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Chapter 1

Introduction

1.1 Motivation

The ability of people to communicate over long distances is arguably one of the most im-
portant achievements in “present-day” life. Television and telephone have already become
indispensable to the average person. If new and upcoming media services (such as video
conferencing and internet) want to secure a comparable status they have to provide the
quality to which people have become accustomed.

The overall quality of a service is dictated by many aspects, including transmission speed,
ease of operation and correct reproduction of sound and imagery. Visual representation of
information is essential in most forms of communication. Therefore, good image quality,
e.g. a realistic or truthful reproduction of a “real-world” scene, is one of the first require-
ments that needs to be satisfied. A service that cannot provide good image quality is often
deemed by the consumer as less powerful. An extreme example is if parts of the image in-
formation are lost so that the message becomes incoherent. But less serious defects, which
do not or hardly affect the communicated message, can also affect its quality. For instance,
an impaired image is not a realistic reproduction of a “real-world” scene and thereby less
interesting to watch because it does not fulfill the consumer’s expectation. Besides, the
quality of an image can be affected such that it is strenuous to watch and physically ex-
perienced as tiring eyes.

One of the problems in engineering is to reproduce an image as true as possible with lim-
ited resources (such as storage or channel capacity). Even though the capacity of storage
devices has increased during the years this problem remains a serious one. Consider, for
example, the storage capacity needed to store an image sequence of 1 hour, with a frame-
rate of 25 frames per second. A typical computer frame comprises 1024x768 pixels and each
pixel is represented by three bytes, one for each color channel. This means that one hour
of video will take up a storage capacity of approximately 233 GB which adds up to a stag-
gering pile of 300 CD-roms.

Also the channel capacity, the rate at which data can be transmitted over a communica-
tion path, is limited. Thus it becomes a problem to host the vastly growing number of TV-
channels or computer network users. Since the introduction of the internet, the data put
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1. Introduction

through computer networks has been growing exponentially. A substantial part of this
data load is caused by imagery.

During the years much effort has been spent on using resources as efficient as possible.
In the context of imagery this can only be realized with image compression techniques.
Nowadays lossy image compression has become unavoidable to achieve the required bit
reduction. This implies that image information is lost during the compression process to
the extent that it can become noticeable. Therefore lossy image compression above the vi-
sual threshold is always a compromise between bit-reduction and image quality.

Future prospects for the internet and certainly wireless communication systems require in-
creasingly more services that operate on low bit rates. Therefore, retaining image quality
for still and certainly for moving images is a problem which is expected to grow for some
time to come. This thesis addresses some issues in regard to that problem.

1.2 Image compression

Image compression algorithms transform images into less bit-intensive representations.
Hence resources like storage and channel capacity can be used more efficiently. In gen-
eral two methods can be distinguished: lossless and lossy compression. Lossless compres-
sion algorithms preserve all image information. Through lossy compression, on the other
hand, some image information is lost. The defining feature of lossy compression is that
the signal representation of the coded signal is different from the original. We can distin-
guish between two forms of lossy compression: perceptually lossless coding, where the
coded image is perceptually indistinguishable from the original (transparent coding), and
perceptually lossy coding, where the coded image visibly differs from the original (non-
transparent coding). In the former case, the image represented with the smallest number
of bits is assumed to contain only the information that a human perceives (Watson, 1987).
Forms of lossless and lossy compression are described in sections 1.2.1 and 1.2.2, respec-
tively.

1.2.1 Lossless compression

The basic principle of lossless image compression is to exploit redundant image informa-
tion. A gray-scale image is conventionally represented as a 2D array of pixel values. Such
a representation contains several forms of redundant data. Two forms of redundancy are:
intensity and spatial redundancy also known as coding and interpixel redundancy, respec-
tively (Wandell, 1995; Gonzales and Woods, 1992).

Run-length coding schemes, such as Huffman coding or arithmetic coding, remove coding
redundancy by eliminating the restriction that all gray-scale levels in an image are repre-
sented by the same amount of bits. For instance with Huffman coding the gray-scale his-
togram of an image can be used to assign less bits to more frequently occurring gray-scale
values than to those less frequently occurring. On average this reduces the number of bits
needed to describe an image.
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1.2. Image compression

Interpixel redundancy is removed by making use of the spatial correlation of pixel values.
The gray-scale values change gradually from one pixel to the other. Therefore the value of
any pixel can be predicted from the values of its neighbors. Especially in video sequences
this correlation of adjacent pixel values in succeeding frames is used to obtain high com-
pression ratios.

1.2.2 Lossy compression

Lossless compression algorithms exploit the redundancy in image data to obtain more ef-
ficient image representations. The process is error-free and reversible, thus the original
signal can be recovered. This contrasts with lossy compression which represents a non-
reversible process. However, image information can be discarded without being notice-
able. Images can be perceptually the same although the physical signals are different.
Hence, a third kind of redundant image data can be defined, namely psychovisual redun-
dancy (Gonzales and Woods, 1992). This is image information that is not relevant for hu-
man perception.

Human visual processing does not respond with the same sensitivity to all visual informa-
tion. Frequency sensitivity and contrast masking are properties of the human visual system
that can be used to remove perceptually redundant data. With transform coding, such as
the discrete cosine transform (DCT), images are transformed from the spatial or pixel do-
main into the frequency domain. The transform coefficients are products of cosines in two
orientations at different spatial frequencies. Although the decomposition is not the same
as assumed in the human visual system, the understanding is that high spatial frequencies
can be quantized without losing much image quality. It is mainly the quantization process
which achieves compression. Other coding methods, which are more similar to the prop-
erties of the human visual system, use a pyramid decomposition of the image to achieve
a higher compression ratio by quantization of the error images. Transform coding can be
used to change the original signal such that bit-reduction is achieved without producing a
signal perceptually different from the original.

In present-day applications, removing also non-redundant information seems unavoid-
able to achieve the necessary high compression ratios. Therefore, the trend is that images
are more often becoming compressed above the perceptual threshold. In particular on the
internet highly compressed images are no exceptions. For instance JPEG-coded images
are highly quantized with unavoidable introduction of disturbing image features such as
blockiness and blur. Image quality of highly compressed images is also a problem of inter-
est for television broadcasting. Here it becomes unavoidable to use compression above the
perceptual threshold (Falkus, 1996). Therefore understanding the image quality of highly
compressed images has become increasingly important. Furthermore, studies of the rela-
tionship between the physical parameters of compression algorithms and the resulting im-
age quality are needed to develop or enhance compression algorithms.

The compression methods currently used for still images are JPEG (Pennebaker and
Mitchell, 1993) and wavelet coding (Said and Pearlman, 1996). For broadcasting, MPEG-
1 and MPEG-2 standards are used while MPEG-4 is used for multi-media (Mitchell et al.,
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1. Introduction

1997). Compression is mainly achieved by quantizing the transform coefficients. The algo-
rithms operate in several modes from lossless to lossy compression. The drawback of most
lossy compression modes is that it is up to the user to set the parameters which achieve the
compression ratio. The relationship between these physical parameters and image quality
is often badly understood and, it is difficult, especially for inexperienced users, to tune the
compression parameters such that a certain image quality is achieved. Therefore it is es-
sential that the perceived image quality can be measured and quantified. A definition of
the relationship between the physical parameter settings and the perceived image quality
would thus be a valuable contribution to help users to set the compression ratio according
to the desired image quality.

In this thesis two ways of measuring the image quality of visibly distorted images are con-
sidered: subjective image quality measurements and instrumental image quality measure-
ments. In the next sections we will expand on both measuring methods.

1.3 Measuring perceptual image quality

Perceptual image quality is expressed as a gradation of subjective impressions of how
well the image information is transmitted to an observer. The observer’s criterion of good
transmission of image information depends on the application. Roufs (1992) differentiates
between two types of perceptual image quality: performance-oriented and appreciation-
oriented image quality.

Performance-oriented image quality is applicable whenever the purpose of the images is
to facilitate detection tasks. Medical diagnosing for instance is facilitated by MRI or CT
images. The purpose of such images is to give accurate information. Therefore if a lesion
can be detected by means of a noisy MRI image the image quality satisfies the purpose.

In appreciation-oriented applications, such as television, the goal is to generate images that
are as ”pleasing” as possible. The emphasis is on the visual comfort associated with the im-
ages. For instance, it is strenuous to watch a noise-impaired television program. Watching
such a program requires a great deal of effort and viewers experience this as unpleasant.
In this thesis we will focus on appreciation-oriented quality.

1.3.1 Subjective assessment

In the ITU-R 500-7 recommendation(ITU-R-500-7, 1997), experimental methods are de-
scribed to assess perceived image quality of impaired still images and image sequences
for television applications. In general three different approaches are proposed: the
double-stimulus-continuous-quality-scale method (DSCQS), single-stimulus methods and
stimulus-comparison methods.

In DSCQS observers assess the overall image quality for a series of images pairs. Each pair
consists of an unimpaired image (reference) and an impaired image (test). For both images
(reference and test) observers assess the overall picture quality separately. Eventually the
DSCQS assessment results are differences of scores between the reference and test image.
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1.3. Measuring perceptual image quality

Table 1.1: ITU-R 500-7 recommendation rating scales
DSIS and

single stimulus single stimulus comparison scale
quality scale impairment scale

-3 much worse
5 excellent 5 imperceptible -2 worse
4 good 4 perceptible -1 slightly worse

but not annoying 0 the same
3 fair 3 slightly annoying 1 slightly better
2 poor 2 annoying 2 better
1 bad 1 very annoying 3 much better

In single-stimulus scaling the overall picture quality of each image in the stimulus set is as-
sessed individually. In stimulus-comparison scaling, again, a series of images pairs is used.
These image pairs can include all possible combinations of two images in the stimulus set
or just a sample of all possible image pairs in order to restrict the number of observations.
In this procedure, observers assign a relation between the two images for each image pair.
The same single-stimulus and stimulus-comparison methods can be used to assess impair-
ment. In the double-stimulus-impairment scale method (DSIS) again a series of image pairs
(reference and test) is presented. However, the assessors are asked to judge only the test
image, “keeping in mind the reference” (ITU-R-500-7, 1997).

The scaling methods impose different grading scales to assess the perceived image qual-
ity. In DSCQS, a continuous graphical scale is used to avoid quantization errors. The scale
is often labeled with verbal terms such as excellent, good, fair, poor, and bad, to guide the
observer. For single-stimulus scaling, stimulus-comparison and DSIS the usually applied
rating scales such as verbal or numerical categories are given in Table 1.1. The subjects ex-
press the perceived image quality, the impairment, or the relation between two images by
placing the presented stimuli in one of these categories.

Average observer’s quality judgements can be obtained by a number of different analy-
sis methods. Methods such as averaging the judgements across observers by defining a
confidence interval indicating the individual differences are specified by the ITU. More
complex judgment models were proposed by Torgerson (1958). At the IPO a lot of ef-
fort has been spent on developing such models underlying the rating mechanisms of ob-
servers (Boschman, 2001). In this thesis mainly one of these analysis methods is used,
namely DifScal.

1.3.2 Experimental conditions

Evaluation methods as described above are used to measure the input-output relationship
between manipulated imagery and human visual sensations. The sensation is expressed
as a response of image quality gradations using qualitative terms, such as excellent or bad
image quality. Unlike in threshold experiments where the unit of the rating scale can be
defined as just-noticeable difference, the image quality degradation scale as used in supra-
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threshold experiments is an ill-defined scale. The image quality judgements can be af-
fected by contextual effects such as image content, presentation order and stimulus spac-
ing (de Ridder, 2001; ITU-R-JWP10-11Q, 1998).

Threshold experiments have mainly been conducted with simple stimuli such as sinusoidal
grating patterns. These stimuli have been useful in perceptual studies, such as measuring
display fidelity. However, image quality in terms of appreciation can not be addressed with
such simple stimuli. The trend in image quality studies is towards using complex natural
scenes. The effect of a specific degree of impairment on image quality is not necessarily the
same for images with different content. For example, it depends on the information that is
lost or on how annoying the distortions are in a particular region of an image.

1.4 Instrumental image quality measures

A virtue of developing image quality models is to get a better understanding of image qual-
ity. This is, for example, essential for improving existing and developing new compression
algorithms. Several approaches to obtain a quantitative measure of image quality can be
used. In this section we discuss the approaches that are based on 1) a mathematical function
to express the loss of information in a physical signal, 2) the transformations in the periph-
eral human visual pathways, 3) identifying and quantifying the impairment strengths, and
4) knowledge of human visual information processing.

Engineers often use an objective fidelity criterion to express the loss of information in an
image. The information loss is expressed as a mathematical function of the original image
and a processed version of it. Often used functions are the root mean square error (RMSE)
or the mean-square signal-to-noise ratio (SNR) (Gonzales and Woods, 1992). The simple
calculations needed to express the loss of image information have led to a large number of
related measures (Eskicioglu and Fisher, 1995). Objective fidelity criteria are probably satis-
factory within certain constraints but are not always suited as image quality measures. For
instance the image quality of a particular scene processed at several levels with the same
processing method can probably be quantified by these objective fidelity criteria. However,
applied across scenes or different types of distortion their reliability is most questionable.
Daly (1993) showed that differently impaired images with similar RMSE can be of different
subjective quality.

The lack of taking the visual system into account is probably one of the serious drawbacks
of the above mentioned measures. Instrumental image quality measures that include prop-
erties of the human visual system (HVS) are more likely to approximate subjective image
quality.

HVS-based quality measures model the path an image passes through the human visual
system, including the optics of the eye, the retina, and the primary visual cortex. Several
variation of implementing these stages of the visual system are possible (Ahumada, 1993;
Watson, 1987; Daly, 1993; van den Branden Lambrecht, 1996; Winkler, 1999). A typical HVS
measure is described in detail by Lubin (1993). First the optics of the eye and the sampling
by the cones is modeled. As for most HVS measures in the field of image-coding, the next
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step is to decompose the image in a multiresolution image and the human visual contrast
sensitivity as well as the sensitivity to spatial patterns are modeled. At this level, a spatial
map of distances is computed between the model output of the reference image (original)
and the test image (coded). Finally, the distances are converted and, for instance, summed
to a probability representing the probability that a human observer can discriminate be-
tween the reference and the test image. The distances can also be converted to perceptual
differences between the reference and test image quantified in units of Just Noticeable Dif-
ferences (JND) and integrated into a single scalar value expressing the perceived image
quality.

A different technique to model image quality is based on identifying the underlying at-
tributes of image quality and quantifying the perceived strenghts of each attribute. For
this approach, descriptions of the subjective attributes, such as noise, blur or blockiness, as
well as their technical characterization are needed (Karunasekera and Kingsbury, 1995; Ka-
yargadde and Martens, 1996c; Libert and Fenimore, 1999). To relate the attribute strengths
to overall image quality, different combination rules can be used (de Ridder, 1992; Allnatt,
1983). The visibility of the attribute strengths can be quantified from the reference image,
usually the original, and a processed version of it (Karunasekera and Kingsbury, 1995). At
present, much effort is spend on developing single-ended measures, which quantify the
degree of impairment directly from the processed image and do not require an original im-
age. For example, in Kayargadde and Martens (1996d) estimation algorithms based on the
Hermite transform were used to estimate the perceptual strength of blur and noise directly
from the processed image.

Another current approach is to consider image quality in terms of the adequacy of the im-
age to enable humans to interact with their environment. In this concept image quality is
attributed to terms like usefulness and naturalness, expressing the precision of the internal
image representation and its match to the description stored in memory, respectively. To
quantify these image quality attributes usefulness and naturalness, measures of discrim-
inability and identifiability were used (Janssen and Blommaert, 2000).

1.5 Scope of this thesis

One of the key questions in the field of image quality measurement is: how does one indi-
cate the difference between existing instrumental quality measures and what is or should
be the added value of newly developed measures? First of all, factors have to be identified
that can be used to discriminate between quality predictions of different measures. For a
picture, image quality is determined by the distortions, introduced by, e.g., image acquisi-
tion, transmission, processing and display, in combination with the variety of scenes. Hu-
man observers are able to judge image quality independent of scene content or impairment
type. Since instrumental quality measures are intended to be used as a substitute for hu-
man observers they should be able to cope with different scene content and impairment
types. These two factors (scene content and impairment type) can therefore probably be
used as discriminants for the quality predictions of instrumental measures. More partic-
ular, the prediction should correspond with across-scene and across-impairment quality
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1. Introduction

judgements.

The major aim in this thesis is to enhance our understanding of how human observers as-
sess image quality across scenes and impairment types, and how such judgements and
quality predictions can be used to discriminate between the instrumental quality measures
available today. The second aim is to develop a single-ended instrumental blockiness mea-
sure for sequential baseline coded JPEG images that is robust enough to predict the image
quality across scenes. The studies in this thesis are limited to gray-scale still images con-
taining degradations above the perceptual threshold, with the emphasis on JPEG-coded
images.

In Chapter 2 a method is demonstrated to classify instrumental quality measures without
the need for subjective testing. The measures will be classified on the basis of their quality
predictions only. The advantage of such an initial classification is that the differences be-
tween instrumental quality measures can be investigated for a large image set since only
computer resources are needed. In the same chapter we will also show that images can
be selected which discriminate between the classes of quality measures. The methods in-
troduced in this chapter are not meant to replace the evaluation of instrumental quality
measures by means of subjective data, but merely to complement it.

Chapter 3 presents an investigation of how comparison scaling can be used to obtain reli-
able subjective quality judgements across scenes or distortion types. In comparison scaling
subjects judge the quality difference of image pairs. Both images are usually of the same
scene content and manipulated by the same processing method although at different lev-
els of compression. This means that only the difference in processing level is compared
explicitly. When the stimulus set contains several scenes it is assumed that the subjects ap-
ply the same rating scale across scenes even though they are not compared explicitly. The
question is whether subjects calibrate their quality scale for each identifiable class of im-
ages in a stimulus set. If this is the case reliable subjective quality judgements can only be
obtained with an explicit comparison across scenes. The same would hold for a stimulus
set containing images of different distortion types.

In Chapter 4 subjective testing will be used to identify the underlying attributes of image
quality for JPEG-coded images. In spite of the fact that several distortions are visible (block-
iness, ringing and blurring) it will be shown that the strengths of these distortions are lin-
early related to the perceived image quality. As a result, the image quality of JPEG-coded
images can be modeled by a single attribute. Therefore a single-ended instrumental block-
iness measure for JPEG-coded images will be developed. In this model blockiness is de-
rived from the magnitude of horizontal and vertical edges that do not occur in the original
image. The edge amplitudes of these artificial horizontal and vertical edges are estimated
by means of Hermite coefficients. The estimated edge amplitudes are collapsed into a sin-
gle value indicating the overall blockiness in a JPEG-coded image. It will be shown that
the predicted blockiness correlates highly with the perceived image quality of JPEG-coded
images.

Finally in Chapter 5, the pre-classification of instrumental quality measures by means of
their predictions only (Chapter 2) will be used to select quality measures that are essentially
different in their quality predictions for JPEG-coded images. As suggested in Chapter 2, a

8



1.5. Scope of this thesis

small set of scenes will be selected that discriminates between these measures. These scenes
will first be used to obtain subjective image-quality data. The quality judgements will be
obtained by explicitly comparing the image quality of different scenes and will then be used
to evaluate the performance of the presented instrumental quality measures, including the
single-ended blockiness measure derived in Chapter 4. It will be demonstrated that quality
judgements of selected scenes, obtained from a cluster analysis, are indeed suited to dis-
criminate between the quality measures. Furthermore, it will be investigated whether for
each of the selected scenes the linear relationship between the perceived attribute strengths
and the perceived image quality is the same.
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Chapter 2

Classification of instrumental measures

Abstract

In this chapter various instrumental quality measures are classified on the basis of their
quality predictions. Usually, the performance of instrumental quality measures is evalu-
ated by means of subjective data. Due to the time-consuming nature of subjective testing,
this can only be done for a limited stimulus set. In contrast a mutual comparison of qual-
ity measures by means of their predictions allows to use a large image set with a variety
of scene contents and distortion types. In this way the effect of scene content and type
of distortion on predictions of quality measures can be explored. Furthermore, it will be
demonstrated in this chapter how a small image set of, e.g. 4, scenes can be selected for the
purpose of discriminating between the predictions of instrumental quality measures. Us-
ing such a selection procedure, the usefulness of quality measures can then be ascertained
from a small, well chosen set of images.
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2. Classification of instrumental measures

2.1 Introduction

In the past years many instrumental quality measures 1 have been proposed for processed
and compressed imagery. Nevertheless, ongoing development still increases the number
of such measures. Most measures base their quality predictions on the difference between
a processed image and its original. The detailed computational approach can be diverse.
Some measures are, for example, simple mathematical functions such as the root-mean-
squared error while other measures use complex methods to simulate the human visual
system (HVS). Nevertheless, all measures aim at modeling the relationship between im-
agery parameters and the assessment of perceived image quality. Therefore, traditionally
the usefulness of instrumental quality measures is evaluated by means of subjective qual-
ity data. Since subjective testing is time consuming, an extensive evaluation which includes
quality judgements for a wide range of impairments (perceived artifacts introduced due to
e.g. image processing) and scenes is definitely hard to achieve. A public image bank and a
database of subjective quality judgements can be a solution to this problem (Carney et al.,
1999, 2000; Rohaly et al., 2000b,a; Corriveau et al., 2000). For example, the video quality ex-
pert group (VQEG) performed intensive subjective tests on a number of image sequences
degraded by various distortions. These sequences and subjective data are freely accessi-
ble to encourage the video community to test and compare instrumental quality measures.
Yet, the database is still limited, subjective quality ratings were obtained for test sequences
compressed at a bit-rate of 768 kbs up to 50 Mbs. Furthermore, the quality assessments
were performed at a single viewing distance and with a single monitor size. The VQEG
evaluation of instrumental quality measures, including the RMSE, showed that with such
a limited database it is hardly possible to differentiate between the measures. The perfor-
mance of instrumental quality measures were not fully tested and therefore it is to be ex-
pected that more complicated measures will indeed outperform the RMSE if for example
the range of viewing conditions and video material is extended.

In this chapter we describe a technique to compare and classify instrumental quality mea-
sures. This classification is performed on the basis of the proximity of their quality predic-
tions. Instead of evaluating the usefulness of instrumental quality measures we address the
question whether measures are essentially similar or not. Since only computer resources
are consumed and no time-consuming subjective tests are needed, a large image set with
varying scene content and a wide range of distortions can easily be used, in such a classi-
fication.

The second point discussed in this chapter is how a clustering analysis of a large num-
ber of scenes can be used to select a limited number of scenes that allow to discriminate
between the predictions of instrumental quality measures. We will also investigate if the
scene content can be used as selection criterion for such a representative image set. Prede-
fined classes of scene content will be compared to the groups resulting from the hierarchical
cluster analysis of scenes.

The image set used for the classification of instrumental quality measures is described

1Usually such measures are indicated by the term objective quality measures. We prefer to use the term
instrumental quality measures instead since in our opinion the term ‘objective’ cannot be attributed to image
quality measures.
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2.2. Image set

in section 2.2. This image set consists of a representative sample of 164 scenes includ-
ing for instance representations of portraits, objects and landscapes. Diverse types and de-
grees of distortions are introduced through DCT-coding, wavelet coding and low-pass fil-
tering(Pennebaker and Mitchell, 1993; Watson, 1993; Said and Pearlman, 1996; Gonzales
and Woods, 1992). The instrumental quality measures that are analyzed in this thesis are
introduced in section 2.3. The following two sections describe the classification: the pro-
posed method to classify instrumental quality measures by means of their predictions (sec-
tion 2.4) and the resulting groups of instrumental measures which give similar predictions
(section 2.5) for the large image set. Finally, in section 2.6 a subset of scenes is selected which
discriminate optimally between the groups of instrumental quality measures.

2.2 Image set

The image set used for the categorization of instrumental measures consists of 3936 im-
ages. This set is obtained by manipulating 164 scenes by four processing methods, each at
six different levels. This collection of 164 scenes represents a considerable range of scene
contents among which portraits, objects, buildings and landscapes (see Appendix A). A more
detailed description of the contents is given in section 2.6. The effect of processing method
on the predicted image quality is studied for low-pass filtering and two coding methods,
namely DCT-coding and wavelet coding. DCT-coded images are obtained by means of the
standard JPEG coding algorithm as well as by means of DCTune which uses an optimized
quantization table for each scene.

The processing methods and levels applied to the set of 164 natural scenes are:

� Sequential baseline JPEG coding with Q-parameter: 15, 20, 25, 30, 40 and 60 (Pen-
nebaker and Mitchell, 1993).

� DCTune coding with perceptual error: 4, 3.5, 3, 2.5, 2 and 1.5 (Watson, 1993).

� Wavelet coding at bit-rates: 0.15, 0.2, 0.3, 0.4, 0.5 and 0.6 bits per pixel (bpp) (Said and
Pearlman, 1996).

� Low-pass filtering with kernel length 2 of 9, 7, 6, 5, 4 and 3.

Each processing method introduces specific distortions whereby the image quality deterio-
rates with increasing perceptual-error (DCTune coding) or blur kernel length (Low-pass fil-
tering) and decreasing Q-parameter (JPEG) or bit-rate (Wavelet coding). JPEG and DCTune
coding are both block-based DCT-coding algorithms. This implies that the introduced dis-
tortions are mainly blockiness, ringing and blur. Although JPEG and DCTune images both
contain these distortions, the proportion between these distortions can be different for each

2The low pass filters are normalized binomial NxN filters. Due to the even filter kernels the pixels of the
low pass-filtered images filtered with kernel length 4 and 6 are not in registration with the original pixel values.
Therefore these low-pass filtered images are bilinearly interpolated (Gonzales and Woods, 1992). Next they
are shifted by 1 pixel horizontally and vertically and downsampled to remove the pixel shift such that they are
registered with the original.
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Figure 2.1: Double-ended instrumental quality measures calculate a distance be-
tween the original image, I, and a processed version,

�
I. Three stages of modeling

can be identified. The first stage is a monitor correction stage in which the origi-
nal image and a processed version of it are transformed in a luminance image, L
and

�
L, respectively. The images P and

�
P resulting from an image analysis stage

contain image information, e.g. image edges. Next a difference image is obtained
and in the combination stage collapsed into a single scalar value,

�
, representing

the distance between the original image I and its processed version
�
I. Not all three

stages are necessarily present in each instrumental quality measure.

coding method. Moreover, in JPEG the strengths of blockiness and blur increase monoton-
ically with decreasing Q-parameter while ringing tends to saturate for high data compres-
sion(de Ridder and Willemsen, 2000). Wavelet coding introduces mainly blur which occurs
at image-dependent positions. This is in contrast with the uniformly distributed blur in the
low-pass filtered images.

2.3 Instrumental quality measures

The majority of instrumental measures used to assess image quality compute a distance
between the original and a processed version of it (Ahumada, 1993). In this section a par-
ticular group of such quality measures is described. These measures consist of up to three
computational stages: a monitor characteristic correction stage, an image analysis stage
and a combination stage (see figure 2.1). Not all three stages are necessarily present in
each instrumental quality measure. The separate stages are described in sections 2.3.1, 2.3.2
and 2.3.3, respectively. Different instrumental measures are obtained by varying the com-
putational approach in each stage. Finally, the measures as used in the classification of sec-
tion 2.5 are listed in section 2.3.4.

2.3.1 Monitor characteristic correction stage

The input images I and Î are 2-dimensional digital representations of gray-scale values.
These gray-scale values are internal values but the monitor characteristic can affect the per-
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2.3. Instrumental quality measures

ceived energy or emitted light. Therefore a gray-value-to-luminance characteristic of the
monitor is modeled as: ���

max � ����� �
	����
�������������
����������	 (2.1)

where the minimum luminance is
����� �����! "

cd
�
m # , and the maximum luminance 3 is���
���$�&%��

cd
�
m # . The gray-scale values

�
lie between

�
and

���
���
with a maximum gray-

scale value of
���
���'�("�)�)

, and the exponent * equals
"+ )

(Poynton, 1993).

