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Message Sequence Charts are a widely used technique for the visualization of the 
communications between system components. We present a formal semantics of 
Basic Message Sequence Charts, exploiting techniques from process algebra. This 
senlanties is based Oil the semantics of the full language as being proposed for 
standardization in the Iuternational TelecOlmnUllicatioll Union. 

1. INTRODUCTION 

Message Sequence Charts are a graphical language, 
being standardized by t.he ITU-TS (t.he Telecommu­
nication Standardization section of t.he lnt,emat,jonal 
Telecommunication Union, t.he former CClTT), for t.he 
description of the int.eractions between ent.it.ies. lTV 
recommendation Z.120 (CCI92) cont.ains t.he synt.ax and 
an informal explanation of the semant.ics. The current. 
goal in the process of standardizat.ion is t.he definit.ion 
of a formal semantics of the langua.ge. The need for a 
formal semantics became evident since even experts in 
the field of Message Sequence Chart.s could not always 
agree on the interpretation of specific features, Furt.her­
more validation of comput.er tools for Message Sequence 
Charts only makes sense if an exact. meaning is avail­
able. Finally a formal semantics will help to harmonize 
the use of Message Sequence Chart.s. 

There exist several at,tempt.s t.owards slich a forlllol 
semantics. We ment.ion approaches based on automat.on 
theory (LL94), Pet.ri net theory (GGR93) and 011 pro­
cess algebra (dM93, MvWW93). None of t.hese papers 
contain a formal semant.ics of the complete language. 
Although all approaches have their advant.ages and dis­
advantages, it has been decided by t.he standardization 
committee to use process algebra for t,he formal defini­
tion. The semantics in this paper is based on a complet.e 
algebraic semantics of Message Sequence Chart.s, which 
is the proposal for Z.120. VVe will not present. t,he com­
plete semantics here, but, we rest.rict us t.o t.he core of 
the Message Sequence Chart.s language, which \ve will 
call Basic Message Sequence Chart.s. 

This work is related t.o the formal semant.ics of Int.er­
workings (MvWW93). A difference is t.hat. we will con­
sider asynchronous communication whereas t.he t.heory 
of Interworkings only contains synchronous communi­
cation. Furthermore, Message Sequence Chart.s and In­
terworkings have a different. approach wit.h respect. t.o 

their textual represent.ation. Interworkings are event 
orient,ed, which means that an Interworking is a list of 
communicat.ions and other events, whereas Message Se­
quence Charts are instance oriented. This means that 
a lVIessage Sequence Chart, is described by giving the 
behavior of every instance in separation. 

The formal semantics presented is based on the al­
gebraic theory of process description ACP (Algebra of 
Communicat.ing Processes) (BW90). ACP is an al­
gebraic t.heory in many ways related to the algebraic 
process t.heories CCS (Calculus of Communicating Sys­
tems) (MiIBO) and CSP (Communicating Sequential 
Processes) (Hoa85). This process algebra is a useful 
framework for the description of the formal semantics 
of Ivlessage Sequence Charts since all features incorpo­
rat.ed in t.he theory of Message Sequence Charts are re­
lat.ed t.o topics already studied in process algebra such 
as t.he st.ate operator and the global renaming oper­
at.or. Since we consider asynchronous communication 
and since Message Sequence Charts may be "empty", 
we usc PA[, i.e. ACP without communication and with 
t.he empty process (BW90). 

This paper is structured in the following way. First 
we will int.roduce Basic Message Sequence Charts. After 
that, we define t.he algebraic t.heory we use as a frame­
work and t.he algebraic features specifically needed for 
Basic IVIessage Sequence Charts. Next we will define the 
semantic function which maps Basic Message Sequence 
Chart.s int.o process t.erms and we will give an opera­
t,jonal semant.ics. Finally we will prove a representation 
t.heorem which shows t.he relation between the instance 
orient.ed notation and an event oriented notation. 

2. DASIC MESSAGE SEQUENCE CHARTS 

2.1. Introduction 

Message Sequence Charts provide a graphical notation 
for t.he int.eraction between syst.em components. Their 
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main application, in addition to SDL (CCISS), is in the 
area of telecommunication systems. Their usc, however, 
is not restricted to the SDL methodology or to telecom­
munication environments. 

