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Abstract 

In order to develop portable parallel software a. reasonable abstraction from parallel hardware is 
necessary. Over the last few years, such abstractions have become available in the form of communi­
cation libraries. In this paper we first look at the mapping of parallel programs onto networks and we 
show how this can be generalized into a small but powerful communication library. The focus of the 
discussion is on the derivation of the processes implementing the library. During the design, efficiency 
is a key issue. In particular, we pursue a low latency for communications by avoiding buffering as 
much as possible. 

1 Introduction 

1 

An important reason to construct parallel programs is that a high performance may be achieved when 
such a program is executed by a parallel machine. With this prospect of increased performance as a 
driving force, programs were often designed for a particular target architecture. Since many different 
architectures have become available this resulted in special-purpose solutions. It has been recognized 
that this frustrates the development of portable software, i.e., of software that can be used on a new 
. architecture after only minor modifications. 

Another approach to parallel programming is to develop programs for some idealized model of a 
parallel computer, e.g., for a PRAM ([9]). Although this has lead to important results in complexity 
analysis it has not lead to practical methods to develop parallel programs, partly because these idealized 
models cannot be implemented realistically. 

These developments have lead to the definition of models that are both general and admit an effi­
cient implementation on a variety of architectures. One such model is the Bulk Synchronous Computer 
(BSP, [12]). In this model, the parallel machine consists of a set of processors, each having a local mem­
ory. Each processor has access to all non-local memories in a uniform and efficient way. Each processor 
executes the same program, acting on local data. Such a program consists of a sequence of computation 
and communication steps. Each communication step is basically a rearrangement of information in the 
local memories. The importance of such a model is that it admits a reasonably simple performance anal­
ysis and that it can be implemented straightforwardly as we show in this paper. Other models are the 
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ones provided by communication libraries like Parallel Virtual Machine (PVM, [14]) or Message Passing 
Interface (MPI, [13]). In these models a parallel program consists of a collection of communicating pro­
cesses; the program is executed by a collection of processors. The library provides a variety of routines 
for process creation and for communication and synchronization between the processes. The abstrac­
tion from physical topology is most important in all these models. For each particular architecture the 
problem of implementing the model remains. For a recent overview of communication libraries we refer 
to [4]. 

The success of using an abstract model of a machine, like a communication library, is largely deter­
mined by the efficiency of the implementation of communication. When we say that a model cannot be 
implemented realistically, we mean that the overhead in terms of communication time is prohibitively 
large. The time required for a communication is determined by two parameters: the latency of mes­
sage transmission (I) and the throughput of the channel that exists between the two partners in the 
communication (t). The time to transmit a message of length k is given by l(k) + kt. It is not hard 
(though expensive) to design channels with a high throughput; it is the latency that largely determines 
the usefulness of the parallel machine. This is due to the fact that the latency determines the time that 
elapses before a process can receive an answer to any message that it sent. The implementation of PVM 
on a workstation demonstrates this aspect painfully. Therefore, it is important that communication is as 
efficient as possible. 

In this paper we construct a communication library which, though small, resembles the ones mentioned 
above. It can also be used in an implementation of the BSP model. We first look at how to map a parallel 
program onto a parallel machine. The program is designed as a collection of communicating processes; 
the machine consists of a collection of processors, each having a local memory and being connected to a 
limited number of neighbors; the local memories may also be shared. We look at a limited instance of 
this problem: we assume that the mapping of processes onto processors is given. The task that remains 
is the mapping of the communication channels in the program onto the physical network. Since all 
buffering adds to the latency, we pursue a low latency by minimizing the amount of buffering during the 
transmission of a message. The solution to this mapping problem is generalized, resulting in a set of 
communication routines. 

The paper is organized as follows. In the next section we introduce our program notation. In order to 
make this paper self-contained we include a few examples and some discussion. In section 3 we describe 
the mapping problem mentioned above. If two processes are mapped onto the same processor, a channel 
between the processes is mapped onto the local memory of that processor; this is described in section 5. 
General transmission of messages in a network is presented in section 6 which is then used in section 7 to 
obtain a distributed implementation of the mapping. These results are generalized to the construction 
of a small library of communication routines in section 8. We end with some conclusions. 

