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Introduction

In the last century the concepts of real analytic function and of infinitely differentiable
function have been introduced. It is well-known that each real analytic function is infinitely
differentiable, but the converse is clearly not true. Indeed, an infinitely differentiable
function f on IR is real analytic if and only if for all compact subsets K of IR there exist
constants C,1 > 0 such that

VnenoVsex [|f(2)] < Ct™nl] . | (L1)

So the space of all real analytic functions on IR is much smaller than the space of all
infinitely differentiable functions on IR. In 1918, Gevrey introduced a scale of spaces of
infinitely differentiable functions, which are not necessarily real analytic, now known as
Gevrey spaces. Roughly speaking, Gevrey replaced the factor n! in (I.1) by n!*, where A
is a fixed number greater than 1. ,

Here we present the definition of the Gevrey space £,(f2), where ( is an open subset of
IR and A > 1. For any compact subset K of §, the space Dy(K) consists of restrictions
to K of infinitely differentiable functions ¢ on 2 for which there exist constants C,t > 0
such that

Vieng¥eex [[(D} ... Dio)(z)| < CHHIji[P]. (1.2)

Here Dy, denotes the partial derivative with respect to the k-th coordinate and &} = 1, +
...+ 1g. Now £,(f) is the space of all infinitely differentiable functions ¢ on € such that
for every compact subset K of {1, the restriction of ¢ to K is an element of D)(K). For
A > 1, the space £,(12) has been introduced by Gevrey, [Gev]. The space & (Q) is just the
space of all real analytic functions on . ' '

Since |i|!* on the right hand side of (1.2) can be replaced by #;!* - ... - i41* without
changing the definition, we see that Gevrey treats the coordinates 2y, ..., z4 symmetrically.
Roumieu, [Rou], introduced Gevrey type spaces in which the coordinates are not treated
symmetrically. In fact, Roumieu considered spaces in which the factor |i|* in (1.2) is
replaced by i1 - ... . 4% where )y,...,\; are fixed numbers, which are not necessarily
the same. ] .

Another generalization of the spaces £,(§?) can be obtained by replacing Q by a real
analytic manifold M. Moreover, instead of complex valued functions, one may consider
functions which take their values in a Hilbert space H. An interesting situation occurs if

3



4 Preface

M is taken to be a Lie group G. Let 7 be a continuous (unitary) representation of G in
H. A vector u € H is called infinitely differentiable (resp. analytic) for # if and only if the
function & ~ m u from G into H is infinitely differentiable (resp. analytic). The space of
all infinitely differentiable vectors for 7 is dense in H. (See Garding, [Garl].) The space of
analytic vectors for 7 is also dense in H. This result has been proved by Nelson, {Nel] on
the basis of the following concept of analytic vector relative to a finite set of operators in
a Hilbert space. Let Ay,..., Aq be (possibly unbounded) operators in a Hilbert space H.
A vector u € H is an analytic vector relative to {A,,..., A4} if there exist C,¢ > 0 such
that for all n € IN and for all 44,...,4, € {1,...,d}:

u € D(Aj0...0A;)
and
A, 0...0 Aiul| < Ct™nl. ' (1.3)

Now given an arbitrary basis {Xi,...,X;} in the Lie algebra g of G, Nelson has proved
that the space of analytic vectors for the representation  is equal to the space of analytic
vectors relative to the set of operators {dﬂ'(Xl)y, ..., dn{Xq)}, where for each X € g the
operator dx(X) is the infinitesimal genefator of the one parameter group t = Texp(ix).
Moreover, the latter space is dense in H. '

Likewise, Gevrey vectors for a representation = of G and Gevrey vectors relative to a
finite set {Ay,..., A} of operators can be introduced (cf. Goodman and Wallach, [GW]),
by replacing the factor n! by n!* both in the definition of énalytic vectors for 7 and in
Nelson’s definition (1.3). V

As a special case we mention the Heisenberg group. Let @ be the operator of multi-
plication by the function z ~ z in L*(IR) and let D be the (skew-adjoint) differentiation
operator in LZ(IR). There exist a representation « of the Heisenberg group G in L*(IR) and
a basis X,Y, Z in the Lie algebra of 7 such that dn(X) = i@, dn(Y) = D and dn(Z) =
It turns out that the space of all infinitely differentiable vectors for 7 is equal to Schwartz’
space S(IR) which consists of all infinitely differentiable functions ¢ on IR which, together
with their derivatives, vanish faster than any polynomial at infinity, i.e.

Visen, [sup{lz*e®(z)] : z € R} < o).

Moreover, for all A > 1, one can see that the space of Gevrey vectors of order A relative
to {dr(X),dn(Y),dn(Z)} is equal to the Gelfand-Shilov space S}, which consists of all
infinitely differentiable functions  on IR for which there exist constants C;¢ > 0 such that

VaienVaer [le¥00(2)] < CHHHRAL].

Gelfand-Shilov spaces are defined more generally for all & > 0 and # > 0, so also for
0 <8 <1 and a# f. Indeed, for all o, 8 > 0 the Gelfand-Shilov space S? is defined as
the space of all infinitely differentiable functions ¢ on IR for which there exist constants
C,1 > 0 such that
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ViienoVeer |20 (2)] < CHFHRIPN]

In the definition of Gevrey vectors of order A relative to {A;,..., Az}, the operators
Ai,. .., Aq are treated in a symmetric way. Following Roumieu, in this thesis we introduce
the space Sy,,..2,(A1,-..,Aq) where Ay,..., Ay are operators in a Hilbert space H and
M,---yAd = 0. A vector u € H belongs to Sy,,.»,(A1,...,As) and is called a Gevrey
vector of order (My,...,Aq) relative to (Ay,...,Aq) if and only if there exist constants
C,t > 0 such that for all n € INg and 44,...,7, € {1,...,d}:

u€ D(A;,0...04;,)
and
|4 0... A u|| < Ct™ny1 .- ngthe

where ny := card{l € {1,...,n}: 4, =k}, with k € {1,...,d}. In Section 1.1 we introduce
a locally convex topology for the space Sy, ,(A1,...,A44). In Section 1.2 we examine
some topological properties: we characterize the bounded subsets, we present a condition
which implies that this space is complete and we consider continuous linear maps between
spaces of type Si,,.(A41,...,Aq). In Section 1.3 we investigate the space of analytic
vectors and Gevrey vectors for a unitary representation of a Lie group. We introduce the
space of weak Gevrey vectors of order A for # and we characterize its bounded subsets. In
Section 1.4 we consider Gevrey vectors relative to operators Aj,..., Ay, which commute
strongly, commute on a common domain or commute in another sense. In the particular
case that the operators A,,..., Ay are strongly commuting self-adjoint operators, it is
proved that the space Sy,,..2,(41,...,A4)is of type S, ¢, where Sy ¢ denotes the space of
smoothed vectors relative to a representation 7 of a locally compact Abelian group G and
a subset C of L}(G). A summary of the important definitions and theorems concerning
the space Sy ¢ is presented in Appendix B.
Every Gelfand-Shilov space S? is a Gevrey space of our type:

Sg = Sﬂ,ﬁ(Qa D)

Clearly S, (@, D) is contained in S,(@) and also S, (@, D) is contained in Sg(D). Thus
Sa,8(@; D) C S.(Q)N Sp(D). One might hope that the reverse inclusion is also valid. (Cf.
Hartogs’ theorem.) For all a, > 0 such that o + 8 > 1, Van Eijndhoven, [vE] has proved
that indeed

Sa,8(@, D) = 52(Q) N Sg(D)

as sets. Thus the following interesting problem comes up: Find conditions on Ay,..., A\
and A,,...,Ag such that

d
S)q,...,/\d(AI) [EEE) Ad) = n S/\k (Ak) _ (14)

k=1
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or
S«\hm»‘\d(‘Al? ey Ad) = Sf\hm,)\n(Al? RS ] An) N S)lu*j,...,,\d(An-l-la LEER Ad) (1-5)

for some n € {2,...,d — 1}. In Chapter 2 several mild conditions are presented such
that the equality (1.4) or (I.5) hold. For a summary of these conditions we refer to the
introduction of Chapter 2. '

In Chapter 3 we present a detailed study of some examples. We consider Gevrey
spaces relative to (dr(X1),...,dn(X4)), where 7 is a representation of a Lie group G and
X1,...,Xais a basis in the Lie algebra of G. In Section 3.1 we consider a classical infinite
dimensional representation of the Heisenberg group A(IR™) in L?*(IR™). The correspond-
ing Gevrey spaces are the Gelfand-Shilov spaces S%=#». For several combinations of
01,50, By . ., By we prove that S8-Fn is equal to the Gevrey space relative to a sin-
gle operator. In Section 3.2 we consider an irreducible representation of the ax + b group
in L*(IR). We determine all corresponding non-trivial Gevrey spaces and we show that
almost each of these non-trivial spaces is equal to the Gevrey space :elé,tive to a particular
self-adjoint operator. In the proofs, one of the intersection theorems of Chapter 2 plays an
essential role. Finally, in Section 3.3 we consider a non-irreducible representation of the
real unimodular group SL(2,1R) in L*(T). If A, X,Y is a suitable basis in sl(2,IR), we
show that the Gevrey space of order X relative to {dr(A),dr(X),dr(Y)} is equal to the
Gevrey space of order ) relative to dm(A). This type of reduction can be proved for gen-
eral semisimple Lie groups; they depend on the Casimir element in the complex universal
enveloping algebra of the semisimple Lie algebra. '
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Some notations

Let A be a set and let V be a subset of A. By A\v we denote the complement of V in
A,s0 A\y = {a € A:a ¢ V}. By 1y we denote the characteristic function of V, thus
lyv:A—- R
11 ifaeV
lv(a)—{ 0 ifadV (a € A).
Let f be a complex valued bounded function on A. Then ||f|lo := sup{|f(e)| : a € A}

For every set A we denote by I the identity map from A onto A. The entier function is
the function [ ] from IR into Z such that

[z] :=max{k e Z : k < z}

for all z € IR. IN is the set of positive integers, IN := {1,2,...} and INg := INU {0}. Let
n € Ny and A € [0,00). In order to avoid clutter we write

2!t i= (nh)>.

Let X be a topological space and let V be a subset of X. Then cloV = V denotes the
closure of V. Let f be a complex valued function on X. The support of f is suppf :=
cdo{z € X : f(z) # 0}. By CX) we denote the set of complex valued continuous
functions on X with compact support. Further, Cy(X) denotes the Banach space of all
complex valued continuous functions on X which vanish at infinity, i.e. for all € > 0 there
exists a compact subset K of X such that |f(z)| < € for all z € X\g. By C(X) we denote
the set of all complex valued continuous functions on X.

The abbreviation a.e. means almost everywhere with respect to some measure.

Let @ be a locally compact topological group with a (left) Haar measure . For z € G
and f € LYQ) we define L. f € L'(G) by

(Lef)y) := fa™'y) (ae.y €G).

Similarly we define L,f € L*(G) for all z € G and f € L*(). Let 7 be a (continuous
unitary) representation of G in a Hilbert space H. For f € L!(@) we denote by #(f) the
continuous operator on H such that

(*(Hu,v) = [ f(&)(mu, v)du(z)
G

for all u,v € H. Moreover, ||f||, denotes the norm of f and for g € L}(G) we denote by
[ » g the convolution of f and g. Now suppose G is Abelian. The dual group of G is G. By
f we denote the Fourier transform of f and by IF we denote the Fourier transform from
L*(G) onto L*((). We normalize the Haar measure A on IR such that A([0,1]) = 7= The
Haar measure on T is normalized to 1, the Haar measure on Z is the counting measure.
For y € IR define vy, : IR.— € by
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(@) =7 (z €TR).

We identify IR with IR via the map y — ~y Fork € Z define wy : T — € by -
wi(z) = 2+ (z € ).

We identify T with Z via the map k — w;.

Let G be a Lie group. We define its Lie algebra g by the tangent space at the identity
of G and the commutaior [X, Y] of two elements of g corresponds to the commutator of the
two corresponding left invariant vector fields on G. We denote by G the universal covering
group of a connected Lie group G. For the terminology of Lie groups we refer to Helgason,
[Hel] and Varadarajan, [Varl].

Let H be a Hilbert space. The inner product in H is denoted by (, ) and the norm
by || ||. Let T be a (not necessarily densely defined) operator from H into a Hilbert space.
Then D(T') denotes the domain of T and T denotes the elosure of T. If T is densely defined,
we denote by T* the adjoint of T. The operator T is called Hermitian if (Tz,y) = (2, Ty)
for all z,y € D(T). T is called symmetric if T is Hermitian and densely defined and T is
called self-adjoint if T is densely defined and T' = T™*. A symmetric operator T is essentially
self-adjoint if T is self-adjoint. The operator T is called skew-Hermitian, skew-symmetric,
essentially skew-adjoint and skew-adjoint if iT is Hermitian, symmetric, essentially self-
adjoint and self-adjoint.respectively. Let T be an injective linear map from H into H. We
complete the vector space T{H) with an inner product such that the map T from H onto
T(H) is a unitary map. Thus T(H) becomes a Hilbert space. Let (X, B,m) be a locally
finite measure space, i.e. for every A € B with m(A) > 0 there exists A; € Bwith 4; C A
and 0 < m(A;) < 0o. Let h be a measurable function on X. The multiplication operator
by the function & in the Hilbert space L*(m) := L%(X,m) is the operator T in L*(m) with
D(T):={f € L*(m}: hf € L*(m)} and Tf := hf for all f € D(T). As usual we identify
a function f € £3(m) with its equivalence class in L2(m). Suppose X is also a topological
space and B is the Borel o-algebra of X. Suppose every non-empty open subset of X has
positive measure. Then every element of L*(m) has at most one continuous representative
and we identify an element of L2(m) w1th its continuous representatlve if it has one. We
denote by ) the multiplication operator by the identity functlon z+ zin LZ(IR) Let. IF
be the Fourier transform on L*(IR). Define

P :=TFQIF.

Let A be a totally ordered set and for each o € A lét (E,, | 125’«) and (F,,| ||r) be
normed spam, which are, as vector spaces, subspaces of a fixed vector space. Suppose
E, C Eg and F, CFﬁfora,Ha ﬂeAw1tha<§ Let chA Deﬁnethenorm || flo on
E.0F, by ‘ :

Ma = lelEa + M (fﬂ € Eo N Fp).
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Let F :=Uueca Eo and F := Uyca Fa. The (standard) topology for E N F is the inductive
limit topology generated by the normed spaces E, N F, with a € A.

Let A, B be totally ordered sets. For all & € A and 8 € B let X, and Y} be locally
convex separated topological vector spaces. Suppose X, is continuously embedded in X,
for all &y, € A with oy < @, and, similarly, suppose Y, is continuously embedded in
Yp, for all f1, 2 € B with 81 < f;. Let X :=Uyes Xo and Y :=Jgep Y. The topologies
for X and Y are the (natural) inductive limit topologies. We call X =Y as locally convez
spaces with equivalent spectra if for all a € A there exists 8 € B such that X, C Y and
the embedding map is continuous and, secondly, for all 3 € B there exists a € A such that
Yy C X, and the embedding map is continuous. If X =Y as locally convex spaces with
equivalent spectra, then X =Y as locally convex topological vector spaces. Conversely, if
X and Y are both regular inductive limits and X =Y as locally convex topological vector
spaces, then X = Y as locally convex spaces with equivalent spectra. In case X and Y
are regular inductive limits, we even use the terminology ”as locally convex spaces with
equivalent spectra”.

We finish with some trivial definitions. Let n,k € Z. Then

k 0 else.

Let a1,az,... € C. Then Y0_, a, = 0 and [I%_, a, = 1. Let A;, A,,... be operators in a
Hilbert space. Then Axo...04; =1if k = 0. In a vector space we define span(f) := {0}.
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Chapter 1

Gevrey spaces

In this chapter we introduce the concept of Gevrey space and prove some topological prop-
erties of Gevrey spaces. Finally we consider Gevrey spaces corresponding to commuting
symmetric operators.

1.1 Multi-indices and Gevrey spaces

Let V be a non-empty set. We define the set M(V) by

MV)= |J vV~

n€Ng

Here V° denotes the set with one element, called the ‘empty sequence, which is denoted
by ( ). The elements of M(V) are called multi-indices (over V). For v € V define the
v—length || |, : M(V) — INg by

IOl =0
HGxs- - sdnllle = card{ie{l,...,n}:ji=v} (€N, j,...,jn € V).

For « € M(V) define the length llaf] of o by llel] = n, where n € INg is the unique number
such that a € V™. So

lladl = 3 llels
: wgV

for all & € M(V).
In a natural way we define an operation on M(V) : for o, € M(V) define the
concatenation {a, 8} of & and 8 by

0 =0
() G- sdn)) = (rseeesdn)
(G5 2dn)y (D) = (1s---53n)
((jly-najn))(kh-°~:km)) : (jla---,jmkla---,km)

11



12 1. Gevrey spaces

for all n,m € IN and all j1,...,n,k1,...,km € V. So M(V) is a monoid with identity ( ).
For p € IN and oy,...,0, € M(V) define the concatenation {oy,...,q,) of ay,...,a, by
{(o1,...,0p) 1= oy if p=1 and inductively

{1,y apy = ({01, vy Opt)y )

ifp>1.
At the moment we finish our discussion on multi-indices with the reverse operatlon on
M(V). For a« € M(V) define the reverse o of a by

O =0
(yeesdn)" 1= (nyeenr )

Then a — of is a bijection from M (V') onto M(V).
In the next chapter we shall introduce some more operations on M (V)

Let H be a Hilbert space and let A;,...,Asbe d (unbounded) opera,tors in H. Let
V:={1,...,d}. For & € M(V) define the operator A, by

A() = I
A(jl,...,jn) = Ajl 0...0 AJ'" (n € IN,j]_,. .. )jn € V)

We define the joint C®-domain D™(Ay,..., A4) of the operators Ay,...,Aq by

D*(As,... A= [ D(Ad)-
’ a€M(V) ’
Here, D(T') denotes the domain of the operator 7. We emphasize that the spa,cei
D*>(Ay,...,As) may be trivial, i.e. D®(4,,...,A44) = {0}. For all & € M(V) define the
seminorm || || 4,... Aya for D=(Ay, ..., Ag) by

el et = Aol (u € D=(Ay, ..., Ag))-

We drop the indices A, ..., Ay in the seminorm || || 4,... 44 if the meaning is clear from
the context. So || ||« = || | 4s,....4g:¢- The topology for D®(A;,.. ., Aqg) is the locally convex
topology generated by the seminorms || ||o, with @ € M (V). Since the identity map
from D®(Ay, ..., Aq4) into H is continuous, the topology for D®(Ay,..., Ay) is Hausdorff.
.Clearly D*(Ay,...,Aq) is metrizable. ‘ ”

Similarly to the space D®(4,,...,A4) we define the joint ordered C*°-domain of the
operators Aj,...,Aq by v

D2y(Ary..., A= [ D(APo...0A}).
Ny yeeeng€Ng
For all ny,...,n4 € INg we define the seminorm || ||,,....n, {(or to be more prease,

” ”Aly WAding .. :"'d) by
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l[eellng,mg = AT © ... 0 Aul|  (u € DRy(As,. .-, Ag)).

Also the topology for D3;(A,. .., Aqg) is the locally convex topology for DXy(Ai,. .., As)
generated by the seminorms || |[n;,...n.s With ny,...,nq4 € N,

We want to define subspaces of D®(A,,...,Ay) and DZ(A,,..., Ay) similar to the
Gelfand-Shilov spaces S2 and S27. (See [GS], Section IV.3.3.) Let Ar,...,\q > 0. For
t > 0 define the unordered function

” uﬂxw».Ad;)‘x,mv\a;i : ‘Dw(-Alv T Ad) - {Qs OO]

up l4au
I O Y NP Y Vo

”u"AJ,m»Aa;)\l,-«w\a;i = (u € D*(Ay, ..., Ag)).

and the ordered function

“ ”A;,...,Ad;z\h...,kdgt,qrd . ‘D::d(Ala ey Ad) hnd {03 (XJ]

AT o...0 AZ%||
nu“t‘h«mAaz)sx,»--,kg;’-‘.ord = :eulg‘ patedng pith . nd!)’d
o

(v € DEy(A1,. .., Ad)).

Let
S)\; ,...,Ag;t(Ah saey Azf) = {u € Doo(Ah ey Ac!) . ”u”A;,....Ad;Ax,...,)\d;t < 00}

Sxpeatl AL, . oo, Ag) is a normed space with norm || ||ay,...4p0.. 2y Similarly define
the normed space S’gi‘f_._,), sit(A1, ..., Ag). Again we drop the indices Ay,..., As when no
confusion can arise. So

" “«\1,---,)\&:‘ = “ I|A1y~--yAd;A1;---aAd;$

H H‘xlv--s'\d;tﬁrd = ” “t‘ihvadif\lw':Ad;t:ord'
Define the unordered Gevrey space

S;\x,..‘,Ag(Ah LR Ad) = U SA},...,Ad;t(Ala (R ’Ad)

i>0

and the ordered Gevrey space

Sgﬁ”,)\d(‘dla teey A'i) = U S:\):‘,i...,kd;t(Ah seey Ad)‘
>0

The topology oina for Sy,,. 2,(A1,...,Aq)is the inductive limit topology generated by the
normed spaces Sy, (41, ..,Aq) with £ > 0. Similarly the topology for
Sf\’ifl__“ (A1, - - -5 Ag) is the inductive limit topology generated by the normed spaces
85 at(A1,..., Ag) with £ > 0 and it is denoted by oj,g also. For the terminology of
locally convex topological vector space theory we refer to Appendix A.

In the following lemma we summarize some elementary norm inequalities and corre-
sponding inclusions. The proof is omitted.
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Lemma 1.1 Lef Ay,..., 0 2 0,0, ., ¢4 2 0 and let s,t > 0. Suppose \; < pi for all
1 <dands <t Then

Nl wspast S Nellng,nuss for all w € D®(Ay, ..., Ad),
“u“m,m,gd;t,ord < Hu"h,...,A‘g;s,o;d fo’" all v e Dgord(Al, ey Ad),
nullm,u.'ud;t,ord < Huu,\x,“.,,\d;s fOr all ue Doo(Al, ey Ad).

The embedding maps
SA;,...‘Ad;s(Ala ERREY Ad) — Sy;,...,ud;t(Al:- rary Ad):

125 ¥

Sﬁ:‘i..,kd;s(‘/{l? LS Ad) - Sord ,ﬁd;t(Al, ey Ad)a

Sxpprais(Ary o Ag) S;:‘i, Ay, .. A,

n“d;t(

SAh---,f\d;s(Ah ey Ad) hand Doo(AI, ceey Ad),
Sgl:,i /\a;s(Ah"'aAd)‘—} Dgord(Ah'--;Ad)y
Sxareral Ay oy Ag) Doo(Al,...,Ad),

g:d -\a(Al?' : "Ad) o Dgx?d(Ala >Ad)s

D*(Ay,...,As) = DZy(Ar, ..., Ad),
Doo(Ah Ve ,A,;) — H,
Dzﬁ&(Ah“ ':Ad.) — H

are continuous. The topologies for D®(As, ..., Ad), D2y(Ar, ..., Ad), Sxng(Ar, ooy Ad)
and S"‘d ALy .-, Ag) are Hausdorff.

