

Choreography-based design of business collaborations

Citation for published version (APA):
Dijkman, R. M. (2006). Choreography-based design of business collaborations. (BETA publicatie : working
papers; Vol. 182). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/68f9e6bf-d1d0-4fff-bd82-77813568ee8b

Choreography-Based Design of Business Collaborations

Remco Dijkman

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

R.M.Dijkman@tue.nl

Abstract. We define choreography-based design as a design approach in which
a business process for a business collaboration (or choreography) is established
by the stakeholders in the collaboration. Subsequently, the stakeholders adapt
their internal business processes to the established choreography, to allow
successful collaboration. To assist in such a design approach, this paper
presents techniques to: (i) construct the choreography in a gradual manner,
based on step-wise refinement, allowing a designer to focus on the most
important problems of the choreography first and then gradually introduce more
detail; and (ii) check if at one level of detail the aspects from the previous level
of detail are observed. We define these techniques at a sufficient level of detail,
such that they can be implemented and supported by tools.

1 Introduction

This paper presents design techniques for choreography-based design. We define
choreography-based design as a design approach in which a business process for a
business collaboration is established by the stakeholders in the value chain. We call
the established business process a choreography. A choreography specifies the
messages that stakeholders in a value chain exchange and a contract that applies to
these messages. This contract can, for example, specify the possible orderings of the
messages, time constraints and encoding of the messages that allows automated
exchange of the messages. Stakeholders that want to participate in the value chain
must then conform to the choreography.

To assist in choreography-based design, this paper presents:
1. deliverables that can be produced during a choreography-design trajectory based

on the ideas of step-wise refinement. These ideas allow a choreography designer to
first focus on the important aspects of a business collaboration and gradually
introduce more detail, until a level of detail is reached at which the collaboration
can be implemented. The deliverables that we use are taken from the Let’s Dance
approach to choreography-based design [3];

2. formal relations between the deliverables, which allow us to check if, at one level
of detail, the aspects from the previous level of detail are observed.

We focus our techniques on the control flow aspect of choreography-based design.
We define our formal relations, based on a formalization of the deliverables in

terms of Petri nets. Subsequently, we analyse the relations between the deliverables

2 Remco Dijkman

and present them formally as relations on the Petri nets. This leads to a specification
of the techniques at a sufficient level of detail for them to be implemented in a tool.

The work presented in this paper is an application of the multi-viewpoint theory
from [4] to the Let’s Dance approach to choreography-based design [3]. We apply the
theory by considering each of the Let’s Dance deliverables a viewpoint in terms of the
theory from [4].

Another approach to service-oriented design that defines relations between
deliverables is given in [10]. This approach uses a different formalism to define the
relations between the deliverables. Also, although it considers the design of a
choreography at increasing levels of detail, it does not consider some of the
deliverables that in our opinion help to structure the design process further. The P2P
approach [1] presents formal relations, between deliverables in inter-organisational
workflows, based on Petri nets. However, this approach does not consider some of the
deliverables that in our opinion help to structure the design process further. Martens
[7] also introduces a means, based on Petri nets, to specify services from different
viewpoints. However, he performs different analysis.

The structure of this paper is as follows. Section 2 presents the deliverables that we
propose in a choreography-based design approach. Section 3 explains how these
deliverables can be represented formally, by means of Petri nets. Section 4
investigates the relations between the deliverables and defines them formally. Section
5 presents the conclusions and future work.

2 Deliverables in Choreography-Based Design

This section identifies the deliverables in a choreography-based design, based on the
deliverables proposed by Let’s Dance [3]. We distinguish: the choreography
milestone model; the choreography scenario model; the choreography; and the
provider behaviour model.

The choreography milestone model represents the behaviour of a business
collaboration at a high level of abstraction. It does this by representing the milestones
that can be reached in a collaboration and the relationships between these milestones.
In this paper we represent these relationships by means of control flow relations.