2 Program notation and semantics 

Our program notation is based on Dijkstra's guarded command language and Hoare's CSP ([3, 7], see also 
[16]). Instead of do b _ 5 od to denote a repetition, we write *[b - S]; for the particular case of b = true 
we write *[S]. Instead ofifbo - 50 0 b1 - 51 ... fi to denote a selection, we write [bo - 50 0 b1 - 51 ... ]. 
Execution of the selection amounts to executing one of the statements 5i for which the corresponding 
guard bi holds. We use "1[" and "JI" for opening and closing a context respectively. Procedure and variable 
declarations are similar to the Pascal conventions. As an example, the following procedure returns in 
parameter 9 the greatest common divisor of positive parameters x and y. 



proc gcd (x, y: int; var g: int) 
I[ *[ x of y -+ [ x < y -+ y := y - x 

~ x > y -+ x := x - y 

1 
1; 
g:= x 

11 

3 

The notation is extended in order to describe concurrency. The concurrent execution of statements SO 
and Sl is denoted by SO II S1. Its execution amounts to the simultaneous execution of the actions 
of SO and Sl while the order of the actions as specified in SO and Sl is preserved. Operator "II" is 
called parallel composition; it takes precedence over sequential composition. The statements in a parallel 
composition are called processes although we will generally use this term only if they are procedure calls. 
The declaration of the corresponding procedure is also called a process. A second way to denote parallel 
execution is to precede a procedure call with the keyword fork. The called procedure is then executed 
concurrently with the caller. 

Processes can communicate through directed channels. A channel can be regarded as a communication 
link between two processes. For each channel c t~ere is one sender and one receiver. Sending the value 
of expression e along the channel is denoted by e!e; receiving a value which is then stored in variable x is 
denoted by c?x. These two actions are called an output and an input action respectively. We require that 
output and input actions are synchronized. Execution of an input or output statement is suspended until 
the partner is ready to perform the corresponding output or input statement. The concurrent execution 
of an output and an input action, therefore, amo]Jnts to the assignment x := e. As an example we give 
a process that copies the positive values received along its input channel c to its output channel d. 

proc filter (var c, d: channel) 
I[ var x: int; 

*[ c?x; [x > 0 -+ d!x ~ x ::; 0 -+ skip II 
11 

The above procedure for computing the GCD can be adapted into a process that computes the GCD of 
all pairs it receives along its input channels c and d and returns the results along its output channel e. 

proc gcd (var c, d, e: channel) 
I[ var x, y: int; 

11 

*[ c?x II d?y; 

1 

*[ x of y -+ [ x < y -+ y := y - x 
~ x > y -+ x := x - y 

1 
J; 

e!z 

Two of the above filter processes are combined with a gcd as follows. 

proc gcd_checked (var A, B, C: channel) 
I[ var a, b: channel; 

filter (A, a) II filter (B, b) II gcd (a, b, C) 

11 
The capitalized channels are inputs and outputs to the environment of this process. The internal channels 
(a and b) are not visible from the environment. 
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In this paper we are mainly concerned with the implementation of these communication actions. To 
that end we need a formalization. This formalization is used in two ways. On the one hand) we regard it 
as a requirement for an implementation, i.e., an implementation satisfying this formalization is called a 
channel. On the other hand, given an implementation of communication actions we use the formalization 
to prove facts about programs. Our formalizatio~ is based on [11, 15J. 

From the above description of input and output actions we obtain two requirements, viz. that input 
and output are synchronized and that together they implement a (distributed) assignment. These two 
can be regarded as safety requirements. Besides this we have a progress requirement which is necessary 
because execution of communication actions may become blocked (suspended). This third requirement 
is that unnecessary blocking does not occurl. In order to formalize the requirements, we introduce two 
notions referring to the state of the program during execution. For A an action in a program, #A denotes 
the number of completed executions of A. The first requirement for a channel c is 

CO: #c! = #c? 

Since processes may become suspended on execution of an action, we introduce qA to denote the number 
of processes suspended on execution of A. No unnecessary blocking is then expressed as follows. 

C1: Sel = 0 v sc? = 0 

Finally, the requirement that input and output implement an assignment is expressed by 

C2: {P;'} c!e II c?x {P} 

A pair of actions satisfying CO through C2 is saicj to implement a channel. 

The advantage of using channels for communication between processes is that there is no interference 
between processes apart from these communicatiqns. This supports the modular development of parallel 
programs. However, there are problems that benefit from other communication mechanisms. In par­
ticular, if two processes have access to the same :memory they may communicate through this memory. 
For synchronization between such processes we use semaphores. A semaphore s is an integer with initial 
value So. Operations on s are pes) and V(s) wit:p. the effect of decrementing s by 1 and incrementing s 
by 1 respectively. The restriction is that s never becomes negative; if execution of a P operation would 
result in decreasing s beyond 0 the process executing the operation becomes suspended. Together with 
the requirement that unnecessary blocking is not allowed this results in the following three requirements. 

SO: s ~ 0 

Sl: s = So + #V(s) - #P(s) 

S2: (s = 0 V Spes) = 0) /\ gV(s) = 0 

We do not discuss implementations of semaphores in this paper. Hence, we use SO through S2 only to 
prove facts about programs with semaphores. 

