (van der Voort, 2002) frequency responses of theY axes have been measured with the
X axis located at different positions. In that reference it is shown that besides the resonance frequency
at 102[Hz], a second resonance frequency occurs at 135[Hz]. The damping of this eigenfrequency is
highly position dependent,i.e., it is well damped when the mass of theX motor is located far away
from theY axis and poorly damped when the mass of theX motor is located near to theY axis.

In (van der Voort, 2002), the position dependency of the dynamics of theY axis has been captured
by developing a Linear Parameter Varying (LPV) model, in which the position of the X axis acts as
the varying parameter. In this manner it is possible to design H∞ controllers and LPV controllers that
compensate the position dependency of the resonance frequency at 135 [Hz]. It turns out, however,
that the H∞ controllers are only locally stable,i.e., when one of the controllers is used for the whole
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operating range of the H-Drive, then instability may occur. It is however possible to design PID
controllers that guarantee stability over the whole operating range. Therefore, we assume that the
dynamics of theX andY axes are decoupled and design PID controllers for theX andY axes which
are globally asymptotically stable. These controllers are of the type PI Lead/Lag in series with a
second-order low-pass with a cut-off frequency at 300 Hz, and aregiven by

Cservo,X =
0.6755s2 +106.1s+4000

4.4806·10−9s3 +1.6892·10−5s2 +1.5920·10−2s

Cservo,Y =
1.182s2 +185.7s+7000

4.4806·10−9s3 +1.6892·10−5s2 +1.5920·10−2s

(C.6)

Since the LiMMS motors for theX andY-axes are of the same type, it is assumed that all three
motors have similar dynamics. The structure of the controllers therefore onlydiffer in gains, since
the mass in the direction of theY-axes is larger than in theX-direction. We aim at compensating the
resonance frequencies by adding notches to these PID controllers. The bode diagrams of the resulting
PID controllers are shown in Figure C.3. The frequency response of the resulting open-loop transfer
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Figure C.3: Bode diagram of the servo controller for theX- (left) andY-axes (right)

is shown in Figure C.4. TheX-axis has a bandwidth of around 60[Hz] with a phase-margin of 50
degrees and a gain-margin of 18[dB]. TheY-axis has a bandwidth of around 52 Hz and a phase-
margin of 35 degrees and a gain-margin of 16[dB]. Using the frequency responses of theY axis
measured at different positions of theX axis, see (van der Voort, 2002), it can be verified that the
closed-loop systems are asymptotically stable over the whole operating range.

C.3 Motion Planning

In Chapter 4 a number of trajectory generation methods have been presented for the second-order
chained form. In Section 7.2, it was shown that the underactuated H-Drive Manipulator is trans-
formable into the second-order chained form. In this section, the trajectorygeneration methods will
be illustrated by application to the underactuated H-Drive Manipulator. Because these methods are
used to generate point-to-point motions, the resulting trajectories are not persistently exciting. There-
fore, the trajectory generation methods have not been used to generate reference trajectories for the
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Figure C.4: Frequency response of the open-loop system of theX- (left) andY-axes (right)

tracking problem, presented in Chapter 7 and 8. The flatness-based approach, presented in Section 4.4,
can not be used to generate trajectories that pass through singularities ofthe endogenous transforma-
tion and the solution (4.16) of the point-to-point steering method, presented inSection 4.5, can not
be used to generate trajectories when the desired final value of the stateξ1 is equal to its initial value,
i.e., ξ10 = ξ1T . Therefore, the focus will be on the variational method and the sub-optimalmethod,
presented in Section 4.6 and 4.7 respectively, and the flatness-based method and the solution (4.16)
will not be considered here.

Consider the problem of moving the rotational link form an initial zero-velocityconfigurationqA

to a desired final zero-velocity configurationqB. By transforming these configurations to the second-
order chained form, we obtain an initial zero-velocity positionξA and a desired final zero-velocity
positionξB for the second-order chained form. Here, we consider the motion planning problem for
the configurations given by

qA = [0,−0.3,0], qB = [0,0.3,0],

ξA = [0,0,−0.3], ξB = [0,0,0.3].
(C.7)

This trajectory can be interpreted as the equivalent of a parallel parkingmotion, often encountered in
mobile robotics, for an underactuated PPR manipulator. This desired motion of the rotational link is
interesting because, due to the nonholonomic constraint, it is difficult to control theξ3 coordinate of
the system. Moreover, the trajectory passes through the singularities encountered in the flatness-based
approach and the solution (4.16) of the point-to-point steering problem.

The variational method and the sub-optimal methods will be compared on the basis of compu-
tational effort, control effort and the length of the trajectory. These measures will be evaluated for
the chained form coordinates as well as the original mechanical coordinates. Note that the coor-
dinate transformation into the second-order chained form is only defined for link angles in the set
{θ(t) | |θ(t)| < π/2}. In this thesis, a ’virtual internal model following control’ approach has been
adopted to control the underactuated H-Drive Manipulator. Therefore, the desired input currents to
the LiMMS will not be generated, but instead the coordinate transformation isused to transform the
desired inputs[u1,u2] into desired accelerations[vx,vy] of the LiMMS along thex- andy-direction. In
order to compare the variational and the sub-optimal methods, we also definethe following measures:

• the computational effort in seconds of computing time is denoted by the measureT .



