

A formal approach to distributed information systems

Citation for published version (APA):
Houben, G. J. P. M., & Paredaens, J. (1987). A formal approach to distributed information systems. (Computing
science notes; Vol. 8703). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/9a0adcad-d2c0-4551-a4f6-3f5f86f59f9e

A FORMAL APPROACH
TO DISTRIBUTED

INFORMATION SYSTEMS

GEERT-JAN HOUBEN
JAN PAREDAENS

87/03

February 1987

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University of Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not

for review.

Copies of these notes ~re available from the

author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

A FORMAL APPROACH TO
DISTRIBUTED INFORMATION SYSTEMS

GEERT-JAN HOUBEN

Department Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513. 5600 MB Eindhoven. Holland

JAN PAREDAENS

Department Mathematics-Computer Science
University of Antwerp UIA

Universiteitsplein 1. 2610 Antwerpen. Belgium

We describe a mathematical model for distributed information systems. which have a dis
tributed scheduler and in which each site acts as an automaton-like process.
We consider information systems. which contain functional distributed database systems.
In a distributed database system the information is stored in several sites. Each site is
managed by a machine. A machine is able to execute actions at its site. An action
represents some manipulation of the information stored in the site. As such. each machine
is responsible for the information in its local database component.
An information system executes transactions. Transactions have to be translated into
sequences of actions. that are executed by the machines. This translation is performed by
transaction handlers. Therefore. transaction handlers also belong to the system. They get
the responsibility for the execution of transactions. Therefore. the transaction handlers
have to communicate with several machines. A transaction. which is being executed by the
system. should have a consistent view of the information stored in the database. In order
to satisfy this condition. the transaction handlers have to operate according to some
schedule.

We will describe the processing of the information system. i.e. the operation of both the
transaction handlers and the machines and the interface between them. A number of
equivalent communication algorithms (schedules) are presented. that guarantee that the
transactions have a consistent view of the database component in a machine. The last
schedule to be presented is the schedule that should be used in distributed information
systems. because it does not require any central time stamping.

Given this schedule we then present some models for the protocol for the communication
between handlers and machines independent of the schedule.
Although in these models the way of communication is organized very differently. we will
prove that all of these models are equivalent.
Since these models have different degrees of parallelism. we then define a general model.
which implies a whole set of models of distributed information systems. Then we argue
that one of the models in the set (j.e. the MBIS model) is the most parallel model. which
essentially means that handling transactions in parallel is organized in the best possible
way.

- 2 -

1 DISTRIBUTED INFORMATION SYSTEMS

1.0 What are distributed information systems?

In a distributed database system the information is stored in several sites. Each site is
managed by a machine. A machine is able to execute actions at its site. An action
represents some manipulation of the information stored in the site. As such. each machine
is responsible for the information in its local database component.
An information system executes transactions. Transactions have to be translated into
sequences of actions. that are executed by the machines. This translation is performed by
transaction handlers. Therefore. transaction handlers also belong to the system. They get
the responsibility for the execution of transactions. Therefore. the transaction handlers
have to communicate with several machines. A transaction. which is being executed by the
system. should have a consistent view of the information stored in the database. In order
to satisfy this condition. the transaction handlers have to operate according to some
schedule.

In the models for distributed information systems we will describe the processing of the
information system. i.e. the operation of both the transaction handlers and the machines
and the interface between them. We also present a communication schedule. that guaran
tees that the transactions have a consistent view of the database component in a machine.
Transaction handlers have the responsibility for the execution of at most one transaction
at a time. From a transaction a handler produces actions. with which machines are sup
plied (we say. the handler sends the actions to machines). A machine is able to execute an
action autonomously. As a result of such an execution the machine supplies the transac
tion handler with a reaction (we say. the machine sends a reaction to the handler). When
handling a transaction. a transaction handler can only handle a second transaction after
the execution of the first one is completed. which implies that for all actions implied by
the transaction the handler has received a reaction from a machine. We suppose that every
handler always knows both which transaction it has to handle and for every action which
machine is able to execute that action.
Machines can execute actions. since they are able to make computations and to store and
update information. In order to guarantee a consistent view of the database efficiently. we
distinguish three kinds of actions. With a functional action a machine produces a result.
that is not dependent on the information stored in the local database component. With a
view action. the result is dependent on the information stored in the local database com
ponent. With an update action a machine modifies. dependent on the local database com
ponent. the information stored in that local database component. The machine will supply
the handler. that sent the action to the machine. with a reaction containing the result of
the execution in case of a functional or a view action and containing information concern
ing the validity of the update in case of an update action. Of course. a reaction can have
an effect on the handling of the remainder of the transaction.

A distributed information system is a 3-tuple (H .M.5). where H is a non-empty set of
transaction handlers. M is a non-empty set of machines and 5 is a scheduler.
At any moment. each transaction handler h of H is in one of three modes. depending on
what it is doing. If h is not handling a transaction at all. it is in the mode A (we say. h is
asleep). If h is gathering information needed for the transaction. i.e. it is sending func
tional and view actions to machines. then h is in the mode FV. If h is updating informa
tion. as a consequence of the transaction. then h is in the mode U. While h is in FV it
cannot send update actions. while h is in U it cannot send functional nor view actions and
while h is asleep it cannot send any action at all. We say that h is active. if h is in FV or
in U.

Lenie Kantelberg

- 3 -

Each machine m of M executes at most one action at a time and after the execution of an
action it sends a reaction to the transaction handler that sent that action. If the action was
a functional or a view action. then the reaction will contain the result (answer) of the
action and if it was an update action. then the reaction contains information concerning the
validity of that update.

The scheduler s is responsible for the interface between the elements of H and those of
M. Therefore. its main task is to execute a schedule. that satisfies the following three con
ditions :

it controls the mode transition of each h of H to be A --+ FV --+ U --+ A;
it allows the information flow between each handler and each machine to be as
described;
it is serializable.

We now present a small example. which should illustrate some of the notions mentioned
above.

Suppose two handlers. hI and h 2. and four machines. mI. m2. m3 and m4. belong to our
information system. In the machine m 1 we have the addresses and ages of employees. In
m2 are the medical records of employees. and the salaries are in m3' Machine m4 is very
good at computing the square of a natural number.

In some informal way we now describe three transactions.
Lett1be;

get for every employee his age;
consider only the employees older than 60;
get for these employees their medical record.

When t 1 is handled by h I. then hI has to send a view action to m 1 first. Machine m 1 will
send a reaction to hI and a part of the information contained in this reaction will be used
by hI to initiate a view action at m2' When m2 has sent a reaction to h I. then hI has all
the information as required by t I'

Lett2be:
get for every employee his address;
consider only the employees living in Eindhoven;
add for these employees 1000 to their salary.

When t 2 is handled by h 2. then h 2 has to send a view action to m 1 first. Subsequently. h 2

will get a reaction from m 1 and depending on this reaction it will send an update action to
m 3. After m 3 has sent a reaction to h 2. h 2 has done everything required by t 2'

Lett 3 be;
compute c ~ 72

;

add c to every salary.
When hI handles t 3. it first sends a functional action to m4' The reaction of m4 will be
used to initiate an update action at m 3. The work required by t 3 will be completed after a
reaction from m 3 is received by h 1.

1.1 A serializable schedule

The schedule for a distributed information system should be serializable. What are serial
izable schedules?
First we define serial schedules. When a serial sched ule is executed no two transaction
handlers are active at the same moment. Hence with a serial schedule there is a function h
; IN --+ H indicating the order in which the transaction handlers of H are active.

- 4 -

Two schedules are equivalent if and only if they both result in the same information tran
sition, which means that for every possible state of the information stored in the machines
of M the final state will be the same. A serializable schedule is a schedule that is
equivalent to a serial schedule. Of course, the most easy kind of serializable schedules are
the serial schedules.

We now specify a schedule TSS (from: time stamp schedule), for which we prove that it
is equivalent to the serial schedule TSO (from: time stamp order), in which transactions
are handled in the order of their entrance in the system, thus of their time stamp.

Note that we suppose that from a transaction t the sets of machines, which have to exe
cute functional actions, view actions and update actions respectively in order to execute t ,
can be computed.

SCHEDULE TSS :

Suppose 11. is a transaction handler of Hand.L is a transaction that 11. has to handle. Let t
: IN -+ T, with T the set of all transactions, indicating the order in which the transactions
enter the system.

When h goes, in order to execute.L, from A to FV, the scheduler s gives a time stamp,
say j, which is one higher than the previous one, so 11. = h (j) and.L = t (j), and s cal
culates from t (j) F j , Vj ,Vj :
F j := (machines to which h U) will send functional actions in order to execute t U) }
Vj := (machines to which h U) will send view actions in order to execute t U) }
Vj := (machines to which h U) will send update actions in order to execute t U) }

- Before h U) sends, in order to execute t (j), a view action to a machine m, h U) waits
until m does not belong to .u. Vi .

• <;

When h (j) goes, while executing t (j). from FV to U, then:
F j := 0

Vj := 0

- Before h U) sends, in order to execute t (j), an update action to a machine m, h (j)
waits until m does not belong to .u. (Vi U Vi).

«;

- When h U) goes after executing t (j), from U to A, then:
Vj :=0

END SCHEDULE TSS

Of course, F j can be omitted from this schedule.

We will now prove the serializability of TSS in showing the equivalence with the (seria!)
schedule TSO in which the transaction handlers execute the transactions in order of their
time stamp, which means that if i < j, then t Ci) is executed (by h Ci)) before t (j) is exe
cuted (by h (j)), so h Ci) is active (with t Ci)) before h (j) is active (with t U)).

Let m be a machine of M, and let i < j and t Ci) the transaction to be handled by h (i)
and t U) the transaction to be handled by h (j).

- 5 -

When m is in at most one of the sets V;. Vj . U; and Uj . then there is no problem. since
it is easy to see that executing first t (i) then t (j) would have the same effect (i.e.
results in the same state of the information in m).

Of course. there is no problem either. when m only belongs to both V; and U; or only
to both Vj and Uj .

When m only belongs to both V; and Vj then there is no problem. since h Ci) does not
change anything in m.

When m belongs to both Vj and U;. but not to Uj . then. since m in U; and i < j . h (j)
will send a view action to m after U; :~ 0. so when h (i) is not executing t Ci) any
more.

When m belongs to both V; and U j • but not to U; . then. since m in V; and i < j . h (j)
will send an update action to m after V; :~ 0. so when h (i) is not in FV any more as
far as t Ci) is concerned.

When m belongs to both U; and U j . but not to Vj . then. since m in U; and i < j . h (j)
will send an update action to m after U; :~ 0 (V; is already empty at that moment or
m was not in V;). so when h Ci) is not executing t Ci) any more.

When m belongs to Vj • U; and U j • then. since m in U; and i < j . h (j) will send a
view action to m after U; :~ 0 (m is not in V; (any more». SO when h Ci) is not exe
cuting t Ci) any more.

This ends the proof of the serializability.
We therefore have a schedule TSS that fulfills the conditions for the schedule of a distri
buted information system and in which the time stamps are the key issue.

1.2 A serializable schedule that does not use time stamps

We will now specify a serializable schedule lIITSS (from: no time stamps schedule). of
which the main advantage will be the absence of time stamps.
Since then at each moment we only have to deal with the transactions being handled in the
system at that particular time. we only have to assign to these transactions some unique
number.
In the time stamp approach however. all transactions that ever have been handled in the
system must have some unique number. Obviously this implies an infinite set of numbers
being used. Furthermore. in the time stamp approach there must be some central system.
that assigns the time stamps. in order to guarantee the global unicity of the time stamps.
In this second approach we do not need such a global clock. so in essence the distributed
information system consists only of transaction handlers and machines.