2.3.2 Image analysis stage

In this stage specific information is extracted from the images. As described in section 2.2
various processing methods were applied on the images, namely DCT-coding, wavelet-
coding and low-pass filtering. These processing methods introduce distortions such as
blockiness, ringing and blur. The artifacts manifest themselves in an image as added or
lost edges. Therefore an image analysis technique is used to extract the amount of spatial
information in an image (Beerends, 1997; ITU-WP-2/12, 1995). The ,.-�/10�2 edge filter is used
to calculate the edge magnitude for each pixel

�435	46+�
in an image I in two orientations namely

in the horizontal and the vertical direction (Gonzales and Woods, 1992). The filter kernel
in the horizontal direction is: 78

9;:=< � <: ">�?"
:=< � <

@ A
B 	

and in the vertical direction: 78
9 :=<>: " :=<� � �

< " <
@ A
B  

The filter kernels are centered on each pixel
�435	46+�

in an image I in a 3x3 pixel neighbor-
hood. The filter coefficients are multiplied by the pixel values and subsequently added.
For each pixel the magnitudes in horizontal direction ,.-�/10�2 �
�435	46+� and in vertical direction,.-�/10�2 C �435	46+� are combined into the gradient amplitude:

,.-�/10�2 D �435	46+�E�GF ,.-�/10�2 �H�435	46+� #.I ,.-�/10�2 C �435	46+� #  (2.2)

Thus each pixel J �435	46+� is replaced by the derived edge magnitude ,.-�/10�2 D �435	46+� . The distance
measures as described below in section 2.3.4 are based on the edge magnitude only.

3L KML N and L KPORQ are chosen for a specific monitor. These values are based on the monitor calibration as
obtained for the experiments in chapter 3 and chapter 5.
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2. Classification of instrumental measures

2.3.3 Combination stage

The image analysis stage extracts edge information for a processed image and its original.
If these quantities of information are subtracted a difference map is obtained. For a human,
this difference map often shows in a glance where differences between both images are de-
tected. The combination stage is used to actually compute a single scalar value which in-
dicates a distance between two images. It is obvious that if these maps are collapsed into a
single scalar value spatial information is lost. On the other hand, the difference maps them-
selves mainly reveal the positions where differences are detected but do not give a quality
indication or an indication how perceptually different they are.

The results presented by the VQEG (Video Quality Expert Group) showed that the RMSE
performed well for moving images (Corriveau et al., 2000). For that reason several deriva-
tives of this simple measure will be used as combination rules for the measures that are
classified in section 2.5. Similar combination rules are used in most existing double-ended
measures (Eskicioglu and Fisher, 1995).

The first two stages, as shown in figure 2.1, result in transformed images P and
�
P. The dis-

tance resulting from the combination, given as ,�� � P 	 �
P � , indicates how dissimilar the im-

ages are. We will look at three different classes of combination rules, namely those based
on: 1) a measure of correlation, 2) Minkowski summation, and 3) threshold weighting.

Correlation measures

Two images, P and
�
P, are considered similar if the corresponding pixel values

�435	46+�
in both

images are equal up to a linear transformation. Two statistical measures to obtain such a
relationship are the Pearson correlation coefficient, ��� , and the inner-product correlation, � � .
The corresponding combination rules are ,�� and , # , respectively (see Table 2.1). In both
cases a correlation of +/-1 results in a distance of zero. An instrumental measure using
combination rule ,�� cannot discriminate between two images for which the pixel values
differ up to a scaling factor and offset. For measures using , # , two images are the same
if their pixel values differ up to a scaling factor. Therefore a distance value of 0 does not
necessarily mean that the two images are perceptually indistinguishable.

Minkowski summation

An often-used combination rule is the Minkowski summation represented as ,�	 in Ta-
ble 2.1. In this case it is assumed that large pixel differences have a large impact on the
perceived image quality (de Ridder, 1992). The exponent 
 is used to attribute a higher
weight to large pixel differences. Four instances of 
 were used, namely 
 � < 	 "+	�� and 
 .
An increasing value of 
 increases the contribution of large pixel differences to the overall
distance. A Minkowski summation with 
 � < is the average absolute difference between
two images (city-block distance) and if 
 � " , the RMSE is calculated. The Minkowski sum-
mation with 
 � 
 is equal to the maximum of the absolute difference between both im-
ages P and

�
P.
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Table 2.1: The combination rules collapse the pixel differences between the origi-
nal, � � � , and a processed version of it,

�� � � , into a single scalar value, ,�� . The pixel
differences are denoted by � � �H� � � � : �� � � .
, � � P 	 �

P � � <�: ��#� with � � �
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�� 
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 L 
�� 
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 � �
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�� �
 O������ �

, # � P 	 �
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�� �
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 �
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,0/ � P 	 �
P
	�1 � � �  � � � 0 ��-�203 � � � ��	�1E� with � � �H� � � � : �� � � and

� 0 ��-�203 � � � ��	�1E�E�,1 #54 687:9 < I �#<; � = L 
 � �> �@?%A
,.B � P 	 �
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	�1 � � �  � �%CED0F 0HG � � � ��	�1E� with � � � � � � � : �� � � and
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 � J> J I � = L 
 � K	 � > K , if L � � � L8M 1�	 , if L � � � L8N 1
,0O � P 	 �

P
	�1 � � �P � �%Q*D /10 � � � � ��	�1E� with � � �H� � � � : �� � � and
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 � �# � > I > # , if L � � � L8M 1L � � � L , if L � � � L8N 1

17



2. Classification of instrumental measures

Table 2.2: In the summation rules , / , ,.B and ,0O three threshold values
1

are used.
The threshold values are pixel values, averaged across scenes, taken at 75%, 90%
and 95% of a cumulative histogram. Different threshold values were obtained for
gray, ,.-�/10�2 -filtered gray, luminance and ,.-�/10�2 -filtered luminance difference im-
ages.

Threshold values � for
�

,
�

, and
�

75% 90% 95%
gray image 7.68 13.67 18.47�������
	

-filtered gray image 35.94 65.91 90.21
luminance image 1.66 3.45 5.14�������
	

-filtered luminance image 8.10 17.24 25.62

Also a normalized version of the Minkowski summation with exponent 
 �G"
is consid-

ered (Eskicioglu and Fisher, 1995). The normalized root-mean-squared error, , - , takes the
total variation in the original and processed image into account. If the variation of gray val-
ues in an image is large then the differences between the original and the processed image
is perceptually less visible. On the other hand if the variation of gray values in an image is
small than the difference between the original and the processed images is probably more
visible.

Threshold weighting

In the combination rules , 	 and ,.- large pixel differences are assumed to contribute more
to the overall distance between two images. Three additional combination rules with a
threshold parameter will be considered. Pixel differences above a particular threshold are
weighted differently than those below the threshold. The three functions given in Table 2.1
are: the Perona transform, , / , the Tukey transform, ,0B , and the Huber transform , O (Black
and Marimont, 1998).

The threshold value
1

was determined by means of an image set which consisted of 79
scenes processed by four processing methods at six levels 4. The difference images, taken
between the processed images and their original, were then used to compute a threshold
value. For each difference image a pixel value was taken at 75%, 90% and 95% of the cu-
mulative histogram. The threshold value

1
was the average across all difference images at

a particular level. Since the combination rule is applied after the first two stages,
1

is de-
termined for each of the four optional concatenations. The threshold values

1
are given in

Table 2.2 for gray-scale, ,.-�/10�2 -filtered gray-scale, luminance and ,.-�/10�2 -filtered luminance
images.

4The processing and the scenes are described in section 2.2. A subset of the 164 scenes was used to derive
the threshold values.
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2.3.4 Instrumental quality measures used in the clustering analysis

The instrumental quality measures as considered in the classification of section 2.5 are a
combination of the previously described three stages. By realizing all possible combina-
tions of these stages, we obtain 64 different instrumental measures, listed in Table 2.3. The
columns indicate the monitor correction stage and the applied image analysis, whereas the
rows represent the combination rules. The name of each instrumental quality measure is
given in the separate cells of the table.

In addition three instrumental quality measures, based on the human visual system (HVS),
will be used as reference measures. For this purpose two implementations of the Sarnoff
model (Lubin, 1995) are used, the full Sarnoff model with all orientation filters and a sim-
plified version of it (Martens and Meesters, 1998). In this chapter we refer to these vision
models as ��3 � 2P- ��� and ��3 � 2P- ��� - � , respectively. An extended description of the model im-
plementations used in this chapter can be found in Martens and Meesters (1998). Further-
more, a vision model 5 proposed by CCETT (a joint research center of France Telecom) is
used.

2.4 Classification method

In this section we discuss a method to classify instrumental quality measures on basis of
the mutual correlation between their quality predictions. Thus, we investigate which in-
strumental measures give similar outputs, without analyzing the quality of the model pre-
dictions with respect to subjective data.

The instrumental quality measures as described in section 2.3 predict the image quality
on a continuous scale. Moreover, the double-ended quality measures interpret the image
quality as a distance between the original image and a processed version of it. Therefore,
the instrumental quality measures are considered to produce quality predictions on a ra-
tio scale (Stevens, 1951; Luce and Krumhansl, 1988). This implies for double-ended instru-
mental measures that the distance between identical pictures equals zero. Although this
is true for each quality measure the individual range of quality predictions may be differ-
ent. Therefore, the quality predictions are normalized per measure so that the individual
ranges of predictions are comparable. Furthermore, we assume that within each instru-
mental measure the distances of all scenes are measured on the same scale. This implies
that within each instrumental measure the distances between scenes are comparable.

A multitude of alternative proximity measures and clustering methods can be used to sort
the collection of instrumental quality measures into a number of groups. The choice of
proximity measures such as, for example, the Euclidean distance, the City Block distance or
the Pearson correlation coefficient can affect the resulting groups of quality measures (Cox
and Cox, 1994). The same holds for alternative clustering concepts, such as linkage meth-
ods, centroid methods or variance methods, though most methods will give similar re-
sults (Anderberg, 1973). In the scope of this chapter the inner-product correlation is chosen

5The model was developed in the framework of the European research project TAPESTRIES.
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2. Classification of instrumental measures

Table 2.3: Overview of the 64 instrumental quality measures obtained by varying
the three computational stages. The columns indicate the monitor correction stage
and the applied image analysis whereas the rows represent the combination rules.
The name of each dissimilarity measure is given in the cells.

monitor
characteristic luminance gray
correction stage

image analysis none ,.-�/10�2 none ,.-�/10�2
stage

combination
stage
s � ddot sddot gddot gsddot
s # dcor sdcor gdcor gsdcor
s 	 , 
 � < mink1 smink1 gmink1 gsmink1
s 	 , 
 �&"

mink2 smink2 gmink2 gsmink2
s 	 , 
 � �

mink3 smink3 gmink3 gsmink3
s 	 , 
 � 
 dmax sdmax gdmax gsdmax
s - nrmse snrmse gnrmse gsnrmse
s / , 1 at 75% per75 sper75 gper75 gsper75
s / , 1 at 90% per90 sper90 gper90 gsper90
s / , 1 at 95% per95 sper95 gper95 gsper95
s B , 1 at 75% tuk75 stuk75 gtuk75 gstuk75
s B , 1 at 90% tuk90 stuk90 gtuk90 gstuk90
s B , 1 at 95% tuk95 stuk95 gtuk95 gstuk95
s O , 1 at 75% hub75 shub75 ghub75 gshub75
s O , 1 at 90% hub90 shub90 ghub90 gshub90
s O , 1 at 95% hub95 shub95 ghub95 gshub95
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as a proximity measure to characterize the relation between quality measures. This prox-
imity measure is chosen to substantiate the assumption that the predictions of instrumental
quality measures are defined up to a scaling factor. Even though the analysis is carried out
on the basis of this strong supposition the methodology proposed in the next sections can
be applied in the same way if proximity measures are used that require less assumptions.
As an example, when using the Spearman rank-order correlation coefficient as a proxim-
ity measure, instrumental quality measures are already considered the same if they agree
in the rank-order of quality predictions. Another choice has to be made with respect to
the cluster analysis procedure. Also in this case the chosen method can affect the cluster-
ing of instrumental quality measures to some extent. In consequence, the specific quality
measures obtained as representation of each cluster are subject to the applied clustering
method. Ward’s hierarchical clustering, which is used in our analysis, has the property
of generating compact clusters (Everitt, 1993). Finally, we want to emphasize that even
though particular choices were made the procedure as described in this chapter does not
critically depend on them.

In section 2.4.1 a transformation is given to normalize the quality measure’s predictions.
A distance measure to express the proximity between instrumental quality measures is de-
scribed in section 2.4.2. A classification of measures by means of multi-dimensional scaling
and Ward’s hierarchical cluster analysis is described in sections 2.4.3 and 2.4.4, respectively.

2.4.1 Normalization

The range of numbers indicating quality predictions is not the same for each quality mea-
sure. If one would compare the predictions of quality measures with different ranges, those
measures with the largest range would contribute most to the overall difference. Therefore
prior to computing the proximity between quality measures their predictions are standard-
ized by normalizing for each measure the overall RMSE to unity. A normalized prediction,�� � � ��� , for quality measure � , scene � processed with method � at level 2 is given by:

�� � � ��� � � � � ���
RMSE

�
RMSE

� ��� � � � � � �
� #� � ���

where
� � � ��� is the non-normalized quality prediction.

The normalization of quality measure’s predictions has no effect if the proximity of quality
measures is the inner-product correlation (see section 2.4.2). However, in section 2.6 the
relation from one scene to the other is expressed by the city-block distance. In that case
it is appropriate to standardize the quality measure’s predictions to guarantee the same
contribution of each quality measure to the overall scene distance.
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2. Classification of instrumental measures

2.4.2 Distance measure

Comparing instrumental quality measures means that we have to define a measure of prox-
imity which indicates the relation between two different instrumental measures (Cox and
Cox, 1994). Since the measures are assumed to give quality predictions on a ratio scale, a
proximity measure is chosen which preserves the scale properties. The distance between
instrumental quality measures is assumed to be the same if their predictions are equal up to
a scaling factor. Therefore, the inner-product correlation is used as a measure of similarity
between the predictions of two instrumental measures � and 2 :

� ��� � 78
9 � � � � � � � �� � � ����� �� � � ��� � #� � � � � � �� #� � ��� � � � � � � � �� #� � ���

@ A
B $� 	 (2.3)

where
�� � � ��� is the normalized predicted quality calculated using instrumental measure �

for scene � , between an image processed by method � at level 2 , and its original.

The similarity between two instrumental measures is transformed into a dissimilarity mea-
sure in the following way:

� ��� � <�: � #���  (2.4)

Two instrumental measures � and 2 are identical in their quality prediction if
�;��� � �

.
The most extreme dissimilarity between two measures is given as

�;��� � < .� ���
represents an overall dissimilarity taken across scenes, processing methods and pro-

cessing levels. The obtained dissimilarity between two instrumental measures can be due
to any of these three factors. Because of this, instrumental measures can be grouped as be-
ing similar while the similarity can be attributed to either of these factors. For instance if
the instrumental measures give different predictions for the various processing methods
this can be lost in the overall dissimilarity measure. Therefore, the mutual correlation of
the quality measures is also investigated for each processing method separately. The inner-
product correlation between two instrumental measures � and 2 for a particular process-
ing method � is obtained in the following way:

� ��� � � �.�
78
9 � � � � � �� � � ��� �� � � � � #� � � � �� #� � � � � � � � �� #� � �

@ A
B $� 	 (2.5)

where
�� � � � is the normalized predicted quality calculated using instrumental measures �

for scene � between an image processed with method � at level 2 and its original.

Again the similarity coefficient is transformed into a dissimilarity in the following way:

� ��� � � �.� <�: � #��� � � �� (2.6)

The above described measure of association,
� ���

, is calculated for every pairwise combi-
nation of instrumental measures, resulting in a NxN dissimilarity matrix that is used in the
following section to group instrumental measures.
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2.4. Classification method

2.4.3 Multidimensional scaling

The above described dissimilarity matrices are used in a multidimensional scaling analysis
(MDS) to find groups of similar instrumental measures and to determine the underlying
distance measure.

Given a matrix of distances between a number of objects, multidimensional scaling is a
technique used to find the coordinates of these objects in a low-dimensional space such that
the distances between these points fit the original matrix of distances as closely as possi-
ble. A classical example in multidimensional scaling is to reconstruct a geographical map
of cities from measured distances between cities only. This technique is valuable since it
is easier to interpret a map of the city locations than a matrix with distances between the
cities (Cox and Cox, 1994). Besides, the obtained dimensionality and distance measure that
best fits the underlying distance matrix can give us a better understanding of the complex-
ity of the data.

The program xgms is a multi-dimensional scaling analysis tool which is used to determine
classes of instrumental measures (Martens, 1999). Xgms allows to interactively alter the pa-
rameters of the MDS model and to view and manipulate the resulting stimulus configura-
tion. This is a valuable tool to explore and get a better understanding of the original dis-
similarity data. With xgms instrumental measures are grouped in the same class if their
predictions are similar. Below, the MDS algorithm is explained briefly.

Let
� ���

denote the dissimilarity between two instrumental measures � and 2 . If these
instrumental measures are comparable they can be mapped to similar coordinates in an
N-dimensional space. The dissimilarities can be modeled as an N-dimensional stimulus
configuration ) x � 	�   	 x � + with x

�
a stimulus position in an N-dimensional space. The dis-

similarities are transformed by a power function, C . The monotonically non-linear trans-
formed distances C � ��� are linearly related to the distances between the stimulus coordi-
nates � ���$� L L x � : x

� L L � , where the Minkowski metric with power 2 is used to calculate this
distance. An N-dimensional stimulus configuration is determined such that the stress for-
mula is minimized:

,�� ��0 � � � x � 	 � � � 	 x  �E� � � ��� � � � C � ��� : a � L L x � : x
� L L � � #� � ��� � � C � #���  

(2.7)

An optimally fitting stimulus configuration with the lowest dimensionality will be used as
a representation of the dissimilarity matrix indicating the groups of instrumental measures.
The dimensionality is chosen by means of the ’elbow principle’. The stress is plotted as a
function of the number of dimensions and the optimal dimensionality is chosen where the
’elbow’ appears (Cox and Cox, 1994).

2.4.4 Ward’s hierarchical clustering

Using multidimensional scaling, an optimal fit is established for a specific distance function
which is in our case the Euclidean distance. If for example a two-dimensional stimulus con-
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2. Classification of instrumental measures

figuration will be obtained, then a plot of the stimulus positions gives a better understand-
ing of the relation between the instrumental quality measures than the distance matrix

�
.

Nevertheless, proceeding from the stimulus configuration it is difficult to actually group
the quality measures. Therefore, an agglomerative method is used to cluster the quality
measures according to their estimated Euclidean distances.

Ward’s hierarchical clustering method is used to find groups of similar instrumental mea-
sures within the stimulus configuration (Anderberg, 1973). The concept is that one by one
instrumental measures with the smallest within group variance are merged. The detailed
procedure is described below.

A matrix, � , is constructed containing the Euclidean distances between all pairwise com-
bined quality measures � and 2 . In Ward’s clustering method the initial distances between
the instrumental measures � and 2 are �# �+#��� . At first, each of the 67 instrumental measures
is considered as a separate cluster. Next the following two steps are repeated until all mea-
sures are grouped into one cluster.

1. The two clusters, � and 2 , with the minimum distance in the matrix, � , are merged,
resulting in a new cluster � .

2. The distance matrix is updated. A new distance is calculated from the merged cluster
� towards all other existing clusters D . The new distances are the Euclidean distances
between the centroids of each cluster and are calculated in the following way:

����� � <�
� I �

�
� ��� � I �=�$�

� ��� � I ��� � I �=���
� ��� � : �

� � � ��� �
where

�
� ,

�
� ,

�=�
and

�=�
are the number of instrumental measures in the clusters D ,

� , � and 2 . The distance � ��� , ��� � and ��� � are given in the distance matrix � .

The resulting hierarchical cluster tree shows the aggregation of the instrumental measures
into groups. Only the major groups are identified as means to determine the difference
between measures. This is done in the following way. The distance between the merged
clusters is proportional to the increase in the within-group error. This distance between the
merged clusters is plotted as a function of the number of clusters and an optimal number
of instrumental quality measure groups is chosen where the ’elbow’ appears.

2.5 Classification of instrumental quality measures

In this section, instrumental quality measures are clustered according to their image qual-
ity predictions. In comparison with evaluating the usefulness of quality measures, we in-
vestigate whether their predictions are essentially similar or not for a large image set. The
67 instrumental quality measures which are used for this purpose were discussed in sec-
tion 2.3.4. These measures will be clustered by means of their image quality predictions
obtained for a large image set, namely 3936 pictures. The image set contains 164 differ-
ent scenes, each processed by four algorithms (JPEG, DCTune, wavelet coding and low-
pass filtering) at six levels. This collection of 164 scenes represents a considerable range of
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2.5. Classification of instrumental quality measures

scene contents, including portraits, objects, buildings, and landscapes. To investigate the rela-
tionship between the 67 instrumental measures two analyses are performed: multidimen-
sional scaling and Ward’s hierarchical clustering. In section 2.5.1 the resulting MDS stimu-
lus configuration is discussed. Thereupon, in section 2.5.2 groups of instrumental quality
measures which compute similar image quality are presented.

2.5.1 MDS stimulus configuration

The relationship between 67 instrumental quality measures is explored by means of the
multidimensional scaling tool xgms. For each instrumental measure, image quality predic-
tions were obtained for 164 scenes processed with four methods (JPEG, DCTune, wavelet
coding and low-pass filtering) at six levels. Next, the proximity measure of section 2.4.2 is
applied to express in a single scalar value the relationship between the quality predictions
of all pairwise combinations of instrumental measures. Thus, from the (164x4x6) quality
scores per quality measure a 67x67 dissimilarity matrix was computed, representing the
overall dissimilarity between the instrumental quality measures.
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Figure 2.2: (a) The stress for stimulus configurations resulting from MDS analy-
ses up to four dimensions is plotted as a function of the number of dimensions.
The depicted stress function was obtained for stimulus configurations derived
for quality predictions of all processing methods. (b) The Euclidean distances
between the coordinates representing the instrumental quality measures in a 2-
dimensional stimulus configuration are plotted versus the original dissimilarity
obtained between the quality predictions of 67 instrumental quality measures.

This dissimilarity matrix was input to xgms to explore which stimulus configuration, with
the lowest dimensionality, fits the original dissimilarity data best. Stimulus configurations
up to 4 dimensions were tried. In figure 2.2(a) we show the stress obtained for the dimen-
sions 1 up to 4. As can be seen the ”elbow” appears if the dissimilarities are approximated
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2. Classification of instrumental measures

by a two-dimensional Euclidean space. The fit of the estimated distances increases from
one dimension to two dimensions. However additional dimensions, such as in a 3D or 4D
configuration, add less to the fit. In figure 2.2(b) the estimated Euclidean distances are plot-
ted versus the original dissimilarities. This figure shows that a two-dimensional stimulus
configuration with a Euclidean distance function is an acceptable model for the dissimilar-
ity matrix. The original dissimilarities correlate highly with the approximated Euclidean
distances.

In figure 2.3 the resulting 2-dimensional MDS stimulus configuration of instrumental qual-
ity measures is shown. The 67 instrumental measures are depicted in the following way:

1. the three symbols at the top of the legend characterize the three vision models;

2. the remaining 16x4 instrumental quality measures are represented by 16 sets of four
symbols that are connected by lines. The symbols indicate measures applying the 16
different combination rules and:

(a) a gray-scale-to-luminance transformation (the 16 unique symbols at the bottom
of the legend);

(b) a gray-scale-to-luminance transformation in combination with ,.-�/10�2 filtering, I ;

(c) neither gray-scale-to-luminance transformation nor ,.-�/10�2 filtering, � ;

(d) ,.-�/10�2 filtering only, � .

This 2-dimensional graph, representing the 67 instrumental measures, is easier to interpret
than the complex 67x67 dissimilarity matrix. Quality measures that compute a similar im-
age quality are located near to each other whereas measures computing a different image
quality are far away. It can be seen that the instrumental quality measures are not uniformly
distributed over the 2-dimensional space, but they are organized in subgroups. In order to
derive groups Ward’s clustering will be used in the next section. In figure 2.3 six major
clusters resulting from such an analysis are indicated by dotted circels.

The quality measures were also classified for each processing method separately: JPEG,
DCTune, Wavelet coding and low-pass filtering. For each processing method a 67x67 dis-
similarity matrix was computed from quality scores obtained for 164x6 image pairs per
quality measure. In accordance with the previously found dimensionality, where the qual-
ity measures were classified for all processing methods, a two-dimensional stimulus con-
figuration gave the best results. The dissimilarities correlate highly with the approximated
distances in a two dimensional space, � # � �! ��%

.

In xgms, stimulus configurations are determined up to a rotation and scaling factor. A Pro-
crustus analysis is used to analyze whether the configuration obtained for each process-
ing method is similar to the configuration obtained for quality predictions of all processing
methods (Cox and Cox, 1994). The analyses show that an MDS stimulus configuration of
the separate processing methods correlates highly with the configuration obtained for qual-
ity predictions of all processing methods (

�! ��% M ��# M �! ��� ). In the following section we use
the latter two-dimensional stimulus configuration for a hierarchical clustering analysis.
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Figure 2.3: Two dimensional stimulus configuration of the quality measures ob-
tained by xgms for all quality predictions. The three symbols at the top of the leg-
end characterize the three vision models. The remaining 16x4 instrumental qual-
ity measures are represented by 16 sets of 4 symbols that are connected by lines.
The symbols indicate measures applying the 16 different combination rules to-
gether with 1) a gray-scale-to-luminance transformation (the 16 symbols at the
bottom of the legend); 2) a gray-scale-to-luminance transformation together with,.-�/10�2 filtering, I ; 3) neither gray-scale-to-luminance transformation nor ,.-�/10�2 fil-
tering, � ; 4) ,.-�/10�2 filtering only, � . The dotted circles indicate the clusters that are
obtained by Ward’s hierarchical cluster analysis.
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2. Classification of instrumental measures

2.5.2 Groups of instrumental quality measures

The MDS stimulus configuration obtained in the previous section shows that groups of
quality measures that predict similar image quality can be identified. In this section, Ward’s
hierarchical clustering will be used to identify, systematically, groups of similar instrumen-
tal quality measures. The distances, �# �+#��� , as obtained by the MDS analyses were input to
Ward’s hierarchical clustering. The resulting aggregation of the quality measures is shown
by the hierarchical cluster tree in figure 2.4. In figure 2.5 the distance between the merged
clusters is plotted as a function of the number of clusters. The optimal number of groups
which contain instrumental measures that compute different quality predictions is chosen
where the ’elbow’ appears. The figure suggests that the largest dissimilarity between the
instrumental quality measures is caused by six main groups.

Figure 2.6 shows the two-dimensional stimulus configuration obtained by the MDS anal-
ysis with the six main clusters of quality measures indicated by different colors. In each
panel the effect of one of the computational stages of the quality measures is illustrated.

Figure 2.6(a) shows the effect of the monitor characteristic correction stage on the groups
of quality measures. Quality measures in which a gray-scale-to-luminance transformation
is applied and those without a transformation are depicted as � and � , respectively. Cor-
responding measures are connected by a line. Figure 2.6(b) shows the effect of the image
analysis stage on the groups of quality measures. Quality measures in which ,.-�/10�2 filter-
ing is applied are indicated by a � , and those which do not apply ,.-�/10�2 filtering by � . The
three vision models are depicted as � . The two versions of each quality measure with the
same monitor characteristic correction and combination stage (with and without ,.-�/10�2 fil-
tering) are connected by a line. Figure 2.6(c) shows the effect of the combination stage on
the groups of quality measures. The symbols show the quality measures in which the com-
bination rules, ,�� up to ,0O , are applied. The vision models are depicted as � .

Instrumental quality measures compute similar image quality whether a gray-scale-to-
luminance transformation is applied or not. This is demonstrated in figure 2.6(a). In this
figure the lines connecting the quality measures which apply a gray-scale-to-luminance
transformation or not are short such that they mainly belong to the same cluster. From the
total 32 pairs of quality measures the two quality measures of 29 pairs belong to the same
cluster. A few of the measures are spread across two clusters namely cluster 4 (magenta)
and cluster 5 (green), though the distance between them remains small.

Not all quality measures which apply ,.-�/10�2 filtering or not compute similar image quality.
In figure 2.6(b) the lines connecting these quality measures indicate that for two clusters
the between cluster distances of quality measures is larger then the within cluster distances.
Considering these two types of quality measures (applying ,.-�/10�2 filtering or not), measures
with the summation rules ,�� , , # and , 	 with 
 � 
 belong to different clusters.

The main effect leading to the differences between the instrumental quality measures is
demonstrated in figure 2.6(c). This figure shows that the main difference between the 67
quality measures can be attributed to the combination rules ( , � � � � ,0O ). An interesting ob-
servation is that the HVS measures are similar to simple statistical measures which use the
normalized root-mean-squared error ( ,0- ) as combination rule. However the root-mean-
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Figure 2.4: Hierarchical cluster tree for 67 quality measures. The labels on the left
are the quality measures of Table 2.3.
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Figure 2.5: The distance between the merged clusters is plotted as a function of
the number of clusters.

squared error ( , 	 	 
 �&"
), often used to determine image quality gives dissimilar results.