C.3 Motion Planning 159

• the control effortU in terms of the inputs of the second-order chained form and the control
effort V in terms of the accelerations of the underactuated H-Drive manipulator:

U =

T
∫

0

(u1(t)
2 +u2(t)

2)dt

V =

T
∫

0

(vx(t)
2 +vy(t)

2)dt

(C.8)

• the lengthL of the trajectory in terms of the chained form states and the lengthD in terms of
the mechanical states of the underactuated H-Drive manipulator::

L =

T
∫

0

(ξ̇1(t)
2 + ξ̇2(t)

2 + ξ̇3(t)
2)dt

D =

T
∫

0

(ṙx(t)
2 + ṙy(t)

2 + θ̇(t)2)dt

(C.9)

In the variational method the motion planning problem is formulated as a set of nonlinear equalities
given by (4.18). The basis functions are chosen as a finite number of harmonic functions,i.e.,

h(t) = [ 1 sin(ωt) cos(ωt) sin(2ωt) cos(2ωt) sin(3ωt) cos(3ωt) ] (C.10)

A SQP method available through the ’fmincon’ procedure in the Matlab OptimizationToolbox has
been used to solve the resulting nonlinear optimization problem. In the sub-optimal method (FDM),
the optimal control problem has been formulated by a boundary value problem (BVP) given by (4.27).
In order to solve this BVP the Finite Differences Method (FDM) is applied with auniform mesh of
200 points to approximate the solution. In both methods, the desired final configuration is reached
after one second,i.e., T= 1 [s]. The initial conditions in both methods are chosen as a set of randomly
generated numbers.

Remark C.3.1. Suppose that a trajectoryξ (t) connecting the pointsξA andξB is available on the
time-intervalt ∈ [0,T]. Consider the ’stretched’ trajectorȳξ (t) = ξ (t/α) defined on the time-interval
t ∈ [0,αT]. The corresponding inputs are given (by differentiation) as ¯u(t) = u(t/α)/α2. The cost-
criterionJ for the stretched trajectory is given as

J =

αT
∫

0

(ū1(t)
2 + ū2(t)

2)dt = (1/α4)

αT
∫

0

(u1(t/α)2 +u2(t/α)2)dt = (1/α3)

T
∫

0

(u1(t)
2 +u2(t)

2)dt.

The stretched trajectory thus remains optimal for the cost-criterionJ =
∫ T

0 (u1(t)2+u2(t)2)dt. In fact,
this property holds for any quadratic cost-criterion

J =

T
∫

0

ξ (t)TQξ (t)+u(t)TRu(t)dt

whereξ (t) = [ξ1(t), ξ̇1(t), . . . ,ξ6(t), ξ̇6(t)], u(t) = [u1(t),u2(t)] andQ andR are constant positive-
definite symmetric matrices.
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Figure C.5: Stroboscopic visualization of the motion planning solutions; the black dot (·) denotes the position
of the center of percussion at a distance of 13[cm] from the joint.

The solution of the variational method (SQP) to the motion planning problem is shown in Fig-
ure C.6 and the solution of the sub-optimal method (FDM) is shown in Figure C.7.In order to trans-
form the chained form states and inputs to the mechanical states and accelerations the parameter value
λ = 0.13 [m] has been used. This value is in the order of magnitude of the value ofλ in Table 8.1. In
Figure C.5 a stroboscopic visualization of the solutions is given, by assuminga link length of 0.1725
[m].

method T [s] L [m] U [m/s] D [m, rad] V [m/s]

variational 17.14 5.76 273.85 4.93 175.66

sub-optimal 45.97 5.23 244.13 4.59 151.03

Table C.1: Measures of the motion planning methods

The corresponding measures have been summarized in Table C.1. The variational methods does
not guarantee a solution,i.e., in some cases the design variables may not converge to a solution. In
addition, the variational method only generates a feasible trajectory connecting the pointsξA andξB

and is not uniquely defined,i.e., more than one solution may exists. In fact, when using a different
initial condition for the same motion planning problem, a second solution can be found that resembles
the trajectory from the sub-optimal method.

The sub-optimal method only generates sub-optimal solutions in the sense thatonly a local min-
imum to the optimal control problem can be found, since the Hamiltonian of the optimal control
problem is non-convex. This means that there may exist multiple solutions or local minima to the
optimal control problem. If a different initial condition is chosen then the FDMmay converge to a
different local minimum. For the current motion planning problem, however, different initial con-
ditions did not result in different trajectories and the calculated solution may be a global minimum.
If the Hamiltonian of the optimal control problem is convex, then the FDM converges to a global
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minimum and an optimal solution has been found.
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Figure C.6: The solution of the variational method (SQP) to the motion planning problem (C.7);rx,ξ1,u1 (solid),
ry,ξ2,u2 (dashed) andθ ,ξ3 (dash-dotted).

As expected the sub-optimal methods generates a trajectory that is closer to the optimal solution,
i.e., the measureU is smaller, than the variational method. The required computational effort is
however larger. It should be noted that both methods can be used to solvethe motion planning problem
in terms of the dynamics of the mechanical system without using a transformationinto the second-
order chained form. In certain cases, the resulting trajectories will look completely different from the
trajectories that are based on the second-order chained form. The main advantage of using the second-
order chained form is that it considerably reduces the computational time needed to solve the motion
planning problem. Furthermore, the presented trajectory generation methods may be generalized to
include obstacle avoidance, see (Verhoeven, 2002) for more information.
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(solid), ry,ξ2,u2 (dashed) andθ ,ξ3 (dash-dotted).



Bibliography

Aneke, N. P. I., Lizárraga, D. A., and Nijmeijer, H. (2002a). Homogeneous stabilization of the ex-
tended chained form system. InProceedings of the IFAC World Congress. Barcelona, Spain. Paper
no. T-Tu-A08-1 (cd-rom).

