

The construction of a small communication library

Citation for published version (APA):
Lukkien, J. J. (1995). The construction of a small communication library. (Computing science reports; Vol. 9501).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/ea295c3a-0942-44b2-9993-2a21bc3cdf2e

Eindhoven University of Technology

Department of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

The Construction of a Small
Communication Library

by

J.J. Lukkien
95/01

Computing Science Report 95All
Eindhoven, January 1995

The Construction of a Small
Communication Library

Johan J. Lukkien
Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB Eindhoven, The Netherlands
Telephone: +3140475147

Telefax: +31 40 436685
Email: johanl@win.tue.nl

January 9, 1995

Abstract

In order to develop portable parallel software a. reasonable abstraction from parallel hardware is
necessary. Over the last few years, such abstractions have become available in the form of communi­
cation libraries. In this paper we first look at the mapping of parallel programs onto networks and we
show how this can be generalized into a small but powerful communication library. The focus of the
discussion is on the derivation of the processes implementing the library. During the design, efficiency
is a key issue. In particular, we pursue a low latency for communications by avoiding buffering as
much as possible.

1 Introduction

1

An important reason to construct parallel programs is that a high performance may be achieved when
such a program is executed by a parallel machine. With this prospect of increased performance as a
driving force, programs were often designed for a particular target architecture. Since many different
architectures have become available this resulted in special-purpose solutions. It has been recognized
that this frustrates the development of portable software, i.e., of software that can be used on a new
. architecture after only minor modifications.

Another approach to parallel programming is to develop programs for some idealized model of a
parallel computer, e.g., for a PRAM ([9]). Although this has lead to important results in complexity
analysis it has not lead to practical methods to develop parallel programs, partly because these idealized
models cannot be implemented realistically.

These developments have lead to the definition of models that are both general and admit an effi­
cient implementation on a variety of architectures. One such model is the Bulk Synchronous Computer
(BSP, [12]). In this model, the parallel machine consists of a set of processors, each having a local mem­
ory. Each processor has access to all non-local memories in a uniform and efficient way. Each processor
executes the same program, acting on local data. Such a program consists of a sequence of computation
and communication steps. Each communication step is basically a rearrangement of information in the
local memories. The importance of such a model is that it admits a reasonably simple performance anal­
ysis and that it can be implemented straightforwardly as we show in this paper. Other models are the

2

ones provided by communication libraries like Parallel Virtual Machine (PVM, [14]) or Message Passing
Interface (MPI, [13]). In these models a parallel program consists of a collection of communicating pro­
cesses; the program is executed by a collection of processors. The library provides a variety of routines
for process creation and for communication and synchronization between the processes. The abstrac­
tion from physical topology is most important in all these models. For each particular architecture the
problem of implementing the model remains. For a recent overview of communication libraries we refer
to [4].

The success of using an abstract model of a machine, like a communication library, is largely deter­
mined by the efficiency of the implementation of communication. When we say that a model cannot be
implemented realistically, we mean that the overhead in terms of communication time is prohibitively
large. The time required for a communication is determined by two parameters: the latency of mes­
sage transmission (I) and the throughput of the channel that exists between the two partners in the
communication (t). The time to transmit a message of length k is given by l(k) + kt. It is not hard
(though expensive) to design channels with a high throughput; it is the latency that largely determines
the usefulness of the parallel machine. This is due to the fact that the latency determines the time that
elapses before a process can receive an answer to any message that it sent. The implementation of PVM
on a workstation demonstrates this aspect painfully. Therefore, it is important that communication is as
efficient as possible.

In this paper we construct a communication library which, though small, resembles the ones mentioned
above. It can also be used in an implementation of the BSP model. We first look at how to map a parallel
program onto a parallel machine. The program is designed as a collection of communicating processes;
the machine consists of a collection of processors, each having a local memory and being connected to a
limited number of neighbors; the local memories may also be shared. We look at a limited instance of
this problem: we assume that the mapping of processes onto processors is given. The task that remains
is the mapping of the communication channels in the program onto the physical network. Since all
buffering adds to the latency, we pursue a low latency by minimizing the amount of buffering during the
transmission of a message. The solution to this mapping problem is generalized, resulting in a set of
communication routines.

The paper is organized as follows. In the next section we introduce our program notation. In order to
make this paper self-contained we include a few examples and some discussion. In section 3 we describe
the mapping problem mentioned above. If two processes are mapped onto the same processor, a channel
between the processes is mapped onto the local memory of that processor; this is described in section 5.
General transmission of messages in a network is presented in section 6 which is then used in section 7 to
obtain a distributed implementation of the mapping. These results are generalized to the construction
of a small library of communication routines in section 8. We end with some conclusions.

2 Program notation and semantics

Our program notation is based on Dijkstra's guarded command language and Hoare's CSP ([3, 7], see also
[16]). Instead of do b _ 5 od to denote a repetition, we write *[b - S]; for the particular case of b = true
we write *[S]. Instead ofifbo - 50 0 b1 - 51 ... fi to denote a selection, we write [bo - 50 0 b1 - 51 ...].
Execution of the selection amounts to executing one of the statements 5i for which the corresponding
guard bi holds. We use "1[" and "JI" for opening and closing a context respectively. Procedure and variable
declarations are similar to the Pascal conventions. As an example, the following procedure returns in
parameter 9 the greatest common divisor of positive parameters x and y.

proc gcd (x, y: int; var g: int)
I[*[x of y -+ [x < y -+ y := y - x

~ x > y -+ x := x - y

1
1;
g:= x

11

3

The notation is extended in order to describe concurrency. The concurrent execution of statements SO
and Sl is denoted by SO II S1. Its execution amounts to the simultaneous execution of the actions
of SO and Sl while the order of the actions as specified in SO and Sl is preserved. Operator "II" is
called parallel composition; it takes precedence over sequential composition. The statements in a parallel
composition are called processes although we will generally use this term only if they are procedure calls.
The declaration of the corresponding procedure is also called a process. A second way to denote parallel
execution is to precede a procedure call with the keyword fork. The called procedure is then executed
concurrently with the caller.