The largest difference between the quality measures can thus be attributed to the different
combination rules. Integrating pixel differences into an overall image quality indication is
probably one of the most critical stages of a quality measure. The translation of the per-
ceived differences in an image into an overall quality judgement is in most quality mea-
sures simplified to mathematical combination rules as described in this chapter. However
whether these rules are comparable to the rules applied by human beings is still not fully
understood.

2.6 Scene content

In this section we will investigate the effect of scene content on the predictions of quality
measures. Moreover, a method is described to select scenes for subjective testing.

In the previous section, six main groups of quality measures which compute the image
quality differently were identified. However, the effect of scene content cannot be deduced
from that analysis. In that sense, two questions remain. First of all, whether the quality pre-
dictions within each quality measure are similar for each scene. And secondly, whether the
difference between groups of quality measures is related to the scene content. If this is the
case then scenes can be identified that discriminate between quality measures.

In a subjective evaluation only a limited number of scenes can be incorporated. For ex-
ample in the experiments conducted in this thesis (see Chapters 3 ,4 and 5) three or four
scenes were used. Therefore it is most useful to select those scenes which discriminate best
within and between quality measures. If one would evaluate the six main groups of quality
measures with images selected on the bases of their scene content, e.g. outdoor or head-and-
shoulder scenes, it is not necessary that these scenes discriminate best between the quality
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Figure 2.6: Two-dimensional stimulus configurations of the quality measures.
The six main clusters are indicated by different colors. a) illustrates the ef-
fect of the monitor characteristic correction stage (measures applying no gray-
scale-to-luminance transformation, � , versus measures applying a gray-scale-to-
luminance transformation, � ). The lines connect the quality measures with the
same image analysis and combination stage. b) illustrates the effect of the im-
age analysis stage (measures applying no ,.-�/10�2 filtering, � , versus those applying,.-�/10�2 filtering, � ). The lines connect the quality measures with the same moni-
tor characteristic correction and combination stage. c) demonstrates the effect of
the combination stage. The symbols indicate the quality measures with different
combination rules.
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2. Classification of instrumental measures

measures. Moreover, the scenes could be such that no difference is obtained between the
quality measures and as a result they would perform similarly. This issue will be investi-
gated in detail in Chapter 5.

In the following section we will discuss how scenes for subjective testing can be selected
systematically. A procedure is described to select scenes which is based on two criteria:
1) each quality measure yields different results for each of the scenes and, 2) scenes yield
different results for each of the quality measures. It is suggested to use scenes in a subjective
evaluation that meet both criteria.

In section 2.6.2 this procedure is compared to a clustering of scenes based on a priori de-
fined scene content classes.

2.6.1 Stimulus selection for subjective testing

In section 2.5 we showed that the 67 quality measures can be grouped into six different clus-
ters. Thus the predicted image quality,

� � � ��� , is on average similar for a scene, � , processed
by a particular method � , and level 2 , for all quality measures � , within a cluster. On the
other hand quality measures of different clusters predict the image quality, on average, dif-
ferently. Therefore, to study the effect of scene content on the groups of quality measures it
is sufficient to take one quality measure of each cluster. These are selected as follows. First,
for each cluster, � � , a centroid coordinate

����� � 	 G � � � , is calculated as:����� � 	 G � � �E� <" � �	��
� ) ��� + I �
� �� ) ��� + 	 �	��
� )HG � + I �
� �� )�G � + � 	
where quality measure 2 from cluster � � is represented as a coordinate

��� �
	 G ��� in a 2 di-
mensional stimulus space.

Next, for each cluster the quality measure with the maximum summed distance to all other
cluster centroids is selected:

� �
���'� �	��
� /�
��� �

F ����� � : ���$� #.I � G � � : G � � # 	
where � is a quality measure not belonging to cluster F . The resulting six quality measures
are given in Table 2.4. These six selected measures will be used to cluster the 164 scenes.

Table 2.4: The selected instrumental quality measures, one from each of the six
clusters. In the left column the cluster colors as used in figure 2.6 are given.

cluster selected quality measure
1 (blue) ������� ����� - �
2 (cyan) sdmax
3 (red) dmax
4 (magenta) sper95
5 (green) tuk90
6 (black) tuk75

32



2.6. Scene content

Scenes differentiating between predictions within quality measures

In the following a procedure is described to obtain clusters of scenes for which the image
quality is predicted differently by each of the six selected quality measures of Table 2.4. In
brief, 24 instances per scene were obtained by processing the original with four methods
at six levels. For the six selected quality measures the relationship between the scenes is
investigated by means of these image quality predictions.

The range of numbers indicating the quality predictions is not the same for each quality
measure. If one would compare the predictions of quality measures with a different range
then those measures with the largest range would contribute most to the overall difference.
Therefore to guarantee the same contribution of each quality measure to the overall scene
distance the normalized predictions,

�� � � ��� , of section 2.4.1 were used.

In section 2.5 the inner-product correlation was chosen to indicate the relation between in-
strumental quality measures. However this is not an appropriate proximity measure to in-
dicate the relation from one scene to the other because this measure does not preserve the
relation between scenes. After all the scene predictions within a particular quality measure
are assumed to be given on the same scale. Therefore the city-block distance is chosen as
a measure of proximity to indicate the relation from one scene to the other. The distance
between two scenes, �

�
and �

�
, is computed in the following way:

�
scenes

�
�
�R	
�
���E� � � � � � � � �� � � L ��� :

�� � � 
 ��� �
(2.8)

where � is a quality measure, � a processing method and 2 the level of processing. A
164x164 distance matrix,

�
scenes, is obtained for all combinations of scenes

�
�
�R	
�
���

.

Next, Ward’s hierarchical clustering is applied on the distance matrix
�

scenes. The hier-
archical cluster tree is given in figure 2.7. The main groups in the cluster tree are chosen
by means of figure 2.8. This figure suggests that five main groups of scenes can be identi-
fied. Quality measures predict a similar image quality for scenes of the same cluster. On
the other hand quality measures predict dissimilar image quality for scenes from different
clusters. Thus to obtain scenes that discriminate within the quality measures, one scene is
selected from each scene cluster.

The selection of these representative scenes is done in the same way as the selection of a
representative quality measure by maximizing the distance to all other cluster centroids.
This analysis shows that a set of five scenes can be selected that discriminates within the
quality measures. Such a small set of scenes is feasible and most recommendable to use in
subjective testing if the goal is to evaluate the performance within quality measures.

Scenes which differentiate within and between quality measures

Up to now the scenes are grouped together if the quality predictions within each qual-
ity measure are similar. Resulting from this, five scenes were selected for which the im-
age quality is predicted differently within a quality measure. Next it will be studied if
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Figure 2.7: The hierarchical cluster tree shows the aggregation of 164 scenes. Five
main clusters can be identified. For each cluster the selected scene is shown. The
distances between two scenes were obtained by summing their absolute quality
difference across 24 image versions and six quality measures. For cluster 2 and 3
different scenes would be selected if only the first criterion is used. These scenes
are indicated by dotted arrows. 34
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Figure 2.8: The number of scene clusters versus the distance between scene clus-
ters obtained by Ward’s hierarchical cluster method when 164 scenes are grouped.

these scenes also discriminate between quality measures. For this purpose another proxim-
ity measure is taken. Scenes that allow to differentiate between quality measures should
have very different predictions of the different quality measures. This discriminability is
expressed in a single number in the following way.

The procedure described next is repeated for the scenes of each of the five scene clusters,
separately. For each scene in a particular cluster a 6x6 proximity matrix is obtained. This
matrix, D � , indicates the relation between the predictions from quality measure � to an-
other quality measure 2 for a particular scene � :

D
��� � � -�

� � �
B� � � � � �� � � ��� :

�� � � ��� �
(2.9)

where
�� � � ��� is the quality prediction of quality measure � for processing method � at level2 , and
�� � � ��� is the quality prediction of quality measure 2 for the same processing method� , and level 2 .

For each scene � the proximity matrix is summed as follows:

�� � � /�� � � B�� � ��� � D
��� � (2.10)

where
�� � is an overall proximity between the quality measures for a particular scene � and

D
��� � is the proximity between quality measure � and 2 . The higher the value of

�� � , the
more different are the predictions of the quality measures under consideration for scene � .

For each cluster the scene with the largest value,
�� � , is selected. These five scenes are shown

in figure 2.7. For three clusters the same scene is selected that already resulted from the
earlier clustering on the bases of the first criterion (cluster 1, 4 and 5). For the other two
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2. Classification of instrumental measures

Table 2.5: The selected quality measures if the distance between them is calculated
for 164 scenes and for 5 scenes. The cluster numbers are related to the selected
quality measures from 164 scenes.

cluster nr 164 scenes 5 scenes
1 ������� ����� - � ������� ����� - �
2 sdmax
3 dmax dmax
4 sper75
5 tuk90
6 tuk75 tuk75 and gtuk75

clusters (cluster 2 and cluster 3), different scenes were found for both criteria. In the fig-
ure, the scenes that discriminate between quality measures are depicted. The location in
the hierarchical cluster tree of the scenes that were selected according to the first criterion
are indicated by the dashed arrows. The distance between these images and those chosen
according to criterion 2 is small.

Classification of quality measures using a limited number of scenes

Since the clustering of quality measures depends on the scenes under consideration and
vice versa, we repeated the clustering of the 67 quality measures described in section 2.5,
but now using the 5 representative scenes selected above.

These five scenes were used to test whether they discriminate between the 67 quality mea-
sures in an identical way as when 164 scenes are used. From the analysis a similar 2-
dimensional stimulus configuration of quality measures was obtained. However, only four
main groups of quality measures could be identified by means of five scenes. It follows that
a subset of scenes changes the quality measure clusters. Apparently a small set of scenes
differentiates less between the quality measures. Next, four quality measures, one from
each cluster, were selected. The 4 selected quality measures were compared to those ob-
tained from the original clustering in Table 2.5. So, even though less clusters were found
the difference between the selected quality measures obtained by 164 or 5 scenes is small.

Consequently, five scenes can be selected which differentiate between and within quality
measures. However they differentiate less between all quality measures than if 164 scenes
were used. Therefore, in subjective testing a tradeoff has to be made between a feasible
number of scenes for the observers and their power to differentiate between quality mea-
sures.

2.6.2 Scene content as selection criterion

In the previous section an objective procedure was described to select a small set of rep-
resentative images that can be used in a subjective evaluation. This procedure will be ap-
plied in Chapter 5 to select scenes for subjective testing of JPEG coded images. However, in
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2.6. Scene content

practice scenes as used in subjective evaluation are often chosen by considering particular
image properties. It is known that perceived image quality depends on image properties
such as for example brightness, contrast and spatial information. This results most often
in choosing images which are described by their scene content. Often used descriptions
are head-and-shoulder, outdoor and indoor scenes. Since the image content determines which
information is available it is not likely that images of different scene content but with the
same degree of impairment are of similar quality. The perceived image quality probably
depends on the importance of the lost information. Therefore in this section we will study
whether the scene clusters as described in the previous section are related to a priori defined
scene content classes. If this is the case then the selection of scenes for subjective testing can
also be based on the scene content.

The 164 scenes as used throughout this chapter, see Appendix A, were divided into various
a priori defined scene content classes according to the study of Klein Teeselink et al. (2000).
The authors asked subjects to order a large number of scenes into a predefined number of
categories (2,3,4,5 and 6 categories). This study indicated that subjects group a set of images
according to the image information such as for example portrait or landscape. The 164 scenes
were divided into similar categories as described by Klein Teeselink et al. (2000). The six
categories were referred to as: 1) close-up people, 2) no close-up people, 3) close-up objects, 4)
no close-up objects, 5) buildings, and 6) landscapes. Figure 2.9 shows the categories and the
number of images in each category.

These six a priori defined scene classes were compared to the resulting five scene clusters
of the previous section. It was assumed that if the scene content can be used to make an
adequate selection for testing quality measure differences then the clusters can be labeled
by the a priori defined scene classes. Figure 2.10 gives the distribution of scenes from five
clusters over the a priori defined scene classes. The a priori defined scene classes are given
on the x-axis and the number of scenes for each of the clusters on the y-axis. In this figure
it can be seen that each a priori defined scene category is represented by different scene
clusters. Although there is no one-to-one mapping of the a priori defined scenes classes
onto the scene clusters the following trend can be observed. The a priori defined scenes
classes no close-up people and no close-up object are mainly distributed over the clusters 1 and
2 while the classes close-up people and close-up objects are mainly present in the scene clusters
4 and 5. The third scene cluster is predominantly represented by the a priori scene classes
buildings and landscapes. Nevertheless, in this case the relation between the scene content
and the five scene clusters is weak. If one selects scenes that are predicted to have different
quality within and between the measures at least one knows that not all of the measures
perform well, despite their inherent differences. Furthermore, it is not guaranteed that the
difference between quality measures can be shown if scenes are selected on the basis of
their scene content. In that case it can happen that all measures perform well. In Chapter 5
scenes chosen by scene content as well as discriminability are used to evaluate instrumental
quality measures.
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Figure 2.9: The 164 scenes are divided into six categories of similar scene content.
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et al., 2000).
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Figure 2.10: The distribution of scenes from five clusters over the a priori defined
scene classes.

2.7 Conclusions and discussion

It was demonstrated that the difference between instrumental quality measures can be in-
vestigated by means of their predictions only. One advantage is that a large image set can
be used since only computer resources are needed. Moreover, it was shown how a highly
critical sample of images can be selected such that the differences in quality predictions
within and between instrumental measures can be revealed.

The classification of instrumental quality measures depends on the applied proximity mea-
sure and clustering analysis. In the scope of this chapter we decided upon the inner-
product correlation and Ward’s hierarchical cluster analysis, respectively. For these partic-
ular choices the results of the classification showed that a large set of 67 quality measures
can be reduced to six groups of measures which are essentially different. The difference
between these groups of quality measures could mainly be attributed to the applied com-
bination rules. Moreover, the three vision models ��3 � 2P- ��� , ��3 � 2P- ��� - � and ���10 � � seem to
predict similar quality as a normalized version of the RMSE. Furthermore, it was shown
that a similar two-dimensional configuration of quality measures is obtained if quality pre-
dictions are compared for four processing methods together as well as for each processing
method separately. This indicates that for the applied processing methods JPEG, DCTune,
wavelet coding and low-pass filtering similar groups of quality measures can be identified
which predict the image quality differently.

Although a classification on the basis of quality predictions cannot substitute subjective
39



2. Classification of instrumental measures

testing it is a method that can be used to compare newly developed instrumental measures
with existing ones. In that perspective, a measure which has proven to compute quality
predictions that correlate highly with subjective judgements can be used as a reference to
test new measures.

The performance of instrumental quality measures is hard to generalize if only a limited
set of images is used to compare quality predictions with quality judgements. Therefore a
method was introduced to select by means of Ward’s hierarchical cluster analysis a highly
critical sample of images consisting of a small number of scenes. These selected scenes
discriminate between the quality predictions of different measures as well as between the
quality predictions within a measure. Thus using such an image set in subjective testing
guarantees that the differences in performance will be revealed. This contrasts to a selec-
tion of scenes on the basis of scene content. In this case, the discriminability of the scenes
within or between the measures is not known beforehand. For that reason it may be that
with such a stimulus set no difference can be demonstrated in the performance of instru-
mental measures.
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Chapter 3

Quality scaling across scenes and processing methods

Abstract

Quality metrics are intended to predict the perceived image quality independent of vari-
ations in processing method and scene content. However, one can imagine that in prac-
tice this requirement is not trivial to meet. Moreover, reliable subjective data are needed to
test quality metrics. Observers might have difficulties in judging the image quality across
processing methods or across scenes if the various processing methods or scenes are not
compared explicitly. In order to test whether subjects use separate quality rating scales for
each identifiable scene and processing method or whether they use a joint rating scale, we
conducted experiments in which the image quality was judged with and without explicit
comparisons. The results show that subjects use separate quality rating scales for identifi-
able processing methods or scenes. Moreover, quality judgements with or without explicit
comparisons are not always comparable. This implies that reliable subjective quality judge-
ments across different processing methods or across different scenes can only be obtained
by explicitly comparing the various processing methods or scenes.
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3. Quality scaling across scenes and processing methods

3.1 Introduction

The goal of lossy image coding techniques is to balance the reduction in bit-rate and the
unavoidable loss of image quality against each other. Image quality is affected by coder-
specific distortions which can vary in strength and location. The perceptual distortion
strength and the location of the distortions are not only determined by the selected bit-rate
but also by the scene. For instance, JPEG coding introduces blockiness that is most easily
perceived in uniform regions. Thus the visibility of these distortions depends on the loca-
tion and size of such regions in the original image. Therefore we cannot expect different
scenes, coded at the same bit-rate, to evoke the same subjective image quality sensation.
Hence, instrumental quality metrics should reflect the image quality for a specific coder
across scenes. Furthermore, an overall quality measure should also reflect the quality of
images coded by different coders, since each coding method introduces typical distortions.
For instance, DCT-block based coding introduces mainly blockiness, while wavelet cod-
ing introduces blur. The difference in appearance of these distortions may cause dissimilar
image quality sensations for a particular scene. Therefore, to determine the overall image
quality evaluation tools are needed which take the scene and distortion type into consid-
eration.

Several image quality evaluation metrics have been proposed (Ahumada, 1993; Eskicioglu
and Fisher, 1995; Lubin, 1995). They range from simple statistical operations performed on
the difference between the original and the coded image to more complex algorithms based
on the human visual system. Their principal goal is to predict the image quality as judged
by an average human observer during subjective tests. How well the different methods
meet this goal, and how different the image quality predictions from the various methods
are, is not very well understood. Part of this problem is that subjective data, which are used
as reference for these methods, may not be as reliable as is usually assumed.

The acquisition of subjective image quality data is not as straightforward as it seems. De
Ridder (1998) pointed out that ”quality judgements are affected by the judgement strate-
gies induced by the experimental procedure”. Experimental conditions such as stimulus
set composition, instructions and scaling technique may influence the image quality re-
sponses. This was demonstrated for the effect of scaling technique and stimulus spacing
on perceived sharpness judgements. Three scaling techniques: single-stimulus, double-
stimulus and comparison scaling, were evaluated for a positively and negatively skewed
stimulus set. Only for comparison scaling, comparable results were obtained for both sets.
This suggests that for this scaling technique the judgements are hardly affected by stim-
ulus spacing. The issue of influence of scaling procedure on subjective judgements was
also addressed by van Dijk and Martens (1996). Single-stimulus and comparison scaling
lead to different results for subjective quality evaluation between different codecs. They ar-
gued that typical distortions introduced by the different codecs can be easily identified and,
consequently, subjects are inclined to use separate rating scales for each coder in single-
stimulus scaling. In order to link these subjective scales, an explicit comparison between
images from the different coders is required.

If this hypothesis is indeed valid, the same reasoning could be applied to scene content.
A stimulus set composed of various scenes makes it possible for the subjects to recognize
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3.2. Subjective quality scaling

each scene. Subjects therefore may choose to use a separate quality scale for each scene.

The above reasoning indicates that quality metrics, tested by means of subjective image
quality responses measured on separate scales, mainly predict the level of distortion and
not the overall image quality. Thus in order to really evaluate a codec performance it is
necessary to obtain quality judgements linked across distortion types and scene content.

In this chapter, psychophysical experiments are conducted to obtain such quality judge-
ments across distortion types and scenes. One aspect of the experiments is to find out
whether these quality judgements can be obtained without explicitly comparing different
distortion types and scenes (see the following section 3.2). In section 3.3, the effect of distor-
tion is investigated. Two scenes are used to study quality ratings induced by four process-
ing techniques: JPEG coding, DCTune coding, wavelet coding and low-pass filtering. Two
experiments are conducted, one for each scene. In section 3.4 the effect of scene content on
quality judgements is investigated. Again, two experiments are conducted, one containing
JPEG coded images and the other containing wavelet coded images.

3.2 Subjective quality scaling

Several scaling techniques for quantifying the image quality assessments of human ob-
servers are available. The most accepted methods, such as single-stimulus scaling double-
stimulus scaling or comparison scaling are described in the ITU 500-7 recommenda-
tion (ITU-R-500-7, 1997). These subjective test methods are often used to measure the per-
ceived image quality of images degraded by a particular coder. Their reliability concern-
ing image quality measured across images of different scene content or images impaired by
different distortion types is hardly investigated. In section 3.2.1 we explain two issues of
subjective testing in these cases. In section 3.2.2 the experimental procedure is described.

3.2.1 Quality scale uses

The purpose of subjective quality tests is to measure the quality sensation evoked by a stim-
ulus. Before a subjective test starts observers are given specific instructions how to assess
the image quality. Depending on these instructions a stimulus generates a sensation which
is expressed by a response on a quality scale. The quality scores are, for instance, categories
on a five-point rating scale labeled by ”excellent, good, fair, poor, bad” or numerical val-
ues such as ”5, 4, 3, 2, 1”. The scale establishes a relation between the response and the
sensation generated by a stimulus (Roufs, 1992). An implicit assumption is often that sub-
jects apply such a rating scale in a similar way to different distortion types or scenes. How-
ever, subjects do not always use a quality scale as expected, namely as a single rating scale
across all attributes underlying image quality (van Dijk and Martens, 1996). As described
in the introduction, quality responses can be evoked by various impairments in a scene if
the image quality is degraded by different distortions. In such a case, the complexity of the
scaling task increases and it is not obvious that the perceived differences are translated to
a global quality impression. As discussed in the introduction a similar increase in scaling
complexity can also be caused by differences in scene content.
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3. Quality scaling across scenes and processing methods

Scaling behavior can be generalized in the following way: observers may try to facilitate the
scaling task by using separate rating scales for each identifiable class 1) if stimulus categories can
be identified, and 2) when no explicit comparisons between the categories are made.
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Figure 3.1: Two identifiable sets of images are used in an experiment, e.g. one set
of JPEG coded images and one set of wavelet coded images. If separate quality rat-
ing scales are used by the observers, the images of both coders could be mapped
to the ends of the quality scale. For the JPEG images this is indicated by the thick
solid lines and for the wavelet images by the thin dashed lines. This in contrast to
the actual quality of the images. The JPEG images indeed cover the whole quality
range while the wavelet images should be mapped to the categories indicated by
the thick dashed lines.

The motivation for the experiments described in this chapter was to test this general state-
ment by means of specific experiments. We investigated if observers indeed used separate
rating scales when identifiable classes, e.g. scenes or distortion types, were not compared
explicitly. In such a case observers might assign the ends of the image quality scale to the
extreme instances of a class, e.g. the original and the most impaired image. Obviously,
this alters the meaning of the quality scores for each class and therefore quality scores as-
signed to images containing different distortion types or scene content can not be related
to each other in a one-to-one mapping. Linear or non-linear transforms are necessary to
obtain comparable quality scores across distortion types or scenes.

As an example we consider an image set which is produced by two coders, namely a
JPEG and a wavelet coder. Each coder introduces a specific type of distortion which
results in a different quality range for the images of each coder, one set of images may
have a large quality range and the other may have a small quality range (see figure 3.1).
Let us now consider an experiment in which the images of both coders are randomly
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Figure 3.2: Two identifiable sets of images are used in an experiment, e.g. one set
of JPEG coded images and one set of wavelet coded images. The observers do not
map the images of both coders to the ends of the quality scale. The JPEG images
(thick solid lines) are judged in a different quality range than the wavelet images
(thin dashed lines). However the quality judgements are not comparable across
codecs. The JPEG images indeed cover the whole quality range while the wavelet
images should be mapped to the categories indicated by the thick dashed lines.
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presented to the observers. They are instructed to judge the quality of each image on a
scale from 0 to 4, indicating bad and excellent quality, respectively. If images created by
the individual coders are judged on separate quality scales, both in the same range from 0
to 4 (see figure 3.1 a thick line for JPEG and a thin dashed line for wavelet), then a quality
of 4 in the first set of images is not comparable to a judged quality of 4 in the second
set. The meaning assigned to the categories is different for both quality scales: a 4 in the
first set represents a higher quality than a 4 in the other set. In order to link these quality
scores we need to know the mapping of the categories from one scale to the other. As
suggested by van Dijk and Martens (1996), this can be accomplished if images from both
sets are compared explicitly. Therefore, the following hypothesis is tested in the experi-
ments of section 3.3 for different processing methods and in section 3.4 for different scenes:

Hypothesis I: The extreme images of each identifiable class are mapped to the
ends of a quality scale when no explicit comparisons are incorporated in the experiment.

When we actually find results supporting this hypothesis there are two possible situations,
1) the quality range of images in different classes are perceptually similar, or 2) it is an
artifact of the scaling method and the quality range of images in different classes are
perceptually not similar. In the former case, the possibility of a single rating scale can not
be rejected since the quality ranges are similar. In the latter case the quality judgements
are not comparable between the different classes and we can reject the assumption that
observers use a single rating scale. To test which of these situations is actually present the
following hypothesis was also tested in the experiments of sections 3.3 and 3.4:

Hypothesis II: Quality judgments obtained with and without explicit comparisons
across processing methods or scenes are similar.

Let us assume that the extreme images of a particular coder are not mapped to the ends of
the quality scale and hypothesis I would be rejected. This is illustrated in figure 3.2. The
JPEG images are judged between 0 and 4 (solid lines) and the wavelet images are judged
between 1 and 3 (thin dashed lines). The question remains whether the quality judgements
of both coders are similar. This is not the case. The actual quality range, from 1 up to 2, of
the wavelet coded images is indicated by the thick dashed lines. In the example, assuming
that subjects divide the quality scale in equal steps, a JPEG image judged as 3 is then not
comparable to a wavelet image judged 3. After all, in this case the image quality of a JPEG
image judged to be of quality 3 is always higher than the quality of any wavelet image.
Therefore, in sections 3.3 and 3.4 hypothesis II was also tested when the extreme images
were not mapped to the ends of the quality scale.

In the next section quality difference scaling is discussed to investigate these issues of qual-
ity scaling across identifiable classes.

3.2.2 Experimental procedure

The single-stimulus scaling technique seems not adequate for an image set containing dif-
ferent characteristics of impairment (van Dijk and Martens, 1996). However, whether this
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is due to the scaling technique or to the lack of explicit comparisons can not be deduced
from this study. Therefore, in the experiments discussed in sections 3.3 and 3.4, quality
difference scaling was used to obtain quality judgements across processing methods and
scene contents. In quality difference scaling subjects indicate by a scalar value the differ-
ence in perceived quality between two images. This experimental procedure was chosen
for the following reason; the same scaling method could be used to obtain quality judge-
ments with and without explicit comparisons across processing methods or scenes. More-
over, comparison scaling is known to have high sensitivity and accuracy.

For the experiments described in sections 3.3 and 3.4 quality difference scaling was applied
in the following way. All experiments were divided into two sessions. In both sessions
the instructions, images and scaling method were identical; only the presented image pairs
were different. In the first session, the image pairs contained two images of identical pro-
cessing method or scene content. Only the degree of one particular distortion varied. Con-
sequently, the viewers were not forced to compare the image quality of different process-
ing methods or scenes. In order to understand whether the quality variation across pro-
cessing methods or scene content were incorporated in these quality judgements, in the
second session also image pairs containing two images of different processing methods or
scene content were compared. To make a comparison for these image pairs, the observers
were forced to use a joint quality scale for all processing methods or scenes. Comparing
the results of both sessions should illustrate if there is any difference in the use of quality
scales.

3.3 Experiments: processing methods

(a) (b)

Figure 3.3: Original scenes: (a) shopping-street and (b) photographer.

Processing methods introduce typical distortions depending on the applied algorithm. We
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investigated in two experiments whether subjects used a separate image quality rating
scale for each processing method or whether they judged the image quality of all process-
ing methods on one single scale. In the former case, we assume that subjects recognize the
different types of distortion, categorize them, and implicitly apply a different rating scale
for each category.

Two experiments were designed to investigate which of the above rating scales was used
by the observers. Each experiment consisted of two sessions. In the first session, image
pairs processed by the same method were judged. In the second session, the same set of im-
ages were combined such that also image pairs containing different distortion types were
formed. Comparing the subjective data of both sessions should illustrate if there is any dif-
ference in the quality scores.

Two scenes were investigated: shopping-street and photographer. The gray-scale originals
with a size of 240x480 pixels are shown in figure 3.3 (a) and (b). They were used in two
separate experiments, to avoid an effect of scene content on the quality judgements. The
location and degree of distortion is scene dependent and may therefore lead to different
quality judgements per scene.