Aneke, N. P. I., Lizárraga, D. A., Nijmeijer, H., and de Jager, A. G. (2002b). Homogeneous stabi-
lization of an underactuated manipulator. InProceedings of the Mechatronics 2002 Conference.
University of Twente, Enschede, The Netherlands, pp. 848–857.

Aneke, N. P. I., Nijmeijer, H., and de Jager, A. G. (2000). Trajectory tracking by cascaded back-
stepping control for a second-order nonholonomic mechanical system. In A. Isidori, F. Lamnabhi-
Lagarrigue, and W. Respondek (eds.),Nonlinear Control in the Year 2000, Springer: Paris, volume
258 ofLecture Notes in Control and Information Sciences. pp. 35–49.

Aneke, N. P. I., Nijmeijer, H., and de Jager, A. G. (2003). Tracking control of second-order chained
form systems by cascaded backstepping control.International Journal of Robust and Nonlinear
Control, 13, 95–115. Published online: 30 September 2002.

Arai, H., Tanie, K., and Shiroma, N. (1998a). Nonholonomic control of a three-dof planar underactu-
ated manipulator.IEEE Transactions on Robotics and Automation, 14, 681–695.

Arai, H., Tanie, K., and Shiroma, N. (1998b). Time-scaling control of an underactuated manipulator.
In Proceedings of the IEEE International Conference on Robotics and Automation. pp. 2619–2626.

Ascher, U. M., Mattheij, R. M. M., and Russel, R. D. (1988).Numerical solution of boundary value
problems for ordinary differential equations. Prentice Hall.

Astolfi, A. (1996). Discontinuous control of nonholonomic systems.Systems and Control Letters, 27,
37–45.

Bergerman, M. and Yangsheng, X. (1994). Robust control of underactuated manipulators: analysis
and implementation. InProceedings of the IEEE International Conference on Systems, Man and
Cybernetics. volume 1, pp. 925–930.

Bertsekas, D. P. (1995).Nonlinear Programming. Athena Scientific.

Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In R.W. Brockett, R. S.
Milman, and H. J. Sussmann (eds.),Differential Geometric Control Theory, Birkhauser, Boston.
pp. 181–191.

Coron, J.-M. (1995). On the stabilization in finite time of locally controllable systems by means of
continuous time-varying feedback law.SIAM Journal on Control and Optimization, 33(3), 804–833.

Coron, J.-M. and Rosier, L. (1994). A relation between continuous time-varying and discontinuous
feedback stabilization.Journal of Mathematical Systems, Estimation and Control, 4(1), 67–84.



164 Bibliography

de Wit, C. C., Berghuis, H., and Nijmeijer, H. (1994). Practical stabilization ofnonlinear systems in
chained form. InProceedings of the 33rd IEEE Conference on Decision and Control. volume 4, pp.
3475–3480.

Do, K. D., Jiang, Z. P., and Pan, J. (2002). Robust global stabilization of underactuated ships on a
linear course. InProceedings of the American Control Conference. volume 1, pp. 304–309.

Egeland, O. and Berglund, E. (1994). Control of an underwater vehicle with nonholonomic accel-
eration constraints. InProceedings of the IFAC Conference on Robot Control. Capri, Italy, pp.
845–850.

Egeland, O., Berglund, E., and Sørdalen, O. J. (1994). Exponential stabilization of a nonholonomic
underwater vehicle with constant desired configuration. InProceedings IEEE International Confer-
ence on Robotics and Automation. San Diego CA, U.S., volume 1, pp. 20–25.

Fletcher, R. (1980).Practical Methods of Optimization, volume Vol. 1 Unconstrained Optimization
and Vol 2. Constrained Optimization. John Wiley & Sons Ltd.

Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1994). Nonlinear control and lie-bäcklund transfor-
mations: Towards a new differential geometric standpoint. InProceedings of the 33rd Conference
on Decision and Control. Lake Buena Vista, FL, volume 1, pp. 339–344.

Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995). Flatness anddefect of non-linear systems:
Introductory theory and examples.International Journal of Control, 61(6), 1327–1361.

Ge, S. S., Sun, Z., Lee, T. H., and Spong, M. W. (2001). Feedback linearization and stabilization of
second-order non-holonomic systems.International Journal of Control, 74(14), 1383–1392.

Gill, P. E., Murray, W., and Wright, M. H. (1981).Practical Optimization. Academic Press, London.

Hauser, J., Sastry, S., and Meyer, G. (1992). Nonlinear control design for slightly non-minimum phase
systems: application to V/STOL aircraft.Automatica, 28(4).

Hendriks, S. G. M. (2000).Iterative Learning Control on the H-Drive. Master’s thesis, Eindhoven
University of Technology. DCT 2000.37.

Hermes, H. (1991). Nilpotent and high-order approximations of vector fields systems.SIAM Review,
33, 238–264.

Imura, J., Kobayashi, K., and Yoshikawa, T. (1996). Nonholonomic control of a 3 link planar ma-
nipulator with a free joint. InProceedings of the 35th IEEE Conference on Decision and Control.
Kobe, Japan, volume 2, pp. 1435–1436.

Iwamura, M., Yamamoto, M., and Mohri, A. (2000). Near-optimal motion planning for nonholo-
nomic systems using time-axis transformation and gradient method. InProceedings of the IEEE
Conference on Robotics and Automation. volume 2, pp. 1811–1816.

Jiang, Z. P. and Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic
systems in chained form.IEEE Transactions on Automatic Control, 44, 265–279.

Kawski, M. (1995). Geometric homogeneity and stabilization. InProceedings of the IFAC Nonlinear
Control Systems Design Symposium (NOLCOS). Tahoe City, California, volume 1, pp. 164–169.