A Message Sequence Chart is not a description of 
the complete behavior of a system, it merely expresses 
one execution trace. A collection of Message Sequence 
Charts may be used to give a more detailed specifica­
tion of a system. Message Sequence Charts and related 
notations, such as Interworkings and Arrow Diagrams 
have been applied in systems engineering for quite some 
time. They are used in several phases of system de­
velopment, such as requirement specificat,ioll, interface 
specification, simulation, validation, test case specifica­
tion and documentation. 

A Message Sequence Chart contains the descript.ion 
of the asynchronous communication bet,ween inst.ances. 
The complete Message Sequence Chart language, in ad­
dition, has primitives for local act.ions, timers (set, reset 
and time-out), process creation, process stop and eore­
gions. Furthermore sub Message Sequence Charts and 
conditions can be used to constrllCt. modular specifica­
tions. 

For brevity, we restrict ourselves in this paper to 
the core language of Message Sequence Chart.s, which 
we will call Basic Message Sequence Charts. A Basic 
Message Sequence Chart concentrates on COlTllT\llnica­
tions and local actions only. These are t.he features 
encountered in most languages comparable to Message 
Sequence Charts. 

2.2. Graphicalllotatioll 

A Basic Message Sequence Chart contains a (part.ial) 
description of the communication behavior of a num­
ber of instances. An instance is an abstract entity of 
which one can observe (part of) t.he interaction wit.h 
other inst.ances or with t.he environment. The first. Basic 
Message Sequence Cha.rt in Figure 1 defines t.he com­
municat.ion behavior between instances iI, 12, ;:3 and 
i4. An instance is denoted by a vert,ical axis. The t.illle 
along each axis runs from top to bot.tom. 

A communication between t.wo inst.ances is repre­
sented by an arrow which st.arts at. the sending inst.ance 
and ends at the receiving instance. In Figure I we con­
sider the messages mI, m2, rn3 and m4. Message 1110 

is sent to the environment. The behavior of t.he envi­
ronment is not specified. For instance i2 we also define 
a local action a. 

Although the activities along Olle single inst.ance axis 
are completely ordered, we will not assllllle a not.ion of 
global time. The only dependencies bet.wecn t.he tim­
ing of the instances come from the rest.rict.ion t.hat. a 
message must have been sent, before it is received. In 
Figure 1 this implies for example that. message m3 is 
received by i4 only after it has been sent. by i3, and, 
consequently, after the recept.ion of 111.2 by 13. Thus 111 1 
and m3 are ordered in t.ime, while for m4 and m3 110 

msc example I 

m3 

FIG URE 1. Example Basic Message Sequence Charts 

order is specified. The execution ofa local action is only 
restricted by the ordering of events on its own instance. 
The second Basic Message Sequence Chart in Figure 1 
defines the same Basic Message Sequence Chart, but in 
an alternative drawing. 

msc overtaking 

i;m~ 
E 

FIGURE 2. Basic Message Sequence Chart. with overt.aking 

Sillce we have asynchronous communication, it would 
even be possible to first send m3, then send and receive 
m4, and finally receive m3. Another consequence of this 
mode of communication is that we allow overtaking of 
messages, as expressed in Figure 2. 

2.3. Textual notation 

Alt.hough the application of Message Sequence Charts is 
mainly focussed on the graphical notation, they have a 
concrete text.ual synt.ax. This representation was origi­
nally int.ended for exchanging Message Sequence Charts 
bet.ween comput.er t.ools only, but in this paper we will 
use it. for t.he definit.ion of the semantics. 

The t.extual representation of a Basic Message Se~ 
quence Chart. is instance oriented. This means that a 
Basic Messa.ge Sequence Chart is defined by specifying 
the behavior of a.ll instances. A message output is de­
noted by "out ml to i2;)) and a message input by "in 
ml from il;)). The Basic Message Sequence Charts of 
Figure 1 have t.he following textual representation. 

msc examplel; 
instance il; 

out mO to env; 
out ml to i2; 
in m4 from i2; 

endinstance; 
instance i2; 

in ml from i1; 
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out rn2 to i3; 
action a; 
out m4 to i1; 

endinstance~ 

instance i3; 
in rn2 from i2; 
out m3 to i4; 

endinstance; 
instance i4; 

in m3 from i3; 
endinstance; 

endmsc; 

The grammar defining the syntax of textual BilSic 
Message Sequence Charts is given in Table 1. The nOil­

terminals <mscid>, <iid>, <mid> and <aid> represent 
identifiers. The symbol <> denotes t.he empty st,ring. 
The following identifiers are reserved keywords: action, 
endinstance, endmsc, env, from, in, instance, mse, 
out and to. 