The choreography scenario model represents possible scenarios, in terms of
conversations between partners, that lead from one milestone to another. We represent
the conversations between partners by means of message exchange interactions and
control flow relations between those interactions.

The choreography represents all interactions between stakeholders in a business
collaboration, in terms of message exchange. It constitutes all interactions decided
upon in the choreography scenario model and it should observe the relations between
those interactions in the choreography scenario model.

A provider behaviour model represents all interactions in which a single
stakeholder engages in the context of a business collaboration. It only represents the
externally observable behaviour, leaving the internal realization thereof to the
stakeholder. The provider behaviour model must observe the interactions and their
relations of the part of the choreography that the stakeholder fulfils.

Choreography-Based Design of Business Collaborations 3

prescribed validated delivered

D
o
c
t
o
r

P
h
a
r
m
a
c
y

Request

Validate

Validate

prescription

validation

prescribed

P
a
t
i
e
n
t

Reject Accept

validated

rejection acceptance

Deliver

delivered

delivery

Check

D
o
c
t
o
r

Validate Reject Accept

Pharmacy

validation rejection acceptance

ii. Examples of scenario models

iii. Example of a provider behaviour model

i. Example of a milestone model

D
o
c
t
o
r

P
a
t
i
e
n
t

Complain
Answer

Question

Diagnose

Prescribe

complaint question answer prescription

prescribed

Figure 1. Examples of deliverables in choreography-based design

4 Remco Dijkman

Figure 1 shows examples of a milestone model, two choreography scenario models
and a provider behaviour model. The models are represented in the Business Process
Modelling Notation (BPMN) [9]. Figure 1.i shows the milestones that are reached
when ordering a prescription drug. First the doctor has to prescribe a recipe, this
recipe has to be validated by the pharmacy, then the patient receives the drug. We
developed the choreography in more detail, by showing two scenarios that lead from
one milestone to another. Figure 1.ii shows these scenarios. Figure 1.iii shows the
provider behaviour of a doctor that participates in the choreography.

3 Formal Description of Deliverables

Our formal model is based on labelled marked Petri nets. We first present our formal
model and then we explain how it can be used to represent the deliverables.

3.1 Formal Model

A labelled Petri net is a tuple (P, T, F, l), such that:
− P is the set of places, which is partitioned into PI that represents the set of places

that are internal to some business partner and P
C that represents the (connector)

places on which (tokens representing) messages exchanged between partners are
stored.

− T is the set of transitions, which is partitioned into T
I that represents the set of

transition that are internal to some business partner and TS and TR that represent the
set of transitions that correspond to sending and receiving messages, respectively.
T

M is a subset of TI that represents the set of milestones.
− F ⊆ (TS × PC) ∪ (PC × TR) ∪ (T × PI) ∪ (PI × T) is the flow relation that connects

internal places to transitions and connector places to send and receive transitions.
Every connector place must be connected to exactly one send and one receive
transition, because connector places are only used to connect send transitions to
receive transitions.

− l : (TS ∪ T
R → Msg) ∪ (TI → L) is the labelling function that labels send and

receive transitions with the message sent or received and an internal transition with
the action or milestone that it represents. A special ‘silent’ label τ represents that
no observable action or send or receive action occurs and that no milestone is
reached. Send and receive transitions that are connected to the same connector
place by the flow relation must have the same label. The label represents the
message exchanged. In this paper we write a ‘!’ or a ‘?’ behind the label of a send
or receive transition, respectively. We write the label of a milestone between
square brackets: ‘[’, ‘]’. These are notational conventions to distinguish the
different kinds of transitions; the ‘!’, ‘?’, ‘[’ and ‘]’ are not part of the label itself.

M : P → N represents the marking of a Petri net.
In this paper we use a particular form of Petri nets called workflow nets [2].