Khalil, H. K. (1996). Nonlinear systems. Prentice Hall, Upper Saddle River, New York, second
edition.

Kim, M.-S., Oh, S.-K., Shin, J.-H., and Lee, J.-J. (2001). Robust model reference adaptive control
of underactuated robot manipulators. InProceedings of the IEEE International Symposium on
Industrial Electronics. volume 3, pp. 1579–1584.



Bibliography 165

Kobayashi, K. (1999).Controllability Analysis and Control Design of Nonholonomic Systems. Ph.D.
thesis, Department of Mechanical Engineering, Kyoto University, Japan.

Kolmanovsky, I. and McClamroch, N. H. (1995). Developments in nonholonomic control problems.
IEEE Control Systems Magazine, 15, 20–36.

Kosuge, K., Furuta, K., and Yokoyama, T. (1987). Virtual internal model following control of robot
arms. InProceedings of the IEEE International Conference on Robotics and Automation. pp. 1549–
1554.

Laiou, M.-C. and Astolfi, A. (1999). Quasi-smooth control of chained systems. InProceedings of the
American Control Conference. San Diego, California, pp. 3940–3944.

Lakshmikantham, V. and Leela, S. (1969).Differential and Integral Inequalities: Theory and Appli-
cations, volume 1. Academic Press, New York.

Lee, E. B. and Markus, L. (1967).Foundations of optimal control theory. John Wiley & Sons Ltd.

Lefeber, E. (2000).Tracking Control of Nonlinear Mechanical Systems. Ph.D. thesis, Universiteit
Twente, Enschede.

Lefeber, E., Robertsson, A., and Nijmeijer, H. (1999). Linear controllers for tracking chained-form
systems. In D. Aeyels, F. Lamnabhi-Lagarrigue, and A. J. van der Schaft (eds.),Stability and
Stabilization of Nonlinear Systems, Springer Verlag, volume 246 ofLecture Notes in Control and
Information Sciences. pp. 183–199.

Lefeber, E., Robertsson, A., and Nijmeijer, H. (2000). Linear controllers for exponential tracking of
systems in chained-form.International Journal of Robust and Nonlinear Control, 243–263.

Lewis, F. L. and Syrmos, V. L. (1995).Optimal Control. John Wiley & Sons Ltd.

Li, Z. and Canny, J. F. (eds.) (1993).Nonholonomic Motion Planning. Kluwer.

Lizárraga, D., Aneke, N. P. I., and Nijmeijer, H. (2003). Robust point-stabilization of underactuated
mechanical systems via the extended chained form.Submitted to: SIAM Journal of Control and
Optimization, -(-), –.

Lizárraga, D. A., Morin, P., and Samson, C. (1999). Non-robustnessof continuous homogeneous
stabilizers for affine control systems. InProceedings of the IEEE Conference on Decision and
Control (CDC). Phoenix, Arizona, volume 1, pp. 855–860.

Luca, A. D., Mattone, R., and Oriolo, G. (1998). Steering a class of redundant mechanisms through
end-effector generalized forces.IEEE Transactions on Robotics and Automation, 14, 329–333.

Luca, A. D. and Oriolo, G. (2000). Motion planning and trajectory control of an underactuated
three-link robot via dynamic feedback linearization. InProceedings of the 2000 IEEE International
Conference on Robotics & Automation. San Fransisco, CA, pp. 2789–2795.

Lucibello, P. and Oriolo, G. (2001). Robust stabilization via iterative state steering with an application
to chained-form systems.Automatica, 37(1), 71–79.

Lynch, K. M., Shiroma, N., Arai, H., and Tanie, K. (1998). Motion planningfor a 3-dof robot with
a passive joint. InProceedings of the IEEE International Conference on Robotics and Automation.
volume 2, pp. 927–932.

McClamroch, N. H., Kolmanovsky, I., Cho, S., and Reyhanoglu, M. (1998). Control problems for
planar motion of a rigid body with an unactuated internal degree of freedom.In Proceedings of the
American Control Conference. Philadelphia, USA, volume 1, pp. 229–233.



166 Bibliography

M’Closkey, R. and Morin, P. (1998). Time-varying homogeneous feedback: design tools for expo-
nential stabilization of systems with drift.International Journal of Control, 71(5), 837–869.

M’Closkey, R. T. and Murray, R. M. (1993). Nonholonomic systems andexponential convergence:
some analysis tools. InProceedings of the 32nd IEEE Conference on Decision and Control. CDC,
San Antonio, Texas, pp. 943–948.

Mita, T. and Nam, T. K. (2001). Control of underactuated manipulators using variable period dead-
beat control. InProceedings of the IEEE International Conference on Robotics and Automation.
volume 3, pp. 2735–2740.

Morin, P. and Samson, C. (1997). Time-varying exponential stabilization of a rigid spacecraft with
two control torques.IEEE Transactions on Automatic Control, 42(4), 943–948.

Morin, P. and Samson, C. (1999). Exponential stabilization of nonlinear driftless systems with ro-
bustness to unmodeled dynamics.Control, Optimization and Calculus of Variations (COCV), 4,
1–35.

Murray, R. M. (1993). Control of nonholonomic systems using chained forms.Fields Institute Com-
munications, 1, 219–245.

Murray, R. M., Li, Z., and Sastry, S. S. (1994).A Mathematical introduction to Robotic Manipulation.
CRC Press.

Murray, R. M. and Sastry, S. S. (1991). Steering nonholonomic systemsin chained forms. InPro-
ceedings of the 30th IEEE Conference on Decision and Control. CDC, Brighton, England, pp.
1121–1126.