<msc> 

<mse body> 

<inst def> 

<inst body> 

<event> 

mse <mscid>; 
<mse body> endmsc; 
<> I 
<inst def> <mse body> 
instance <iid>; 
<inst body> end instance; 
<> I 
<event> <inst body> 
in <mid> from <iid>j 
in <mid> from env; 

out <mid> to <iid>; 
out <mid> to any; 
action <aid>; 

TABLE 1. The concrete textual syntax of Basic l'vlessage Se~ 

quence Charts 

The language generated by a llontel'l1linal X in t.he 
grammar of Table 1 will be denot.ed by [(X). 

We formulate two static requiremcnts for Ba..;;ic rvres­
sage Sequence Charts. The first is that, an iust,allce may 
be declared only once. The second is that every message 
identifier occurs exactly once in an ollt,put action and 
once in a matching input action, or in case of a com­
munication with the environment a mcssage identifier 
occurs only once. 

3. PROCESS ALGEBRA P A, 

3.1. Introduction 

The process algebra PAl'" is an algebraic t.heory for t.he 
description of process behavior (BK84, BWtJO). Such 
an algebraic theory is given by a signature defining t,he 
processes and a set of equations defining the eqm'llity 
relation on these processes. 1n Subsection 3.2. we will 

give the signature EpA .. and the set of equations EpA .. 

will be given in Subsection 3.3. 
PAl'" is parameterized with the set of atomic actions. 

In the following section we will instantiate this set of 
atomic actions and extend the theory. 

The signature of PAl'" specifies the constant and func­
tion symbols that may be used in describing processes. 
Also variables from some set V may be used in process 
descriptions. 

3.2. The signature of P A, 

Before we turn to the signature of PAt" we will define the 
terms associated to a signature E and a set of variables 
V. A signature E is a set of constant and function 
symbols. For every function symbol in the signature its 
arity is specified. 

DEFINITION 3.1. Let E be a signature and let V be a 
set of variables. Terms over signature E with variables 
from V are defined inductively by 

J. v E V is a term 
2. if c E :E is a constant symbol, then c is a term 
3. if fEE is an n-ary (n 2: 1) function symbol and 

tl, ... J tn are terms, then J(tl, ... , tn ) is a term 

The set of all t.erms over a signature L with variables 
from V is denot.ed by T(E, V). A term t E T(E, V) is 
called a closed t.erm if t does not contain variables. The 
set of all closed terms over a signature E is denoted by 
T(I:). 

Now we are ready to turn to the signature EpA. of 
PAl'"' The signat.ure Ep Ae consists of 

1. t.he special constant.s 6 and € 

2. the set of unspecified constants A 
3. the unary operator V 
4. the binary operat.ors +, ., II and lL 

The special const,ant 6 denotes the process that has 
st.opped execut.ing actions and cannot proceed. This 
const.ant. is called deadlock. The special constant € de­
liotes the process that. is only capable of terminating 
successfully. It. is called the empty process. 

The element.s of the set of unspecified constants A are 
called atomic actions. These are the smallest processes 
in t.he description. This set is considered a parameter 
of (,he theory. We will specify this set as soon as we 
consider an application of the theory. 

The binary operators + and· are called the alterna­
tive and sequential composition. The alternative compo­
sit,ion of the processes x and y is the process that either 
execut.es process x or y but. not both. The sequential 
composit.ion of t.he processes x and y is the process that 
first. execut.es process x, and upon completion thereof 
sta.rt.s wit,h t.he execution of process y. 

The binary operat.or II is called the free merge. The 
free merge of the processes x and y is the process that 
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executes the processes x and y in parallel. For a fi­
nite set D = {d,,···, dn }, the not.ation II dED p( d) is 
an abbreviation for P(d,) II ... II P(dn ). If D = 0 then 
IIdEDP(d) = E. For the definition of the merge we use 
two auxiliary operators. The termination operator V 
applied to a process x signals whet.her or not. the pro­
cess x has an option to terminate immediately. The bi­
nary operator lL is called the left merge. The left, merge 
of the processes x and y is the process that first has 
to execute an atomic action from process X, and upon 
completion thereof executes the remainder of process x 
and process y in parallel. 