First though. we consider a schedule. called ATSS (from: another time stamp schedule).
that also uses time stamps. After proving that this schedule is a schedule for a distributed
information system. we will show that in this schedule the time stamps are not really
needed and can therefore be omitted. thus obtaining a serializable schedule for a distri
buted information system that does not make use of time stamps. This schedule will be

- 6 -

called NTSS.

We now specify the schedule ATSS (that uses time stamps) for which we prove that it is a
correct schedule for a distributed information system. The serializability of ATSS is pro
ven by showing (indirectly) the equivalence to the schedule TSO where transactions are
serially handled in the order of their time stamp.

In A TSS we have that intuitively Vi will be the set of machines which get a view action
belonging to t (i). Ui will be the set of machines which get an update action belonging to
I (i). V(m) will be the number of transaction handlers that need to view machine m.
U (m) will be the number of transaction handlers that need to update machine m . UVi (m)
will be the number of transaction handlers that need to update m before h (i) can view
m. AUi (m) will be the sum of the number of transaction handlers that need to view m
before h (i) can update m and the number of transaction handlers that need to update m
before h (i) can update m.
Note that functional actions. because of their independence of the state of the machine. can
not do any harm as far as the consistency is concerned.

SCHEDULE ATSS :

Initialize Vi and Ui to be 0 for all i. and V(m). U (m). UVi (m). AUi (m) to be 0 for all i
and all m of M.

Suppose h is a transaction handler of Hand 1... is a transaction h has to handle.

When h goes. in order to execute1..., from A to FV. the scheduler s gives a time stamp.
say j. which is one higher than the previous one. so ll. = h (j) and 1... = t (j). and calcu
lates :

Vj := (machines to which h (j) will send view actions in order to execute t (j) }
Uj := (machines to which h (j) will send update actions in order to execute I (j) }
UVj (m) := U(m) for all m in Vj
AUj (m) := V (m) + U (m) for all m in Uj
V (m) := V (m) + 1 for all m in Vj
U (m) := U (m) + 1 for all m in Uj

Before h (j) sends. in order to execute t (j). a view action to a machine m. h (j) waits
until

UVj (m) = O.

When h (j) goes. While executing t (j). from FV to U. then:
AUi em) := AUi (m) - 1 if AUi em) > O. for all i ;c j and all m of Vj
V em) := V em) - 1 for all m of Vj
V) := 0

Before h (j) sends. in order to execute t (j). an update action to a machine m. h (j)
waits until

AUj em) = o.

- Before h (j) goes. after executing t (j). from U to A. then:
UVi (m) := UVi em) - 1 if UVi (m) > O. for all i;c j and all m of Uj
AUi (m) := AU,cm) - 1 if AUi em) > O. for all i ;C j and all m of Uj
U(m) := U(m) - 1 for all m of Uj

- 7 -

END SCHEDULE A TSS

It is trivial to prove that at each moment V (m) is the number of transaction handlers
h (i) with m in Vi . and V (m) is the number of transaction handlers h (i) with m in Vi .
UVj (m) is the number of h Ci) with i < j and m in both Vi and V j . AVj (m) is the sum
of the number of h Ci) with i < j and m in both Vi and Vj . and the number of h Ci) with
i < j and m in both Vi and Vj .

To demonstrate the correctness of this schedule ATSS. we consider the next schedule BTSS
(from: binary time stamp schedule). that obviously controls the state transition of each
transaction handler to be A FV U A and allows the information flow between
each transaction handler and each machine to be as required.

We will use mViVj and mUivj . where:
m Vi Vj equals 1. if m belongs to V, and Vj . and m Vi Vj equals 0 else.
mVi Vj equals 1. if m belongs to Vi and Vj • and mVi Vj equals 0 else.

SCHEDULE BTSS :

Initialize Vi and Vi to be empty for all i and mViVj and mUivj to be 0 for all m of M. i
and j.

Suppose h is a transaction handler of Hand 1.. is a transaction h has to handle.

- When h goes. in order to execute1... from A to FV. the scheduler s gives a time stamp.
say j. which is one higher than the previous one. so h. = h Cj) and 1.. = t Cj). and s cal
culates from t Cj) :

Vj := { machines to which h (j) sends view actions in order to execute t (j) }
Vj := { machines to which h (j) sends update actions in order to execute t (j) }
for all m of Vj

mVjVi := 1
for all m of Vj

mVj Vi := mVi Vj := 1
mViVj := 1

for all i with m in Vi and i <j

for all i with m in Vi and i < j
for all i with m in Vi and i < j

- Before h Cj) sends. in order to execute t (j). a view action to a machine m. h Cj) waits
until

for all i < j .

When h (j) goes. while executing t Cj). from FV to U. then:
mVjVi := 0 for all i and all m of Vj
Vj := 0

- Before h (j) sends. in order to execute t (j). an update action to a machine m. h (j)
waits until

mViVj = mUivj = 0 for all i < j.

- When h Cj) goes after executing t (j). from U to A. then:
mUjvi := mViVj := mUivj := 0 for all i and m of Vj
Vj :=0

- 8 -

END SCHEDULE BTSS

We will now prove the serializability of BTSS and then by showing the equivalence
between A TSS and BTSS. we will prove the serializability of A TSS.

We will show that BTSS is equivalent to the schedule TSO in which the transaction
handlers execute the transactions in order of their time stamp. that is if i < j . then t (i) is
executed before t (j). so h (i) is active before h (j).

Let m be a machine of M. and let i < j and let t (i) be the transaction to be handled by
h (i) and t (j) the transaction to be handled by h (j).

- When m is in at most one of the sets Vi . Vj . Vi and Vj . then there is no problem. since
it is easy to see that executing first t (i) then t (j) would have the same effect.

- Of course. there is no problem either. when m only belongs to both Vi and Vi or only
to both Vj and Vj .

When m only belongs to both Vi and V j . then there is no problem. since h Ci) does not
change anything in m .

- When m belongs to both Vj and Vi. but not to Vj . then. since m in Vi and i < j . h (j)
will send a view action to m after m Vj Vi := 0 . so when h (i) is not executing t Ci) any
more.

When m belongs to both Vi and Vj . but not to Vi . then. since m in Vi and i < j . h (j)
will send an update action to m after m Vi Vj := 0 . so when h Ci) is not in FV any
more as far as t Ci) is concerned.

- When m belongs to both Vi and V j • but not to Vj • then. since min U j and i <j. h(j)
will send an update action to m after mVi Vj := 0 (m Vi Vj is (already) 0 at that
moment) . so when h (i) is not executing t (i) any more.

When m belongs to Vj . Vi and V j . then. since m in Vi and i < j. h (j) will send a
view action to m after mVj Vi := 0 (then mUj Vi = 0 and mViVj = 0) . so when h (i) is
not executing t Ci) any more.

So we have proven the serializability of BTSS.

It is rather trivial to prove that the following are invariants:
m Vi Vj = 1 iff m in Vi and m in Vj :
mUi Vj = 1 iff m in Vi and m in Vj .

We will show the equivalence between A TSS and BTSS. by proving Q where Q is :
UVj(m) = £: mVjVi II AVj(m) = £: (mViVj + mUivj).

i<j i<}

It is trivial that Q holds at initialization.

When h (j) goes from A to FV. Q holds if Q' holds. where Q' stands for:
At the moment where h (j) goes from A to FV. V (m) is the number of h (i) with i < j

- 9 -

and m in V;. and U(m) is the number of h (i) with i < j and m in U;.
It is trivial to prove that Q' holds.

With Q it is clear that the conditions for which h (j) has to wait before sending view or
update actions. are the same in both schedules.

When h U) goes from FV to U. mVj U; becomes 0 for all i and m of Vj . mVj U; was 1
only if m in Vj and m in U; and i > j. This follows from: mVj U; only became 1 if m in
both Vj and U; . and if i < j then mVj U; already has become O. since this was the condi
tion for which h U) was waiting before sending a view action.
So mVj U; changes from 1 to 0 if m in Vj and m in U; and i > j. Therefore for all i and
m of Vj . AU; (m) has to decrease by 1 (if possible). in order to keep Q invariant. since
AUi (m) = L (m VI U i + mUl Ui) and in the set of m VI Ui and mUl U i with I < i. there is

l<i
only one mVI U i that changes from 1 to O.

When h (j) goes from U to A. mViUj . mUiuj and mUj Ui become 0 for all i and m of U j .
mViUj was 1 only if m in Vi and m in U j and i > j. Therefore for all i and m of U j .
UV; (m) has to decrease by 1 (if possible). in order to keep Q invariant. since
UVi(m) = L mViUI and in the set of mViUI with I <i there is only one mViUI that

l<i

changes from 1 to O.
mUi U j = mUj U; was 1 only if m in Ui and m in Uj and i > j. Therefore for all i and m
of Uj . AUi (m) has to decrease by 1 (if possible). in order to keep Q invariant, since
AUi (m) = L (m VI U; + mUl Ui) and in the set of m VI Ui and mUl U; with I < i there is

l<i
only one mUIU; that changes from 1 to O.

Therefore Q holds.

The claim was that from the schedule ATSS, we could derive a schedule NTSS. that. in
contrast to A TSS. would certainly not make use of time stamps.

Before specifying NTSS. we will define the following:

There is some "super transaction handler" that assigns to each transaction that enters the
system a transaction handler by which the transaction will be handled.
TID is the set of transaction id-numbers. We denote the transaction with id-number i by
t j •

HID is the set of transaction handler id-numbers. We denote the transaction handler
with id-number i by hi'
(J : TID HID assigns to each transaction id-number the id-number of the transaction
handler that will handle the transaction with that id-number.
In this information system H = {h 1, ... hk) and HID = {L .. k),

Now we will specify NTSS,

SCHEDULE NTSS :

Initialize Vi and Ui to be 0 for all i of HID. and V(m), U(m), UV; (m) and AUi (m) to
be 0 for all i of HID and all m of M.

Suppose h j has to handle tl. so j = (J(Z).

- 10-

- When h j goes in order to execute t[from A to FV . then s calculates from t[:

Vj :~ { machines to which h j sends view actions in order to execute t[(j ~ lJU)) }
U j :~ { machines to which h j sends update actions in order to execute t[(j ~ lJU)) }
UVj (m) :~ U(m) for all m in Vj
AUj(m):~V(m)+U(m) for all m inUj
V(m):~ V(m) + 1 for all min Vj
U (m) :~ U (m) + 1 for all m in Uj

Before h j sends. in order to execute t,. a view action to a machine m. h j waits until
UVj(m) ~ O.

When h j goes. while executing t[. from FV to U. ther :
AUi (m) :~ AU,cm) - 1 if AUi (m) > O. for all i of HID-{j} and m of Vj
V(m):~ V(m) - 1 for all m of Vj
Vj :~0

- Before h j sends. in order to execute t, . an update action to a machine m. h j waits until
AUj (m) ~ O.

- When h j goes. after executing t[. from U to A. then:
UVi (m) :~ UV,cm) - 1 if UVi (m) > O. for all i of HID-{j} and m of Uj
AUi (m) :~ AU,(m) - 1 if AUi (m) > O. for all i of HID-{j} and m of Uj
U(m):~U(m)-l forallm ofUj
U j :~0

END SCHEDULE NTSS

We now claim that ATSS and NTSS. as we just specified. are in fact the same schedule.
since the only difference between them is the fact that where in ATSS time stamps are
mentioned. in NTSS transaction (handler) id-numbers are mentioned. And when we
observe ATSS. we can see that in ATSS we did not use any aspect of the time stamps other
than the identification of transactions and transaction handlers. So we can replace the
time stamps by id-numbers. Therefore ATSS and NTSS are quite the same schedule.
So NTSS is a serializable schedule for a distributed information system that does not use
time stamps.

