EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

An algebraic semantics of basic message sequence charts

Citation for published version (APA):
Mauw, S., & Reniers, M. A. (1994). An algebraic semantics of basic message sequence charts. (Computing
science notes; Vol. 9417). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/91231b2d-ebbe-4b1e-a366-f2a8d487eedc

Eindhoven University of Technology

Deparument of Mathematics and Computing Science

An Algcbraic Semantics of Basic Message
Sequence Charts

by

S. Mauw and M.A. Rcnicrs
04/17

Computing Science Note 94/17
Eindhoven, April 1994

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the
author.

Copies can be ordered from:

Mrs. M. Philips

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem
prof.dr.K.M.van Hee,

An Algebraic Semantics of Basic Message
Sequence Charts

S. Mauw AND M. A. RENIERS

Dept. of Mathematics and Compuling Science, Findhoven University of Technology,
P.0. Bozx 518, 5600 MB Findhoven, The Netherlands.
e-mail: gjouke@uin.tue.nl, michelr@win.tue.nl

Message Sequence Charts are a widely used technique for the visualization of the
communications between system componeuts, We present a formal semantics of
Basic Message Sequence Charts, exploiting techniques from process algebra. This
semantics is based on the semantics of the full language as being proposed for
standardization in the International Telecommunication Union.

1. INTRODUCTION

Message Sequence Charts are a graphical language,
being standardized by the ITU-TS (the Telecommu-
nication Standardization section of the International
Telecommunication Union, the former CCITT), for the
description of the interactions between entities. TTU
recommendation Z.120 {CCI192) contains the syntax and
an informal explanation of the semantics. The current
goal in the process of standardization is the definition
of a formal semantics of the language. The need for a
formal semantics became evident since even experts in
the field of Message Sequence Charts could not always
agree on the interpretation of specific features. Further-
more validation of computer tools for Message Sequence
Charts only makes sense if an exact meaning is avail-
able, Finally a formal semantics will help to harmonize
the use of Message Sequence Charts.

There exist several attempis towards such a formal
semantics. We menlion approacles based on antomaton
theory (LL94), Petri net theory (GGR93) and on pro-
cess algebra (dM93, MvWW93). None of these papers
contain a formal semantics of the complete langnage.
Although all approaches have their advantages and dis-
advantages, it has been decided by the standardization
committee to use process algebra for the formal defini-
tion. The semantics in this paper is based on a complete
algebraic semantics of Message Sequence Charts, which
is the proposal for Z.120. We will not present the com-
plete semantics here, but we restrict us to the core of
the Message Sequence Charts language, which we will
call Basic Message Sequence Charts.

This work is related to the formal semantics of Inter-
workings (MvWW93). A difference is that we will con-
sider asynchronous communication whereas the theory
of Interworkings only contains synchronous communi-
cation. Furthermore, Message Sequence Charts and In-
terworkings have a different approach with respect to

their textual representation. Interworkings are event
oriented, which means that an Interworking is a list of
communications and other events, whereas Message Se-
quence Charts are instance oriented. This means that
a Message Sequence Chart is described by giving the
hehavior of every instance in separation.

The formal semantics presented is based on the al-
gebralc theory of process description ACP (Algebra of
Communicating Processes) (BW90). ACP is an al-
gebraic theory in many ways related to the algebraic
process theories C'CS (Calculus of Communicating Sys-
tems) (Mil80) and CSP {Communicating Sequential
Processes) (Hoa85). This process algebra is a useful
framework for the description of the formal semantics
of Message Sequence Charts since all features incorpo-
rated in the theory of Message Sequence Charts are re-
lated to topics already studied in process algebra such
as the state operator and the global renaming oper-
ator. Since we consider asynchronous communication
and since Message Sequence Charts may be “empty”,
we use PA;, t.e. ACP without communication and with
the empty process (BW90).

This paper is structured in the following way. First
we will introduce Basic Message Sequence Charts. After
that, we define the algebraic theory we use as a frame-
work and the algebraic features specifically needed for
Basic Message Sequence Charts. Next we will define the
semantic function which maps Basic Message Sequence
Charts into process terms and we will give an opera-
tional semantics. Finally we will prove a representation
theorem which shiows the relation between the instance
oriented notation and an event oriented notation.

2. BASIC MESSAGE SEQUENCE CHARTS
2.1. Introduction

Message Sequence Charts provide a graphical notation
for the interaction between system components. Their

2 5. Mauw AND M. A, RENIERS

main application, in addition to SDL (CCI88), is in the
area of telecommunication systems. Their use, however,
is not restricted to the SDL methodology or to telecom-
munication environments.

A Message Sequence Chart is not a description of
the complete behavior of a system, it merely expresses
one execution trace. A collection of Message Sequence
Charts may be used to give a more detailed specifica-
tion of a system. Message Sequence Charts and related
notations, such as Interworkings and Arrow Diagrams
have been applied in systems engineering for quite some
time. They are used in several phases of system de-
velopment, such as requirement specification, interface
specification, simulation, validation, test case specifica-
tion and documentation.

A Message Sequence Chart contains the descriplion
of the asynchronous comimunication between instances.
The complete Message Sequence Chart language, in ad-
dition, has primitives for local actions, timers (set, reset
and time-out), process creation, process stop and core-
gions. Furthermore sub Message Sequence Charts and
conditions can be used to construct modular specifica-
tions.

For brevity, we restrict ourselves in this paper to
the core language of Message Sequence Charts, which
we wil] call Basic Message Sequence Charts. A Basic
Message Sequence Chart concentrates on communica-
tions and local actions only. These are the features
encountered in most languages comparable to Message
Sequence Charts.