Processes can communicate through directed channels. A channel can be regarded as a communication
link between two processes. For each channel c t~ere is one sender and one receiver. Sending the value
of expression e along the channel is denoted by e!e; receiving a value which is then stored in variable x is
denoted by c?x. These two actions are called an output and an input action respectively. We require that
output and input actions are synchronized. Execution of an input or output statement is suspended until
the partner is ready to perform the corresponding output or input statement. The concurrent execution
of an output and an input action, therefore, amo]Jnts to the assignment x := e. As an example we give
a process that copies the positive values received along its input channel c to its output channel d.

proc filter (var c, d: channel)
I[var x: int;

*[c?x; [x > 0 -+ d!x ~ x ::; 0 -+ skip II
11

The above procedure for computing the GCD can be adapted into a process that computes the GCD of
all pairs it receives along its input channels c and d and returns the results along its output channel e.

proc gcd (var c, d, e: channel)
I[var x, y: int;

11

*[c?x II d?y;

1

*[x of y -+ [x < y -+ y := y - x
~ x > y -+ x := x - y

1
J;

e!z

Two of the above filter processes are combined with a gcd as follows.

proc gcd_checked (var A, B, C: channel)
I[var a, b: channel;

filter (A, a) II filter (B, b) II gcd (a, b, C)

11
The capitalized channels are inputs and outputs to the environment of this process. The internal channels
(a and b) are not visible from the environment.

4

In this paper we are mainly concerned with the implementation of these communication actions. To
that end we need a formalization. This formalization is used in two ways. On the one hand) we regard it
as a requirement for an implementation, i.e., an implementation satisfying this formalization is called a
channel. On the other hand, given an implementation of communication actions we use the formalization
to prove facts about programs. Our formalizatio~ is based on [11, 15J.

From the above description of input and output actions we obtain two requirements, viz. that input
and output are synchronized and that together they implement a (distributed) assignment. These two
can be regarded as safety requirements. Besides this we have a progress requirement which is necessary
because execution of communication actions may become blocked (suspended). This third requirement
is that unnecessary blocking does not occurl. In order to formalize the requirements, we introduce two
notions referring to the state of the program during execution. For A an action in a program, #A denotes
the number of completed executions of A. The first requirement for a channel c is

CO: #c! = #c?

Since processes may become suspended on execution of an action, we introduce qA to denote the number
of processes suspended on execution of A. No unnecessary blocking is then expressed as follows.

C1: Sel = 0 v sc? = 0

Finally, the requirement that input and output implement an assignment is expressed by

C2: {P;'} c!e II c?x {P}

A pair of actions satisfying CO through C2 is saicj to implement a channel.

The advantage of using channels for communication between processes is that there is no interference
between processes apart from these communicatiqns. This supports the modular development of parallel
programs. However, there are problems that benefit from other communication mechanisms. In par­
ticular, if two processes have access to the same :memory they may communicate through this memory.
For synchronization between such processes we use semaphores. A semaphore s is an integer with initial
value So. Operations on s are pes) and V(s) wit:p. the effect of decrementing s by 1 and incrementing s
by 1 respectively. The restriction is that s never becomes negative; if execution of a P operation would
result in decreasing s beyond 0 the process executing the operation becomes suspended. Together with
the requirement that unnecessary blocking is not allowed this results in the following three requirements.

SO: s ~ 0

Sl: s = So + #V(s) - #P(s)

S2: (s = 0 V Spes) = 0) /\ gV(s) = 0

We do not discuss implementations of semaphores in this paper. Hence, we use SO through S2 only to
prove facts about programs with semaphores.

Semaphores are often used to provide exclusive access to variables or other resources. As an example,
let v be a variable, shared by processes X and Y which increment v every now and then. Semaphore s
with initial value 1 is used to provide mutually exclusive access to v.

proc X
I[*[actions, not using v;

P(s); v := v + 1; V(s)

J
11

proc Y
I[*f actions, not using v;

P(s); v := v + 1; V(s)

J
J I

1 In fact this requirement holds for all actions in the program, not only for communication actions. For example, the fact
that execution of an assignment never becomes suspended is not mentioned explicitly.

5

As an illustration, we present a short proof for mutual exclusion on variable v. In order to distinguish
the actions of the two processes we use the name of the process as a subscript. From the topology of the
program we derive that the state in which variable v is accessed by process X is characterized by

#Px(s) = #V xes) + 1

Similarly, the state in which process Y accesses v is

#Py(s) = #Vy(s) + 1

The conjunction of the two describes a state in which both processes may modify v.