3.3. The equations of P A, 

The set of equations EpA~ of PA£" specifies which pro­
cesses are considered equal. An equation is of t.he form 

t, = t" where t"t2 E T(EpA" V). For a E AU {o} 
and X, y, z E V, the equations of P Ae are given in the 
Table 2. 

x+y _ y+x 
(x+y)+z = x+(y+z) 
x+x = x 
(x+y).z = x·z+y·z 
(x·y)·z = x·(y·z) 
x+6 = x 
6· x 6 
X'c x 
[. X :::: X 

xlly = xlLy+ylLx+J(")'J(y) 
ell x = 6 
a . xlLy = a· (x II y) 
(x+y)lLz = xlLz+YlLz 

J(E) = E 
J(a·x) = 6 
J(x + y) = J(x) + J(y) 

TABLE 2. Axioms of PA, 

Al 
A2 
A3 
A4 
A5 
A6 
A7 
AS 
An 

TMI 
TM2 
TM3 
TM4 

TEl 
TE2 
TE3 

Axioms AI-A9 are well known. The axioms 'TE1~ 
TE3 express that a process x has an opt.ion t.o terminate 
immediately if J(x) = E, and that. J(x) = 0 otherwise. 
In itself the termination operator is not very int.eresting, 
but in defining the free merge we need this operator to 
express the case in which bot.h processes 3; and yare 
incapable of executing an at.omic action. Axiom TMI 
expresses that the free merge of t.he two processes x 
and y is their interleaving. This is expressed in t.he 
three summands. The first two state t,hat ;1: and y may 
start executing. The t.hird smnmalld expresses t.hat, if 
both x and y have an opt.ion to terminat.e, their merge 
has this option too. 

LEMMA 3.1. Forx,y,ZET(E pA ,) andaEAU{8} 

1.xIlE=x 

2. xlly= Yllx 
3. (xlly)llz = xll(yllz) 
4. alLx=ax 

Proof. See (BW90). • 
We can use this lemma to derive the following exam­

ple. 

all(b+E) = 
all (b + E) + (b + E)lL a + J(a)J(b + E) = 
arb + c) + blL a + Ell a + 6(6 + E) = 
a(b+E)+ba+6+6= 
a(b+E)+ba 

4. A PROCESS ALGEBRA FOR BASIC 
MESSAGE SEQUENCE CHARTS 

In t.his sect.ion we will extend the process algebra PAc to 
a process algebra P ABM se. We do this by specifying 
t.he set of at.omic actions A and by introducing the aux­
iliary operator AM. 

4.1. Specifying the atonlic actions 

In dealing with Basic Message Sequence Charts we 
encount.er a number of significantly different atomic 
actions. These are, wit.h their representations in 
PABMse: 

1. the execution of an action aid by instance i: 
aCl.ion( i, aid) 

2. t.he sending of a message m by instance s to instance 
r: out(S,1',1U) 

3. the sending of a message m by instance s to the 
environment: ou.t(s, env, m) 

4. the receiving of a message m by instance r from in­
st.ance s: in(s,1',m.) 

5. the receiving of a message m by instance r from the 
environment.; in(env, 1', m) 

In Table 3 the sets of atomic actions are given. We 
use II D for .c«iid», AID for .c«aid» and MID for 
.c«rnid». 

Aa = {action(i,aid) liE IID,aid E AID} 
Aa = {o1l1(s,r,m)ls,rEIID,mEMID} 
A; {in(s,7',m)ls,rEIID,mEMID} 
A, {out(s,env,m) Is E IID,m E MID} 

U{in(env,r,m) IrE IID,m E MID} 
A An U Aa U A; U A, 

TABLE 3. The at.omicactionsof PABMSC 
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4.2. The state operator >'M 
A Basic Message Sequence Chart specifies a (finite) 
number of instances that communicate by sending and 
receiving messages. A message is divided into two parts: 
a message output and a message input. The correspon­
dence between message outputs and message inputs has 
to be defined uniquely by message name iclent,ification. 

A message input may not be executed before the COI'­

responding message output has been executed. \Ve in­
troduce an operator AM that enables only those exe­
cution paths that respect the above constraint. The 
operator AM is an instance of the state operator as call 
be found in (BW90). This operator remembers all mes­
sage outputs that have been executed in a set /\1 and 
only allows a message input if its corresponding mcssage 
output is in that set. 

For all M <;; A o, X,y E V, a E A, i,j E C«iid», 
and mE £«mid», we define the st.ate operat.or AM in 
Table 4. 

