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Abstract

The theoretical complexity of a string recognizer is linear to the length
of the string being tested for acceptance. However, for some kind of strings
the processing time largely depends on the number of states visited by
the recognizer at run-time. Various experiments are conducted in order to
compare the time efficiency of both hardcoded and table-driven algorithms
when using such strings patterns. The results of the experiments are
cross-compared in order to show the efficiency of the hardcoded algorithm
over its table-driven counterpart. This help further the investigations on
the problem of the dynamic implementation of finite automata. It is
shown that we can rely on the history of the states previously visited
in the dynamic framework in order to predict the suitable algorithm for
acceptance testing.

1 Introduction

Previous work on Finite Automata (FAs) implementation revealed that the tra-
ditional table-driven (TD) algorithm may not be the sole approach for encoding
a string recognizer. Another implementation approach using a hardcoded (HC)
algorithm suggested by Knuth in [Kmp77] showed a time gain over the TD al-
gorithm up to some threshold. In further experiments conducted in [Kwk04],
it was shown that the processing time required to recognize a string largely de-
pends on the structure of the string being recognized in relation to the overall
structure of the automaton the recognizer is based upon. The possibility to
improve the processing time of string recognizers using a dynamic algorithm
called DIFAP! that handles both TD and HC algorithms simultaneously was
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also suggested in [Kwk04]. However, the work only introduced the DIFAP algo-
rithm without a complete analysis of the algorithm in terms of complexity and
implementation. In this paper, we further the idea of DIFAP through analysis
of its critical parts. The history of strings already processed by the recognizer is
used to suggest the suitable algorithm to be used at run-time. Further improve-
ments of DIFAP are suggested such as the extension of the original threshold of
efficiency as well as a mixed-mode implementation of FAs using both HC and
TD algorithms.

The structure of the remaining of this paper is as follows. In section 2
below, the implementation of FAs using both TD and HC algorithms is revisited.
Section 3 reviews the experiments performed on string recognizers in order to
capture the break-even variations of both algorithms. Various string patterns
are investigated in this section showing the advantage of using HC over TD
above the threshold of efficiency. In section 4, DIFAP is revisited followed by
the analysis of its most critical section referred to as the knowledge table (KT).
Additional improvements of DIFAP are suggested in Section 5, and we conclude
and provide future directions to this work in Section 6.

2 Finite Automata Implementation

This section summarizes a review of automata implementation and the com-
plexity of string recognizers already discussed in [Ket03]. Finite automata can
be implemented using hardcode or softcode. The softcoded or TD algorithm re-
quires a driver program made of few instructions to access the transition table
during the entire recognition process. Algorithm 1 below depicts a TD algo-
rithm that tests whether the string str is part of the language of the automaton
represented by its transition matrix referred to as transition. The overall com-
plexity of the recognizer is in the order of O(len) where len is the length of
the string being tested for acceptance. A hardcoded algorithm depicted in Al-
gorithm 2 clearly shows that more instructions are required to represent the
overall recognizer. Again, the complexity of the recognizer still remains in the
order of O(len) as for the TD algorithm. Both algorithms are different in terms
of instructions and external data usage. The HC algorithm requires many in-
structions, which is not the case for the TD algorithm. The transition matrix
is loaded into memory for the TD algorithm whereas only simple instructions
are needed for its representation in the HC algorithm. Such observations clearly
show that practical experiments are necessary to evaluate up to what extend
the processing time of both algorithms differ. Section 3 below depicts various
experiments on strings recognizers using both approaches.

Algorithm 1. Table-driven string recognition
function recognize(str,transition):boolean
state := 0;
stringPos := 0;
while (stringPos < len) A(state > 0) do
state := transition[state][str[stringPos]];



stringPos := stringPos+1;
end while
if state < 0
return(false);
else
return(true);
end if
end function

Algorithm 2. Hardcoded string recognition

function recognize(str):boolean
stateg :
if str[0] & validsymboly return(false);
else if len = 1 return(true);
else goto nextStatesy;
end if
state; :
if str[l] € validsymboly return(false);
else if len = 2 return(true);
else goto nextStatess;
end if

StatenumberOFStates—l :

if strinumberO fStates — 1] & validsymbolyympero fStates—1 return(false);
else return(true);

end if

end function

3 String Recognition Experiments

In this section, we present the experiments carried out on various kind of strings
using both HC and TD algorithms. The experiments where conducted on an
Intel Pentium IV at 1.8 GHz with 512MB of RAM and 20GB of hard drive.
The TD algorithm was implemented using the gnu C++ compiler, and NASM
(Netwide Assembler) was used for the HC implementation. The experiments
were conducted under the Linux operating system. Randomly generated strings
were investigated as well as various kind of strings that may offer some time gain
when the HC algorithm is considered as opposed to the TD algorithm. This
section summarizes experiments carried out in [Kwk04]. The subsection below
depicts experiments based on random strings.
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Figure 1: TD performance: 25 symbols