#Px(s) = #V xes) + 1 II #Py(s) = #Vy(s) + 1

:} {#P(s) = #Px(s) + #Py(s), #V(s) = #V xes) + #Vy(s), calculus}

#V(s) - #P(s) = -2

= {so = 1,Sl}
s =-1

= {SO}
false

Hence, exclusive access to variable v is guaranteed. In order to prove progress one has to show that X
and y' are never suspended at the same time. This follows from S2 using similar reasoning.

3 The mapping problem

A program written in a language like the one described in the previous section consists of a collection of
communicating processes. This collection changes dynamically as new processes are created and processes
terminate. Some of the communication between these processes goes through shared variables and some
of it through message passing. This program has to be mapped onto a machine consisting of a collection
of processors together with an interconnection network. In order to simplify matters we assume that
this mapping has to be done only once, viz., initially. Hence, only the processes in an outermost parallel
construct are mapped.

In order to specify the problem more precisely we introduce some formalization. The parallel machine
is represented by a directed graph, GI = (VI, EJ) called the implementation graph. The vertices of G I
represent the processors and the edges of GI the directed connections between the processors. Associated
with each edge e is a weight, wI(e), which is either 0 or 1. In case the weight is 0 the processors share
their memory (and in that case we have edges both ways); if the weight is 1 communication between the
two processors is through message passing'. As a result, there is a self loop of weight 0 for each vertex.
The program is also represented by a directed graph, Ge = (Ve, Ee) called the computation graph. The
vertices in the graph represent the processes in the program. For each channel between processes in the
program we have an edge in the graph. This edge has weight 1. For every pair of processes communicating
through shared memory we have edges in both ways between the processes; these edges have weight O.

For edge (v, w) we call v the source and w the target. A path in a graph is a non-empty sequence
of edges such that, for all but the last edge in this sequence its target equals the source of its successor.
The source of a path is the source of the first edge in the path; similarly, for a finite path the target is
the target of the last edge in it. For a path p these are denoted by s.p and t.p respectively. We do not
distinguish between an edge and a path of length one. The set of finite paths in a graph G is denoted

2 Of course one could argue that through such a physical connection we can simulate a shared memory but this is one of
the problems we are solving.

6

by peG). The length of a path is the sum of the weights of the edges on the path. The most general
formulation of the mapping problem is as follows.

Mapping problem Given a computation graph Ge and an implementation graph G I, find a function
m = (mv,mE): (Ve,Ee) --> (VI,P(G/)) that satisfies

s.mE(e) = mv(s.e)

t.mE(e) = mv(t.e)

A discussion of this problem can be found in [6]. In this paper we assume that function mv is given.
The problem that remains is the construction of mE and programs to implement it. This amounts
to the problem of using the shared memory for channel communications (when a channel is mapped
onto an edge of length 0) and the problem of using the physical connections for many of these channel
communications. We adopt one restriction on mv: processes using shared memory are mapped either
onto the same processor or onto processors with shared memory. This implies that edges of weight 0 can
be mapped onto edges of length O.

4 Action refinement

The requirements for semaphores and channels as listed in section 2 define the execution of the corre­
sponding actions as indivisible. For example, requirement CO does not allow intermediate states in which
one of the communication actions has been completed and the other one has not. In an implementation
of these actions this atomicity cannot always be guaranteed: as soon as several simple actions are used to
implement a complex action it is possible that intermediate states occur, possibly violating the require­
ments. Implementing an action by simpler ones is called action refinement. Formal discussions on the
subject can be found in [1, 17]. We illustrate this by an example of an implementation.

If two processes communicating along a channel are mapped onto the same processor or onto pro­
cessors with shared memory, we map the channel onto an edge of length 0 using shared memory. The
implementation has to satisfy CO through C2. We focus on CO, the synchronization requirement. Syn­
chronization via a shared memory can be achiev~d through semaphores. We recall from section 2 that
semaphores provide a means of "one-way synchronization": for semaphore s with initial value ° and
actions X and Y defined by

X: V(s)

Y: pes)

we have that #X 2': #Y. This condition realizes already a part of CO. A second semaphore, t, also with
initial value 0 is needed to establish the synchronization in the other direction. We choose instead of the
above

X: V(s); pet)

Y: pes); Vet)

Now, X and Y appear to satisfy CO. However, because X and Y have become compound actions we
have introduced two problems. First, we have to be more explicit about the meaning of #A and qA for
a compound action A. We extend this as follows' The number of completed executions of a compound
action is the number of times the last action of this compound action is executed. A process is suspended
on a compound action if it is suspended on any of the constituent actions. Second, we have introduced
the non-atomicity mentioned above. For example, a state exists in which Y has been completed but X
not yet. As a result the implementation does not satisfy the strict synchronization requirement CO.

In order to allow action refinement, we have to allow that requirements are violated temporarily. We
introduce the following rules.

7

1. The requirements hold whenever all participating processes are at a point outside the implementa­
tion.

2. A state in which the requirements are violated does not persist.

A persisting state is also called a stable state. It is a state in which all participating processes are
suspended or have terminated. We usually prove the correctness by showing that a state for which
a requirement does not hold is one which is unstable and for which at least one process is inside the
implementation.

With this relaxed formulation of the rules, we can show that X and Y satisfy CO. The proof proceeds
by using invariants, derived from the program text, and properties of semaphores (SO through S2). From
the program text we derive

#V(s) 2: #P(t)
#P(s) 2: #V(t)

We consider the states in which CO does not hold.