3.3.1 Stimulus sets

Four processing methods were applied to each scene:

1. JPEG coding with Q-parameter of 15, 20, 25, 30 and 60.

2. DCTune coding, which is a JPEG coding with optimized quantization table, with a
perceptual error of 4, 3.5, 3, 2 and 1.5 (Watson, 1993).

3. wavelet coding at bit-rates of 0.15, 0.2, 0.3, 0.4 and 0.6 bits per pixel.

4. low-pass binomial filtering with blur kernel lengths of 7, 6, 5, 4, and 2.

Two distinct distortions are introduced by these methods. JPEG and DCTune introduce
mainly blockiness. The characteristic impairment in wavelet coded images and in low-pass
filtered images is blur. In wavelet coding the blur occurs at specific locations in the image.
Some parts are blurred whereas other parts remain sharp. The low pass filter blurs the com-
plete image.

For each scene two stimulus sets were created.

The first stimulus set was constructed as follows. For each processing method, the five pro-
cessed versions and the original image were combined into pairs such that both images con-
tained a different strength of distortion. This gave 15 image pairs per processing method.
In total 4x15 = 60 image pairs were presented in random order to the observers. The pro-
cessing technique, and thus the type of introduced impairment, was the same for each im-
age pair, only the degree of distortion varied.

In the second stimulus set, the pairs of images were formed from three levels of each pro-
cessing method and the original. The selected levels were, for JPEG Q-parameters of 15, 25
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3.3. Experiments: processing methods

and 60, for DCTune perceptual errors of 4, 2 and 1.5, for wavelet bit-rates of 0.15, 0.3 and
0.6, and for low-pass filtering kernel lengths of 7, 5 and 2. These levels were chosen such
that the quality range for each method was the same as in the first stimulus set. In both ses-
sions the highest and lowest processing levels were incorporated. The processed versions
and the original, in total 13 images, were combined into 78 image pairs. Each image pair
was unique and consisted of two images with either the same processing method but dif-
ferent degrees of distortion, or different processing methods and equal or different degrees
of distortion.

3.3.2 Method

For each scene, shopping-street and photographer, the different stimulus sets were presented
in two separate sessions. In both sessions the observers were seated at a distance of 0.80 m
from the monitor. The two images in a stimulus were displayed simultaneously on a cali-
brated BARCO monitor placed in a dimly lit room, one image on the right hand side and
one image on the left hand side of the screen. Care was taken that each degree of distor-
tion and processing method was displayed an equal number of times on both sides of the
screen. To avoid order effects, the pairs were presented to each subject in a unique random
order.

The instructions were the same for both sessions. Observers had to rate the quality differ-
ence between the two images that were simultaneously shown on a scale from -4 to +4. If
no difference was perceived, they had to judge 0 and the largest perceivable image differ-
ence had to be judged 4. With a ”+” or ”-” subjects indicated which image had the best
quality; a ”+” indicated that the quality of the right hand sided image was judged better
and a ”-” indicates that the left hand sided image was judged better. Before each session
started, the observers participated in a trial containing a set of 12 image pairs. These image
pairs were chosen such that the observers could get acquainted with the distortion types
and quality range in the experiment. The subjects were urged to calibrate their quality dif-
ference scale on the image pairs of the trial. For each experiment six subjects participated
in both sessions. Subjects took part in only one of the experiments.

3.3.3 Results

The subjective quality difference data of the scenes shopping-street and photographer are an-
alyzed in the same way.

For the analyses we will assume for the moment that in the first experimental session the
rating scale used by an observer is fixed across distortion types. This implies that the qual-
ity differences between distortion types are meaningful. Hence, the judged quality differ-
ences can be compared across processing method. The question whether this assumption
is reasonable will be tested by comparison with the quality judgements from the second
session. If the quality judgements of both sessions are similar, the observers probably used
the same judgement strategy, which may indicate that a single rating scale was used. If on
the other hand the data for the two sessions differ, this may indicate that separate rating
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3. Quality scaling across scenes and processing methods

scales were used.

For both sessions a stimulus configuration is deduced by means of DifScal (Boschman,
2001). This analysis tool is based on Thurstone’s judgement theory and transforms for each
image the quality difference judgements into a quality scale value on an interval scale. First
we will investigate if in session 1 the extreme images, the original and the most impaired
image of each processing method, are mapped to the ends of the quality scale. After that,
the effect of quality judgements across processing methods is studied by comparing the
stimulus configurations of sessions 1 and 2.
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Figure 3.4: The results of DifScal obtained within a processing method (session
1) of the scene shopping-street are shown in the left panel. The DifScal results ob-
tained across processing methods (session 2) are shown in the right panel. The
x-axis shows the processing levels, L1 up to L5. The original is indicated by org.
On the y-axis DifScal’s scale values of the images are given. The different ranges
of scale values for the processing methods indicate that in session 1 the extreme
images are not mapped to the ends of the quality scale.
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DifScal stimulus configurations

For each scene a frequency file is generated from the quality difference judgements of ses-
sion 1 which is used as input for the DifScal analysis. As stated above we assume that the
quality scale is fixed across distortion types and that therefore, quality differences of the
21 stimuli (the original and 5 versions of each of the four processing methods) are judged
on the same scale. The results of the quality comparisons between these 21 stimuli are col-
lected in one single frequency file. The observers rated the quality differences of the 21 pair-
wise combined images in 9 categories. These categories are represented in the frequency
file as nine 21x21 lower triangle matrices. In each 21x21 matrix the original image is rep-
resented by the first column and the four 5x5 lower triangles at the diagonal contain the
frequencies for each processing method. Each cell in a matrix indicates the frequency with
which an image pair (i,j) is judged in that category, summed over all six subjects. For this
procedure to be valid we assume that the observers used the categories on the quality dif-
ference scale in the same way 1. In the first session only pairwise comparisons between
equal processing methods are rated, which implies that the frequencies in cells between
different processing methods are zero. However DifScal can deal with incomplete data as
shown in Boschman (2001).

The estimated stimulus scale values and the S-estimate are shown in the left panels of fig-
ures 3.4 and 3.5 for the scenes shopping-street and photographer, respectively. The estimated
scale values are shown on the y-axis. The x-axis shows the original image, org, and the five
processing levels as L1 up to L5. For each processing method the least impaired image is
indicated by L1 and the most impaired image by L5. The error bar at each data-point is the
S-estimate of the estimated scale value. This S-estimate is an estimation of the error of the
corresponding scale value.

In the same way a frequency file is generated for the comparison data of the second ses-
sion. The frequency file consists of nine 13x13 lower triangle matrices. To enable compar-
ison between the scale values of both sessions, a linear regression is applied between the
scale values of session 1 and those of session 2. This is possible because the stimulus con-
figurations are determined up to a linear transform. The S-estimates of session 2 are scaled
by the same factor as in the linear transform applied to the scale values. The linearly trans-
formed stimulus scale values and S-estimates are shown in the right panels of figures 3.4
and 3.5 for the scenes shopping-street and photographer, respectively.

Quality range

The first hypothesis states that the extreme images of each identifiable class of distortions
are mapped to the ends of the quality scale when no explicit comparisons are incorporated
in the experiment.

The left panels of figures 3.4 and 3.5 show that the processing methods are judged in a dif-

1With the help of the program package xgms (Martens, 1999) the same analysis can be performed by al-
lowing the use of different quality scales for different observers. Such an analysis shows that the conclusions
reached in our main analysis do not critically depend on this assumption.
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Figure 3.5: The results of DifScal obtained within a processing method (session 1)
of the scene photographer are shown in the left panel. The DifScal results obtained
across processing methods (session 2) are shown in the right panel. The x-axis
shows the processing levels, L1 up to L5. The original is indicated by org. On the
y-axis DifScal’s scale values of the images are given. The different ranges of scale
values for the processing methods indicate that in session 1 the extreme images
are not mapped to the ends of the quality scale.
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ferent quality range, especially for the scene shopping-street. The original (org) is consid-
ered as an image with impairment strength zero for all processing methods and therefore,
in each panel, mapped to the same scale value. On the other hand, the most impaired im-
ages (L5) show differences in scale values between processing methods. For example, the
quality range of the wavelet images is larger than the quality range of the JPEG and DC-
Tune coded images. This indicates that in session 1 subjects do not map the extreme images
of each identifiable class of distortions to the ends of the quality scale.

Equivalent quality range differences between the processing methods can be observed in
the right panels of figures 3.4 and 3.5 for session 2.

Concluding, the results demonstrate that subjects do not tend to identify the distortion
types and calibrate their quality scales for a particular distortion (by mapping the extreme
images of each processing method to the ends of the quality rating scales). Hence, hypoth-
esis I can be rejected for the parameter processing methods. The question remains whether
the scale values of both sessions are comparable.

Linear relationship

The second hypothesis states that quality judgements obtained with and without explicit
comparisons across processing methods are similar up to a linear transformation. In order
to test this hypothesis the following analyses are performed.

Figures 3.6 and 3.7 show the linear relation for the scenes shopping-street and photographer,
respectively. In these figures the scale values of the original, and those at processing lev-
els L1, L3 and L5 are shown. On the x-axis the scale values of session 2 are given and on
the y-axis the scale values of session 1. The horizontal error-bars are the S-estimates of ses-
sion 2 and the vertical error-bars those of session 1. These S-estimates will be considered
as confidence intervals, a range of values that are tenable for the scale values.

The scale values of sessions 1 and 2 show a highly linear relationship with a Pearson cor-
relation coefficient of � � �! � )

for shopping-street and � � �! � �
for photographer. However,

figure 3.6 illustrates that stimuli of different processing methods which obtain the same
scale value in session 1 are discriminated in session 2, or the reverse, discriminated stimuli
in session 1 are similar in session 2. Nevertheless, scale values of a particular processing
method decrease monotonically with increasing degree of distortion in both sessions.

To test if the observed differences across processing methods are statistically significant, a
two tailed t-test at the � � �! � ) level of significance with a normal distribution, is performed
on the scale values obtained in the two sessions. The scale values of a particular stimulus
are considered similar if

, < � : , "��F 1 #� � L I 1 #� # 
 � <  ��%!	 (3.1)

with , < � and , "�� the scale values of stimulus
3

in sessions 1 and 2, and
1

� � L and
1

� # L the
corresponding S-estimates.
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Figure 3.6: The scale values of the scene shopping-street. The scale values obtained
across processing methods (session 2) are given on the x-axis and the scale values
obtained within a processing method (session 1) on the y-axis. The arrows indi-
cate those scale values that differ significantly between both sessions.
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In figure 3.6, shopping-street, the scale values that differ significantly are indicated by ar-
rows. For instance, in session 1 the JPEG image with Q-parameter 15 at approximately 0.5
bits per pixel (label ”B” in figure 3.6) and the wavelet image at 0.3 bits per pixel (label ”A”
in figure 3.6) obtain a similar quality scale value. However, in session 2 the same JPEG im-
age is comparable in quality with a wavelet coded image at 0.6 bpp (label ”C” in figure 3.6).
This shows that evaluating coders by means of the subjective data of sessions 1 or 2 can lead
to different results. For this reason, the differences between both sessions are large enough
to reject hypothesis II.
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Figure 3.7: The scale values of the scene photographer. The scale values obtained
across processing methods (session 2) are given on the x-axis and the scale values
obtained within a processing method (session 1) on the y-axis. This figure illus-
trates that the scale values of both sessions are comparable.

No statistically significant difference is found between the scale values of sessions 1 and 2
in the scene photographer. The subjective data of both sessions is interchangeable and hy-
pothesis II can not be rejected.

3.3.4 Discussion

Subjective comparison data across distortion types are needed in order to evaluate the per-
formance of codecs which introduce different types of distortions. After all, the extent to
which the bit-rate affects the perceived image quality is used to evaluate the performance
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of a coder. This means a particular codec performs better if it guarantees similar image
quality for an image at a lower bit-rate than other coders. Therefore, the observed differ-
ences between sessions 1 and 2 for the scene shopping-street can lead to different judgements
about codec performances. For instance based on the data of session 1 the wavelet coder
performs better than the JPEG coder, (see label ”A” and ”B” in figure 3.6). In this case the
wavelet image coded at 0.3 bpp is similar in quality to a JPEG coded image at approxi-
mately 0.5 bpp. On the other hand, if the data of the second session are used JPEG seems
to be slightly better than wavelet. The wavelet image coded at 0.6 bpp has similar quality
as the JPEG image coded at approximately 0.5 bpp, (see label ”A” and ”C” in figure 3.6).
The method of subjective testing can thus influence the evaluation of codecs.

However, whether the quality judgements of sessions 1 and 2 are the same seems to depend
on the quality range of the various processing methods. In the shopping-street the quality
range of the processing methods is not comparable. It is therefore possibly difficult for ob-
servers to judge the image quality between different types of distortions when the differ-
ently distorted images are not compared explicitly. In that case observers tend to stretch the
quality range of the JPEG and DCTune coded images. As a result, the observed differences
between quality judgements of session 1 and 2 indicate that subjects tend to use separate
quality rating scales if no explicit comparisons are incorporated. However, no differences
are observed between the quality judgements of both sessions for the scene photographer.
In this case the quality range between the processing methods is less dissimilar. It follows
that it is sufficient to use image-pairs with two images of identical processing method to
obtain reliable quality judgements across distortion types, on the condition that the quality
range of the distortion types is not too dissimilar. The advantage of this is that the experi-
mental labor can be reduced. On the other hand if the quality range is too different explicit
comparisons across processing methods are needed. Often it is hard to judge beforehand
whether the quality range of differently distorted images is not too dissimilar. Therefore,
also in this case it is better to compare differently processed images explicitly.

3.3.5 Conclusions

On the basis of the introduced distortions in the scene shopping-street it seems that observers
tend to rate image quality on separate quality scales if no explicit comparisons across pro-
cessing methods are incorporated in the stimulus set. However, the results gathered on the
basis of the scene photographer seem to indicate that quality judgements can be linked across
distortion types even though differently impaired versions of a scene were not compared
explicitly. In contrast to the large quality range differences of the distortions in the scene
shopping-street the quality ranges in the scene photographer are not too dissimilar. Thus it
seems that the quality ranges of the various distortions determine whether explicit com-
parisons are needed.
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3.4 Experiments: scene content

In the previous section we studied the effect of processing method on the judged image
quality by combining differently processed images. In this section, we similarly study the
effect of scene content on the judged image quality. The same type of impairment can man-
ifest itself in different ways depending on the scene content. We assume that if different
scenes can be identified and classified, observers may use separate rating scales for each
scene.

The effect of stimulus presentation on subjective quality judgements was evaluated for two
coding methods that introduce distinct distortions: wavelet coding and sequential baseline
JPEG coding. They were evaluated in separate experiments. This was done to avoid any
effect of coding method on the subjective quality ratings. Hence image pairs within one
experiment were only varied in distortion strength and scene content, but not in type of
distortion. The stimulus sets, experimental method and the obtained results are discussed
next.

3.4.1 Stimulus sets

(a) (b)

Figure 3.8: Original scenes: (a) country-road and (b) woman.

Four scenes were used in both experiments. All scenes were gray-scale images with a size
of 240x480 pixels: two portraits referred to as photographer and woman, and two outdoor
scenes referred to as country-road and shopping-street. The scenes shopping-street and pho-
tographer (see figure 3.3) were also used in the previous experiment. The originals of the
additional scenes are shown in figure 3.8.

For the first experiment, all four scenes were compressed with a wavelet coder with an em-
bedded zerotree coder (Said and Pearlman, 1996). Each scene was compressed at five bit-
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rates, namely 0.15, 0.2, 0.3, 0.4, and 0.6 bits per pixel. The resulting set of test images con-
tained both low quality images, distorted mainly by blur, and high quality images, with lit-
tle noticeable impairment. No perceptual parameter is incorporated in this algorithm. This
means that there may be perceptual quality variations between the various scenes coded
at the same bit rate.

Two stimulus sets were constructed. In the first set the five wavelet coded versions and the
original of a particular scene were pair-wise combined into 15 image pairs. Each pair was
unique and consisted of two different instances of a scene. Since four scenes were included,
the first stimulus set contained 60 image pairs.

The second stimulus set contained the original and three wavelet coded versions of each
scene. To guarantee the same range of image quality as in the previous stimulus set,
wavelet images compressed at 0.15, 0.3 and 0.6 bits per pixel were used. The coded ver-
sions and the originals of the four scenes, in total 16 images, were combined into 120 im-
ages pairs. Each pair was unique and consisted of two images with either identical scene
content but different degrees of distortion, or different scene content and equal or different
degrees of distortion.

For the second experiment similar stimulus sets were constructed with JPEG coded im-
ages. All four scenes were compressed by the sequential baseline JPEG compression al-
gorithm (Pennebaker and Mitchell, 1993) of the Independent JPEG Group. Five images
per scene were obtained by varying the Q-parameter. The Q-parameter settings were
15,20,25,30 and 60. The resulting set of test images contained both low quality images, dis-
torted mainly by blockiness, and high quality images, with little noticeable impairment.
Contrary to wavelet coding, in JPEG coding the Q-parameter is a global quality indicator.
This implies that in the case of equal quality of the originals, different scenes compressed
with the same Q-parameter should have approximately the same perceived image quality.

As in the first experiment two stimulus sets were constructed. To obtain the first stimulus
set of JPEG images the five coded JPEG versions and the original of a particular scene were
combined into 15 image pairs. Each pair was unique and contained two images of the same
scene coded at different Q-parameters. Since four scenes were included the first stimulus
set contained 60 image pairs.

For the second stimulus set, three versions with Q-parameter 15, 25 and 60 and the origi-
nal of each scene were combined into 120 image pairs, in a similar way as for the wavelet
images. This second JPEG stimulus set contained unique pairs of images differing in scene
content and/or degree of distortions as well as pairs of images solely differing in the degree
of distortion.

3.4.2 Method

Viewing conditions, display and instructions were the same as in the experiments de-
scribed in section 3.3.2. The images of each compression method, wavelet and JPEG, were
presented in a separate experiment to six viewers. In the first session of both experiments,
the image pairs of the first stimulus set were presented. In the second session, the second
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stimulus set was shown. The 120 image pairs in the second session were judged in two
subsessions with a small break in between. The same viewers took part in both sessions
of an experiment, but no viewer participated in both experiments. The subjects had to rate
image quality difference between -4 and +4 as described in section 3.3.2

3.4.3 Results

The same analyses are applied as in section 3.3.3. Each coding method, wavelet and JPEG,
is analyzed separately.

For each session, the quality difference data are transformed into quality scale values on an
interval scale by means of DifScal Boschman (2001). For each session, this results in a stim-
ulus configuration, with a quality scale value for each image. First we will investigate if in
session 1 the extreme images, the original and the most impaired image of each processing
method, are mapped to the ends of the quality scale. After that, the effect of quality judge-
ments across scene content is studied by comparing the stimulus configurations of sessions
1 and 2.

DifScal stimulus configurations

For the analysis of the data of session 1 we will assume that the rating scale used by an ob-
server is fixed across scenes and that therefore quality differences of the 24 stimuli (for each
scene the original and 5 coded versions of it) are judged on the same scale. The results of
the quality comparison between these 24 stimuli are collected in one frequency file. The ob-
servers rated the quality difference of 24 pairwise combined images in 9 categories. From
this a frequency file is generated with nine 24x24 lower triangle matrices. In each 24x24 ma-
trix the four 6x6 lower triangles at the diagonal contain the frequencies for each scene. The
resulting scale values are shown in the left panels of figures 3.9 and 3.10 for the wavelet and
JPEG images, respectively. The x-axis shows the bit-rates or Q-parameters of the images.
The scale values are shown on the y-axis. In each figure the S-estimates are indicated by
the error-bars. In section 3.3.1, the original is the same for all processing methods because
only one scene was used per experiment. However, in this case the judged quality of the
original of each scene is different due to the use of different scenes.

For session 2 the 16 pairwise compared images are ordered in a frequency file of nine 16x16
lower triangle matrices. In a similar way as in section 3.3.3 the scale values and S-estimates
of the second session are linearly transformed. The results are shown in the right panels of
figures 3.9 and 3.10.

Quality range

The first hypothesis states that the extreme images of each identifiable class of distortions
are mapped to the ends of the quality scale when no explicit comparisons are incorporated
in the experiment.
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Figure 3.9: The results of DifScal obtained within a scene (session 1) are shown in
the left panel for the wavelet coded images. The results of DifScal across scenes
(session 2) are shown in the right panel. The x-axis shows the bits per pixel (bpp)
from 0.6 to 0.15. The original is indicated by org. On the y-axis DifScal’s scale
values of the images are given. The different ranges of scale values for the scenes
indicate that in session 1 the extreme images are not mapped to the ends of the
quality scale.
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The left panel of figure 3.9 illustrates that in session 1 the original and the most impaired
image of each scene are not all mapped to the ends of the quality rating scale. The originals
of the scenes shopping-street and woman are judged to be of better quality than those of the
scenes photographer and country-road. For the most impaired wavelet images at 0.15 bpp this
is less obvious. The scenes seem to be of similar quality except for the scene country-road.
Because of this the scenes are judged on different parts of the quality scale. For instance,
the wavelet coded images of the scene shopping street cover a wider range in judged quality
than the wavelet images of the scene country-road.

In the left panel of figure 3.10, showing the JPEG coded images, the judged image quality
of the various scenes is less diverse. But also in this figure it can be seen that the originals
are not judged to have similar quality. For example, the original of the scene country-road
is judged to be of less quality than the original of the scene woman. For the most impaired
JPEG images with a Q-parameter of 15 also small quality differences can be observed be-
tween the various scenes. In this case, the scene country-road is judged to be of better quality
than the scene photographer, both coded with the same Q-parameter 15. This implies that
also for the JPEG images the most extreme images of each scene are not mapped to the ends
of the quality scale.

The above analysis shows that observers do not tend to calibrate the image quality rating
scale for each scene separately to the ends of the rating scale. For this, hypothesis I can be
rejected for images that vary in scene content. In both coding methods the image quality
of the most extreme images is not mapped to the ends of the quality scale.

As can be seen most clearly in figure 3.9, the quality judgements of sessions 1 and 2 seem
to lead to different results. In the first session, without explicit comparisons across scenes,
the image quality of the originals are judged to be different while in the second session,
with explicit comparisons across scenes, the image quality of the originals is judged to be
similar. In the case of the JPEG images (figure 3.10) this is less obvious. In the following it
will be tested whether the quality judgements of sessions 1 and 2 are comparable.

Linear relationship

The second hypothesis states that quality judgements obtained with and without explicit
comparisons across processing methods are similar up to a linear transformation. In order
to test this hypothesis the following analysis was performed.

The linear relations between the scale values of sessions 1 and 2 are shown in figures 3.11
and 3.12 for the wavelet and JPEG coded images, respectively. The data points represent
the scale values of the originals and those at bit-rates 0.6, 0.3 and 0.15 or Q-parameters 60,
25 and 15. On the x-axis the scale values of session 2 are shown and on the y-axis the cor-
responding scale values of session 1.

For both coding methods, the scale values of sessions 1 and 2 show a highly linear relation-
ship with a Pearson correlation of � �(�! ��%

for wavelet coding and � �&�! � �
for JPEG cod-

ing. A t-test is performed on the scale values obtained in sessions 1 and 2. In figures 3.11
and 3.12 the scale values that differ significantly between sessions are indicated by arrows.
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Figure 3.10: The results of DifScal obtained within a scene (session 1) are shown
in the left panel for the JPEG coded images. The results of DifScal across scenes
(session 2) are shown in the right panel. The x-axis shows the Q-parameter, Q60
to Q15. The original is indicated by org. On the y-axis DifScal’s scale values of the
images are given. The different ranges of scale values for the scenes indicate that
in session 1 the extreme images are not mapped to the ends of the quality scale.
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Figure 3.11: The scale values of the wavelet coded scenes. The scale values ob-
tained across scenes (session 2) are given on the x-axis and the scale values ob-
tained within a scene (session 1) on the y-axis. The arrows indicate those scale
values that differ significantly between both sessions.
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3. Quality scaling across scenes and processing methods

The effect of the significantly different scale values of sessions 1 and 2 can be interpreted in
the same way as for the scene shopping-street in the previous section 3.3.3. In both sessions,
the scale values of a particular scene decrease monotonically with decreasing bit-rate or
Q-parameter. On the other hand, the results of both sessions are not comparable across
scenes. The wavelet coded and JPEG coded images that differ in scale value are in session 1
overestimated for the scenes shopping-street and woman and underestimated for the scene
photographer or country-road, see figures 3.11 and 3.12.

For instance, in session 2, the quality of the wavelet coded scenes shopping-street and woman
at 0.3 bpp (label ”A” in figure 3.11) is comparable to the scene photographer at a lower bit-
rate, namely 0.15 bpp (label ”B” in figure 3.11) while in session 1 these images are compa-
rable in quality with the scene photographer at 0.3 bpp (label ”C” in figure 3.11). The same
can be observed for the Q-parameter. The scenes shopping-street and woman coded at Q-
parameter 60 (label ”A” in figure 3.12) are of comparable quality in session 1 with the scenes
photographer and country-road at the same Q-parameter of 60 (label ”B” in figure 3.12). This
is in contrast to session 2 where an apparent difference is found between the quality of these
scenes. In this case the quality of the scenes photographer and country-road is higher than
the quality of the scenes shopping-street and woman. For this reason, hypothesis II can be
rejected in both cases.

3.4.4 Discussion

We demonstrated that the method of subjective testing can influence the evaluation of a
codec. The observed differences between sessions 1 and 2 for wavelet as well as JPEG coded
scenes lead to different results. It was shown that in session 1 observers discriminate less
between the image quality of scenes coded at the same bit-rate (as in wavelet coding) or
at the same JPEG Q-parameter than in session 2. This indicates that subjects tend to use
a separate rating scale for each scene. Therefore, subjective comparison data across scene
content is needed to evaluate the performance of a particular codec.

The results of session 2 showed that not all JPEG coded images with equal Q-parameter but
different scene content are judged the same. This indicates that JPEG’s Q-parameter is not
scene-independent. However, compared to the effect of coding levels, the scene effect is
minimal, except for high quality images, namely the original of the scene country-road and
its JPEG coded version at Q-parameter 60.

On the other hand, wavelet coded scenes of the same bit-rates are rated to have dissimilar
quality. In particular, the scenes shopping-street and woman are qualitatively worse than the
scenes photographer and country-road. This indicates that these scenes suffer more from the
introduced distortions than the other scenes. This has been compensated for in JPEG cod-
ing. Here the quality differences between the scenes at identical Q-parameter have been
minimalized by compressing the scenes shopping-street and woman at higher bit-rates than
the scenes photographer and country-road.
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Figure 3.12: The scale values of the JPEG coded scenes. The scale values obtained
across scenes (session 2) are given on the x-axis and the scale values obtained
within a scene (session 1) on the y-axis. The arrows indicate those scale values
that differ significantly between both sessions.

65



3. Quality scaling across scenes and processing methods

3.4.5 Conclusions

For two different coding methods, JPEG and wavelet coding, we demonstrated that sub-
jective tests, with image pairs containing two images of identical scene content only, are
not sufficient to measure the perceived image quality across scenes. It seems that reliable
subjective data can only be obtained by comparing the scenes explicitly.

3.5 Concluding remarks

In this chapter we discussed two experimental methods to obtain quality judgements
across distortion types or scene contents. The question is whether this can be achieved us-
ing only image pairs containing two images of identical distortion type or scene content.
One view is that in such a case subjects tend to map the extreme images, e.g. the original
and the most impaired image, to the ends of a quality scale and thus use separate rating
scales for each distortion type or scene. If the observers actually calibrate the quality rating
scale for each identifiable class the experimental procedure is not suited to obtain accurate
quality judgements across these classes. However, this is not the case as was substantiated
in sections 3.3 and 3.4 for processing methods and scene contents, respectively. In these sec-
tions we showed that observers discriminate between the various distortion types or scene
contents even though no explicit comparisons were made to obtain quality judgements.

However, this does not necessarily imply that quality judgements obtained from two im-
ages containing identical processing method or scene content are comparable to those ob-
tained from explicit comparisons. Even when the images of each processing method or
scene are scaled on different parts of the quality scale, the quality judgements are not al-
ways linked across processing method or scene content.

Comparable results between the two experimental procedures are only obtained in one
case, namely if the quality range of the various processing methods is not too dissimilar.
In this case the observers seem to be able to link the quality rating scales without explicit
comparisons. In this case the experimental time can be reduced since quality judgements
without explicit comparisons are sufficient and adequate. On the other hand, if the qual-
ity ranges between processing method differ the results are not comparable, even though
without explicit comparisons observers discriminate between the processing methods.