Example 1.2

Let A be a positive self-adjoint operator in a Hilbert space H. For all ¢ > 0 the continuous
operator e~*4 is injective, so there exists a unique norm || || on the vector space e~*4(H)
such that e~*4(H) becomes a Hilbert space and.the map e *4 from H into e *4(H) is a
unitary map. The analyticity space Sy 4 is defined by S 4 1= Usso e 7*4(H). The topology
o for Sg 4 is the inductive limit topology generated by the Hilbert spaces e *4(H). In the
monograph [EG] the space Sy 4 is introduced for any separable Hilbert space H and any
positive self-adjoint operator A'in H. A lot of examples are included in Chapter 11 of the
book [EG] . The assumed separability of the Hilbert space H is an superﬂuous restriction
which we do not assume here. ' : ‘ V :

Let H be a Hilbert space, A a self-adjoint operator in'H and let A > 0 We shall prove
that Sy(A4) = Su, 141/, 1e. :
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{u € D®(A) : Iurs0TisoVnem, : A% € Mt*nP*} = | eI (H)
£50

as locally convex spaces with equivalent spectra. In the proof we need some elementary
inequalities which we present in the following lemma. This lemma will be used frequently
in the remaining part of this thesis.

Lemma 1.3

I Let k,m € INg. Then m* < kle™.
II. Let n € Ng. Then e7™n™ < al < n® < nle.

III. Let myn € Ny and A > 0. Then (m + n)P* < 2207malX and, if n < m,
(m—n)A < mPal—>

IV. Letn€INg and A > 0. Then

)G+ G

(Here [ ] denotes the entier function.)

V. LetdelN,ny,...,ng€2lNpandlet X>0. Letn:=ny +...+ny. Then

2 AL N AL AT AT
s 0 [(3)2 (]
Proof. . e™ = T2 nl~Im™ > k= 'mt,

II.Take k=m=nin L

1L (m + n)* = (’":") mPat < (2P mPp, If n < m, then (m — )l =

Y
m mrnl=r < mPal-,
m—n . =

w. [+ 00 < {(5)+) (0™ < {6+ 6+ <
{1 +)@™} = {0 @< {(B+) ()
V. This inequality follows from IIL ‘ ‘ o

We continue with Example 1.2,

Theorem 1.4 Let A be a self-adjoint operator in a Hilbert space H and let A > 0. Then
8x(A) = Sy yaps as locally convex spaces with equivalent spectra. -

Proof. Let t > 0. Let s := %Ae““t“””‘. We prove that Sy4(A) is continuously embedded
in e~*1AM*(H). Let

(IO ERTO
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Let u € S34(A). Then for all n € INy we obtain by Lemma 1.3.IV :.

APl < A g e (ADull + 1 A 1o (1A D]
AP oy (Al + Jlul

1A 4 )
/L ([.‘;] + 1) Pllullae + lulla

e {([g\f] + 1) G}A (‘2)" nlflullae + flullae
() Q) oot bt

A IA A

IN A

IA

So

o on /A
>, il A ull < Clluflxe < oo
n=0 "

Let v = Y2, %|A["*u € H. Then u = e~ ”b E ""ME"A(H) and “u", = |v]| <
Cliefis-

It remains to prove that for all ¢ > 0 there exrsts s > 0 such that e A*’“(H ) is
continuously embedded in S,\,,(A) So, let t > 0. Let s := (—) Let » € IN. Since the

function z — z"e~te' , defined on [0, 00), has the maximum valie (%’3) e~™, for all
u € H we obtain: '

A
lare 4Py < (nt ) e Mull < s*nu].

So e7M*y € §,,(A) and [|e~tH! "Aulh,, < Jhull = e )y : o

Corollary 1.5 Let A be an operator in a Hilbert space whzch has a self- adgomt extension.
Let d € IN and let A > 0. Then :

Sx(A) = Sxa(A%)
as Iocaliy conver spaces with equivalent spectra.

Proof. Clearly for all £ > 0 the space Sy (A) is contmuously embedded mS M,,(Ad) where
g iz Qd-D)dAyd

Let B be a self- ad]omt extensmn of A. Let ¢t > 0. By Theorem 1.4 there exist #,; > 0
such that the following inclusions are continuous:

Sraa(A?) = ‘ Srae(B) = -t lB4OD (H) = etilBP (H) = Sxs,(B).

Since Sxa(A?) C D*(A) as sets, it follows that in fact Sye;:(A?) is continuously embedded
in S}\;tz(A). . o
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Example 1.6

Let A be an operator in a Hilbert space H. Then Sp(A) is the set of all bounded vectors
for A. (See Faris, [Far], §16.)

Example 1.7

Let A,,..., Aq be d operators in a Hilbert space H and let A > 0. Then S,\,,,_,,\(Ai, ., A
is equal to the set of Gevrey vectors of order X relative to {A,,...,Aqs}. (See Goodman-
Wallach, [GW], Section 1.) In particular, for A = 1, the set Sy, 1(4,..., Ag) is equal to
the set of analytic vectors for {Ai,...,Aq}. (See Goodman, [Gool], Section 2 or Nelson,
[Nel], Section 2.)

Example 1.8

Let @ be the multiplication operator by the function z +— =z in L*(IR). Let IF be the
Fourier transform on LZ(IR) such that

(Ff)(z) = # [} =dy aezeR
R

for all f € L'(IR)N L?*(IR). Let P := IFQIF~'. Then P and @ are self-adjoint operators in
L*(IR). The dense joint C*°-domain D*®°(P,Q) is equal to DZ,(Q, P) and the latter space
is equal to Schwartz’ space S (IR), i.e. the space of all infinitely differentiable functions ¢
defined on IR such that

sup{le*¢V ()| : = € R} < o0

for all k,! € INy. (See [Goo2], page 65.)
Let a, 8 > 0. Gelfand and Shilov define the space S? by

88 := {p € S(R) : Fpew sup |zFpD(z)|n~*"k~* -1 < o0}.
. kleNo
z€R

In order to introduce topologies for the space S2, for n € IN we define the normed space

Swoln;a, B) :={p € S(R) : sup |zFeW(z})|n~* k%" < o}
k,leNg
z€R
with norm
15,0 iy = sUP{ |25 (@) *'k~*2178 - k,1 € Ny, = € IR}
The Gelfand-Shilov space SP equals
S8 = U S'W(n; a, )

n=1
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and we provide the space S? with the inductive limit topology generated by the normed
spaces So(n; @, B) , with n € IN. (See [GS], Section IV.3.3 and [Wlo], §29.5. Wloka uses
the notation S,,(m®) instead of $,,(n).) S

‘Remark. In [GS] no topology is deﬁned for the vector space Sg, but only the concept of
converging sequence occurs. Using Theorem 1.9 and Corollary 1.13.1 infra, it is not t0o
hard to show that a sequence in s ‘converges to 0 in the sense of Gelfand-Shilov if and
only if it converges to § with respect to the inductive limit topology k

In the following theorem we prove that the Gelfand-Shilov space S? can be descr:bed
as an ordered Gevrey space.

Theorem 1.9 Let, 8 > 0. Then S¢ = °rd(Q, P) as locally convex spaces with equwalent
specira.

Proof. For n € IN let

Sx(nya, B) = {p € S(R) : /m+ﬁfm@r%ﬂ%rmHWM<w}
‘ k leNa R ) B )

with norm
v
2

!!80!132(3‘;;“'5) = ( Z f‘(] +.7;‘2)"99(0{3)12_2""(2k)“2k“f'z§de)

kieNog

Then S3(n; e, B) is a Hilbert space. {See [Wlo], page 4.) Let

E := | S2(n; 2, 8).
n=l
The topology for E is the inductive limit topology. By [Wlo], §29.5 and §29.3 the spaces
E and S? are equal as locally convex spaces with equivalent spectra.

It remains fo prove that E and Sg‘:g(Q, P) are equal as locally convex spaces with
equivalent spectra. Let n € IN. Let t := 2%%¢’n > 0. Let ¢ € 5y(n;e,B). Then
v € S(R) = D2(Q, P). Let'k,l € Wy. Let k, € INO be such that 2k ~ 1 < k < 2k
Then

IQ*Pell < 11+ Q)P

< Nellsatnians P25 H (2k )21 118

= “‘P“S:(n;a,;g) pitiH (k+ 1)(k+1)a I8
<

<

“‘P”Sz(n;xx,{?) nk+1+l (k + 1)§°’ l!ﬁ e(k+1)a e!ﬁ

ne® ||| sy(nioy tEH k1% 118,

So ¢ € 5254(Q, P) and ||¢l|a,t.0ra < n€® (|0l (nit)-
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Now let t > 0. Let n € IN be such that n > 2(1 + ). Let ¢ € ST5.(Q, P) and let
¢ = ||@|lagtora- Then ¢ € D4(Q, P) = S(IR). Moreover, for all k,! € INg we have
k

la+@rpel < 3 (4)1emPyl
k

) ( * ) ct?mH (9m)1a 18

m=0
o(1 4 ) (21 1P
C(l + t)2k+l(2k)2&allﬁ

c( _12_ )2k+l nzk-:-l (2 k)i!ka Ilﬂ .

IA

IAIA A

So

64
1 2yk Pl |l = (@kH) (o)~ 2ha =18 L 2
oy (I1¢1 + @2) Plg|ln=t2+(2k) ) <3¢

Hence ¢ € S3(n; a, B) and {|¢l|s,(nia8) < \/%I llollo,8:t.00a. This proves the theorem. O

1.2 Topological properties of Gevrey spaces’ |

The ordered and unordered Gevrey spaces are introduced as inductive limits of normed
spaces. In general, an inductive limit of normed spaces is not regular, not complete and so
on. In this section we prove that an (un)orderéd Gevrey space is regular and, with some
additional assumnptions, that the unordered Gevrey space is complete. We give a rich class
of examples which satisfy these assumptions.

Let Ay, ..., A be d fixed operators in a Hilbert space H. Let V := {1,...,d}.

Lemma 1.10 Let Ay,...,Aa 2 0. Then Sy, 3,(A1, ..., Ad) and S5, (A1,...,Aq) are
bornological.

Proof. Any separated inductive limit of metrizable locally convex topological vector spaces
is bornological. (See [Wil], Example 4-4-7 and Theorem 13-1-13.) ]

In the next theorem we prove that the inductive limit spaces Si,, . »,(4s,..., Aq) and
5572 o(A1,. .., Ag) are both regular.

Theorem 1.11 Let Ay,...,A; > 0 and let B be a subset of Sy, 5, (A1,...,Ad). Then B
is bounded in S, ,(A1,..., Ag) if and only if there exists t > 0 such that B is a bounded
subset of Sx,,..aut( A1, -5 Ag). ' ‘ '

Similar results hold for S32 ) (Ay,...,Aq).

Proof. For completeness we include the proof of this theorer, although it is completely
similar to the proof of [Goo3], Lemma 1.2.

Suppose B is bounded in S),,.. 2, (A1,. .., As). We have to prove that there exists t > 0
such that sup,ep ||[u||a,,...2. < 00. Suppose this were not the case. Then for all ¢ > 0 we
would have
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sup sup = oo,

where M, := ||a|[;! - ... |ja]ls!*¢. Since the identity map from Sy, (4A1,. .., Aq) into
H is continuous, the set B is bounded in H and sup,p W < co. Hence for all k € IN
there exist ux € B and o € M (V) such that

| Aayua]] > B1o*lI M, (1.1)
and ||ag|| > 1. Define 5 : (0,00) — (0, 00) by
p(t) := inf{(E/2¢Y)lledll : k€ IN} (¢ > 0)

and let U be the set of all v € S),,..2,(A1,...,Aq) of the form v = ¥,,0cv:, Where
Sesoled] < 1 (finite sum), vy € Sy, aut(Ars. .., Ag) and ||ve]ry,.age < 7(2) for all ¢ >
0. Then U is absolutely convex and U S, r; (A1, .., Aq) is a neighborhood of 0 in
Siverait(Ar, - .., Ag) for all > 0. So U is a'neighborhood of 0 in Sy, .x,(A1,...,Aq) by
[Wil], Theorem 13-1-11. Since B is bounded, there exists § > 0 such that B C 6U But
for all k£ € IN we obtain that

N Asue] < 6sup tesllp ()M, < 5sup t"°"‘"(kl/2t'1)"°"‘“M = 6k"°"=”/2M
This contradicts (1.1) for k suPﬁc1ently la,rge, since ||ak|| >1. : o

Only for the unordered Gevrey space we can prove that bounded subsets behave well
In the proof of the theorem we feel inspired by Liu, [Liu], Theorem 1.2.5 2)..

Theorem 1.12 Suppose the operators Ay, ...,A; are Hermitian or skew-Hermitian. Let
M,.-osAg 2> 0 and let t > 0. Then there exists s >t such that for all bounded sets

B C Sy, pait(Ary. .., Ag) we have (B, 0ina) = (B, || ||as,....0a;s) a8 topological spaces.
Proof. Let s := 2%ttt First we prove the interpolation inequality

FRTY - '
lleellrs,orase < NuwllZ el 0 (1.2)

for all u € Sy, aat(A1,-- -, Ad). Let u € Sy, azi(As,y. .., Ag) and let @ € M(V). Then
by Lemma 1.3.III we obtain that '

. »
Aoull _ |(2t, Agor )|
Sl TadlPe) T Mo B ol
< el ||A(a.,a)u||22’\"|°"|1 el Q?Aallalla ,

sle” | 2a ]|, - ... - ||2a] 41
lleel] 1| Aast ayul| (22 2a) e 2l

IA

slitell[[{or, a)[la P - - [I{or, e[|t
= |lu- |l Ao ayull
At o) o ..t AT
< llell leellng e ase-
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This proves inequality (1.2). 7

Let B be a bounded subset of Sy, 1,:(A1,...,Aq). Clearly the identity map from
(B, | las,..205) 0nto (B, oina) is continuous. Let M > 0 be such that |[u]|y,, s < M for
all u € B. Let (u;)ier be a opg-convergent net in B with limit v € B. Then lim;u; = u in
H, so lim; ||u; — u|| = 0. Hence

A

. 1
lim‘sup Hif., - ull}‘l”"”\ﬂ‘;s - Iim.sup ”u‘ - un%“ui - u“i],..,,}\s;t
1 3
< V2Mlimsup [|u; — uf|? = 0.
k1

So lim;u; = u in Sy, a46{A1,s- -, Ag). Therefore the identity map from (B, oing) onto
(B5 1l ias,ra58) 18 continuous. : g

Corollary 1.13 Suppose the operators Ay, ..., Ay are Hermitian or skew-Hermitian. Let
My. .y Ag 2 0. Let B be a subset of Sy, »,{A1,...,Aq). Then:

I B is bounded in 5,\1,....,,\,,(/41, ...y Ag) if and only if there exists t > 0 such that B is
a bounded subset of Sy, am{A1,...,Ad) and (B, 0wa) = (B, || Ir,.ou)

II. B is compact in Sy, 2,(As,. .., Ag) if and only if B is a compact subset of
Sainatl{ AL, ..., Ag) for some t > 0.

IIT. B is sequentially compact in Sy, 2,(A1,...,Ag) if and only if B is a sequentially
compact subset of Sx,,. a{A1,.. ., Ag) for some £ > 0.

IV. B is sequentially compact in Sy, . »,(A1,...,44) if and only if B is compact in
SagrglAry ooy Ag).

The joint C*°-domain D®(Ay,..., Aq) and the joint ordered C*°-domain
D24 A4, ..., As) are metrizable locally convex spaces. They may fail to be Fréchet spaces.
Also, not every Gevrey space Sy, 2, {A1,...,Aq) is complete. We give an example.

Example 1.14 Let p > 0. Then there exists a symmetric operator A in a Hilbert space
H such that Sg(A) is dense in H, the space 5,(A) is complete for all A € [0, g} and for all
A > p the space S\(A) is not sequentially complete. In purticular, D®(A) is not complete.

Proof. Let A be the restriction of the operator @ to the space S,(Q). Then A is symmetric.
For all A € [0, ] we have S\(Q) C 5.(Q), s0 5x(A) = 5,(Q). Hence Sp(A) is dense in H.
Moreover, by Theorem 1.4 and [EG], Theorem 1.1.13(i) it follows that S)\(Q) is complete
for all A > 0, so S\(A) is complete for all A € (0, u]. An elementary proof shows that the
space So(A) = 55(Q) is complete. (Cf. infra, Corollary 1.18.)

It remains to prove that for all A > p the spaces S5(A) and D™(A) are not sequentially
complete. So let A > p. Define f: IR — IR by

f(z) =exp(-L|z['/*) (z€TR).
For N € INg let
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v =1-nmy - f

We prove that the sequence fi, fs, ... is a Cauchy sequence in S5(A). Let g := +/F and
gn :=+/fn for all N € INy. Let N, M € IN;. Then for all n € WNg:

4™ (f = far)ll

i

1Q"9(gn — gm)|| < sup |z"g(2)| |lgn — gl
z€R

(4rX) e lgn — gnll < [(4e2)e™ " vt |lgn — gaall-

il

So fv = fv — fo € SA(A) for all N € IN. Moreover, since limy a0 lgn — gumel| = 0, we
obtain that fi, f2,. .. is a Cauchy sequence in S\(A) and also in D®(A).

Suppose the Cauchy sequence fi, f3,... converges to some element k in §3(A). Then
by Lemma 1.1 we would have in L*(IR): f = lim fy = h € Si\(4) C D*(A) = S5,(Q).
However, for all n € IN with 2nA > 2 we obtain with & := [2r)] + 1:

VEIQ I = [ o exp(—lel e = 22 [y -temvay =
R 0

2AT((2n + 1)A) 2 22Tk — 1) = 2A(k — 2)! > 2Ak~2k*e™ >

2M Rk (2n )T > 2)(4e)~ RN (2A2M 0 > A(2e) 7! [(A(2e) 1) i,
So | V

Q™ fll = Ct"n*

for all n € IN, where t = (;‘—e)“ and C > 0 is some constant. Hence f & S,(@) since g < A
By the same argument we can show that the Cauchy sequence fi, f2,. .. is not conver-
gent in D™(A). ‘ o

Theorem 1.15 Suppose the operators A,,..., Ay are closed. Then D™(A,,..., Aq) and
D24(Ay,...,Ay) are Fréchet spaces.

Proof. Let (u,)nen be a Cauchy sequence in D®(Ay, ..., Ag). Then for all @ € M{V) also
{Aattn)nen is a Cauchy sequence in H, so uy 1= hm.(,_,o‘a Aguy exists in H. Let u := u().
For N € INg hypothesis P(N) states:

For all @ € V¥ we have u € D(A,) and u, = A u.

Obviously hypothesis P(0) is valid. Let N € INp and suppose hypothesis P(N) is valid.
Let @ € VY and let v € V. Then we obtain in the Hilbert space H x H:

nli,lg)(Aaum A'uAaun) = (uaau(v,a)) = (Aau; u{v,a))-

Since A, is a closed operator, it follows that A,u € D(A,) and A,Aeu = u(,q). So
% € D(Aw,y) and A 0)% = t(y,ay. This proves hypothesis P(N +1).
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By induction, ¥ € Naem(v) D{(Aa) = D*(Ar,- .., As) and limpe.oo Aatin = Agu for all
a € M(V). So D®(A,,..., Ay) is complete.
Similarly, D%,(Ay, . . ., Ag) is complete.

The completeness of the spaces D®(A,,..., Ag) and D%(Ay,. .., Ag) has the following
consequences for the Gevrey spaces.

Theorem 1.16 Let A,..., g > 0 and let t > 0. If D®(A,y,..., Aq) is a Fréchet space
then Sy, azt{A1,...,Aq) is @ Banach space. If DX(Ay,..., Ag) is a Fréchet space then
S50 s gt(A1y. .., Ag) is a Banach space.

Proof. Suppose D®{A;,...,Ay) is a Fréchet space. Let (u,)nen be a Cauchy sequence in
Srnrergit(Ary « oy Ag). Since the identity map from Sy, :(A1,. .., Ag) into
D>(Ay,...,Aqd) is continuous, also (u,)uen is a Cauchy sequence in D®(A4y,...,Aq).
Hence u := limpco g exists in D®(Ay,...,A2). .

Let € > 0. There exists N € IN such that Jju; — w]l)\,, At Seforall k1> N. Hence
forall k,I> Nandalla € M(V) we have

| Aa(ur — w)l| < etlllay - ... oot
Let I > N. Since limyoo tn = 1 in D®(4,,..., Ag) we obtain for all « € M(V):
lAa(u—w)ll = lim || Aa(us —w)|| = 15& sup ll Aa(ux ~ wi

< etlbjaf ... flaflaPe.

So in particular, u — uy € S,\;,..‘.;,\d;t(Ag, ..oy Ag) and
u = uy + (u—~uy) € S, azu{A1, ..., Ad).

Moreover, ||u ~ w2 < € for all I > N and limyeo w; = u in Sy, »,0( A1, - .., A).
Similarly, 53¢, (As,...,Aq)is complete if D%(Ay,...; Ag) is a Fréchet space. U

Corollary 1.17 Suppose D®(A,,...,Ay) is a Fréchet space and each of the operators
Ay, ..., Aq is Hermitian or skew-Hermitian. Let Ay,...,Aq 2 0. Then S, 2,(A4,...,As)
is complete.

Proof. Let B be a bounded closed subset of Sy, 3,{A1,..., As). By Corollary 1.13.1, there
exists t > O such that B C Si,,. 241, ..., Ad) and (B, oima) = (B, ] l|a,nat)- Let (widier
be a Cauchy net in (B, ¢ing). Then (u;)ier is a Cauchy net in Sy, 2,0(Ay, . . ., Ag), whence
w == lim;u; exists in S, a,e(A1,..., A2). Then also u = lim;u; in Sy, ,Ad(Ax, .5 Ag).
Since B is closed, u € Band u = hxm 4; in (B, 0ma). S0 Sy, a,(A1y. .., Ag)is boundedly
complete.
By Lemma 1.1, S\, »,(Ay, ..., Aq) is the inductive limit of the spaces

S peranl{A1y . .o, Ag) with n € IN. By Theorem 1.16 each S, .. »,:m(A1, - .., Ag)is 2 Banach
space. So Si,,..(A1,...,Aq)is a boundedly complete LB space. By Floret, [Flo], Satz
4.3, Sy,,..24(A1 . .., Ag) is complete. ' 0
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Corollary 1.18 Suppose the operators Ai,...,Aq are closed and suppose each of the op-
erators Ay, ..., Aq ts Hermitian or skew-Hermitian. Let Ay,..., 24 2 0. Then
SandlAsy e oy Ag) i complete.

Proof. Theorem 1.15 and Corollary 1.17. A : O

Corollary 1.19 Let Ay,...,A¢ = 0. Suppose D>(A4,...,As) is a Fréchet space. Then
Srrera( Aty - - .» Ag) is barrelled , ,
Similarly, S,\l,...,}\ [{Ar, ..., Ag) is barrelled if D2y(Ay, ..., Ad) is a Fréchet space.

Proof. Suppose D®(A,,..., Ay} is complete. By Theorem 1.16 the normed space
Sapronait(A1, - ., Ag) 18 complete for all ¢ > 0, hence barrelled. Now the corollary follows
by [Wil], Theorem 13-1-13. . ‘ : o

We finish this section with an exa.mina;tion of continucus linear maps between spaces
of type Sx,,.».(A1,..., Az) and 552 , (A1,..., Ag). By the bornologicality of the spaces
SrpveralAty - .., Ag) and S§4 \ (Ay,..., Ag), & linear map between spaces of type
Sripora(Aty. .., Ag) and S5, (Ay,..., Ag) is continuous if and only if it maps bounded
subsets into bounded subsets. Here we present a useful condmou which implies that a
linear map is continuous.

Lemma 1.20 Let E be a Fréchet space and suppose the operators A,, ..., Aq are closable.
Let M\y,..., 242> 0 and let T be e linear map from E iw_zto‘ S;,\,,,,,,Ad(Al, .-y Aqg). Let i denote
the identity map from Sy, ., (A1,...,Aq) into H. S‘uppose’ﬁthe map 1 o T is continuous
Jrom E into H. Then T is continuous from E into Sy, ,(Ay,...,As).