Workflow nets satisfy the criteria that:

Choreography-Based Design of Business Collaborations 5

1. an ‘initial’ place i ∈ P and a ‘final’ place f ∈ P exist, such that i does not have
incoming flows and f does not have outgoing flows;

2. all places and transitions are on a path from i to f; i.e.: if we add a transition t that
connects f to i by the flow relation (i.e. {(f, t), (t, i)} ⊆ F), then, for every two
places or transitions x and y, there is an (indirect) flow from x to y and vice versa.

In a workflow net Mi = {(i,1)}, the initial marking that has only one token on i, marks
the beginning of a process and Mf = {(f,1)}, the final marking that has only one token
on f, marks the completion of a process.

We denote possible firing of transition t in a Petri net N with marking M as: (N, M)
[t>. We denote firing of transition t in a Petri net N with marking M, causing it to
change into a marking M’ as: (N, M) [t> (N, M’). We denote a sequence of transitions
as t*; if all transitions labelled τ, we write τ*. We denote the successive firing of a
sequence of transitions t*, causing a Petri net N with marking M to change into a
marking M’ as: (N, M) [t*> (N, M’). We say that a marking M’ is reachable from a
marking M in a net N, if there exists a sequence of transitions t*, for which (N, M)
[t*> (N, M’). The set of reachable markings from a marking M in a net N is the set
that contains all markings M’ for which there exists a t* such that (N, M) [t*> (N, M’).
We denote the set of reachable markings as: (N, M)[>. For a precise definition of
firing and reachability, we refer to the Petri net theory [8].

In this paper we refer to the elements of a net by subscripting the element with the
name of the net. For example, we refer to the places P of a net N as PN.

3.2 Formal Model Applied to Represent Deliverables

We can represent the deliverables in a choreography-based design as follows.

Milestone model. We formally represent a milestone model by a Petri net that only
contains internal places, milestone transitions and transitions marked ‘silent’, because
a milestone model consists of milestones and their relations. Figure 2.i shows an
example of a Petri net that represents a milestone model. The figure is a possible
formalization of Figure 1.i. We are in the process of defining a mapping from BPMN
to Petri nets, but this mapping is not complete yet. Therefore, the formalization is only
for illustration purposes.

Scenario and Choreography models. We formally represent a scenario or a
choreography model by a Petri net that can contain all the constructs explained in the
previous section. Figure 2.ii shows an example of a Petri net that represents a scenario
model. The figure is a possible formalization of Figure 1.ii. We subscripted the
interactions in which ‘prescriptions’ are exchanged, because these interactions are
different and (since below we rely on different interactions having different labels)
therefore they should have different labels.

Provider Behaviour Model. We formally represent a provider behaviour model by a
Petri net that must not contain connector places, because a provider behaviour
represents the behaviour of a single provider and not the interaction between
providers. A provider behaviour can represent a provider’s participation in an

6 Remco Dijkman

interaction, so send and receive transitions are allowed in the formalization. Figure
2.iii shows an example of a Petri net that represents a scenario model. The figure is a
possible formalization of Figure 1.iii.

[prescribed] [validated] [delivered]

i. Example of a milestone Petri net

validation? rejection!

acceptance!

validation! rejection?

acceptance? [validated]

delivery!

prescription2?

prescription2![prescribed] [delivered]delivery?

ii. Example of a scenario Petri nets

check

rejection!

acceptance!

validation?

iii. Example of a provider behaviour Petri net

complaint? question! answer? prescription1!

complaint! question? answer! prescription1?[prescribed]

Figure 2. Examples of formalized deliverables

4 Formal Relations between Deliverables

Figure 3 illustrates the relations between the deliverables in choreography-based
design. Below we explain these relations and how we can check formally, if they are
observed by the deliverables.