Semaphores are often used to provide exclusive access to variables or other resources. As an example, 
let v be a variable, shared by processes X and Y which increment v every now and then. Semaphore s 
with initial value 1 is used to provide mutually exclusive access to v. 

proc X 
I[ *[ actions, not using v; 

P(s); v := v + 1; V(s) 

J 
11 

proc Y 
I[ *f actions, not using v; 

P(s); v := v + 1; V(s) 

J 
J I 

1 In fact this requirement holds for all actions in the program, not only for communication actions. For example, the fact 
that execution of an assignment never becomes suspended is not mentioned explicitly. 
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As an illustration, we present a short proof for mutual exclusion on variable v. In order to distinguish 
the actions of the two processes we use the name of the process as a subscript. From the topology of the 
program we derive that the state in which variable v is accessed by process X is characterized by 

#Px(s) = #V xes) + 1 

Similarly, the state in which process Y accesses v is 

#Py(s) = #Vy(s) + 1 

The conjunction of the two describes a state in which both processes may modify v. 

#Px(s) = #V xes) + 1 II #Py(s) = #Vy(s) + 1 

:} {#P(s) = #Px(s) + #Py(s), #V(s) = #V xes) + #Vy(s), calculus} 

#V(s) - #P(s) = -2 

= {so = 1,Sl} 
s =-1 

= {SO} 
false 

Hence, exclusive access to variable v is guaranteed. In order to prove progress one has to show that X 
and y' are never suspended at the same time. This follows from S2 using similar reasoning. 

3 The mapping problem 

A program written in a language like the one described in the previous section consists of a collection of 
communicating processes. This collection changes dynamically as new processes are created and processes 
terminate. Some of the communication between these processes goes through shared variables and some 
of it through message passing. This program has to be mapped onto a machine consisting of a collection 
of processors together with an interconnection network. In order to simplify matters we assume that 
this mapping has to be done only once, viz., initially. Hence, only the processes in an outermost parallel 
construct are mapped. 

In order to specify the problem more precisely we introduce some formalization. The parallel machine 
is represented by a directed graph, GI = (VI, EJ) called the implementation graph. The vertices of G I 
represent the processors and the edges of GI the directed connections between the processors. Associated 
with each edge e is a weight, wI(e), which is either 0 or 1. In case the weight is 0 the processors share 
their memory (and in that case we have edges both ways); if the weight is 1 communication between the 
two processors is through message passing'. As a result, there is a self loop of weight 0 for each vertex. 
The program is also represented by a directed graph, Ge = (Ve, Ee) called the computation graph. The 
vertices in the graph represent the processes in the program. For each channel between processes in the 
program we have an edge in the graph. This edge has weight 1. For every pair of processes communicating 
through shared memory we have edges in both ways between the processes; these edges have weight O. 

For edge (v, w) we call v the source and w the target. A path in a graph is a non-empty sequence 
of edges such that, for all but the last edge in this sequence its target equals the source of its successor. 
The source of a path is the source of the first edge in the path; similarly, for a finite path the target is 
the target of the last edge in it. For a path p these are denoted by s.p and t.p respectively. We do not 
distinguish between an edge and a path of length one. The set of finite paths in a graph G is denoted 

2 Of course one could argue that through such a physical connection we can simulate a shared memory but this is one of 
the problems we are solving. 
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by peG). The length of a path is the sum of the weights of the edges on the path. The most general 
formulation of the mapping problem is as follows. 

Mapping problem Given a computation graph Ge and an implementation graph G I, find a function 
m = (mv,mE): (Ve,Ee) --> (VI,P(G/)) that satisfies 

s.mE(e) = mv(s.e) 

t.mE(e) = mv(t.e) 

A discussion of this problem can be found in [6]. In this paper we assume that function mv is given. 
The problem that remains is the construction of mE and programs to implement it. This amounts 
to the problem of using the shared memory for channel communications (when a channel is mapped 
onto an edge of length 0) and the problem of using the physical connections for many of these channel 
communications. We adopt one restriction on mv: processes using shared memory are mapped either 
onto the same processor or onto processors with shared memory. This implies that edges of weight 0 can 
be mapped onto edges of length O. 

4 Action refinement 

The requirements for semaphores and channels as listed in section 2 define the execution of the corre­
sponding actions as indivisible. For example, requirement CO does not allow intermediate states in which 
one of the communication actions has been completed and the other one has not. In an implementation 
of these actions this atomicity cannot always be guaranteed: as soon as several simple actions are used to 
implement a complex action it is possible that intermediate states occur, possibly violating the require­
ments. Implementing an action by simpler ones is called action refinement. Formal discussions on the 
subject can be found in [1, 17]. We illustrate this by an example of an implementation. 