Proof. We first prove that the map A, o T is continuous from E into H for all o« € M(V).

The proof is by induction to Jla|. If @ = (), then by assumption the map A,0 T =ioT

is continuous from E into H. Now let @ € M(V) and v € V and suppose the map A0 T

is continuous from F into H. Let B be the closure of the operator A,. Then the map

BoA,oT from E into H has a closed graph, hence it is continuous by the closed graph

theorem. Then in particular the map A(,, ol = A, A T is contmuous from E into H.
For N € N let

= {z € E : Vaeu) [l 4Tzl < NP affy ™ - flaflat™] ).

Since all the maps A, oT are continuous from F into H, the set Zy is closed in E. Clearly
E = |nen Zn. By the Baire category theorem there exists N € IN such that Zy has
a non-empty interior. - There exist z5 € Zy and a neighborhood U of 0 in E such that
2o+ U C Zn. Then [[Tzlls,,.asv < 2N for all z € U. It follows that the map T is
bounded from FE into Sy, »,(A1,...,As). Since the space E is bornological, the map T
is continuous from F into S, 3,{A1,...,Aq). o o : a
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Theorem 1.21 Let Hy and H, be Hilbert spaces. Let dy,dy € IN. Let Ay, ..., Aa, be closed
operators in Hy and let By, ..., By, be closable operators in Hy. Let Ay,. .., A, th1,- .. s o,
> 0. Let T be a linear map from Sy,,..x, (A1, .., Ag) into Smw‘pdz(B,,...,Bdg). Sup-
pose the operator T is closable as an operator from Hy into H,. Then T is continuous.
Similar results are valid if Sy, 2, (A5 Ag) 07 Suy s, (B1,...,Ba,) is replaced by
854 s (Ary..., Ag) resp. SZf‘,i..,,%(Bl,-w s Ba,).

Proof. For ¢t > 0 let 1, be the identity map from SA:.-..,M, #(A1,.. ., Ag)into
Sriperay (A1, - -, Ag;) and let i and j be the identity maps from Sy, (41, .., Ay ) and
Syspertiay (Biy« -+, Bay) into Hy resp. Hp. Let ¢ > 0. Then the map i 0 ¢; is continuous from
S serhy #(A1,..., Ag,)into Hy and the map joT from H; into H, is closable. So the map
joToi;=(joT)o(ioi) is closable from Sy, », 4(41,..., A4 ) into Hz. By Theorems
1.15 and 1.16, the space Si,,...a4;t(41, - - -, A4;) is a Banach space. Therefore we obtain by
the closed graph theorem that the map joT o1, from Sy, a,;t(Ah co.yAg)into Hy has a
continuous extension. Hence the map j o T o i; is continuous from S),,..» dl;,(Al, . Ag)
into H,.

From Lemimna 1.20 it follows that the map T0i, is continuous from Sy, .. i #(A1,..., Ag)
into Sy,,...uq, (B1,- .-, By,). Now the theorem follows by [Wil], Theorem 13-1-8. (=}

Corollary 1.22 Let dy,d; € IN. Let Ay,...,Aq,B,..., By, be closed operators in a
Hilbert space H. Let Aq,..., q, p1,. .. » by > 0. Suppose S),,,,_,Adl (A1, ..., Ag) =
Sutrntiag(Brs -, Ba,) as sets. Then Sy, (4153 A4) = Suypug) (B, - - ., Ba,) as lo-
cally convex spaces with equivalent spectra.

Ady

Proof. Let i be the identity map from Sy,,.. 2, (A1,- .., 44,) into Sy, s, (B, ..., Bay).
Then i is closable as an operator from H into H. Hence ¢ is continuous by Theorem 1.21.
Now let ¢ > 0. Let

B = {u€ Sy, g (A1 s Agy) ¢ [l 4yt pargg e S 11
Then B is bounded in Sy, x,, (A1, ., A, ), hence B is bounded in Sy, 4, (B, - .., Bay),
since i is continuous. By Theorem 1.11 there exist s > 0 and M > 0 such that

llsll 5 By it g8 S M

for all u € B. So the space SA;,...,}@! (A, ., Ag) s continuo’usly embedded in

Sf“l - sf‘d) "(‘Bl ?. Bd?)
Similarly, for a.ll t > O thereexists s > Osuchthat S, . dz,g(Bl, , Ba,) is continuously
embedded in Sy, " #(A1, ..., Ag). The corollary follows. n

1.3 Gevrey spaces relative to infinitesimal genera-
tors

In this section we introduce a rich class of examples of Gevrey spaces Sy, .2, (A1, .. .;Ad)
relative to operators Ay, ..., Assuch that D®(A,,..., A,) is a Fréchet space, all operators
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Ai,...,Aq are skew-adjoint and Sy, . 1, (Ar;..., Ag)is dense in H for all Ay,..., Ag > 1.
Further we present another characterization of these spaces which explains the termmology
Gevrey space.

Let G be a real Lie group and let # be a (continuous wunitary) representation of G
in a Hilbert .space H. (We only consider continuous unitary representations.) For the
terminology of Lie group theory we refer to Helgason, [Hel] and Varadarajan, [Varl] For
every u € H define 4 : G’-—»Hby :

i(g):==myu (9€G).

A vector u € H is called infinitely differentiable respectively analytic for = if and only if
the function # is infinitely differentiable respectively (reé,l) analytic from G into H. Let
H>(r) resp. H“(x) denote the set of all infinitely differentiable resp. analytic vectors for
x. It has been proved by Garding, [Garl] that H>(r) is dense in H and by Cartier and
Dixmier, [CD], Nelson, [Nel] and again Garding, [Gar2] that H¥(x) is dense in H. :

Let g be the Lie algebra of G. For X € g denote by dr(X) the infinitesimal generator
of the one-parameter unitary group = Texp(ex). S0 dn(X) is skew-adjoint. Goodman has
proved the following infinitesimal characterization of H*(r):

Theorem 1.23 Let Xj,... Xd be any basis in the Lie algebra g. Then

He(x) = D(dr(Xy), .., dn(X2)) = ﬂ D“(dw(xk))

as sets.

Proof By [Goo4], Proposrtlon 1. 1 H>(m) = gid(dr(,l?l), <+.,dn(Ya)) for any basis . - :
Yi,...,Ysing. So H®(x) = D*(dr(X;),...,dx(XJ)). The remaining part of the theorem
is proved in [Goo2], Theorem 1.1. , , a

By Theorem 1.23 the space H®(x) is invariant under dx(X) for all X € g. Let 97 (X)
denote the restriction of the operator dr(X) to H®(r). Then the map 97 : X — 9n(X) is
a Lie algebra homomorphism from g into the set of all skew-symmetric operators defined
on H*(x). (This can be proved similarly to a proof on page 209 of Harish-Chandra, [HC].)
Hence Or extends-uniquely to an associative algebra homomorphism, denoted by 7 also,
from the complez universal enveloping algebra U(g) of g into the set of all linear operators
from H*(x) into H*(w). The followmg theorem is of special interest.

Theorem 1.24 Let X;,..., Xy be any baszs ing. Let A= Zk_ X2 € U(g). Then the
operator 67r(I A) is essentzally self-adjoint. The spaces H®(x) and D“(m)
are equal as sets. Moreover, the spaces D®(9x(I — A)) and D°°(d7r(X1), ,d(Xy)) are
equal as locally conver spaces. :

For all A > 1 we have

SA,,,,,A(JW(XI), oo dr(Xg)) = Saa(0n(I — A)) = S (0 (1 — A))
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as locally conver spaces with equivalent spectra.
LetYy,...,Yy; be a second basis ing. Let A > 0. Then

Srer(dr(Xh),. ., dw(Xy)) = Sx, a(dn (Y1), ..., dn(Ya))

as locally convez spaces with equivalent spectra.

Proof. The essential self-adjointness of the operator Jx(I — A) has been proved by
Nelson in Theorem 3 of [Nel]. From the proof of the same theorem it follows that
H®(x) = D®(9x(I — A)) as sets. By [Good], Proposition 1.3 the spaces D®(dx(I — A))
and D®(dr(Xy),...,dn(Xy)) are equal as locally convex spaces. The spaces

S5, (07(Xy),. .. ,0n(Xy)) and Sp,(8r(I — A)) are equal as locally convex spaces with
equivalent spectra. (See Goodman-Wallach, [GW], Example following Theorem 1.7.} Since

De(dn(Xy),. .., d7(Xg)) = D®(3n(I — A)) = D™(0n(I — A)),
the spaces Sy a(dn(X1),...,dx(Xy)), Sax(0n(f — A}) and Sp,(8x{I — A)) are equal as

locally convex spaces with equivalent spectra.

Let Y;,...,Yabe asecond basisin g. For all k € {1,...,d} there exists cy,...,cra € IR
such that Vi = ¢ _, cimXn. Let M := max({|cem| : k,1 € {1,...,d}}). Let n € IN and
let 71,...,3n € {1,...,d}. Then dn(¥;)o...007(Y},) is a sum of d* terms of the form
¥0r(Xy,)o...097(Xs,), wherey € R, |y| < M™ and ky,...,k, € {1,...,d}. So

lellang),...ontarmriansezrs < [@llon(xs), .. 00X mmdit

for all u € H®(x) and t > 0. (See Lemma 1.3.111.) Therefore the embedding
Sx,pt(07(X1), .0 0, O7(Xg)) = Si. amizra(Ox (1), ..., O7(¥y))
is continuous for all ¢ > 0. Interchanging the roles of X and ¥, it follows that

.....

as locally convex spaces with equivalent spectra.

Since H®(7) = D*®(dn(X1),...,dn(Xy)) = D®(dn(Y1),...,dn(Ys)) as sets (Theorem
1.23), it follows that Sy (dn(Xy),...,dn(Xy)) = Sy, . a(dx(Y1),...,dn(¥y)) as locally
convex spaces with equivalent spectra. . n

Also H“(r) admits an infinitesimal characterization.
Theorem 1.25 Let Xy,..., X4 be any basis in g. Then
He(x) = 8,..2(dn(X1), ..., dn(Xa)) = ST 1 (dn{Xy), .. ., dn(Xa))
as sets. Moreover,

51,a{dr(Xy),. .., dn(Xy)) = S{’:‘i,l(dw(Xl),’. o dr(Xy))
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as locally convex spaces with equivelent spectra.

Proof. The first equality has been proved by Nelson, [Nel], Lemma 7.1. The other equalities
can be proved with similar arguments as in the proof of [Nel}, Lemma 7.1. m)

Corollary 1.26 Let Yi,...,Y,, € g and suppose g-= span({¥},...,Yn}). Then
H=(x) = D¥(d(Y5), .., dr(¥,)) = ﬁ D>(dr(¥3))
as sets and
D(An(¥a), ..., dn (V) = Dingldn(Y), .. 4 (Vo)

as locally conver spaces and both spaces are Fréchet spaces Let 11, <sAm 2 0 and let
t>0. Then ‘

i(dw(},l)," "y d';r(Ym)),

A3

S
G SR

and '
Shsvertn(@T(H), .., d(¥o))

are complete. Moreover, if in addition Xy,..., A 2 1, then
Sxpdm(@T(N1), .. . dn(Y))

is dense in H.,

Proof. There exist 1< <ip<...<ig<msuchthat ¥j,,...,Y;, is a basis in g. Let
X, =Y, forallk € {1,...,d}. By Theorem 1.23, H°°(1r) is invariant under dx(Y) for all
je{l,...,m}. So

Hw(«) C D@(d«(}g), d«(ym)) C D2y(dr(¥h)s. .., dn(¥y)) C
¢ (o=@ c DW(dw(Xk)) = H>(r).

k=1 k=1 : v
Therefore D®(dx(Y1),...,dn(Yn)) = DZi(dx(Y1),...,dx(Yy)) = Ni; D®(dr(Yz)) as
sets. Since the operators dn(Y1),...,dn(Y,,) are skew-adjoint, it follows from Theorem 1.15
that the spaces D=(dn(Y}),...,dn{¥y,)) and DZ,(dn(Y1),...,dn(Y,,)) are Fréchet spaces.
By the closed graph theorem, D°°(d7r(}’1), dx{Ym)) is equal to D2, (dn(Y}),. .., dv(Yy))
as locally convex spaces.

The completeness of the three spaces follows from Theorem 1.16 a.nd Corollary 1.17.
With elementary counting arguments it can be shown that

S1,.1(dx(N1), ..., dr(Yn)) = Sy, a(dn(Xy),. .., dx(X3))
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as sets. {Actually equality as topological vector spaces holds. See Corollary 1.22.) So
HY(x) C Sxy (@7 (1), - d7 (V)
when Ay,...,An = 1. Since H¥(r) is dense in H, the corollary follows. O

Nelson has proved a characterization for the analyticity space
S1..a(dn(Xy), ..., dr{X4)), namely:

Sy, 1(dn(X4), ..., dn{Xy)) = H¥(x) := {u € H : i is an analytic map}.

{See Theorem 1.23.) A characterization of the same type exists for the Gevrey space
Sy, (dr(Xy),...,dw(Xg)) in case A > 1.

Let €1 be an open subset of IR, let A > 1 and let K be a compact subset of . Let the
space D) (K) consists of restrictions to K of all infinitely differentiable functions ¢ on 2
for which there exist constants C,t > 0 such that

YreNo Vis,onin€{1,n..d} Yok [[(Dﬁ o...0oDp)z)| < Ct"n!’\] .

Here D; denotes the partial differentiation with respect to the i-th coordinate. In 1918,
Gevrey introduced the space £4(Q) of all infinitely differentiable functions ¢ on Q such
that for every compact subset K of £, the restriction of ¢ to X is an element of Dy (K).
(See [Gev].)

This idea of Gevrey leads to the following definitions. Let G be a Lie group and let
H be a Hilbert space. (To start with, we only need that G is a real analytic manifold.)
Let A > 1. Let (U,z) be a chart on G, let K be a non-empty compact subset of U and
let £ > 0. The normed space Gy (H, K, U, z) denotes the space of restrictions to K of all
infinitely differentiable functions ¢ from G into H such that

W[Ds ... 0 D (9 o = )(z(p))l
K Ixsez == su su su <0
Iliclsps Elgou, :‘nEEv ,d}vefg tnnl?

Here D; denotes the partial differentiation with respect to the i-th coordinate. Let
G\(H,K,U,z) := |} Gx(H, K, U, ).

0
The topology for GA{H, K,U, ) is the inductive limit topology generated by the normed
spaces Gra(H,K,U,z} with t > 0. Let (V,y) be another chart on G such that K C V.
Then we can deduce from [Nel], Theorem 2 and [GW], Theorem 1.1, that G\(H, K,U,z) =
GA\(H,K,V,y) as locally convex spaces with equivalent spectra. Let G,(H) be the space
of all infinitely differentiable functions  from G into H such that for every chart (U, z) on
G and every non-empty compact subset K of U, the restriction of ¢ to K is an element of
G)\(H, K,U,z). The topology for G,(H) is the projective limit topology generated by the
spaces G\(H, K, U, z).

Now let Y1,. .., Y: be analytic vector fields on G which are linearly independent at each
point of G. Let K be a non-empty compact subset of G. Let ¢ > 0. The normed space
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Gya(H, K, Yi,...,Ys) denotes the space of restrictions to K of all infinitely differentiable
functions ¢ from G into H such that

I 0. 0 Yup)R)ll _
tn tx

Nolkllreyi,..vs := sup  sup  sup
n€No 11,...in€{1;...,d} pEK

Let
G\H, K, Yy,...,.Yy) = I\JLGA;,;(H,K,YI,...,Y;). o
£

We endow G\\(H, K, Y;,...,Y;) with the inductive limit topology. In case (U, z) is a chart
on ( such that K is a subset of U, it follows again from [Nel], Theorem 2 and [GW], Theo-
rem 1.1 that G (H, K, Y,...,Yy) = G\(H, K, U, z) as locally convex spaces with equivalent
spectra. Let G)\(H, Y4, ...,Yy) be the space of all infinitely differentiable functions ¢ from
G into H such that for every non-empty compact subset K of G, the restriction of ¢ to K
is an element of GA\(H, K, Y, ..., Y;). The topology for Gy(H,Y,...,Y;) is the projective
limit topology generated by the spaces Gy (H, K, Y;,...,Y;) with K a non-empty compact
subset of G. Since for all compact subsets K of G there exist finitely many charts (U;, z;)
on G and compact subsets K; C Ui, ¢ € {1,...,n}, such that K = UL, K;, it follows
easily that the spaces G\(H) and GL(H,Y),...,Yy) are equal as locally convex spaces.
Let also Zy,...,Zq be analytic vector fields-on' G which are linearly independent at each
point of G. Let K be a non-empty compact subset of G. Then it follows similarly that
G\(H,K,Yy,...,Yy) = Gi\(H,K, Zy,. .., Z) as locally convex spaces with equivalent spec-
tra and that G\(H,Y;,...,.Ya) = GW{H,Z:,...,Z;) as locally convex topological vector
spaces. ' k

Let 7 be a representation of G in a Hilbert space H and let A > 1. Let (U,z) be a
chart on G, let K be a non-empty compact subset of U and let ¢ > 0. Define the normed
space

Hy (=, K,U,z):= {e; € He(m): % € G (H,K,U,z)}
with norm ' N

lellt ezt = Ilklraps (4 € Hye(m, K, U,2).

Define
HA(W,K U z) = |J Hye(m, K, U, z),
>0
HA(?K') = n .H)‘(N,'K, U,x),

K (Ux)

Hy,(r, K Yh,...,Yy), H\(z, K,Y4,...,Yy) and Hy(7,Y4,. .., Yy), with their natural topolo-
gies, The elements of Hy(r) are called Gevrey vectors of order A for =. Observe that

Hy(r) = H*()
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as sets.
Let g be the Lie algebra of G. Let X € g. Let X be the corresponding left invariant
real analytic vector field on G. So

XNM9) = 5| flgewix)

0

for every infinitely differentiable function f on G and all g € G. Now we present a global
description of Gevrey vectors.

Theorem 1.27 Let © be a representation of a Lie group G in a Hilbert space H. Let
Xi,-.., X4 be a basis in the Lie algebra g of G. Let A > 1 and let K be a non-empty
compact subset of G. Then

Srer(@T(Xa),.. 4 (X)) = Ha(n, K, X, ..., Xo)
as locally convexr spaces with equivalent spectra. Moreover,
S, (dm(X1), .., dr(Xa)) = Hy(x)
as locally convex topological vector spaces.

Proof. Let u € H®(x) = D®(dr(X1),...,dx(X4)). According to the proof of Proposition
1.1 in [Good], (X@)(g) = (dr(X)u)(g) for all X € gand g € G. Let n € INg and let
i1,..,4n € {1,...,d}. Then for all p € K:

(X o..o @I = ll(dn(Xq)o...0dn(Xi,)u) (p)l
|[rpdn(Xi)o...0 dw(X;n)y||
= |[dxr(Xi)o0...0dr(X;,)u-

Hence the equality of the spaces Sy, A(d7(X1),...,dn(Xs)) and Hy(x, K, Xi,... ,Xi) as
locally convex spaces with equivalent spectra follows easily.
"The remaining part of the theorem is trivial now. - o

~ Let u,v € H. Define the function (%,v) : G- C by
[(&v)](g) := (@(g),v) (9€G).

Poulsen ([Poﬁ]) presented the following weak description of infinitely differentiable vectors
for the representation :

Theorem 1,28 Let = be a representation of a Lie group G in a Hilbert space H. Let
‘u € H. Then u is an infinitely differentiable vector for n if and only if for all v € H the
function (U, v) is infinitely differentiable from G into €.

Proof. Cf. [Pou], Lemma 1.2 and Proposition 1.1. o

Also there exists a weak description of analytic vectors for .
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Theorem 1.29 Let © be a representation of a Lie group G in a Hilbert space H. Let
u € H. Then u is an analytic vector for n if and only if for all v € H the funetion (i, v)
is analytic from G into C.

Proof. See [Var2], page 303. O

In the same way as in [Var2], page 303 a weak characterization of Gevrey vectors for
7 can be given: let A > 1 and let u € H. Then u € Hy(w) if and only if for all v € H the
function (%,v) is an element of G1(T).

In the remaining part of this section we introduce the locally convex topological vector
space of weak Gevrey vectors of order A > 1 for the representation #. We present a
characterization of its bounded subsets. ~

Let 7 be a representation of a Lie group G in a Hilbert space H and let A 2> 1. Let
(U, z) be a chart on @, let K be a non-empty compact subset of U, let v € H and let ¢ > 0.
Define the normed space :

Hyu(r, K, U,z;0) := {u € H: (4,v)|x € G»(C, K, U, z)}
with norm

el e e, b U0 2= ll(@, v)lK“A;t,U.z (u € Hyy(m, K,U,z; v)).
Let ' '
Hy(n,K,U,z;v) = U Hyy(n, K, U, z;v).
0 . ,
The topology for Hy(x, K, U, z;v) is the inductive limit topology generated by the normed

spaces Hy,(r, K,U,z;v) with ¢ > 0. Define the space of weak Gevrey vectors of order A
for = by ‘

HY(m) = Ha(r, K, U, z;v)

where the intersection is over all charts (U, z) on G, all non-empty compact subsets K of U
and all v € H. The topology for HY(x) is the corresponding projective limit topology. For
analytic vector fields Y;,...,Y; on G define similarly the spaces Hy,(x, K, Yi,...,Y5v),
Hy(n,K,Y1,...,Ygv)and HY(x,Y1,...,Ys), with their natural topologies. Obviously the
spaces Hx(n, K, U, z;v) and Hy(x,K,Y1,...,Yy; v) are equal as locally convex spaces with
equivalent spectra if both spaces are properly defined.

Theorem 1.30 Let r be a representation of a Lie group G in a Hilbert space H. Let
A > 1. Then, as sets, the space of Gevrey vectors of order A for n is equal to the space of
weak Gevrey vectors of order A for x. Moreover, let B be a subsei of Hy(x). Then B is
bounded in Hx(r) if and only if B is bounded in HY ().

Proof. Let (U, z) be a chart on G, let K be a compact subset of U, let v € H and let
t > 0. Since every infinitely differentiable function from G into H is weakly differentiable,
and since :
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lellrtarxven < b r vzl < 0o

for all u € Hy,(r, K,U,z), we obtain that Hy(r, K,U,z) C Hyu(x, K,U, z;v) where the
embedding is continuous. Thus Hy(x) is continuously embedded in HY(x). In particular,
every bounded subset in Hy(x) is a bounded subset in HY (x).

Now let B be a bounded subset of HY(r). For all u € B and v € H the function
(@, v) is infinitely differentiable, so u € H®(x) by Theorem 1.28. Let X;,..., Xy be a
basis in the Lie algebra g of G. Then B € D™®(dr(X}),...,dr(Xs)}). (See Theorem 1.23.)
So X(&,v) = ([dr(X)ul",v) for all u € B and v € H. Let e be the identity in G and let
K := {e}. Since Hy(x) = HY(x, X1, ..., X,) as locally convex spaces, the set B is bounded
in Hy(r, K, Xy, Xa v) for all v € H. It follows similarly to the proof of Theorem 1.11
that there exists ¢ > 0 (depending a priori on v) such that B C H) (7, K y X1y e ,fd;v)
and B is bounded therein. So there exists M > 0 (depending on v) such that for all
n € Ny, t1,...,i, € {1,...,d} and u € B we have

(dr(Xi) ... 0 dn(X,)u,v)| = |[X; 0. 0 Xin(d,v)] (¢)| < Mt™nP.
For N € IN let

Ey =
{'v € H : Yueno Vi, .ineft, ..} VueB [!(d‘.'r(X,-,) o ..odr(X; Ju,v)] <N "‘”n!"] } .