Murray, R. M. and Sastry, S. S. (1993). Nonholonomic motion planning: Steering using sinusoids.
IEEE Transactions on Automatic Control, 38(5), 700–716.

Neimark, Y. and Fufaev, N. A. (1972).Dynamics of Nonholonomic Systems, volume 33. American
Mathematic Society Translations.

Nijmeijer, H. and van der Schaft, A. J. (1990).Nonlinear Dynamical Control Systems. Springer: New
York.

Oriolo, G. and Nakamura, Y. (1991). Control of mechanical systems with second-order nonholonomic
constraints: Underactuated manipulators. InProceedings of the 30th Conference on Decision and
Control. CDC, Brighton, England, pp. 2398–2403.

Panteley, E., Lefeber, E., Loría, A., and Nijmeijer, H. (1998). Exponential tracking control of a mobile
car using a cascade approach. InProceedings of the IFAC Workshop on Motion Control. Grenoble,
pp. 221–226.

Panteley, E. and Loría, A. (1998). On global uniform asymptotic stability ofnonlinear time-varying
systems in cascade.Systems and Control Letters, 33(2), 131–138.

Panteley, E. and Loría, A. (2001). Growth rate conditions for uniform asymptotic stability of cascaded
time-varying systems.Automatica, 37, 453–460.

Pettersen, K. Y. (1996).Exponential Stabilization of Underactuated Vehicles. Ph.D. thesis, Norwegian
University of Science and Technology, Department of Engineering Cybernetics.

Pettersen, K. Y. and Nijmeijer, H. (1998). Tracking control of an underactuated surface vessel. In
Proceedings IEEE Conference of Decision and Control. Florida, U.S., volume 4, pp. 4561–4566.

Pettersen, K. Y. and Nijmeijer, H. (2000). Semi-global practical stabilizationand disturbance adap-
tation for an underactuated ship. InProceedings of the 39th IEEE Conference on Decision and
Control. Sydney, Australia, volume 3, pp. 2144–2149.



Bibliography 167

Pomet, J.-B. and Samson, C. (1994). Exponential stabilization of nonholonomic systems in power
form. In IFAC Symp. on Robust Control Design. pp. 447–452.

Rathinam, M. and Murray, R. M. (1998). Configuration flatness of lagrangian systems underactuated
by one control.SIAM Journal on Control and Optimization, 36(1), 164–179.

Reyhanoglu, M., Cho, S., McClamroch, N. H., and Kolmanovsky, I. V. (1998). Discontinuous feed-
back control of a planar rigid body with an unactuated degree of freedom. In Proceedings of the
37th Conference on Decision and Control. volume 1, pp. 433–438.

Reyhanoglu, M., van der Schaft, A. J., McClamroch, N. H., and Kolmanovsky, I. (1996). Nonlinear
control of a class of underactuated systems. InProceedings of the 35th Conference on Decision and
Control. Kobe, Japan, pp. 1682–1687.

Reyhanoglu, M., van der Schaft, A. J., McClamroch, N. H., and Kolmanovsky, I. (1999). Dynamics
and control of a class of underactuated mechanical systems. InIEEE Transactions on Automatic
Control. volume 44, pp. 1663–1671.

Rugh, W. J. (1996).Linear System Theory. Prentice-Hall, 2nd edition.

Shin, J.-H. and Lee, J.-L. (2000). Experimental verification for robust adaptive control of an un-
deractuated robot manipulator with second-order nonholonomic constraints. InProceedings of the
International Conference on Intelligent Robots and Systems. volume 2, pp. 1534–1558.

Sørdalen, O. J. and Egeland, O. (1993). Exponential stabilization of chained nonholonomic systems.
In Proceedings of the European Control Conference 1993. Groningen, The Netherlands, pp. 1438–
1443.

Sørdalen, O. J. and Egeland, O. (1995). Exponential stabilization of nonholonomic chained systems.
IEEE Transactions on Automatic Control, 40(1), 35–49.

Spong, M. W. (1995). The swingup control problem for the Acrobot.IEEE Control Systems Magazine,
15(1), 49–55.

Sussmann, H. J. (1979). Subanalytic sets and feedback control.Journal of Differential Equations, 31,
31–52.

Sussmann, H. J. (1983). Lie brackets and local controllability: a sufficient condition for scalar-input
systems.SIAM Journal on Control and Optimization, 21, 686–713.

Sussmann, H. J. (1987). A general theorem on local controllability.SIAM Journal on Control and
Optimization, 25(1), 158–194.

Tanaka, K., Iwasaki, M., and Wang, H. O. (2000). Stable switching fuzzy control and its application
to a hovercraft type vehicle. InProceedings of the 9th IEEE International Conference on Fuzzy
Systems. pp. 804–809.

Teel, A. R., Murray, R. M., and Walsh, G. (1992). Nonholonomic controlsystems: From steering
to stabilization with sinusoids. InProceedings of the IEEE Conference on Decision and Control
(CDC). Tucson, USA, volume 2, pp. 1603–1609.

van der Voort, A.-J. (2002).LPV Control Based on a Pick and Place Unit. Master’s thesis, Eindhoven
University of Technology. DCT 2002.31.

Verhoeven, R. (2002).Motion planning for underactuated manipulators. Master’s thesis, Eindhoven
University of Technology, Eindhoven, The Netherlands. DCT 2000.47.

Walsh, G., Tilbury, D., Sastry, S., Murray, R., and Laumond, J.-P. (1994). Stabilization of trajectories
for systems with nonholonomic constraints.IEEE Transactions on Automatic Control, 39(1), 216–
222.