2.2, Graphical notation

A Basic Message Sequence Chart contains a (partial)
description of the communication behavior of a num-
ber of instances. An instance i1s ah abstract entity of
which one can observe (part of) the interaction with
other instances or with the environment. The first Basic
Message Sequence Chart iu Figure 1 defines the com-
munication behavior between instances i1, 72, /3 and
i4. An instance is denoted by a vertical axis. The tiine
along each axis runs from top to bottom.

A communication between two instances is repre-
sented by an arrow which starts at the sending instance
and ends at the receiving instance. In Figure 1 we con-
sider the messages m1, m2, m3 and m4, Message m0
is sent to the environment. The behavior of the envi-
ronment is not specified. For instance 2 we also define
a local action g.

Although the activities along one single instance axis
are completely ordered, we will not assume a notion of
global time. The only dependencies between the tim-
ing of the instances come from the restriction that a
message must have been sent before it is received. In
Figure 1 this implies for example that message m3 is
recetved by i4 only after it has been sent by #3, and,
consequently, after the reception of m2 by 3. Thus m!
annd m3 are ordered in time, while for m4 and m3 no

—
msc exampla]
il i2 i3 i4
— 1 [— /3 T 3

ms¢ examplel

FIGURE 1. Example Basic Message Sequence Charts

order is specified. The execution of a local action is only
restricted by the ordering of events on its own instance.
The second Basic Message Sequence Chart in Figure 1
defines the same Basic Message Sequence Chart, but in
an alternative drawing.

msc overtaking

il i2
mil

m2

FIGURE 2. Basic Message Sequence Chart with overtaking

Since we have asynchronous communication, it would
even be possible to first send m3, then send and receive
md, and finally receive m3. Another consequence of this
mode of communication is that we allow overtaking of
messages, as expressed in Figure 2,

2.3. Textual notation

Although the application of Message Sequence Charts is
mainly focussed on the graphical notation, they have a
concrete textual syntax. This representation was origi-
nally intended for exchanging Message Sequence Charts
between computer tools only, but in this paper we will
use it for the definition of the semantics.

The textual representation of a Basic Message Se-
quence Chart is instance oriented. This means that a
Basic Message Sequence Chart is defined by specifying
the behavior of all instances. A message output is de-
noted by “out mi to i2;” and a message input by “in
mi from i1;”. The Basic Message Sequence Charts of
Figure 1 have the following textual representation.

ms¢ exampletl;
instance ii;
out m0 to env;
out ml to i2;
in m4 from i2;
endinstance;
instance i2;
in ml from ii;

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 3

out m2 to i3;

action a;

out m4 to il;
endinstance;
instance i3;

in m2 from i2;

out m3 to i4;
endinstance;
instance i4;

in m3 from i3;
endinstance;

endmsc;

The grammar defining the syntax of textual Basic
Message Sequence Charts is given in Table 1. The non-
terminals <mscid>, <iid>, <mid> and <aid> represent
identifiers. The symbol <> denotes the empty string.
The following identifiers are reserved keywords: action,
endinstance, endmsc, env, from, in, instance, msc,
out and to.

<msc> = msc <mscid>;

<msc¢ body> endmsc;

<msc body> n= <> |

<inst def> <msc body>

instance <iid>;

<inst body> endinstance;

<inst body> 1= <> |

<event> <inst body>

in <mid>» from <iid>; |

in <mid> from env; [
I
!

<inst def> =

<event> =

out <mid> to <iid>;
out <mid> to env;
action <aid>;

TABLE 1. The concrete textual syntax of Basic Message Se-

quence Charts

The language generated by a nonterminal X in the
grammar of Table 1 will be denoted by £(X).

We formulate two static requirements for Basic Mes-
sage Sequence Charts. The first is that an instance may
be declared only once. The second is that every message
identifier occurs exactly once in an output action and
onee in a matching input action, or in case of a com-
munication with the environment a message identifier
occurs only once.

3. PROCESS ALGEBRA PA,
3.1. Introduction

The process algebra PA. is an algebraic theory for the
description of process behavior (BK84, BW90). Such
an algebraic theory is given by a signature defining the
processes and a set of equations defining the equality
relation on these processes. In Subsection 3.2. we will

give the signature £p,4, and the set of equations Epy,
will be given in Subsection 3.3.

P A, is parameterized with the set of atomic actions.
In the following section we will instantiate this set of
atomic actions and extend the theory.

The signature of PA, specifies the constant and func-
tion symbols that may be used in describing processes.
Also variables from some set V may be used in process
descriptions.

3.2. The signature of PA,

Before we turn to the signature of PA, we will define the
terms associated to a signature ¥ and a set of variables
V. A signature ¥ is a set of constant and function
symbols. For every function symbol in the signature its
arity is specified.

DErINITION 3.1. Lel X be a signalure and letV be a
set of variables. Terms over signature X with variables
Jrom V are defined inductively by

L velVisalterm

2. if c € X is a constant symbol, then ¢ is a term

3.4 f € £ is an n-ary (n > 1) function symbol and
t1,...,tn are terms, then f(t1,... 1) 15 a term

The set of all terms over a signature L with variables
from V is denoted by T(Z, V). Aterm £ € T(X,V) is
called a closed term if ¢ does not contain variables. The
set, of all closed terms over a signature X is denoted by
(D).

Now we are ready to turn to the signature Lp,, of
PA¢. The signature Xp,, consists of

1. the special constants § and ¢

2. the set of unspecified constants A
3. the unary operator ./

4. the binary operators +, -, || and ||

The special constant § denotes the process that has
stopped executing actions and cannot proceed. This
constant is called deadlock. The special constant ¢ de-
notes the process that is only capable of terminating
successfully. It is called the empiy process.

The elements of the set of unspecified constants A are
called etomic actions. These are the smallest processes
in the description. This set is considered a parameter
of the theory. We will specify this set as soon as we
consider an application of the theory.