Choreography-Based Design of Business Collaborations 7

Choreography Model

Milestone Model

Scenario

Model

Scenario

Model

Scenario

Model

Scenario

Model

Provider Behaviour

Model

Provider Behaviour

Model

partly refined intopartly refined into

refined into

composed

into

Figure 3. Relations between deliverables

4.1 Relation between Scenario Models and Choreography Model

A choreography model is a composition of the scenario model [3]. While each
scenario model only represents the actions that have to be performed to get from one
milestone to another, the choreography model represents all actions that a group of
service providers performs jointly in the context of their collaboration. Moreover, the
choreography model is not designed separately, but it is completely defined by (the
composition of) the scenario models. Therefore, we can derive a choreography model
from scenario models by taking the union of the scenario models, keeping only a
single copy of a milestone, action or interaction that appears in multiple scenario
models. This copy has all relations from the milestones, actions or interactions from
which it was derived. To ensure that the resulting net is also a workflow net, we have
to add a new initial place and a new final place, such that the initial place has a target
transition that puts tokens on the original initial places and that the final place has an
source transition that only fires after there is a token on all original final places.

Figure 4 shows an example in which we composed the scenarios from Figure 2.ii.
For brevity, the example figure only shows the relevant part of the composed Petri
net. These scenarios share the milestone ‘prescribed’. Therefore, the composition only
contains one milestone transition labelled ‘prescribed’. This milestone transition has
the incoming and outgoing flows of both scenarios from which it is derived. The
newly created initial and final places with their transitions and flows are shows in
grey.

This operation assumes that each milestone from a scenario model has a different
label than the other milestones from that scenario model. It assumes the same for
internal actions (other than the ones labelled ‘silent’), send actions and receive
actions.

8 Remco Dijkman

prescription1?[prescribed]

prescription2?

prescription2!

complaint?

complaint!

Figure 4. Composition of scenarios from Figure 2.ii

We can compose two scenario Workflow nets, N and M, into a Workflow net, (P, T,
F, l, i, f), using the following algorithm:

TNew := ∅
MapN := ∅
MapM := ∅
For each pair tN ∈ TN, tM ∈ TM, for which

lN (tN) = lM (tM) and lN (tN) ≠ τ and
(tN ∈ TN

S ∧ tM ∈ TM
S) ∨ (tN ∈ TN

R ∧ tM ∈ TM
R) ∨

(tN ∈ TN
M ∧ tM ∈ TM

M) ∨ (tN ∈ (TN
I-TN

M) ∧ tM ∈ (TM
I-TM

M))
 TNew := TNew ∪ (new t)
 MapN := MapN ∪ {(tN, t)}
 MapM := MapM ∪ {(tM, t)}
P := PN ∪ PM
T := (TN - dom(MapN)) ∪ (TM - dom(MapM)) ∪ TNew
F := {(e1, e2) | (e1, e2) ∈ (FN ∪FM) ∧ e1,e2∉ dom(MapN) ∧ e1,e2∉ dom(MapM)} ∪
 {(e1’, e2) | (e1, e2) ∈ FN ∧ e1 ∈ dom(MapN), e1’ = MapN (e1)} ∪
 {(e1’, e2) | (e1, e2) ∈ FM ∧ e1 ∈ dom(MapM), e1’ = MapM (e1)} ∪
 {(e1, e2’) | (e1, e2) ∈ FN ∧ e2 ∈ dom(MapN), e2’ = MapN (e2)} ∪
 {(e1, e2’) | (e1, e2) ∈ FM ∧ e2 ∈ dom(MapM), e2’ = MapM (e2)}
l := {(t, lab) | (t, lab) ∈ (lN ∪ lM) ∧ t ∉ dom(MapN) ∧ t ∉ dom(MapM)} ∪

{(t, lab) | t ∈ TNew, lab = lN(MapN
-1(t))}

i := new pi
f := new pf
P := P ∪ {pi, pf}
T := T ∪ {new ti, new tf}
F := F ∪ {(pi, ti), (ti, iM), (ti, iN), (tf, pf), (fM, tf), (fN, tf)}
l := l ∪ {(ti, τ), (tf, τ)}
return (P, T, F, l, i, f)

Choreography-Based Design of Business Collaborations 9

4.2 Relation between Milestone Model and Choreography Model

A choreography model refines a milestone model. It does this by specifying how one
gets from one milestone to another by performing certain actions or interactions,
while the milestone model only specifies the milestones that can be reached and the
relations between the milestones. The choreography model cannot introduce new
milestones, but only actions and interactions. Also, it should also observe the original
relations between the milestones, as they are specified by the milestone model. It
cannot introduce, nor remove, means to get from one milestone to another.