When we want to use this schedule NTSS. we have to assume that the mode transitions
happen exclusively. since mode transitions imply manipulating common variables (e.g.
AUi (m) and UVi (m)). Of course. the testing before sending actions should also happen in
an exclusive way. because of the use of common variables (e.g. UVj (m)).
Therefore. we could decide to store all this control information (i.e. the common variables
implied by the schedule) in one machine and we could access that information by the
sending of control actions (i.e. the update and view actions as implied by the schedule). It
is trivial that these control actions can not obey the rules of the scheduler (e.g. before
every (real) update action a view (control) action is needed to the special machine contain
ing the common information).

- 11 -

2 SOME MODELS FOR DISTRIBUTED INFORMATION SYSTEMS

2.0 Introduction

From now on, we will assume that a distributed information system operates according to
the NTSS schedule. We did not yet specify for a distributed information system (operat
ing according to NTSS). how the transaction handlers and the machines communicate with
each other. We now will specify some models of distributed information systems. where
for every model we describe in which specific way the communication inside the system is
organized. So. when describing some model. we will focus on the communication and not
on the schedule any more.

We will see later on. that each of the models that we will present here is a special case of
the general model GDIS. Then we want to find the most parallel model. that is a special
case of GDIS. However. to be able to find this most parallel model. we must study the
way of communication in the GDIS model. The organization of the communication can be
influenced by a number of aspects. In almost each of the models. that we present here. one
of these aspects is treated in some special way and therefore one can easily learn how this
aspect should be treated in the most parallel way.

We will introduce first of all a model called SBIS (from: single buffer information sys
tem). The other models will then be described starting from the description of the SBIS
model. The models we will describe are:
- single buffer information system (SBIS)
- bounded buffer information system (BBIS)
- sequential information system (SeqIS)
- simple information system (SimIS)
- multiple buffer information system (MBIS)

Some notational definitions

Let X be a set. with (J ~ X. Then. X' is the set defined by :
(J E X* ;
a E X II b E X' =;. alb E X' :
a E X* =;. (J I a = a II a I (J = a :
a E X*II b E X'II c E X* =;. (alb)lc =al(blc).

First. tail and size are defined by :
if x = a lb. where a E X and b E X* .
then first(x) = a and tail(x) = band size(x) = 1 + size(b) :
size«J) = 0 .
X+ = X*-{(J} .

So. I denotes the concatenation and (J" denotes the empty sequence. First determines the
first element of a sequence. tail determines the sequence obtained by removing the first ele
ment of a sequence and size determines the number of elements of a sequence (here an ele
ment is an element of X. i.e. a sequence of size 1).

7J is the empty transaction. which is the transaction for which nothing has to be done.
Note that we suppose that every part of a transaction is a transaction. So when we are
handling a transaction t and we know that action a can now be sent to a machine. we
then get a new transaction t '. which in essence is t without a .

When we write and in the description of the communication. we mean the conditional
con junction.

- 12 -

1P (X) denotes the power set of the set X.

If X is a non-empty set. then the value of pick(X) is arbitrarily one of the elements of X.

We also need first and tail for sequences of pairs. where first is defined in such a way that
it determines the first element of the sequence with some specific second component (tail is
defined analogous).
Let x E (A X B)+. so X ~ (a .b)1 y . where a EA. b E Band y E (A X B)*'
Then. for c E B :

first(x .b) ~ (a .b) and tail(x .b) ~ y :
first(x.c) ~ first(y.c) and tail (x .c) ~ (a .b)1 tail(y .c). if c ;<' b
first((T .c) ~ U .

And. for C ~ B :
first-set(x .C) ~ (a .b) and tail-set(x .C) ~ y . if b E C ;
first-set(x .C) ~ first-set(y .C)and tail-set(x .C) ~ (a .b)1 tail-set(y.C). if b t C
first-set(T.C) ~ U .

2.1 Single Buffer Information System

In the single buffer information system. which we will abbreviate SBIS. there is one single
buffer for every handler or machine in the system. We will use the SBIS as the basis for
all other models. so the other models are models that in some way or another have some
special characteristics. that differ them from the SBIS.
Note that we say that some distributed information system is an SBIS in stead of saying
that the system is a system operating according to the SBIS model. Similarly for the other
models.

We will now describe an SBIS.

H is a set of transaction handlers.
M is a set of machines.

There is a function id : HUM -- ID. where:
id is a one-ta-one function.
HID C ID andAh:h E H :id(h) E HID.
MID c ID and Am: m EM: id (m) E MID.
So id assigns to each handler and each machine some unique identification. HID is the set
of identifications of all handlers. MID is the set of identifications of all machines.

Let h be a handler. so h E H. with itt (h) ~ i . say.
Then h ~ (S:r .A .R.o .OP .AP). where:
- S is a set of states.
- T is a set of transactions.
- A is a set of actions.
- R is a set of reactions.
- a is a set of results (outputs).
- OP : R X MID X S -+ a X S. is a result producer.
- AP : T X S -+ 1P (A X MID X T X S). is an action producer.

Informally:
S is the set of states in which h can be. T is the set of transactions h is able to handle. A
is the set of actions which h can send to machines. R is the set of reactions which h can
receive from machines. 0 is the set of results which h can produce (as an answer on a
transaction). OP is a function that states how h determines for each message from a

- 13 -

machine (containing a reaction) together with a state. a result and a new state. AP is a
function that states how h determines given a state together with a transaction, a set. in
which each element contains an action. a machine (identification) to which the action can
be sent. the transaction that is then left to handle. and a new state.

The configuration of h . denoted by Cj • is an element of
5 X T* X 0* X T X IN X (R X MID)*'

We define: if C j ~ (5 .t .o.p.n .r). then
Cj.S =s.Cj.T =t,Cj.O =o.Cj.P =p.Cj.N =n.Cj.R =r.

Informally:
C j.5 is the state of h . Cj.T is the sequence of transactions that are waiting to be handled
by h. Cj,O is the sequence of results that h has produced so far. Ci.P is the part of tran
saction t that is left to execute. where t is the transaction currently being handled. Ci.N
is the number of actions that h has sent to machines. but for which no reaction is yet
received. Ci.R is the buffer in which the reaction from the machines are kept until they
can be accepted.

Let m be a machine. so m EM. with id (m) ~ j. say.
Then m ~ (5.A .R ,E). where:
- 5 is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A X 5 R X 5. is an executor.

Inf ormally :
5 is the set of actions in which m can be. A is the set of actions which m can execute. R
is the set of reactions which m can produce. E states how m computes given an action
together with a state. a reaction and a new state.

The configuration of m. denoted by Cj • will be an element of
5 X (A X HID)*'

We define: if C j ~ (5 .a). then
Cj .5 ~ 5 • Cj.A ~ a .

Informally:
C j .5 is the state in which m is and Cj.A is the buffer in which the actions from handlers
are kept until they can be executed.

With these definitions we have described what handlers and machines are. so now we have
to define how they communicate with each other.

We can describe how h operates. by stating that handler h (with id (h) ~ i) continuously
executes the following:

if Ci.R ". (J' and first(Ci.R) ~ (r J)

(0.5) :~ OP(r IC i .5):
C j.5 :~5;Ci'0 :~Ci.Olo;Ci.N :~Ci.N -l;Ci.R :~tail(Ci.R)

o Ci.R ~ (J' and Ci.P ". '7)

pa :~AP(Ci,P,Ci·5);

if pa ". '"

- 14 -

(a J.p.s) :~ pick(pa);
C;.S :~ s; C;.P :~ p; C;.N :~ C;.N + 1; Cj.A :~ CJ.A I(a.i)

o pa ~ 0

skip
Ii

o C;.R ~ cr and e;.p ~ 'I) and C;.N ~ 0 and first(C;.T) ~ p

C;.T :~ tail(C;.T); C;.P :~ p
o C;.R ~ cr and C;.P ~ 'I) and C;.N ". 0

skip
Ii

Initially the following should hold: C;.N ~ O.

Machine m (with id (m) ~ j) continuously executes the following:

if Cj.A ". cr and first(Cj.A) ~ (a .n
(r.s):~ E(a .Cj .S);
Cj.S :~ s ; C j.A :~ tail(C j.A); C,.R :~ C,.R I (r .j)

o Cj.A ~cr

skip
Ii

Informally handler h operates as follows:

If there are reactions in its buffer. then it takes the first message in the buffer and produces
from it (with OP) a result and a new state. This implies that in its configuration some
adjustments need to be made: there is a new state. the result produced must be added to
the sequence of results produced. the number of reactions that have to be accepted can
decrease by one and from the buffer the first element has been taken away.

If there are no reactions in its buffer. the handler is allowed to send actions to macbines.
So AP suggests actions that could be sent. If there are no actions that can be sent. because
h is waiting for some reaction. then nothing is done. Otherwise one of the actions is sent
to the machine that is specified. Again. this implies that there is a new state. there is less
work to be done on the transaction currently being handled. the number of reactions that
h has to accept increases by one and the message (containing the action and its own
identification) is put in the buffer of the specified machine.

If there are no reactions in the buffer and there are no reactions expected any more. then
the first element of the sequence of waiting transactions will become the transaction
currently being handled.

If h is only waiting for some reactions. but they have not yet been received. then it will
do nothing.

Machine m simply takes the first action in its buffer (if there is one). and executes it (with
the aid of E). which means that from the action and the current state. a reaction and a
new state are computed. This implies that there is a new state. the first action is taken
from its buffer and the reaction (together with its identification) is put in the buffer of the

- 15 -

handler that sent the action.

We say that a handler or a machine performs a step, if it executes the if-statement that we
just described for both handlers and machines. So every handler and every machine keeps
on performing steps.
The only thing that has to happen exclusively is the manipulation of buffers, since buffers
only are accessed by more than one object. This implies that whenever h performs some
thing like" Cj.A :~ Cj.A I (a ,i) " with j the identification of some machine, then this
should happen exclusively, A similar remark holds for the execution by m of " Ci.R :~
Ci·R I (r ,j) ".
Therefore, the communication between transaction handlers and machines independent of
NTSS, is reduced to the execution of steps by handlers and machines. These steps can be
performed locally, with the exception of the assignments that denote the adding of a mes
sage to a buffer. So, when we see a step as a sequence of assignments, we can then say that
steps can happen in parallel. if assignments in which an element is added to a buffer do
happen exclusively.

2.2 Bounded Buffer Information System

In a bounded buffer information system, which will be abbreviated by BBIS, the main
difference with the SBIS is the fact that all buffers are bounded. This implies that in the
definition of a system the size of each buffer must be included. Also, every handler and
every machine must check before putting some message in a buffer, whether there is a free
place in the buffer for the message.

A BBIS can be described as follows,

H is a set of transaction handlers.
M is a set of machines.

There is a function id : HUM -+ ID, where:
id is a one-to-one function.
HID C ID andAh:h E H :id(h) E HID,
MID C ID and Am: m EM: id (m) E MID,

There is a function BS : ID -+ 1V -10).
BS (from: buffer size) assigns to each handler and each machine a positive natural number
that represents the size of the buffer, i.e. the number of messages that can be put into the
buffer.