3.1 Experiments based on Random Strings

Experiments were based on alphabet size varying between 10 and 50 symbols
with an increment of 5. For each alphabet size under consideration, 100 random
automata of sizes ranging from 10 states to 1000 states with an increment of 10
were generated. For each case, a random accepting string of length n — 1 was
also generated for acceptance testing. Figures 1 and 2 depict the performance
for both TD and HC algorithms for automata based on 25 alphabet symbols. It
is observed that both graphs show a superlinear growth on the number of states.
However, the HC experiment shows a slow growth in the region between 10 states
and about 400 states. A plausible explanation to this may lies on the effect of
cache on automata of smaller sizes. For such automata, the entire code size can
fit into cache and reducing therefore the processing time since the probability of
cache misses is very low in that region. Above the 400 states, the HC processing
becomes inefficient due to the high probability of cache misses. A comparison
between the two algorithms is depicted in Figure 3. It is clearly observed that
the HC algorithm outperforms the TD algorithm up to the region between 300
and 400 states. As a result to this, FAs implementers should consider using the
HC algorithm when solving computational problems based on automata of size
less than about 360 states. However, above that threshold, the TD algorithm

1000

Figure 2: HC performance: 25 symbols
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may be the suitable implementation approach. Since in practice, various strings
of same size may require different processing time, it is of importance to conduct
experiments in order to cross-compare the time efficiency for both algorithms.
The following subsections depict various such experiments.

3.2 The single jump experiments

In this subsection, experiments were performed on strings that keep the FA only
on a single state. The recognizer only jumps once on a single states and remains
there for the entire recognition process. Thus the title single jump experiment
suggested by the HC algorithm. The section summarizes experiments already
suggested in [Kwk04]. Let consider the automaton modelled in Figure 4 having
5 states with two accepting states 3 and 4. The strings abab and cdef of size
4 are both part of the language modelled by the automaton. In theory, the
total time required to accept or reject each string should be roughly the same.
However, we notice that for the string abab, once the device reads the first
symbol a, it jumps to the final state 3 and remains there until the entire string
is processed. On the other hand, the recognizer will transverse several different
states in order to accept the string cdef. This observation indicates that in
practice, the time required to accept strings of same size with different patterns
may differ considerably from one another. For the experiments, we randomly
generated various automata of sizes between 10 and 1000 states using alphabet
size varying between 10 and 50. Figure 5 depicts the difference in time between



Figure 4: A state diagram: accepts the strings ”abab” and ”cdef”
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Figure 5: HC-TD performance for single jump

the table-driven and hardcoded implementation. It clearly shows that the HC
algorithm is superlinearly faster than its TD counterpart. The average time
efficiency per symbol is about 8 ccs. That is, for an automaton with n states,
the HC algorithm is 8n times faster than the TD algorithm. These results
illustrate that for strings following the pattern above described, the processor
has sufficient space in its cache to hold the code relating to a single state. Since
it always visits the same state over and over, there is a very low probability
of cache misses. The experiment is therefore the best case scenario for both
algorithms although the HC algorithm appears to be the most efficient. In
the next subsection we explore another variant of such strings whereby the
automaton visits only the starting state and the final state.



3.3 The far jump experiments

The experiments was suggested by the HC algorithm in the sense that from
its initial state, the recognizer jumps to the final state and loops between the
two states during the entire recognition process. The state diagram in figure 6
depicts such strings. We consider two strings ab...ab and cd...ef of length n —1
that are both accepting strings. The recognition process of the second string
requires that the recognizer visits several states in the automaton whereas the
first string only visits two states. Unlike the fact that far jumps are required to

a
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Figure 6: A state diagram: accepts the strings ab...ab and cd...ef

move from the initial states to the final state for the first string, only limited
number of states are visited. Therefore, we expect that such strings are tested
at a very efficient time due to the very low probability of cache misses the
processor is subject to. As show in figure 7, experiments revealed that the HC
algorithm still outperforms its TD counterpart in such context. As a result to
this, although in an average case behaviour there is a threshold of efficiency of
HC over TD, there is still room for improvements above that threshold when
some string patterns are considered. In the next section, we use the original
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threshold of efficiency to conduct a particular experiment whereby the string
remains on a single state after visiting some random states below the threshold.