168 Bibliography

Yoshikawa, T., Kobayashi, K., and Watanabe, T. (2000). Design of desirable trajectory with conver-
gent control for 3-d.o.f manipulator with a nonholonomic constraint. InProceedings of the 2000
IEEE International Conference on Robotics & Automation. San Fransisco, CA, volume 2, pp. 1805–
1810.

Zabczyk, J. (1989). Some comments on stabilizability.Applied Mathematics and Optimization, 19,
1–9.



Summary

Underactuated mechanical systems, or system having more degrees of freedom than actuators, are
abundant in real-life. Examples of such systems include, but are not limited to, road vehicles such as
cars and trucks, mobile robots, underactuated robot manipulators, surface vessels, underwater vehi-
cles, helicopters and spacecraft. In certain cases, these underactuated mechanical systems are subject
to second-order nonholonomic constraints. A second-order nonholonomic constraint is known as an
acceleration constraint which is non-integrable, which means that the constraint can not be written
as the time-derivative of some function of the generalized coordinates andvelocities. Therefore, the
second-order nonholonomic constraint can not be eliminated by integrationand this constraint forms
an essential part of the dynamics.

The interest for underactuated mechanical systems with second-order nonholonomic constraints
can be motivated by the fact that, in general, the stabilization problem can notbe solved by smooth
(or even continuous) time-invariant state feedbacks. Typically, a first indication for this obstruction
follows form the fact that the linearization around equilibrium points is not controllable. The con-
trol of this class of underactuated mechanical system is thus a challenging problem for which many
open problems exist. To date, many researches have only considered thestabilization problem and
the tracking control problem has received less attention. However, in practice, the tracking control
problem is more important than the stabilization problem because one does notonly want the system
to move from one point to another, but the system should also move along a specified path. This spec-
ified path may be necessary in order to avoid obstacles or to satisfy requirements which are imposed
on the motion of the system. The tracking control problem can be solved by imposing additional re-
quirements on the trajectory to be tracked. In general, the reference trajectory has to satisfy a so-called
persistence of excitation condition, meaning that the reference trajectory isnot allowed to converge to
a point. This means that the tracking and stabilization problems require different approaches and have
to be treated separately.

In this thesis, the tracking and stabilization problem are considered for a class of underactuated
mechanical systems. This class consists of second-order nonholonomic mechanical systems that can
be transformed into a canonical form, called the second-order chained form, by a suitable coordinate-
and feedback transformation. The second-order chained form facilitates controller design for second-
order nonholonomic systems because the dynamics of the system are considerably simplified and
provides the possibility to design controllers for a whole class of second-order nonholonomic systems
instead of a specific mechanical system. The tracking control problem forthe second-order chained
form, in which the controlled system should move along a specified reference trajectory, can be solved
by application of a combined cascade and backstepping approach, provided that the trajectory to be
tracked does not converge to a point. This approach results in a linear time-varying controller that
stabilizes the second-order chained form system to the desired trajectorywith exponential conver-
gence. In addition to the tracking control problem, also some methods for generating state-to-state



trajectories are presented which additionally give an explicit way of showing controllability for such
underactuated mechanical systems. These methods allow the generation of feasible trajectories that
connect an initial state and a desired final state and which are optimal in some sense,i.e.,by formulat-
ing the trajectory generation as an optimal control problem the resulting trajectory is a local minimum
of a certain cost-criterion.

The stabilization problem for the second-order chained form, in which the system should be sta-
bilized to a desired equilibrium point, can also be solved by application of a combined averaging and
backstepping approach for homogeneous systems.

It is well-known that the stability analysis of nonlinear time-varying systems canbe quite involved
and, in general, is very hard to solve. If the nonlinear time-varying systemis homogeneous, the the-
ory of homogeneous systems can be used, under additional requirements, to investigate its stability
properties. A homogeneous system is associated with a corresponding homogeneous norm. In addi-
tion, a homogeneous system, under certain conditions, shares the same properties as a linear system
in the sense that asymptotic stability implies exponential stability and local stability impliesglobal
stability. The combined averaging and backstepping approach results in a continuous homogeneous
controller that stabilizes the system to a desired equilibrium point. To date and toour knowledge, this
homogeneous controller is the only one capable of ensuring Lyapunov stability as well as exponential
convergence of the second-order chained form system with respectto the corresponding homoge-
neous norm. It is well-known that homogeneous controllers are not robust with respect to parameter
uncertainties. Therefore a periodically updated version of the homogeneous stabilizing controller
has been given in which the states of the system are periodically updated atdiscrete time instants.
This controller is robust with respect to a class of additive perturbations that includes perturbations
resulting from certain parameter uncertainties, but excludes non-smooth effects, such as friction, or
measurement noise.

In order to successfully apply the controllers, they should first be testedin experiments with real-
life second-order nonholonomic systems. The developed tracking and stabilizing controllers have
been validated on an experimental set-up that consists of an underactuated H-Drive manipulator. This
experimental set-up has the same dynamics as a planar horizontal underactuated PPR manipulator, or
in other words a manipulator with two prismatic and one unactuated rotational joint.This experimental
setup can be used as a benchmark set-up for controllers of second-order nonholonomic systems. In
the experiments the goal is to use the two control inputs to control the two planarpositions as well
as the orientation of the link. The experimental results correspond to the simulation results and show
the validity of the control design approaches in the sense that the system can be controlled to a region
around the desired trajectory or equilibrium. Due to disturbances, mainly resulting from friction in
the rotational link, measurement noise and gravitational disturbances, the closed-loop system is not
asymptotically stable, but instead, oscillates around the desired trajectory orequilibrium. The size of
the region around the desired trajectory or equilibrium, to which the system is controlled, depends on
the magnitude of the disturbances. This shows the need for controllers thatare robust with respect to
perturbations, including non-smooth effects such as friction, or controllers which include disturbance
adaptation or compensation.