Then Ey is closed in H and H = UUF_; Ex. By the Baire category theorem there exist
N € IN, v € H and ¢ > 0 such that {v € H : ||v — »)| < ¢} C En. Then for all n € N,
11y...,%n € {1,...,d} and u € B we obtain that

ldr{X; ) o...odnr{X; Jull £ éNN“n!*.

bounded subset of Hy(7) by Theorem 1.27. o
Let X3,...,Xsbeabasisin g and let % : IR? — @ be defined by
Ytyy... ta) i=exp(t Xy + ... +1aXa) (ty...,t4 € R).

Let u G H. By definition, u is infinitely differentiable for =, i.e. u € H*(x), if and only if
the map # is infinitely differentiable from G into H. Since the left translations on G are
analytic maps, we obtain that u is infinitely differentiable if and only if & o 9 is infinitely
differentiable in a neighborhood of 0 € IR?. By the identity
d
H*(r) = [} D*(dn(X)),
k=1 - , :
u € H*(x) if and only if the map ¢ — & o (tes) is infinitely differentiable from IR into H
for all k € {1,...,d}, where e is the k-th standard basis vector in IR?. So o4 is infinitely
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differentiable in a neighborhood of 0 € IR? if and only if & o 9 is infinitely differentiable in
each coordinate.

Hartogs theorem states that every complex valued function f defined on an open subset
U of €Fis analytic if and (mly if it is separately analytic, i.e. the function ¢ — f(z+1te;) is
analytic in a neighborhood of 0 for each z € U and each k € {1,...,d}. (See Hormander,
[Hér], Theorem 2.2.8.) However, a similar theorem for real analytic functions instead of
analytic functions is not valid. Since 4 z: € Si,.a(dn(Xy1),...,dn(Xy)) iff u € H¥(n) iff the
map @ o ¢ is real analytic at 0, and since Niey S (dﬂ"(Xk)) is the space of all u € H such
that @ o 1 is separately real analytic at 0, it is not clear whether

. d .
Sioaldr(X),e o dn(Xa) = () Si@nX). (1.3)

The description of the elements of the set on the right hand side is in general much easier
than the description of the elements of the set on the left hand side. It is not even clear
whether there exists n € {1,...,d — 1} such that

.....

1(dr(Xy),. .., dn(Xq)) = (19)
Sl,...,l (dﬂ'(X;), ‘e ,d??’(Xn)) n Sl,...,l(d”(Xné-l), feey d?l'(XJ)).

General operators and parameters make ma,tters worse: there arises the following qﬁestion.

Let Ay, ..., A4 be operators in ¢ Hilbert space H and let ,\1, /\d > 0 Umfer
wiuch condztzons can we prove that:

SA;,....A,;(AI, cany A.g} = ﬂ S‘\,‘(Ak) ‘ (1,5)
k=1 .

or

S)q ,...,)\4(-‘413 A&) = ‘ ’ ) (1.6)
S/\l ..... r\n(Alg . A )ﬂ S)&n.u ,AJ(AfH'lv ?Ad)

for somen € {1,.. d 1}"

These types of questions have been posed before, only for spaces of analytlc vectors.
The following results have been denved ‘

. If span({Xy,..., ,,}) is a Lie subalvgebrav of g and span{{Xaq1, . - .‘,X,g}) is a Lie
ideal in g, then Goodman has proved equality (1.4). (See [Goo2], Theorem 3.1.)

e If £; = span({Xl, .+ X:}) is a subalgebra of g and L; is an ideal in L4y for all
i€{l,...,d-1}, then (1.3) holds. (See [Goo2], Corollary 3.1.) -

e If span({Xy,...,X,}) and span({Xn41,...,X4}) are subalgebras of % then (1 4)
holds. (See Flato and Simon, [FS], Theorem 2) '
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o There exists a basis Xj,..., Xy in g.such that (1.3) holds. (See [F8], Theorem 3.)

o If G is reductive, then (1.3} holds for every basis X;,..., X, for g. (See Simon, [Sim],
Proposition 2.)

In this connection, we also mention the following result, valid for the operators P and Q.

e lfa,f>0and a+f>1, then

So:ﬁ(Qv P) = Sa(Q) n SB(P)

as sets. (See Van Eijndhoven, [vE], Theorems 4.5(iii) and 4.3(iii).)

In Chapter 2 of this thesis we present several generalizations of the above results. A
simple situation occurs if all operators X, ..., Xy are commuting. We consider this case
in the following section. '

1.4 Gevrey spaces relative to commuting operators

In this section we consider Gevrey spaces S, ., (A1, ..., Aq) for which some or all opera-
tors commute. In the interesting case that all operators A;, ..., A; strongly commute, we
give a characterization of Sy, . x,(A1,...,Aq) in terms of "smoothed” vectors correspond-
ing to a representation of a locally compact Abelian topological group. (See Appendix B.)
We start with an intersection result for a collection of operators which ”commute in two
parts.”

Theorem 1.31 Let X,,...,Xy,Y1,...,Yy, be operators in a Hilbert space defined on
common invariant domain. Suppose all operators X;,..., X4, Y1,...,Ys, are Hermitian
or skew-Hermitian and suppose

XY = Y;X;
fOT all 1 € {1,...,81} and]E {1,...,&{3}. Let Al,...,.xgl,ﬂl,...,ﬁdzzo. Then

S;\],...,.\dl ,pl,...,p.dQ (X11 A 3Xfi1 b }’1, e Yda) =
S).,,...,)«d‘ (Xh s ,Xdl) N Sm,...,;&dz(yi) sy y;ig)

as locally convez spaces with equivalent specira.

Proof. Let Zy = Xu,., Za, 1= Xoy, Zayr = Yo, s Ziyaty 1= Yy, let d 1= dy + da, Vi 1=
{1,...,d:},Va:={1,...,ds} and let V := {1,...,d}. Let

M = max({Ay, ..., Aq, 1, - - ,#da})'

Let t > 1. Let t € Sx,,.. gt Xty - - Xe,) 0 Spgyropsgy #(Vas - - -, Yay). Lt
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o R "unxx,s--.xa,;lh-mkdl ¢ and ¢ 1= “u“?ﬁ»»~>Yaz;#1,~--.uazzi'

We shall prove that w € S, ,.em(Z1,...,24) and that u has norm less than or equal to
¢ + cp. ‘

Let v € M(V). There exist p € Ng,ay,...,0, € M(Wy) and Bi,..., 8, € M(V;) such
that Z, = X4, Y5 0...0X,,Yp,. Let

s B (a;,...,a‘i,al,---}ap)?
B : (3;,'**)ﬂ;7181"“’ﬁ?>'

Then we obtain by Schwarz’ inequality:

[(Yay Xeag 0.0 Yy Kot Xo, ¥, 0. 0 X0, Vg, u,u)

1zl =
| = |(XaXpu, u)| = (Yot Xerw)| < [Ypull | Xorul] |
< ot Pl Pl B (Bt
< [Cer+ @O -l P e - ]
This proves the theorem. = S S - O

Corollary 1.32 Let Xi,...,Xy be éommuting operators in a Hilbert space defined on
a common invariant domain. Suppose all operators X1,...,Xq are Hermitian or skew-
Hermitian. Let Ay,...,Aq > 0. Then S

Sramra Xy Xa) = 858 5 (X1, Xa) = [ Sni(Xe)

k=1

as locally conver spaces with equivelent spectra.
Proof. By Theorem 1.31 we obtain for all me{l,...,d—1} that
S,\l,...,.\m (Xl': ey Xm) 0 SAm.“ (-Xm-(»l) = S)‘h"'v\m+1 (le reey Xm+1)

as locally convex spaces with equivalent spectra. So

d d
SA;,...,)\m(Xh en s )‘Xm) n ﬂ SJ\),(X;%) = SA;,...,Amq.l (Xla R 2 Xm+1) n n Shk(Xk) i
k=m+1 k=m+2

as locally convex spaces with equivalent spectra for allm e {1,...,d —1}. By induction
on m it follows that :

- d
SA\],...,Xd(Xir e 7Xd) = ﬂ S)\k(Xk)

k=1
as locally convex spaces with equivalent spectra. A : C
Obviously Sy, 3, (X1,...,Xg) = Sf\’i‘i““\ (X1,...,X4) as locally convex spaces with
equivalent spectra. . ' 0

In the remaining part of this section we deal with strongly cémmutg'ng self-adjoint
operators, i.e. self-adjoint operators whose spectral projections commute, or equivalently,
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self-adjoint operators whose Cayley transforms commute. In Appendix B the smoothed
space Sy ¢ is introduced for every locally compact Abelian group G, for every representation
7 in a Hilbert space H and for every subset C of L'{G) such that the pair (C, r) satisfies
certain conditions (i.e. at least P1 and P2.) We shall prove that for all strongly commuting
self-adjoint operators A;,. .., Ayin a Hilbert space H and for all Ay,...,\; > 0 there exists
a unitary representation = of some Abelian locally compact topological group G in the
Hilbert space H and a set C' C L*(G) such that the pair (C, ) satisfies conditions P1’,
P2, P3 and P4 (see Appendix B) and

Snipera(Ary ooy Ad) = Snc’
as locally convex spaces with equivalent spectra. We start with some lemmas.
Lemma 1.33 Let v > 0. Define for all t > Q the function hy : IR — IR by
hy(z) := e (z € R).
Then for all t > 0 there exists f, € L'(IR) such that f, = hy.

Proof. Since h; € L'(IR) and A, is continuous, by the Fourier inversion theorem it is
sufficient to show that A, € L*(IR). We distinguish two cases.

Case I. Suppose v > 1.
Then for all t > 0 we have for all z € IR\(q} that hj(z) = —tv|z|*'h(z)sgnz. So h, € D(P)
and IFh, € D(Q} Then (1 + |Q])k; € L2(IR). Since

hile) = 30 +1 1 [+ l2Dhe(=)]

for all z € IR we obtain by Hélder's inequality that b, € L’(IR),
Case 11. Suppose v < 1.

Let t > 0. For all z > 0 we have A{(z) = —tve™*"z*"%, s0 k) is an increasing function on
(0,00). Let k € INg. Define 4 : [0,%] - IR by

Pr(e) := hy(2km + 2) — hy((2k + 1)1 — :c} - ht((%‘c‘-{f ,1)7: +2) + hy((2k + 2)7 — z)

Then ¢y is continuous, ¥x(§) = 0 and for all z € (0,%) we have () = ;‘z;(Qkx +z) +
hi((2k 4 1)x — &) — hi((2k + 1)7 + 2) — h{((2k +2)m — ) < 0. So 4 (z) > 0 for all z € [0, ).
From this it follows that

(2k+2)x
V2rh(1) = / h(z)e ™ dz = 2/ hi(z) coszde =2 Z ] hy(z) cos xdx
k=0 gkr

2 2 / [ht(2k7r +2) — hy((2k + 1)1 — 2) = hy((2k + 1)1 + @) +

+ht((2k + 2)rr — z)] cos zdz

o0

2 Zj:ﬁk(z) coszdz > 0.



38 1. Gevrey spaces

So hy(1) > 0 for all ¢ >-0." Since he(y) = |y|~hs(1), where s = t]y|™*, forall y € IR\ (o} and
ht(O) > 0, we obtain that h, > 0 for all t > 0. Because h; is bounded we can use Theorem
31.42 of Hewitt and Ross ([HR2]) and conclude that k, € L(RR). : : a

Lemma 1 34 Let A be a self- adgomt operator in a a Hilbert space H. Forz € R define the
unitary operator w, on H by my := e"”“1 Let f € L}(R). Then «(f) = f(A).

Proof. By the spectral theorem ([MP], Theorem A7, page 497) there exist a measure
space {Y, B, m), a real valued measurable function % on Y and a unitary map W from H
onto L?*(m) such that A = WM, W with M} the multiplication operator by & in L%(m).
Without loss of generality we may assume that H = L*(m) and that W is the identity
map. Let £ € L’(m) Foralln € Nlet ¥, := {y € Y : |£(y)| > 1}. Then m(Y,) < oo for
all n € IN. By Lebesgue’s dominated convergence theorem and Fubini’s theorem, for all
n € L*(m) we have :

=en) = 7 —= [ @) mt s
- r/ | B 10,0 (eSO

00

= Jim o \/_ =/ / FE )

n—o0

= lim E }[ l[ f(z)e-tmk(v)f(y)ﬂ(y)dxd(lynm)(y)
= lim [ f(hw)e)nE)dd(1y,m)(v)
Y
= (.

This proves the lemma. V e}

Theorem 1.35 Let Ay, ..., Aq be d strongly commuting self-adjoint operétors in a Hilbert
space H and let Ay,..., g > 0. Then there exists an Abelian Lie group G, a representation
7 of G in H, and a set C C L}G) sucb that the pair (C,x) has Propeﬁzes P1',P2,P3
and P4 of Appendiz B and

Sagna(Ary ooy Ad) =:8xc

as locally convez spacés with equivalent spectra. Moreover, there exists a basis Xy,..., Xy
in the Lie algebra g of G such that dn(X,) = —iAg for all k € {1,...,d}.

Proof. Let G := IR? and let y be the canonical chart on G, i.e. take Cartesian coordinates.
For (zy,...,4) € R? define T(zy,.zq) - H — H by

~imdt o o e T,

T (zyynmg) = €



1.4. Gevrey spaces relative to commuting operators ' 39

Then 7 is a representation of G in H. For k € {1,...,d} let X := a%ko ,,,,, 0)- Then
dr(Xi) = —iAs. Forallt € R,t >0 and all k€ {1,...,d} define ht, : IR — R by

hre(z) 1=~ (2 € R).

By Lemma 1.33 there exists fis € L'(IR) such that ., = hz,. For t > 0 define f; € L'(IR?)
by fi(z1,...,xa) = fig(z1) - ...« far(24), a.e. (2y,...,24) € G. Then by Lemma 1.34 we
obtain for all t > 0:

2(f) = fis(A)o...0 fus(Ad) = hrg(Ar)o...0 hay(Ag).

Let C := {f; : t > 0}. Because f; * f, = fo4: for all 5,¢ > 0, the pair (C, ) has Property
P1’. Obviously the pair (C, ) has Properties P2 and P3.

Let ¢ > 0. Similarly to the second part of the proof of Theorem 1.4 it follows that there
exists s > 0 such that #(f;)(H) is continuously embedded in Sy, »,s(A1,: .-, Ag)-

It remains to prove that for all ¢ > 0 there exists s > 0 such that S, ;:e(As, ..., Ad)
is continuously embedded in #(f,)(H). So let £ > 0. Let

o= min(u ke (1))

and for k € {1,...,d} let

Ci=e +Z{({ }+1) }A t(3)" < co.

We shall prove that for all u € SA,,...,A,,;t(Au o , Ag) we have u € »(f,)(H) and [Jul|;, <

Cy ... Clullay,.. a5 So let u € Sy, 5,(A1,.. ., Ag). For typographical convenience we
write ¢ = [lullx,,..a.e- For k € {1,...,d+ 1} the hypothesis P(k) states: <

For all ny,...,ng € INy we have

Ao...oApue D (enlto o etaih)

and

[lestAemalt ™=t o ’I"”Im’ At o...0 AJul| <

< cC; Ck 1t""+ "'”‘n R

Obviously hypotheéis 'P(1) is true, this is just by definition of [juljx,,.rut- Let k €
{1,...,d} and suppose P(k) is true. Because the operators Al, ., Ag strongly commute,
we obtain for all ny,...,ns € INy that

1Ay 172
Amretsal 01 o o Ml goms o Aoy =

1/ 1 173
= eMrrl 0...0elAl™ g

o...0 Aju.
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Let fg,0en s Mpmt, 4Ty - - - ng € INg be fixed. Then fqr all n, € INg we obtain by Lemma
1.3.1V: : o ‘ '

I |Ak‘nk/)\ke-'IA»-1I’“"*1 o...0efMlt™M Azi-;x 0...0 Ayl <

< I |Ak|[fk/Ak]+lealAku1Il/s\k..z 0...0 831:41[?/&1{42::;11 o...0 AMu| +

. ‘ 1/ g T, 1/ '
+ "efle-af b 1”0 slAai / 3Aﬂ&+x 0...0 ATl
< eCyg-...- Ck-lt“"’f""“""““nk“!’\"“ LI g’Ad (i[n;,f)k;,]-i-l ([)‘ ] -+ 1)"\" + 1)
__<_ CCl L. C)‘ 113""“47'"'*’”6?3&.;.1"\?"“ et nd!;’““ .

(GG mme)

S0 . : . :
i\ Sl ” | A ‘nslh siAk-!f” '\""1 o b oe"'A““hAﬁf ..o Afull <
o ﬂk—o n V

< cc1 C’kt""“* A P g

Now the validity of hypothesis P(k + 1) follows.
So, by induction, hypothesis P(d + 1) turns out to be true. Hence

weD (69|Ad|1”d o0...0 es[Aqll:u) - ﬂ‘(f,)(H)

and fJullz, = e o ..o Pyl < s Calulayngt. -

Thus S. ¢ and S, 5 ,(As,...,As) ave equal as locally convex spaces with equivalent
spectra. By Corollary 1.18 the space SAI,__,,,\ Ay, ..., Ag)and hence S, ¢ is complete. ‘Then
by [tE], Theorem 3.12, the pair (C, 7) has Property P4. Thus the theorem is proved. D

Corollary 1.36 Let G be an Abelian Lie group with Lie algebra g. Let Xy,...,X; € g.
Let « be a representation of G in a Hilbert space H. Let My,...,Ay > 0. Then there exist
an Abelian Lie group K, a representation o of K in H and a set C C LK) such that the
pair (C, o) has Properties P1', P2, P3 and P4 of Appendiz B and

Srera(@7(X1), - - ., dn(Xa)) = S, 0
as locally convexr spaces with equivalent spectra.

Proof. It is well known that the operators idx(X;},... ,idw(Xg) are strongly comrauting
self-adjoint operators in H. (A proof follows from [HR2], Theorem 33.9 and the fact that
the dual group of R? is isomorphic with IR? as. topological group.) Now the corollary
follows from Theorem 1.35. ; o o . o o

Note that we use another group (K) and another representation (o), to describe
Sxtrerg(d7(X1), - -, d7(Xy)) in Corollary 1.36. It would be interesting if the same group
and representation can be used. That this can be done will be proved in case all A\, k €
{1,...,d} are equal.
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Theorem 1.37 Let G be an Abelian Lie group with Lie algebra g. Let X;,...,X4 be a
basis in g. Let 7 be a representation of G in a Hilbert space and let A > 0. Then there exist
a set C C LY(G) such that the pair (C,7) has Properties P1’, P2, P3 and P4 of Appendiz
B and

Sr.a(dr(Xy), ..., dn(X4)) = Sec
as locally convex spaces with equivalent spectra.

Proof. There exist dy,d; € {0,...,d} and a discrete Lie group K such that dy +d; = d

and G is isomorphic with T x IR* x K. (See [SW], page 155.) So we may assume that
d

G = T x IR* x K as Lie groups. Let e3 be the identity in K. Define y : (’II‘\{_I)) Y

R?% x {e3} — IR? by

y(e™,..., e x4 41,..., 24, €3) = (21,...,24)

(21,.--,24 € (—7,7),Tdy415.--,24 € IR). Then ((’]I‘\{_l})dl x IR” x {e3},y) is a chart
on G. Let e be the identity in G and for n € {1,...,d} let

2
-BI e ‘
Then Y3,...,Ygis abasisin g. So Sy, a(dn(X1),...,dw(Xy)) = Sy, a(dr(Y1),...,dn(Y3))
as locally convex spaces with equivalent spectra. (This is the crucial point where we use
that all lambdas are equal.) Let pyq, yip, 3 be the Haar measures on T, IR and K such
that x4y (T) = 1, p([0,1]) = 712—" and pz({es}) = 1. Let p be the product measure on
G = T x R% x K. We have introduced the identifications between the dual group IR
and IR, and between the dual group T and Z. Using these identifications, we identify the
dual group G of G with Z% x IR* x K in the natural way.

Let (A,m,I, A;,7;, W) be a Stone-representative for r. (See Appendix B.) For n €
{1,...,d} define h,: A — R by

Y, =

k. ifn<d
h,.(T,-(kl,...,kd,,a:l,...,:td,,tp)):={ oa ifn> d:
e Lky,... ki € Z,z1,...,25,€ R,p € R) Define p: A — K by
P(Ti(k1y s kayy 1y ooy Tayy ) i= A

(€L ky,....,ksy € Z,zy,...,29, € R,p € F) As in the proof of [HR2], Theorem 33.8,
for all ¢ € L%(m), for all z,,...,z4 € IR and for all z € K we obtain for a.e. a € A:

[Wu-(e.-,1 e .za,+:.--.,z¢,z)w_lf] (a) = e~imh(e) |, e-izdhd(a)[p(a)](z)e(a).

So dn(Yn) = W™IM_y W for all n € {1,...,d}, where M} denotes the multiplication
operator by & in L?(m) for every complex valued function  on A.
Let t > 0. Let n € {1,...,d;}. Define g, : Z — IR by
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gne(k) =" (ke Z).

Then g,',,tryey: 32(25) and since T is compact, there exists f,; € Ll(T) such that fm = G
Let n € {dy +1,...,d}. Define g,, : IR — IR by ‘

gna(@) = (z € R). |
By Lemma 1.33 there exists f,; € L*(IR) such that fn,g = Gnt: Define f; € LY{(G) by .
filzy, ..y 2g,2) = fl,t(ml') Seeet fd,t(xd)‘l{e{;}(z) v . '
for a.e. (3:1, s &y 2 )EG’ Let : - ’ T .‘
C:={f¢:i>(}}.

Clearly the pair (C,x) has Properties P1’ and P3. By definition of the concept of
Stone-representative we obtain that for all £ >0 and all { € L*(m):

Wr(f )W = e-ﬂhxlllz\~;..~t1hd[1;’)«§;

Hence the pair (C, 7} has Property P2 by Lebesgue’s theorem on dominated convergence.
Similarly to the proof of Theorem 1.35 it follows that S, ¢ = Sx A (dn(Yi),...,dn(Yy)) as
locally convex spaces with equivalent spectra. Moreover, by the same argument it follows
that the pair (C 7} has Property P4. : ‘ ‘ ' D



Chapter 2

Intersection of Gevrey spaces

In this chapter we prove that some Gevrey spaces can be written as the intersection of
Gevrey spaces relative to a reduced number of operators. We give a summary of results.

Let dy,dz € IN and let Xi,..., X4, Y1,..., Yy, be skew-Hermitian operators defined on
2 common invariant domain in a Hilbert space. Suppose that

[X;, Y;] € span{({X1,..., X4, Y55- .., Y8, })

foralli e {1,...,d;} and j € {1,...,d,}. So span({Xy,...,Xy,,Yi,---, Ys,}) need not be
a Lie algebra. Let Ay,..., Aq, fh1,. .. gy = 0. We prove that

..........

as locally convex spaces with equivalent spectra in the following cases:
I [X.,Y;]=0foralli€{l,...,di} and j € {L,...,ds}. (See Theorem 1.31.)
II. M=...=X; 21land gy =...= pg, > 1. (See Theorem 2.2.)

OL Ay da 21, = ... = g 2 0 and [X,, Y]] € span({¥s,...,Yy,}) for all
i€{l,...,di}and j € {l,...,d;}. (See Theorem 2.16.1.)

VL AyeiAg 21, i 2 000 2 pg, 2 0 and [X,,Y]] € span({Y;,...,Y,}) for all
i€ {l,...,di}and j € {1,...,d:}. (See Theorem 2.16.11.)