3.4 A random string experiment followed by single jump

This section summarizes experiments already discussed in [Kwk04]. The random
string experiments suggested that the HC outperformed the TD algorithm up
to some threshold. In this section, we combine the threshold of efficiency with
the experiment conducted in subsection 3.2. Consider the automaton modelled
in figure 8. State ¢ depicts some “sink state” in which the FA will remain
after some other arbitrary set of states within the automaton have been visited.
The state t is also assumed to be an accepting state. Based on the previous
experiment, we would expect that the longer the FA remained in state ¢, the
more the hardcoded implementation would enjoy an advantage over the table-
driven version.

To verify this observation, and as a sort of sanity check on our results up
to this point, hardcoded and table-driven implementations were set up to test
strings of length n-1 in FAs with n states. The experiment was designed so that
the behaviour in processing the first 300 states was random - in the same sense
as previously described. However, thereafter the FA remains in the same state
—i.e. the best case scenario prevails.

-~

// \\
- >~ \
e G a o r\
/ \ /
~ s
~ -7 o/

s

Figure 8: A state diagram that accepts a\st\rfng’ that visits arbitrary states and
remains on state ¢ for some time

Figure 9 depicts the graphs obtained from the experiment. Unsurprisingly,
it shows that hardcoding generally outperforms the table-driven implementa-
tion. However, there is also a suggestion in the data that in the longer term,
the asymptotic improvement tends towards the 8ccs improvement observed in
figure 5.

Of course, many more experiments similar to those described above could
be run. An overall and general observation in regard to all these experiments
is that they enable us to identify various ways in which the hardcoded imple-
mentation of FAs may outperform the traditional table-driven implementation.
The next section considers how such information could be used to capitalize on
the advantages offered by both approaches.
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4 The Dynamic Implementation of FAs: DIFAP

The experiments depicted in the previous sections clearly show that the effi-
ciency of a string recognizer is highly dependent on the nature of the string
being recognized. This suggests that if likely patterns of strings to be input are
known in advance — at least in some probabilistic sense — then it may be possible
to put in place a time optimizing mechanism to carry out the string recognition.
Consequently, the idea of dynamically adapting the implementation strategy of
the FA according to the expected input (or partially inspected) string may be
considered. We use the acronym DIFAP to refer to this notion, designating Dy-
namic Implementation of FAs for Performance enhancement. Figure 10 depicts
the overall design of a DIFAP system. When it is first invoked, the implementer
provides the specification of the automaton to be used, regardless the type of
string to be recognized. DIFAP then analyzes the specification and choose the
appropriate way of implementing the automaton depending of the size of the
derived automaton. In terms of the currently available data, if the size is less
than 360 states, this means that hardcoding is likely to be the optimal approach
in representing the automaton irrespective of the kind of string to be tested. On
the other hand, if the size of the automaton is above 360 states, as suggested in
Section 2, a hardcode implementation might be indicated if long term behaviour
is likely to tend towards best case behaviour, a table-driven implementation will
be the appropriate choice in the absence of such information. However, in the
latter case, DIFAP relies on the kind of string received as input to adapt it-



self progressively to an implementation approach that is optimal in some sense
(e.g. optimal in relation to the history of strings processed to date), resulting
in improved average processing speed.

The figure indicates that for bigger automata size, a knowledge table (KT)
is first checked. At this stage, we do not prescribe what information should
be kept in the KT. We merely observe that the current input string could, in
principle, undergo some preliminary scan to identify whether its overall structure
conforms to some set of general patterns that favour hardcode over table-driven.
If that is not the case, the table-driven version of the automaton specification
is generated and is used by the recognizer to check whether the string is part of
the language described by the FA or not. Otherwise, the hardcoded version of
the FA’s specification is generated and used for recognition.

Not indicated in the figure is the possibility of post-processing: after a string
has been tested, the string and the test outcome could be used to update in-
formation in the KT. As a very simple example, we might decide to concretely
implement the KT as a table of the FA’s states, in which a count is kept of
the number of times a state has been visited. This information could be used
to rearrange the order of rows (which represent states) in the transition matrix
used by the table-driven approach, in the hope of minimizing data cache misses
when this implementation strategy is used. Alternatively, the same information
could be used to dictate the blocks of hardcode that should preferentially be
loaded into cache, in circumstances in which hardcoding is indicated. However,
the foregoing should not be construed as the only way in which the KT can be
implemented. We conjecture that there are many creative possibilities within
this broad model that merit deeper investigation in the future.

One of the advantage of using such a dynamic algorithm is that the struc-
ture of the automaton does not always remains in the system after processing.
Each automaton is always regenerated into its executable when the system is
invoked. The only structure that permanently remains in the system is the al-
gebraic specification of the automaton. This results therefore in some degree of
minimization of memory load for automata of considerable size. However, there
is no need to always regenerate automata of size less than 360 states since they
will always be implemented in hardcode. That is the reason why in the figure
no deletion of the generated hardcode is indicated when the “size less than 360”
path is followed.