Hence, the relation between a milestone model and a choreography model is that:
after abstracting from the actions and interactions that specify how to get from one
milestone to another, the choreography model must be equivalent to the original
milestone model.

To allow us to check consistency with respect to this relation, we ‘abstract’ from
actions and interactions in a choreography model, by labelling them ‘silent’.
Subsequently, we check equivalence between the Petri nets, using the notion of
branching bi-simulation [5]. Informally, two Petri nets, N and M, are branching
bisimilar (denoted: N ~bbisim M) if at any time (i.e.: in any reachable marking, starting
from the initial markings) N can take the same transition as M and vice versa, possibly
preceded and/or succeeded by silent transitions. A (low) polynomial time algorithm
for checking branching bi-simulation is developed by Groote and Vaandrager [6].
This technique is well-known for checking refinement between Petri nets in which
one Petri net refines the other by only inserting transitions [1,4]. Figure 5 shows a
Petri net that is an abstraction from the Petri net from Figure 4, by labelling all
transitions that are not milestone transitions ‘silent’. The figure shows only a part of
the full Petri net. To complete the consistency check, we must check bi-similarity
between the full Petri net and the milestone Petri net from Figure 2.i.

[prescribed]

Figure 5. Abstraction from non-Milestones in Figure 4

We can check consistency between a milestone Workflow net M and a choreography
Workflow net C, using the following algorithm:

C’ := (PC, TC, FC, lC’, iC, fC), where
lC’ := {(t, l’) | (t, l) ∈ lC and l’ := l if t ∈ TC

M, l’ := τ otherwise}
return C’ ~bbisim M

10 Remco Dijkman

4.3 Relation between Provider Behaviour Model and Choreography Model

A provider behaviour model refines a part of a choreography model. It does this by
specifying not only interactions between parties in the collaboration, but also internal
actions of one of the parties in the collaboration, focussing on the part of the
choreography that that party will perform.

Therefore, to check consistency between a provider behaviour model and a
choreography model, we: (i) extract the part of the choreography that the provider
performs and abstract from milestones in that part by labelling them ‘silent’; (ii)
abstract from internal actions of the provider behaviour by labelling them ‘silent’; and
(iii) check equivalence (branching by bi-similarity) between the results of (i) and (ii).

As an example Figure 6.i is an extraction from the choreography Petri net from
Figure 4. It extracts the part of the choreography that is performed by the doctor and
abstracts from milestones by labelling them ‘silent’. Figure 6.ii shows an abstraction
from the provider behaviour from Figure 2.iii. It abstracts from all internal actions of
the ‘doctor’ (the only internal action is ‘check’). To complete the consistency check,
we must check bi-similarity between Figure 6.i and Figure 6.ii.

ii. Provider behaviour with internal actions labelled ‘silent’

rejection!

acceptance!

validation?

complaint? question! answer? prescription1!

i. Choreography that only contains actions and interactions performed by the doctor

complaint? question! answer? prescription1!

validation? rejection!

acceptance!