Moreover, let g be a real Lie algebra of skew Hermitian operators defined on a common
invariant domain in a Hilbert space. Let X;,..., Xy € g and suppose
g = span{{Xy,...,X¢}). Let Ay,..., Ay 2 0. We prove that

d
SA1,...,Ad(X11 ey Xd) = n SA#(Xk)

k=0

as locally convex spaces with equivalent spectra in thé following cases:
V. [X;,X;]=0forallé,je€ {l,...,d}. (See Corollary 1.32.)
VI 2L A2...2 M 2max(1,A) 2 Ag 2 0and

43
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[Xi, X;] € span({ Xumax(ij), - - - » Xa})
for all 4,5 € {1,...,d}. (See Corollary 2.18.)

We also consider non-invariant domains. Let G be a Lie group with Lie algebra g and let
7 be a representation of G in a Hilbert space. Let Xy,...,Xy,,Ys,..., Yy, € g and suppose
g=span({X1,..., Xg, Y1, ., Yo, }). Let Ay, .00 gy, i1y ooy gy = 0. Then

S.\;,...,,\dl Wit seeibidy (d”f(xl)? ey dr(Xg), dﬂ(Yl), . 'ya,éx(ydz)),ﬂ: .
= Sﬁ\l,-~~,kal (dﬁ'(Xl), ceny dW(th )) n Smw-,ﬁa, (dﬂ-(yl)s sy d"r(Y;iz))

in the following cases:

. [X;Y]=0foralli€e{l,...,d}and j € {1,...,d;}. (See Theorem 1.31.)

Ir. x=... =X, >landpy =... = > 1. (See Corolla,i‘y 2.3.) o

Ir. A,..h, 21, gy = ... = pg; 2 0 and [X,,Y]] € span({Ys,...,¥,}) for all
te{l,...,di}and j € {1,...,d;}. (See Remark following Corollary 2.18.)

VL Ay dgy 21, 0 2.0 2 pg, 2 0 and [X,,Y] € span({Y},...,Y4,}) for all
i€{l,...,d;}and j € {1,...,d:}. (See Remark following Corollary 2.18.)

Note that in general the domains of the operators dx(X;),...,dr(¥y,) do not equal their
(joint)} C*°-domains. (Cf. Example 1.14!) Similar results hold in cases V and VI.

In the proof of some intersection theorems we need some more operations on multi-
indices. Therefore we include a section about multi-indices.

Let G be a nilpotent Lie group with Lie algebra g and let X;,..., X  be a basisin g
such that

[Xi, X;] € span({ Xmax(ij)+15 - - - » Xa})

for all i,5 € {1,...,d}. Let = be a representation of G in a Hilbert space H. We prgve
intersection results for the Gevrey space V ‘

Srnrrddr(X0), .., dr(Xs))

incase y 21, A2 ... 2 A1 2 max(1,Az) = Az 2 0. From general theory, (Corollary
1.26), we know that this Gevrey space is dense in H if in addition Ay > 1. For the above
mentioned case, in Section 2.4 we even prove that the Gevrey space is dense in H if in
addition Ag > 0. - - '

Let 7 be a representation of a Lie group G in a Hilbert space and let A > 1. Let g
be the Lie algebra of G. The Gevrey space Sx__(dr(X1),... ,dir(X,g)) is independent of
the choice of the basis X4,...,Xy in g. In Section 2.5 we prove that there exists a basis
Xi,...,Xqin g such that

. d '
Sxa(@r(Xa), . .., dr(X2)) = ) Sx(dn(Xe))
" k=0
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as locally convex spaces with equivalent spectra. Thus exiending a result of Flato and
Simon. ‘ _

At the end of this chapter we present some topological remarks concerning an equality
of the form

d
SA;,_._,Ad(Als say Ad) - ﬂ S/\;;(Ak)'
k=1

2.1 Gevrey spaces relative to coupled sets of skew-
-~ Hermitian operators

Let dy,dy € IN and let X;,...,Xq4,,Y,...,Ys, be skew-Hermitian operators defined on a
common invariant domain in a Hilbert space. Suppose

[X:,Y;) € span({Xy,..., X4, Yi5. .., Yar })

foralli € {1,...,d1} and all j € {1,...,d2}. Let A,z > 1. In this section we prove the
intersection result ‘

S;\,...,A,p,...,;&(xla ey Xd; 3 },l: e Yé&) = SA,...,A(XI: sy Xd;) n Sp,...,p(}q: ey Y;iz)

as locally convex spaces with equivalent spectra. Thus we extend a result of Flato and
Simon ([FS], Theorem 2) in three directions at once. They proved the above intersection
result in the following very special case: A = g = 1; g := span({Xy,..., X4, ¥, ... Yo b
is an integrable Lie algebra and both span({Xi,...,Xy4}) and span({V;,...,Yy}) are
subalgebras of g. However, the theorem of Flato and Simon is also valid for represen-
tations in a Banach space. The essence of the proof in [FS] is that to each element of
S1,.1(Xey oo, X )N Sy, (N, .. ., Ya,) a function is constructed, which is separately real
analytic and because of a result of Browder ([Bro]} this function can be shown to be jointly
real analytic. The proof of our more general intersection theorem is based on totally dif-
ferent techniques.

‘Let V= {1,...,d1}, Va:= {1,...,dy} and V := {1,...,d}, where d := d; + dz. Let
Zy = Xv,.. ., 24y i= Xayy Zaynr i= Yi,..0, 24 := Yy, For all k,m € Ny we define the
subset Uy, of M(V) by

dy d

i=1 fm=dy 41
Lemma 2.1 There ezists a constant M > 1 such that for all k,m € N and all v € Uy,
there exist £ € Vi, § € Uy, €15+ s €aym € R, 01,00, 00 € Uy, by, o 00 bgm € IR
and N1, ..., Ndym € Uk—1,m such that : :

dim dam
Zy=2sX: + Z &2, + Z bgZngs

p=1 =1
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leod S M forallpe {1,...,dim} and |b| S M forallqe {1,...,dym}.

bl

537"

Proof. By assumption, for all { € V1 and j € V; there exist ¢} ;

N ’C%m bg'; €R
such that -

dy
X, %) = 35X+ 308 1

1=1 =1
Let M := 1+ max{|c};|:¢,1€ W, j € Vo} + max{|b},| : 1 € Wi, 5,1 € Va}.

. Let k,m € IN and let v € Ux,n. We may assume that the last index of the multi-index
7 is not an element of V3, since otherwise we can write ‘Z,, = 75X, for some § € Up-1m
and z € V;. Thereexist f € M(V),z € Vi, n &€ {1,’...,m} and ‘fi,...;jn € Vz such that

= ([3, z,d; +j1, iy +]n) Then

Zy = ZpY;'I 0...0Y;, Xo + Zgad X (Y 0. oY,“)

d1
= LYooV X+ 53 Y, 00 0%, (Z ,J,Xe) i 0 0¥y, +
i=1 =1

‘n
+ZﬂZY}3°---° ( z,J Y,

=2

Y;

Jl-l-l

This proves the lemma. : )

Theorem 2.2 Let dy,dy € IN and let Xl, Xd,,Yl, Y}z be skcw—Hemztwn apemtors
in a Hilbert space defined on a common invariant domam Suppose —

[X:,Y;] € span({Xy,..., X4, Y1,..., Y5, })
foralli € {1,...,di} and j € {1,...,dz}. Let A, p 2 1. Then

Sxinpea(Xtye o s Xty Yay -0, Y ) = S, ,,\(Xu 3 Xy)0 8, (Y., Yay)
as lamf&; conver spaces w;tk equivalent spectm

Proof. Let Vi, V;, V, d, Ui, Z; be as above and let M > 1 be as in Lemma 2.1. Let
b= 3. Mitedr | Lot t > Md and let u € Sy 3e( X1y ..o, Xa )N Sy (Wi, - ., Ya,). We
shall prove that u € Sy x,,...upt(Z1,. .., 24) and that

lullzy...Zar A ,n;bis llllxs... Xty 3hsee it + ey, I FRTRN

Let ¢1 = ||ullx,,...x4 2.0 a0d €3 := ““HY:. Yyt~ For N € INo hypothesis P(N)
states:

 (YpZeXat, )] < cxc I o] 4 R +m)¥ (21)
for all k,m € Ny, & € M(V3), B € M(V3) and 7 € Uy, such that k+m = N.

Uk=m=0,aec M(W), B € M(V;) and 4 € Uy, then v = (). Therefore by Schwarz
inequality and the definitions of ¢; and c; we obtain that ' .
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|(Ys 2, Xau, u)l = |(Xou, Yoru)| < || Xoul| [Yoru]l < cxth®l]|erf|Penth] 12,

So hypothesis P(0) holds.

Let N € IN and suppose hypothesis P(N — 1) holds. Let k,mm € INg, @ € M(V}),
B € M(V2), v € Uk and suppose k+m = N. If k = 0 or m = 0, inequality (2.1) follows
by hypothesis P(0). So we may assume that k£ # 0 and m # 0.

Suppose k > m. By Lemma 2.1 there exist x € W, § € Uk—1,m, €1,---,¢am € IR,
01y 00m € Ugm1, b1y ooy bty € IR and 14, .., 94ym € Ug—1,m such that

d;m dgm
Zy = Zs Xz + E cpZg, + Z by Zy,
pr=1 g=1

and |¢p| < M and |b,| < M for all p,q. Now we obtain by induction hypothesis P(N — 1)
and the inequality dM < t:

(Ys 2y Xau, u)| <
dlm dgm
< |(YVpZsX @y, w)l + 3 lepl (Yo Zo, Xaw, u)| + 3 1bg] (Yo Zn, Xou, u)|

p=1 g=1
< cl623II~III-ltIIaII+IIﬂII+IIvII(||a|| + k)!A(”ﬁ“ +m)* +
+ dlmMclc23II'r|I—1tIIaII+IIﬁlI+II'vII—1(”a“ +EPIBI £ m = 1) +
+ dym M, ¢, 3H=1gllal BN (1 0| + & — D) (|8 + m)1#
cl023II'vll—ltIIaII+IIﬁII+II‘YII(”a” + k)y\(”ﬁ” +m)*.

, m m__ (el +#)
(l BT+ my T el + %) (el + k)*)
< cl623II1IItIIaII+II/3II+II-y||(||a|| + k)!*(||ﬂ|| + m)lk,

IA

+

In case k < m a similar argument can be used by decomposing Z,, = Y, Zs+”small terms”.
This proves hypothesis P(N).

In particular, for all k,m € INg and 7 € Ui we obtain that |[(Z,u,u)| <
c1ca(3)MEPmi. Now let v € M(V). Let k,m € INg be such that ¥ € Ugm. Then
(7*,7) € Uzk2m and we obtain by Lemma 1.3.V:

N2l = [(Zraytes )] < cxca(BPPI(2R) 2m)
2
< [ter+ e) @Myl oyl vl e - D)
So u € S, auyupt( s+ oy Zg) and ||ul|z,,... 240 Arpsyeipt < €1 F Cae
Since the identity map from S, a4,..u:t(Z15- .., Z4) into

St Xy oo, Xag )N Sy, ut(Ya, . . -, Yg,) is continuous for all £ > 0, the theorem follows.
[m]

Corollary 2.3 Let G be a (real) Lie group with Lie algebra g. Let dy,d; € IN and let
X1,y Xy, Y1, .., Yq, € 8. Suppose '
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g =span{{X;,..., X4, Y1,..., Y, }).
Let w be a representation of G in o Hilbert space H. Let A,p > 1. Then

Snrpn(AT(XL), AT ( X)), dR (Y, ..., dn(Yy)) =
Adn(X1), .., dn(Xa)) 0 Sy u(dr (Y1), . .., dr(Yay))

.....

as locally convez spaces with equivalent spectra.

Proof. The operators dn(Xy),...,0n(Xy),0r(Yy),...,0n(Yy,) are all skew-symmetric
and admit H*®(x) as their invariant domain. By Corollary 1.26 we have

Doo(dﬂ'(Xl)’ cery dW(Xdz)) n Dm(dw(yl)a sy dw(lfdz))
dy dy
C () D*(dr(X,)) N (] D=(dn(Yi)) = H™(x)

k=1 k=1

= D®(dr(Xy),...,dx(Xg), dx (Y1), ..., dn(¥y,))
- Dw(d“'r(xl)a Lo ;dx(Xch)} n Dw(dﬂ-(}!l)a o ,dﬂ'(}’;*g)).

So

Dm(dw(Xl), conydm(Xg,), de(N1),. .. dre(Yy,)) =
= H®(x) = D®(dn(Xy),...,dxn(X4)) N DX(dx (Y1), ..., dx(Ys))

as sets. With these equalities, Theorem 2.2 implies that the following spaces are equal as
locally convex spaces with equivalent spectra:

Satprep( @8 (X)s o oy dn(Xy,), du(Yr), . o, due(Yy,))
Sttty (BT(X1), . . ., O7( Xy, ), 87 (11), . .., 87(Ya,))
S, n(07(X1),. .., 07(Xg )N S, u(On (), . .., 87 (Yy,))

S;\,‘..,,\{d"'*'(Xl)s eny éW(Xdz)) N Sm---,u(dw(Yl)? sy d“(nz))'

Remark. The replacement of dr(X}) by dn(X;) as shown is this corollary can be carried
through in all forthcoming results of this chapter. (Namely in 2.5, 2.6, 2.16, 2.17, 2.18,
2.32.) We will not give further explicit proofs in this matter.

The last equality in the following corollary has been firstly proved by Flato and Simon.
(See [FS], Theorem 2.)
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Corollary 2.4 Let G be a real Lie group with Lie algebra g. Let g, and g; be subalgebrus
of g such that g = g, + @,. (Not necessarily o direct sum.) Let Gy and Gy be subgroups
of G which have Lie algebras g, and g, respectively. Let © be a representation of G in a
Hilbert space H, and let 7y and =, be the restrictions of © to G; and Gy respectively. Let
Zyy.oyZg be a basis in g, let X;,..., Xy, be a basis in g, and let Y, ..., Yy, be a basis in
ge. Let X > 1. Then

Sron(dm(Zy), ..., dn(2y)) =
=G, (dm (X)), ., dr{ X)) 00 S (dre (Y1), . dia(Yay))
as locally convex spaces with equivaleni spectra. In particular,
Hy(x) = Hy(my) 0 Hy(m3)
as sets and
HY(x) = H{=,) N H*(x3)
as sets.

Corollary 2.5 Let g be a 2-dimensional real Lie algebra of skew-Hermitian operators in
a Hilbert space defined on a common invariant domain. Let X,Y be any basis in g and let
Mu>1. Then ’

S.u(X,Y) = SA(X) N 8u(Y) = ST(X.Y)
as locally conver spaces with equivalent spectra.

Corollary 2.6 Let g be a solvable real Lie algebra of skew-Hermitian operators defined on
a common invariant domain. Let X, ..., Xy be a basis in ¢ such that

L; := span({Xy,...,X;}) is a subalgebra of g end L; is an ideal in L4y for all i €
{1,...,d}. Let A\ > 1. Then

d
Sreer(Xn, .o, Xa) = ) Sa(Xe) = S (X4, Xa)

k=1
as locally convez spaces with equivalent spectra.

Proof. By induction to d it follows that Sy (Xi,...,X2) = Mo S\(X4) as locally
convex spaces with equivalent spectra. (Cf. the proof of Corollary 1.32.) Let ¢ > 0. There
exists s > 0 such that the identity map from Ni-; Sr:(Xi) into Sy, x6(X1,. .., Xa) is
continuous. Then the inclusions »

d
Sneerit X1y oo, Xa) € S5 (X, Xa) €[] Sxie(Xi) C Sonia( X, -+ -, Xa)
k=1
are continuous. So the spaces Sy, (X1,...,Xs) and 8§59 (X, ..., Xs) are equivalent as

locally convex spaces with equivalent spectra. m]

Remark. A Lie group version for the last two corollaries can be formulated similarly to
Corollary 2.3. (See the Remark following Corollary 2.3.} The Lie group version in case
A =1 of Corollary 2.6 has been proved first by Goodman, [Goo2], Corollary 3.1.
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2.2 Multi-indices (Part 2)

In the proofs of intersection theorems of the form
S)&;,...,Ad) 41 e rbbdy (X1$ e )Xd17 1/1’ e 7Y:f2) =
= S}m»-u\dl (X1, Xg) N Sﬂ‘lvnal‘d@(n? < Ya)

where [X;, Y]] € span({¥1, ..., Yy, }), we want to write X, Y3 as a sum of terms of the form
cY;X,,. In this section we introduce some more operations on multi-indices in order to
develop tools to calculate which v and 6 occur in this sum.

Let n € IN and let k € INp, k < n. We define the subset -P? of the symmetric group Sy
by ‘

,?:={0'€Sn:a(n)<o(ﬁ—1)<...<0(3c+1)anda(k)<o(k—1)<...<a(1)}
Hk¢{0,...,n} and we define

n " 1 2 e n
F; :=Pn:={(n el .- 1)}

Note that in these definitions P? does not occur. Therefore, let oy be any object which is
not an element of |2, Uf_g PF. We define

P := {op}.

Let V be a fixed non-empty set and as in Chapter 1, let M(V) denote the set of all
multi-indices over V. Let n,k € INg be such that £ < n and let « € M(V) be such that
lla|| = n. Let o € Pf. We define multi-indices (e} and &(a) over V by

Fola) :=dp(a) :=()ifn=0,
and if n # 0 and o = (J1,...,Jn)

5‘(&) == (jor(k}, e ,jo-(l)) if k+#£0,

Fla) = () if k=20,
&(Q) = (ja»(n), e 7ja(k+1)) if k #:‘n,
Fla) = (). if k= n.

(These definitions are inspired by the formulation of Lemma 2.11.)
We summarize some elementary facts.

Lemma 2.7 Let V be a non-empty set, let n,k € WNg, k <n, let o € PP and let a € M(V)
with |lall =n. Then

card P} = (Z) ,

&)l = k,
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Jo@) =n—k.

Furthermore, there exists a funétion 1:V — [Ny such that
Y lw)=
eV

and
fo(a)lle = llafle — (v} forallve V.

In the remaining part of this section let V' be a non-empty totally ordered set with
ordering <. A positive mutation {(on V) is a function g : V X V — Ny such that

pv,w)=0forall v,w € V withv > w.

Let a, € M(V) and k € INo. We say that a is connected with 3 vie a positive mutation
of length k if there exists a positive mutation u on V such that

ledlo + 3 [e(w,v) — p(v, w)] = ||Blls  forallveV,

weV

> uv,w) =

v, weV

(This definition is inspired by the formulation of Lemma 2.12.) Then
ledlo + 3 p(w;0) = 3~ ulv,w) = [|8lls
w<y wHv

forallve V.

Remark. If o is connected with § via a positive mutation of length k, then in general it is
not true that A is connected with « via a positive mutation of length k. Also the positive
mutation g is not unique and it is well possible that ais connected with B via a positive
muta,tzon of length l with [ € lNo, l#k.

Lemma 2.8

I  Let a,f € M{(V) and let k € INy,. Suppose a is connected with B via a positive
mutation of length k. Then ||| = ||8]].

II. Letn € N,ap,...,00,B1,.-., 80 € M{V) and let ky,...,k, € Ny. Suppose a; is
 connected with B; via a positive mutation of length k; for all ¢ € {1,...,n}. Then
{o,..., ) is connected with {By,...,B,) via a positive mutation of length Y0, k

IOI. Let o, fB,v € M(V) and let k,1 € INg. Suppose a (resp. ) is connected with f (resp.
4) via a positive mutation of length k (resp. 1}). Then « is connected with v via a
positive mutation of length k + 1. (Transitivity.)

Proof. I trivial, II: induction, III: trivial. {Take g = py + gp.) : O
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2.3 Gevrey spaces, Lie algebras of operators and
their ideals

Let d;,d; € IN and let Xy,...,X4, Y, .., Y, be skew-Hermitian operators in a Hilbert
space defined on a common invariant domain. Suppose -

Xy, Y] € span({Xy,..., Xq, Y1,..., Y8, })
foralli € {1,...,d,} and j € {1,...,d,}. In Section 2.1 we proved that

: S)\W',\,,‘,m,p(x1, cae aXdl,qu - ,Y:gz) = S,\,,",A(Xh Ceny Xg,) N Sﬂ,,._,#(Yl, . Y‘;g)

for all A,z > 1. In this section we consider the stronger assumption that
[Xh Y;] € Sp&n({Yl, tery de})

forallz € {1,...,dy} and j € {1,...,dz}. (For exampleﬁ'the operators
Xiy...3 X4, Y1, .., Yy, span a Lie algebra g and span({Y, ..., Yy, }) is an ideal in g.) Under
this stronger condition we prove that

SA;,...,Sal,u,...,u(le cevy Xd: ] Ka RN y:iz) = S)q,...,)udl (Xh ey Xd)) N Sp,...,u(Yis . b Y’dz)

for all Ay,..., g, 2 1andall p 2 0. ;

In the second part of this section we consider nilpotent Lie algebras and certain solvable
Lie algebras. Namely, let g be a Lie algebra and let X;,..., X4 be a basis in g. The basis
Xy, ..., Xqis called an ordered basis in g if ’ ' k

[X:, X;] € span({ Xmax(ii), - - - » Xa})

for all 4,5 € {1,...,d}. Not every solvable Lie algebra has an ordered basis; but every Lie
algebra which has an ordered basis is solvable. Every nilpotent Lie algebra has an ordered
basis. Let g be a real Lie algebra of skew-Hermitian operatérs in a Hilbert space defined
on a common invariant domain and let X;,..., X, be an ordered basis in g. Let Xy ‘2 1,
Az 2 ... 2 Ag-1 = max(Ag, 1) 2> Ag 2 0. We shall prove that

d
SnredaXs e Xa) = S50 5, (X, Xa) = [ $0,(Xa)
k=1
as locally convex spaces with equivalent spectra. A
Because the proof of the following special case is much shorter than the proof of the
general case, we present the following theorem. For technical reasons, we interchange the
role of the operators X and ¥},

Theorem 2.9 Let dy,d; € IN and let X;,..., X4, Y3, .., Yy, be skew-Hermitian operators
in a Hilbert space defined on a common invariant domain. Suppose

[Xi,Yj] € Span({le o 7Xd1})
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forallie {l,...,di} and j€ {1,...,dy}. Let A2 0 and p > 1. Then
SA,,..,A,;;,...,;;(XI‘: e stu Yh ey Y;iz) = SA,...,A(Xh ey Xdl) N Sp,...,u(yl) e aY;iz)

as locally convex spaces with equivalent spectra.
We emphasize that ¢ may be taken smaller than 1.

Proof. Because the set-up of this proof is the same as in Theorem 2.2, we only present
a sketch. Let Vi, V4, d, Z; and Uy, be as in Section 2.1. Because the coefficients b} ;in
the proof of Lemma 2.1 can be taken equal to zero, we obtain that there exists a constant
M > 1 such that for all k,m € IN and all ¥ € Uy there exist ¢ € W, § € Up-ym,
ClyreerCaym € R and &y,...,04,,, € Uy g such that

dym
Z,, = Zs Xp + Z CpZaP (2.2)
pr=1
and le| K M forallpe {1,...,dym}.

Let b:=3-2M144d Let t > Mdand letu € S5, »a(X1,. ., Xa )N Sy t(Ye, - -, Yay).
Let ¢;, ¢; and the hypotheses P(N)}, N € IN; be as in the proof of Theorem 2.2. Again
hypothesis P(0) holds.

Let N € IN and suppose hypothesis P(N —~ 1) holds. Let k,m € INy, @ € M(V),
B € M(V,), v € Upm and suppose k + m = N. We may assume that k # 0 and m # 0.
By decomposing Z, as in equality (2.2) we now obtain:

(Yo Zy Xau,u)| £
dim
< |(YpZsX(zayu, )l + 3 lep| |(YoZo, Xau, u)|
p=1 '

< 6162311'1![“ltllall-i-llﬁ!lﬂhll(“a“ + Ic)!A("ﬁ“ +m)* +

+ dymM ey ep3ii-glletHIBIHMI=L () 4 £V Bll+m—1)¥

61623"’7!i—ltllall+llﬂll+|h||("a" + k)l'\("ﬂ” + m)¥ (1 + M)

IA

< g3l HIBIH Lo + BYA(|| 8] + m)!-.