#X f. #Y
= {#X = #P(t), #Y = #V(t), calculus}

#V(t) > #P(t) V #V(t) < #P(t)

= {to = 0, SO, SI : #V(t) 2: #P(t)}
V(t) > #P(t)

{(2)}

#P(s) > #P(t) II #V(t) > #P(t)
=} {so = 0, SO, SI : #V(s) 2: #P(s)}

#V(s) > #P(t) II #V(t) > #P(t)

(1)

(2)

From the first conjunct we conclude that a state in which CO does not hold is one in which the process
executing the implementation of X is at the semicolon immediately preceding P(t). But it is not blocked
in this state as follows from the second conjunct and to = 0, together implying t > O. Hence, the only
state in which CO does not hold is one inside the implementation and it is unstable.

5 A shared-memory implementation

We continue the example of the previous section. Stated more precisely, for a channel c we want re­
finements of actions c!e and c?x that satisfy CO, Cl and C2. It was already demonstrated that two
semaphores can be used to implement synchronization on a shared memory. Hence, for a channel c we
introduce a data structure (c,s, c.v, c.t) where c.s and C.t are semaphores with initial value a and c.v is
a variable capable of storing one element of the type of c. Synchronization is achieved through c.s and
c.t; C.v is used to pass a value along the channel. We have to see to it that an assignment to c.v and
inspection of c.v happen in the right order. The refinement is as follows.

c?x: V(c.s); P(c.t); x:= c.v
c!e: P(c.s); c.v := e; V(c.t)

We have to prove that this refinement satisfies poth Cl and C2; the correctness of CO was already
shown in the previous section. That same proof is still valid as we only introduced some extra unstable
states within the implementation. Requirement Cl follows in a similar way as CO: just inspect the
states in which it might not hold and show that these states, if they exist, are unstable and inside the

8

implementation. This is left to the reader. The proof of correctness of C2 is more involved. We have to
show that the assignments are executed in the right order. This follows if as a precondition for "c.v := e"
we have #(c.v := e) = #(x:= c.v) and as a precondition for "x := c.v", #(c.v := e) = #(x := c.v) + 1.
We prove the former. As a precondition for "c. v := e" we have

#P(c.s) = #(c.v := e) + 1 = #V(c.t) + 1

Using S2 for both c.s and c.t we obtain

#V(c.s) :::: #P(c.s) = #(c.v:= e) + 1 = #V(c.t) + 1:::: #P(c.t) + 1

Since the difference between #V(c.s) and #P(c.t) is at most 1, equality holds. We conclude that the
process executing c?x is suspended on execution of P(c.t). Hence,

#P(c.t) = #(x:= c.v)

From this we conclude that the required precondition holds. The proof of the validity of the second
precondition is left to the reader.

Remark. Instead of using a variable to record a message passed along the channel, one may pass the
address of the variable in which the message has to be stored.

c?x: c.v:= address(x); V(c.s); P(c.t)

c!e: P(c.s); c.vi := e; V(c.t)

(3)
(4)

In this way a fixed amount of memory is used for the implementation of a channel. More importantly,
the message is not copied an extra time thus limiting the latency.

6 Routing messages

Now we consider the problem of mapping a channel onto a path of positive length. The result of this
mapping is that messages communicated along the channel somehow have to be transported along the
physical connections represented by the path. This is a motivation to study the transportation or the
routing of messages first. In the next section we focus on how this message routing may be used to
implement the required functionality.

First we give a more detailed description of the implementation graph. We assume that it consists
of P processors, numbered 0, ... , P - 1. Each processor has some local memory that may be shared
with other processors. Each processor is capable of executing multiple processes in a time-sliced fashion.
These processes may communicate through the shared memory using semaphores as described before. As
a notational convention we use the number of a processor as a subscript for variables if this is relevant.

The physical connections to other processors are modeled in the language as arrays of channels:
processor k has outgoing channels Ck(i : 0 ~ i < mk) and incoming channels Dk(i : 0 :::; i < nk)J hence,
we implicitly assume that communication between connected processors has been implemented. How
this can be done can be found, for instance, in [8]. Notice that, if two processors communicate through
shared memory only, we may use the implementat.ion of the previous section to model a channel between
the processors.

We develop additional processes for routing messages from a source processor to a target processor.
In such a process it is necessary to decide to which outgoing channel a message has to be forwarded. On
each processor k we introduce a routing function,· RF", specified as follows.

RFk(d) = i == ek(i) is the first step on a path from k to d

9

Hence, if a message has to be sent from k to d it is transmitted by k along C.(RF.(d))3. By applying
this repeatedly, the message finally arrives at its destination. As a result we require that each message is
accompanied by the identification of its destination. A message m is a pair, (m.h, m.c). We call m.h the
header and m.c the contents of the message. The destination of the message is given by m.h.d.