The binary operators + and - are called the alterna-
tive and sequential composition. The alternative compo-
sition of the processes z and y is the process that either
executes process x or y but not both. The sequential
composition of the processes and y is the process that
first executes process x, and upon completion thereof
starts with the execution of process y.

The binary operator || is called the free merge. The
free merge of the processes x and y is the process that

4 S. Mauw aND M. A. RENIERS

executes the processes x and y in parallel. For a fi-
nite set D = {dy,--,dn}, the notation || ., P(d) is
an abbreviation for P(dy) || -+ || P(dn). If D = @ then
|| 4ep P(d) = €. For the definition of the merge we use
two auxiliary operators. The termination operafor /
applied to a process # signals whether or not the pro-
cess x has an option to terminate immediately. The bi-
nary operator || is called the lefi merge. The left merge
of the processes £ and y is the process that first has
to execute an atomic action from process 2, and upon
completion thereof executes the remainder of process
and process y in parallel.

3.3. The equations of PA,

The set of equations Fpa, of PA. specifies which pro-
cesses are considered equal. An equation is of the form
t; = iy, where t;,t0 € T(Zpa,, V). For e € AU {8}
and z,y,z € V, the equations of P A, are given in the
Table 2.

z+y = y+zx Al
(z+y)+2 = 2+ (y+2) A2
x+zr = = A3
(z+y) -z = x-24+y-z Ad
(zy)-z=2(y2) A
zr+d = 2 AB
§-x = 6 AT
T € =z A8
E-F = & A9

zlly = «lly+yllz+ (=) V() TMI

Ef_l_x =4 TM2
a-zl|ly = a- (2|t TM™M3
(T'+y)le = 2}”_2+y|_|_2' TM4
Je) = ¢ TEI
\/(a . ;L') =6 TE2

ViEt+y) = V=) + vy

TABLE 2. Axioms of PA,

TE3 |

Axioms A1-A9 are well known. The axiomns TEL-
TE3 express that a process # has an option to terminate
immediately if «/(z} = €, and that \/{z) = é otherwise.
In itself the termination operator is not very interesting,
but in defining the free merge we need this operator to
express the case in which both processes = and y are
incapable of executing an atomic action. Axiom TM1
expresses that the free merge of the two processes 2
and y is their interleaving. This is expressed in the
three summands. The first two state that @ and y may
start executing. The third summand expresses that if
both r and y have an option to terminate, their merge
has this option too.

LEMMA 3.1. Forz,y,z € T(Epa,) and a € AU {8}

I zlle=z
2 x|ly=yl|l=

3. (9l z==f(yll=)
4§ alx=az

Proof. See (BW90). n

We can use this lemma to derive the following exam-
ple.

all(b+¢) =

all (b4)+ b+)L a+ V(@)V/(b+e) =
alb+e)+blatella+é(é+e)=
alb+e)+bat+d4+6=

a(b+¢)+ba

4. A PROCESS ALGEBRA FOR BASIC
MESSAGE SEQUENCE CHARTS

In this section we will extend the process algebra PA, to
a process algebra PApmsc. We do this by specifying
the sct of atomic actions A and by introducing the aux-
iliary operator Azs.

4.1. Specifying the atomic actions

In dealing with Basic Message Sequence Charts we
encounter a number of significantly different atomic
actions. These are, with their representations in
PAparsc:

1. the execution of an action aid by instance i
action(i, aid)

2. the sending of a message m by instance s to instance
r: out(s,r, mn)

3. the sending of a message m by instance s to the
environment: cul(s, eny, m)

4. the receiving of a message m by instance r from in-
stance s: in(s,r,1m)

5. the receiving of a message m by instance r from the
environment: in(env, r,m)

In Table 3 the sets of atomic actions are given. We
use [1D for £(<iid>), AID for £L(<aid>) and M ID for
L({<mid>).

= Taction(i, aid) | i € 11D, aid € AID}
{out(s,r,m) | s,7 € IID,m € MID}
{in(s,r,m) | s,r € IID,m € MID}
{out(s,env,m) | s € IID,m € MID}
Ufin(env,r,m) | r € IID,m € MID}
A UA, UA U A,

2
I

e

o

.
Il

TABLE 3. The atomic actions of PAgarsc

AN ALGEBRAIC SEMANTICS oF Basic MESSAGE SEQUENCE CHARTS 5

4.2. The state operator Ay

A Basic Message Sequence Chart specifies a (finite)
number of instances that communicate by sending and
receiving messages. A message is divided into two parts:
a message output and a message input. The correspon-
dence between message outputs and message inputs has
to be defined uniquely by message name identification.

A message input may not be executed before the cor-
responding message output has been executed. We in-
troduce an operator Ay that enables only those exe-
cution paths that respect the above constraint. The
operator Aps is an instance of the state operator as can
be found in {(BW90). This operator remembers all mes-
sage outputs that have been executed in a set M and
only allows a message input if its corresponding message
output is in that set.

Forall M C A,, z,y € V, a € A, i,j € £(<iid>),
and m € L(<mid>), we deline the slate operator Apr In
Table 4.

Amle) = ¢ ifAM =10
Armle) = 6 irM £
Ap(8) = 6

Amla-z) = a- Ap(z) ifag A, UA;

An(out(i, j,m)) =

out(i, j,m) -)lMu{our(i,j,m)}(‘L')
Ap(in(i j,m) -z) =

m(z,;, nl) : AM\{out(i,j,m)] ('T)
Aag(in(i,j,m) - z) = 8
Aar(z+y) = Aprle)+ Anr(y)

if out(i,j,m) € M
ifowt(d, j,m)g M

TABLE 4. Axioms for the state operator Ay

Note that the state operator Azs can be eliminated
from every closed PAgarse term, This 1ineans that
we have not introduced new processes. Furthermore
we have not introduced new identities between existing
processes, thus PApassc is a conservative extension of
PA..