Let h be a handler, so h E H, with id (h) ~ i , say.
Then h ~ (S ,T A ,R ,0 ,OP ,AP), where:
- S is a set of states,
- T is a set of transactions.
- A is a set of actions,
- R is a set of reactions.
- 0 is a set of results (outputs),
- OP : R X MID X S -+ 0 X S, is a result producer,
- AP : T X S -+ 1P (A X MID X T X S), is an action producer.

The configuration of h , denoted by C i ' is an element of
S X T* X 0* X T X 1V X (R X MID)*.

We define: if C i ~ (5 ,I ,0 ,p ,n ,r), then
Cj.S =s.Cj.T =t.Cj.O =o.Cj.P =p.Cj.N =n.Cj_R =r.

- 16 -

Let m be a machine. so m EM. with id (m) ~ j. say.
Then m ~ (S A .R .E). where:
- S is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A X S R X S. is an executor.

The configuration of m. denoted by C j • will be an element of
S X (A X HID)*'

We define: if Cj ~ (s .a). then
Cj.S ~ s . Cj.A ~ a .

Handler h (with id (h) ~ i) continuously executes the following:

if c,.R "" rr and first(Ci.R) ~ (r .j)

(o.s) :~ OP(r .j.Ci.S);
Ci.S :~S;Ci.O :~Ci.Olo;Ci.N :~Ci.N -1;Ci.R :~tail(c,.R)

o Ci.R ~ rr and Ci.P "" 1)
pa :~ AP(Ci.P. Ci·S);
do pa "" 0

od

....
(a J.p .s) :~ pick(pa); _
if size(CJ.A) < BS (j)

....
Ci.S :~ s; Ci.P :~ p; Ci.N :~ Ci.N + 1; CJ.A :~ CJ.A I (a .i);
pa :~0

o size(CJ.A) ~ BS (J)
....
pa :~ pa - (a J.p .s)

fi

o Ci.R ~ rr and Ci.P ~ 1) and Ci.N ~ 0 and first(Ci.T) ~ p
....
Ci.T :~ tail(Ci.T); Ci·P :~ P

o Ci.R ~ rr and Ci.P ~ 1) and Ci.N "" 0
skip

fi

Informally:
If h is allowed to send an action to a machine. then it computes the set pa including the
actions that could be sent. Then h checks whether for some action in pa the machine to
which the action is supposed to go has a buffer. that is not full yet. so h can put the mes
sage in that buffer.
This checking is performed by running through the set pa until a action has been found
that can be sent. If all buffers implied by pa are full. then there will be no action sending
and in the next step h will possibly check again whether there is a free buffer. i.e. whether
an action can be sent.

Machine m (with id (m) ~ j) continuously executes the following:

if Cj.A "" rr and first(Cj.A) ~ (a ,i)

(r,s) :~E(a,Cj.S): _
if size(Cr.R) < BS Ci)

- 17 -

Cj.S :~ s: Cj.A...=~ tail(Cj.A): Cr.R :~ Cr.R I (r ,j)
o size(Cr.R) ~ BS (i)

....
skip

fi
0 Cj.A ~(J'

....
skip

fi

Informally:
If there is an action in the buffer of m , then m will try to execute the first action in its
buffer. Executing an action means not only applying the E function, but also putting the
result in the buffer of the handler, that put the action in the buffer of m. Therefore, m
has to check whether that buffer is not full. If that buffer is indeed fulL then m does not
do anything, i.e. it cannot (as in fact h does) choose some other message to work with,
because machines work first-in-first-out. This first-in-first-out method is chosen, because
it easily excludes the danger of starvation. If we had chosen to use no method at all, then
the danger of starvation is also excluded (asymptotically), but there would not have been
the obligation to take an element from the buffer.

As far as exclusion is concerned, the difference with the SBiS is that here the checking of a
buffer's size and the putting into the buffer of some element if the buffer is not full,
should happen in the same exclusive event. Of course, we don't want it to happen that in
between the checking of a buffer's size and the putting of a message into the buffer, some
other object has put something into the (last free place of the) buffer.

2.3 Sequential Information System

In a SeqIS (the abbreviation for sequential information system), the most important
feature is that it could be simulated with a single processor system. This means that there
is nothing happening in parallel. Everything happens sequentially. When we say that it
could be simulated with a single processor system. we mean that always there is only one
handler or machine performing a step. So Obviously there must be something that controls
who is allowed to perform a step. This controlling is in a SeqIS represented by a function
called ACTIVE, that in fact is a sequence of identifications, where each i E ID occurs at
least once.

We will now describe a SeqIS.

H is a set of transaction handlers.
M is a set of machines.

There is a function id : HUM ID, where:
id is a one-to-one function.
HID C ID andAh:h E H :id(h) E HID,
MID C ID and Am: m EM: id (m) E MID.

Let h be a handler, so h E H, with id (h) ~ i . say.

Then h ~ (S.T.A.R.O .OFAF). where:
- S is a set of states.
- T is a set of transactions.
- A is a set of actions.
- R is a set of reactions.
- 0 is a set of results (outputs).

- 18 -

- OF : R X MID X S - 0 X S. is a result producer.
- AF : T X S 1P (A X MID X T X S). is an action producer.

The configuration of h . denoted by C; . is an element of
S X T* X 0* X T X IN X (R X MID)*.

We define: if C i ~ (s .t .o.p.n .r). then
CjeS =s,CieT =t.Cj.O =O,CieP =p.Cj.N =n,CjeR =r.

Let m be a machine. so m EM. with id (m) ~ j. say.
Then m ~ (S A .R ,E). where:
- S is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A X S R X S. is an executor.

The configuration of m . denoted by C j • will be an element of
S X (A X HID)*'

We define: if Cj ~ (s .a). then
Cj.S ~ s . Cj.A ~ a.

There is a function ACTIVE: [O .. n -IJ ID. where every identification of ID occurs at
least once as value of ACTIVE.
We will use q to run through [O .. n -1]. Therefore ACTIVE(q) will be the identification of
the handler or the machine that is currently allowed to perform a step.

Handler h (with id (h) ~ i) continuously executes the following:

if ACTIVE(q) ~ i

[... the step as in an SBIS .. .]:
q :~ q + 1 (mod n)

o ACTIVE (q) ".

skip
fi

Machine m (with id (m) ~ j) continuously executes the following:

if ACTIVE(q) ~ j

[... the step as in an SBIS ... J:
q :~ q + 1 (mod n)

o ACTIVE(q) ". j

skip
fi

So every object when performing a step. checks whether it is the only object that has the

- 19 -

allowance of performing a real step. which means a step in which as in an SBIS some work
on a transaction could be done. If it has the allowance it performs such a step. otherwise
it will do nothing at all.

As far as exclusion is concerned. the only additional requirement. compared to the SBIS. is
the exclusivity of the update of q . i.e. the objects. that check the value of q at almost the
same time as q is updated. should have a consistent view of q .

Of course. at the initialization of the system q E [O .. n -1] should hold.

2.4 Simple Information System

A simple information system (SimIS) is really a special case of an SBIS. In a SimIS the
sets Hand M consist both of only one element. In fact. this is the only difference with
an SBIS in general. But. since in an SBIS. where both Hand M are singletons. many
things are redundant. we will now describe a SimIS as we would do it without the
description of an SBIS.

A SimIS could be described by describing the transaction handler and the machine. that
together with the scheduler belong to the system.

Handler h ~ (S.T ,A.R.O .OF ,AF). where:
- S is a set of states.
- T is a set of transactions.
- A is a set of actions.
- R is a set of reactions.
- a is a set of results (outputs).
-OF:R X S - a x S. is a result producer.
- AF : T x S - P (A x T x S). is an action producer.

The configuration of h . denoted by Ch • is an element of
S x r* x 0* x r x IN x R*.

We define: if C; ~ (5 .t .o.p.n .r). then
Cj_S =s,CjeT =t.CjeO =o,Cj.P =p,Cj.N =n,Cj.R =r.

Machine m ~ (S,A .R E). where:
- S is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A x S - R x S. is an executor.

The configuration of m. denoted by Cm • will be an element of
S x A*'

We define: if Cj ~ (5 .a). then
Cj.S ~ 5 • cj.A ~ a.

Handler h continuously executes the following:

if Ch.R ... (]" and first(Ch.R) ~ r

(0.5) :~ OF (r ,Ch'S):
Ch'S :~5:Ch'0 :~Ch.Olo;Ch.N :~Ch.N -l;Ch'R :~tail(Ch.R)

o Ch.R ~ (]" and Ch.F ... 1)

pa :~ AP(Ch.P. Ch·S);
ifpa;C0

(a .p .5) :~ pick(pa);

- 20-

Ch.S :~5;Ch.P :~p;Ch.N :~Ch"N + l;Cm.A :~cm·Ala
o pa ~0

skip
fi

o Ch.R ~ (j and Ch.P ~ 'IJ and Ch.N ~ 0 and first(Ch .T) ~ p

Ch.T :~ tail(Ch.T); Ch·P :~ P
o Ch.R ~ (j and Ch.P ~ 'IJ and Ch.N ;c 0

skip
fi

Informally:
The difference with the step in an SBIS is that we have messages only containing an action
or a reaction. but no identification. that has to identify which object has sent that action or
reaction.

Machine m continuously executes the following:

(r.5) :~ E(a .Cm.S);
Cm.S :~ s; Cm.A :~ tail(Cm.A); Ch.R :~ Ch.R Ir

o Cj.A ~(j
....
skip

fi

Note that in a SimIS we could also leave out the third condition for the scheduler (the
serializability condition). since in a system where there is only one handler and one
machine this condition is satisfied in a trivial-way.

2.5 Multiple Buffer Information System

When we call the messages. that handlers send to machines or machines send to handlers.
communication messages. then in an SBIS every handler and every machine has one buffer
for communication messages and it takes the messages in a first-in-first-out manner out of
that buffer. An MBIS (multiple buffer information system) has exactly one buffer for each
object that can put a message in its buffer. So every handler has as many buffers as there
are machines. and every machine has as many buffers as there are handlers. However we
will represent this by having only one buffer that can be accessed in a first-in-first-out
manner per sender. So first of all we choose of which sender we possibly want a message.
Then we take from that sender the first message (the message that was put first in the
buffer by this sender) if that exists.

An MBIS can be described as follows.

H is a set of transaction handlers.
M is a set of machines.

- 21 -

There is a function id : HUM ID. where:
id is a one-ta-one function.
HID C ID andAh:h E H :id(h) E HID.
MID C ID and Am: m EM: id (m) E MID.

Define W ~ {wait .nawait).

Let h be a handler. so h E H. with id (h) ~ i. say.
Then h ~ (S.T.A.R.O .OP .AP .BP). where:
- S is a set of states.
- T is a set of transactions.
- A is a set of actions.
- R is a set of reactions.
- 0 is a set of results (outputs).
- OP : R X MID X S 0 X S. is a result producer.
- AP : T X S lP (A X MID X T X S). is an action producer.
- BP : S X MID X W MID X W. is a buffer priority rule.

The configuration of h . denoted by C; . is an element of
S X T* X 0* X T X IN X (R X MID)* X MID X W.

We define: if C; ~ (s .t .a.p.n .r.b.w). then
C;.S ~s.C;.T ~t.C;.O ~a.C;.P ~p.C;.N ~n.C;.R ~r.C;.B ~b.C;.W ~w.