This proves hypothesis P(N). The remaining part of the proof is the same as the corre-
sponding remaining part of the proof of Theorem 2.2. _ B

For the proof of the general case we have to make a lot of preparations. Let dy,d; € IN
and let Xy,..., X4, Y1, .., Yy, be skew-Hermitian operators in a Hilbert space defined on
a common invariant domain D. Suppose

[Xt',}?} € spa,n({Yl, ne 91/:12})

foralli € Vi:={l,...,d1} and j € V3 :={1,...,da}.
Let Hom(D) be the vector space of all linear maps from D into D. The following lemma
is due to Nelson ([Nel], Lemma 2.1.)
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Lemma 2.10 (Nelson.) Let n € IN and let Zy,...,Z, € Hom(D). Let W € Hom(D}.
Then k

Zl 0...0 Z,,W = Z Z [adZa(k) cen adZ(,(l)(W)]Z,,(n) 0...0 Za(k+1)-

k=0o€Pp

This lemma leads to the following definition. Let V; := {l i}, Vo= {1,...,dg}
and B € M({V,). Define D*(Y) € Hom(D) by : :

a’dei a‘dX.ik{Yﬁ) if “Ot” # 0and a = (jla cae sjn)a

D)= { v, it ol = .

We rewrite Lemma 2.10 in our notations. The lemma is also true for a = ( ).

Lemma 2.11 Let o € M(V,) and B € M(V2). Then

Hedl
XYp=3, 3 DONVp) X
i=0 GP“GH

Lemma 2.12

1 There ezisi constants M > 1 and c§_, € IR, 'whea;e o € M(W) and b,v € M(Vz)

such that
D*(Yg)= 3. §.Y, forallae M(V,)and B€ M(V3), . (2.3)
yeM(Va)
Gy =0 for all o € M(V3) and B,y € M(V3) with ||]| # v}, (2.4)

el < (MUY for all o« € M(V1) and B,y € M(V3) with ||8]] = |17]].(2.5)

II.  Suppose [X,,Y;] € span{{Y},...,Ys,}) forall i € {1,...,d\} and j € {1,...,d;}.
Then the constants c§_, in I can be chosen such that in eddition: for all @ € M(V})

and B,v € M(Vs) with ¢§,, # 0 we have that B is connected with v via a positive
mutation of length ||al|.
Here, the ordering for Vy is the natural one.

Proof. There exist (possxble non-unique) constants ¢; ;4 € IR, where ¢ € V; and j, % € Vs
such that

dz
(X, Yi] = 3 cijuYe . (2.6)
k=1

foralli € Vj and j € V5. Let

My =1+ max{|cijs| 15 € Vi, 5,k € Va}.
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For all f,7 € M(V;) take c&), == 1 if 8 = v and cf), := 0 if B # 7. Take c,, := 0 for all
o € M(Vi)\yp and 8,7y € M(V;) with = () or v = (). Then (2.3), (2.4) and (2.5) hold
for all @ € M(V,) and B,v € M(V2) such that @ = (Y or f = () or v = ( ). We define
5 :=0for all @ € M(V}) and B,y € M(V2) with ||B]| # |I]l-

Let m € IN. Now we want to choose suitable constants ¢, such that (2.3) and (2.5)
hold for all @ € M(V4) with a # () and 8,7 € M(V2) with ||B|| = |||l = m. Let : € i,
pe{l,...,m}andlet k € Va. For § = (j1,...,jm) € V3" C M(V;) define

fp,k(‘s) = (jl:’ .. 1jp-13 kvjp+1) e >jm)

and
Gipk(8) = Cijp ke

letneIN,a €V andlet § € V. Let o = (i1,...,1,). It follows by induction to n that

m d}

m dp
D*(Ye) = X3 2 D GinpakalB)  Ginmsoncsbns (Fonka(B)) - -

ri=lki=l  pa=lknx=l
vt ik (fp29k2 0...0 fpmkn(ﬂ))ytfp, ey 00 S i (B) ¢

Now the definitions of ¢§_,, with v € V™ speak for themselves. For v € VJ™ we define

cg,’r = Zgén,m:&a(ﬁ) N gin-ls?n-11ka—l {fpny&‘n (38)) Teeet gil P1.k1 (fm,kz 0...0 f?n;kn(ﬁ))

where the sum is over all py,....p, € {1,...,m} and k;,..., %k, € V; such that v =
Jorky © - © fouka(B). This proves (2.3), and clearly ||8]| = ||7]| and |c§ | < m*dz M7 =
(da Mol Bl |

II. Now suppose that [X;,Y;] € ({¥j,...,Ys,}) for all i € V; and j € V,. Then the
constants in (2.6) can be chosen such that ¢;;x = 0 for all j,k € V3 with j > k. We define
G, asin L. Let « € M(V1), B,7 € M(Vg)rand suppose ¢, # 0. We may as well assume
that « # (), B# () and v # (). Let m:=||Bll.= ||7l| and let 4s,...,i, € V; be such that
a = (f1,...,0n). Let for and gip be asin L

Let § = (j1,...,0m) € Vi", let i € Vj, p€ {1,...,m}, k € V; and suppose g;,:(8) # 0.
Then ¢;j,x # 0. This implies that j, < k and so § = (j1,...,Jp,-..,Jm) is connected
with fp1{8) = (J1s+ s Jp—1: Ky Jpt1s - -+ » Jm) Via a positive mutation of length 1. (Take as
mutation g{v,w) :=1if v = j, and w = k and p{v,w) := 0 else.)

Since c§_, # 0 there exists pr,...,pr € {1,...,m} and ky,..., k, € V5 such that

gimpmkn(:@) * Gin—1,pn—1,kn—1 (fpmkn(ig)) Ceet Gipk (fpz,kz 0...0 fpmkn(ﬁ)) 74 0

and

T = fpl,kx G...0 fpn,kn(rg)‘
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Then ga,,,p,.,k,,(ﬂ) #0and ... and gi, py 4, (fpz,kz 0...0 f?mkn(ﬂ)) # 0. Because :

GinpadnlB) # 0 we obtain that B is connected with f,, £, (8) via a positive mutation of
length 1. Because gi,_, . s koot (fonin(B8)) # O we obtain that f, .(B) is connected with
Fonorgines{foaka(B)) via a positive mutation of length 1. Then by Lemma 2.8.11I1, 8 is
connected with fo, 4 ki (fonka(B)) via a positive mutation mutation of length 2. By
induction, f is connected with f, 4, ©...0 f. x,{B3)) =7 via a positive mutation of leﬂgth
n = llal. ~ | o

Lemma 2.13 Let 8,7 € M(V), let j € No and let py > py > ... 2 pg, > 0. Suppose p
is connected with v via a positive mutation of length j. Then

Il - st < 20 gt Bl
Proof. In this lemma we write d := d;. Let r be a positive mutation on ¥; such that
181l + % [r(w,v) — (v, w)] = |l7llo - forallv € V;
weVy
and
Y. T(v,w)=.
vweEVy

We write 7,4 = 7(v,w). for all v,w € V2. So
18lo + 3 Tww = 22 Tow = [l7ls
wHy .

wy

for all v € V3. Then by Lemma 1.3:

vl - yllat®e =
(Bl =ma2— o= - (IBlla + 12— T3 — ... = ma)** - ...
. ("ﬂ“d + Tl,d + e+ Td—l,c{)!“‘«

Bl r ™ gl (guz)"ﬁ"?‘l*’”m Bl 7y g2y 512 - L ,,.2-'5:

A

(Zus)2(ll§l£s+ms+n 3) [|Blls#ory gty gtarsbs 1.3—:3 N
d .
(gua)( B{lIBllatmy gt ot Tams,a) 18l a#e 7y ot . Td-l ;
d Ty 0™
(202) IRl + +HiBlla+ 3, , 7o) W8I - .. - ||Bllai H e
»,wEVy v

vlw

IA

H8ll+3 :
(%) 1Bl - 1Bt
Note that the ordering of the p’s is only used in the last inequality. o

IN

Lemma 2.14 Let p € IN and let my,...,m, € INy. Let j € INg. Then

mj} . . mjl’ m?

o AL B

b gt !
F1seensdp€ENo J1 p J
jl‘*‘-w“‘jp:j
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where m:=m1 +...+ my.

Ik .
Proof. Let z € €. Then %,— is the coefficient of 2* in the power series of e™#*. Then

g, . mip
my ... m

2

;1. .11
i1reip€No 1 Ip
J1+.tip=j
is the coeflicient of 27 in ™% ., ... e™P* = ™ and this coeflicient is ’;‘—, O

Lemma 2.15 Let p € IN and let ky,...,kp, j1,...,5, € No. Let k:=Fk +...4+ k, and
Ji=J1+ ...+ jp. Suppose j < k. Then '

(kl)_(k1+k2-—jl).._(k1+...+kp-—.j1—...~jp_l>< ko1
n J2 Jp _(k_j)! jl!'-l-‘jp!
Proof. We may assume that j; < ky,...,jp <k +...4+ ky—j1—...— jp-1. Then

(kl). _(kl+...+kp-—jl—...—jp_1)=

1 Ir

_ k! (k1 + k2 = 52)! _(k1+...+kp—jl—...—jp_1)!

ik =) Rl k=gl
_ k! (ky+k—g\ k! (ki +k+ ks~ 51— g2 .
71! ks Ja! ks

_kp__ll(k-—jl—...—jp_l) k!

" Jp! kp otk — 5)!

< KR! (k1+k2) ky! <k1+k2+k3> Y (k) k!

- ! ky ) ja! ks T gt \be) Gpl(k— )]

k! 1
G—3) il gy

Ip!(k — 7)!

We now prove the main theorem of this section.

Theorem 2.16 Let dy,d; € IN and let Xy,...,Xq,,Y1,...,Yq, be skew-Hermitian opera-
tors in -a Hilbert space defined on a common invariant domain. Suppose

[Xi, }/]] (S SPa-n({Yl, ey de})

foralli € {1,..;,d1} and j € {1,...‘,d.2}. Let \y,..., g, 21 and let py > ... > pg, > 0.
Then

S/\l,...,/\dl VL yeeesbhely (Xh e 7Xd1, }/Ia ey ng) =
= S)\l,...,)\dx (Xla sy Xdl) n Spl,...,uh (},l’ ey Yd:)

as locally convex spaces with equivalent spectra, in the following two cases:.
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1 p1=...=g;gg.

II.  [X,Y] € span{{Y},..., Yy, }) foralli € {1,...,dy} and j € {1,...,dz}.

Note that g; may be taken smaller than 1.

Proof. Let Vy :={1,...,d,}, Va:=={1,...,d;} and let M > 1 and let ¢§, be as in Lemma
2.12.
Let t > 1 and let w € Sy, 20 (X1, X)) N Spyug 1Yy Ya,). Write ¢ o=

”uuxbm,xdl:>~1w~v\d, ¢ and cp = ”u”}rlv"fydg;”ls'-w“dz;t' Then
1Xau < atll)afy-...-|lalls,Pa forall a € M(V}),
IYau| < cpthB) Bl it - ... ||Blla!*  for all B € M(V5).

We shall prove that [ul|x,,...xs %.. YagiMomhdy it entigg bt < €1 + €2 for some constant b
independent of u (and in fact, also independent of ¢). Let p' € IN, o, ..., e}, € M(V,) and
Bis..., By € M(Vz). Then

”Xa;}/;g; 0.,..0 Xa;)y;g;,unz =
= }(Yiﬁ;’}rX(a;l)r 0...0 Yy XyXaYp 0.0 Xa;‘i’b;‘u,u)[.

We introduce the following notation. Let p:=2p' + 1. Let

oy = () oy = ()
B = (By) Bpar = ()}
o = (o) opyy = 0
B2 = (Bpa) Bpyz = b
op = (ah)f ay = o
By = (B By = 5;'

By Lemmas 2.11 and 2.12 we obtain that
et

XY=Y ¥ X §%Xe
3=0,¢plel ~eM(Va)
lili=tliall
for all a € M(Vi) and A € M(%) So Z := Y(g;’)rX(a;’)r 0...0 },(gi)rX(a;)rXa;}%; 0...0
Xa;, YB,’,, = Xo, Yp 0...0X,,Yp, is a linear combination of monomials Y3 X,,. By induction
to p it follows that Z is the sum of

a1(é1} Fp(8p)
cﬁ;."nl T :,'r: Y('?h *"!:-v}X"p('gp]

where the sum is over all j; € Ny, 71 < ||| with &y 1= 04, all 0y € P’!ls’", all v € M(V,)
with [y = {5,
over all j, € No, j2 < [|6]] with &, = (61(61), ), all 05 € PN, all 4, € M(V3) with
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vzl = [1Bell, - -
over all j, € No, j, < [|6,]] With 8, := (6,-1(8p1), @), all &, € P, all o, € M(15) with
Il = |By||. Consider one term of the sum \

F1(61) . Fo(Sp

)
c)@lﬂl et cﬂpr”fp K"flvﬂ»’YP)XéP(&P)

which is not zero and which corresponds to the tuple j1, 81,01, 71,5+ - « 3 Jos Opy Tpy Yoo Let &y 1=
[lei|| and m; == ||Bi]] = ||v:l| for all s € {1,...,p}. Let k:=ky+...+kp, m:=my+...4+m,
and §:=jy +...+jp. Let a:={on,...,a), B:=(B1,...,0p) and ¥ := {m1,..., 7). Then
ji<lsll=k+...+ki—j1—...—jiy foralli € {1,...,p}. Moreover, k = ||a| and
m = ||B|| = ||7|l. By Schwarz’ inequality we obtain that

l(Y’("Ils---v‘Yp)Xap(ap)u? u)l = I(‘X&pfsy)u7 Kfru)l S ”X&p(ap)u“”nru“ S
< et ()M - 118, e - il - gt e

Let I(v) := ||l — [|55(6,)]ls for all v € Vi. Since o; € PY%! for all 4, it follows by induction
to p that {(1),...,1(d1) € INg and that ¥y, I(v) = j. (See Lemma 2.7.) Then by Lemma
1.3:

620801 - E(pllle s < lladla? <. flellg, P QN - (U(d))
< lladlst™ - fladle, P Q- (U
< el - flerllg, P2t

This is the only place where we use that A,..., Ay, 2 L.

Next we estimate the factor ||y|[s!# - ... ||v]ls,!**% in the cases T and II

Case 1. Suppose py = ... = pig,. :
Then [yl - ... [[fle 44 < [lyl|ts = |81 < 240%™ Blly 1 - ... - ||Blg;!*% by Lemma
1.3.

Case 11. Suppose [X;,Y;] € span({Y},..., Y5, }) for alli € V; and j € V5.
This case needs more care. Now we can use Lemma 2.12.I1 and so we may assume that
the constants cj,, are as in Lemma 2.12.11. Recall that we are considering a non-zero term
of a large sum. So the coefficients cg:(::) are not zero for all ¢ € {1,...,p}. Hence by
Lemma 2.12.I1 we obtain that §; is connected with +; via a positive mutation of length
|7:(8:)|| = ji- (See Lemma 2.7.) Therefore by Lemma 2.8.11, 8 = {f,,..., B,) is connected
with ¥ = (y1,...,7) via a positive mutation of length j = j; + ...+ j,. But then by
Lemma 2.13,

m+j

Iyl oo Il < (2%2) 77 1Bl - 1 Bllay e
m4-k

< (2Bt - 1Bl .

Having estimated [|[[s!¥ - ...- [|¥]|s,!#% in the two cases we obtain that there exists
by > 1, independent of u (and t) such that
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vl ool < B [B11 - (1 Blag e

Then
[0 PR CHTRUR ) §-<
< erep(bat) i M - el P 18I - (1Bl e,
where by 1= 291%,.

For brevity, we write C := ||afji!* -... - [ja]lg, P4 - ||Bll11# «... - || B]|a,1*%. We count the
number of terms in the sum. Since ; € PJ!!G"" and ||&]| = ki +.. .+ ki—J1—. .. — Ji-q, there
are (kl totk ;31 T Tl permutations o; for all i € {1,...,p}. There are dJ*

3

multi-indices 4; € M(V,) with |[%{| = ||4:ill = mi. Furthermore, i c;.(j‘)i < (Mmy)Fell =
(Mmg)% foralli € {1,..., p} Hence we obtain by the triangle inequality:
(Zu,u)] < Z Z ( ) (k1+...+kp;]1 —...-—j,,_1) drzn1+,..+m,, .
F1=0 Jp=0 4

(Mmy)- (Mmy)Yee e (bt Gy + ..+ G0

k
s Clcz(bgdth)k+mCE Z

j=0 .fl :mojpENo
n +m+§p=3‘

(kl) .;”‘ (k1+...+kp—‘j1~.'-—]‘p—1) m‘ii.".‘.mjp.ji‘l
J1 : Jp ?
4 mil-...-mgP

. k
C]_Cz(bzdth)k{-mC E E

< e —t,
% g o, T T
Fibetip=g
The last inequality is due to Lemma 2.15. So by Lemma 2.14:
{(Zu,u)| <

mi

S C]_CQ(bgdth k+mcz( ) )'

S c1c2(2ebzd2Mi)k+mC

IA

et (12 () (B (1)

where by := 2ebydy M27, with 7 := max{As,..., Ay, fi1,- - - e, }. Note that
et - ogdlle = 3llall, for all v € W, Il(ﬁu Bl = 3118l for all v € V; and
s - ) I+ [1{BSs - -, Byl = 4k +m). So -

u € S)q, S Ady i1 yeeltdy 3 5ai(X1: an Yi,.. Y;!z)
and [[ullay,.ra, 1 ,etay bt < < 1+ ez = [lully,.ng it + I18llug,na, 25 Where the constant bg is
independent of u (and ). This finishes the proof of the theorem since the space

Sty it reostiaggit (K15 - s Xay s Y1, - .., Ya, ) is always continuously embedded in
Srtreragt( XKty s X )N Sy gt (Va, .o, Yay) for all £ > 0. 0
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Corollary 2.17 Let g be a real Lie algebra of skew-Hermitian operators in a Hilbert space
defined on a common invariant domain. Let dy,d; € IN and let X4,...,Xq,, Y1,..., Y4, € 6.
Suppose

Q= Spa‘n({Xh-”)Xdla}fls“-a},dg})’

and suppose that span{{Yi,...,¥5}) is an ideal in g. Let Ay,...,hq, 2 1 and let p > 0.
Then ‘

SAly---v)‘dl J-Lv-"'l‘(X]’ e 7Xd1s Yl’ ceey de) = S)\lw-y}\d, (Xl, sy Xdl) n Sltwdl(yi’ ceey Y;iz)
as locally conver spaces with equivalent spectra. l
Corollary 2.18 Let g be a real Lie algebra of skew-Hermitian operators in a Hilbert space

defined on a common invariant domain. Let X,..., X, be an ordered basis in g and let
MZ21and Ay 2 ... 2 Aoy 2 max(Ag,1) 2 Ay 2 0. Then

: 4 .
S/\l,...,)\d(-Xll s Xd) = Sg‘:}...,kd(xl’ e Xd) = m SAk(Xk)
k=1
as locally convez spaces with equivalent spectra.

N.B. Recall the Remark following Corollary 2.3.

2.4 Non-triviality of certain Gevrey spaces

Let G be a nilpotent Lie group with Lie algebra g. Let Xj,..., X, be a basis in g. The
basis X3,...,Xq is called a strictly ordered basis in g if

[X,’, XJ] € spm({Xmax(i,j)+l: versy Xd})

for all 4, < d. Then X,,...,X; is a strictly ordered basis in g if and only if Xy,..., X,
is an ordered Jordan-Holder basis in g. (See [Goo5].) Let 7 be a representation of G in a
Hilbert space H. In the previous section we considered the Gevrey space

S’\l,m’;‘d(dﬂ'(xl), ceey de(Xd))

where Xj,..., Xy is an ordered basis in g and ); 2 land Ay 2 ... 2 Aoy > max(Ag, 1) >
Ag > 0. We know that this Gevrey space is dense in the Hilbert space H in case Ay 2> 1.
(See Corollary 1.26.) In this section we prove that this Gevrey space is dense in H if
Xi,..., X3 is a strictly ordered basis in g, A,...,2q-y 2 1 and Az > 0.

In case the representation = is irreducible and Xj,..., X, is a strictly ordered basis
in g, it is easy to show that even S; . 10(d7(X1),...,dn(X4)) is dense in H. Indeed,
because Xy belongs to the center of g and dr(X,) is closable, it follows by Taylor, [Tay],
Chapter 0 Propositions 4.3 and 4.5 that there exists @ € € such that 37(X;) = al. Then
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Sh,a0(dr{Xy),. ., dx(Xy)) = S1,.1a{dx(Xy),...,dn(Xy)) is dense in H. Note that in
general, for non-irreducible representations n, the operator dn{Xy) is not bounded.

So let X;,..., X  be a fixed strictly ordered basis in g and let # be a (not necessarily
irreducible) representation of G in a Hilbert space H. Let g, be the complexification of g
and let G, be a connected simply connected complex Lie group with Lie algebra g,. (See
Varadarajan, [Varl], Theorem 3.15.1.}) Let exp denote the exponential map from g, onto
G.. Without loss of generality we may assume that G = exp(g). For all k € {1,...,d}
define g5 : € — G, by

g1{z) = exp(z X)) (z€ C).
Define g : €% — G, by
921y -524) = ga(2a) - .. .- qi(z) (z1,...,25€ C).

By [Varl], Theorem 3.18.11, the map g is an analytic diffeomorphism from €¢ onto G, and
the map g|ga is an analytic diffeomorphism from IR? into G. As usual, we start with some
lemmas.

Lemma 2.19 Let k € {1,...,d}. Then there exists polynomials Py ; : C~% — C, where
je{k+2,...,d} such that forall z € € and all t4,...,t; € C we have

gk(z)g(td) cee >tl) = g(sdz (KRS 31)

with
sj = i+ Pz tepn,. o tie) fi>k+1,
Skpr = lrea,
s = Itz
8 = i if j <k
Proof. See [Goo5], Lemma 5.1. 0

Lemma 2.20 Let X € g, let A € (0,1) and let uw € H. Define F: IR ~ H by
F(t) = Texp(tX) U (te R).

Suppose the function F exiends holomorphically to an entire function from C into H of
ezponential order < {1 — X)™'. Then u € S\(dr(X}).

Proof. We denote the extension of F' also by F. By assumption, there exist A, B > 0 such
that

IF(2)ll < Aexp(Bz|*7)
for all z € C. By [Goo2], Propositions 4.1 and 2.2 we obtain that u € D®{dx(X)) and

F(z) = io: 2 n!" Y (X u

nz=0
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for all z € €. So in particular, the series converges absolutely in H. Then for all n € INg
and all v € H we obtain for all R > 0:

(dn(X)Pu,0)| = ( ) () o] = |2 [ L
/=
1P,
< 5 [ Seraraa o
So
Jex(0" < ",gfﬂ”dlﬁl

for all n € WN,. Choosmg R suitably, the lemma follows similarly to. the proof of {GS],
Section IV.7.5 Theorem 3. o

Lemma 2.21 Let X € g, A € (0,1), u € H and f € L'(G). Suppose the map t s
Lexpix)f from R into LY(G) extends holomorphically to an entire function from C into
LY(G) of exponential order < (1 — A)™". Then (f)u € Sy(dr(X)).