5. THE SEMANTICS OF BASIC MESSAGE
SEQUENCE CHARTS

5.1. Imtroduction

In this section we will define a semantic function S that
assoclates to every Basic Message Sequence Chart in
textual format a closed PAparse term. An example of
this construction is given in subsection 5.3. Before we
give the definition of this semantic function we need to
explain some auxiliary funetions. The powerset of a set
S is denoted by P(S).
The function

Instances : L{<ms¢>) — P({L{<inst def>))

that associates to a Basic Message Sequence Chart the

set. containing all instance definitions of the instances
defined in the chart, is defined by

Instances(msc <mscid>; <msc body> endmsc;) =
Instancesyody (<msc body>)

where the function
Instancessogy : L(<msc body>) — P(L(<inst def>))
is defined by

Instancesyoay (<>) = 0
Instancespoqy (<inst def><msc body>) =
{<inst def>} U Instancespoay(<msc body>)

Next we define the following two functions

Name : L(<inst def>) — L(<iid>)
Body : L(<inst def>) — L{<inst body>)

These functions associate to an instance definition its
namne and body.

Name(instance <iid>;

<inst body> endinstance;) = <iid>
Body(instance <iid>;
<inst body> endinstance;) = <inst body>

5.2. The semantic function

The general 1dea is that the semantics of a Basic Mes-
sage Sequence Chart is the free merge of the seman-
tics of its constituent instances. By this construction
we enable all interleavings of the message outputs and
message inputs. However, a message input can only
be performed after its corresponding message output.
In order to rule out all interleavings where a message
output is preceded by the corresponding message input
we use the state operator Apyr. We define the function
§: L{<msc>) = T(Epagpsc) by

.5'|[msc]] = A (” idef eInstancea(masc) S"“"*I[idef]])

The semantic function Sin, : L(<inst def>) —
T(Epapysc) is defined to express the semantics of one
instance in separation. In the textual representation of
an instance the atomic actions are specified in the or-
der they are to be executed, thus the semantics of an
instance definition is the sequential composition of its
actions.

Simstidef] = S¥em 9L Y Body(idef)]

body
where for ¢ € £(<iid>) the function
S;ady : L(<inst body>) — T(Zpagmsc)
is defined by
Shaay[<>] = €
Shody [<@VENt> <inst body>] =
Styeni[<event>] . 57, [<inst body>]

event

6 S. Mauw aND M. A. RENIERS

and for every ¢ € £(<iid>) the function
iuent : L(<event>) — T(EZpagasc)

is defined by
Siventllin <mid> from <iid>;]] =
in(<iid>, i, <mid>)
Sivenilin <mid> from env;] = in(env, i, <mid>)
Siuentu:out <mid> to <lld>,]| =
out(i, <iid>, <mid>)
S penilout <mid> to env;] = out(i,env, <mid>)

Styenilaction <aid>;] = action(i,<aid>)
Note that application of the state operator gives the
possibility that the semantics of a Basic Message Se-
quence Chart contains a deadlock. This can be inter-

preted as the fact that every execution trace contains
an input before the corresponding output.

5.3. An example

We consider the Basic Message Sequence Chart from
Figure 3. It consists of three instances which exchange
two messages.

msc example3

s
k

1

FIGURE 3. Example Basic Message Sequence Chart.

msc example3;
instance a;
out k to b;
out 1 to ¢;
endinstance’
instance b;
in k from a;
endinstance;
instance c;
in 1 from a;
endinstance,
endmsc;

The interpretation of this Basic Message Sequence
Chart is that along instance a the ordering of the output
of messages k and [is fixed and furthermore that the
output of message k comes before the input of message &
and, likewise, that the oulput of message ! comes hefore
the input of message {. These are the only restrictions
that apply.

When using the textual syntax, the Basic Message
Sequence Chart is represented by describing the behav-
ior of every instance in separation. After applying the
semantic function S;,,; to these instances we obtain

Siﬂstﬁ(f-l]': out(a,b, k) -O'hﬂf(a,c7 I)
Sinst[t] = in(a, b, k)
Sinatl[c]l = in(a,c,!)

The first step in deriving the expression which we aim
at is putting the instances a, & and c in parallel.

Stnst |[a]] ” Sinstl[b]] ” Sl'nstl[CI]

After some calculations, we arrive at the following nor-
malized expression.

out(a,b k}-(in(a,b, k) - (out(a,c,1)-in(a,c,1)
+in(a,e,l) - out(a,c,i)

+out(a,c,1)(in(a, b, k) - in(a, ¢,)
+in{a,e, 1) - in(a, b, k)

+in(a, ¢, 1) - (in(a, b, k) - out(a,c,1)
+out(a,c,!) - in(a, b, k)

)
+in{a, b, k) - (out(a,b, k) (in(a,e,1) - out(a, e,)
+out(a, ¢,1) - in(a, ¢,)

+in(a, ¢,) - out(a, b, k) - out(a, c,1)

+infa, c,1) - (out(a,b, k) (in{a,b, k) - out(a, ¢,!)
+out(a, ¢, 1) - in(a, b, k)

+in(a, b, k) - out(a, b, k) - oui(a, ¢, 1)

This expression clearly shows execution traces which
are not desirable, such as in(a,b,&) - out(a,b, k) -
in{a, ¢, !} - out(a,e,1). These traces can be removed by
applying the state operator Ap to this expression. This
results in

out{a, b, k)-(in{a, b, k) - out(a, ¢, 1) - in(a, c, 1)
+out(a, ¢, 1) (in(a, b, k) - in(a,c,1)
+in(a,c, 1) - in(a, b, k)

)

6. STRUCTURAL OPERATIONAL SEMAN-
TICS

In this section we define a structural operational se-
mantics of Basic Message Sequence Charts in the style
of Plotkin {Plo83). For this purpose we define action
relations on closed PApgarge terms. Then we give a
graph model for the theory PAppsc.