AM (c) c 
AM(c) = 6 
AM(6) 6 
AM(a. x) a· AM(X) 
AM(Out(i,j,m) ·x) = 

out(i,j, m). AMU{ou'('.i.m)j(x) 
AM(in(i,j,m) .x) = 

in(i,j, m). AM\{ou'(i';.m)} (x) 
AM(in(i,j,m). x) = 6 
AM(X + y) = AM(X) + A,,(1/) 

if Ai - 0 
if M -# 0 

if a '¢ Au U Ai 

if out(i,j, 111) E M 
if out(i, j, m) '¢ M 

TABLE 4. Axioms for t.he stat.e operat.or AM 

Note that the state operator AM can be eliminated 
from every closed PABMBe term, This lJ1eans t.hat 
we have not introduced new processes. Furthermore 
we have not introduced new identities between existing 
processes, thus P ABM Be is a conservative ext.ension of 
PA,. 

5. THE SEMANTICS OF BASIC MESSAGE 
SEQUENCE CHARTS 

5.1. Introduction 

In this section we will define a semant,ic fUIlct.ion 5 that 
associates to every Basic Message Sequence Chart in 
textual format a closed P ABM se t.erm. An example of 
this const.ruction is given in subsection 5.3. Before we 
give the definition of this semant.ic function we need t.o 
explain some auxiliary functions. The powerset of a set 
S is denoted by IP( S). 

The function 

Instances; C«msc» ~ IP(C«inst def») 

that associates to a Basic Message Sequence Cha.rt t.he 

set containing all instance definitions of the instances 
defined in the chart, is defined by 

Instances(mse <mseid>j <mse body> endmse;) 
Instancesbody«mse body» 

where the function 

[ustanceS'ody ; C«msc body» -> IP(C«inst det») 

is defined by 

I nstanceS'ody ( <» = 0 
I nstanceSbody «inst def> <mse body» = 

{<inst det>} U InstanceS'ody «mse body» 

Next we define the following two functions 

Name; C«inst def» -> C«iid» 
Body; C( <inst det» -> C( <inst body» 

These funct,ions associate to an instance definition its 
na.me and body. 

N a.me( instance <iid>; 
<inst body> endinstance;) 

Body( instance <iid>; 
<inst bOdy> endinstanee;) 

5.2. The senlalltic function 

<iid> 

<inst body> 

The general idea is that the semantics of a Basic Mes­
sa.ge Sequence Chart is the free merge of the seman­
t.ics of it.s constituent instances. By this construction 
we enable all interleavings of t.he message outputs and 
message inputs. However, a message input can only 
be performed after its corresponding message output. 
In order t,o rule out all interleavings where a message 
out.put is preceded by the corresponding message input 
we use the state operator AM, We define the function 
S : .c«msc» -> T(EpABMSC) by 

S[mscl = A0 (II idef E/n,tan",(m,,) S.n,,[idefl) 

The semant.ic function Sin$t : £( <inst def» ---j. 

T("E.p A BMse) is defined to express the semantics of one 
inst.ance ill scparation. In the textual representation of 
an inst.ance t.he at,omic actions are specified in the or­
der t.hey are t.o be executed, thus the semantics of an 
inst.ance definit,ion is the sequential composition of its 
actions. 

S;",[idef] = S':,~;'(idef ) [Body(idef )] 

where for i E C( <iid» the function 

Siody ; £«inst body» -> T(EpABMSC) 

is defined by 

S!.ody[<>] = € 

S~ody[<event><inst body>] = 
S~vmt[<event>]. Stody[<inst body>] 
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and for every i E £( <Ed» the fllnction 

S!vent : C«event» ........ T(:EPABMSC) 

is defined by 

~vent[in <mid> from <iid>;] = 
in«iid>, i, <mid» 

S!vent[in <mid> from anv j] = inC env, i, <mid» 
S!vent[out <mid> to <iid>;] = 

out ( i, <iid>, <mid» 
S!vent[out <mid> to env;] = out(i,env,<mid» 
S!vent[action <aid>;] = act£on(i,<aid» 

Note that application of the st,ate opera.tor gives the 
possibility that the semantics of a Basic Message Se­
quence Chart contains a deadlock. This can be int,er­
preted as the fact that every execution trace cont.ains 
an input before the corresponding out.put. 