On each processor we introduce for each incoming channel D(i) a process that accepts messages from
D(;) and forwards them, if they are destined for another processor or handles them if they are destined
for this processor. Since in this way all these processes use the outgoing channels we need exclusive access
to each outgoing channel. This is done by using semaphore C8(1) for each channel C(I). Given the routing
function, the forwarding of messages becomes trivial. This results in the following process definition.

proc Router (var D: channel)
I[var m: message; I: int;

]1

*[D?m.h;
[m.h.d = k ~ D?m.c; "handle m"
~ m.h.d'" k ~ 1 := RF(m.h.d);

]
]

P(C8(1)); C(I)!m.h II D?m.c; C(I)!m.c; V(C8(1))

A process on processor k sending a message to a processor d =1= k executes a similar program as is used
for forwarding a message. We use the following procedure.

proc Send (d: int; z: messsage_body)
I[var h: message_header; I: int;

h.d:= d; 1 := RF(d);
P(C8(1)); C(I)!h; C(1)!z; V(C8(1))

]I

With respect to the correctness of this program we have to prove two facts. First, each message is
transported to the correct destination, and second, no deadlock occurs. The first follows simply by
induction on the length of the path generated by RF. In order to analyze the possibility of deadlock we
introduce some notation. Let Q = (VQ, EQ) be the graph defined as follows.

Z E VQ == Z EEIAwI(Z) = 1

(z, y) E EQ == (3d:: RF,x(d) = Z A RFtx(d) = y)

In words, VQ consists of the physical connections in the implementation graph and EQ contains a pair
of physical connections (z,y) if a message may pe routed from Z onto y. The graph Q is (statically)
determined by both Gland the routing function RF.

For each element x of VQ we have a router process, Router (x). A deadlock is a stable state in which
a number of these router processes is suspended o~ actions other than input actions along their incoming
channels. By inspection of the text we learn that router processes may become suspended in one of three
ways:

1. on inputs from D,

2. on a P operation on C8(t) or on a communication along Crt),

3. on handling a message locally.

3Each channel Ck(i) corresponds to an element v of the set E[as well. With a slight abuse of notation we also say
RF.(d) ~ v.

The first case does not contribute to a deadlocked state. Let R = (VR, ER) be the graph defined by

VR=VQ

(x, y) E ER '" Router (x) is waiting for y (the second case above)

10

This graph is determined by RF and G I as well, but it dynamically changes. From the program text
of Router we observe that R is a subgraph of Q. Consider a non-empty set of suspended routers,
corresponding to a subset of VR . We can choose a path in this set for which we have two possibilities: the
path is infinite or it is finite. In the first case the path must contain a cycle since VR is finite. In the second
case we have that for the last element of this path it must be suspended on handling a message. We
conclude that deadlock can he avoided and, hence, messages are delivered eventually when the following
two rules are obeyed.

1. The graph Q is acyclic (hence, R is acyclic as well).

2. Handling a message eventually terminates.

The first rule actually restricts RF. We may ask whether we can find such an RF for each strongly
connected network such that still messages can pe transmitted between each pair of processors. The
answer is twofold: indeed, it is possible to find' such an RF by restricting the routes that messages
may take. If this is considered to be too expensive the technique of introducing virtual channels ([2, 5])
may be applied. It goes beyond the scope of this paper to discuss the latter in detail. However, using
virtual channels boils down to multiplexing several of these virtual channels onto one physical channel.
Multiplexing a number of channels onto one physical channel is in fact a special case of the mapping
problem and, hence, our solutions can be used for multiplexing as well.

The second rule is realized in most message passing systems by claiming a buffer for each message
that arrives. Since we pursue a low latency, we develop different solutions.

In the above algorithms we have used a type message consisting of a header and a contents. In process
Router the entire contents is read before it is forwarded. This method is known as store-and-forward
routing (see, for instance, [5, 10]). A much lower latency is obtained using cut-through or wormhole
routing in which case a message is split into packets of some fixed size. A second advantage of using cut­
through routing is that the message buffers may be of a fixed, limited size. An algorithm for cut-through
routing can be used instead of the above store-an~-forward routing. This does not affect the correctness
of the algorithm, only the efficiency.

7 A distributed implementation

Using the routing processes of the previous section, we complete the implementation of channel commu­
nication actions for a channel c which is mapped onto a path of positive length. Let the source and the
target of the path be denoted by A and B respectively. Hence, the problem is to find implementations
for c!e on A and c?x on B that satisfy CO through C2. From section 5 we recall the shared-memory
implementation consisting of (3) and (4).

c?x: c.v:= address(x); V(c.s); P(c.t)

c!e: P(c.s); c.vi:= e; V(c.t)

We distribute these actions across A and B by distributing the data structure associated with c. If an
action cannot be performed because the variable 'is not local, a message is sent. Handling the message
then results in the required action. Not all actions can be dealt with in this way and this guides the
distribution. We analyze for each action which processor has to perform it.

11

1. C.V r:= e has to be performed on B since it directly refers to writing a value into the memory.
Hence, e. v is local to Band e. v := address(x) has to be performed on B as well.

2. Execution of a P operation can result in suspension. Therefore, execution of a P operation cannot
be implemented by sending a message. Hence, processor A stores c.s and B stores c.t.

We obtain the following distributed implementation.

(B) e?x: e.v:= address(x); Send (A, "V(e.s)"); P(e.t)

(A) e!e: P(e.s);Send (B, "e.vi:= e");Send (B, "V(e.t)")

We use process Router, developed in the previous section for forwarding the messages. The only modi­
fication made in Router is in handling the message at the destination; the part referring to forwarding
messages remains the same.

The two Send actions in c!e can become one action. It is not necessary to include anything referring
to the V operations in a message since processes Router on A and B can execute the appropriate actions
based just on the receipt of a message. This means that sometimes and empty message is sent, denoted
by "-".