If two processes communicating along a channel are mapped onto the same processor or onto pro­
cessors with shared memory, we map the channel onto an edge of length 0 using shared memory. The 
implementation has to satisfy CO through C2. We focus on CO, the synchronization requirement. Syn­
chronization via a shared memory can be achiev~d through semaphores. We recall from section 2 that 
semaphores provide a means of "one-way synchronization": for semaphore s with initial value ° and 
actions X and Y defined by 

X: V(s) 

Y: pes) 

we have that #X 2': #Y. This condition realizes already a part of CO. A second semaphore, t, also with 
initial value 0 is needed to establish the synchronization in the other direction. We choose instead of the 
above 

X: V(s); pet) 

Y: pes); Vet) 

Now, X and Y appear to satisfy CO. However, because X and Y have become compound actions we 
have introduced two problems. First, we have to be more explicit about the meaning of #A and qA for 
a compound action A. We extend this as follows' The number of completed executions of a compound 
action is the number of times the last action of this compound action is executed. A process is suspended 
on a compound action if it is suspended on any of the constituent actions. Second, we have introduced 
the non-atomicity mentioned above. For example, a state exists in which Y has been completed but X 
not yet. As a result the implementation does not satisfy the strict synchronization requirement CO. 

In order to allow action refinement, we have to allow that requirements are violated temporarily. We 
introduce the following rules. 
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1. The requirements hold whenever all participating processes are at a point outside the implementa­
tion. 

2. A state in which the requirements are violated does not persist. 

A persisting state is also called a stable state. It is a state in which all participating processes are 
suspended or have terminated. We usually prove the correctness by showing that a state for which 
a requirement does not hold is one which is unstable and for which at least one process is inside the 
implementation. 

With this relaxed formulation of the rules, we can show that X and Y satisfy CO. The proof proceeds 
by using invariants, derived from the program text, and properties of semaphores (SO through S2). From 
the program text we derive 

#V(s) 2: #P(t) 
#P(s) 2: #V(t) 

We consider the states in which CO does not hold. 

#X f. #Y 
= {#X = #P(t), #Y = #V(t), calculus} 

#V(t) > #P(t) V #V(t) < #P(t) 

= {to = 0, SO, SI : #V(t) 2: #P(t)} 
# V(t) > #P(t) 

{(2)} 

#P(s) > #P(t) II #V(t) > #P(t) 
=} {so = 0, SO, SI : #V(s) 2: #P(s)} 

#V(s) > #P(t) II #V(t) > #P(t) 

(1) 

(2) 

From the first conjunct we conclude that a state in which CO does not hold is one in which the process 
executing the implementation of X is at the semicolon immediately preceding P(t). But it is not blocked 
in this state as follows from the second conjunct and to = 0, together implying t > O. Hence, the only 
state in which CO does not hold is one inside the implementation and it is unstable. 

5 A shared-memory implementation 

We continue the example of the previous section. Stated more precisely, for a channel c we want re­
finements of actions c!e and c?x that satisfy CO, Cl and C2. It was already demonstrated that two 
semaphores can be used to implement synchronization on a shared memory. Hence, for a channel c we 
introduce a data structure (c,s, c.v, c.t) where c.s and C.t are semaphores with initial value a and c.v is 
a variable capable of storing one element of the type of c. Synchronization is achieved through c.s and 
c.t; C.v is used to pass a value along the channel. We have to see to it that an assignment to c.v and 
inspection of c.v happen in the right order. The refinement is as follows. 

c?x: V(c.s); P(c.t); x:= c.v 
c!e: P(c.s); c.v := e; V(c.t) 

We have to prove that this refinement satisfies poth Cl and C2; the correctness of CO was already 
shown in the previous section. That same proof is still valid as we only introduced some extra unstable 
states within the implementation. Requirement Cl follows in a similar way as CO: just inspect the 
states in which it might not hold and show that these states, if they exist, are unstable and inside the 
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implementation. This is left to the reader. The proof of correctness of C2 is more involved. We have to 
show that the assignments are executed in the right order. This follows if as a precondition for "c.v := e" 
we have #(c.v := e) = #(x:= c.v) and as a precondition for "x := c.v", #(c.v := e) = #(x := c.v) + 1. 
We prove the former. As a precondition for "c. v := e" we have 

#P(c.s) = #(c.v := e) + 1 = #V(c.t) + 1 

Using S2 for both c.s and c.t we obtain 

#V(c.s) :::: #P(c.s) = #(c.v:= e) + 1 = #V(c.t) + 1:::: #P(c.t) + 1 

Since the difference between #V(c.s) and #P(c.t) is at most 1, equality holds. We conclude that the 
process executing c?x is suspended on execution of P(c.t). Hence, 

#P(c.t) = #(x:= c.v) 

From this we conclude that the required precondition holds. The proof of the validity of the second 
precondition is left to the reader. 