In most research dealing with the control of underactuated mechanical systems with second-order
nonholonomic constraints the influence of perturbations on the closed-loopdynamics has generally
not been taken into account. Nevertheless, the experimental results showthat underactuated me-
chanical systems are more susceptible to perturbations than fully actuated mechanical systems. This
is caused by the fact that no actuator is available to directly compensate (part of) the perturbations
acting on the un-actuated degree of freedom. Therefore, the development of robust controllers for
underactuated mechanical systems is an important issue that should be a subject of further research.



Samenvatting

Ondergeactueerde systemen, of systemen met meer vrijheidsgraden dan actuatoren, zijn veel voor-
komende mechanische systemen. Voorbeelden van dergelijke ondergeactueerde systemen zijn onder
andere wegvoertuigen zoals auto’s en vrachtwagens, mobiele robots, ondergeactueerde robot mani-
pulatoren, schepen, onderwatervoertuigen, helicopters en ruimtevaartuigen. In bepaalde gevallen,
zijn deze systemen onderhevig aan tweede-orde niet-holonome beperkingen. Een tweede-orde niet-
holonome beperking is een versnellings-beperking die niet-integreerbaar is, oftewel de beperking kan
niet geschreven worden als een functie van de gegeneralizeerde coordinaten en snelheden. Daardoor
is de tweede-orde beperking niet elimineerbaar door middel van integratie en vormt de constraint dus
een essentieel onderdeel van de dynamica van het systeem.

De interesse in deze specifieke klasse van ondergeactueerde mechanische system kenmerkt zich
door het feit dat, over het algemeen, deze systemen niet gestabiliseerd kunnen worden door middel
van een gladde (of zelfs continue) tijd-invariante toestandsterugkoppeling. Een eerste indicatie hier-
voor is het feit dat de linearisatie rond een evenwichtspunt niet regelbaar is. Het regelen van deze
klasse van ondergeactueerde system is een uitdagend onderzoeksgebied waarin vele open problemen
bestaan. Tot op heden is in veel onderzoek alleen het stabilisatieprobleem beschouwd en heeft het
volgprobleem minder aandacht gekregen. Dit terwijl, in de praktijk, het volgprobleem belangrijker is
dan het stabilisatieprobleem omdat het systeem niet alleen van punt naar punt gebracht moet worden,
maar vaak ook een bepaald pad moet volgen. Dit is met name van belang wanneer het systeem ob-
stakels moet vermijden of wanneer er bepaalde voorwaarden worden gesteld aan de beweging van het
systeem. Het volgprobleem voor deze klasse van systemen kan opgelostworden wanneer bepaalde
restricties worden gesteld aan het te volgen traject. Over het algemeen wordt verondersteld dat het
systeem aan een bepaalde persistente excitatie conditie voldoet, hetgeen inhoudt dat het referentietra-
ject niet naar een punt convergeert. Dit betekent dat het volg- en stabilisatieprobleem verschillende
benaderingen vereisen en afzonderlijk beschouwd moeten worden.

In dit proefschrift, beschouwen we het volg- en stabilisatieprobleem voor een klasse van onder-
geactueerde mechanische systemen. Deze klasse bestaat uit tweede-orde niet-holonome mechanische
systemen die getransformeerd kunnen worden naar een kanonieke vorm, beter bekend als de tweede-
orde “chained form”, door middel van een geschikte coördinaten- en ingangstransformatie. Het volg-
of tracking probleem, waarin het systeem langs een bepaald referentie traject geregeld moet worden,
kan opgelost worden door toepassing van een gecombineerde cascade en ‘backstepping’ methode
onder de voorwaarde dat de te volgen trajectorie niet naar een punt convergeert. De resulterende
regelaar is een lineaire tijd-variante toestands-terugkoppeling die het systeem naar de te volgen tra-
jectorie brengt met exponentiele convergentie. Naast het tracking probleem worden ook een aantal
methoden gepresenteerd voor het genereren van een trajectorie die twee toestanden van de tweede-
orde “chained form” verbindt, waarmee dus op een expliciete manier de regelbaarheid van dergelijke
ondergeactueerde systemen wordt aangetoond. Met deze methoden is het mogelijk om een trajectorie



te vinden die een begintoestand en een gewenste eindtoestand van het systeem verbindt en daarnaast
optimaal is in een bepaalde zin;i.e., door het trajectoriegeneratieprobleem als een optimaal bestu-
ringsprobleem te formuleren is de trajectorie een locaal minimum van een bepaald kostencriterium.