5.3. An example 

We consider the Basic Message Sequence Chart from 
Figure 3. It consists of three inst.ances which exchange 
two messages. 

msc exam ple3 

-
FIGURE 3. Example Basic Message Sequence Chart 

msc example3; 
instance a; 

out k to b; 
out 1 to c; 

endinstance) 
instance b; 

in k from a; 
endinstance; 
instance c; 

in 1 from a; 
endinstance; 

endmsc; 

The interpretat.ion of this Basic Mess~.ge Sequence 
Chart is that along inst.ance a. the ordering of t.he Olltput, 
of messages k and I is fixed and furt.hermore t,hat. t.he 
output of message k comes before the input. of message /..~ 
and, likewise, that the out.put, of message I comes before 
the input of message l. These are t.he only rest.rictions 
that apply. 

When using t.he textual synta.x, the Basic .Message 
Sequence Chart. is represented by describing t.he behav­
ior of every instance in separation. After applying t.he 
semantic function Sin$t to these inst.ances we obt.ain 

5;",,[0] = out(a, b, k)· out(a,c, i) 
5;"" [b] = in( a, b, k) 
5;",,[c] = in(o, c, i) 

The first st.ep in deriving the expression which we aim 
at is putting the instances a, band C in parallel. 

After some calculations, we arrive at the following nor­
malized expression. 

olll(a, b, k) .(in(a, b, k)· (out(a, c, i). in(a, c, i) 
+in(a,c,l)· out(a,c,i) 
) 

+oul(a, c, i).(in(a, b, k). in(a, c, i) 
+in(a, c, i) . in(a, b, k) 
) 

+in( a, c, i) . (in( a, b, k) . out( a, c, i) 
+out(a, c, i). in(a, b, k) 
) 

) 
+in(a, b, k) . (olll(a, b, k)· (in(a, c, i). out(a, c, i) 

+out(a, c, i) . in(a, c, i) 
) 

+in(a, c, i)· out(a, b, k). out(a, c, i) 
) 

+io(o, c, i)· (0111(0, b, k)· (io(a, b, k). out(a, c, i) 
+out(a, c, i). in(a, b, k) 
) 

+in(a, b, k)· out(a, b, k). out(a, c, i) 
) 

This expression clearly shows execution traces which 
are not. desirable, such as in(a, b, k) . out(a, b, k) . 
in{a, c,l). out{a, c,/). These traces can be removed by 
applying the state operator A0 to this expression. This 
results in 

0111(0, b, k).(in(a, b, k). out(a, c, i). in(a, c, i) 
+01l1(a, c, i). (in(a, b, k)· in(a, c, l) 

+in(a, c, l). in(a, b, k) 
) 

6. STRUCTURAL OPERATIONAL SEMAN· 
TICS 

In t,his section we define a structural operational se­
mant,icB of Basic Message Sequence Charts in the style 
of Plot.kin (Plo83). For this purpose we define action 
rela.tions on closed P ABM Be terms. Then we give a 
gra.ph model for the theory P ABM se. 

6.1. Action relations for PABMSC 

On the set of PABMSC terms we define a predicate!~ 
T{EpABMSC) and binary relations ~ ~ T{EpABMSC) X 

T{EpABMSC) for every a. E A. These predicates are de~ 
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fined by means of inference rules, which have the fol­
lowing form. 

PI,··· ,Pn 
q 

This expression means that for every inst.ant.iation 
of variables in PI, .. "Po, q we can conclude q from 
PI J ••• 1 Po· If q is a tautology, we omit PI, ... , Pn and 
the horizontal bar. 

The intuitive idea of the predicate L is as follows: It 
denotes that t has an option to terminate immediat.ely, 
i.e. € is a summand of t. For X, y E T(EpABMEC)' and 
M <;; Ao, the predicate L is defined in Table 5. 

xL yJ 
(x + y) L 

xL y L 
(x· y) L (x+1I)L 

xL 
(v(x)) L 

xL 1IL 
(x II 11) L 

xL 

TABLE 5. The predicat.e 1 

The intuitive idea of the binary operator a is as 
follows: t ~ s denotes that the process t. can exeell j,e 
the atomic action a and after this execut.ion step t.he 
resulting process is s. For X, x' J y, y' E T(EpABMSC)' 
a E A, M <;; Ao, i,j E .c«iid», and mE .c«mid», 
the binary relations ~ are defined in Table 6. 

We will illustrate the use of these action relat.ions 
with an example. Consider the following expression. 