6.1, Action relations for PAgpysc

Oun the set of PAgarsc terms we define a predicate | C
T(Tpapysc) and binary relations = C T(Epapprsc) X
T(Zpagmsc) for every a € A, These predicates are de-

AN ALGEBRAIC SEMANTICS OF BASIC MESSAGE SEQUENCE CHARTS 7

fined by means of inference rules, which have the fol-
lowing form.
Pl, - Pn
q

This expression means that for every instantiation
of variables in p;,...,pn, ¢ we can conclude ¢ from
P1,...,Pn- If ¢ 18 a tautology, we omit py,...,p, and
the horizontal bar.

The intuitive idea of the predicate | is as follows:]
denotes that ¢ has an option to terminate immediately,
ie. ¢ is a summand of ¢. For 2,y € T(Epag,,ec), and
M C A,, the predicate | is defined in Table 5.

gl
z el,yl vl
(z+y)l (-l =+l
x| mlsyl x|
(VDL (=lly)] (wl(x)]

TABLE 5. The predicate |

The intuitive idea of the binary operator — is as
follows: ¢ % s denotes that the process ¢ can execute
the atomic action a and after this execution step the
resulting process is 5. For 2,2, 1,¥ € T(Zpaguech
o €A M C A,, i,j € L(<iid>), and m € L{<mid>),
the binary relations = are defined in Table 6.

We will illustrate the use of these action relations
with an example. Consider the following expression,

Ap(out(a, b, k)| in(a, b, k))

out(a,b k) .
)) €, so we can derive

We have out(a,b k

. eut(a,b k) . " .
out(a,b, k)| in(a,b,k} =" e|lin(e,b, k). From this
we can conclude

out(a,bk)
P

Ag{out(a, b, k) ||in{a, b, k))
Aout(as,0)} (€ M| in(a, b, k)

. in(a,bk .
Next we have in(a,b, k) (a2)E, and we can derive

g || in(a, b, k)in(if’k)f: fle. Thus we have

. in(a,b.k
Mout(apy (€ [l in(a, b,)" Ny (e [l)

In order to see that this expression has the possibility
to tetminate, we derive £ | and thus (g[}€) |, so

Ap(elle) |

Finally we conclude that the given process
Ag(out(a,b, k)| fn(a, b, k)) can first execute oui(a, b, k),
then execute in(a, b, k) and finally terminate. Note that.
this 1s the only execution sequence that can be derived
from the inference rules.

6.2. Graph model for PAgprse

We will present a model for the theory PAgarse. This
model is a graph model, a set of process graphs modulo
bisimulation, that provides a visualization of the action
relations from the previous subsection,

A process graph is a finite acyclic graph in which the
edges are labeled with an atomic action, and in which
every node may have a label |. This label | indicates
whether or not the state represented by the node has
an option to terminate immediately. In every process
graph there is one special node, the root node.

Two process graphs will be identified if they are
bisimilar. Two graphs are bisimilar if there is a bisim-
ulation which relates the root nodes. A bisimulation is
a binary relation R, satisfying:

® if R(p,q) and p=p’, then there is a ¢’ such that g->g’
and R(p',q")

® if R(p,q) and q—q', then there is a p such that p—p’
and R(p',¢") .

® if R(p,q) then p| if and only if ¢ |.

THEOREM 6.1. Bisimulation is a congruence for
the signature of PApsmsc.

Proof. The action rules fit into the syntactical for-
mat that is called the pafh format. As a consequence
bisimulation is a congruence for the function symbols
for which the action rules are defined. We refer to
(BV93, GVY2) for both the syntactical format and the
congruence theorem. [|

Every operator in the signature of PAgarsc can be
interpreted in the graph model. Without proof we
state that PApgarsc is a complete axiomatization of the
graph model.

To every closed process expression we can associate a
process graph using the action relations for PAgasse.

We will give the process graph for the example of the
semantics in Figure 4.

out(a,b,k)

¢

FIGURE 4. Process graph

8 S. Mauw anND M. A. RENIERS

out(i j,m
T GJm) g

[7]
a — £
z > 2 y =y z 5 oz el y Sy
r4y > 2 ety — ¥ oy - Yy 2oy Sy
z 5 g y — y z 5 2
zlly = o' |ly zlly 5 =z||y zly = ='|ly

out(i,jmeM , = @I

a out(f,f,m in(i,j,
Aar() = Au(e) ypp(a) LT Anrufout(igmy(®) An() nlidyn) A\ four(i,j,m)}(2')
TABLE 6. The action relations =

7. A CHARACTERIZATION THEOREM

In this section we will relate our semantics for instance
oriented Message Sequence Charts to the event oriented
semantics from (dM93, MvWW93). To this end we will
show that a Basic Message Sequence Chart can be rep-
resented by a single trace.

First we will define three functions and a predicate
on processes. These are the alphabet function «, which
determines the atomic actions involved in a process, the
function &7 (for I C A) which renames the atomic ac-
tions that are in the set [into £ and the function {r
which determines the collection of completed traces of
a process, The predicate df determines whether a pro-
cess 1s free of deadlocks. For z and y arbitrary processes
and ¢ € A, we give the axioms for those functions in
Table 7. Note that the predicate 2 # & can be dcfined
easily.

{a} Ual)

oz + a(z)Ua(y)

er(e) = ¢

51(6) =6

er(fa-z) = a-er(z) ifagl
er{a-z) = er(z) ifacTr
ez ty = er(z)+e(v)

tr(e) = {E}

tT‘(é) = {6}

tr(a-z) = {a-t|teir(z)}
tr(z +y) = tr(z)Utr(y)
)

~df(8)

#(a-x) = df2)

df(z +y) = df(z) Adf(y)

fetbAy#£éb

fetdny#£é

TABLE 7. Axtoms for o, £, tr, and df

First observe the following general properties.