Informally:
The function BP determines. given the current state and information about which sender
was chosen and with which priority the last time we could take a message from the buffer.
which sender is chosen and with which priority.
If a sender is chosen with priority wait. then we take the first message from that sender if
there is such a message. Otherwise we do not do anything. i.e. we do definitely not choose
another sender. which means that we will wait until that sender has sent a message. So
we are able to wait for a particular machine to send a reaction independent of the time the
machine takes for handling that reaction.
If a sender is chosen with priority nawait . then we take the first message if there is such a
message. otherwise we choose again (probably an other sender).
The priority must be seen as a part of the state. with which we can control which message
is to be handled. i.e. which sender is given some priority. Since in this way the possibility
of the starvation of messages (as far as acceptation is concerned) is introduced. some addi
tional assumptions are needed as we will see at the end of this description of the MBIS
model.

In the configuration C;.B determines the buffer (~ sender) from which a message should
be taken if we want to do so. C;. W determines with which priority we want to do so.

Let m be a machine. so m EM. with id (m) ~ j. say.
Then m ~ (S A .R .E .BP). where:
- S is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A X S R X S. is an executor.
- BP : S X HID X W HID X W. is a buffer priority rule.

- 22 -

The configuration of m . denoted by C j • will be an element of
S X (A X HID)* X HID X W.

We define: if C j ~ (5 .a h .w). then
CjeS =s.CjeA =a.CjeB =b.CjeW =W.

Handler h (with id (h) ~ i) continuously executes the following:

if C;oR ;c (J" and first(C;oR .C;oB) ~ (r J)

(0.5) :~ OP(r J,C; oS);
C;oS :~ 5; C;oO :~ C;oO 10; C;oN :~ C;oN - 1; C;oR :~ tail(C;oR .C;oB);
(C;oB .C;oW):~ BP(CioS .CioB .CioW)

o Ci oR ;c (J" and first(C; oR ,Ci oB) ~ u
.....
(C;oB .C;oW):~ BP(CioS .CioB .CioW)

o CioR ~ (J" and CioP ;c 1)
.....
po. :~ AP (C i oP . Ci oS);
if po. ;C 0

.....
(a J,p .5) :~ pick(po.);
CioS :~ 5; CioP :~ p; CioN :~ CioN + 1; CJoA :~ CJoA 1 (a .i);
(Ci oB .C;o W) :~ BP(CioS .CioB .Cio W)

Dpo.~0
.....
skip

Ii
o C;oR ~ (J" and CioP ~ 1) and CioN ~ 0 and first(CioT) ~ p

.....
C;oT :~ tail(C;oT); C;oP :~ p

o C;oR ~ (J" and CioP ~ 1) and CioN ;c 0
.....
skip

Ii

Informally:
Whenever a reaction is accepted from the buffer. the BP function is applied to choose
which sender is next. When an action is sent. the state has changed. so the BP function
has to be applied. as is necessary whenever there are indeed reactions in the buffer. but not
any from the sender that has been chosen. If the priority was wait then applying the BP
function will have no effect. since wait means that we definitely wait for a message to
come from the chosen buffer.

Machine m (with id (m) ~ j) continuously executes the following:

.....
(r .5) :~ E(a .Cj oS);
C j oS :~ 5 ; C j oA :~ tail(C j oA .C; oB); CroR :~ CroR 1 (r .j);
(C j oB ,C

J
0 W) :~ BP(C

J
oS ,Cj oB .Cj 0 W)

o Cj oA ;c (J" and first(C j oA .Cj oB) ~ u
.....
(CjoB .CjoW) :~BP(CjoS.CjoB .CjoW)

o CjoA ~ (J"

- 23 -

skip
Ii.

Of course, the use of BP by m is similar to that of BP by h,

Initially the following conditions should hold:
C,.B E MID ,Cj.B E HID ,C,.W =nowait andCj.W =nowait.

In order to avoid the possibility of starvation of messages in the buffers the BP functions
should satisfy some conditions.

For handler h (id (h) = i) holds :

Ek:kEIN:
A j : j E MID
As,s I,b ,b I'W ,w I :

s E S /I s I E S /I b E MID /I b I E MID /I W E W II WI E W
/I (sl,bl,WI) E Rk(s,b,w):

E S2,W2,I : S2 E S /I W2 E W /I 1 E IN :
(S2,j,W2) E R,(s,b,w)/\ (sl,bl,wI) E Rk-,(S2,j,W2) '

with R defined by :

R 0(5 ,b ,w) = { (5 ,b ,w) }.
R, (5 ,b ,w)

{ (sl,bl,wI)
I E 52,b 2,w2,r ,m ,0

(52,b 2,W2) E R, _1(5 ,b ,w) /I r E R II m E MID /I 0 E 0
OP(r ,m ,52) = (0,5 I) /I BP(5 l,b 2,W2) = (b I'W I)

V Eb 2,W2: (5I,b 2,W2) E R'_1(5,b,w):
BP(5 l,b 2,W2) = (b "w ,)

V E 52,b 2,W2,a ,m ,P ,PI:
a E A II m E MID II pET II PI E T /I (52,b 2,W2) E R'_1(5,b,w):

(a .m ,P 1,5 I) E AP(p ,52) II BP(5 l,b 2,W2) = (b I,W ,) J.

For machine m (id (m) = j) holds:

Ek:kEIN:
Ai: i E HID:
A 5 ,5 I,b ,b I,W ,W I :

5 E S /I s 1 E S II b E HID /I b I E HID /I W E W /I WI E W
/I (sl,b"WI) E R,(5,b,w):

E 5 2,W 2,1 : 52 E S /I w 2 E W /I 1 E IN :
(52,i ,W2) E R,(5 ,b ,w)1I (5I,b

"
W,) E R,_,(52,i ,W2) ,

with R defined by :

R 0(5 ,b ,w) = { (5 ,b ,w) }.
R, (5 ,b ,w)

{ (5I,b l ,WI)
I E 52,b 2,w2,a ,r

- 24 -

(S2.b2.W2) E Rk_,(s.b.w) II r E R II a E A :
E(a .52) ~ (r.s ,) II BP(s ,.b2.W2) ~ (b ,.w ,)

V Eb 2.W2:(S,.b 2.W2) E Rk_,(s.b.w):
BP(s,.b 2.W2) ~ (b,.w,)}.

Informally:
Rk (5 .b.w) is the set of elements of S X MID X W (in case of a handler). that can be
reached from (s .b.w) (also an element of S X MID X W). by performing k times a step
in which BP is applied. So. it is guaranteed that for each state s and each sender j holds
that after at most k times of choosing a sender j is chosen.

As far as exclusion is concerned. there are almost no problems. if we assume that the
buffer. as we described it. is indeed implemented as one buffer per sender. Then. we only
have to assure that. when at almost the same time a message is added to the buffer (as a
whole) and it is tried to take a message away and these two messages are in fact the same.
then this should happen in a consistent way.

- 25 -

3 THE EQUIVALENCE OF THE MODELS

3.0 Equivalence

After describing a number of models for distributed information systems. we now demon
strate how a given system of a certain model can be simulated by systems of other models.
that is. we show the equivalence of the set of the models that have just been presented.
We call a set of models equivalent if any model can be simulated by every other model in
the set.

We write A B. short for A simulates B. if for every system b of model B a system a of
model A can be found. such that. given an initial state and an input. a produces a final
state and an output that could have been produced by b.
Now we are going to give some of these simulations. Suppose we want to demonstrate
that A B. We always start with a system b of B and define a system a of A such that
a operates as b possibly could do.

3.1 SBIS SimIS

The simulation of SBIS by SimIS is very straightforward. since essentially the model that
should be simulated (SimIS) is a special case of the simulating model (SBIS).

We therefore define the SBIS system almost identical to the given SimIS. The only
difference is implied by the fact that there are some definitions in the SBIS model that
slightly differ from the corresponding definitions in the SimIS model. But it is trivial (as
we mentioned. before describing the SimIS model). that these differences are not really
differences in the case of a system that has exactly one handler and one machine. .

Suppose in the SimIS holds:
the handler is (Sh .Th Ah .Rh .Oh .0Ph APh). and the machine is (Sm Am .Rm .Em)·

Then the SBIS is defined by :
H ~ {h J. M ~ {m J. id (h) ~ h. id (m) ~ m..
h ~ (S.T.A .R.O.oP AP). where:

S ~ Sh . T ~ Th . A ~ Ah • R ~ Rh . 0 ~ Oh .
OP(r.m..s) ~ OPh (r.s)

(r E Rand s E S).
AP(p.s) ~ {(a.m. .p' .s·) I (a .p' .s·) E APh (p.s)}

(p E T and s E S).
m = (S A.R .E). where:

S ~ Sm . A = Am • R ~ Rm . E ~ Em .

3.2 SiroIS SBIS

Here we have the task to construct. given an SBIS. a SimIS. that operates as the SBIS could
operate. This means that a SimIS should be constructed that. given an input and an initial
state. produces an output and a final state that could have been produced by the SBIS.

We will use the fact that it is possible in the SBIS that each transaction is assigned to the
same handler. since in an SBIS it is not defined how the input. being a sequence of transac
tions. is partitioned over the handlers.
Therefore our strategy for this simulation. is to choose the one handler of the SimIS
almost identical to a handler of the SBIS. Furthermore. the machine of the SimIS should

- 26-

be able to do as much as all machines of the SBIS could do. therefore we will combine all
these machines into the one machine of the SiroIS.

Suppose in the SBIS h E H. with id (h) ~ i and h ~ (S, .T, .A, .R, .0, .OP, .AP,).
For the SimIS we now define:

the handler is (S.T.A.R.O .OP AP). where:
S ~S,.T ~T,.O ~Oi.A ~Ai X MID.R ~R, X MID.
OP((r.j).5) ~ OPi (r .j .5)

((r .j) E Rand 5 E S).
AP(p.5) ~ IC(a .j).p' .5') I (a.j .p' .5') E AP,(p ,5)}

(p E T and 5 E S).

Suppose in the SBIS M ~ I(Sj Aj .Rj E j) I j E MID}.
We define for the SimIS :

the machine is (S A .R E). where:
S ~ C j : j E MID : Sj. (i.e. the carthesian product of all Sj)
A ~ lea .j) I j E MID /\ a E A j }.
R ~ l(r.j) I j E MID /\ r E R j }.
E ((a .j).5) ~ ((r .j),(i ». where

s E S (with the j -component of s is 5) and
s is the state 5 except for the j -component which is Sj •

if E j (a .5j) ~ (r .5).

(a E A j . j E MID and s E S).

3.3 BBIS SBIS

For this simulation we use the idea that a BBIS operates almost the same as an SBIS. The
only difference is that in a BBIS there will be some waiting for buffers to become not full.

Therefore in the BBIS we define :
H ~ "H of the SBIS". M ~ "M of the SBIS".
id ~ "id of the SBIS" (so also ID ~ "ID of the SBIS").
Ai: i E ID : BS Ci) ~ 1.

So we use the idea that waiting for some space in buffers has no disadvantages, i.e. it does
not imply results that could not have been produced by the SBIS.
Whenever there is some waiting before sending an action. then possibly after the waiting
the original action is sent. Since we do not consider time aspects. that does not imply any
bad effects.
If the waiting implies the sending of some other action. then the NTSS schedule implies
that this has no influence on the result. since otherwise the schedule would have prohi
bited this changing of the order of send ing of both actions.
The acceptation of some reaction while waiting to send. is also allowed because of the
independence of both operations.
Since the machines are only able to wait (i.e. they have not the possibility of executing
some other action), there is no problem as far as the machines are concerned.
One must note that whenever two reactions of different machines arrive in some other
order as they would in the SBIS. then that is not a problem (note that this order of arrival
influences the result), since this is a question of time. Two reactions of the same machine
can not change order.