A0(out(a, b, k) II inCa, b, k)) 

out(a,b,k) 
We have out(a, b, k) --+ [, so we can derive 

. out(a,b,k). 
out(a, b, k) II mea, b, k) -+ 0 II "'(0, b, k). Frolll this 
we can conclude 

,10 (out( a, b, k) II inC a, b, k )("~b,k) 
A{ou,(a,b,k)}(o II inCa, b, k)) 

N h · ( b k)in(o,b,k) d ext we ave In a, " --+ c, an 

011 inCa, b, kt(~,k)o II [. Thus we have 

we can derive 

In order to see that this expression has t.he possibilit.y 
to terminate, we derive 6 L and thus (0 II 0) I, so 

Finally we conclude t.hat the given process 
,10 (out(a, b, k) II iura, b, k)) can first execute ou/.(a, b, k), 
then execute in(a,b,k) and finally terminate. Note t.hat. 
this is the only execution sequence t.hat can be derived 
from the inference rules. 

6.2. Graph model for PABMSC 

We will present a model for the theory PABMSC . This 
model is a graph model, a set of process graphs modulo 
bisimulation, that provides a visualization of the action 
relations from the previous subsection. 

A process graph is a finite acyclic graph in which the 
edges are labeled with an atomic action, and in which 
every node may have a label L. This label L indicates 
whet,her or not the state represented by the node has 
an option to terminat.e immediately. In every process 
graph there is one special node, the root node. 

Two process graphs will be identified if they are 
bisimilar. Two graphs are bisimilar if there is a bisim­
ulat.ion which relates the root nodes. A bisimulation is 
a. binary relation R, satisfying: 

• if R(p, q) and P~P', then there is a q' such that q~q' 
and R(p', q') 

• if R(p, q) and q~q/, then there is a pi such that p~pl 
and R(r!, q') 

• if R(p,q) then pL if and only ifqL. 

THEOREM 6.1. Bisimulation lS a congruence for 
the signature of PABMse . 

Proof. The action rules fit into the syntactical for­
mat t.hat is called the path format. As a consequence 
bisimulation is a congruence for the function symbols 
for which the adion rules are defined. We refer to 
(DY93, GY92) for both the syntactical format and the 
congruence theorem. • 

Every operat.or in t.he signature of PABMse can be 
interpreted in t.he graph model. Without proof we 
sl,ate t.hat P ABM se is a complete axiomatization of the 
gmph model. 

To every closed process expression we can associate a 
process graph llsing the action relations for PABMse. 

We will give the process graph for the example of the 
semantics in Figure 4. 

in(a,b,k) 

oUI(a,c,l) 

oUI(a,b,k) 

oUI(a,c,l) 

in(a,c,l) 

in(a,c,l) 

~'k) « 
FIGURE 4. Process graph 
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a a _ [ 

x ~ x' 

x+y ~ X, 

x ~ Xl 

agAoUAi , x ~ X' 

AM(X) ~ AM (x') 

lJ ~ y' 

X+y ~ y' 

y ~ y' 

xlly ~ xiiv' 

Qut(i,j,m) 
X ---+ X' 

a 
X -

a 
x·y -

a 
X -

xliy 
a -

( x') 

X' xl, y 
a y' -

X, .y 

X, 

X, liy 

out(i,j,m)EM 

a y' x·y -
in(i,j,m) 

,x - X' 

(x') 

TABLE 6. The act.ion relations ~ 

7. A CHARACTERIZATION THEOREM 

In this section we will relate our semantics for instance 
oriented Message Sequence Charts to the event oriented 
semantics from (dM93, MvWW93). To this end we will 
show that a Basic Message Sequence Chart can be rep­
resented by a single trace. 

First we will define three funct.ions and a predicate 
on processes. These arc the alphabet. function 0', which 
determines the atomic act.ions involved in a process, t.he 
function £[ (for I ~ A) which rellames t.he atomic ac­
tions that arc in the set I into £ and the function i.7' 
which determines the collection of complet,ed traces of 
a process. The predicate df det.ermines whet.her a pro­
cess is free of deadlocks. For x and 11 arbit.rary processes 
and a E A, we give the axioms for those functions in 
Table 7. Note that the predicate J: # 8 can be defined 
easily. 

a(o) - 0 
a(8) = 0 
a(a·x) = {a}Ua(x) 
a(x + y) - a(x) U a(y) -

fI(") = f 
"I(8) = 8 
[I(a ·x) = a· "I(X) if a ~ I 
"I(a· x) = "I (x) if a E I 
"I(X + y) = "I (X) + [I(Y) 
tr([) _ {o} 
tr(8) = {8} 
tr(a.x) = {a.tltEt,·(x)} 
tr(x+y) = tr(x)Utl'(Y) if x # 8 II Y # 8 
df(f) 
,df(8) 
df(a. x) = df(x) 
df(x + y) = df(x) II df(y) ifJ, # 6 II !I # 8 

TABLE 7. Axioms for a, q, tr, and dJ 

First observe the following general properties. 