Remark. Instead of using a variable to record a message passed along the channel, one may pass the 
address of the variable in which the message has to be stored. 

c?x: c.v:= address(x); V(c.s); P(c.t) 

c!e: P(c.s); c.vi := e; V(c.t) 

(3) 
(4) 

In this way a fixed amount of memory is used for the implementation of a channel. More importantly, 
the message is not copied an extra time thus limiting the latency. 

6 Routing messages 

Now we consider the problem of mapping a channel onto a path of positive length. The result of this 
mapping is that messages communicated along the channel somehow have to be transported along the 
physical connections represented by the path. This is a motivation to study the transportation or the 
routing of messages first. In the next section we focus on how this message routing may be used to 
implement the required functionality. 

First we give a more detailed description of the implementation graph. We assume that it consists 
of P processors, numbered 0, ... , P - 1. Each processor has some local memory that may be shared 
with other processors. Each processor is capable of executing multiple processes in a time-sliced fashion. 
These processes may communicate through the shared memory using semaphores as described before. As 
a notational convention we use the number of a processor as a subscript for variables if this is relevant. 

The physical connections to other processors are modeled in the language as arrays of channels: 
processor k has outgoing channels Ck(i : 0 ~ i < mk) and incoming channels Dk(i : 0 :::; i < nk)J hence, 
we implicitly assume that communication between connected processors has been implemented. How 
this can be done can be found, for instance, in [8]. Notice that, if two processors communicate through 
shared memory only, we may use the implementat.ion of the previous section to model a channel between 
the processors. 

We develop additional processes for routing messages from a source processor to a target processor. 
In such a process it is necessary to decide to which outgoing channel a message has to be forwarded. On 
each processor k we introduce a routing function,· RF", specified as follows. 

RFk(d) = i == ek(i) is the first step on a path from k to d 
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Hence, if a message has to be sent from k to d it is transmitted by k along C.(RF.(d))3. By applying 
this repeatedly, the message finally arrives at its destination. As a result we require that each message is 
accompanied by the identification of its destination. A message m is a pair, (m.h, m.c). We call m.h the 
header and m.c the contents of the message. The destination of the message is given by m.h.d. 

On each processor we introduce for each incoming channel D( i) a process that accepts messages from 
D(;) and forwards them, if they are destined for another processor or handles them if they are destined 
for this processor. Since in this way all these processes use the outgoing channels we need exclusive access 
to each outgoing channel. This is done by using semaphore C8(1) for each channel C(I). Given the routing 
function, the forwarding of messages becomes trivial. This results in the following process definition. 

proc Router (var D: channel) 
I[ var m: message; I: int; 

]1 

*[ D?m.h; 
[ m.h.d = k ~ D?m.c; "handle m" 
~ m.h.d'" k ~ 1 := RF(m.h.d); 

] 
] 

P(C8(1)); C(I)!m.h II D?m.c; C(I)!m.c; V(C8(1)) 

A process on processor k sending a message to a processor d =1= k executes a similar program as is used 
for forwarding a message. We use the following procedure. 

proc Send (d: int; z: messsage_body) 
I[ var h: message_header; I: int; 

h.d:= d; 1 := RF(d); 
P( C8(1)); C(I)!h; C(1)!z; V( C8(1)) 

]I 

With respect to the correctness of this program we have to prove two facts. First, each message is 
transported to the correct destination, and second, no deadlock occurs. The first follows simply by 
induction on the length of the path generated by RF. In order to analyze the possibility of deadlock we 
introduce some notation. Let Q = (VQ, EQ) be the graph defined as follows. 

Z E VQ == Z EEIAwI(Z) = 1 

(z, y) E EQ == (3d:: RF,x(d) = Z A RFtx(d) = y) 

In words, VQ consists of the physical connections in the implementation graph and EQ contains a pair 
of physical connections (z,y) if a message may pe routed from Z onto y. The graph Q is (statically) 
determined by both Gland the routing function RF. 

For each element x of VQ we have a router process, Router (x). A deadlock is a stable state in which 
a number of these router processes is suspended o~ actions other than input actions along their incoming 
channels. By inspection of the text we learn that router processes may become suspended in one of three 
ways: 

1. on inputs from D, 

2. on a P operation on C8(t) or on a communication along Crt), 

3. on handling a message locally. 

3Each channel Ck(i) corresponds to an element v of the set E[ as well. With a slight abuse of notation we also say 
RF.(d) ~ v. 



The first case does not contribute to a deadlocked state. Let R = (VR, ER) be the graph defined by 

VR=VQ 

(x, y) E ER '" Router (x) is waiting for y (the second case above) 
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This graph is determined by RF and G I as well, but it dynamically changes. From the program text 
of Router we observe that R is a subgraph of Q. Consider a non-empty set of suspended routers, 
corresponding to a subset of VR . We can choose a path in this set for which we have two possibilities: the 
path is infinite or it is finite. In the first case the path must contain a cycle since VR is finite. In the second 
case we have that for the last element of this path it must be suspended on handling a message. We 
conclude that deadlock can he avoided and, hence, messages are delivered eventually when the following 
two rules are obeyed. 