LEMMA T.1.
IcA

Forz,y € T(Zpapmsc) M C A, and

dfyrely) C1 = e(z|ly) = &)
a(z)NI=0 = ez)==¢

Yiewr(z) €1(t) € trer(z))

df(Aar(z)) = tr(Au(z)) Ctr(z)

Proof. TFor 2,3 and 4 we use induction on the struc-

ture £, a -z, £ + y, whereas for 1 we use induction on
the structure ¢, Spe g @ - Tk, Lper Ok - Lk +E. []

tp

™ =

e

LEMMA 7.2, Fori€ L£(<inst def>)

tT’(S,'ﬂnﬂi]]) = {Sinslﬂi]]}

Proof. This follows immediately from the construc-
tion of the semantic function. n

In the following lemmas and theorems we will use,
for i € L(<inst def>), «(i) as an abbreviation of
o {Sinse[i]) and Inst for Instances(msc) where msc is
clear from the context. First we consider traces from
I}jE],mS,-n”][j]] which do not meet the restriction on
the order of inputs and corresponding outputs. Using
such a trace we can reconstruct the behavior of every
single instance and, therefore, we can reconstruct the
complete Basic Message Sequence Chart as described in
Theorem 7.4. Theorem 7,5 states that this also holds for
the restricted traces from S[msc]. So a Basic Message
Sequence Chart can be represented either by a collec-
tion of instances (the instance oriented approach) or by
a single trace {the event oriented approach).

LEMMA 7.3, For msc € L(<msc>) and i € Inst

V’E"(||je:m,5fnu[j]) EMe)t) = Sinaili]

PT‘OOf. Let t €tr (llje-’ﬂ” Sinatﬁj]])'
Then by applying Lemma 7.1.3 we have: €a\a(i)(t) €

tr (EA\Q(;') (lljelnst S‘"”ﬂj]]))'

We calculate

AN ALGEBRAIC SEMANTICS oF Basic MESSAGE SEQUENCE (CHARTS 9

EA\a(i) (“_fEInst S""H![j]])
= {Lemma7.1.1}

EA\a(i)(Sinstl[i]])
= {Lemma7.1.2}
anstu:i]]
So, from Lemma 7.2, we may conclude that € 4\q()(t) =
S;n,gfl[’l:]].]

THEOREM T.4. For msc € L(<msc>)

Viewr (Il ermeesinntit) ST = 28 (lsernse earan(0)

Proof. 'This follows from Lemma 7.3 and the defini-
tion of the semantic function S. |

THEOREM 7.5. For msc € L(<msc>) such thal

4 (STmse])
VfEir(S[msc}) S[[mSC]] =)‘ﬂ (“a’efns! EA\O‘(")(i))

Proof. This theorem follows immediately from
Lemma 7.1.4 and Theorem 7.4. [|

Theorem 7.5 expresses that, in principle, one could
choose an event oriented textual representation for Ba-
sic Message Sequence Charts. The Basic Message Se-
quence Chart from Figure 3 may look like

msc example3;
ocut k¥ from a to b;
out 1 from a to c¢;
in 1 from a to c;
in k from a to b,
endmsc;

8. CONCLUSION

The definition of a formal semantics of Basic Message
Sequence Charts based on process algebra as presented
in this paper has turned out to be a very natural and
successful method. We used the instance oriented syn-
tax to derive a composilional semantics and indicated
that this yields a semantics which is equivalent to the
approach based on sequencing for an event oriented syn-
tax (dM93, MvWW03).

The development of the semantics for the complete
Message Sequence Charts language follows the same
line, applying more elaborate constructs from process
algebra for features such as sub Message Sequence
Charts and process creation.

The algebraic approach towards the definition of the
formal semantics of Message Sequence Charts enables
the use of term-rewriting systems for the rapid proto-
typing of specifications (MW43).

Acknowledgements

We would like to thank Jos Baeten, Jan Bergstra,
Ekkart Rudolph and Chris Verhoef for their useful com-
ments and suggestions for improvements.

REFERENCES

BI<84: J.A. Bergstra and J.W. Klop. Process algebra for
synchronous communication. Information & Control,
60:109-137, 1984.

BV93: J.C.M. Baeten and C. Verhoef. A congruence the-
orem for structured operational semantics with predi-
cates. In E, Best, editor, CONCUR’93, Lecture Notes
in Computer Science 715, 1993.

BW90: J.C.M. Baeten and W.P. Weijland. Process Algebra.
Cambridge Tracts in Theoretical Computer Science 18.
Cambridge University Press, 1950.

CCI88: CCITT. CCITT Recommendation Z.100: Speci-
fication and Description Language (SDL). CCITT,
Geneva, 1988,

CC192: CCITT. CCITT Recommendation Z.120: Message
Sequence Chart (MSC). CCITT, Geneva, 1992,

dM93: J. de Man. Towards a formal semantics of Message
Sequence Charts. In O. Faergemand and A. Sarma, ed-
ttors, SDL’98 Using Objects, Proceedings of the Sixth
SDL Forum, Darmstadt, 1993. Elsevier Science Pub-
lishers B.V.

GGR93:). Grabowski, P. Graubmann, and E. Rudolph.
Towards a petri net based semantics definition for Mes-
sage Sequence Charts. In O. Fargemand and A, Sarma,
editors, SDL'93 Using Objects, Proceedings of the Sixth
SDL Forum, Darmstadt, 1993. Elsevier Science Pub-
lishers B.V.

GVY2: LF. Groote and F.W. Vaandrager. Structured op-
erational semantics and bisimulation as a congruence.
Informatlion and Compulation, 130:202-260, 1992.