Figure 6. Consistency between provider behaviour and choreography

We can check consistency between a choreography Workflow net C and a provider
behaviour Workflow net P, considering that, in the choreography, the provider
performs the actions and interactions with labels in ls (This information can be
obtained from the role assignment in the model from which the Petri nets are derived.
For example Figure 2.ii shows exactly which actions and interactions are performed
by the ‘doctor’.), using the following algorithm:

C’ := (PC’, TC’, FC’, lC’, iC, fC), where
 controlflows := {(s, t) | (s, t) ∈ FC and s, t ∉ PC

C}
 transclos := controlflows

Choreography-Based Design of Business Collaborations 11

 repeat
 temp := transclos

 transclos := transclos ∪ {(s1, t2) | (s1, t1), (s2, t2) ∈ transclos and t1 = s2}
 until transclos = temp
 PC’ := {p | p ∈ PC and ∃ts ∈ Ts for which (i, p)∈transclos ∧ (p, ts)∈transclos
 or ∃ts ∈ Ts for which (ts, p)∈transclos ∧ (p, f)∈transclos }
 TC’ := {t | t ∈ TC and ∃ts ∈ Ts for which (i, t)∈transclos ∧ (t, ts)∈transclos
 or ∃ts ∈ Ts for which (ts, t)∈transclos ∧ (t, f)∈transclos }
 FC’ := FC ∩ ((PC’ × TC’) ∪ (TC’ × PC’))
 lC’ := { (t, l’) | (t, l) ∈ lC and t ∈ TC’ and l’ := τ if t ∈ TC

M, l’ := l otherwise}
P’ := (PP, TP, FP, lP’, iP, fP), where

lP’ := {(t, l’) | (t, l) ∈ lP and l’ := τ if t ∈ TP
I, l’ := l otherwise}

return P’ ~bbisim C’

5 Conclusions and Future Work

This paper presents an approach to choreography-based design that introduces
deliverables in a choreography-based design trajectory, shows how these deliverables
can be formalised with Petri nets and, based on this formalization, how the
consistency of the deliverables can be checked. The paper presents algorithms to
perform these checks.

As a next step we aim to implement the algorithms in a tool and apply them to
choreography-based designs. This serves to evaluate the algorithms and to make them
more practically applicable. We also aim to further integrate the algorithms with the
Let’s Dance approach to choreography-based design, by developing a formalization
of the language used in Let’s Dance in terms of Petri nets. This further serves to make
the algorithms practically applicable.

References

1. van der Aalst, W., Weske, M.: The P2P approach to Interorganizational Workflows. In:
Proc. of the Int. Conf. on Advanced Information Systems Engineering. Lecture Notes in
Computer Science, Vol. 2068. Springer-Verlag, 140-156, 2001.

2. van der Aalst, W.: Verification of Workflow Nets. In: Application and Theory of Petri
Nets. Lecture Notes in Computer Science, Vol. 1248. Springer-Verlag, 407-426, 1997.

3. Barros, A., Decker, G., Dumas, M. Multi-staged and Multi-viewpoint Service
Choreography Modelling. Technical Report 4668, Queensland University of Technology,
Brisbane, Australia, 2006.

4. Dijkman, R., Dumas, M.: Service-Oriented Design: A Multi-Viewpoint Approach. Int. J.
of Cooperative Information Systems 13, 337-368, 2004.

5. Glabbeek, R.J. van, & Weijland, W.P. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3), 555-600, 1996.

6. Groote, J.F., Vaandrager, F. An Efficient Algorithm for Branching Bisimulation and
Stuttering Equivalence. In Paterson, M.S. (ed.): Automata, Languages and Programming.
Lecture Notes in COmputer Science 443, pp. 626-638, 1990.

12 Remco Dijkman

7. Martens, A. Analyzing Web Service Based Business Processes. In: Proc. of the Intl. Conf.
on Fundamental Approaches to Software Engineering. Lecture Notes in Computer
Schience, Vol. 3442. Springer-Verlag, 2005.

8. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE 77, 541-
580, 1989.

9. OMG. Business Process Modeling Notation (BPMN) 1.0, OMG Final Adopted
Specification dtc/06-02-01, 2006.

10. Quartel, D.A.C., Dijkman, R.M., and van Sinderen, M.J. Methodological Support for
Service-oriented Design with ISDL. In: Proceedings of the 2nd ACM International
Conference on Service Oriented Computing (ICSOC), pp. 1-10, 2004.