- 27 -

3.4 SBIS BBIS

This simulation is rather trivial. We choose for the SBIS :
H ~ "H of the EBIS". "M ~ M of the BBIS".

The SBIS will operate as the BBIS would. but without its limitations. This notion can
indeed be used. since the BBIS can not use in any way its limitations (i.e. the bounds for
the buffer sizes).

3.5 SeqIS SBIS

We will simulate the SBIS by allowing in the SeqIS every object to perform a step. This
allowance will be given to one object at a time. and every object will eventually get the
allowance to perform a step.

So we define in the SeqIS :
H ~ "H of the SBlS". M ~ "M of the SBlS".
ID ~ "ID of the SBIS".

Furthermore. we define the ACTNE function for the SeqIS :
ACTNE : [O .. IID 1-1] ID. with ACTNE a one-to-one function.

That the SBIS can be simulated in this way is obvious. since essentially we only exclude
parallelism.

3.6 MBIS SeqIS

For this simulation we will use the fact that it is possible in the SeqIS that each transac
tion is assigned to the same handler. since in a SeqIS it is not defined how the input. being
a sequence of transactions. is partitioned over the handlers. Therefore we choose in the
MBIS the number of handlers to be one and the number of machines to be one higher than
the number of machines in the SeqIS. This implies that we choose that the one handler in
the MBIS is almost identical to a handl er of the Seq IS.

One of the machines ("') will. together with the handler. control the steps to be performed
as in the Seq IS. The other machines are almost identical to the machines of the Seq IS. The
handler h will be a handler of the SeqIS. but with some special tasks. How is the control
ling of the performing of steps organized?

The handler will ask'" which object is allowed to perform a step. since", will contain the
information concerning the ACTNE function of the SeqiS. Then h's task is to control
that the object. that has the allowance. performs a step. Note that a machine can not ask
itself whether it can perform a step. In order to run this controlling smoothly we define
the operations of the objects in such way that the contents of their buffer will be in their
internal buffer. which will be part of the state.

If h learns from a reaction. which it has got from",. that it is allowed to perform a step
itself. then it performs that step and subsequently tells that it has finished with this step
by asking'" again who is next to perform a step. When performing a step. h can possibly
send an action to some machine m (not "')' Then m will act as follows. It stores the
action in its internal buffer and sends to h a message. that represents some empty (~
irrelevant) reaction. Subsequently h will ask (J{ again which object is next.

If some machine m is the object allowed to perform a step. then h will send an (empty)
action to m and m will then react by executing the first action in its internal buffer and

Lenie Kantelberg

Lenie Kantelberg

- 28 -

sending the reaction, implied by this execution, to h. h puts this message in its internal
buffer in order to be able to send an action to 0<, asking who is next.

If h has the permission itself and it has some message in its internal buffer, then it will
act as it would do in the SeqIS case whenever its buffer is not empty, and it will subse
quently send an action to 0< again.

In this way we have programmed the MBIS to operate in such a way that the "real steps"
are performed in the same sequence as in the SeqlS.

Formally:

Suppose in the SeqlS (S ,T ,A ,R ,0 ,OP AP) E H.
Define in the MBIS :

H ~ {h } with h ~ (Sh ,T Ah ,Rh ,O,OPh APh ,BPh) and id (h) ~ h, where:

Sh ~ S X SS X (R X MID)* X IN, where:
MID as in the SeqlS, a e MID (id (0<) ~ a),
SS ~ {ask ,ready ,waitemp ,change} U {all (x) I x E MID U {h}} U

{wait(m) 1m E MID} U {waitr(m) 1m E MID}.

AP(p ,(s ,ready ,rm ,nr)) ~ {(who? ,o<,p.cs ,ask ,rm ,nr))l.
OP(ok (x),a,(s ,ask ,rm ,nr)) ~ (CT ,(s ,all (x),rm ,nr)).

AP (p ,(s .all (h) ,CT ,nr)) ~ {(a ,m ,p ,Cs' ,wait (m) ,CT ,nr + 1)) I (a.m ,p' ,s') E AP (p ,s) 1\
(p' ". 7) =;> P = p' 1\ p' ~ 7) =;> p ~ w)}

(p ". w),
OP(/J..m ,(s ,wait (m),rm ,nr)) ~ (CT ,(s ,ready ,rm ,nr)).

AP(p ,(s ,all (h),rm ,nr)) ~ {(/J. ,a,p ,(s ,waitemp ,rm ,nr))}
(rm ". CT),

OP(IL ,a,(s ,waitemp ,rm ,nr)) ~ (0 ,(s' ,ready ,tail(rm),nr))
(rm ". CT, first(rm) = (r ,m) and OP(r ,m ,s) = (0 ,s')),

AP(p ,(s ,all (m),rm ,nr)) ~ {(CT ,m ,p ,(s ,waitr (m),rm))l.
OP(r .m ,(s ,waitr (m),rm ,nr)) ~ (CT ,(s ,ready.rm I (r ,m),nr -1)).

AP(w ,(s ,all (h),CT ,0)) ~ {(/J. ,a,7) ,(s ,change ,CT ,O))l.
OP(IL ,a,(s ,change ,CT ,0)) ~ (CT ,(s .ready ,p,O)).

AP (p ,(s ,all (h),CT .nr)) ~ {(who? ,a,p ,(s ,ask ,CT ,nr))}
(AP(p ,s) = 0 and nr > 0),

OP(/J.,m ,(s ,waitr (m),rm ,nr)) ~ (CT ,(s ,ready ,rm ,nr)),

Ah ~ A U {who? ,/J.}.
Rh ~ R U {ok (x) I x E MID U {h}} U {/J.},

BPh «s ,ask ,rm ,nr),m ,w) ~ (a,wait),
BPh «s ,ask ,rm ,nr),a.wait)) ~ (a,wait),
BPh «s ,wait (m),rm ,nr).m' ,w) ~ (m ,wait),
BPh «s ,wait (m),rm ,nr).m ,wait) ~ (m ,wait),
BPh «s ,waitemp ,rm ,nr),m ,w) ~ (a,wait),

- 29 -

BPh ((5 ,waitemp ,rm ,nr),a,wait)) = (a,wait),
BPh ((5 ,waitr (m),rm ,nr),m' ,w) = (m ,wait),
BPh ((5 ,waitr (m),rm ,nr),m ,wait) = (m ,wait),
BPh ((5 ,cluLnge ,rm ,nr),m ,w) = (a,wait),
BPh ((5 ,cluLnge ,rm ,nr),a.wait)) = (a,wait),

(m E MID and w E W).

For every (S A ,R.E) E M in the SeqIS, we define in the MBIS (Sm Am ,Rm.Em ,BPm) E M
where:

Sm = S X A*'
Am = A U {Il} (Il ~ A U R).
Rm =R U {Il}.

Em (a ,(5 ,ah)) = (1l.c5 ,ah I a)),
Em (Il ,(5 ,ah)) = (r ,Cs' ,tail(ah)))

(E(a ,5) = (r ,5') and first(ah) = a),
Em (Il ,(5 ,CT)) = (Il ,(5 ,CT)).

rng(BP m) = {il}.

Furthermore, for the MBIS are defined ACTIVE and Oi EM, where Oi = (S A ,R.E ,BP),
with:

if in the SeqIS ACTIVE: [0 .. n-1] --+ ID, then ACTIVE' : [O .. n' -1] --+ MID U {il} is
defined by:

9 := 0: g' := 0:
dog < n

if ACTIVE(g) E MID

ACTIVE' (g') := ACTIVE(q): q' := q' + 1
o ACTIVE(q) = i

ACTIVE' (q') := il: g' := q' + 1
o ACTIVE(q) ~ MID U {i}

skip
Ii:
q := q + 1

od:
n' := q'

S = [O,.n'-1].
A = {who? .Il},
R = {Il} U {ok (x) I x E MID U {il}} (MID as in the SeqIS).

E(who? ,q') = (ok (ACTIVE(q')).q' +l(mod n')),
E (Il ,g') = (Il ,g').

rng(BP) = {il}.

- 30-

3.7 SBIS -> MBIS

A rather straightforward idea for this simulation is to make the buffers of the MBIS,
which have the BF function that is not easy to simulate, internal buffers, i.e. to keep the
contents of such a buffer in the state, and then to have every object ask a special machine
(3, which knows everything about the BF functions, which result should be produced
given the internal buffer.

Because it is rather difficult for the machines to ask some other machine anything, we use
again the fact that in the MBIS every transaction could be assigned to the same handler,
So in the SBIS we will define one handler which will act almost the same as any handler
of the MBIS,

This handler h will, when having messages in its buffer, produce first an empty (~
irrelevant) result and change into some special state, that implies the sending of an action
to (3, which causes (3 to send a reaction that supplies the machine with the necessary infor
mation to be able to produce the right result and to change into the right state.

The definition of the machines is rather trivial. since the BP function has no real meaning.
whenever there is only one sender.
Therefore we choose:

M ~ {(S A ,R E) I (S A ,R E ,BF) E "-'!! of the MBIS"L U {(3}.
where MID ~ "MID of the MBIS" U {(3) and id ((3) ~ (3.

If (S ,r ,A ,R ,0 ,OF AF .BF) E H in the MBIS, then we define in the SBIS :
H ~ {h }. where h ~ (Sh ,r Ah ,Rh ,O,OFh AFh), id (h) ~ hand

Sh ~ S X {work ,ask ,wait I X (R X MID)* X IN,

OFh (r .m .(s ,work .rm ,nr)) ~ (0' ,(s ,ask .rm l(r ,m),nr -1)),
AFh (p ,(s ,ask ,rm ,nr)) ~ {(which (rm ,s)? ,(3.p ,(s ,wait ,rm ,nr))}.
OF. ((r .m),;3.(s ,wait ,rm ,nr)) ~ (0 ,(s' ,work .rm' ,nr))

COF(r ,m ,s) ~ (0 ,s') and "rm' ~ rm - (r.m)"),
OFh (U ,;3,(s ,wait .rm ,nr)) ~ (0' ,(s ,ask ,rm ,nr)).

AFh (p ,(s ,work ,0' ,nr)) ~ {(a .m ,p.Cs' ,work ,0' ,nr +1)) I (a.m ,p' ,s') E AF(p ,s) A
(p' ~ 1) =;> p ~ w A p' ... 1) =;> p ~ p'))

(p ... w).

AFh (w ,(s .work ,0' ,0)) ~ {(p..{i,1).(s ,wait ,0' ,O))}.
OFh (p. J,(s ,wail ,0' ,0)) ~ (0' .(s ,work ,0' ,0)).

Ah ~A U {which(rm,s)? I rm E (R X MID)*A s E S) U {p.).
RA ~ R U {p., u) U (R X MID).

For machine (3 will be defined :
E (p. ,s) ~ (p. ,s),
E(which (rm ,s)? ,m' ,w') ~ ((r ,m).m ,w)

(BF(s.m' ,w') = (m ,w) and first(rm.m) ~ (r.m)),
E (which (rm ,s)? .m' .w') ~ (u .m ,w)

(BF(s ,m' ,w') = (m ,w) and first(rm.m) ~ U).

With this simulation we have seven simulations that can easily be seen to prove the

..

- 31 -

equivalence of the set of the models that we have introduced.

- 32 -

4 GENERAL DISTRIBUTED INFORMATION SYSTEM

Here we present a model called GDIS (from : general distributed information system).
The models previously presented will be special cases of the GDIS. Note. that each of
these models is assumed to be identical with the special case of the GDIS. that is trivially
equivalent to the model. This GDIS model covers distributed information systems. which
operate according to the NTSS schedule but in which the communication (between
handlers and machines) is performed in many different ways.