LF;MMA 7.1. Forx,y E T(I;PABMSC)' M ~ Ao and 
leA 

1. df(y) II a(y) ~ I ~ [I(X II y) "I(X) 
2. a(x)nI=0 ~ [I(X)=X 
3. V'E'e(x) [I(t) E tr("I(x)) 
4. df(>",(x)) ~ tr(AM(x)) ~ tr(x) 

Proof. For 2, 3 and 4 we use induction on the struc­
t.lIre e, a . x, x + y, whereas for 1 we use induction on 
the structure €, EkEK ak . Xk, :Ek€K ak . Xk + e. • 

LEMMA 7.2. For i E £«inst def» 

tr(S;n,,[i]) = {S;n,,[i]} 

Proof. This follows immediately from the construc-
tion of the semantic function. • 

In t.he following lemmas and theorems we will use, 
for i E £( <inst def», a( i) as an abbreviation of 
t:t(S;" .• ,[i]) and Inst for Instances(msc) where msc is 
clear frol11 the context. First we consider traces from 
l!jEJn.dSin.~t[j] which do not meet the restriction on 
t.he order of inputs and corresponding outputs. Using 
such a trace we can reconstruct the behavior of every 
single instance and, therefore, we can reconstruct the 
complete Basic Message Sequence Chart as described in 
Theorem 7.4. Theorem 7.5 states that this also holds for 
the rest.ricted t.races from S[msc]. So a Basic Message 
Sequence Chart can be represented either by a collec­
tion of inst.ances (the instance oriented approach) or by 
a single trace (the event. oriented approach). 

LEMMA 7.3. For msc E £«msc» and i E Inst 

V'E'e( II. S <OJ) CA\a(i)(t) = Sin,,[i] 
JEln.t ",.IU 

Proof. Let t E tr (1IiEln" Sin,,[j]). 
Then by applying Lemma 7.1.3 we have: CA\a(i)(t) E 

I,. ([A\au) (1IiEfn" Sin,,[jD)). 
We calculate 
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''Ala(') (II jEin,' Sin,,[j]) 
{ Lemma 7.1.1 } 
cA \n(;) (S'n,' [i]) 
{ Lemma 7.1.2 } 
S'n,,[i] 

So, from Lemma 7.2, we may conclude t.hat. CA\n(i)(I) = 
S,."[i]. • 

THEOREM 7.4. For msc E C«msc» 

If'E'r( II iEl .. ,s,.,,[il) S[msc] = "0 (II iEbu' CA\a(;)(I)) 

Proof This follows from Lemma 7.3 and t.he defini-
tion of the semantic function S. • 

THEOREM 7.5. For msc E C«msc» such thai 
df(S[msc]) 

If'E'r(S[mu]) S[msc] = "0 (II ;0", [A\n(i)(I)) 

Proof This theorem follows immediately from 
Lemma 7.1.4 and Theorem 7.4. • 

Theorem 7.5 expresses that, in principle, one could 
choose an event oriented textual representation for Ba­
sic Message Sequence Charts. The Basic l\:fessage Se­
quence Chart. from Figure 3 may look like 

mse example3; 
out k from a to bi 

out 1 from a to c; 
in 1 from a to c; 
in k from a to b; 

endmsc; 

8. CONCLUSION 

The definition of a formal semantics of Basic Message 
Sequence Charts based on process algebra as present.ed 
in this paper has turned out to be a very natural and 
successful met.hod. We used the instance oriented syn­
t.ax to derive a compositional semantics and indicated 
that. this yields a semantics which is equivalent t.o the 
approach based on sequencing for an event oriellt.ed syn­
t.ax (dM93, MvWW93). 

The development. of the semantics for the complete 
Message Sequence Charts language follows the senne 
line, applying more elaborate const.ructs from process 
algebra for features such as sub Message Sequence 
Charts and process creation. 

The algebraic approach towards the definition of the 
formal semantics of Message Sequence Charts enables 
the use of term-rewriting systems for t,he rapid proto­
typing of specifications (MW93). 
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