Proof. Define F: IR — H by
F(t):= 'n‘exp(tx)ﬂ(f)u (t € ]R)

Then F(t) = 7(Lexpex) f)u for all t € R. Clearly F extends to an entire function from C
into H of exponential order < {1 — A)~L. So by Lemma 2.20, =(f)u € Sy(dr(X)). o

Theorem 2.22 Let G be a nilpotent Lie group with Lie algebra g.- Let n be @ representation
of G in a Hilbert space H and let Xy,...,Xy be a strictly ordered basis in g. Let Mg € g.
Then S1,.a2,{dn(X1),. .., dn{Xy)) is a dense subspace of H.

Proof. We may suppose that G is connected and simply connected. Let g, G., gz and ¢
be as in the beginning of this section. Let the polynomials Py ; be as in Lemma 2.19. Let
m be the maximum of the degrees of these polynomials Py ;. For k € {1,...,d} let

pee=(1+ m)dhk(l - Ag)_l
and let payy ;= pasp ==0. For k€ {1,... ,d} let

@k += max(pg, MPry2)

and let

Ap=1-g;!
for all k € {1,...,d— 1}. Then also Xy = 1-— gland g 2 > (1= 2g)™ > 1 for
allk € {1,. — 1}, hence A\; > 0. We shall prove that (f_, Sy, (d7 (X)) is dense in

H. Since ail /\;: < 1, then also N} S1(dn (X)) N Sx,(dr(Xq)) is dense in H. Hence by
Corollary 2.18 and the Remark following Corollary 2.3, Sy 1,(dn(X1),...,dx(X4)) =
NEzt 8y (dn(X1)) N S, (dn{Xy)) is dense in H.
We shall prove the following assertion.



64 2. Intersection of Gevrey spaces

There exists a dense set Z; of L'(G) such that 7(f)(H) C Ni=; Sy, (dn(Xx))
for all f € Z,.

Because the representation  is continuous, {Jsez, 7(f)(H) is dense in H.
Let Z be the set of all entire functions F on € for which there exist constants 4, B,C >
0 (depending on F) such that

d d ,
|F(21,..,24)] < Cexp[-A) |[Re 2™ + BY | [km 2 [P*]
k=1 k=1
for all (24,...,24) € €% Since py,...,ps > 1, the set {F|ge: F € Z} is dense in L*(IR%)
according to [GS], Section IV.9. Let :

Zy:={feC%:fogeZ}.
Finally, let

Zy:={flg: f € Z:}.

By Pukanszky, [Puk], page 90, the map f ++ g4 f(g{2)) dz is 2 Haar integral on G, hence
the set Z, is dense in L!((). Similarly, Z, is dense in L!(G,) and in particular, a subset
of LY{(G.).

Let f € Zy, let F := fog and let A, B,C be constants corresponding to F. Let
k € {1,...,d}. There exists C; > 0 such that for all j € {1,...,d} with 7 > k+1, all
t15...,t4 € IR and all z € C we have

i1
[tm s;| < Gy (1 + 2 ™+ |Z|m)

I=k+1
and '

=1
|Res;| 2 |t;] — Cy (1 + 20 ™+ Iz{m)
prraty
with 8; = t; + Ppj(2,tk415-..,%j—1). Using the inequalities |a + &fF < 27(|al® + |B|")
and —|a — bff < —27Pla|P + |bJf for all a,b € IR and p > 1, and using the fact that
Py = ... 2 pa > 1, we obtain by Lemma 2.19 that for all ¢4,...,¢; € IR and 2ll z € C:

lf(gk(z)g(tla L std))l S
k-1
< Cexp [—A STt — Al + Re 2| — Aty [
je=1 -
P

Ay

j=1
[t5] — C1 (H' > ™+ IZ!”‘)

F=k+2 I=k41
d j-1 Pi
+Bllmz[*+ B Y |Gy (1+ 3 1t,|’“+{z|"“) }5
k42 k-1

IA

d d
Cyexp [-Ax Do+ By Y [ Calzl‘"‘]
=1 i=1



2.5. Separate and joint Gevrey veclors for a representation of a Lie group 65

where A;, By, Ca, C; are positive constants which depend only on A, B,C,Ciand py,...,pa
For z € C define T,f : G — C by

(Tof)(x) == flage(2)x) (2 €G).

Since mp;41 < p; for all § € {1,...,d}, we have T,f € LY(G) for all z € €. Hence the
map ¢ — Tif from IR into L'(G) extends holomorphically to an entire function from C
into L}Y(G) of exponential order < gi. ‘So the map t = Lexpx,)(flg) = T-¢f from IR
into L}(G) extends holomorphically to an entire function from C into L*(G) of exponential
order < ¢ = (1 — Ax)~!. Then by Lemma 2.21, »(f|g)u € SAk(dvr(Xk)) for allu € H.
This proves the assertion. o

Corollary 2.23 Let 7 be a representation of a nilpotent Lie gfoup Gina Hilbert space
H. Let Xy,..., X4 be a stmctly ordered basis in the Lie algebm of G. Let Xq,.. )\d_l >1
and let Ay > 0. Then Srpvra(@T(X1), - - ., dr(Xa)) is dense in H,

Proof. Theorem 2.22 and Lemma 1.1. ‘ S |

There exists another class of Lie groups for which every Gevrey épéx;e of infinitesimal
operators of a representation of such Lie group is dense in H, viz. the class of compact Lie
groups. o P ‘ o o

Theorem 2.24 Let 7 be a representation of a compact Lce group G in a Hilbert space
H. Let Xy,...,X; be any basis in the Lie algebra of G. Let Ay,..., g = 0. Then
S},l,,,.,)\d(dﬂ(xl),. .., dm(X3)) is dense in H.

Proof. By a well-known theorem ([HR2], Theorem 27.44) there exists an index set I and
for all ¢ € I there exists a finite dimensional 7-invariant subspace H; of H such that
H = @;¢; Hi.. Let m; := w|y,. Then ; is a finite dimensional representation of G in H;.
So each infinitesimal operator dr;(Xj) is densely defined, hence everywhere defined and
therefore continuous, for all i € I and k € {1,...d}. Hence

H,' = So',,_,o(d'lr;(xl), seny d’lf;(Xd))
So,...0ldm(X1), ..., dm(Xy))
Srtrnaldm(Xn), ..., dr(Xa))

n N

for all i € I. Since span{lU;cy H:) is dense in H, the Gevrey space
Saingfdr(Xy), . .., dx(Xy)) is dense in H. o

2.5 Separate and joint Gevrey vectors for a repre-
sentation of a Lie group

Let G be a real Lie group with Lie algebra g. Let A > 1 and let 7 be a representation of G
in a Hilbert space. We know that the Gevrey space Sy a{dn(X1);...,dn{Xy)) does not
depend on the choice of a basis Xy,...,Xyin g. Also we have
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Sy, ldr(Xy),. ., dn(Xg)) C ﬁ Sx(dn(X3))

k=1

for any basis Xj,...,Xgin g. In this section we shall prove that there exists a basis
Xi,...,Xqin g such that

S,\,_"',\(dﬂ'{Xl), ooy d‘lr(Xg)) = ﬁ S,\(d’l(‘(Xk))

k=1

In the special cases that X = 1, the existence of such basis has been proved first by Flato
and Simon. (See [FS], Theorem 3.)

Lemma 2.25 Let A be a Hermitian or skew-Hermitian opémtor in a Hilbert space which
has an invariant domain D. Let A > 0. Let t > 1. Then there exists 3 > t with the
following property: for all C > 0 we have

{u € D : Ve, [I147"u]| < CE™(@™)P]} C {u € D : |jullans < max(C, |lull)}.

Proof. The corresponding statement for A = 1 can be found in [FS], Lemma 1, but there
the proof is based on different arguments.

Let s := 4*. Let C > 0, let u € D and suppose that |A?"u| < C#¥"(2™) for all
m € INg. For n € IN hypothesis P(n) states

|A%u| < Cs*k*  forall k € {1,...,n}.

Clearly hypothesises P(1) and P(2) are valid. Let n € IN, n > 2 and suppose P(n — 1)

.is valid. If 2logn € IN then hypothesis P(n) holds. Suppose ?logn ¢ IN. There exist
unique m,k € Nosuchthat n = 2™ + kand 1 € k < 2™, Then 2k < 2™ + &k = n, hence
2k < n — 1. So by assumption and hypothesis P(n — 1) we obtain:

4Pul? = (A%, A%)| < (|47 u]|[| A%

Cztz"'“ szk(2m+l) P (2 k) P < Cztz"‘“ Szkz,\zmﬂQz,\k(gm)!zA E12
02i2m+132k(2k)2(2’"+k)(2m + k)g?)&

[Csmnt2. '

INCIA A

This proves the lemma. - =]

Theorem 2.26 Let G be a compact Lie group with Lie algebra g. Let A > 1 and let x be
a representation of G in a Hilbert space H. Let Xq,..., X, be any basis in g. Then

Sx.aldm(Xy),. .., dr(Xy)) = ﬁSA(dw(Xk))

k=1

as locally convex spaces with equivalent spectra.
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Proof. Cf. the proof of Flato and Simon [FS], Theorem 1, for the case A = 1.

The compactness of G insures that there exists a positive definite invariant real sym-
metric bilinear form # on g x g. {See [Hoc], Theorem XIII.1.1.) Let Y},...,Y; be a basis
in g such that B(Y;,Y;) = §;; for all 4,5 € {1,...,d}. By [Nel], Lemma 6.1 there exists a
constant M; > 1 such that for all ¢, € {1,...,d} and all w € H*(r) we have

|9 (Xi X;)u|l < Mu||ox(l — Ax)ul,

where Ax := Y¢_, X% € U(g). So there exists a constant M > 1 such that for all
u € H®(x):

971 = Av)ull < Zol187(I — Axul,
where Ay 1= ¢, Y2 € U(g).

Now let t > 1. Let u € N¢-; Sr:(dn(Xx)). Then u € Nio, D®(dr(X})) = H®(x) =
D*(dn{X1),...,dx(Xa4)). (See Theorem 1.23.) Since G is compact, there exists an index
set T and for all & € I there exists a 7-invariant subspace H, of H such that 74 := wla,
is irreducible and H = @,e; Ho. Let u, € H, be the projection of u on H,. Note that
H, C H®(x).

Let & € I. By [Bou], Chapter T §3.7 Proposition 11, Ay belongs to the center of
U(g). Since , is irreducible, it follows by [Tay], Chapter 0 Propositions 4.3 and 4.5 that
there exists 8, € € such that dr,(Ay) = —8.1. Becaunse the operator J(Ay) is negative,
we obtain that 6, > 0. Then (1 + &.)||ua]l = [|0xa(I — Av)usll = ||7(I — Ay)ua| <
Flon(I — Ax)uall < F5 i 107 (Xk)*uqll, where Xo := I € € C U(g). So there exists
k, € {0,...,d} such that (1 + &8,)|us]| € M||0O7( Xk, Yuall-

For all m € INg let hypothesis P(m) state:

(L4 62)"" lluall < M*"[197( X4 )™ ta].
We have already proved hypothesis P(0). Let m € INy and suppose P(m) holds. Then

w41 . 3 2 33 155
(1487 uall lluall = [(1+62)""lluall]” < MT™(O7(Xen)*™ thay o)
< MPOn(Xe ) vl llual)-

So P(m) is valid for all m € IN,.
For k € {1,...,d} let ¢, := |[ullan(x,);rs and let co := ||u||. Let m € INy. Then

67T = Ay ull® = Y2 107(I = Ay ) ual® = 3 [(1+82)" [fual]”

a€l a€l
< ¥ [ ar(X ) ]
ol

4 2
T3 [ 0r (X wal]

ogl k=0

IA
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2 4 m
—_ i [Mz"'”aw(xk)g'nﬂu”] < Z [c;c(Mtz)? (2m+1)!,&]2

k=0 k=0

[g o (22 me2)" (2M)12*] )

IA

So
d ™
“8?7{1 o AY)Q"‘un S (E Cj;) (QQAMtz)z (2m)!2/\
k=0
for all m € INy. Hence by Lemma 2.25 there exists s > 22 Mt?, independent of ¢, ..., cq

such that u € Szx,,(07(I — Ay)) and ||ul|sr(z-ay)22s < max (2§=0 ck, Hu") =54 o <
2 Zzzo lllam(xi)s7e- Since

Srer(dr( X)), ., dr(Xa) = Sy, p(dm (1), ..., dn(¥a))

as locally convex spaces with equivalent spectra, the theorem follows by Theorem 1.24.
{Here we use that A > 1.) o

We arrive at the main theorem of this section.

Theorem 2.27 Let G be a Lie group with Lie algebra g. Then there exists a basis
Xi,.--, X4 in g such that for all A > 1 and all representations » of G we have

S, ,A(dﬁ(xl), dr(Xq)) = ﬂ Sx(dm(X))
k=1

as locally convex space with equivalent spectra.

Proof. We prove the theorem by induction to dim g. If dim g = 1 then nothing has to be
proved. For d € IN let hypothesis P(d) state:

For any Lie group G with Lie algebra g and d, := dim g < d there exists a basis
Xi,...,Xq, in g such that for all A > 1 and all representations = of G we have

. ’ Cf;
Sg,nq;\(dﬂ'(Xl), ey dw(Xdl )) = ﬂ Sg(d’}r(Xk))
) : k=1
as locally convex spaces with equivalent spectra.

Let deIN,d > 2 and suppose hypothesis P(d — 1) is valid. Let G-be a Lie group with
Lie algebra g. Suppose dim g = d. We shall prove:

Assertion 1: There exists a basis Xj,...,Xy in g such that for all A > 1 and all
representations = of G we have

S,\"",A(é?r(xl), ey dﬂ’(Xg)) = ﬁ S},(dW(X;;))

k=1
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as locally convex spaces with equivalent spectra.
First we prove the following assertion:

Assertion 2: Let g,,8, be subalgebras of g such that g is the direct sum of g, and g,.
Suppose dim g, > 1 and dim g, > 1. Then Assertion 1 holds.

Proof of Assertion 2. Let Gy and (3 be subgroups of (7 which have Lie algebras g, and
g, respectively. By induction hypothesis P(d — 1) there exist a basis Xi,..., Xy, in g,
and a basis Vj,...,Y,, in g, such that for every representation m; of G; and for every
representation 7y of G2 and all A > 1 we have

dy
Sx,n(dmi(Xa), - -+, dmi(Xay)) = [ Sa(dmi(Xx))

k=1

and

da
Sxaldma(Vi), ..., dma(¥y,)) = kﬂ Sx(dma(Yi))
=3 !
as locally convex spaces with equivalent spectra. Then X;,..., Xy, Y1,...,Ys, is a basis
ing.
Now let 7 be a representation of GG in a Hilbert space H and let A > 1. Let m; and
#; be the restrictions of n to G, and G respectively. Then dr(X},) = dm(X) for all
ke {l,...,d} and dx(Y}) = dme(Ys) for all k € {1,...,d;}. So by Corollary 2.4 we obtain
that

S}\,_..,A(dW(Xl)s sevy dK(de)) =
= S.\,...,A(d’rl (Xl)v ey dxl(xdl )) 0 S«\,...,X(‘bh(},l)a ey d"TZ(Y:{z))

[’d}] Sx(dr (X)) N ﬁ Sx(dr2(Y2))

k=1 k=1
1 d
= ﬁ Sx(dx(Xi)) N () Sa(dn(¥a))
k=1 k=1

as locally convex spaces with equivalent spectra. This proves Assertion 2.

Now we prove Assertion 1. If g is solvable, then Assertion 1 follows by Corollary 2.6
and the Remark following Corollary 2.3. So we may assume that g is not solvable. Let g
be the radical of g. By [Varl], Theorem 3.14.1 there exists a semisimple subalgebra m of g
such that g is the direct sum of g and m. (This is a Levi decomposition of g.) If dim q > 1,
then Assertion 1 follows by Assertion 2.

So we may assume that dim q = 0. Then g = m is semisimple. Let g=¥+ a+nbe an
Iwasawa decomposition of g. (See Helgason, [Hel], Theorem V1.3.4.) Let s5:=a+ n. Then
 and s are subalgebras of g, 5 is solvable and g is the direct sum of  and 5. Since g is
semisimple, always dim # > 1. In case dim s > 1, Assertion 1 follows again by Assertion 2.
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So we may assume that dim s = 0. Then g = & So the Lie algebra g is compact. But
the Lie group G need not be compact and we cannot immediately apply Theorem 2.26.
Corresponding to the Lie algebra g there exists a connected simply connected Lie group G,
with Lie algebra g. (See [Varl], Theorem 3.15.1.) Then G, is compact by Wallach [Wal,
Theorem 3.6.6. Let X;,..., Xy be any basis in g. Let A > 1 and let 7 be a representation
of G in a Hilbert space H. Now X +— 9n{X) is a representation of the Lie algebra g by
skew-symmetric operators in H and the operator d7(X1)? + ... + 9n(X4)? is essentially
self-adjoint. (See Theorem 1.24.) So by [Nel], Corollary 9.1 there exists a representation o
of Gy such that do(X) = dr(X) for all X € g. Therefore we obtain by Theorem 2.26 that

SA,___,A(dﬂ(Xl), o ,dw(Xd)) == S);"“‘A(dd(Xl), N ,da(Xd))

() $1(do(%) = () S1(dr(Xe)
F=l

k=1

as locally convex spaces with equivalent spectra. This proves the theorem. ]

Corollary 2.28 Let n be a representation of ¢ Lie group G. Let g be the Lie algebra of G
and let A >-1. Then

Hy(x) = ] Sx(dn(X))
Xeg

as sets.

Let 7 be a representation of a Lie group G in a Hilbert space H. Now we present
another description for the infinitely differentiable vectors for # and the Gevrey vectors
of order A for 7 in terms of the positive definite function (#,u) corresponding to a vector
u € H. More precisely, we shall prove that ,

H*(x) = {u € H : the function (&,u) is infinitely differentiable on G}

Hyry={u e H: (i,u) € GA{C)}

for all A > 1. We need a wgll-known lemma.

Lemma 2.29 Let A be a self-adjoint operator in a Hilbert space H. Let u € H. Define
F:R~— C by

F(t):= ("'u,u) (t€TR).

Let V be an open neighborhood of 0. Suppose the restriction FIV- is infinitely differentiable.
Then u € D*®(A). Moreover, for all n.€ Ny we have F™(0) = (—1)*||A|?.
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Proof. We may assume that A is the multiplication operator by the function k in the
Hilbert space H = L*(Y, m) for some measure space (Y, B,m). Let f : IR — IR be defined-
by f(t) := Re F(t) = fcos(th)|ul?dm, t € IR. Since f is an even function and infinitely
differentiable on V, we obtain that f(0) = 0. Then by Fatou’s lemma:

f Ruffdm = 2 j liminfn? (1 - cos(2h)) |ufdm
< 2liminf / n? (1 — cos(Lh)) [ul’dm
~2liminfn® (f(2) - f(0) — 1 £(0))

= —f"(0) < 0. ’
So u € D(A) and f"(0) = ~||Au||®>. Hence by Lebesque’s theorem on dominated con-
vergence we obtain that F is twice differentiable on V and F"(t) = —{e‘*“Au Au) for all
t € V. By induction, the lemma follows. : : O

Theorem 2.30 Let 7 be a mpresentatton of a Lie group G in a Hzlbert space H. Let
A> 1. Then

- He(m)={ue H: (%) e C7(@)} .
and
Hy(x) = {u € H: (&,u) € Gi\(C)}.
In écriicaiar,. |
HY(r) = {u € H : the function z v (1,u,u) from G into Cis real analytic}.

Proof. Let u € H. Suppose (i, u) € C*(Q). Let X,,..., X; be a basis in the Lie algebra
gof G. Let k € {1,...,d}. Then the function ¢ — (e""Xr)y, u) = [(&, u)](exp t X)) from
IR into C is infinitely differentiable, so by Lemma 2.29 we obtain that v € D®(dx(X})).
Therefore, u € i, D(dr(X})) = H®{x) by Theorem 1.23.

Now let A > 1, let u € H and suppose (&, u} € GA(C). Since G,(€) C C*(G), by the
previous part we obtain that u € H®(r). Let K be a compact neighborhood of the identity
ein G. Let X € g, X # 0. There exists a basis X;,..., X, in g such that X; = X. Then
(#,u) € GA(C) C GA(C, K, X, ..., X,). So there exist C,t >0 such that for all n € INy,
alliy,...,in € {1,...,d} and all p € K we have (X 0. ..0X;, (4, u)](p)] < Ct*n?. Define
F: ]R — C by F(t) := (9" y, u), ¢t € R. Then by Lemma2 29 we obtain for all n € INy:

lexPal? = 1701 = () @ oEm e

= |[X*(&,u)j(e)] < C*"(2n)1* < C(2t)*"nl?,

Hence u € Sx(dn(X)). Therefore u € NxegSr(dr(X)) = H(x) by Corollary 2.28. O
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Remark. Note that the previous theorem gives a new proof for Theorems 1.28 and 1.29.

Let 7 be a representation of a Lie group G and let g be the Lie algebra. of G. By
Theorem 1.25 we know that

S1a(dr(Xy),. .. du(Xg)) = ST (dr(Xy), ..., dn(Xa))
for any basis X;,..., Xy in g. Now we can partly extend this equality for A > 1.

Corollary 2.81 Let G be a Lie group with Lie algebra §. Then there exists a basis
Xis...,Xq in g such that for all A > 1 and all representations « of G we have:
S,\'““A(df(Xl), d?r(Xg)) grd ,\(dﬁ'(Xl), veey d??(Xd))

as locally convex spaces with equivalent spectra.
However, for all A > 2 we can prove that also
Sy,..a(dr(Xy),... ydn(Xg)) = .S'°rd Aldr(Xh), ..., dn(Xy))

as locally convex spaces with equivalent spectra for any basis X;, ..., Xy in g. This follows
from the following more general theorem and the Remark following Corollary 2.3.

Theorem 2.32 Let g be a real Lie algebra of (not necessarily skew-Hermitian) operators
defined on a common invariant domain in a Hilbert space. Let X,,..., X3 € g and suppose

g = span({Xy,..., Xa})
Then for all XA > 2 we have:
Snea( Xy, Xa) =S5 (X, ., Xa)

as Iocally com)e:e spaces with equivalent spectm

Proof.Let V := {1,...,d}. By assumptlon foralli,j € {1 ,d} there exist ¢
IR such that

d
1.3, LR cl,] €

[X:, X, Z cf; X
k=1

Let M := 1+ dmax{|c};|: 4,5,k € {1,...,d}}, let by := 1 + Md and b := b2,
Lett> 1. Letu e ngf.,,‘;t(Xl,\.. .+ Xa). We shall prove that u € S au(Xs,...,Xa)
and that

el X1 Xt S Mttty e Xashoe Nt ona
In order to avoid clutter we write ¢ := ||ullx,,. x ...\t 0nd- Then

[ XM o...0 XIu|| < et™*+4(ny 4 ... 4 ng)
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for all n € INZ. The proof is by induction. For N € IN hypothesis P(N) states: "
[(Xou, v)| < Ebot)jaf!* for all @ € M(V) with [laf] S N~

By Schwarz’ inequality, hypothesis P(1) holds. Let N € IN and suppose P(N ) holds For
all j1,...,Jns1 € Vand all k€ {1,..., N} we have :

X.?l -0 X X3k+1 -0 X3N+1 =
= Xéx o. OX‘“ 1X3k+1X X}Nz . OX3N+1 +

+ Z kaHXix o...0X; XiX5, 00X,

N+1

9 commutations are needed. So therefexist ni,...,nq € Np and,

Let @ € M{V),lle|l = N + 1. In order to get the N + 1 indices of « in a preseribed
order, at most

further, for all ¢ € {1,..., N;-l d} there exist ¢; € IR and o; € M(V) such that

1+ ... +na=N+1, |la;]| = N and || < M for all i and
o)

Xa=XMo. 0 X+ Y cXop
i=1

Thus we arrive at the estimations

N4 d

(Xow,u)] € (XD o.oXPuu)l+ 3 |e(Xau,u)|

i=1

ANFUN 1P 4+ (N ; 1) dM 3 (bot)V N1

IA

< EVY(N + )P+ FdMBY V(N + 1)PNP
< AN + )P 4+ AdMB V(N + )
< Ebt)V YN + D

This pfoves hypothesis P(N +1).
Now let @ € M{V). Then by Lemma 1.3.V:

I Zaull®

i

(K )] € o M,
et ... ]

IA

So u € Sx,.. el X1y .., Xa) and ||lu|x,,.. x50, 00t S €= [[u]l Xy, X g, Mt 00de
This proves the theorem, since the identity map from S . (X1,...,X4) into
S, xtora{ X1, . .., Xa) is continuous for all £ > 0. ‘ 0
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2.6 An application of intersection results: topologi-
cal properties

Let Ay,...,A; be Hermitian or skew-Hermitian operators in a Hilbert space H. Let
Aty -+ 5 Ag = 0. Suppose

d
SxtverralAry -y Ag)= (] Sa(4r) (2.7

k=1

as locally convex spaces with equivalent spectra. So for all ¢ > 0 there exists s > ¢ such
that the embeddings

d
Sniverait(Ars - s A2) = [ Snie(Ak) = Sapoiass(Ars -+ vy Ad)
k=l

are continuous. Here 5., Sh,:(A4x) is a normed space with norm
0 aginge + -+ “Aep\a:i'

The topology oinq for the space (-, S, (Ax) at the right hand side of (2.7) is the inductive
limit topology, generated by the normed spaces (7., Si,:(Ax), with £ > 0.