Het stabilisatieprobleem kan ook opgelost worden door een gecombineerde middelings en ‘back-
stepping’ methode voor homogene systemen. Homogeniteit is een eigenschapdie gebruikt kan wor-
den voor stabiliteitsanalyse van tijdsafhankelijke niet-lineaire systemen. Het isalgemeen bekend dat
de stabiliteitsanalyse van tijdsafhankelijke systemen vaak erg complex en moeilijk oplosbaar is. Als
het systeem homogeen is, kan door gebruik te maken van de homogeniteit, onder aanvullende voor-
waarden, toch een stabiliteitsanalyse uitgevoerd worden. Een homogeen systeem wordt geassocieerd
met een bijbehorende homogene norm. Daarnaast bezit een homogeen systeem onder bepaalde voor-
waarden dezelfde eigenschappen als een lineair systeem, in de zin dat asymptotische stabiliteit ook
exponentiele stabiliteit impliceert en lokale stabiliteit ook globale stabiliteit. De gecombineerde mid-
delings en ‘backstepping’ methode methode resulteert in een homogene regelaar die in staat is elk
gewenst evenwichtspunt van de tweede-orde “chained form” te stabilizeren. Tot op heden en voor
zover bekend, is deze homogene regelaar de enige die naast Lyapunov stabiliteit ook exponentiële
convergentie met betrekking tot de bijbehorende homogene norm kan garanderen. Het is algemeen
bekend dat homogene regelaars niet robuust zijn met betrekking tot verstoringen die veroorzaakt wor-
den door, bijvoorbeeld, parameteronzekerheden. Daarom wordt ook een periodiek aangepaste versie
van de regelaar gepresenteerd waarbij de toestanden periodiek worden aangepast op discrete tijd-
stippen. Deze regelaar is robuust met betrekking tot een bepaalde klasse van additieve verstoringen,
waaronder verstoringen veroorzaakt door bepaalde parameteronzekerheden vallen, maar geen niet-
gladde effecten, zoals wrijving, en meetruis.

Om de ontwikkelde regelstrategieën in de praktijk te kunnen toepassen dienen ze eerst getest te
worden. De ontwikkelde tracking en stabilizerende regelaars zijn toegepast op een experimentele
opstelling bestaande uit een ondergeactueerde H-brug manipulator. De dynamica van de experi-
mentele opstelling is vergelijkbaar met de dynamica van een planair horizontale en ondergeactueerde
PPR manipulator, of met andere woorden een manipulator met twee prismatische joints en een on-
geactueerde roterende joint in het horizontaal platte vlak. Deze experimentele opstelling kan gebruikt
worden voor validatie van regelaars voor tweede-orde niet-holonome systemen. In de experimenten
wordt getracht, door middel van de twee ingangen op het systeem, zowelde twee planaire posities als
de oriëntatie van de roterende link te regelen. De experimentele resultaten komen goed overeen met
de simulaties en tonen de geldigheid van de gekozen aanpak in de zin dat hetsysteem geregeld kan
worden naar een gebied rond de gewenste trajectorie of het gewenste evenwichtspunt. Ten gevolge
van verstoringen in het systeem, zoals met name de wrijving in het scharniervan de roterende link,
de meetruis en een verstoringskoppel ten gevolge van de zwaartekracht, is het geregelde systeem niet
asymptotisch stabiel maar oscilleert rond de gewenste trajectorie of het gewenste evenwichtspunt. De
grootte van het gebied waarin deze oscillaties plaatsvinden hangt af van de grootte van de perturbaties.
Hierdoor is er behoefte aan regelaars die robuust zijn met betrekking totverstoringen, waaronder
niet-gladde effecten zoals wrijving, of regelaars die een bepaalde vormvan verstorings-adaptatie of
-compensatie bevatten.

In veel onderzoek naar het regelen van tweede-orde niet-holonome systemen wordt de invloed
van verstoringen of perturbaties niet in beschouwing genomen. Echter,uit de experimenten blijkt
dat ondergeactueerde systemen gevoeliger zijn voor verstoringen danvolledig geactueerde systemen
omdat er geen actuator beschikbaar is waarmee de perturbaties, werkend op de niet-geactueerde vrij-
heidsgraad, (gedeeltelijk) gecompenseerd kunnen worden. Hierdooris de ontwikkeling van robuus-
te regelaars voor ondergeactueerde mechanische systemen een belangrijk onderzoeksgebied dat een
onderwerp voor verder onderzoek zou moeten zijn.
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Propositions
accompanying the thesis

Control of Underactuated Mechanical Systems

1. Although the yaw dynamics of a car can not be decoupled from disturbance torques by means
of a static or dynamic state feedback, it is possible when using state-derivative information in
the feedback loop.

In: Application of nonlinear disturbance decoupling to active car steering, N. Aneke, J. Acker-
mann, T. Buente, H. Nijmeijer,Proceedings of the European Control Conference, Karlsruhe,
Germany, 1999.

2. The second-order chained form for second-order nonholonomicsystems plays the same role as
the chained form system for first-order nonholonomic systems, in the sense that the transfor-
mation into chained form facilitates control design by simplifying the system dynamics. This
thesis: Chapter 1.

3. The tracking control problem for the second-order chained form can be solved by linear time-
varying feedback, provided that the reference trajectory does not converge to a point. Therefore,
the tracking problem and the stabilization problem require different approaches and have to be
treated separately. This thesis: Chapter 5.

4. The feedback stabilization problem for the second-order chained form can not be solved by any
smooth or continuous time-invariant feedback. It can be solved when considering continuous
periodic time-varying feedback. This thesis: Chapter 6.

5. In order to cope with non-vanishing external perturbations, such asfriction and possible gravi-
tational effects, the practical stabilization problem for underactuated mechanical systems could
be considered instead of the asymptotic stabilization problem. This thesis: Chapter 9.

6. Engineering is making a flawed early version and then refining to make it right.

In: T. DeMarco, Structured analysis and systems specification, Yourdon Press, 1979.

7. When somebody says that something can’t be done, he or she is usuallywrong.

In: S. Maguire: Debugging the Development Process, Microsoft Press, 1994.

8. Failure is the opportunity to begin again more intelligently.

By: Henry Ford, 1863 - 1947.

9. Engineering is sometimes like applying a sticker: if there’s a bubble and youtry to get rid of it,
it always appears elsewhere.

10. Do not be afraid to try new things. Remember, the Ark of Noah was built by amateurs; the
Titanic by professionals.

Edo Aneke.
Eindhoven, 11th March 2003.
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