1. The graph Q is acyclic (hence, R is acyclic as well). 

2. Handling a message eventually terminates. 

The first rule actually restricts RF. We may ask whether we can find such an RF for each strongly 
connected network such that still messages can pe transmitted between each pair of processors. The 
answer is twofold: indeed, it is possible to find' such an RF by restricting the routes that messages 
may take. If this is considered to be too expensive the technique of introducing virtual channels ([2, 5]) 
may be applied. It goes beyond the scope of this paper to discuss the latter in detail. However, using 
virtual channels boils down to multiplexing several of these virtual channels onto one physical channel. 
Multiplexing a number of channels onto one physical channel is in fact a special case of the mapping 
problem and, hence, our solutions can be used for multiplexing as well. 

The second rule is realized in most message passing systems by claiming a buffer for each message 
that arrives. Since we pursue a low latency, we develop different solutions. 

In the above algorithms we have used a type message consisting of a header and a contents. In process 
Router the entire contents is read before it is forwarded. This method is known as store-and-forward 
routing (see, for instance, [5, 10]). A much lower latency is obtained using cut-through or wormhole 
routing in which case a message is split into packets of some fixed size. A second advantage of using cut­
through routing is that the message buffers may be of a fixed, limited size. An algorithm for cut-through 
routing can be used instead of the above store-an~-forward routing. This does not affect the correctness 
of the algorithm, only the efficiency. 

7 A distributed implementation 

Using the routing processes of the previous section, we complete the implementation of channel commu­
nication actions for a channel c which is mapped onto a path of positive length. Let the source and the 
target of the path be denoted by A and B respectively. Hence, the problem is to find implementations 
for c!e on A and c?x on B that satisfy CO through C2. From section 5 we recall the shared-memory 
implementation consisting of (3) and (4). 

c?x: c.v:= address(x); V(c.s); P(c.t) 

c!e: P(c.s); c.vi:= e; V(c.t) 

We distribute these actions across A and B by distributing the data structure associated with c. If an 
action cannot be performed because the variable 'is not local, a message is sent. Handling the message 
then results in the required action. Not all actions can be dealt with in this way and this guides the 
distribution. We analyze for each action which processor has to perform it. 
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1. C.V r:= e has to be performed on B since it directly refers to writing a value into the memory. 
Hence, e. v is local to Band e. v := address( x) has to be performed on B as well. 

2. Execution of a P operation can result in suspension. Therefore, execution of a P operation cannot 
be implemented by sending a message. Hence, processor A stores c.s and B stores c.t. 

We obtain the following distributed implementation. 

(B) e?x: e.v:= address(x); Send (A, "V(e.s)"); P(e.t) 

(A) e!e: P(e.s);Send (B, "e.vi:= e");Send (B, "V(e.t)") 

We use process Router, developed in the previous section for forwarding the messages. The only modi­
fication made in Router is in handling the message at the destination; the part referring to forwarding 
messages remains the same. 

The two Send actions in c!e can become one action. It is not necessary to include anything referring 
to the V operations in a message since processes Router on A and B can execute the appropriate actions 
based just on the receipt of a message. This means that sometimes and empty message is sent, denoted 
by "-". 

(B) e?x: c. v := address(x); Send(A, -); P( c.t) 

(A) e!e: P(c.s); Send(B, e); 

Process Router on A becomes 

and on B 

proc Router (var D: channel) 
I[ var m: message; I: inti 

]1 

*[ D?m.h; 
[ m.h.d = A ---> V(c.s) 
~ m.h.d # A ---> 1 := RF(m.h.d); 

1 
] 

P(es(l)); C(l)!m.h II D?m.c; C(1)!m.c; V(cs(l)) 

proc Router (var D: channel) 
I[ var m: message; I: inti 

]I 

*[ D?m.h; 
[ m.h.d = B ---> D?(e.vi); V(c.t) 
~ m.h.d # B ---> 1 := RF(m.h.d); 

] 
] 

P(cs(l)); C(1)!m.h II D?m.e; C(l)!m.c; V(cs(l)) 

thus executing the actions that cannot be performed by the sender of the messages. The correctness 
follows from the discussions in the previous sections. Notice that handling of messages in both Routers 
always terminates since only non-blocking operations are executed. 