(B) e?x: c. v := address(x); Send(A, -); P(c.t)

(A) e!e: P(c.s); Send(B, e);

Process Router on A becomes

and on B

proc Router (var D: channel)
I[var m: message; I: inti

]1

*[D?m.h;
[m.h.d = A ---> V(c.s)
~ m.h.d # A ---> 1 := RF(m.h.d);

1
]

P(es(l)); C(l)!m.h II D?m.c; C(1)!m.c; V(cs(l))

proc Router (var D: channel)
I[var m: message; I: inti

]I

*[D?m.h;
[m.h.d = B ---> D?(e.vi); V(c.t)
~ m.h.d # B ---> 1 := RF(m.h.d);

]
]

P(cs(l)); C(1)!m.h II D?m.e; C(l)!m.c; V(cs(l))

thus executing the actions that cannot be performed by the sender of the messages. The correctness
follows from the discussions in the previous sections. Notice that handling of messages in both Routers
always terminates since only non-blocking operations are executed.

We have now mapped exactly one channel, viz., c. For a process on A it is an outgoing channel and
for a process on B it is an incoming channel. This is reflected in the program text of the routers for
these processors. In the general case, each processor has both incoming and outgoing channels and it has
more than one of them. We observe that we need to make a distinction between incoming and outgoing

12

channels, i.e., between actions that are part of e!e and those that are part of c?x. Therefore, we introduce
a message type in the header, m.h.tp that can be either Shriek or Query corresponding to these two cases
respectively. We also make the channel a parameter by introducing it as part of the message header,
m.h.c. This results in the following implementation.

proc Send (d: int; c: channeLid; tp: message_type; z: messsage_body)
I[var h: messageJ,eader; I: int;

11

h.d:= d; h.c:= c; h.tp:= tp; 1:= RF(d);
P(cs(l)); C(I)!h; C(1)!z; V(cs(l))

proc Router (var D: channel)
I[var m: message; I: int;

]I

*[D?m.h;
[m.h.d = k ---> [

~
1

m.h.tp = Shriek ---> D?(m.h.c.vil; V(m.h.c.t)
m.h.tp = Query ---> V(m.h.c.s)

~ m.h.d =F k ---> I := RF(m.h.d);

1
1

P(cs(/)); C(I)!m.h II D?m.c; C(1)!m.c; V(cs(l))

(B) c?x: c.v:= address(x); Send(A, c, Query, -); P(c.t)

(A) c!e: P(c.s); Send(B, c, Shriek, e);

Finally, we observe that A, B, and c are parameters of this implementation. Together with the results of
the previous section we conclude that this implementation is correct for arbitrary channels and pairs of
processors.

This completes our solution to the problem of constructing mE. These programs can be generated
automatically by a compiler, based on descriptions of the computation graph and the implementation
graph.

8 A communication library

Until now we have looked at the problem as a compilation problem, i.e., as a problem that has to be
solved statically, by a compiler. In this section we develop a different point of view. We first generalize
the programs such that channels can be defined dynamically, under control of the program. Then we
introduce the concept of Remote Process Calls which supports an asynchronous form of message passing.
This results in a small collection of procedures comprising a library of communication routines. We rely
heavily on the implementations given in the previous sections.

8.1 Dynamic configuration

In the mapping of a channel onto a path, the name of a channel was used to send information between
the two partners in a communication. On processor A, c was used to send information and on processor
B it was used to receive information. In fact, the pairs (A, c) and (B, c) played the role of two "sides" of
a channel. From now on we call these sides pons, 'denoted by CA and eB respectively.

In the previous section two ports were connected automatically through the fact that c had to be
mapped onto a path from A to B. The data structure (c.s, c.v, c.t) was distributed. Hence, port CA was

13

actually identified by CA.S and CB by (CB.V,CB.t). This asymmetry reflects the fact that the first port
is used for sending values while the other one is used for receiving values. We restore the symmetry by
associating a port p with (p.s, p.v, p.t). In this way, two ports make up a pair of channels and a port can
be used both for sending and for receiving values. On each processor k we introduce an array of ports,
P.(i : a ~ i < N). Two ports PA(i) and PB(i) for a ~ A, B < P and a ~ i, j < N can be connected
to form a channel. For each port P the partner port has to be recorded, identified by a pair consisting
of a processor and a port index. We record this as part of the data structure associated with a port p:
(p.proe, p.port) and we leave it to the program to connect two ports. Notice that for consistency reasons
we need

PA(i).proc = B 1\ PA(i).port = j PB(i).proc = A 1\ PB(i).port = i
For the implementation we can use basica.lly the same programs as in the previous section. The only
distinction is that we now describe the sending and receiving of messages along a port. Instead of using
the channel notation p(i)?x and p(i)!e, we use routines Por/Receive and Por/Send respectively.

proc Send (proc,port: int; tp: message_type; z: messsage_body)
I[var h: message_header; I: int;

11

h.d:= proc; h.c:= port; h.tp:== tp; 1:= RF(d);
P(cs(l)); C(I)!h; C(I)!z; V(cs(l))

proc PortReceive (i: int; var x: message_body)
I[p(i). v := address(x); Send(p(i).proc, p(i).port, Query, -); P(p(i).t)]I

proc PortSend (i: int; e: message_body)
I[P(p(i).s); Send(p(i).proc, p(i).port, Shriek, e) II

proc Router (var D: channel)
I[var m: message; 1: int;

II

*[D?m.h;
[m.h.d = k --> [m.h.tp = Shriek --> D?(p(m.h.c).vT); V(p(m.h.c).t)

~ m.h.tp = Query --> V(p(m.h.c).s)

1
~ m.h.d -I k --> 1 := RF(m.h.d);

1
1

P(cs(l)); C(1)!m.h II D?m.c; C(I)!m.c; V(cs(l))

We use the following procedure for connecting two ports.

proc Connect (i,pr,j: int)
I[p(i).proc:= pr;p(i).port := j II

Notice that Connect has to be called twice, once for both ports.