Hoa85: C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

LL94: P.B. Ladkin and 5. Lene. What do Message Sequence
Charts mean? In R.L. Tenney, P.D. Amer, and M.
Uyar, editors, Formal Deseription Techniques, VI, IFIP
Transactions C, Proceedings of the Sixth International
Conference on Formal Description Techniques. North-
Holland, 1994,

Milg0: R. Milner. A4 Calculus of Communicating Systems.
Lecture Notes in Computer Science 92, Springer-Verlag,
1980.

MvWW93: 8. Mauw, M. van Wijk, and T. Winter. A
formal semantics of synchronous Interworkings. In
O. Fazrgemand and A. Sarma, editors, SDL’98 Using
Objects, Proceedings of the Sixth SDL Forum, Darm-
stadt, 1993, Elsevier Science Publishers B.V.

MW93: 8. Mauw and T. Winter, A prototype toolset
for Interworkings. Philips Telecommunication Review,
51(3):41-45, December 1993.

Plo83: G.D. Plotkin. An operational semantics for CSP. In
Proceedings of the Conference on the Formal Descrip-
tion of Programming Concepts, volume 2, Garmisch,
1983.

Computing Science Notes

In this series appeared:

91/01

91/02

91/03

91/04

91/05
91/06

91/07

91/08
91/09

91/10

91/11

9112

91/13

91/14

91/15

91/16

D. Alstein
R.P. Nederpelt
H.C.M. de Swart

J.P. Katoen
L.A.M. Schocnmakers

E. v.d. Sluis
AF. v.d. Stappen

D. de¢ Reus
K.M. van Hee

E.Poll

H. Schepers
W.M.P.v.d. Aalst

R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Vocrmans
I. v.d. Woude

R.C. Backhouse
P.J. dc Bruin
G.Malcolm
E.Vocrmans

J. van der Woude

E. van der Sluis

F. Rietman

P. Lemmens
ATM. Acrts
K.M. van Hec

A LI M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributcd Hard Real-Time
Syslems, p. 14.

Implication. A survey of the different logical analyses
"if....then...”, p. 26,

Parallel Programs for the Recognition of P-invariant
Scgments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.
SPECIFICATIEMETHODEN, cen overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49,

Terminology and Paradigms for Fault Tolerance, p. 25.
Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Calamorphism, p. 31.

A parallel local secarch algorithm for the travelling
salesman problem, p. 12,

A notc on Exlensionality, p. 21.

The PDB Hypermmedia Package. Why and how it was
built, p. 63.

Eldorado: Architccture of a Funclional Database
Management System, p. 19.

An example of proving altribute grammars correct;
the representation of arithmetical expressions by DAGs,
p- 25.

91/17

91/18

91/19

91/20

91721

91722

91/23

91724

91/25

91/26

91727

91728

91729

91/30

91/31

91/32

91/33

91/34

AT.M. Acrts
P.M.E. dc Bra
K.M. van Hee

Rik van Geldrop
Erik Poll

A.E. Eiben

R.V. Schuwer

J. Coencn

W.-P. de Roevcer

J.Zwiers

G. Wolf

K.M. van Hce
L.J. Somers
M. Voorhoeve

A.T.M. Aecrnts
D. de Reus

P. Zhou

J. Hooman
R. Kuiper

P. de Bra
G.J. Houben
J. Paredaens

F. de Boer
C. Palamidessi

F. de Boer
H. Ten Eikelder
R. van Geldrop

J.C.M. Bacten
F.W. Vaandrager
H. ten Eikclder
P. Struik

W. v.d. Aalst

J. Cocnen

Transforming Functional Database Schemes to Relational
Representations, p. 21,
Transformational Query Solving, p. 35.

Some calegorical propertics for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Basc Systems, a Formal Model, p. 21.

Asscrtional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal scmantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on cxplicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12,

Embedding as a ool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correciness of Acceplor Schemes for Regular Languages,
p. 31

An Algebra for Process Creation, p. 29.
Some algorithms 10 decide the equivalence of recursive
types, p. 26,

Techniques for designing eflicient parallel programs, p.
14,

The modelling and analysis of queuecing systems with
QNM-ExSpcct, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15

91/35

92/01

92/02

92/03

92/04

92/05

92/06

92/07

92/08

92/09
92/10

9211

92/12
92/13
92/14

92/15

92/16

92/17

92/18

92/19

92720

F.S. de Boer
J.W. Klop

C. Palamidessi
J. Coenen

J. Zwicrs

W.-P. dc Roever

J. Coenen
J. Hooman

J.C.M. Baeicn
J.A. Bergstra

J.P.H.W.v.d.Eijndc

J.P.H.W.v.d Eijnde

J.C.M. Bacien
J.A. Bergstra

R.P. Nederpelt

R.P. Nederpelt
F. Kamareddine

R.C. Backhousc
P.M.P. Rambags

R.C. Backhousec
J.S.C.P.v.d. Woude

F. Kamareddine
F, Kamarcddine
J.C.M. Bacten

F. Kamareddine

R.R. Seljée

W.M.P. van der Aalst

R.Nedempelt
F. Kamarcddine

J.C.M.Bacien
J.A.Bergstra
S.A.Smolka

F.Kamarcddine

Asynchronous communication in process algebra, p. 20.

A nolc on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program dcrivation in acyclic graphs and related
problems, p. 90.

Conservative lixpoint [unctions on a graph, p. 25.

Discrele time process algebra, p.45.

The finc-structure of lambda calculus, p. 110.

On sicpwise explicit substitution, p. 30.

Calculating (the Warshall/Floyd path algorithm, p. 14.
Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Sct theory and nominalisation, Part I, p.26.
Sct theory and nominalisation, Part 11, p.22.
The 1otal order assumption, p. 10.

A system at thce cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomalizing Probabilistic Processes:
ACP with Gencrative Probabilities, p. 36.