We have now mapped exactly one channel, viz., c. For a process on A it is an outgoing channel and 
for a process on B it is an incoming channel. This is reflected in the program text of the routers for 
these processors. In the general case, each processor has both incoming and outgoing channels and it has 
more than one of them. We observe that we need to make a distinction between incoming and outgoing 
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channels, i.e., between actions that are part of e!e and those that are part of c?x. Therefore, we introduce 
a message type in the header, m.h.tp that can be either Shriek or Query corresponding to these two cases 
respectively. We also make the channel a parameter by introducing it as part of the message header, 
m.h.c. This results in the following implementation. 

proc Send (d: int; c: channeLid; tp: message_type; z: messsage_body) 
I[ var h: messageJ,eader; I: int; 

11 

h.d:= d; h.c:= c; h.tp:= tp; 1:= RF(d); 
P(cs(l)); C(I)!h; C(1)!z; V(cs(l)) 

proc Router (var D: channel) 
I[ var m: message; I: int; 

]I 

*[ D?m.h; 
[ m.h.d = k ---> [ 

~ 
1 

m.h.tp = Shriek ---> D?(m.h.c.vil; V(m.h.c.t) 
m.h.tp = Query ---> V(m.h.c.s) 

~ m.h.d =F k ---> I := RF(m.h.d); 

1 
1 

P(cs(/)); C(I)!m.h II D?m.c; C(1)!m.c; V( cs(l)) 

(B) c?x: c.v:= address(x); Send(A, c, Query, -); P(c.t) 

(A) c!e: P(c.s); Send(B, c, Shriek, e); 

Finally, we observe that A, B, and c are parameters of this implementation. Together with the results of 
the previous section we conclude that this implementation is correct for arbitrary channels and pairs of 
processors. 

This completes our solution to the problem of constructing mE. These programs can be generated 
automatically by a compiler, based on descriptions of the computation graph and the implementation 
graph. 

8 A communication library 

Until now we have looked at the problem as a compilation problem, i.e., as a problem that has to be 
solved statically, by a compiler. In this section we develop a different point of view. We first generalize 
the programs such that channels can be defined dynamically, under control of the program. Then we 
introduce the concept of Remote Process Calls which supports an asynchronous form of message passing. 
This results in a small collection of procedures comprising a library of communication routines. We rely 
heavily on the implementations given in the previous sections. 

8.1 Dynamic configuration 

In the mapping of a channel onto a path, the name of a channel was used to send information between 
the two partners in a communication. On processor A, c was used to send information and on processor 
B it was used to receive information. In fact, the pairs (A, c) and (B, c) played the role of two "sides" of 
a channel. From now on we call these sides pons, 'denoted by CA and eB respectively. 

In the previous section two ports were connected automatically through the fact that c had to be 
mapped onto a path from A to B. The data structure (c.s, c.v, c.t) was distributed. Hence, port CA was 
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actually identified by CA.S and CB by (CB.V,CB.t). This asymmetry reflects the fact that the first port 
is used for sending values while the other one is used for receiving values. We restore the symmetry by 
associating a port p with (p.s, p.v, p.t). In this way, two ports make up a pair of channels and a port can 
be used both for sending and for receiving values. On each processor k we introduce an array of ports, 
P.(i : a ~ i < N). Two ports PA(i) and PB(i) for a ~ A, B < P and a ~ i, j < N can be connected 
to form a channel. For each port P the partner port has to be recorded, identified by a pair consisting 
of a processor and a port index. We record this as part of the data structure associated with a port p: 
(p.proe, p.port) and we leave it to the program to connect two ports. Notice that for consistency reasons 
we need 

PA(i).proc = B 1\ PA(i).port = j PB(i).proc = A 1\ PB(i).port = i 
For the implementation we can use basica.lly the same programs as in the previous section. The only 
distinction is that we now describe the sending and receiving of messages along a port. Instead of using 
the channel notation p(i)?x and p(i)!e, we use routines Por/Receive and Por/Send respectively. 

proc Send (proc,port: int; tp: message_type; z: messsage_body) 
I[ var h: message_header; I: int; 

11 

h.d:= proc; h.c:= port; h.tp:== tp; 1:= RF(d); 
P(cs(l)); C(I)!h; C(I)!z; V( cs(l)) 

proc PortReceive (i: int; var x: message_body) 
I[ p(i). v := address(x); Send(p( i).proc, p(i).port, Query, -); P(p(i).t) ]I 

proc PortSend (i: int; e: message_body) 
I[ P(p( i).s); Send(p( i).proc, p(i).port, Shriek, e) II 

proc Router (var D: channel) 
I[ var m: message; 1: int; 

II 

*[ D?m.h; 
[ m.h.d = k --> [ m.h.tp = Shriek --> D?(p(m.h.c).vT); V(p(m.h.c).t) 

~ m.h.tp = Query --> V(p(m.h.c).s) 

1 
~ m.h.d -I k --> 1 := RF(m.h.d); 

1 
1 

P(cs(l)); C(1)!m.h II D?m.c; C(I)!m.c; V( cs(l)) 

We use the following procedure for connecting two ports. 

proc Connect (i,pr,j: int) 
I[ p(i).proc:= pr;p(i).port := j II 

Notice that Connect has to be called twice, once for both ports. 