8.2 Remote Process Calls

We recall from section 6 one of the requirements for deadlock-avoidance: handling a message must always
terminate. In the above this has been realized by making communication synchronous. A different
solution is obtained when a message is accompanied by the process that handles the message. If such a

14

message arrives at its destination the process that handles it is started as a new process. Its first task
then is to retrieve the message.

This idea is incorporated as follows. We recall that starting a new process is denoted by the keyword
fork. The new process has to be started by process Router on receipt of a header. Since both this
new process and Router use the same incoming channel for a while, exclusion is required through a
semaphore s. Both the incoming channel and this semaphore are parameters to the new process. When
the process has retrieved the message from the channel it performs a V operation on the semaphore. We
assume that a process is identified by an index in a table, PROC(i: 0 ~ i < M). Hence, starting process
i with the above parameters amounts to execution of fork P ROC(i)(D, s).

On the sending side, sending such a message is actually similar to starting a new process though
not locally, through fork, but remotely on an arbitrary processor. Therefore, we call sending such a
message a remote process call. Its implementation is simpler than the implementation of channels, since
no synchronization is required. For the implementation of channels we already used indices 0\ . .. , N - 1.
For these remote process calls we use indices N, ... , N + M - 1.

proc Rcall (d, i: int; m: message_body)
I[Send(d,i+N,Shriek,m) 11

Process Router changes accordingly by adding ~he distinction between channel communications and
Remote Process Calls.

proc Router (var D: channel)
I[var m: message; I: inti s: semaphore;

s:= 0;

11

*[D?m.h;
[m.h.d = k ~ [m.h.tp = Shriek 1\ m.h.c < N ~ D?(p(m.h.c).v j); V(p(m.h.c).t)

1
1

~ m.h.tp = Shriek 1\ m.h.c ::': N ~ fork P ROC(m.h.c - N)(D, s); P(s)
~ m.h.tp = Query ~ V(p(m.h.c).s)

1
m.h.d # k ~ I := RF(m.h.d);

P(cs(l)); C(I)!m.h II D?m.c; C(I)!m.c; V(cs(l))

The table, PROC, can be filled in during execution of the program. A procedure that is used as such a
remote process has to satisfy the restrictions mentioned above. This implies that it is of the following
shape.

proc rpc (var D: channel; var s: semaphore)
I["declaration of local variables";

D? .. ; V(s);
"other actions"

11
Some form of synchronization is required while the table is being filled in, since otherwise processors may
call a process while it has not yet been defined. This may be implemented, for example, by some form of
global synchronization mechanism. It goes beyonq the scope of this paper to discuss this in detail.

For some applications it may be too expensive (in time and/or memory) to start a new process for each
call. The reason to start it as a new process is that in this way deadlock is avoided, as it is guaranteed
that the message is accepted and that process RQuter regains control. If the new process contains no
communication or synchronization actions by wh~'ch it becomes suspended and it is also guaranteed to

15

terminate, it is not necessary to start it as a process; it can be called simply as a procedure. This
can be recorded in table PROG and process Router can be adapted accordingly. An example of such
an operation is remote write through which a processor can write a value in the memory of another
processor. Operation remote read however, requires the value that is read to be returned to the caller.
Since this requires communication, remote read has to he started as a new process. Both operations are
eMily written using this mechanism of Remote Process Calls.

An abstraction mechanism that resembles our Remote Process Calls is the Remote Procedure Call.
Such a procedure call is semantically equivalent ~o a regular procedure call; however, it is executed by
another processor. As such it is synchronous: execution of the process on the caller is delayed until the
procedure call returns. We can implement each of the two mechanisms in terms of the other.

9 Conclusion

We have developed a small communication library based on a reasonable abstraction of a parallel machine.
Although the individual steps were not very complicated, the resulting program is quite involved. Through
a precise specification and a careful separation of concerns we were able to maintain a clear picture. In
this way we could also show the correctness of the program. In the implementation we have avoided to
use extra buffering. In this way the latency of communication is reduced.

The library can be extended with other communication primitives. Examples are the multicMt (one
process sends a message to a number of other processes), the barrier synchronization (synchronization of
a number of processes) and global aggregation of data. These operations can be implemented through
the use of Remote Procedure Calls'or, more efficiently, by incorporating them in in the routing system
described in section 6.

The mechanism of Remote Process Calls is also known M Asynchronous Remote Procedure Calls.
Sometimes the messages corresponding to such a process call are called active messages ([4], pp.481-496).

10 Acknowledgements

I want to thank Anne Kaldewaij and Peter Hilbers for detailed comments on an earlier version of this
paper. I want to thank Anne Kaldewaij and Tom Verhoeff for helpful comments on the current version.

References

[1] Back, R.J.R., On the correctness ofrefinement steps in program development, report A-1978-4, Abo
Akademo, Department of computer science, Finland.

[2] Dally, W.J., Seitz, C.L., Deadlock free message routing in multiprocessor interconnections networks,
Dept. Compo Science, California Institute of Technology, Tech. Rep. 5206:TR:86, 1986.