A GDIS can be described as follows.

H is a set of transaction handlers.
M is a set of machines.

There is a function id : HUM ID. where:
id is a one-ta-one function.
HID c ID andAh:h E H :id(h) E HID.
MID c ID and Am: m EM: id (m) E MID.

Define W = {wait .nowait }.

Let h be a handler. so h E H. with id (h) = i. say.
Then h = (S.T .A.R.O .OP.AP .SP .BP). where:
- S is a set of states.
- T is a set of transactions.
- A is a set of actions.
- R is a set of reactions.
- 0 is a set of results (outputs).
- OP : R X MID X S 0 X S. is a result producer.
- AP : T X S 1P (A X MID X T X S). is an action producer.
- SP E IP(IP(MID)). is a sender partitioning. where

- Am: m E MID: E(s : s E SP : m E s).
- A S.5 : s E SF 1\ 5 E SF 1\ s ,.. 5: S n 5 = 0.

- BP : S X SP X W SP X W. is a buffer priority rule.

The configuration of h . denoted by C; . is an element of
S X T* X 0* X T X IN X (R X MID)* X SP X W.

We define: if C; = (s .t .o.p.n.r.b .w). then
CjeS =s,CjeT =t.CjeO =O.CieP =p,Cj.N =n,CieR =r,Cj.B =b.Cj.W =w.

Informally:
SP partitions the senders (machines) for this handler. thus modeling that every element of
SP has its own buffer. So for every sender there is exactly one buffer. but it is possible
that the sender has to share the buffer with some other senders. Note that the two
extremes are the MBIS. where each sender has its own buffer. and the SBIS. where all
senders share one buffer.
One should note that when we say that there is more than one buffer, we represent this by
having just one buffer. which is accessed not first-in-first-out. but only first-in-first-out as
far as some set of senders. as determined by BP. is concerned (cf. the description of the
MBIS model).

As in an MBIS BP determines the buffer to access (the set of machines of which a message
should be taken) and the priority with which to access that buffer. The only difference for
BP is that in stead of one machine a set of machines is determined.

- 33 -

In the configuration Cj.B stands for the buffer (i.e. the set of machines) from which a
message should be taken if we want to do so.

Let m be a machine. so m EM. with id (m) = j. say.
Then m = (S.A .R E .SP .BP). where:
- S is a set of states.
- A is a set of actions.
- R is a set of reactions.
- E : A X S -+ R X S. is an executor.
- SP E IP (IP (HID)). is a sender partitioning. where

- A h : h E HID: E(s : s E SP : h E s).
- A S.5 : s E SP II 5 E SP II s ". 5 : s n 5 = 0.

- BP : S X SP X W -+ SP X W. is a buffer priority rule.

The configuration of m. denoted by Cj • will be an element of
S X (A X HID)* X SP X W.

We define: if C j = (s .a .b.w). then
Cj.S =s.Cj.A =a.Cj.B =b.Cj.W =W.

There is a function ACTIVE: [O .. n -11 -+ PUD). with every element of ID occurring in
at least one set that acts as a value of ACTIVE.
We will use q to run through [O .. n -1). Informally. ACTIVE(q) is the set of
identifications of the handlers and the machines that are currently allowed to perform a
step. The difference with the SeqIS is that in the SeqIS exactly one handler or machine has
the permission. whereas in the GDIS a set of handlers or machines gets the permission.
which means that every element of that set can perform a step.

There will be also a function BS : ID -+ (.hV-Io))u I u l. where BS stands for buffer
siz~. For each i E ID. BS (i) denotes whether the object identified by i. say h . has a
bounded buffer. If BS(i) = U . then h has an unbounded buffer. If BS(i) E .hV-Iol.
then the size of h's buffer is BS(i). which means that the buffer can hold at most BS(i)
messages at a time.

We assume that the functions ACTIVE and BS. which are really central functions. are
represented in the scheduler. So the scheduler executes the schedule and controls the use
of these two functions.

Handler h (with id (h) = i) continuously executes the following:

if i E ACTIVE(q)

if Cj.R ". (j' and first-set(Cj.R .Cj.B) = (r.j)

(o.n :=OP(r.}.Cj.S):
Cj.S := s; Cj.O := Cj.O 10; Cj.N := Cj.N - 1; Cj.R := tail-set (Cj.R .Cj.B);
(Cj.B .Cj• W) := BP(Cj.S .Cj.B .Cj• W)

o Cj.R ". (j' and first-set(Cj.R .Cj.B) = U

(C,.B .C,. W) := BP(C,.S .C,.B .Cj• W)
o Cj.R = (j' and Ci·P ". 1)

pa :=AP(Cj.P.Cj.S);
do pa ". 0

(a .].p.s) :~ pick(pa):
if size(CJ.A) < BSC})

- 34 -

C;'S :~ s; C;.F :~ p; C;.N :~ C.N + 1; CJ.A :~ CJ.A I(a.i);
(C;.B ,C;' W) :~ BF(C;.S .C;.B ,C;' W);
pa :~ 0

o size(CJ.A) ~ BS C})

fi
od

pa :~ pa - (a .].P.s)

o C;.R ~ CT and C;.F ~ 1) and C;.N ~ 0 and first(C;.T) ~ p

C;.T :~ tail(C;.T); C;.F :~ p
o C;.R ~ CT and C;.F ~ 1) and C;.N ;c 0

-<

skip
fi;
q :~ q + 1 (mod n)

o i ! ACTIVE(q)

skip
fi

Informally:
First of all h checks (as in a SeqIS) whether it is allowed to perform a step.
If h has the permission. it possibly decides to receive a reaction. As in a MBIS BF will
determine of which senders a message can be taken.
Before h sends an action. it must be sure that the message implied can be put in the buffer
of the appropriate machine. Therefore the same strategy is applied as is applied when in a
BBIS a handler wants to send an action.

Machine m (with id em) = j) continuously executes the following:

if j E ACTIVE(q)
-<

if Cj.A ;c CT and first-set(Cj.A .C;.B) ~ (a.f)

(r.s) :~ E(a .Cj.S); _
if size(C,.R) < BS (i)

Cj.S :~ s; Cj.A :~ tail-set(Cj.A .C.B); C,.R :~ C"R I (r.j);
(Cj.B .Cj • W) :~ jiF(Cj.S .Cj.B .Cj • W)

o size(C,.R) ~ BS (i)

skip
fi

o Cj.A ;c CT and first-set(Cj.A .Cj.B) ~ u

(Cj.B.Cj.W) :~BF(Cj.S.Cj.B.Cj'W)
o Cj.A ~CT

skip
fi;

q :~ q + 1 (mod n)
OJ! ACTNE(q)

skip
fi

- 35 -

Similar to the operation of h. m will check for the permission and if m has got the per
mission it chooses. with the help of BP (and SP). an action. after which it determines
with BS whether a message implied by the execution of the action can be put in the right
buffer.

Initially the following conditions should hold:
Ci.N ~O,Ci.B ESP (ofi).Ci.W ~nowait.

In order to avoid the possibility of starvation of messages in the buffers the BP functions
should satisfy some conditions.

For handler h (id (h) ~ i) holds:

Ek:kEIN:
A j : j E MID
A5.51.b.b l .w.wI:

5 E S II 51 E S II b E SP II b l ESP II w E W II WI E W
II (51.b l .WI) E R k (5.b.w):

E 52.b2,w2.1 : 52 E S II b 2 E SP II W2 E Will E IN :
(5 2.b 2.W2) E R,(5 .b.w)1I (5 1.b I .WI) E R k _,(5 2.b 2.W2)1I j E b 2 .

with R defined by :

R 0(5 .b .w) ~ { (5 .b .W) l.
Rk (5.b.w)

{ (51.b l .w.)
I E52.b2.W2.r.m.o

(52.b2.W2) E R 1 _ I(s.b.w)1I r E R II m E MID II 0 EO
OP(r.m .52) ~ (0.5 I) II BP(5 l.b 2.W2) ~ (b I.W I)

V Eb 2,W2:(51.b 2,W2) E R k _.(5.b.w):
BP(5 l.b 2.W2) ~ (b I.W I)

V E S2.b2.W2.a.m.p .P. :
a E A II m E MID II pET II PI E Til (S2.b2.W2) E Rk _ I(5.b.w):

(a .m.P •. 51) E AP(p.52)1I BP(51.b 2.W2) ~ (bl,wI) l.

For machine m (id em) ~ j) holds:

Ek:kEIN:
Ai: i E HID:
A 5 .5 I.b .b I'W .W. :

s ESlIsIESllb ESPllblESPllw E Wllw.E W
II (5 •• b l .WI) E Rk (5.b.w) :

E52.b2.w2.1 :52 E S II b 2 E SPII W2 E Will E IN:
(52.b2.W2) E R,(s.b.w)1I (51.b •. WI) E Rk_,(52.b2.W2)1I i E b 2 .

with R defined by :

R o(s .b.w) ~ { (s .b .w) l.
R, (s.b.w)

(s ,.b I.W ,)

E S2.b2.W2.r,a

- 36 -

(S2.b2.W2) E Rk_,(s.b.w)/\ r E R /\ a E A :
E(a .S2) ~ (r.s ,) /\ BF(s ,.b 2.W2) ~ (b ,.W I)

V E b 2.W2: (s,.b 2.W2) E Rk_,(s .b.w):
BF(s,.b 2.w2) ~ (b,.w,)}.

To avoid that handlers or machines that want to perform a step never know that they are
allowed to do so (the condition we added to the definition of ACTIVE assures that they
definitely will have the permission at some time. but it could be possible that they will
not become aware of that fact). we presume that every handler or machine that does not
have the allowance to perform a step. is waiting to get the allowance. i.e. immediately
after q has got a value such that a handler or a machine has the permission. the handler or
machine becomes aware of that and starts performing a step.
So in between two transitions of the value of q. every object that was waiting for the
allowance becomes aware of having that allowance.

- 37 -

5 WlDCH MODEL IS THE MOST PARALLEL MODEL?

As we have seen. the GDIS model defines a large set of systems. We also could say. that
the GDIS model implies a set of models. where every model is characterized by the way in
which the communication between transaction handlers and machines. independent of
NTSS. is organized. As we have seen. the five models that we presented earlier are ele
ments of this set of models.

The question now is the following.
In which model is the communication organized in such a way that we could say that the
model is the most parallel one in the set of all models implied by GDIS ?

Intuitively. the most parallel model is the model for which holds. that any transaction.
being handled by some handler. is interfered in the least possible way by transactions.
that are handled at the same time.
When we say. that a transaction is interfered by other transactions. we mean that the pro
gress of its handling is slowed down. because the handling at the same time of the other
transactions requires some arrangements to be made.
These arrangements are needed in order to guarantee that every transaction is handled in a
correct way. which means that every handling of a transaction takes only a finite time and
for each input and each state of the system. the output and the resulting state are com
puted in a consistent manner.

So we consider the GDIS model.
Note that the SimIS model obviously is not the most parallel model. We will only com
pare the models that allow systems to have a set of handlers and a set of machines.
If one wants to define a GDIS. then one has to specify the handlers. the machines and the
scheduler. Of course. one also has to define the identification function id. but surely the
definition of id has no effect on the parallelism.