As for processing methods, the quality range determines whether explicit comparisons are
needed or not. The experiments in section 3.4 showed that, especially for the JPEG coded
images, the results of both sessions are not comparable, although the quality range of the
various scenes differ not so much. This means that explicit comparisons are necessary to
determine the image quality across scene contents.

In general we may conclude that observers use separate quality scales for identifiable
classes of stimuli if these are not compared explicitly. This may have consequences if the
performance, bit-rate versus image quality, of different coders are compared. As shown in
section 3.3, the conclusions drawn from quality judgements without explicit comparisons
can be misleading.
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Chapter 4

A Single-Ended Blockiness Measure for JPEG-coded
Images

Abstract

In three subjective experiments, dissimilarity data and numerical category scaling data
were obtained to determine the underlying attributes of image quality in sequential base-
line coded JPEG images. Although several distortions were perceived, namely blockiness,
ringing and blur, the subjective data for all attributes were highly correlated, so that image
quality could approximately be described in one dimension. We therefore proceeded by
developing an instrumental measure for one of the distortions, namely, blockiness. In this
chapter a single-ended blockiness measure is proposed, i.e., one that uses only the coded
image. Our approach is therefore fundamentally different from most (double-ended) im-
age quality models that need both the original and the degraded image. The proposed mea-
sure is based on detecting the low-amplitude edges that result from blocking and estimat-
ing the edge amplitudes. Because of the approximate one-dimensionality of the underly-
ing psychological space, the proposed blockiness measure also predicts the image quality
of sequential baseline coded JPEG images.
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4. A Single-Ended Blockiness Measure for JPEG-coded Images

4.1 Introduction

The present demand for data storage and transmission of large quantities of images neces-
sitates the use of data compression. The international JPEG (Joint Picture Expert Group)
standard for image compression emerged after an extensive comparison of existing algo-
rithms. Four modes of operation are supported by JPEG, one lossless mode: (1) the se-
quential lossless mode, and three lossy coding techniques: (2) the sequential DCT (Discrete
Cosine Transform) based mode, (3) the hierarchical mode, and (4) the progressive sequen-
tial mode. The baseline system is a particular restricted form of the sequential DCT-based
mode and is supported by all JPEG decoders (Pennebaker and Mitchell, 1993).

JPEG is a block-based coding algorithm. The original image is first subdivided into blocks
of 8x8 pixels and the blocks are subsequently coded independently using a DCT trans-
form. The bit-rate and image quality of JPEG-coded images are mainly determined by the
degree of quantization of the DCT coefficients. Quantization implies that the spatial fre-
quency components in each 8x8 block can only be reconstructed approximately. As a con-
sequence, degradations such as blockiness, ringing and blur are introduced in the recon-
structed image. Blockiness artifacts are visible as discontinuities at adjacent 8x8 pixel block
boundaries. The sudden intensity changes are most conspicuous in uniform regions and
are caused by a coarse quantization of the DC coefficients on the one hand and the absence
of low-frequency AC coefficients on the other hand. Ringing artifacts appear as ringing pat-
terns around sharp edges in the image, due to coarse quantization of the high frequency AC
coefficients. Quantization of the low frequencies as well as of the high frequencies causes
image blur and loss of detail. In the experiments described below we aim at obtaining a bet-
ter understanding of the perceived strengths of these attributes and their relation to overall
image quality.

As described by Eskicioglu and Fisher (1995) and Ahumada and Beard (1998), most fre-
quently used instrumental image quality measures, such as the mean square error (mse),
are based on the statistical distribution of pixel value differences between the original and
the degraded image or between processed versions of both. Such measures often do not
provide reliable predictions for perceived image quality, especially not when quality is de-
termined by multiple attributes (Martens and Meesters, 1998). This occurs for instance
when different coding techniques are compared. These measures represent image quality
as a single scalar value, and hence do not reveal the effect of separate impairments on image
quality. A different approach is to recognize that perceived image quality is multidimen-
sional (Ahumada and Null, 1993), i.e., several distinct degradations can be perceived in an
image, and they can all contribute to the overall image quality impression. Kayargadde
and Martens (1996c,d) used this approach to model the image quality of images degraded
by blur and noise. A similar approach is used in this chapter to obtain a better understand-
ing of how different attributes influence the perceived quality of sequential baseline coded
JPEG images.

As stated before, most existing instrumental measures for image quality are based on some
distance between the coded/degraded and original image. In such cases, all detected dif-
ferences are interpreted as degradations. No a priori assumptions are needed about the
kind of distortions introduced. A disadvantage of this approach is of course that the orig-
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4.2. Experiments

inal image must be available, and in perfect registration with the coded image. Especially
in the case of coded images these requirements can most often not be met (ITU-WP-2/12,
1995). Human observers on the contrary are perfectly able to judge image quality without
an explicit reference image being available. We similarly propose a single-ended technique
to estimate blockiness that is based solely on the coded image. Although the proposed mea-
sure may potentially be applied to estimating blockiness in MPEG-2 video, it has only been
tested on JPEG-coded images at this point.

The chapter is organized as follows. Section 4.2 describes the experiments carried out to in-
vestigate the underlying attributes of image quality in sequential baseline coded JPEG im-
ages. The relationship between the distortions blockiness, blur and ringing, and the overall
perceived image quality are determined. Since the attributes turn out to be highly corre-
lated, it is proposed that a good prediction for image quality can be based on an estimate
for any of these attributes. Blockiness seemed the easiest attribute to estimate by means of
an instrumental measure. In section 4.3 we therefore introduce a single-ended instrumen-
tal measure for blockiness. The resulting measure is compared with subjective blockiness
data in section 4.4.

4.2 Experiments

In this section we will show experimentally that perceived image quality of sequential base-
line coded JPEG images can be described in one dimension. In subsection 4.2.1, image qual-
ity is studied for two sets of JPEG-coded images by means of dissimilarity scaling and nu-
merical category scaling. Dissimilarity scaling is used to measure the subjective difference
between two images without a-priori knowledge of the impairment types. Numerical cat-
egorical scaling is then used to identify the perceived strength of particular predefined at-
tributes. Although the measured properties are different in these scaling methods, both
show that the image quality of JPEG coded images can be described in one dimension. In
the first experiment the distortion in the images varied over a wide range, while in the sec-
ond experiment a subset of these images with less conspicuous blockiness was presented.
A third experiment in subsection 4.2.2 was carried out to collect data for a larger group of
subjects using a double stimulus method that is known to have high sensitivity and accu-
racy (de Ridder, 1996; Parducci and Wedell, 1986). Table 4.1 summarizes the stimulus sets
and the scaled attributes in all experiments.

4.2.1 Image quality and its underlying attributes

Observers Six and five subjects took part in the first and second experiment, respectively.
All subjects were familiar with scaling experiments, image quality and typical coding
artifacts such as blockiness, blur and ringing. They all had normal or corrected-to-normal
visual acuity.

Display and viewing conditions The images were displayed for 5 seconds on a BARCO-
CCID-7351B high-resolution, non-interlaced 50-Hz monitor, placed in a dark room. The
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4. A Single-Ended Blockiness Measure for JPEG-coded Images

Table 4.1: Overview of experiments.

experiment 1 experiment 2 experiment 3
stimulus set ���������	��
���
���� ����
����������	
���� ���������	��
���
����

�����	
����������	��������������� �����	��������������� ����������� original
session 1 dissimilarity dissimilarity -
session 2 quality quality quality

blockiness blockiness blockiness
blur ringing -

monitor was calibrated to have a grey-value-to-luminance characteristic equal to��� �	��
 � ����� �
	����
��� ���������
����� � ��	 (4.1)

for
� M � M ���
��� , with

���
���$� "�)�)
,
����� � �(�! "

cd/m # , ���
��� �(%��
cd/m # and * � "+ )

. The
adaptation time between 2 successive stimulus presentations was determined by the time
that subjects took to input their response (on a keyboard), but with a minimum of 2 sec-
onds. The adaptation field was uniform and had a luminance of 13 cd/m # . This value was
approximately equal to the average of the mean luminances of the images. The observers
were seated at 0.80 m from the monitor, resulting in a ratio of viewing distance to display
height of 3.2. The corresponding visual angle between successive pixels was 2.03 minutes
of arc. A short viewing distance 1 was preferred because in many applications using JPEG
images, the images are viewed on a computer monitor screen from a short distance.

Stimulus set Four different natural test scenes, referred to as boat, child, girls and light-
house (see figure 4.1), were acquired from a Kodak PhotoCD demonstration disc. In order
to enable display of two images simultaneously on the screen the size of the original
8-bit grey-scale images was cropped to 240x480 pixels. The Baseline Sequential JPEG
compression software package of the Independent JPEG Software Group 2 with default
quantization table was used to generate for each scene different versions at various
compression rates. The compression rate and visual fidelity were determined by the ‘Q-
parameter’. Images with a high compression ratio were obtained by low ‘Q-values’ (e.g.
20 and 25), and therefore contained the most conspicuous distortions. Compressed images
with less distortion were generated by selecting high ‘Q-values’ (e.g. 60). For the first ex-
periment the ‘Q-parameter’ was varied within the set

� � � ) "��!	 "�)+	����!	 � �!	 )��!	R%��!	����!	 ���!	 ��� + ,
while for the second experiment it was taken from the set

� # � ) ���!	 � �!	 )��!	R%��!	����!	 ���!	 ��� + .
The images in stimulus set

� � contained distortions that varied over a wide range, whereas
in stimulus set

� # , the distortions varied over a more limited range. The original images
were not included in the experiments, because they were hardly distinguishable from the
images with

� � ���
.

1For broadcast applications, a viewing distance of six times the image height, corresponding to a visual
angle between pixels of 1 arcmin, is standard.

2http://www.ijg.org/
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(c) (d)

Figure 4.1: Original gray-scale images of the scenes (a) boat, (b) child, (c) girls and
(d) lighthouse.
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4. A Single-Ended Blockiness Measure for JPEG-coded Images

Method I: dissimilarity ratings During the first session of both experiments, dissimi-
larity scores were obtained for each scene for stimulus pairs

�435	46+�
. In the first experiment35	46 ' � � with

6 � 3
, resulting in 36 distinct stimulus pairs. The 21 distinct stimulus pairs

in the second experiment were obtained by
35	46 ' � # with

6 � 3
. The stimulus pairs

were presented in random order and displayed for a fixed time of 5 seconds. Each pair
contained two JPEG-coded images of the same scene, simultaneously displayed on the
right-hand side and left-hand side of the screen, respectively. The subjects had to rate the
dissimilarity between the two images on an 11-point numerical category scale ranging
from 0 to 10. A score of 0 indicated no perceived dissimilarity and a score of 10 indicated
the largest perceived dissimilarity. Before the actual experiment started the subjects took
part in a training session.

Method II: numerical category scaling The second session of both experiments consisted
of three subsessions in which the subjects were asked to judge the perceived strength of
three attributes. In experiment 1 these attributes were blockiness, blur and image quality.
In experiment 2, they were blockiness, ringing and image quality. Each attribute was
judged in a separate subsession on an 11-point numerical category scale ranging from 0 to
10. Absence of any perceptual occurrence of an attribute (blockiness, ringing or blur) in
the image should be rated by 0. The image quality should be judged 10 for the best and 0
for the worst quality perceived. In each subsession, the different realizations of the scenes
were presented three times in random order. Before each subsession a training session
was performed by the subjects.

In the second session of both experiments, subjects had to judge the most prominent
attributes. They were different in both experiments, due to the different stimulus range
used. Stimulus set

� � consisted of images with both highly visible distortions and almost
no visible distortions, and the most conspicuous distortions were blockiness and blur.
The range for the ringing impairment was small in comparison to the range for blockiness
and blur. The images in stimulus set

� # were less distorted. In these images, the range
over which blur varied was small in comparison with the range over which blockiness
and ringing varied. Therefore, in this second set the most obvious impairments were
blockiness and ringing.

Results The dissimilarity data resulting from the first sessions can be summarized
in a 9x9 and 7x7 dissimilarity matrix for each subject, respectively. These matrices were
input into the multidimensional scaling program MULTISCALE (Ramsay, 1991) and trans-
formed into distances (Kayargadde and Martens, 1996c,d). According to the specified
dimension, Euclidean coordinates are estimated for the stimuli such that the distances be-
tween the stimulus coordinates correspond to transformed dissimilarities. In the resulting
two-dimensional stimulus configurations, the first dimension is most dominant.

The numerical category scaling data for the attributes blockiness, ringing, blur and image
quality were analyzed as described below. For each attribute, the mean of the three judge-
ments was calculated. Next, the mean scores were transformed to z-scores per subject and
scene to compensate for a potentially different use of the numerical scale by different sub-
jects. The z-score transformation translates the overall mean to the origin and normalizes
the overall variance to unity. The effect of this z-score processing is that all subjects are
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Figure 4.2: Numerical category scaling results of stimulus set
� � . The graphs

present the z-scored average taken over all subjects of the scaled image quality
and strength of the impairments blockiness and blur of the four scenes (a) boat,
(b) child, (c) girls and (d) lighthouse. The distortions in this set vary over a wide
range, they are most striking in the images

� �&"��
and

� �("�)
.
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Figure 4.3: Numerical category scaling results of stimulus set
� # . The graphs

present the averaged z-scores taken over all subjects of the scaled image quality
and strength of the impairments blockiness and ringing of the four scenes (a) boat,
(b) child, (c) girls and (d) lighthouse.

� # is a subset of stimulus set
� � , the low qual-

ity images of
� � , with the most striking distortions (

� � "��
and

� � "�)
), are omit-

ted in this stimulus set.
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4.2. Experiments

attributed the same weight in the overall averaging. Figures 4.2 and 4.3 show the numer-
ical category scaling results for stimulus set

� � and stimulus set
� # , respectively. In these

figures, the signs of the quality scores were reversed to facilitate the comparison with the
attributes. Within the stimulus set, the attributes vary in a highly correlated way (see Ta-
ble 4.2). The impairments are particularly conspicuous in JPEG images with a high com-
pression ratio, and their visibility jointly decreases when the compression ratio decreases.

Table 4.2: The linear correlations between the scaled attributes in all experiments.
The correlations are calculated separately for each of the four scenes: boat, child,
girls and lighthouse.

Scene Experiment 1 Experiment 2 Experiment 3
blockiness blockiness blockiness blockiness blockiness

versus versus versus versus versus
blur quality ringing quality quality

boat 0.98 -0.99 0.93 -0.95 -0.99
child 0.99 -0.99 0.89 -0.97 -0.99
girls 0.98 -0.99 0.93 -1.00 -0.99
lighthouse 0.97 -0.96 0.88 -0.97 -0.99

The scaled attributes, blockiness, blur, ringing and quality were fitted into the stimulus con-
figurations, obtained from dissimilarity scaling, by means of linear regression. The direc-
tion of the regressed attributes is approximately opposite to the direction of the regressed
quality data (for more detail see Meesters and Martens (1999)). Hence, this gives additional
evidence for a 1D stimulus configuration in which all attributes are linearly correlated.

In summary, visual inspection of the JPEG-coded image material reveals three attributes:
blockiness, blur and ringing. The conducted experiments, however, imply that image qual-
ity can be described by any of these attributes, since they all have high linear correlation
with quality. Therefore, in section 4.3 we will introduce an instrumental measure for block-
iness that can also be used to predict the image quality of sequential baseline coded JPEG
images. It should be noted that the blockiness measure is only expected to also predict qual-
ity in case the images are coded with a fixed quantization table that is scaled by varying the
Q-parameter. This is the most commonly used practice in JPEG coding. In such case, the
measured strengths of the distortions increase jointly as the perceived quality decreases.
This probably does not hold any longer if the quantization matrix is not simply scaled, but
varied in a more general way.

4.2.2 Blockiness in natural images

We now describe a third experiment in which subjective quality and blockiness ratings
were gathered to evaluate the instrumental blockiness measure described in the next
section.
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4. A Single-Ended Blockiness Measure for JPEG-coded Images

Observers Ten subjects took part in this experiment. All subjects had a normal or
corrected-to-normal visual acuity.

Display and viewing conditions These conditions are identical to those mentioned in
section 4.2.1.

Stimulus set The same four natural test scenes, boat, child, girls, and lighthouse, as
described in section 4.2.1 were used to generate stimulus set

� 	 . Five JPEG-coded
images were derived for each scene with the Q-parameter set to 20, 25, 30, 40 and 60.
The original of each scene was included as reference which resulted in the stimulus set

� 	 � ) "��!	 "�)+	����!	 � �!	R%��!	 original + .
Method: Comparison scaling Comparison scores were obtained for < ) stimulus pairs�435	46+�

per scene, with
35	46 ' � 	 and

6 � 3
. The pairs of images were presented in random

order. Each pair contained two images of the same scene, simultaneously displayed on
the right-hand side and left-hand side of the screen. The subjects were asked to rate the
quality difference and the blockiness difference between the two images on a scale from -5
to +5. They were instructed to base their quality judgements on all perceivable distortions
and not only on blockiness. The numerical value given should indicate the perceived
difference in image quality or blockiness, while the sign should indicate which image is
preferred or has the highest degree of blockiness, respectively. No perceived difference
should be judged as 0 and the largest perceivable difference between two images should be
judged as 5. Before the actual experiment started the subjects took part in a training session.

Results Since the judgements were based on images of the same scene, data analy-
sis was performed for each scene separately. The comparison data are analyzed using
the in-house software tool DIFSCAL (Boschman and Roufs, 1997; Boschman, 2001). The
model underlying DIFSCAL is Thurstone’s law of comparative judgements (Torgerson,
1958). This model assumes that the paired judgements are measured on an psychological
internal scale with Gaussian noise distribution. The frequency distribution per category
for each stimulus is the input to DIFSCAL. From this frequency distribution, stimulus
scale values are calculated. The standard deviation of the Gaussian noise is used as the
unit value for these scale values. The resulting subjective quality and blockiness data (see
figure 4.4) are again highly correlated, with linear correlation values of -0.99 for all scenes,
see Table 4.2.

4.3 Blockiness model

In the previous section it was proposed to base the image quality prediction of sequential
baseline coded JPEG images on the prediction for only one of the attributes. Blockiness and
ringing are distortions that introduce new edges. Block boundaries are oriented horizon-
tally or vertically which is important a priori information that can be used to simplify the
implementation of a blockiness measure. Ringing and blurring on the contrary are related
to existing edges in the image, and may hence have arbitrary orientations. Since the refer-
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Figure 4.4: Comparison of scaling results for stimulus set
� 	 . Subjective qual-

ity and blockiness scores, obtained with DifScal, are plotted against the JPEG Q-
parameter for four scenes (a) boat, (b) child, (c) girls and (d) lighthouse.

77



4. A Single-Ended Blockiness Measure for JPEG-coded Images

ence image is not available in a single-ended measure, added edges are most likely easier to
detect than lost image information. These arguments motivate why we decided to develop
a blockiness measure, rather than a measure for ringing or blur.

Blockiness is often expressed in terms of added edge energy, derived from the difference
between Sobel-filtered original and coded images. These measures use mostly first order
statistics such as average, standard deviation and root mean square error, and express the
added edge energy into one single scalar value (Lin and Mersereau, 1995; ITU-WP-2/12,
1995; Webster et al., 1993; Beerends, 1997). A more sophisticated model, developed by
Karunasekera and Kingsbury (1995), is based on the sensitivity of the human visual sys-
tem to vertical and horizontal edges. The difference image between the original and the
degraded image is weighted based on the contrast sensitivity of the visual system to spatial
frequencies (at different mean luminances). In these double-ended models, the blockiness
measure uses both the degraded and the original image. We will show in this section that
edge information needed for blockiness estimation can also be recovered without explicit
use of the original image.

The first computational assumption underlying our blockiness measure can be phrased as fol-
lows: ‘Horizontal and vertical low-amplitude step edges present in a (coded) image arise
from the coding process and are not present in the original image. These structures are
therefore to be interpreted as artifacts’. We describe how these low-amplitude step edges
can be detected and how the edge parameters (most noticeably the edge amplitude and
edge blur) can be estimated using the Hermite transform as a tool for analysis (Martens,
1990b).

The second computational assumption underlying our blockiness measure is that blockiness is
related to some first order statistic of the estimated edge amplitudes (i.e., that it can be de-
rived from the histogram of these edge amplitudes). It is a simplification which is needed
in order to combine the estimated edge parameters into a single number indicating the
amount of ‘blockiness’. A similar assumption is used in most existing instrumental quality
measures. This second assumption still needs further experimental evidence to substanti-
ate it. It should be realized, however, that it is an independent and separate assumption
from the first computational assumption. Existing problems with the currently proposed
blockiness measure (as well as with many existing measures) are in our view mostly related
to this second integration step, and the computational assumption underlying it.

The image analysis method that we use to implement our blockiness measure is based on
the Hermite transform, a signal decomposition technique in which signals are locally ap-
proximated by polynomials within a Gaussian window (Martens, 1990a). The approach
was also applied by Kayargadde and Martens (1996b,a) for noise and blur estimation. The
three stages of the proposed blockiness model are described below (see figure 4.5).

4.3.1 Front end processing

The display characteristic and the luminance adaptation of the visual system are modeled
in the front-end processing. First, the gray-value image is transformed into a luminance
image

�
, using the gray-value-to-luminance characteristic of the monitor see equation(4.1),
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Figure 4.5: The three stages of the blockiness estimation model: (1) Front End Pro-
cessing: transformation of the grey-scale image into a threshold step-edge visibil-
ity image, � �4�H�

. (2) Block Boundary Estimation: estimation of the edge parame-
ters, performed in horizontal and vertical direction separately. The Block Bound-
ary Estimation stage is presented in more detail on the right. (3) Integration: col-
lapsing the estimated amplitudes into a single scalar value.
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and then into a step-edge-visibility image � �4�H�
. In this image, the just perceivable incre-

ments or decrements, � � , needed to detect a step-edge are constant and independent of
� . This means that

� � 	 � I � � � are equally significant for all base values � , which simpli-
fies the processing in the blockiness model. This does not hold for the luminance image in
which the just perceivable differences, � � , needed to detect step edges are dependent on
the base luminance

�
. Such a relation was experimentally determined in Lubin (1993) and

can be expressed as: � � � 3 ��� (4.2)

where 3 � �! � < %�% � and / �G�! � )�� "
, if the luminances

�
and � � are expressed in cd/m # .

More specifically, this increment corresponds to a probability of
�����

to detect a vertical
step-edge

�4� 	�� I � �H� . Since the human sensitivity is the same for horizontal and vertical
edges, this expression can be used for edges in both directions (Karunasekera and Kings-
bury, 1995).

Inherent to equation(4.2), the luminance variation needed to detect step edges grows in
proportion to the base luminance. In the visibility image � �4�H�

, this detection threshold
should correspond to a fixed increment � � � < , the just noticeable difference (jnd). Pro-
vided � is a differentiable function of the luminance

�
, � � can be expressed approximately

as � � � �4�H� � � ��� � � � . Substituting � � � 3 � � and � � � < gives � � �4�H� � � < � 3 � � � � � � . Fi-
nally, integration

� �4�H�E��� <3 � � � ��� <3 � � <�: / � �
� � � � (4.3)

gives the relationship between the luminance image
�

and the step-edge-visibility image
� �4�H�

.

4.3.2 Block boundary estimation

The detection and analysis of edges is based on the Gaussian blurred edge model as pro-
posed by Kayargadde and Martens (1994, 1996a). The original model was used to estimate
parameters of two-dimensional edges, and hence required the use of a two-dimensional
Hermite transform. In the case of blockiness, we are interested in one-dimensional (hor-
izontal and vertical) edges. We will therefore base our analysis on two separate one-
dimensional Hermite transforms (Martens, 1990a,b) along the rows and columns of the im-
age, respectively.

Below we describe the edge estimation in horizontal direction giving the following model
for a blurred edge

edge
����� �
	 	 � � 	 � 	 / � � �
	 I � �" erf 9 � : �/ A 	 (4.4)

with parameters: mean signal value ( ��	 ), step-amplitude ( � � ), blur parameter ( / ), and dis-
tance from the origin ( � ). The edge parameters are estimated from Hermite coefficients up
to order three. These coefficients are obtained by linear filtering of the step-edge-visibility
image � �4�H�

. The origin in the above notation is the (moving) center position of the Gaus-
sian window, that is used in the Hermite analysis. The standard deviation of the Gaussian
window was set to

1 �&"
times the pixel distance.
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The Hermite coefficients for a blurred edge (Kayargadde and Martens, 1994) are given by

��� � �
	 : � �" erf
� � �

� � � � �� " 3 �
� # � � #�" � " 3 � " �
� 	 � � 	�

� � � 3 � � � � # : " � (4.5)

which are defined in terms of the following intermediate variables

� � � 1
� / # I 1 #

� � �� / # I 1 #3 � � � �� ��� 
��
�
: � # � (4.6)

The estimation process consists of estimating the (unknown) edge parameters from the
(given) Hermite coefficients. In this estimation process two things can happen. First, no
solution for the edge parameters can be obtained, indicating that the current window is not
positioned near an edge (and the Hermite coefficients do hence not correlate well with the
Hermite coefficients for an edge). Second, the estimated edge parameters are not accepted
as belonging to an edge that can be regarded as a block boundary.

Only positions for which
� � is nonzero are considered. For these positions, we start by es-

timating the intermediate (blur) variable

� #� �&" � ##� #� :
� % � 	

� �
	

(4.7)

which in turn can be used to find the original blur parameter

/ �,1
�

� <� #� : < 	 (4.8)

provided that
� #� M < . An effect of DCT-based block coding, like in JPEG, is that ’real image

edges’ are blurred. To avoid detecting false edges, the allowed blur parameter for a block
boundary edge is limited to / M / �
��� , or equivalently

� #� � 1 #/ #�
��� I 1 #  (4.9)

Through this restriction blurred edges are rejected.

The intermediate distance parameter is estimated as

� � � #� � � � 	 (4.10)
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which in turn can be used to derive the original distance parameter � . We also require that
� M � �
��� , since an analysis some distance away from the edge will most likely be unreliable.
Values of � larger than 0.5 times the pixel distance indicate that the edge position is closer
to the previous or next pixel.

Without any restriction on the amplitude of the detected edges, all horizontal and verti-
cal edges in an image are marked as block boundaries. Newly introduced edges as well
as edges present in the original image are included. However, block boundaries occur at
positions where the original image is mostly slowly varying and are therefore typically of
small amplitude. Only edges with amplitudes � � M � �
��� will be identified as edges due to
blockiness. Setting such a threshold may not exclude all ‘real image edges’ but reduces the
number considerably. On the other hand, edges with very small amplitudes are most likely
invisible, so that we also require � � � � ��� � in order to accept an edge as block boundary.
The required edge amplitude is estimated by

� � � � �
� " � � 
�� � � # �� �  

(4.11)

The zero-order Hermite coefficient
� �

can be used to derive the background value ��	 . This
background is for instance required in case we want to base the visibility of the block
boundary on a contrast measure such as

� � � �
�
	 	 (4.12)

instead of on the amplitude. Such a contrast measure can serve as an alternative for ampli-
tude in case the block boundary estimation is performed on the luminance image.

Summarizing, the thresholds / �
��� , � �
��� , � ��� � and � �
��� , together with the estimated edge
parameters / , � and � � control the process of rejecting or accepting a detected edge as be-
ing due to blockiness. Typical values for the threshold parameters are / �
��� � � �
��� � �! )
pixels, � ��� � � < and � �
���$�("��

on a step-edge visibility scale. Since the unit of the ampli-
tude scale is 1 jnd, setting the minimum perceived amplitude step to � ��� � � < jnd seems
obvious. The other parameter choices will be discussed further in section 4.4.1.

Block boundaries are estimated independently in the horizontal and vertical direction. At
each pixel location, the edge estimates of one of the two directions will be selected and used
in the integration stage. Whether these are the estimates in horizontal or vertical direc-
tion is determined by their edge amplitude � � . To make a distinction between the am-
plitudes in both directions they are referred to as � � � and � �!C , for the horizontal and ver-
tical amplitudes, respectively. If either of the conditions 
 L � � � L�N,L � �!C L or 
 L � �!C LHN,L � � � L ,
with 
 � �! < , is satisfied, then � � � � 3 �$� � � �!	 � �!C � is retained as the edge amplitude. By
this selection rule, only edges in the horizontal or vertical direction are accepted as block
boundaries, and oblique edges are rejected.