[3] Dijkstra, E.W., A discipline of programming, Prentice Hall, Englewood Cliffs, NJ, 1976.

[4] Hempel, R., et. al. (eds.), Parallal Computing, Special issue on message pMsing, 20 (1994).

[5] Hilbers, P.A.J., Lukkien, J.J.: Deadlock-free message routing in multicomputer networks. In: Dis­
tributed Computing, Vol. 3, Nr. 4, 1989.

[6] Hilbers, P.A.J., Processor networks and Mpects of the mapping problem, Cambridge University
Press, Cambridge, 1991.

[7] Hoare, C.A.R., Communicating Sequential Processes, CACM, VoI.21(8), pp.666-677, August 1978.

16

[8J Inmos ltd, Transputer Reference Manual, Prentice Hall, London, 1988.

[9J JaJa, J., An introduction to parallel algorithms, Addison Wesley, Amsterdam. 1992.

[lDJ Kumar, V., et a!., Introduction to parallel computing, Benjamin/Cummings publishing Company,
Redwood City CA, 1994.

[l1J Martin, A.J. An axiomatic definition of synchronization primitives, Acta Informatica, 16 (1981)
219-235.

[12J McColl, W.F., General purpose parallel computing, Programming Research Group, Oford University,
april 1992.

[13J MPI: a message passing interface standard, University of Tennessee, Knoxville, 1994.

[14J Geist, A., et a!., PVM 3 user's guide and reference manual, Oak Ridge National Laboratory, 1994.

[15J van de Snepscheut, J.L.A., Martin, A.J., Design of synchronization algorithms, In: M. Broy (ed.),
Constructive methods in computing science, NATO ASI series, Vol. F55, Springer-Verlag, Berlin,
1989.

[16J van de Snepscheut, J .L.A., What computing is all about, Springer-Verlag, New York, 1993.

[17J van de Snepscheut, J .L.A (Editor), Mathematics of program construction, conference proceedings,
LNCS 375, Heidelberg, 1989.

Computing Science Reports

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Riettnan

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J .M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 2l.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

, .

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.1. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 1. Coenen
1. Zwiers
W.-P. de Roever

92/02 1. Coenen
1. Hooman

92/03 J.C.M. Baeten
I.A. Bergstra

92/04 I.P.H.W.v.d.Eijnde

92/05 I.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. NederpeJt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags -

92/11 R.C. Backhouse
I.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 I.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 I.C.M.Baeten
1.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. 11 o.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Aoyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Pan II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.K1ein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A. C. Verlcoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Ge1drop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
I.H.M. Korst
P J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A usefu11ambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Pan I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Pan II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Pan III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Pan IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Pan V: Specification Language, p. 89.

93/14 I.C.M. Baeten
I.A. Bergstra

93/15 I.C.M. Baeten
I.A. Bergstra
R.N. Bol

93/16 H. Schepers
1. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Vemoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. KIoks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 I. Deogun
T. KIoks
D. Kratsch
H. Milller

93/31 W. Kllrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and I. Moonen

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine "--calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

lLIAS, a sequential language for parallel matrix
computations, p. 20.

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. B runekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.HL Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Kornatzky

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in P/T Nets,
p.23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

94/02 F. Kamareddine
RP. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Milller

94/13 R. Seljee

94/14 W. Peremans

94/15 R.J.M. Vaessens
E.H.L. Aarts
J.K. Lenstra

94/16 RC. Backbouse
H. Doornbos

94/17 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

Canonical typing and n-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Soucture, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network SOUcture.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and multiple­
keyword pattern matching algorithms, p. 46.

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

Beyond j3-Reduction in Church's A.~, p. 22.

94/21 B.W. Watson An introduction to the Fire engine: A C++ toolkit for
Finite automata and Regular Expressions.

94/22 B.W. Watson The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressi­
ons.

94/23 S. Mauw and M.A. Reniers An algebraic semantics of Message Sequence Charts, p.
43.

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Vemoeven

94/29 J. Hooman

94/30 J.C.M. Baeten
J .A. Bergstra
Gh. ~tefanescu

94/31 B.W. Watson
R.E. Watson

94/32 J.1. Vereijken

94/33 T.Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

Abstract Interpretation of Reactive Systems:
Abstractions Preserving I;tCTL*, 3CTL* and CTL*, p. 28.

K,)-free and W,-free graphs, p. 10.

On the foundations of functional programming: a
programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and n-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

A ,

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 J. Engelfriet
lJ. Vereijken

94/43 R.c. Backhouse
M. Bijsterveld

94/44 E. Brinksma J. Davies
R. Gerth S. Graf
W. Janssen B. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C.Rump J. Zwiers

94/45 G.J. Houben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. Bloo
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 lC.M. Baeten
lA. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. Miil1er

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems,
p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice M.
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratie­
ve Logistiek", p. 43.

The A-cube with classes of tenns modulo conversion,
p. 16.

On n-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
BranChing Time Logic Model Checking, p. 20.

	Abstracts
	1. Introduction
	2. Program notation and semantics
	3. The mapping problem
	4. Action refinement
	5. A shared-memory implementation
	6. Routing messages
	7. A distributed implementation
	8. A communication labrary
	8.1 Dynamic configuration
	8.2 Remote Process Calls
	9. Conclusion
	10. Acknowledgements
	References