8.2 Remote Process Calls 

We recall from section 6 one of the requirements for deadlock-avoidance: handling a message must always 
terminate. In the above this has been realized by making communication synchronous. A different 
solution is obtained when a message is accompanied by the process that handles the message. If such a 



14 

message arrives at its destination the process that handles it is started as a new process. Its first task 
then is to retrieve the message. 

This idea is incorporated as follows. We recall that starting a new process is denoted by the keyword 
fork. The new process has to be started by process Router on receipt of a header. Since both this 
new process and Router use the same incoming channel for a while, exclusion is required through a 
semaphore s. Both the incoming channel and this semaphore are parameters to the new process. When 
the process has retrieved the message from the channel it performs a V operation on the semaphore. We 
assume that a process is identified by an index in a table, PROC(i: 0 ~ i < M). Hence, starting process 
i with the above parameters amounts to execution of fork P ROC(i)(D, s). 

On the sending side, sending such a message is actually similar to starting a new process though 
not locally, through fork, but remotely on an arbitrary processor. Therefore, we call sending such a 
message a remote process call. Its implementation is simpler than the implementation of channels, since 
no synchronization is required. For the implementation of channels we already used indices 0\ . .. , N - 1. 
For these remote process calls we use indices N, ... , N + M - 1. 

proc Rcall (d, i: int; m: message_body) 
I[Send(d,i+N,Shriek,m) 11 

Process Router changes accordingly by adding ~he distinction between channel communications and 
Remote Process Calls. 

proc Router (var D: channel) 
I[ var m: message; I: inti s: semaphore; 

s:= 0; 

11 

*[ D?m.h; 
[ m.h.d = k ~ [ m.h.tp = Shriek 1\ m.h.c < N ~ D?(p(m.h.c).v j); V(p(m.h.c).t) 

1 
1 

~ m.h.tp = Shriek 1\ m.h.c ::': N ~ fork P ROC(m.h.c - N)(D, s); P(s) 
~ m.h.tp = Query ~ V(p(m.h.c).s) 

1 
m.h.d # k ~ I := RF(m.h.d); 

P( cs(l)); C(I)!m.h II D?m.c; C(I)!m.c; V( cs(l)) 

The table, PROC, can be filled in during execution of the program. A procedure that is used as such a 
remote process has to satisfy the restrictions mentioned above. This implies that it is of the following 
shape. 

proc rpc (var D: channel; var s: semaphore) 
I[ "declaration of local variables"; 

D? .. ; V(s); 
"other actions" 

11 
Some form of synchronization is required while the table is being filled in, since otherwise processors may 
call a process while it has not yet been defined. This may be implemented, for example, by some form of 
global synchronization mechanism. It goes beyonq the scope of this paper to discuss this in detail. 

For some applications it may be too expensive (in time and/or memory) to start a new process for each 
call. The reason to start it as a new process is that in this way deadlock is avoided, as it is guaranteed 
that the message is accepted and that process RQuter regains control. If the new process contains no 
communication or synchronization actions by wh~'ch it becomes suspended and it is also guaranteed to 
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terminate, it is not necessary to start it as a process; it can be called simply as a procedure. This 
can be recorded in table PROG and process Router can be adapted accordingly. An example of such 
an operation is remote write through which a processor can write a value in the memory of another 
processor. Operation remote read however, requires the value that is read to be returned to the caller. 
Since this requires communication, remote read has to he started as a new process. Both operations are 
eMily written using this mechanism of Remote Process Calls. 

An abstraction mechanism that resembles our Remote Process Calls is the Remote Procedure Call. 
Such a procedure call is semantically equivalent ~o a regular procedure call; however, it is executed by 
another processor. As such it is synchronous: execution of the process on the caller is delayed until the 
procedure call returns. We can implement each of the two mechanisms in terms of the other. 

9 Conclusion 

We have developed a small communication library based on a reasonable abstraction of a parallel machine. 
Although the individual steps were not very complicated, the resulting program is quite involved. Through 
a precise specification and a careful separation of concerns we were able to maintain a clear picture. In 
this way we could also show the correctness of the program. In the implementation we have avoided to 
use extra buffering. In this way the latency of communication is reduced. 

The library can be extended with other communication primitives. Examples are the multicMt (one 
process sends a message to a number of other processes), the barrier synchronization (synchronization of 
a number of processes) and global aggregation of data. These operations can be implemented through 
the use of Remote Procedure Calls'or, more efficiently, by incorporating them in in the routing system 
described in section 6. 

The mechanism of Remote Process Calls is also known M Asynchronous Remote Procedure Calls. 
Sometimes the messages corresponding to such a process call are called active messages ([4], pp.481-496). 
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