Since a handler is defined to be a nine-tuple (S.T.A.R.o .OP .AP .SP .BP). this means that
for every handler we have to define what this nine-tuple is. Obviously. the definition of
the sets S.T .A.R and 0 has no effect on the parallelism that is allowed in the system.
The functions OP and AP are merely functions that determine some transformation. i.e.
which result is implied by a reaction (OP) or which set of actions is implied by a transac
tion (AP). Therefore they do certainly not contribute to a higher degree of parallelism.
The function SP has an effect on the degree of parallelism. as we have learned from the
description of the MBIS model. This implies that. when we want to define the most paral
lel model. we have to define SP in the best possible way. The definition of BP is of course
dependent on the definition of SP. This implies that as far as the handlers are concerned.
the definition of the most parallel model implies the best possible definition of SP and BP.

A machine is a six-tuple (S.A .R E .SP .BP). Again. the definition of the sets S.A and R
has no effect at all on the degree of parallelism. The function E is a function. that merely
determines which reaction and state are implied by an action and a state. So. as far as the
machines are concerned. we only have to define SP and BP in the best possible way.

Furthermore. the definition of a GDIS implies the definition of the scheduler. Since we
have already defined that the main task of the scheduler is to execute the NTSS schedule.
we only have to define the functions ACTNE and BS.
As we have learned from the description of the SeqlS. the definition of ACTNE has an
effect on the parallelism. From the description of the BBIS we know that BS also has its
effect on the parallelism.

- 38 -

This means that defining the most parallel model can be reduced to defining ACTIVE. BS
and for every handler and for every machine SP and BP in the best possible way.

What is the effect of ACTIVE on the handling of transactions by a distributed information
system ? This function ACTIVE determines. independently of the handling of transac
tions. which objects (handlers or machines) are allowed to be active. If ACTIVE is a func
tion from [O .. n] to IP(JD) and for some k E [O .. n] holds ACTIVE(k) ". ID. i.e. not
always every object is allowed to be active. then obviously the progress of the handling of
a transaction can be slowed down. because some object has to wait for the allowance to be
active (cf. the introduction of the SeqlS model).
One must note. that. whenever some object has to wait for the allowance. this is due to the
fact that it is decided (by ACTIVE) that other objects are allowed to be active without
this object being active. The reason for this could be. that only a limited number (e.g. 1 in
the case of a SeqlS) of objects can be active at the same moment. Surely. this is in con
tradiction with our notion of the most parallel model. Therefore. in the most parallel
model every object should be able to be active at any moment.
So. in the GDIS model ACTIVE should be defined as follows:

ACTIVE: [0] -- ID .

If for some i E ID holds BS Ci) E IN. i.e. the buffer of the object identified by i has a
bounded size. then it could happen that the handling of a transaction is stopped. because a
bounded buffer is full (cf. the introduction of the BBIS model). In general. this is also due
to the fact that the handling of other transactions has implied that messages have been put
in the buffer.
Therefore. it is much more convenient to have unbounded buffers. because then the actual
state of the buffers cannot imply the handling of a transaction to be slowed down.
For the most parallel model. we should define:

BS : ID -- I u I .

That leaves us to define SP and BP for every handler and every machine in the system.
From the description of the MBIS model we know. that the SP function can be used to
partition the senders (i.e. objects that can put messages in the buffer) and that then BP
can be used to take messages from the buffer in an order. that is not first-in-first-out. but
that is determined by BP. i.e. BP determines a set of senders and then the first element.
that is sent by one of the senders in that set. is taken away.
First of all. one must note that if one has the possibility to give some sender some priority
(i.e. for a handler SP ". IMID I and for a machine SP ". IHID D. then one has an addi
tional possibility to execute a specific problem in a more natural way. Consider for exam
ple. the possibility that a handler is expecting a reaction from some machine. where the
reaction could imply. that one wants to stop the transaction. because one is not interested
in any results in that case (e.g. an error). Then it would be convenient to have this reac
tion accepted as soon as possible. i.e. without having to wait for the reaction to become the
first in the buffer. which is also dependent on the speed of the machines.

There is also another aspect to the buffer definition.
In the case where some senders share a buffer. i.e. the owner of the buffer takes the mes
sages from these senders simply first-in-first-out. one must take care of the situation
where two objects want to manipulate a buffer at almost the same time. Of course the
SBIS. where for every handler holds SP ~ IMID I and for every machine SP ~ IHID l. is
an example of such a system. This situation can occur, when two senders both want to
add a message to some buffer.
In the case where every sender has its own buffer. so SP ~ IU I I j E MID I for every
handler and SP ~ !Ii II i EHID I for every machine. this problem can not occur. Of course
the MBIS model is the only model for which this condition holds. So then we only have

- 39 -

to deal with the possibility of adding a message and at the same time trying to take the
same message away. This implies that the problem of exclusion can easier be solved for
the MBIS model.

Therefore the most parallel model should have for every object a single buffer per sender.
which means that in the GDIS model one should define:

for everyi E HID: SP ~ IU} I j EMID}.
for every j E MID :SP ~ {{i} Ii EHID}.

Now we can conclude that in the most parallel model the ACTIVE function should be
defined in a trivial way (i.e. it does not constrain the system at all). Furthermore. every
object must have an unbounded buffer and that buffer should be organized in such a way

. that every sender of messages has really its own (part of the) buffer.
So when we take these conditions and add them to the GDIS model. we have the definition
of the most parallel model. Clearly. this implies that the MBIS model is the most parallel
one of the models implied by the GDIS model.

Transactions that are handled in an MBIS can be handled almost completely in parallel.
There are only two kinds of situations. in which a transaction that is handled in the sys
tem is interfered by other transactions.
The first kind of situations are situations that occur. when the schedule takes some meas
urements that are needed because several transactions want to manipulate with one part of
the database and every transaction should have a consistent view of the database. These
measurements are of course those described in the NTSS schedule.
The second kind of situations are situations that occur, when some buffer is empty and at
(almost) the same time an object wants to add a message to the buffer and the object that
owns the buffer wants to take a message away. As we have seen. this should be organized
in some consistent way.
Since obviously every model implied by GDIS has to deal with this same schedule. the
MBIS has as its advantage that it has organized the communication in such a way that the
need of exclusion is the smallest of all models.

- 40-

6 CONCLUSION

In this paper we describe distributed information systems. which consist of transaction
handlers. machines and a scheduler. The machines are responsible for the information in
their local database component. The information system executes transactions, which
want to manipulate the information in the database. Therefore. transaction handlers get
the responsibility for transactions. This implies that transaction handlers and machines
have to communicate with each other. The main task of the scheduler is to execute a
schedule. that implies that the transactions get a consistent view of the database.

We present here a number of schedules. for which we prove that they are correct
schedules. One of those schedules we define to be the schedule for a distributed informa
tion system. This schedule NTSS has as its key issue. that it does not use time stamps and
can therefore be run in a distributed way.
Furthermore. we present a number of models for (the communication in) distributed
information systems. It has been proven that all of these models are equivalent.
Then we describe a general model for distributed information systems. We use this model
to show which definitions have to be made. in order to have the most parallel model. It is
shown that the MBIS model is the most parallel model. since it has organized the commun
ication between handlers and machines in the best possible way. In the MBIS model tran
sactions can be handled in the most parallel way. mainly due to the fact that each object
(handler or machine) has a single buffer for each sender that supplies the object with mes
sages.

- 41 -

7 REFERENCES

K.P. Eswaran. J.N. Gray. R.A. Lorie and J.L. Traiger.
The Notions of Consistency and Predicate Locks in a Relational Database System.
Communications of the ACM. Vol. 19. No. 11. November 1976. pages 624-633.

R.C. Hansdah and L.M. Patnaik.
Update Serializability in Locking.
Proceedings of lCDT '86. Rome. September 1986.

G.J. Houben. J. Paredaens and K.M. van Hee.
The Partition of an Information System in Several Parallel Systems.
Computing Science Notes 86/04. Eindhoven University of Technology. October 1986.

G.J. Houben and J. Paredaens.
A Formal Model for Distributed Information Systems.
Proceedings of MFDBS '87. Dresden. January 1987.

G. SChlageter.
Process Synchronization in Database Systems.
ACM TODS. Vol. 3. No.3. September 1978. pages 248-271.

H.F. Korth and A. Silberschatz.
Database System Concepts.
McGraw-Hill Book Company. 1986.

- 42 -

COMPUTING SCIENCE NOTES

In this series appeared :

No.

85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

86/06

86/07

86/08

86/09

Author(s)

R.H. Mak

W.M.C.J. van Overveld

W.J.M. Lemmens

T. Verhoeff
H.M.J.L. Schols

R. Koymans

G.A. Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord

G.J. Houben
J. Paredaens
K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth
L. Shira

R. Koymans
R.K. Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

C. Huizing
R. Gerth
W.P. de Roever

Title

The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA. A language for formal
specifications of information
systems

Some reflections on the implementation
of trace structures

The partition of an information
system in several parallel systems

A framework for the conceptual
modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication
closed ness of distributed layers

Compositional semantics for
real-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
OCCAM-like language

86/10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

1. Hooman

W.P. de Roever

A. Boucher
R. Gerth

R. Gerth
W.P. de Roever

R. Koymans

R. Gerth

Simon 1. Klaver
Chris F.M. Verberne

G.1. Houben
1.Paredaens

- 43 -

A compositional proof theory
for real-time distributed
message passing

Questions to Robin Milner - A
responder·s commentary (IFIP86)

A timed failure semantics for
communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.
Informatica IX -4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to
distributed information systems

COMPUTING SCIENCE NOTES

In this series appeared

No.

85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

86/~

86/07

Author(s)
R.H. Mak

W.M.C.J. van Overveld

W.J.M .. Lemmens

T. Verhoeff

H.M.J.L. Schols

R. Koymans

G.A. Bussing

K.M. van Hee
M.. Voorhoeve

Rob Hoogerwoord

G.J. Houben
J. Paredaens

K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth

L. Shira

Title
The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation

of flow films

Delay insensitive directed trace
structures satisfy the foam

rubber wrapper postulate

Specifying message passing and
ceal-time systems

ELISA, A language for formal
specifications of information

systems

Some reflections on the implementation
of trace structures

The partition of an information

system in several parallel systems

A framework for the conceptual
modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication
closedness of distributed layers

86/08

86/09

86/10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans
R.K. Shyamasundar
W.P. de Roever

R. Gerth

S. Arun Kumar

C. Huizing

R. Gerth
W.P. de Roever

J. Hooman

w.P. de Roever

A. Boucher

R. Gerth

R. Gerth

W.P. de Roever

R. Koymans

R. Gerth

Simon J. Klaver
Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semantics for
real-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time

denotational semantics for an
OCCAM-like language

A compositional proof theory

for real-time distributed
message passing

Questions to Robin Milner - A
responder>s commentary (IFIP86)

A timed failure semantics for

communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.

Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach to distri

buted information systems

Delay-insensitive codes -
An overview

	1. Distrubuted information systems
	1.0 What are distributed information systems?
	1.1 A serializable schedule
	1.2 A serializable schedule that does not use time stamps
	2. Some models for distributed information systems
	2.1 Introduction
	2.2 Bounded buffer information system
	2.3 Sequential information system
	2.4 Simple information system
	2.5 Multiple buffer information system
	3. The equivalence of the models
	3.0 Equivalence
	3.1 SBIS -> SimIS
	3.2 SimIS -> SBIS
	3.3 BBIS -> SBIS
	3.4 SBIS -> BBIS
	3.5 SeqIS -> SBIS
	3.6 MBIS -> SeqIS
	3.7 SBIS -> MBIS
	4. General distributed information system
	5. Which model is the most parallel model?
	6. Conclusion
	7. References