False detections occur in any estimation process. The following (heuristic) way of prun-
ing the detected edge positions has therefore been included as a post-processing operation.
Block boundaries typically extend over several pixels in the horizontal or vertical direction
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(8 pixels is a typical block size for JPEG-coded images). Therefore, all detected edge posi-
tions that do not belong to a horizontal or vertical edge segment of a minimum length are
eliminated. A typical value is 4 pixels.

Information about the coder can also be used to optimize the edge parameter estimation.
For instance, block boundaries occur on a regular 8x8 grid if 8x8 DCT-block coding is used.
Estimating edge parameters only at those positions would reduce both the number of false
detections and the number of total operations required. Such a priori information has how-
ever not been used here.

4.3.3 Integration

In the previous section we showed how edges in an image can be estimated by using Her-
mite coefficients and we described the selection procedure to make a distinction between
block boundaries and ‘real image edges’. The obtained outputs are maps of estimated edge
parameters: positions, amplitudes and blur. Although these maps visualize blockiness at a
glance, the evoked sensation of human observers in relation to blockiness is not expressed
explicitly. The maps need therefore to be interpreted in terms of ‘the perceived degree of
blockiness’, as the model intends to predict. To meet this requirement the edge estimates
have to be collapsed into a single scalar value, indicating the perceived degree of blocki-
ness.

As discussed in section 4.2, subjective blockiness responses can be recorded, using numeri-
cal category scaling. Human observers are hence capable to detect block boundaries as well
as to express the overall perceived blockiness. The integration process that this implies is,
however, not obvious. Detected block boundaries can differ in shape, size, visibility and
number. The shape varies from squares and rectangles to more complex structures that are
composed of horizontal and vertical edges of different sizes. Besides this diversity in shape,
size (large or small), amount (many or a few) and visibility (conspicuous or just noticeable)
of the block boundaries all play a role in the perceived degree of blockiness.

The variable appearance of block boundaries is determined by the DCT-coding algorithm
(the quantization step and block size), as well as by the scene content. For instance, images
with large uniform regions suffer more from perceivable blockiness than highly detailed
images. Blockiness is also a local distortion. Within a scene, blockiness is mainly visible
in particular (uniform) areas and hence not equally distributed across the entire scene. The
viewer’s attention is drawn to these regions and blockiness is experienced as unnatural and
disturbing. Keeping this in mind, it is understandable that two images with different block-
ing appearances can summon the same response of blockiness.

Although we are aware of the complicated processes that play a role in arriving at a subjec-
tive blockiness response, we have used a simple straightforward integration procedure in
our model. The assumption underlying the integration step is that human observers inte-
grate the blockiness amplitude map, resulting from the estimation stage, into one block-
iness response. Large amplitudes are expected to contribute more to the overall blocki-
ness impression than low amplitudes. In section 4.4.2 different amplitude statistics (see
Table 4.3) are evaluated: 1. the most frequently occurring amplitude (peak), 2. the average
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of all estimated block amplitudes (avg), 3. the variation around this average (stdev), 4. the
number of estimated block boundaries (nrp), 5. the amplitude at a particular percentage of
estimated block boundaries (level), and 6. a weighted summation taken over all estimated
amplitudes (Minkowski). Although the blockiness measures that we present here are based
on the estimated amplitudes only, it may be useful to also incorporate other edge estimates,
such as � and / , in such measures in a later stage.

Table 4.3: Combination rules used in the integration stage of the blockiness model
to collapse the estimated edge amplitudes into a single scalar value representing
the predicted blockiness.

Amplitude integration rules
peak most frequently occurring amplitude � � �
average (avg) � �  � � � �P� � �

standard deviation (stdev)

� � �L ����� L�� ��� � � � �number of detected points (nrp)
�

Level Amplitude, � � � , at a particular percentage
in the cumulative histogram,
i.e. at 50% this is the median

Minkowski summation
� �  � L � � � L � � $�

A-priori known blockiness indicator (extracted from JPEG coding)

quantization step (q-step) q =
I / � � �� �

parameter � )��"���� : " � � �
parameter

� )��

4.4 Model evaluation

The JPEG-coded images, described in the experimental set-up in section 4.2.2, were fed into
the single-ended blockiness model of section 4.3. The performance of the model is evalu-
ated on the basis of the estimated edge parameter maps and the comparison of the overall
measure with the subjective blockiness data. The control parameters: maximum distance
to the origin of a block boundary edge ( � �
��� ), the restricted amplitude range ( � �
��� and

� ��� � ) and the maximum blur of an edge ( / �
��� ) are discussed in section 4.4.1. It will be
shown that by an adequate choice for these control parameters block boundaries can be
distinguished from ’real image edges’. In section 4.4.2 the model is evaluated by means
of the Pearson correlation of the predicted blockiness and the subjective blockiness data of
section 4.2.2 for alternative integration rules.
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4.4.1 Block boundary estimation on natural images

Initially, four different front ends were evaluated: 1. the original gray scales, 2. gray values
converted to luminance values, 3. a lightness image produced from the luminance image
according to a CIE standard (Martens and Meesters, 1998), and 4. the gray scales trans-
formed by a threshold step-edge-visibility relation, see equation 4.3. Although the esti-
mated edge amplitudes differ in all cases, the detected block boundary positions were al-
most identical. The visibility of an edge is only taken into consideration in the integration
stage. Therefore, the results presented in this section are based on the threshold step-edge-
visibility front-end processing.

As mentioned in section 4.3.2, information about the DCT coder can be used to optimize
the block boundary estimation. In view of the fact that block boundaries appear on an 8x8
pixel grid in JPEG-coded images, the processing can be optimized by estimating the edge
parameters only at those positions. Although this would reduce the falsely detected edges
considerably this information is not used in the results presented below. Some a priori in-
formation about the block size is incorporated in the post-processing that eliminates the
estimated block boundary edges with a length smaller than 4 pixels. We now discuss the
remaining control parameters in the block boundary estimation. The distance parameter
� �
��� is set to 0.5 in all cases. This implies that all detected edges are located within an in-
terval, centered on the current window position, of one pixel wide. The significant effects
of the blur parameter / �
��� as well as the amplitude restrictions, � ��� � and � �
��� , on the edge
estimation will be illustrated below.

Figure 4.6 shows edge estimates resulting from the original boat scene and the JPEG-coded
image,

� � "��
. None of the control parameters � ��� � , � �
��� or / �
��� were set in 4.6(a) and

4.6(c). In both images, ’real image edges’ were detected. Especially in the original no edges
should be detected since blockiness is absent. The estimated block boundaries in the JPEG-
coded image are located in the uniform areas (canvas and sky) as well as in the textured
regions (water). Compare the block boundaries to the original scene presented in figure 4.1.
Figures 4.6(b) and (d) show the edge estimates obtained by setting the blur parameter to/ �
��� � �! ) . The detected number of edges in the original decreases drastically. The amount
of ’real image edges’ in the coded image also diminishes. The block boundaries are mainly
detected in the uniform regions of the image (canvas and sky).

The corresponding cumulative histograms of the estimated amplitudes are given in figure
4.7. This figure includes all coded JPEG-versions and the original of the scene boat. Figure
4.7(a) represents the estimated amplitudes without any control parameter set and 4.7(b)
shows similar results with blur parameter / �
��� � �! ) . The former, contains a large amount
of high amplitudes whereas the latter has mainly low amplitudes. This indicates that block
boundaries are low-amplitude step edges. This is in line with the assumed characteristics,
described in section 4.3.

The effect of the amplitude control parameters � ��� � � < and � �
���'�&"��
, alone and in com-

bination with / �
��� � �! ) , is shown in figure 4.8. Although both results show detected block
boundaries of low amplitude, the edge boundaries in figure 4.8(a) represent both blurred
and sharp transitions whereas in figure 4.8(b) only sharp edges were detected. Compared
to figure 4.6 the parameters � ��� � and � �
��� reduce the number of false block boundaries
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(a) (b)

(c) (d)

Figure 4.6: Block boundary estimates from the original boat scene, (a) and (b), and
the same scene coded with

�
-parameter set to 20, (c) and (d). The estimates in (a)

and (c) were obtained without any of the control parameters � ��� � , � �
��� or / �
���
set. The results in (b) and (d) are obtained with / �
��� set to 0.5.
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Figure 4.7: The estimated amplitudes corresponding to the edge positions as
shown in figure 4.6 are presented as cumulative histograms. The amplitudes are
shown on the x-axis and the number of detected amplitudes on the y-axis. All his-
tograms are derived from the scene boat: (a) estimated amplitudes without control
parameters, (b) with the blur parameter / �
��� set to 0.5,

considerably if / �
��� is not used. However, in combination with the blur parameter / �
��� ,
they have a very limited effect.

As expected, the amount of detected block boundaries decreases if the compression ratio
decreases (higher

�
-values). Block boundaries are most easily distinguished from ’real im-

age edges’ by making a distinction between blurred and non-blurred edges. Therefore / �
���
is the most relevant threshold parameter in the algorithm. Similar results as the ones pre-
sented here hold for the other scenes child, girls and lighthouse.

4.4.2 Integration of the estimated block boundaries

Although several block boundary parameters can be estimated, such as position, blur and
amplitude, the integration of these estimated parameters into a single scalar value is cur-
rently confined to the amplitude estimates. The combination rules as listed in section 4.3.3
and Table 4.3 are evaluated in this section. Figure 4.9 shows that the versions (

� "��
,

� "�)
,

� ���
,

� � �
,

� %��
, and the original) of a particular scene can be distinguished by the cumu-

lative histogram of the amplitude. We also investigated if the JPEG
�

-parameter, used to
regulate the image quality, is a suitable measure to predict blockiness. The a-priori known
quantization step � , which is uniquely determined by

�
, will therefore also be compared

to the subjective blockiness data.

As stated in section 4.3.3, we try to model the blockiness response of observers in this in-
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(a) (b)

Figure 4.8: In both (a) and (b) the block boundaries of scene boat coded with
� � "��

were detected with � ��� � � < and � �
���=� "��
. No blur parameter / �
��� was set in

(a), whereas in (b) / �
��� � �! ) .
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Figure 4.9: Cumulative histograms of all coded versions of the scenes (a) boat, (b)
child, (c) girls and (d) lighthouse. The histograms show the estimated amplitudes
between 1 and 20. The block boundary estimation is performed with � ��� � � < ,� �
��� �&"��

and the blur parameter / �
��� set to 0.5.
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tegration step. Although the mathematical expressions are easy to construct, one should
be aware that different assumptions underly the various combination rules. By compar-
ing different integration rules, we aim to get a better understanding of the combination
rule used by the observers. Predictions that correlate poorly with the subjective data are
considered to indicate an inadequate integration rule. However, high correlation between
predictions and subjective data does not automatically imply that the corresponding com-
bination rule reflects the human mechanism. More experimental evidence is necessary to
substantiate this.

We first show that a reliable selection of block boundaries is essential before integrating
the amplitudes. The instrumental measures perform poorly if real image edges are erro-
neously interpreted as block boundaries, irrespective of the applied combination rule. This
is demonstrated in figure 4.10 showing the Pearson correlation (y-axis) of the subjective and
the predicted blockiness for all combination rules (x-axis). The Pearson correlation was cal-
culated between the predicted blockiness for all coded versions and the averaged subjec-
tive blockiness data, as presented in section 4.2.2.

Figure 4.10(a) depicts the case when no parameters are set in the block boundary estimation
stage. This corresponds to the block boundaries of for instance the original and JPEG-coded
version of the scene boat with

� � "��
as shown in figure 4.6(a) and 4.6(c), respectively. Real

image edges are falsely identified as block boundaries and wrongly taken into considera-
tion in the integration step. Consequently, the subjective blockiness data correlate poorly
with most predicted blockiness. Figure 4.10(c) shows the results when only � ��� � � < and

� �
��� � "�� are set in the block boundary estimation stage. The corresponding block bound-
aries of e.g. the JPEG-coded image with

� � "��
of the scene boat is shown in figure 4.8(a). In

this case, only low amplitude edges contribute. Most blockiness predictions based on both
sharp and blurred edges, as in figure 4.10(c), correlate poorly with the subjective blocki-
ness data. Multiple factors may contribute to this. Blurred edges are less perceivable than
sharp edges and should therefore be weighted accordingly in the overall predicted block-
iness. They are also more likely to be image edges, another reason not to include them in
the measure. In the previous section it was shown that � ��� � and � �
��� , in combination with
the blur parameter / �
��� , have limited effect on the estimated positions of the block bound-
aries. However, the effect of the high amplitudes on the blockiness prediction is clearly seen
by comparing figure 4.10(b) and figure 4.11. If image edges are erroneously interpreted
as blockiness edges most blockiness summation rules give a poor performance, while a
weighted Minkowski summation of the detected edge amplitudes performs well. In all
cases an exponent � can be determined such that the predicted blockiness correlates highly
with the perceived blockiness.

Next we discuss the results, with the estimation parameters fixed to � ��� � � < , � �
��� � "��
and / �
���=� �! )

. The Pearson correlation coefficients, � , between the perceived blockiness
and predicted blockiness for alternative integration rules are shown in figure 4.11. The in-
tegration rules are given on the x-axis and the Pearson correlation coefficients on the y-axis.
It can be observed that the blockiness prediction without incorporating the visibility of the
edges performs relatively poorly (see nrp in figure 4.11). In this case the correlation coeffi-
cient varies most across scenes. On the other hand, blockiness predictions using estimated
edge amplitudes correlate highly with the perceived blockiness.
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Figure 4.10: Pearson correlation between subjective blockiness data and the pre-
dicted blockiness of the four scenes is shown along the y-axis. The various blocki-
ness integration rules are displayed along the x-axis. The parameters in the block
boundary estimation were (a) none, (b) solely the blur parameter / �
��� � �! ) , and
(c) only the amplitude parameters � ��� � � < and � �
���'�("��

.
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Figure 4.11: The Pearson correlation coefficients, � , obtained between the subjec-
tive blockiness judgements and the predicted blockiness for each scene separately.
The various blockiness indicators are shown on the x-axis and the Pearson corre-
lation coefficients on the y-axis. The parameters in the block boundary estimation
were: � ��� � � < , � �
��� �("��

and / �
��� �&�! )
. The middle panel shows the resulting

correlations of an amplitude taken at various levels of the cumulative histogram.
The right panel shows the resulting correlations of a weighted Minkowski sum-
mation for various values of the exponent � . The symbols indicate the best corre-
lation for each scene. The highest correlation, averaged across scenes, is obtained
at a level of 67% in the cumulative histogram and with an exponent of p=0.53 for
the Minkowski summation.
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4.4. Model evaluation

Table 4.4: For each scene the Pearson correlation, � , between the subjective block-
iness data and the predicted blockiness. The correlation is obtained for the most
optimal parameter per scene as well as for the most optimal parameter for all four
scenes.

Summation rule boat child girls lighthouse
Level, at 25% 0.96
Level, at 34% 0.98
Level, at 74% 0.91
Level, at 33% 0.99
Level, at 67% 0.89 0.94 0.91 0.94
Minkowski, p=0.28 0.98
Minkowski, p=0.90 0.99
Minkowski, p=0.27 0.99
Minkowski, p=1.11 0.97
Minkowski, p=0.53 0.97, 0.98 0.96 0.95

The middle panel of figure 4.11 shows the resulting correlations of an amplitude taken at
various levels of the cumulative histogram. As can be seen in this figure and Table 4.4, the
best correlation for each scene is obtained at a different percentage level of the cumulative
histogram. Nevertheless, for each scene the Pearson correlation coefficient obtained at its
optimal percentage level in the cumulative histogram or at a level of 67% are not signifi-
cantly different.

The right panel of figure 4.11 shows the resulting correlations of weighted Minkowski sum-
mation for various values of the exponent � . Also in this case, the best correlation for each
scene is obtained for a different � value. It is approximately one for the scenes child and
lighthouse, implying a linear addition of the estimated amplitudes. A non-linear addition
is implied when the optimal � -exponent is smaller than one such as for the scenes boat and
girls. However, for each scene the linear correlation coefficients obtained by its optimal �
or � � �! ) � are not significantly different (see Table 4.4). Contrary to many existing quality
metrics where a Minkowski summation with an exponent close to two is used (de Ridder,
1991, 1992), the optimum � value is much smaller here. It seems that the integration of edge
amplitudes into a subjective blockiness response differs from the integration of impairment
strengths into an overall quality judgement.

In conclusion, for the scenes boat, child, girls, and lighthouse, blockiness predictions based
on the estimated edge amplitudes correlate highly with the perceived blockiness. For the
integration rules Level and Minkowski a parameter value (67% and p=0.53, respectively)
is determined for which the correlation averaged across scenes is a maximum.

Up to now the integration rules were judged on the basis of the correlation between the pre-
dicted blockiness and the perceived blockiness strengths. In the following we will describe
an additional test to compare the blockiness predictors for a large number of scenes.

Considering the experiments in section 4.2 we may assume that the perceived blocki-
ness increases monotonically with decreasing Q-parameter. This leads to the requirement
that the predicted blockiness should monotonically increase with decreasing Q-parameter.
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Figure 4.12: Spearman rho correlation coefficients, � , between the Q-parameter
and the predicted blockiness. The various integration rules are shown on the x-
axis. On the y-axis the Spearman rho coefficients are given. The middle panel
shows the resulting Spearman rho coefficients of an amplitude taken at various
levels of the cumulative histogram. The right panel shows the resulting Spear-
man rho coefficients of a weighted Minkowski summation for various values of
the exponent � . The symbols in the middle and right panel indicate the best Spear-
man rho coefficient for the particular integration rule. The best Spearman rho co-
efficient, averaged across scenes, is obtained at a level of 62% in the cumulative
histogram and with an exponent of p=2.84 for the Minkowski summation.
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4.4. Model evaluation

Table 4.5: The Pearson correlation coefficient, � , between the subjective blockiness
judgements and the predicted blockiness for each of the scenes boat, child, girls and
lighthouse. The right column of the table gives the Spearman rho between the pre-
dicted blockiness and the Q-parameter if in total 164 scenes are considered.

Pearson � Spearman rho
Summation rule boat child girls lighthouse 164 scenes

Peak 0.91 0.92 0.92 0.95 -0.93
Avg 0.90 0.95 0.83 0.96 -0.97
Std 0.83 0.87 0.91 0.93 -0.94
Nrp 0.85 0.89 0.71 0.68 -0.72
Level, at 67% 0.89 0.94 0.91 0.94 -0.96
Minkowski, p = 0.53 0.97 0.98 0.96 0.95 -0.90
q-step 0.95 0.97 0.95 0.97 -1.00

Since no subjective data is needed to test this requirement, it can easily be performed on
a large image set. For each scene it is tested whether a specific summation rule predicts a
monotonic increase in blockiness with decreasing value of Q. The monotocity is expressed
as a rank-order correlation coefficient, Spearman rho ( � ), between the Q-values and the pre-
dicted blockiness. A specific combination rule is characterized by the mean value of Spear-
man’s rho averaged across 164 scenes (see Appendix A). For that purpose the 164 JPEG
coded images of Chapter 2 (Q-parameters: 15,20,25,30,40,60 and the original) are used. In
figure 4.12 the integration rules are given on the x-axis and the Spearman rho coefficients on
the y-axis. A Spearman rho coefficient of -1 indicates that the blockiness is predicted mono-
tonically in all 164 scenes. It can be observed that the Spearman rho coefficient is close to
this value for most integration rules. A significant deviation can be observed for the inte-
gration rule nrp.

The Spearman rho coefficients obtained for 164 scenes and the Pearson correlation coeffi-
cients for each of the scenes boat, child, girls, and lighthouse are given in Table 4.5.

Next, the parameter value in the integration rules Level and Minkowski are determined
such that the Spearman rho coefficient between the predicted blockiness and the Q-
parameter is optimal (see Table 4.6). In the former case this results in a � of : �! � � if the
amplitude is taken at 62% of the cumulative histogram. In the case of a Minkowski sum-
mation, the exponent � �("+ ���

gives the best results, � is : �! � � .

Figure 4.13 shows the monotocity for the 164 scenes in more detail. For each integration
rule in Tables 4.5 and 4.6 the Spearman rho coefficient between the predicted blockiness
and the JPEG Q-parameters of a particular scene is calculated. In this figure one can see
that for no single measure all 164 scenes are predicted monotonically and that a weighted
Minkowski summation with exponent � �G"+ ���

gives the best result. In this case a great
number of scenes is predicted monotonically, namely 133 scenes out of 164. For the re-
maining scenes the deviation in monotonicity is small compared to those seen for the other
integration rules.

In Tables 4.5 and 4.6 the Spearman rho coefficients indicate the degree to which the pre-
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Table 4.6: The Pearson correlation coefficient, � , between the subjective blockiness
judgements and the predicted blockiness for each of the scenes boat, child, girls and
lighthouse. The right column of the table gives the Spearman rho between the pre-
dicted blockiness and the Q-parameter if in total 164 scenes are considered.

Pearson � Spearman rho
Summation rule boat child girls lighthouse 164 scenes

Level, at 62% 0.89 0.94 0.85 0.94 -0.97
Minkowski, p = 2.84 0.91 0.95 0.88 0.96 -0.99

dicted blockiness increases monotonically with decreasing Q-parameter. Also the Pearson
correlation coefficient between the perceived and predicted blockiness for four scenes are
reported. Considering only the correlation coefficients most integration rules perform sim-
ilarly. Nevertheless, the ranking test revealed that not all integration rules predict JPEG
versions of a scene monotonically. A weighted Minkowski summation with an exponent
of
"+ ���

predicts the JPEG versions for most scenes monotonically and correlates highly with
the perceived blockiness for four scenes. Therefore, this integration rule is proposed in the
single-ended blockiness measure.

In figures 4.10, 4.11 and Table 4.5 also the correlation between the a priori known quantiza-
tion step, q-step, and the subjective blockiness judgements is shown. The high correlation
implies that the

�
-parameter is suited to indicate the expected degree of blockiness in se-

quential baseline coded JPEG images.

4.5 Summary

In this chapter, the underlying attributes of the perceived image quality of sequential base-
line coded JPEG images were studied. Moreover a single-ended blockiness measure was
developed. We showed that blockiness (defined as horizontal and vertical low-amplitude
step edges) can be predicted by analyzing the coded image only. Estimated edge parame-
ters, / , � and � � , were derived from Hermite coefficients. These estimated edge parame-
ters, together with the thresholds / �
��� , � ��� � and � �
��� , were used to differentiate between
real image edges and edges introduced by the coding process. Typical values of the thresh-
old parameters are / � �! )

, � ��� � � < and � �
��� � "��
on a step-edge visibility scale. With

these values, block boundaries can be detected accurately. The degree of blockiness was
solely derived from the estimated edge amplitudes � � . For that purpose several integra-
tion rules were studied. A weighted Minkowski summation of the estimated edge ampli-
tudes with an exponent of 2.84 appeared to be the most optimal integration rule. Firstly,
blockiness predictions derived with this summation rule correlate highly with the per-
ceived blockiness strenghts. Secondly, by analyzing this summation rule for a large im-
age set, consisting of 164 scenes, it could be shown that the predicted blockiness increased
monotonically with decreasing JPEG Q-parameter for a maximum number of scenes. Fur-
ther improvements of this single-ended blockiness measure might be possible by using the
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Figure 4.13: Per summation rule the Spearman rho is given for each of the 164
scenes.
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estimated edge parameters � , / and � as additional blockiness information in combination
with the estimated amplitudes.

We also showed that the measured perceptual strengths of the three attributes blockiness,
ringing and blur correlate highly. From this result we can conclude that the image quality of
sequential baseline coded JPEG images can be described by a single attribute. This conclu-
sion is also supported by the experimental results of dissimilarity judgements. Therefore
the proposed blockiness estimation algorithm can also be used as image quality measure
for sequential baseline coded JPEG images.
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Chapter 5

Evaluation of instrumental quality measures

Abstract

The predictive power of instrumental quality measures is usually analyzed by comparing
the predictions with results from subjective testing. Due to the limited number of images
that can be presented in subjective tests the outcome is hard to generalize. In this chapter
a large image set is used to compare instrumental quality measures on the basis of their
predictions only. In a second step of the analysis a small subset of images is selected which
optimally discriminates between the predictions of the instrumental measures. This subset
of images is then used in a subjective quality test. Furthermore the scenes were chosen to
test whether the quality measures work on an absolute quality scale which would enable
them to compare the image quality between different scenes. It is shown that the perfor-
mance of instrumental quality measures for such a set of well-chosen images is different
from the predictions obtained for scenes chosen on the basis of image content. Most mea-
sures cannot cope with between-scene comparisons.
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5.1 Introduction

As already discussed in the previous chapters a large number of instrumental quality mea-
sures has been proposed. The usefulness of such measures is determined by their ability
to predict perceived image quality. In order to test whether a specific instrumental quality
measure performs well, or to show the difference in performance between different mea-
sures they are usually evaluated by means of subjective quality judgements. These quality
judgements are usually obtained for an image set consisting of a small number of scenes
with particular distortions. Due to the limited number of images used in subjective tests
it is hard to generalize the outcome of such an evaluation. This describes a basic problem
in comparing instrumental quality measures with subjective data. In terms of generality a
large stimulus set has to be analyzed, while a test containing a large number of images is
not realistic in subjective testing.

In Chapter 2 instrumental quality measures were classified on the basis of their quality
predictions. In contrast to subjective testing this makes it possible to use an image set
with a large number of scenes and quality degradations since only computer resources are
needed. However, in such an analysis no reference to the perceived quality is used and
therefore no conclusions about the measures’ performance can be obtained by such a clus-
ter analysis. The clustering is merely a tool to get a better understanding of the differences
between quality measures by using a large image set. To determine whether a measure is
suitable to predict the perceived image quality subjective tests are still needed.

Traditionally, the selection criteria for scenes used in subjective tests are based on image fea-
tures that are, for example, critical for the coding algorithm. In Chapter 2 and the present
chapter, we follow a different approach namely to select scenes for which the examined
quality measures differ in their quality predictions. Two objective criteria are used: 1) each
quality measure yields different results for the scenes and, 2) scenes yield different results
for each of the quality measures. In the first case, scenes are chosen such that per instru-
mental measure the predicted quality of scenes is different. Scenes chosen on the basis of
the second criterion are used to test whether the instrumental quality measures work on
an absolute quality scale. For instance, images with different scene content but the same
degree of distortion can be of different image quality. Thus instrumental measures should
not only predict the image quality within a scene but also across scenes. This implies that
the image quality should be measured on a single scale such that image quality predictions
of different scenes are comparable.

In conclusion, differences between instrumental measures can be indicated for a large im-
age set without the need of subjective data. Since it is not realistic to use large sets in sub-
jective testing, only those scenes that actually discriminate within and among the measures
are recommended to be used in the evaluation. In the present chapter, this is demonstrated
by testing the instrumental quality measures introduced in Chapter 2 for JPEG coded im-
ages. In section 5.2.1 the difference between the measures is analyzed by using only their
predictions. The selection of scenes that discriminate within and between these measures
is described in section 5.2.2.

In Chapter 4 the conclusion was reached that the perceived image quality of JPEG coded
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images is linearly related to its underlying attributes blockiness, blurring and ringing. This
suggests that the perceived image quality of JPEG coded images can be modeled in one di-
mension. This indicates that the one-dimensional instrumental quality measures of Chap-
ter 2 could correlate highly with the perceived image quality. In order to test the perfor-
mance of instrumental quality measures two experiments were conducted. The first ex-
periment, described in section 5.3, was carried out to test whether a linear relationship be-
tween the perceived image quality and the attribute ringing holds for low-quality JPEG
coded images. So far, this relationship has only been investigated for medium and high
quality images. The second experiment is described in section 5.4. Here it was investigated
whether the relation between perceived image quality and attribute strengths is also lin-
ear for across-scene comparisons. In Chapter 4 it was shown for scenes separately that the
perceived image quality and the attribute strengths are linearly related. However, a linear
relationship leaves two undetermined variables, a scaling factor and an offset. If the linear
relationship between the attributes is different for each scene this would indicate that the
image quality can not be predicted in one dimension.