In an implementation of DIFAP, attention should be given to the following
parts of the algorithm to minimize latencies:

e Time to generate the recognizer: Unless directly implemented by hand,
any FA-related problem always requires a formal specification of the gram-
mar that describes the automaton before its corresponding automaton is
encoded. This is a general problem, and one specific to DIFAP. The DI-
FAP implementation could therefore use generator techniques similar to
those used in efficient code generator tools such as YACC? which as been
proven to be amongst the best tool available to create directly executable

2Yet Another Compilers Compiler
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parsers. Unlike parsers, DIFAP’s code generator will generate directly
executable string recognizers.

o Time taken to check the knowledge table: One should take care to ensure
that the matter of checking the KT does not degenerate into a time-
inefficient exercise that negates any benefit from using the optimal string
recognition strategy. Efficient algorithms should be devised that take min-
imal time to access the table and to chose the appropriate path to follow.
This part of DIFAP may constitute a bottleneck. Intensive investigations
will be made to provide an efficient approach to access the table and re-
trieve appropriate information.

o Time required to update the knowledge table: Although the precise nature
and scope of the KT have not been identified here, it is envisaged that it
will, itself, be a dynamic structure, changing over time in relation to the
history of strings analyzed to date. However, there does not appear to be
any reason for adapting the KT prior to processing the input string. Its
update is something that can happen at a post-processing stage, and does
not appear to be time-critical.

4.1 Structure of KT

The entire DIFAP algorithm relies on the KT in order to provide optimal in-
formation to the entire framework for efficient processing of a given recognizer.
Various strategies can be used for its representation. Of course the most impor-
tant notion to bear in mind must be efficiency. Since intensive investigations
have not yet been made in order to test any of the strategy we have in mind.
We have chosen to solve the problem in a step by step fashion so that each idea
is eliminated from our list of choice once its weakness is noticeable. Up to date,
we have identified three approaches by which the KT can be represented for
optimal processing:

e The KT is a single variable with recent nodes wvisited: Our DIFAP al-
gorithm heavily rely on the number of states visited by the automaton
in order to take relevant action on whether to use TD or KT algorithm.
In some applications, the kind of strings input might be predefined. We
chose therefore to use a single variable to represent the KT since it will
only contain the most recent number of states visited by the recognizer.
In other words, during the recognition process, the number of states vis-
ited is recorded and then saved in the KT variable at the update of the
KT. We then use this information for later processing. The Algorithm
checks the value in the KT and takes relevant decision. If the value is
zero, it means that no state have been visited and therefore the suitable
algorithm should be the TD. If the number of states is less than or equal
to the threshold of efficiency established above, then HC is the suitable
algorithm. Otherwise, we use the TD algorithm. This approach seems

12



to be straightforward and very simple. However, one of its major draw-
back is that it is highly unpredictable as may result to a very inefficient
framework.

o The KT is a single variable with average nodes visited: This approach is an
alternative to the above. Using average node visited instead of most recent
nodes visited reduce the probability of unpredictability but does not solve
the entire problem. The approach is still therefore highly unpredictable.

o The KT is an history structure: This approach is still under investigation.
We envisage it to be a structure containing detailed information on the
history of each nodes of the automaton. The structure is aimed to be
dynamic in the sense that, not all states can have a history if they have
not yet been visited. The overall idea is to define a number of category
of nodes such as most likely to be visited, likely to be visited and unlikely
to be visited. The rate at which a state is visited is updated on a regular
basis during the recognition process whether TD or HC was chosen. For
each calculated rate of wisits, the state can fall under each of the above
defined category at any stage of the recognition. The role of the check KT
routine will then be to probabilistically evaluate the number of states that
are likely to be visited and take relevant action. Of course, the routine
is still at a brainstorming stage and requires more though. However, this
might be a better way to overcome efficiency problem of DIFAP as defined
above.

5 Conclusion and Future Work

In this paper, we have made a review of the performance evaluation of both
HC and TD algorithms already present in the literature. The HC algorithm
outperforms the TD algorithm up to some threshold. Moreover, unlike the fact
that the theoretical complexity of a recognizer is linear to the length of the
input string. We have shown that the way the states of the automaton are
visited at run-time plays a major role on the overall processing time. The more
a state is visited the less he cache misses and the less the processing time. This
observation helped us to have an idea on the way the KT of DIFAP can be
implemented. We use a probabilistic concept to calculate the overall rate at
which states are visited. This therefore yield to the actual implementation of
DIFAP. However, many other challenges are still under investigation in order to
make DIFAP a very flexible and efficient framework. The most important is the
problem of mixed mode implementation of FAs whereby TD and HC are use
simultaneously in order to provide a balance execution environment that uses
small tables and small code.
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