Are Types for Natural Language? P. 32,

92/21

92722

92/23

92724

92725

92/26

92/27

93/01

93/02

93/03

93/04

93/05

93/06
93/07

93/08

93/09

93/10

93/11

93/12

93/13

F.Kamareddine

R. Nederpelt
F.Kamarcddine

F.Kamareddine
E.Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poli
T.H.W_.Beclen
Ww.J.J.Stut

P A .C. Verkoulen

B. Waison
G. Zwaan

R. van Geldrop

T. Verhocff
T. Verhoeff
E.H.L. Aaris
J.HM. Korst
P.J. Zwictering

J.C.M. Bacten
C. Verhoef

J.P. Veltkamp
P.D. Moerland

J. Verhooscl

K.M. van Hce

K.M. van Hce

K.M. van Hee

K.M. van Hee

K.M. van Hee

Non well-foundedness and type freencss can unify the
interpretation of functional application, p. 16.

A uscful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p. 33

A Programming Logic for Fw, p. 15.

A modclling method using MOVIE and SimCon/ExSpect,
p. 15,

A taxonomy of keyword pattern matching algorithms,

p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36,

A continuous version of the Prisoner’s Dilemma, p. 17
Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78,

A congruence theorem for structured operational
scmantics with predicates, p. 18.

On the unavoidability of metastable bchaviour, p. 29
Excreises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Time Exccutions in DEDQS, p. 32.

Systems Engincering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part 1I: Framcworks, p. 44.

Systems Engincering: a Formal Approach
Part T1I; Modeling Methods, p. 101,

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Syslems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14

93/15

93/16

93/17

93/18

93/19

93720

93721

93/22
93/23
93/24

93725

93/26
93727

93/28

93129

93/30

93/31

93/32

J.C.M. Bacten
J.A. Bergstra

J1.C.M. Bacten
LA, Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. dc Boer

M. Codish

D. Dams

G. Filé

M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Scveri

H. Schepers and R. Gerth

W.M.P. van der Aalst
T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpclt

R. Post and P. De Bra
}. Deogun

T. Kloks

D. Kratsch

H. Miiller

W. Koérver

H. ten Eikeclder and
H. van Geldrop

On Scquential Composition, Action Prefixes and
Process Prefix, p. 21,

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p- 19.

A congruence thcorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program-
ming, p. 15.

Frceness Analysis for Logic Programs - And Correct-
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23,
Pure Typc Sysiems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolcrant Real-
Time Distributed Systems, p. 31,

Mulli-dimensional Petri nects, p. 25.
Finding all minimal separators of a graph, p. 11.

A Scmantics for a finc A-calculus with de Bruijn indices,
p. 49,

GOLD. a Graph Oricnted Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rute scts, p. 40,

On the Correctness of somc Algorithms to gencrate Finite
Automata for Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

L. Loyens and J. Moonen

J.C.M. Baeten and
J.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten

E.HL. Aarts

D.A.A. van Erp Taalman Kip
K.M. van Hee

P.D.V. van der Stok
MM.M.P.J. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B.W. Waison

B.W. Walson

E.J. Luit
JM.M. Martin

T. Kloks
D. Kraisch
J. Spinrad

W. v.d. Aalst
P. D¢ Bra

G.J. Houben
Y. Komatzky

R. Gerth

ILIAS, a scquential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A gencral conservalive exiension theorem in process
algebra, p. 17,

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hicrarchical Membership Protocol for Synchronous
Distribuicd Systcms, p. 43.

Temporal operators viewed as predicate transformers,
p. 11

Automatic Verification of Regular Protocols in P/T Nets,
p. 23

A 1axomomy of finile automata construction algorithms,
p. 87.

A taxonomy of finitc automata minimization algorithms,
p. 23.

A precisce clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14,

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Scquentially Consistent Memory using Interface
Relinement, p. 20.

94/01

94/02

94/03

94/04

94/05

94/06

94/07

94/08

94/09

94/10

94/11

94/12

94/13

94/14

94/15

94/16

P. Amcrica

M. van der Kammen
R.P. Nederpelt

0.S. van Roosmalen
H.C.M. dc Swart

F. Kamarcddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

J.CM. Bacten
J.A. Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
J. Black
M. Coffin
D, Taylor

K.R. Apt
R. Bol

0.8. van Roosmalen

J.C.M. Bacien
J.A. Bergstira

T. verhoeff

Peleska
. Huizing
. Petersohn

. Kratsch

J.
C
C
T. Kloks
D
H. Miiller

7

Seljéc

W. Peremans

R.J.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

R.C. Backhousc
H. Doombos

The object-orienied paradigm, p. 28.

Canonical typing and IT-conversion, p. 51,
Application of Marcov Decision Processe 10 Search
Problems, p. 21.

Graph Isomorphism Modcls for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29,

Logic Programming and Negation: A Survey, p. 62.

A Hicrarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied o Neiwork Structure.

p. 31.

A Comparison of Ward & Mellor’s Transformation

Schema with Siate- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Mcthod for Integrity Constraint checking in
Deductive Databascs, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Scarch, p. 21.

Mathematical Induction Made Calculational, p. 36.

	1. Introduction
	2. Basic message sequence charts
	2.1 Introduction
	2.2 Graphical notation
	2.3 Textual notation
	3. Process algebra PAe
	3.1 Introduction
	3.2 The signature of PAe
	3.3 The equations of PAe
	4. A process algebra for basic message sequence charts
	4.1 Specifying the atomic actions
	4.2 The state operator lambda-m
	5. The semantics of basic message sequence charts
	5.1 Introduction
	5.2 The semantic function
	5.3 An example
	6. Structural operational semantics
	6.1 Action relations for PA-bmsc
	6.2 Grapgh model for PA-bmsc
	7. A characterization theorem
	8. Conclusion
	Acknowledgements
	References