The subjective quality data of both experiments are used to evaluate instrumental quality
measures. The most basic factor that determines the image quality is the level of impair-
ment introduced into an image. In the case of JPEG coded images the perceived quality
decreases with increasing strength of the attributes blockiness, blurring and ringing. There-
fore it is a prerequisite that the measures can predict the level of image quality for a partic-
ular scene. This issue will be addressed in section 5.5.1. Another point that is considered
is that measures should predict the perceived quality independent of the scene content.
Image quality is a subjective qualification that observers can apply across scenes. Human
viewers can point out which image they prefer in quality even though the scene content
is different. This relation between scene content and the perceived image quality should
therefore also be incorporated in an instrumental measure. Whether the measures can deal
with this scene independency is described in section 5.5.2. In section 5.5.3 it is shown that
the used scenes can make a large difference in the evaluation of the measures. In section 5.6
the single-ended blockiness model is also tested for across-scene blockiness predictions. Fi-
nally in section 5.7 the differences between double-ended instrumental quality measures,
the single-ended blockiness measure and an average human observer are visualized by
means of an MDS stimulus configuration.

5.2 Selection of quality measures and scenes

In Chapter 2 it has been shown that we can study instrumental quality measures by catego-
rizing these measures into different groups based on their predictability for a large set of
images. The categorization was based on an image set formed by 164 scenes processed by
4 methods at 6 processing levels. In the present chapter the JPEG coded versions of these
scenes were used to evaluate the instrumental quality measures. In section 5.2.1 the in-
strumental measures were classified for such a large image set. The predictions of quality
measures within a cluster were, on average, similar for this image set. From each of the
resulting clusters one quality measure was selected and used to compare the predictions
with the perceived image quality.
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Obviously, it is not feasible to use such a large image set in subjective testing. Therefore,
the criteria as discussed in Chapter 2 were used to select a reasonable number of images
for the evaluation. The scenes used to evaluate the selected instrumental quality measures
were chosen such that: (1) each quality measure yields different results for the scenes and
(2) the scenes yield different results for the instrumental quality measures. This selection
is described in section 5.2.2

5.2.1 Quality measure selection

The same 67 instrumental quality measures and a subset of the images discussed in Chap-
ter 2 were used. The subset of images contained the 164 scenes (see Appendix A), JPEG
coded at 6 levels with Q-parameters of 15, 20, 25, 30, 40 and 60.

In the same way as in Chapter 2 the 67 instrumental quality measures were classified on
the basis of their predictions obtained for this JPEG image set. First the quality predictions
were normalized per quality measure. Next, a measure of association between each of the
67 quality measures was obtained by the inner-product correlation resulting in a 67x67 dis-
similarity matrix. From this dissimilarity matrix a 2-dimensional stimulus configuration
was determined by the multi-dimensional scaling program xgms. Finally Ward’s hierar-
chical clustering was used to cluster the quality measures according to their estimated Eu-
clidean distances. The resulting hierarchical cluster tree is shown in figure 5.1.

Figure 5.2 shows the number of instrumental quality measure clusters versus the distance
in the hierarchical cluster tree. This distance is proportional to the increase of the within-
group error sum of squares. A substantial increase in distance can be observed if the num-
ber of clusters is reduced to four or less. This suggests that four main groups of quality mea-
sures can be distinguished. The quality measures within a group are considered to predict
a similar image quality for the JPEG images.

From each cluster the quality measure with the maximum summed distance to all other
cluster centroids was selected, for a more detailed description see Chapter 2. The four se-
lected quality measures gdcor, sper95, shub95, and sarnoff-s of each cluster are given in
figure 5.1.

5.2.2 Scene selection

The four selected quality measures were used to group the 164 scenes (see Appendix A).
Scenes were grouped if the image quality was, on average, predicted similarly by the four
instrumental quality measures. In the same way as in Chapter 2, the city block distance was
used as a measure of proximity that indicates the relation from one scene to the other. The
resulting 164x164 distance matrix was used in Ward’s hierarchical cluster analysis to cluster
the scenes. The resulting cluster tree is shown in figure 5.3. Figure 5.4 shows the number of
scene clusters versus the distance in the hierarchical cluster tree. A substantial increase in
the distance between the clusters occurs if the number of scene clusters is reduced to three
or less. Hence, this figure suggests that 3 main groups of scenes can be distinguished.
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Figure 5.1: Hierarchical cluster tree obtained for 67 quality measures and 164
scenes. All 164 scenes were JPEG coded with six Q-parameters. Four main clus-
ters of quality measures can be identified, and from each cluster one quality
measure was selected. These selected measures were shub95, sper95, gdcor and
sarnoff-s.
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Figure 5.2: The number of instrumental quality measure clusters versus the dis-
tance in the hierarchical cluster tree. The distance represents the total within-
group error sum of squares. A major increase in the distance occurs if the number
of quality measure clusters is reduced to four or less.

In the same way as in Chapter 2 from each cluster one scene was selected and used in the
experiments of section 5.3 and 5.4. The properties of the selected three scenes were:

1. each quality measure yields different results for these three scenes

2. and the three scenes yield different results for each of the quality measures.

Both properties were satisfied by taking from each cluster a scene that discriminates highly
between the predictions of the four quality measures. Hence for each scene the city-block
distance was used as a measure of proximity that indicates the relationship between the
predictions of the four quality measures. This resulted in a 4x4 distance matrix per scene.
Finally, for each scene this 4x4 distance matrix was summed and from each cluster the scene
with the maximum summed distance was chosen. The three scenes and their position in
the hierarchical cluster tree are shown in figure 5.3. The selected scenes will be referred to
as roses, boat and museum.

The selected scenes indeed express the difference within and between the quality measures
as is shown in figure 5.5. This figure demonstrates for each selected quality measure the
predictions for the JPEG coded versions of the three scenes. The predictions were scaled
between 0 and 1. A value of zero indicates that the JPEG coded image is of similar quality
as the original one. The worst image quality is represented by 1. The quality measures pre-
dict the image quality for the three scenes differently. For the measures shub95 and sper95
(top panels in figure 5.5) the scene boat has the lowest image quality compared to the scenes
museum and roses. However, this in contrast to the measure sarnoff-s, bottom right, which
predicts the image quality in reversed order. This measure does not differentiate in qual-
ity between the scenes boat and museum. The measure gdcor predicts the images quality
again differently. The scene museum is predicted as the image with the lowest quality and
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S129#
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Figure 5.3: Hierarchical cluster tree of scenes obtained for 164 scenes. The cluster
tree is derived from the predictions of four quality measure. Each measure was
applied on six JPEG-coded versions of the 164 scenes. The three selected scenes
and their positions in the tree are shown on the left side.
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Figure 5.4: The number of scene clusters versus the distance in the hierarchical
cluster tree. A major increase in the distance occurs if the number of scene clusters
is reduced to three or less.

the scenes roses and boat are predicted to have a similar higher quality. Since not all mea-
sures agreed upon the predicted image quality, they cannot all predict the perceived image
quality of JPEG coded images.

5.3 Experiment 1: attribute scaling within a scene

The distortions perceived in JPEG coded images are blockiness, ringing and blur. In Chap-
ter 4 it was shown that the strength of these distortions are linearly related and that the
perceived image quality can be modeled by one of these attributes.

A different conclusion concerning the relation between the three distortions was reached
by de Ridder and Willemsen (2000). He used numerical categorical scaling and percentage
scaling to investigate the contribution of these three distortions to the overall image qual-
ity. This paper indicated that the relation between the attributes depends on the degree of
impairment. For high quality images the attributes seem indeed linearly related. For low
quality images the relation between the attribute strengths was different. In this case the
perceived ringing strength seemed to saturate for low quality images while the blockiness
and blur strengths still increased.

In Chapter 4, the observers judged the perceived strength of the attribute ringing only
for medium to high quality images (

� ��� : � < ��� ). Therefore in this section an additional
experiment was carried out to investigate if the attributes blockiness, blurring and ringing
are also linearly related for low quality images. The following hypothesis was tested:

For low quality JPEG images the strength of ringing saturates and is not linearly related to
the strength of blockiness and blurring.
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Figure 5.5: The quality predictions of four different measures as a function of the
Q-parameter used to code the three images. On the y-axis the quality predictions
are a distance between the original image and a JPEG coded version of it. Each
graph represents one of the selected quality measures. Top left: shub95, top right:
sper95, bottom left: gdcor and bottom right: sarnoff-s. For each quality measure
the ranges of predictions for at least two scenes are different. Differences can also
be noticed between the predictions of different quality measures. For instance, in
the case of the quality measures shub95 and sper95, the scenes roses and museum
are of better image quality than the scene boat. This is in contrast to the predictions
of the quality measures gdcor and sarnoff-s.
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5. Evaluation of instrumental quality measures

5.3.1 Stimulus set

For each of the three scenes selected in the previous section four different JPEG coded ver-
sions with Q-parameters of 15, 25, 40 and 60 were used. For each scene the four coded ver-
sions and the original image were combined into 10 unique image pairs. Each image pair
contained two images of the same scene. The image pairs were formed such that each JPEG
coded version of a scene was compared once with all other JPEG coded versions of the same
scene.

5.3.2 Procedure

The experiment consisted of four sessions. In each session 6 subjects participated. In each
session the subjects were asked to judge a different attribute. The judged attributes were:
quality, blockiness, ringing and blur. The same six observers participated in all sessions.
The observers were seated at a distance of 0.80 cm from a BARCO monitor in a dimly lit
room. The two images of an image pair were shown simultaneously on the screen, one on
the right hand side of the screen and one on the left hand side of the screen. In total 30
judgements were obtained.

In each session the subjects were asked to rate the difference in attribute strength between
two images on a discrete numerical categorical scale from 0 up to 4. A zero indicated that
the observer perceived no difference between the two images. The largest perceived differ-
ence should be rated 4. The sign indicated the image with the highest quality or the largest
amount of blockiness, blurring or ringing.

The following description of the attributes blockiness, blurring and ringing were given to
the observers (Yeun and Wu, 1998):

� Blockiness are visible discontinuities between the boundaries of adjacent blocks.
This is perceived as horizontal and vertical edges in an image.

� Blurring manifests itself as a loss of spatial detail and a reduction in sharpness of
edges.

� Ringing is most evident along high contrast edges in areas of generally smooth tex-
ture. It appears as a shimmering or rippling outwards from the edge up to the en-
compassing block’s boundary.

At the end of each session the subjects were asked to circle, on a printed version of the
scenes, those locations they specifically looked at to judge the perceived quality or amount
of blockiness, blurring or ringing.

5.3.3 Results and discussion

In Chapter 3 it has been shown that observers tend to use separate quality rating scales for
each scene due to the differences in scene content. If subjects use separate rating scales for
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5.3. Experiment 1: attribute scaling within a scene

Table 5.1: Experiment 1: for each scene the squared Pearson correlation coeffi-
cients, ( ��# ), between the quality judgements and the blockiness, blurring and ring-
ing judgements are given.

blockiness blurring ringing
roses quality 0.97 0.96 0.96
boat quality 0.98 0.99 0.98
museum quality 0.94 0.98 0.98

each scene this implies that the quality judgements are not linked across scenes with the
result that the perceived image quality of the different scenes is not comparable. For that
reason in this section the quality data are analyzed for each scene separately. The judged
quality differences are transformed into quality scale values on an interval scale by means
of the program DifScal (Boschman, 2001). We assume that the observers use the categories
on the quality and impairment scale in the same way. Hence the data is pooled over all
six subjects. Per scene this results in a stimulus configuration with a quality scale value for
each JPEG coded version and the original. The same analysis is performed for the attributes
blockiness, blurring and ringing.

Figure 5.6 shows the DifScal scale values of the three scenes for each attribute separately.
The scale values of the scenes boat and museum are linearly transformed such that the
summed squared error between each scene’s scale values and those of the scene roses is
minimized. For each scene the perceived quality decreases with decreasing Q-parameter.
The perceived image quality is linearly related across scenes. Also the attribute strengths of
blockiness, blurring and ringing are linearly related across scenes. All attribute strengths
increase with decreasing Q-parameter. Evidently the perceived ringing does not saturate
for low-quality images (Q15 and Q25) but the data show a tendency that for low Q-values
perceived ringing increases less steeply than perceived blockiness and blurring.

In figure 5.7 the quality, blockiness, blurring and ringing scale values are shown for each
scene separately. The scale values of the attributes: blockiness, blurring and ringing were
linearly transformed such that the summed squared distances between each attribute’s
scale values and the quality scale values is minimized. Due to this the sign of the attribute
strengths is reversed. For each scene the attribute strengths are linearly related to the per-
ceived image quality. The squared Pearson correlation coefficients, � # , between the per-
ceived image quality and the attribute strengths are given in Table 5.1.

The subjects circled on a printed version of the three scenes the location they looked at to
judge the quality, blockiness, blurring and ringing differences. In figure 5.8 the regions sub-
jects looked at to judge the perceived image quality are marked by circles. At each location
used for the image quality judgements also the number of subjects that judged blockiness,
blurring and ringing are given. For instance, in the scene Roses three overall regions are
indicated that were used to judge the image quality. One of these locations is the back-
ground. Five subjects judged also the blockiness strength at the background. This figure
shows that the locations used to judge the image quality were also considered when the
subjects judged the three attributes separately.
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Figure 5.6: The quality (top left), blockiness (top right), blurring (bottom left), and
ringing (bottom right) DifScal scale values as a function of the JPEG Q-parameter
used to code the three scenes roses, boat and museum. The image quality of all three
scenes are linearly related. This holds also for the attributes blockiness, blurring
and ringing.
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Figure 5.7: The quality, blockiness, blurring, and ringing DifScal scale values as
a function of the JPEG Q-parameter used to code the three scenes roses (top left),
boat (top right) and museum (bottom left). The distortion strength of the attributes
blockiness, blurring and ringing are linearly related to quality for each scene. The
strength of the attribute ringing does not saturate for low quality JPEG images
(Q25 and Q15). In all panels a linear transform is applied on the perceived at-
tribute strengths. The sign of the judged attributes strengths is reversed.

111



5. Evaluation of instrumental quality measures

Figure 5.8: The subjects indicated for each scene the locations they looked at to
judge the image quality, blockiness, blurring and ringing differences. In each
scene the locations of image quality are pointed out by circles. For each region
the number of subjects who observed also a particular attribute are given.

In Chapter 4 it was shown in two separate experiments that the attribute pairs blockiness
and blur are linearly related as well as are blockiness and ringing. In the experiment de-
scribed in the present section the stimulus set contained different scenes and was expanded
with low quality images. Also for this stimulus set the results are in line with those of Chap-
ter 4. Therefore the image quality of JPEG coded images can be predicted in one dimension
even though distinct distortions are perceived.

The JPEG-coded images were created with the default quantization table of JPEG. This
implies that the impairment strength is controlled by a single parameter. For within-
scene comparisons it is therefore expected that the attribute strengths correlate highly.
In the study of Willemsen (1997) an attempt was made to manipulate the three attribute
strengths separately. For that purpose the quantization matrix was altered. In such a
case the perceived image quality is still mainly determined by the perceived blockiness
strength (Willemsen, 1997). Based on these findings a measure that predicts the perceived
blockiness strength can also be a good indicator of the perceived image quality for images
that are not coded with JPEG’s default quantization table.

The conclusions reached for the ringing strength of low-quality images in the present sec-
tion differ from those obtained by de Ridder and Willemsen (2000) using percentage scaling
and single stimulus scaling. In the present section we used comparison scaling and ringing
does not saturate for low quality images. Possible reasons for this difference might be the
scaling technique, where comparison scaling is considered more sensitive than single stim-
ulus scaling as used by de Ridder and Willemsen (2000). Because of this the saturation of
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ringing could be a scaling artifact. On the other hand, the scene effect can not be neglected,
since the scenes in this chapter are different from those used by de Ridder and Willemsen
(2000). The authors used the same images child and girls as in Chapter 4, though also highly
impaired images were incorporated in the stimulus set.

Another consideration is that the attributes blockiness, ringing and blurring are difficult
to separate in JPEG coded images. They interfere and an indication of a low quality can
bias the ratings of the subjects. For instance if the quality decreases subjects know that the
distortions increase. Therefore it could be that the distortion strengths are highly linked
to quality. In the case of percentage scaling, subjects judge the overall image impairment
as well as the three attributes for each image at the same time. This can facilitate the task
of the observers to differentiate between the characteristics of the different distortions and
give a more accurate relation between the strength of different distortions.

5.4 Experiment 2: attribute scaling across scenes

In Chapter 4 as well as in experiment 1 of the present chapter we studied the relation be-
tween the distortion strengths and the image quality for each scene separately. This re-
sulted in the conclusions that the distortion strengths are linearly related and that therefore
a single attribute can be used to determine the image quality. However the linear relation
between the distortion strengths still leaves two undetermined variables, a scaling factor
and an offset. In this section we investigated whether these parameters are the same for
each scene or whether the relationship between the distinct distortions is scene dependent.

The results of Chapter 3 showed that subjects use separate quality rating scales if the scenes
are not compared explicitly. Therefore in the following experiment the subjects rated the
perceived quality differences also between two images containing different scene content.
Through this experimental design, the perceived quality was comparable across scenes and
the offset and scaling factor between the scenes could be determined. The same holds for
the attributes blockiness, blurring and ringing.

5.4.1 Stimulus set

The same JPEG coded versions of the scenes roses, boat and museum as in the first exper-
iment were used. The image pairs were formed such that the stimulus set also contained
two images of different scene content. Thus this set contained pairs of images with the same
scene content as well as images with different scene content. Each combination of two im-
ages with different scene content was included in the image set. However only six image
pairs with the same scene content but varying Q-parameter were selected, namely original
- Q60, original - Q25, Q60 - Q40, Q60 - Q15, Q40 - Q25 and, Q25 - Q15. In total the stimulus
set contained 93 unique image pairs.
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5. Evaluation of instrumental quality measures

Table 5.2: Experiment 2: for each scene separately as well as across scenes the
squared Pearson correlation, ��# , between the quality judgements and the block-
iness, blurring and ringing judgements is given.

blockiness blurring ringing
all scenes quality 0.95 0.94 0.97

blockiness 0.93 0.90
blurring 0.95

roses quality 0.97 0.92 0.98
boat quality 0.95 0.99 0.99
museum quality 0.93 0.98 0.97

5.4.2 Procedure

Again the same attributes were judged as in the first experiment, namely quality, blocki-
ness, blurring and ringing. Each attribute was judged in a separate session by six observers.
The two images of an image pair were shown simultaneously on the screen, one on the
right hand side of the screen and one on the left hand side of the screen. The observers
were asked to judge the difference in attribute strength between the images on a scale from
zero to four. If no difference was perceived they had to judge zero. The largest perceived
difference should be judged four.

5.4.3 Results

A DifScal analysis was performed for each attribute separately. In figure 5.9 the DifScal
scale values for quality, blockiness, blurring and ringing are shown for all three scenes sep-
arately. On the x-axis the JPEG Q-parameter is given and on the y-axis the DifScal scale
values. The DifScal scale values are scaled for each attribute between the values 0 and 1.
The best perceived image quality is mapped to 1 and the worst image quality to 0. In the
case of the judged attributes, the largest attribute strength is mapped to 1 and the smallest
strength to 0.

In the left panels of figure 5.10 the relationship between the DifScal quality scale values
and those of the three attributes blockiness, blurring and ringing is shown. In the right
panels of the same figure the three attributes are compared pairwise. For all panels the
regression line between the compared DifScal scale values is shown. The corresponding
squared Pearson correlation coefficients, � # , are given in Table 5.2.

Figures 5.9 and 5.10 show that the attribute strengths correlate highly with the perceived
image quality. As in the results of section 5.3 there is a tendency for the attribute ringing to
grow less steep at low quality values than the attributes blockiness and blurring. Neverthe-
less, in a first approximation the perceived image quality depends linearly on its underly-
ing attributes: blockiness, blurring and ringing for each scene. The results substantiate the
conclusions of Chapter 4 and experiment 1, namely that the image quality can be predicted
by the strength of a single attribute.
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Figure 5.9 is comparable to figure 5.6 in the previous section though more variation in the
data can be observed in figure 5.9. This figure reveals that the scale use for the scene Roses is
slightly different from that for the scenes Boat and Museum. The perceived quality range of
the scene Roses is larger and for instance the version compressed at Q60 is judged to have
similar quality as the scenes Boat and Museum compressed at Q40. Scene differences can
also be noticed for the judged blockiness strength. Again the perceived blockiness is larger
in the scene Roses. Less pronounced scene differences can be observed for the attributes
blurring and ringing.

5.5 Performance of instrumental quality measures

The experimental quality data of sections 5.3 and 5.4 will be used to evaluate the four se-
lected instrumental quality measures of section 5.2.1 (shub95, sper95, gdcor and sarnoff-s).
In section 5.5.1 the data of experiment 1 are used to study the performance of each measure
within a scene. In section 5.5.2 the quality predictions are assumed to be scene indepen-
dent and are compared with the perceived image quality obtained in experiment 2. Finally
in section 5.5.3 the influence of the scenes in the stimulus set on the evaluation is demon-
strated.

5.5.1 Performance within a scene

The model predictions for the four selected quality models are compared to the subjective
data of experiment 1. Each quality measure should at least predict the difference in quality
between the various JPEG coded versions within each scene. In figure 5.11 the predictions
of each quality measure as well as the perceived quality are scaled between 0 and 1 for each
scene separately. The best perceived and predicted quality is scaled to 1 and the worst qual-
ity to 0. For each scene the linear regression line is shown between these predicted values
and the subjective quality data of the first experiment.

Figure 5.11 shows that all instrumental quality measures predict the rank-order of quality
degradations within a scene correctly (Spearman rho = 1). In addition three of the mea-
sures (sper95, gdcor, sarnoff-s) also show a good linear relation between the predicted and
perceived image quality, indicated by the ��# values in each panel. In the predictions of the
measure shub95, see top row in figure 5.11, the difference between the predicted image qual-
ity of the original and the JPEG coded versions is too large. This results in a poor correlation
between the quality predictions and the perceived image quality. This measure is highly
sensitive for images that do not differ much from the original but hardly differentiates be-
tween the JPEG images in this stimulus set.

So far the quality predictions have been analyzed for each scene separately. Therefore, it
remains unclear whether the instrumental quality measures predict the image quality on
an absolute scale. This is considered in the following section using the subjective data of
experiment 2 which includes explicit comparisons across scenes.
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Figure 5.9: The quality (top left), blockiness (top right), blurring (bottom left), and
ringing (bottom right) DifScal scale values as a function of the JPEG Q-parameter
used to code the three scenes roses, boat and museum. The perceived image quality
and the attribute strength were judged across scenes. The quality and the attribute
strength are given in separate graphs. The JPEG compression levels, Q-parameter,
are given on the x-axis and the subjective scale values on the y-axis.
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Figure 5.10: The results of the second experiment. The left side panels show the
perceived image quality versus the three attributes blockiness, blurring and ring-
ing. The right side panels show the relation between the three attributes.
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Figure 5.11: The correlation between the quality predictions and the subjective
quality data per scene. The predicted quality is given on the x-axis and the per-
ceived quality on the y-axis. Each row shows the results of a particular quality
measure, from top to bottom these are shub95, sper95, gdcor and sarnoff-s. The
scenes are shown in the columns, from left to right roses, boat, and museum. In each
graph the regression line between the predicted quality and the perceived quality
is drawn.
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5.5.2 Performance across selected scenes

The model predictions for the four selected quality models are compared to the subjective
data of experiment 2 in figure 5.12. The predictions are normalized across scenes in the
range from 0 to 1. The best perceived and predicted quality is scaled to 1 and the worst
quality to 0.

An instrumental quality measure is suitable if it can predict the perceived image quality
across scenes. In such a case the quality predictions scale is an absolute scale that is scene
independent. First of all, the meaning of the value ”one” on the quality prediction scales is
the same for all scenes and all measures. This is due to the fact that the predicted quality
of an original scene is always one (the best quality is transformed to one). Compared to
the perceived image quality this assumption of the instrumental image quality measures
is reasonable. The perceived image quality of the original of each scene differs slightly but
overall their quality difference is small and does not extend to the next level of a JPEG coded
version.

Although the predicted image quality is calculated as a dissimilarity with respect to the
original it should not be a problem conceptually to obtain quality predictions across scenes.
Figure 5.12 shows, however, that the correlation between the predicted and perceived im-
age quality is poor for all measures. The graphs show that for each measure the image
quality is predicted incorrectly for at least one scene. Especially the measures shub95 and
sper95 show a large deviation between predicted and perceived image quality for all three
scenes. For the measures gdcor and sarnoff-s mainly one scene causes the poor correlation.

The measure shub95 shows the same problem as in the previous section, that is the step on
the scale from the original to the first level of JPEG coding is too large.

If we consider the predicted quality differences across measures the following can be no-
ticed. The measures shub95 and sper95 have the same fault in their predictions. The scenes
are predicted in the same order even though the differences between scenes is smaller in
shub95. The quality of the scene roses is predicted as the best, then the scene museum and as
worst quality the scene boat. Even though perceptually the quality differences between the
scenes are small, the various JPEG coded versions of the scene roses were judged of lower
quality than those of the scenes museum and boat. However the quality predictions show
the opposite. Only in the case of the HVS measure sarnoff-s the scene roses is predicted as
the scene that suffers most from the JPEG coding artifacts although the quality differences
between the scenes are exaggerated.

5.5.3 Performance across scenes in general

In the previous section it has been shown that the evaluated quality measures do not predict
the perceived image quality across scenes. In this section we will show that not each set
of scenes can reveal the difference in performance within and between quality measures.
In Chapter 2 we introduced a selection procedure and applied it to obtain the scenes that
were used in the experiments of the present chapter. Now let us consider the scenes used in
Chapter 3, where different selection criteria were used. These scenes, referred to as scenes in
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Figure 5.12: The correlation between the quality predictions and the subjective
quality data across scenes. The predicted quality is given on the x-axis and the
perceived quality on the y-axis. In each graph the regression line between the pre-
dicted quality and the perceived quality is drawn.
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Table 5.3: The squared Pearson correlation coefficients, � # , between subjective
quality judgements and the predictions for the two image sets.

shub95 sper95 rmse gdcor sarnoff-s sarnoff
selected scenes:
roses,
boat, 0.54 0.20 0.19 0.25 0.33 0.45
museum
scenes in general:
photographer,
country-road, 0.50 0.73 0.76 0.61 0.39 0.65
shopping-street,
woman

general, were selected such that different image characteristics were incorporated. We will
investigate whether these scenes chosen on the basis of their scene content and criticality,
which is their expected degree of difficulty of coding, can differentiate within and between
the quality measures (Yuyama et al., 1998). The positions of these scenes in the cluster tree as
obtained in section 5.2.2 are given in figure 5.13. As can be seen the four scenes are divided
across two clusters. Three scenes belong to the same cluster and therefore they should not
discriminate well within and between the instrumental quality measures.

The image quality predictions of these four scenes together with the selected scenes as used
in the previous sections are normalized for each of the four quality measures. Figure 5.14
shows that the predictions of the scenes in general, country-road, woman, photographer and
shopping-street, indeed differentiate less within and between the measures than the selected
scenes roses, boat and museum.

The predictions of the algorithms for the scenes country-road, woman, photographer and
shopping-street versus the subjective quality judgements of Chapter 3 are given in figure 5.15.
For these four scenes the quality measures perform similar or better if we compare the re-
sults to those obtained for the selected scenes in the previous section. A summary of the
squared Pearson correlation coefficients ��# is given in Table 5.3. The measures predict the
image quality fairly well if scenes from the same cluster are used. Especially the measures
sper95 and gdcor perform much better for these scenes. This shows that the performance
of instrumental quality measures depends on the used scenes. Therefore, one should be
careful in generalizing the results if instrumental measures are evaluated for a small image
set.

5.6 Performance of the single-ended blockiness measure

In Chapter 4 we introduced a single-ended measure to predict the perceived blockiness. The
performance of this measure was tested for four scenes. Per scene, it was shown that the
blockiness predictions correlate highly with the perceived blockiness and that using a large
image set for a great number of scenes the blockiness was predicted monotonically for 133
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Figure 5.13: The location of the four scenes in general in the hierarchical scene
cluster tree. Three scenes are members of cluster 2.

122



5.6. Performance of the single-ended blockiness measure

Q15 Q20 Q25 Q30 Q40 Q60 ORG
0

0.2

0.4

0.6

0.8

1
shub95   

JPEG Q−parameter

Q
ua

lit
y 

pr
ed

ic
tio

ns

Roses          
Boat           
Museum         
Photographer   
Country−road   
Shopping−street
Woman          

Q15 Q20 Q25 Q30 Q40 Q60 ORG
0

0.2

0.4

0.6

0.8

1
sper95   

JPEG Q−parameter

Q
ua

lit
y 

pr
ed

ic
tio

ns

Q15 Q20 Q25 Q30 Q40 Q60 ORG
0

0.2

0.4

0.6

0.8

1
gdcor    

JPEG Q−parameter

Q
ua

lit
y 

pr
ed

ic
tio

ns

Q15 Q20 Q25 Q30 Q40 Q60 ORG
0

0.2

0.4

0.6

0.8

1
sarnoff−s

JPEG Q−parameter

Q
ua

lit
y 

pr
ed

ic
tio

ns

Figure 5.14: Quality predictions of four quality measures for seven scenes coded
at various JPEG levels. The scenes photographer, country-road, shopping-street and
woman, were used in the experiments of Chapter 3. They were chosen on the ba-
sis of their scene content and criticality. The scenes roses, boat and museum were
selected by objective selection criteria such that they discriminate within and be-
tween the instrumental quality measures.
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Figure 5.15: The correlation between the quality predictions and the subjective
quality data across four scenes in general. The predicted quality is given on the
x-axis and the perceived quality on the y-axis. In each graph the regression line
between the predicted quality and the perceived quality is drawn.
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Figure 5.16: The correlation between the predicted blockiness and the perceived
blockiness across scenes. The normalized blockiness predictions using the single-
ended blockiness measure are given on the x-axis. On the y-axis the DifScal block-
iness scale values obtained for across-scene judgements are given.

out of 164 scenes. In this section the performance of the single-ended blockiness measure
is tested for a stronger assumption namely that the blockiness scale is an absolute scale and
is therefore independent of the scene content. This implies that the blockiness predictions
are linked across scenes and should correlate highly with the perceived across-scene block-
iness. This assumption is tested by means of the subjective data obtained in section 5.4.

Blockiness predictions were obtained for three scenes: roses, boat and museum. The scene
roses is one of the 21 scenes that were not predicted monotonically in Chapter 4. For each
scene the original image and 4 JPEG coded versions (with a Q-parameter of 15, 25, 40 and
60) were used. The blockiness predictions were normalized across scenes in the range from
0 to 1. The highest predicted blockiness was scaled to 1 and the lowest blockiness to 0.
These normalized blockiness predictions were compared to the across-scenes blockiness
judgements of section 5.4. Figure 5.16 shows that the predicted blockiness correlates quite
well with the perceived blockiness ( ��# �&�! ��%

).

In section 5.4 it was shown that for across-scene judgements the perceived image quality
correlates highly with the perceived blockiness strengths. We can now even go a step fur-
ther by combining the two observations for across-scene judgements: 1) the perceived and
predicted blockiness correlate quite well and 2) perceived blockiness strength and image
quality correlate highly. Therefore the single-ended blockiness measure should be able to
predict image quality across scenes for sequential baseline coded JPEG images.

Two sets of subjective quality data are used to test this expectation. The first set comprises
quality judgements for the scenes: roses, boat, and museum (see section 5.5.2). The second
set consisted of the quality judgements as used in section 5.5.3 for the scenes: country-road,
photographer, shopping-street and woman. The two panels in figure 5.17 show the relation
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Figure 5.17: Across quality judgements are compared to the predicted blockiness
for two different image sets: (a) roses, boat and museum from Chapter 5 and (b)
scenes in general: photographer, country-road, shopping-street and woman from Chap-
ter 3.

between the predicted blockiness and the judged image quality for these two stimulus sets.
In both cases the predicted blockiness correlates highly with the perceived image quality.
Evidently, for both image sets the single-ended blockiness measure performs significantly
better than the instrumental quality models tested in section 5.5.2.

5.7 Stimulus configuration based on quality predictions and exper-
imental data

In section 5.5.2 it was shown that the double-ended instrumental quality measures: gdcor,
sper95, shub95 and sarnoff-s, do not predict the quality of JPEG coded images on an ab-
solute quality scale. For the three scenes roses, boat and museum, the predictions of these
four instrumental measures correlate poorly with the subjective quality judgements, while
the single-ended blockiness measure led to better agreement. It seems that this measure
predicts the image quality of JPEG coded images on an absolute quality scale.

In this section, the performance of instrumental quality measures on an absolute quality
scale is visualized by means of an MDS stimulus configuration. For that purpose the pre-
dictions of 67 double-ended instrumental quality measures (section 5.2.1) and the single-
ended blockiness measure are compared to the judged image quality of the three scenes
roses, boat and museum. Such a stimulus configuration can give a better understanding of
the differences between the predicted image quality and the perceived image quality. The
configuration will also show whether these three scenes actually differentiate between the
instrumental quality measures.
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The predictions of the 67 double-ended instrumental quality measures as well as the single-
ended blockiness measure were normalized across the three scenes roses, boat and museum.
The predictions were standardized by normalizing for each measure the overall RMSE to
unity. The DifScal stimulus scale values of section 5.4 were used as a representation of an
average human observer. The DifScal scale values were transformed such that the image
with the best image quality was scaled to zero. The resulting transformed predictions were
normalized by dividing each prediction by the RMSE taken across all DifScal scale values
of the three scenes.

In the same way as in Chapter 2 and section 5.2.1 a distance was calculated between each
of the instrumental measures as well as between the measures and the average human ob-
server by means of the inner product correlation. This dissimilarity matrix was fed into the
MDS program xgms and the resulting two-dimensional stimulus configuration is shown in
figure 5.18.

In this configuration the double-ended vision model, CCETT, is most similar to an aver-
age human observer. Also the predictions obtained by the single-ended blockiness mea-
sure lie close to the perceived image quality. This figure also substantiates the fact that
the double-ended instrumental measures: gdcor, sper95, shub95 and sarnoff-s, correlate
poorly with the perceived image quality. The locations of these measures cover the first di-
mension which indicates that the three selected scenes indeed discriminate between these
four instrumental measures.

5.8 Conclusions

Throughout all experiments described in this chapter it is evident that even though dif-
ferent distortions are visible in sequential baseline coded JPEG images, their strengths are
linearly related. Moreover, the perceived attribute strenghts are linearly related to the per-
ceived image quality. This holds for within-scene as well as for across-scene judgements.
Therefore image quality for sequential baseline coded JPEG images can be modeled by a
single attribute.

Secondly, the performance of a number of quality measures was evaluated by means of
within-scene and across-scene quality judgements. It can be concluded that most measures
can predict the image quality of JPEG coded versions of the same scene. A stronger as-
sumption namely that these measures predict image quality on an absolute quality scale is
a requirement that most measures cannot cope with. The evaluation revealed that the qual-
ity predictions of most measures correlate poorly with across-scene quality judgements. In
terms of an absolute quality scale, it can be concluded that the single-ended blockiness mea-
sure performs best.

We also compared the results for two image sets that were used to evaluate instrumental
quality measures. Each set of scenes was selected by a different criterion. For the first set,
scenes were selected which discriminate optimally within and between instrumental qual-
ity measures. For the second image set (scenes in general), scenes were selected on the basis
of their coding criticality or merely difference in scene content. The former set of images
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Figure 5.18: Two dimensional stimulus configuration of 67 double-ended instru-
mental quality measures, the single-ended blockiness measure and the average
human observer. This configuration is obtained by xgms on the basis of qual-
ity predictions and judgements for the 3 scenes roses, boat and museum. The five
symbols at the top of the legend show characterize the average human observer,
the single-ended blockiness measure and the three vision models. The remaining
16x4 instrumental quality measures are represented by 16 sets of 4 symbols that
are connected by lines. The measures applying the 16 different combination rules
and: 1) a gray-scale-to-luminance transformation; 2) a gray-scale-to-luminance
transformation together with ,.-�/10�2 filtering, I ; 3) neither gray-scale-to-luminance
transformation nor ,.-�/10�2 filtering, � ; 4) ,.-�/10�2 filtering only, � . All instrumental
quality measures within the dashed circle have the same or a better performance
as the single-ended blockiness measure.
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5.8. Conclusions

is a more critical test case than the latter. It could be shown that scenes which discrimi-
nate within and between instrumental quality measures indeed reveal the differences in
performance of the objective quality measures. Scenes in general, which are selected by an
intuitive criterion, are less suited to test the performance of all instrumental quality mea-
sures.
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Chapter 6

Epilogue

During recent years, a number of image quality measures has been proposed (Lubin, 1993;
van den Branden Lambrecht, 1996; Kayargadde and Martens, 1996c,d; Daly, 1993; Eski-
cioglu and Fisher, 1995). Though the performance of most measures is tested by means
of subjective quality judgements no measure can be pointed out that has a clear advan-
tage (Ahumada, 1993). The main reason for this is that the measures are rarely com-
pared using the same image set and corresponding subjective quality judgements. Joint-
collaboratives are formed to define public databases of images and quality judgements
such that the instrumental measures can be tested with the same material (Corriveau et al.,
2000; Carney et al., 2000). This is a very useful approach to standardize an image quality
measure. In relation to this work we attempted to enhance our understanding of how qual-
ity judgments and the predicted quality can be used to discriminate between instrumental
quality measures.

The work in this thesis mainly focussed on two topics. First of all, if instrumental image
quality measures are used as a substitute for human observers, the measures should not
only predict the image quality of one particular type of impairment but also across various
impairments. By the same reasoning quality measures should also predict the image qual-
ity across a wide range of scene contents. This issue was covered in detail in the Chapters 2,
3 and 5. Secondly, in every day situations (e.g. TV watching) human observers judge im-
paired images in the absence of an unimpaired original. Thus, the second topic of this thesis
was whether image quality can be deduced from the impaired image only. For sequential
baseline coded JPEG images, a single-ended blockiness measure was proposed which out-
performs the quality predictions of a particular group of double-ended measures (Chapters
4 and 5).

As mentioned above instrumental quality measures are intended as a substitute for human
observers. In that sense the performance of such measures is evaluated by means of sub-
jective quality judgements. Therefore it is important to realize that quality judgements de-
pend on the assessment technique used, including presentation of the material, the images
and the task imposed on the observers. From the literature it is known that image quality
judgements can be affected by the experimental procedure (de Ridder and Willemsen, 2000;
van Dijk and Martens, 1996; ITU-R-JWP10-11Q, 1998). In Chapter 3 we continue the work
started by van Dijk and Martens (1996) who showed that single-stimulus scaling leads to
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biased results when compression algorithms are tested that introduce different types of
impairment. They argued that in single-stimulus scaling separate quality scales are used
when observers can identify the different impairment types of each coder. They demon-
strated that with stimulus-comparison scaling this problem can be solved since differently
compressed images can be compared explicitly and therefore observers are forced to link
the quality judgements across impairment types.

In Chapter 3 we continued along these lines for stimulus-comparison scaling without and
with explicitly comparing different impairment types. Two experiments were carried out
with stimulus sets containing different impairment types introduced by wavelet-coding,
DCTune, JPEG and low-pass filtering. In each experiment a single scene was impaired by
these four processing methods. For one scene the observers seem to rate the perceived im-
age quality on a single rating scale whereas for the second scene these findings could not be
substantiated. This is probably due to the fact that in the second scene the quality ranges of
the differently impaired images are not dissimilar enough. We elaborated on the idea that
in stimulus-comparison scaling observers use separate rating scales for identifiable classes,
if these classes are not compared explicitly, by using scene content as such classes. In this
case subjects seem to use a separate quality scale if images with different scene content
are not compared explicitly. This was demonstrated for wavelet- and JPEG-coded images.
Further research is needed to substantiate these findings and test whether current qual-
ity assessment techniques are suited to obtain quality judgements across scenes and across
impairment types. Based on the results described in Chapter 3 we recommend that instru-
mental quality measures are best evaluated by means of subjective quality judgements ob-
tained through explicitly comparing different impairment types and different scenes. This
method can serve to differentiate better between instrumental quality measures and can
form an addition to the currently used evaluation techniques (ITU-R-500-7, 1997).

Instrumental quality measures are usually classified according to the differences in their
performance (Fuhrmann et al., 1995). Instead of following this widely accepted method,
we investigated in Chapter 2 whether the measures are essentially different or not. This ap-
proach does not require a judgement about the performance of the measures, and therefore
the classification is solely based on the measures’ predictions. Since the time-limitations
of subjective testing are not an issue in this procedure a large collection of images (con-
taining a wide range of impairment types and scene content) can be used. The procedure
was demonstrated by classifying a particular group of 67 instrumental quality measures.
From this set of instrumental quality measures basically six clusters can be identified that
were essentially different in their quality predictions for a large image set. The proposed
technique is very helpful in visualizing the difference between quality measures. More-
over, such a classification can contribute to a better understanding of the added value of
enhanced or new measures without the necessity of performing subjective tests. We sug-
gest to only spend effort on gathering subjective data if it is known that a measure differs
from already existing ones. Otherwise the added value of such a measure is minor.

In Chapter 2 particular choices were made in relation to the used measure of proximity, in-
dicating the relationship from one instrumental quality measure to another, and the clus-
tering technique. The applied proximity measure (inner-product correlation) substantiates
the assumption that the predictions of instrumental quality measures are defined up to a
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scaling factor. Ward’s hierarchical clustering was used to obtain compact clusters of quality
measures. However, the inner-product correlation as well as Ward’s hierarchical clustering
influence the composition of the instrumental quality measures in a cluster. How the cho-
sen proximity measure and the used clustering technique affect the composition of quality
measures clusters should be investigated further.

Although a classification of instrumental quality measures on the basis of their quality pre-
dictions only can be used to differentiate between the quality measures, eventually their
performance has to be tested by means of subjective quality judgements. It is common
practice to use for that purpose a limited image set of, e.g., 3 or 4 scenes. Due to such a
limited number of scenes it is hard to generalize the outcome of an evaluation. Thus the
conflict exists between the need for a large image set in order to allow generalization, and
the restriction to a small set for practical reasons.

In Chapter 2 we described how a stimulus set can be chosen for subjective tests which re-
veals the differences between instrumental quality measures. The basic idea is that a stim-
ulus set is chosen on the basis of the following two criteria: 1) each instrumental quality
measure yields different results for the selected scenes and, 2) the selected scenes yield dif-
ferent results for instrumental quality measures. These selection criteria differ from those
commonly used to select scenes for subjective tests. The criteria described above use the
difference in predicted quality whereas usually the coding criticality of an image or the
difference in scene content is used to select scenes. Thus, when instrumental quality mea-
sures are evaluated by means of an image set that discriminates within and between the
measures, their usefulness is tested for a highly critical sample of images.

In Chapter 2 and Chapter 5 we used an initial image set of 164 scenes. The aim was to clus-
ter these scenes into groups that discriminate between quality measures and to select from
each cluster one scene that can be used in subjective tests. The obtained scene clusters were
also compared to a priori defined scene classes, but the relation between the identified clus-
ters and a priori defined scene content classes was weak. Further work is needed to identify
the image properties of those images that differentiate between instrumental quality mea-
sures. In Wolf and Webster (1997), for instance, a procedure is described to select scenes
for testing the quality of compressed video on the basis of their scene criticality. The scene
criticality is estimated from spatial and temporal information. It would be of interest to
see how well a priori defined criticality classes agree with the scene clusters obtained in
our analysis.

In Chapter 5 instrumental quality measures were evaluated for sequential baseline coded
JPEG images. A stimulus set was chosen such that quality judgements were obtained for
scenes that discriminate within and between the evaluated quality measures. The evalua-
tion showed that, per scene, most measures’ quality predictions correlate highly with the
perceived image quality. Furthermore, it was investigated whether the instrumental mea-
sures predict the image quality on an absolute scale which would enable them to compare
the image quality between different scenes. In this case the evaluation revealed that most
instrumental quality measures can not cope with this additional requirement. A second im-
age set (Chapter 3), chosen on the basis of different scene content, resulted in the same con-
clusion. Also in this case, most instrumental quality measures performed poorly for across-
scene quality predictions. However, in this case the correlation between the predicted and
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perceived image quality was slightly better. The same two image sets were also used to
evaluate the performance of the single-ended blockiness measure developed in Chapter 4.
In terms of an absolute quality scale it can be claimed that the single-ended blockiness mea-
sure performs best.

It is remarkable that the single-ended blockiness measure which works solely on an im-
paired image performed better than double-ended measures, which calculate a difference
between the impaired image and its original.

The development of a single-ended blockiness measure was inspired by the work of Ka-
yargadde and Martens (1996c,d). They developed single-ended measures based on the
Hermite transform to estimate the perceptual strength of noise and blur. In their study
both distortions were controlled independently and a stimulus set was used that was dis-
tributed uniformly across the perceptual space. In sequential baseline JPEG coded images
the underlying attributes of image quality are blockiness, ringing and blur. Although dif-
ferent distortions are visible the underlying psychological space of image quality is approx-
imately one dimensional. This is reflected in the fact that the perceived attribute strengths
are linearly related to the perceived image quality. This was substantiated by various psy-
chophysical experiments. The attribute strengths were measured by means of within-scene
judgements as well as for across-scene judgements. Both experiments clearly revealed the
linear relationship between the attributes and the perceived image quality. It should be
noted that the blockiness measure is expected to predict image quality only in the case that
images are coded with the default quantization matrix which is scaled by varying the Q-
parameter. This is the most common practice in JPEG coding. Further research is needed to
investigate the relationship between the attribute strengths and the perceived image qual-
ity if the quantization matrix is not simply scaled but if the quantization coefficients are ma-
nipulated separately. Moreover, in future work the predictions of the single ended blocki-
ness measure should be compared to existing measures as for example described by Libert
and Fenimore (1999) and Karunasekera and Kingsbury (1995).

Blockiness can be attributed especially to block-based DCT-coded images. However, to
generalize the single-ended blockiness measure into an overall quality measure additional
impairment types and their effects on the perceived image quality need to be investigated.
The results of this thesis show that the attempt to model perceived image quality by a
single-ended measure is promising, certainly if we consider the fact that the single-ended
blockiness measure is to a lesser degree scene dependent than other proposed measures.
Consequently this single-ended measure is robust enough to predict the image quality of
JPEG coded images on an absolute scale.
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Appendix A

The following pages show the 164 scenes used in Chapter 2 and Chapter 5 to classify instru-
mental quality measures on the basis of their quality predictions only. These scenes were
also used to select a small image set of, e.g. 3 scenes, for subjective testing. The properties
of such a stimulus set are that 1) each instrumental quality measure yields different results
for the scenes, and that 2) scenes yield different results for instrumental quality measures.
The usefulness of instrumental quality measures can then be ascertained from such a small,
well-chosen set of images. The same 164 scenes were used to select an appropriate combi-
nation rule for the single-ended blockiness measure of Chapter 4.
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Summary

The main aim of this thesis was to enhance our understanding of how human observers as-
sess image quality across scenes and impairment types and how such judgements and qual-
ity predictions can be used to discriminate between instrumental quality measures. The
second aim was to develop a single-ended instrumental blockiness measure for sequen-
tial baseline JPEG coded images that is robust enough to predict the image quality across
scenes.

In Chapter 2 we propose a procedure to classify instrumental quality measures on the basis
of their quality predictions only. We assumed that quality measures predict image quality
on a ratio scale and therefore that for each measure, the distances in predicted quality be-
tween different scenes are meaningful. Since time-limitations of subjective testing are not
an issue in this procedure a large collection of images could be used. A classification on the
basis of quality predictions cannot substitute subjective testing, yet it is a method that can
be used to compare newly developed measures with existing ones and that is very help-
ful in visualizing the differences between measures. The procedure was demonstrated by
classifying a particular set of 67 double-ended instrumental quality measures. From this
set six main clusters of quality measures could be identified that are essentially different
in their predictions for an image set containing 164 scenes processed by four methods. In
the same chapter it also demonstrated how scenes that discriminate between instrumental
quality measures can be selected for subjective tests. The properties of the image set are
that 1) each instrumental quality measure yields different results for the scenes, and that 2)
the scenes yield different results for the instrumental quality measures.

In Chapter 3 we showed that subjective quality judgements can be biased by the imposed
experimental procedure. The effect of stimulus presentation on the assessed image qual-
ity was investigated for a condition in which different classes (e.g. impairment types or
scenes) could be identified in a stimulus set. The question was whether human observers
link quality judgements across identifiable classes if they are not forced to compare these
classes explicitly. The results showed that in stimulus-comparison scaling subjects seemed
to use separate quality rating scales if images with different scene content were not com-
pared explicitly. This was tested for a stimulus set containing wavelet-coded images and
a stimulus set consisting of JPEG-coded images. Two experiments were also conducted
with stimulus sets containing different impairment types introduced by wavelet-coding,
DCTune-coding, JPEG and low-pass filtering. In each experiment a single scene was im-
paired by each of these four processing methods. For one scene the observers seemed to
judge the perceived image quality on a single rating scale whereas for the second scene
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these findings could not be substantiated. This is most probably due to the fact that in the
second scene, the quality-ranges of the distortions were not dissimilar enough. In general,
we may conclude that observers use separate quality scales for identifiable classes of stim-
uli if these are not compared explicitly.

In Chapter 4 a single-ended blockiness measure was developed for baseline sequential
JPEG-coded images. In this model the blockiness strengths are derived directly from the
JPEG-coded image, and thus the original is not required. The proposed measure is based on
detecting and estimating low-amplitude edges in the horizontal and the vertical directions
that are introduced by the JPEG coder. In spite of the fact that several distortions are visible
in JPEG-coded images (blockiness, ringing and blurring) it was shown that the strengths
of these distortions are linearly related to the perceived image quality. This was substan-
tiated by various psychophysical experiments. The attribute strengths were measured by
means of within-scene judgements as well as across-scene judgements. The experiments
revealed a linear relationship between the attributes strengths and the perceived image
quality. Therefore it is suggested that the single-ended instrumental blockiness measure
can also predict the image quality of sequential baseline coded JPEG images.

Finally, in Chapter 5 we applied the proposed method of Chapter 2 to classify a set of 67 in-
strumental quality measures on the basis of their predictions for sequential baseline coded
JPEG images. Four instrumental quality measures that predict the perceived image quality
differently were selected and their performance was tested by means of within-scene and
across-scenes quality judgements. Subjective quality ratings were obtained for two image
sets. One set was chosen on the basis of scene content and the other set consisted of scenes
that discriminated between the predictions of the quality measures. For most measures
the predicted quality of a single scene correlated highly with the perceived image qual-
ity. However, it was shown that most instrumental quality measures perform poorly for
across-scene quality predictions. The same subjective image quality judgements were used
to evaluate the performance of the single-ended blockiness measure. This single-ended
measure appeared to be to a lesser degree scene dependent and even seemed to outper-
form some double-ended measures.
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Samenvatting

Het hoofddoel van dit proefschrift is om beter te begrijpen hoe mensen de kwaliteit van
beelden beoordelen, tussen scènes en types van verstoringen, en hoe dergelijke beoordelin-
gen en kwaliteitsvoorspellingen gebruikt kunnen worden om onderscheid te maken tussen
instrumentele kwaliteitsmaten. Het tweede doel was het ontwikkelen van een single-ended
instrumentele maat om blockiness te voorspellen voor sequential baseline JPEG gecodeerde
beelden die robust genoeg is om de kwaliteit van beelden tussen scènes te voorspellen.

In hoofstuk 2 introduceren we een procedure om instrumentele kwaliteitsmaten te klassifi-
ceren op basis van hun kwaliteitsvoorspellingen. We stellen dat kwaliteitsmaten de beeld
kwaliteit op een ratio schaal voorspellen. Daarom is voor elke maat de afstand in voor-
spelde kwaliteit tussen verschillende scènes betekenisvol. Aangezien de tijdsbeperking
van een subjectieve test niet van belang is voor instrumentele maten, kon in deze procedure
een grote verzameling beelden gebruikt worden. Alhoewel de klassificatie op basis van
kwaliteitsvoorspellingen een subjectieve test niet kan vervangen is het een methode die ge-
bruikt kan worden om nieuwe maten met bestaande maten te vergelijken en die zeer nuttig
is voor het visualizeren van de verschillen tussen de verscheidene maten. De procedure
werd gedemonstreerd aan de hand van een specifieke set van 67 double-ended kwaliteits-
maten, dwz. een maat waarvoor zowel het gecodeerde beeld als het originele beeld nodig
zijn. Binnen deze set konden zes clusters van kwaliteitsmaten geı̈dentificeerd worden die
verschillen in hun voorspellingen voor een beeldset van 164 scènes bewerkt door vier be-
werkingsmethoden. In hetzelfde hoofdstuk demonstreren we hoe scènes, voor een sub-
jectieve test, geselecteerd kunnen worden die tussen kwaliteitsmaten discrimineren. De
eigenschappen van de set van beelden zijn zodanig dat 1) elke kwaliteitsmaat geeft ver-
schillende resultaten voor de scènes en 2) de scènes geven verschillende resultaten voor de
kwaliteitsmaten.

In hoofdstuk 3 laten we zien dat kwaliteitsbeoordelingen kunnen worden beı̈nvloed door
de gebruikte experimentele procedure. Het gevolg van de stimuluspresentatie op de
kwaliteitsbeoordelingen werd onderzocht voor een conditie waarbij verschillende klassen
(b.v. type van verstoring of scènes) geı̈dentificeerd kunnen worden in een stimulus set.
De vraag was of mensen kwaliteitsbeoordelingen koppelen tussen identificeerbare klassen
als ze niet expliciet gedwongen worden om deze klassen te vergelijken. De resultaten
laten zien dat in stimulus vergelijkingsschaling proefpersonen een aparte schaal gebruiken
als beelden met verschillende scènes niet expliciet vergeleken worden. Dit werd gevon-
den voor twee verschillende stimulus sets, één met wavelet gecodeerde beelden en één
met JPEG gecodeerde beelden. Ook werden er twee experimenten uitgevoerd met stim-
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ulus sets die verschillende type van verstoringen bevatten geintroduceert door wavelet-
codering, DCTune, JPEG en low-pass filtering. In elk experiment werd één enkele scène
verstoort door één van deze vier verwerkingsmethoden. Voor één scène lijken de proefper-
sonen de waargenomen beeldkwaliteit op één aparte schaal te beoordelen terwijl voor de
tweede scène deze bevindingen niet gestaafd konden worden. Dit is meest waarschijnlijk
het gevolg van het feit dat in de tweede scène de beeldkwaliteit, als gevolg van de verstorin-
gen, niet al te verschillend was. In het algemeen kunnen we concluderen dat de proefper-
sonen aparte kwaliteitsschalen voor identificeerbare klassen van stimuli gebruiken als deze
niet expliciet vergeleken worden.

In hoofdstuk 4 is een single-ended blockiness maat ontwikkeld voor sequential baseline JPEG
gecodeerde beelden. In dit model is de blockiness sterkte direkt uit het JPEG gecodeerde
beeld afgeleid en is een origineel beeld niet noodzakelijk. De voorgestelde maat is
gebaseerd op het detecteren en schatten van lage amplituderanden in horizontale en ver-
tikale richting die geintroduceerd worden door de JPEG coder. Ondanks het feit dat
verschillende verstoringen zichtbaar zijn in JPEG gecodeerde beelden (blockiness, ring-
ing en blurring) werd aangetoond dat de sterkte van deze verstoringen lineair is met de
waargenomen beeldkwaliteit. Dit werd onderbouwd door verschillende psychofysische
experimenten. De sterkte van de attributen werd gemeten aan de hand van beoordelingen
binnen een scène als ook aan de hand van beoordelingen tussen scènes. De experimenten
onthullen een lineair verband tussen de sterkte van de attributen en de waargenomen
beeldkwaliteit. Daarom wordt er voorgesteld dat de single-ended blockiness maat de beeld-
kwaliteit kan voorspellen van sequential baseline JPEG gecodeerde beelden.

Tot slot hebben we in hoofdstuk 5 de in hoofdstuk 2 voorgestelde methode gebruikt
om een set van 67 kwaliteitsmaten te klassificeren op basis van hun voorspellingen
voor sequential baseline JPEG gecodeerde beelden. Vier instrumentele kwaliteitsmaten die
de waargenomen beeldkwaliteit verschillend voorspellen werden geselecteerd en hun
prestatie werd getest door middel van kwaliteitsbeoordelingen binnen scènes en tussen
scènes. Subjectieve kwaliteitsoordelen werden verkregen voor twee sets van beelden: één
set werd gekozen op basis van beeldinhoud en de andere set bestond uit scènes die discri-
mineren tussen de voorspellingen van kwaliteitsmaten. Voor de meeste maten is er een
hoge correlatie tussen de voorspelde en de waargenomen kwaliteit van één enkele scène.
Echter, er werd aangetoond dat de meeste instrumentele kwaliteitsmaten slecht presteren
voor kwaliteitsvoorspellingen tussen scènes. Dezelfde subjectieve beoordeling van beeld-
kwaliteit werd gebruikt om de prestatie van de single-ended blockiness maat te beoordelen.
In feite lijkt deze single-ended maat in mindere mate afhankelijk van de scène inhoud en lijkt
zelfs beter te presteren dan de meeste double-ended maten.
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