However, we can define a second topology for N, 51, (Ax), namely the projective limit
topology Toro; generated by the locally convex spaces 53, (Ay), with k € {1,...,d}. We
prove that gi,g and 7p.0; determine the same bounded sets.

Lemma 2.33 Let B be a subset of Si,,..2,{(A1,...,Aq). Then B is oing-bounded if and
only if B is Tpo5-bounded. Moreover, if B is bounded, with relative topology,

(B, 0ina) = (B, Tproj)
as topological spaces.
Proof. By Theorem 1.11 the assertion
B is Gina-bounded
is equivalent to
There exists ¢ > 0 such that B is boundedly contained in Sy, »,:{41,- .., Ad).
By assumption (2.7), this is equivalent to -
There exists s > 0 such that B is a bounded subset of ({{.; S s (Ak )
By definition, this is equivalent fo

There exists s > 0 such that for all & € {1,...,d} the set B is a bounded subset
of Sy, ;s(Ax). o
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Again by Theorem 1.11, this is equivalent to

For all k € {1,...,d} the set B is bounded in S5, (Ax).
By [Wil], Theorem 4-4-5, this is equivalent to

B is 7ppej-bounded.

Now suppose B is bounded. Let (u;);cr be a Tproj-convergent net in B with limit u. Then
for all k € {1,...,d}, B is bounded in S),(Ax) and lim;u; = u in Sy, (Ax). By Corollary
1.13.1 there exists £ > 0 such that B is a bounded subset in Sj,.:(Ax) and lim;u; = v in
Syt(Ag) forall k € {1,...,d}. By assumption (2.7) there exists s > ¢ such that im;u; = u
in Sx,,..aus(A1,...,Ag). Then lim;u; = u in (B, 6ina). So the identity map from (B, Tpro;)
onto (B, oua) is continuous.

For all k € {1,...,d} the identity map from (Sy,, .1,(A1,...,Ad), 0ia) into Sy, (Ar) is
continuous, so the identity map from (Sy,,..2,(A1, .-, Ag)s Oina) into (Ni=; Sr.(Ar); Toroj)
is continuous. In particular the identity map from (B, oina) into (B, Tproj) Is continuous. O

Let 72; be the locally convex vector topology for N{_; Sx,(Ax) such that
(Nf=1 Sx.(Ax),75,;) is the bornological space associated with the locally convex space
(N¢-; Sxi{Ar), Toroj)- (See [Sch], Chapter II §8.) We have the following relations between

the topologies ding, Tproj and r;’mj for Sy, (A1, A4

Theorem 2.34

. e b
I Tind = Tproj-
1I1. Tproj C Oind -

IIL. The identity map from {N; Sr.(Ak)s Toroj) 00 (NF—; Sr.(Ak), Oina) is sequentially
conlinuous.

Proof. 1. By Lemma 2.33, 04 and 7y determine the same bounded subsets of

Ni=1 Sx.(Ax). Since 75,; is the finest locally convex topology 7' for N{—, S»,(As) such that
(N¢.; S5, (Ar), ™) has the same bounded subsets as (Ni—; S».(Ax), Tproj), We obtain that
Tind T T:mi'

In fact, (Niz; Sxi(Ak), Tho;) has the same bounded subsets as (§=; Sx,(Ak), Toros) has,
which is the same set as for (Nf., Sy, (Ak), Oina)- (See Lemma 2.33.) So the identity map
from (Ni=; Sx(Ak)s Oina) into (Ni=; Sx,(Ak), The;) is bounded. Since o4 is bornological,
this map is continuous. Therefore 75 .
IL BY I: Tyroj € T = Oima. (For a direct proof, see the proof of Lemma 2.33.)

C oyyq and we obtain that rgoj = Oipa-

111. This follows from the second part of Lemma 2.33 since every convergent sequence
is bounded. 0

Remark. It is an open problem whether 705 = Oina.
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Chapter 3
Examples of Gevrey spaces

In this chapter we study Gevrey spaces relative to infinitesimal operators corresponding to
representations of the following Lie groups: the Heisenberg group, the az + b group and
SL(2,IR). e :

3.1 The Helsenberg group

Let n € IN. The He:senberg group A(]R") isa Lle group whlch a8 a mamfold is equal to
R* x IR” x T and i in which the group. opera,t;xc-n is given by .

(a1, b1, 21) 0 (@2, b2, 22) 1= (@1 + @2, by + by, zyzpe™ )

for all a;,a;,b;,00 € IR™ and 21,29 € T, Here a; - by denbtés the inner préduct of a; and
by in IR™. Define

y:R" xIR" x (’II‘\{..I}) — R" x R* x (—=,7)
by
yla,b,¢) = (a,b,¢)

for all a,b € R" and ¢ € (~7,7). Then (IR" x R" x (T\{ 1}) y)is a chart on A(]R“)
Let ¢ := (0,0,1) denote the identity in A(IR™). For k € {1,...,n} let
_8_ v, .o 9 7 = 3
By . ’ kv. OYntk . ’ T Otz e
Let g be the Lie algebra of A(IR*). Then X, 0 XY, .Y Z is a ba.sié in g and
[Xi, Ya] = —[Yk, Xi] = Z for all k € {1,...,n}, all other commutators are 0.

Let R denote the right regular representation of R* on L*(IR"). So

(Ruf)(z)=f(z+4a) ae.zeR"

Xi =

for all a € IR™ and f € L*(IR™). For b € IR" define the multiplication operator M; on
L*(IR") by

77



78 3. Ezamples of Gevrey spaces

(Myf)(z) := e**f(z) ae z€R"

for all f € L*(IR™). For (a,b,z) € A(IR") define the operator Uy, on the Hilbert space
H := L*(IR") by '

Uap,s) 1= 2 My R,.

then (a,b,z) ~> Ugep, is an irreducible unitary representation of A(IR") in L*(IR"). (See
for example [HR2], (33.31).) For k € {1,...,n} let Qx be the multiplication operator by
the function = ++ z; on L*(IR™). Here zy is the k-th coordinate of z. For k € {1,...,n}
let IF;, be the unique unitary operator from L?(IR") onto L2(IR") such that

1 ; n
(Fef)(=) = :/"i"';/f(zla-'- 1Tty Yy Tht1y -« -, Tn )€y ae.z €R
J ;

for all f € C(IR"). Let
P, = FQuF7.

Then dU(X3) = —iPy, dU(Y:) = iQ and dU(Z) =il for all k € {1,...,n}.

Mainly on the basis of a Sobolev inequality it can be proved that the space H>(U)
of all infinitely differentiable vectors for U is precisely the Schwartz space S(IR™} which
congists of all infinitely differentiable functions ¢ on IR” such that

sup{|z*D;, ... D;, ¢(z)| : 2 € R"} < o0

for all k,m € Wy and iy,...,4, € {1,...,n}. Moreover, by Theorem 1.23: V
n 'n ‘
S(R™) = (| D*(Q:) N () D=(Fy).
k=1 k=1

Let oy, ..., 0, B1,. -+, B 2 0. We want to define the Gelfand-Shilov space $5:-8= together
with its topology. Let N € IN. Define the normed space

So(N;a1,. ..y ny B, - Bu) = {pp € S(IR™) : Topo¥meny Voern
[k - ... 2fDm | DMap(z)| <
eNF+-thntmidotm, kllczau e kﬁnaum;"lﬁl .- m:mﬂn]}

with natural norm || ||§oo(~;‘;l-----ﬁn)' The Gelfand-Shilov space SB= is defined to be

Qg yennslin

P .
Sz;::ﬁ: = U Sco(N§ [+ PR 1amﬁ1a' .. :3&1)'
N=1

The topology for Sﬁ;;j;ﬁ’; is the natural inductive limit topology. It follows similarly to
Theorem 1.9 that ,

Shurbn = S i @1re - 1@y Pry o Pr)
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as locally convex spaces with equivalent spectra. We observe that the space §8#n g
trivial in case o + B < 1 or (o, By} = (1,0) or (o, Bi) = (0,1) for some k € {1,...,n}.
In all other cases §5175» is dense in L2(IR"). (See [GS], Section IV.9.) We shall prove the

equality

a ‘ n
Sﬁl:...iﬁn = Doy ,n P &;(le vy Qm B, sPn) = m Sofk(Q&) n ﬂ Sﬂa(Pf-‘)
k=1 k=1

as locally convex spaces with equivalent spectra, for all o, ..., a, [3‘1, s B2 0 such that
ak-i-ﬂkZlforallkE{l...,n}. ‘

Lemma 3.1 Let X, Y be skew-Hermitian opemtors na Hzlbert space deﬂned on a common
invariant domain. Suppose :

[X,Y] =il.

Let A, pp 2 0 and suppose A+ pp > 1. Then
Su(X,Y) = Sx(X) N Su(Y) ,

as locally conver spaces with eqmim;’eat spectra.

Proof. (Cf. the proof of Theorem 2.2.) Let Z; :QX, Z, = Y,d:=2and V:= {1,2).
Using the equality XY = Y X + I, we obtain that for all v € M(V) with ||v||; # 0 and
[l7llz # O there exist § € M(V), {1 € {0,..., |72} and 6y,...,6; € M(V) such that

!
Zy=ZsX 4+ 2, (3.1)
. p=l
[16Hls = il = L5 l8llz = llvll2 (6pll2 = llvlls — 1 and [|8p]l> = [l7ll2— 1 forall p € {3,..., 1}
Let b :== 2M#+1 Let t > 1 and let u € Sy, (X) N Gue(Y). Let ¢ == |lu/lxp4 and
¢z := |[uly;ue. We shall prove that u € S (X, Y) and that [|ul|x,y;xuee < €1+ c2. For
N € IN, hypothesis P(N) states:

(Y™ 2K )] < @y P )
for all k,m € Ny, v € M(V) such that =

Clearly hypothesis P(0) holds. Let N € IN and suppose hypothesis P(N — 1) holds.
Let k,m € INg, v € M(V) and suppose ||7]| = N. We may assume that ||7]; # 0 and

li7ll2 # 0. Suppose |7l 2 |7ll2- (The case [[7]ls < ||v|lz runs similarly.) By decomposing
Z, as in equality (3.1) we obtain that

(Y™ Z, X*u,u)| <
{
(Y™ Zs X u,u)| + 3 (Y™ 25, X Fu, u)|

=1
< a2 Ry + B) (s + m)t +

IA
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+lee2MI=2HmHP2 () + & = P (]l +m - 1)
< aac2PlH (|| o+ B (llylla + )t -

A A .
L (Hvliz) ( [l ) ( [ud )"
3 \lvlk/ \Ihli+%/) \rll+m
< a2t Hbll(ly |y + B)A(ll2 +m)t.

This proves hypothesis P(N).
Now let v € M(V). Then

12l = WZermu,w)l < eIty || )22 ly)l2)
' 2
< [l + e (@Ml M ivllat]
Therefore u € Sx (X, Y) and [Jullxy;nup¢ < €1 + ¢2. This proves the lemma. o

Van Eijndhoven, [vE] has proved the following equalities for the Gelfand-Shilov space
SPincasea>0,8>0anda+ 2> 1:

S8 = S5a,6(Q, P) = S25(Q, P) = $+(Q) N Ss(P)

as sets. Now we extend these results in three directions, namely we include the case that
a = 0 or f# = 0, we consider higher dimensions and we prove an equality as topological
spaces.

Theorem 3.2 Letn € IN, let o, ...,an, P1,. .., P > 0 and suppose that ax + B > 1 for
allke {1,...,d}. Then

Sg::m:g: = Sou. 105334 4o ,ﬁn(le s @ny Py n SC'J:(Q") n n Sﬂk(Pk)

k.—l

as locally conver spaces wzth equivalent specira.

Proof. Let G := A(IR"), let U be the representation of G in the Hilbert space L*(IR")
and let the basis X,,..., X, Y1,...,Y,, Z in the Lie algebra g of G be as at the beginning
of this section. For all k € {1,...,n} we have [0U(X}),0U(Yz)] = U(Z) = il, so by
Lemma 3.1 the spaces Sq, g, (0U(X4), 0U(Y:)) and S,, (BU(X})) N S, (8U (Yi)) are equal
as locally convex spaces with equivalent spectra. Moreover,

H?(U) = D®(Q1,. .« ,@ns P1y... ., P} = ﬂ D=(@) N D“’(Pk)

k=l

as sets. Finally, [0U(X}), 0U(Xn)] = [OU(V4), 80U (V)] = [0U (X;c),aff (V)] = 0 for all
k,m € {1,...,n} with k # m. Then by Theorem 1.31 and induction we obtain that the
following spaces are equal as locally convex spaces with equivalent spectra:

Sah---:‘*nﬁh---»ﬁn(@h seey Qﬂ) Pl) R sPn)i
Setrstimibrrn (OU(X1), . .., OU(X,), 8U (Y1), . .., 0U(Ys)),
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S‘—‘iv@l (3U(X1), aU(Yl)) n Sﬁ’?;g--,auuq?yu-rﬁn (8U(X2)s e 8U(Xn): 8U(Y?): sy 8{"{(1/3)):

() Sowsn(OU(X2), BU(YS)),

k=1

() 1501 (0U(X4)) 1 S5, (OU (%)),

k=1

ﬂ Sak(Qk n ﬂ Sﬁk(Pk)

k=1
Let ¢ > 0. Since the following embeddings are continuous for some s 2t

ch ..... 05,01 'ﬁn't(Qla-"':Qn’Pl?"‘ P)Msord ,an,ﬂx, ,ﬁnt(le ,Qnypls"“'apﬁ)h')

Ty

g ﬂ Sak i(Qk) n n Sﬁht(Pk "“’ Scm 21078 151 gooe ﬁn,S(Ql, :QmPh-v-‘- aPn) .

k=1 k=1
it follows that the spaces Sa,.,....n,81,Bn (@15 -+ - s @y P,y -, Pa) and ,
ng‘ smbBroefn (@13 Qny Pry .o, Pr) are equal as locally convex spaces with equwalent
spectra.. Because we know. alrea,dy that the spaces Sm ,,,, i &(Ql, s@uPry.. B

and S8 ;.“:’3'; are eqiial as locally convex spaces with equivalent spectra, the theorem follows.
0

Let A := ¥F, Xi+ 2::_1 € U(g). By Theorem 1.24, the operator U (I A)is
essentzally self—adjomt and .

S(R) = H=(U) = D=(3UT = &) |

as sets. So S(IR") is equal to the (joint) C*°-domain of one single operator. Similarly, for
all @ > 1 we obtain that

o -a—sz,,,(a"——v(z y))

Oyars X

equals the Gevrey space relative to a single opera.tor The questxon arises wheths:r ,a,
Gelfand-Shilov space S%1+-+#» can be written as the Gevrey space relative to one single
operator. Earlier results in this direction are available only in case n = 1. Let F; and
Qo denote the restrictions of P and @ to Schwartz’ space S(IR), respectively. Then the
following results are known. '

Se = Swu(F+Qq), a2}

= 3

S = Sa(R4Ql), kel

k+1
si = Sa(PF+Ql), keN,
8% =, Szm(sz + Q km), kam € ]N,!
SF = Sm(PF™+QI™), kmelN,
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as sets. Moreover, the operators P} +Q3, P3 + Q3 P{* +Q3, P3™ + Q%™ and PZ*™ 4 Q2™
are essentially self-adjoint and may be replaced by their self-adjoint closures. Proofs can
be found in Zhang, [Zha}, Van Eijndhoven-De Graaf-Pathak, [EGP] and Goodman, [GooS],
Theorem 6.1.

We extend these results in the following cases. For o, 8 > 0 with

a>1,f>1and §€Q,

a>1and % € N,

B>1land e,
we show that there exist A > 1 (depending on « and §) and a symmetric differential
operator A in L*(IR) such that S = §,(A) as locally convex spaces with equivalent

spectra. In particular, for all p,q € IN define p,, by p,, := max(} N q), Ppa 1= % and
Prq = 1if p,g 22 and py, := }. Then for all p > p,, we prove that

S = Sapao( P2+ QF + 1) (3.2

as locally convex spaces with equivalent spectra. Equality (3.2) as sets has already been
proved in [tEVE]. From this equality it follows by an elementary counting argument that

5% = Sueo(F3* + Q37)

as locally convex spaées with equivalent spectra. If, in addition, it could be proved that
the operator P2? + QF is essentially self-adjoint and strictly positive, it follows by [Nel],
Lemma 5.2 and inequalities (3.6) and (3.7), infra, that

S(R) = D*(F3" + Q7))
as sets. Moreover, under these two additional assumptions, it follows by Theorem 1.4 that

forall p 2 ppy

S’Pﬁ

(7 SL’(R),B’;";-P (3‘3)

as locally convex spaces with equivalent spectra. Here B := P2 + Q. Equality (8.3) is
in the same spirit as Conjecture IL.2.7 in [EG], which states that for all p € (0,1):

EJT Lz(R) ,B‘? Q(F) (3'4)

as sets, where

.
By = ("{?) + (32)‘3

and €,4(p) = 1%?3. However, in {EG] the authors allege that the operator B, is self-

adjoint by referring to the monograph of Miiller-Pfeiffer, [MiP{]. But Miiller-Pfeiffer only
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proves that all self-adjoint extensions of a suitable restriction of the operator B,, have a
discrete spectrum. So it is not clear whether the right hand side of (3.4) makes sense.

Equality (3.2) can be extended to higher dimensions. (See infra, Theorem 3.13.) An es-
sential tool in the proof is the following theorem of Goodman and Wallach, [GW], Theorem
1.3. :

Theorem 3.3 Letd € IN. Let A, Xy,..., X4 be operators in o Hilbert space defined on a
common invariant domain D. Suppose there exist § € IN, A 2 1 and M > 0 such that

11X§1 0...0 X,-ku[[ ﬁ M{!Au“,
lladX;, ... adX;, (A)ul| £ M™n!*|| Aul|

forallke{0,...,8}, alldy,..., 5 €{1,...,d}, alln € Ny, all §1,...,5n € {1,...,d} and
all w € D. Then for all t > 0 there exists s > 0 such that

" Sxse(A) C Sxne( Xy -y Xa),
where the inclusion is continuvous.

Since the higher dimensional case is to be treated further ‘oﬁ', we now take a more
abstract point of view. Note that [-iFPy,iQo] = iI.

Theorem 3.4 Let X,Y be skew-Hermitian operators in a Hilbert space H, defined on a
common invariant domain D. Suppose

X Y] =il
Let p,g € IN. Let
Ve={X*:ke{0,... ,plJu{Y*:ke{0,...,¢}}
and ‘ '
L :=span({W)\ W, : Wy, W, € V}) |
Let A € L be a Hermitian operator which satisfies the following condition:
VwerVueo [[Wall? < (Au,u)] . : 35)
Then
Sap00( X, Y) = Szpgp(A)
a3 locally conver spaces with equivalent spectra in the following cases:
¢« p> max(%,%

*p> -1:; and ¢ = 1 and X has a skew-adjoint extension.
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e p> % and p=q=1 and both X and Y have skew-adjoint extensions.

An example of an operator A which satisfies Condition (3.5) is
» g
A=T-Y X* -3 v*
k=1 k=1

and, if the operators X and Y have skew-adjoint extensions, an example is:
A=T-X"? Y%,

The proof of Theorem 3.4 is a compilation of a number of auxiliary results. In fact,
Theorem 3.4 follows from Theorems 3.10 and 3.11.

Let X,Y,H,D,p,q,V,L and A be as in Theorem 3.4, and suppose Condition (3.5) is
satisfied.

Lemma 3.5 Let W € L. Then there exists ¢ > 0 such that for all u € D the inequality
[(Wu,u)| < e(Au,u) holds.

Proof. It suffices to show that for all Wy, W2 € V and all u € D: |(W;Whu, u)| £ (Au,u).
So let W;, W, € V. Then for all u € D we obtain:

2 ~
|(WaWau, u)| = |[(Wau, Wau)| < [[Wau|| [Win|| < [\/(Au,u)] = (Au,u).
m]
Lemma 3.6 Let W be any Hermitian or skew-Hermitian operator in H with domain D

and suppose there ezists ¢ > 0 such that |(Wu,u)| < ¢(Au,u) for all u € D. Then for all
u,v € D:

[(Wu,v)| < 3¢y/(Au, u)y/(Av,v).

Proof. We may as well assume that W is Hermitian. So ((cA—W)u,u) > 0 for all u € D.
Then by Schwarz’ inequality ([Wei], Theorem 1.4) we obtain for all u,v € D:

[(Wu,0)l < [((cA = W)u,v)| + ¢|(Au, )|
< \/((cA Wu, u)\/((cA Wv, v)+c\/(Au u)\/(Av v)

3ey/(Au,u)/(Av, v).

IA

Corollary 3.7 Let n € IN. Then there exists ¢ > 0 such that for all u,v € D:

[((adX)*(A)u,v)| £ e/ (Au,u)y/(Av,v)

and

[((adY)*(A)u, v)| < e/ (Au,u)y/(Av,v).
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Proof. It can be readily checked that (adX)™(V) C span(V). Therefore adX(L) C L
and in particular (adX)*(A) € L. Now (adX)*{A) is an Hermitian operator. So the
first inequality follows from Lemmas 3.5 and 3.6. The proof of the second ineqﬁality Tuns
similarly. ‘ ; u

Lemma 3.8
L There exists a constant M > 0 such tf;at forallue D
| X*ul| < M||Aull, k=0,...,2p
and
VAXHku, Xku) < M||Aull, k=0,...,p.
II.  There exisis a constant N > 0 such that for allu e D
YRl S Nl k=0,...,2
and

\I(A_Y"u, Yiu) < NjAull, k=0,...,q

Proof. We proof 1, the proof of II runs similarly. The proof is by induction. For r €
{0,...,p} assertion P(r) states: '

There exists M, > 0 such that for all u € Dand ke {0,...,p+r}:
1 X*ull < M, || Aul|
and for all w € D and k € {0,...,7}:

V(AX¥ 4, Xku) < M, || Aull.

Let r = 0 and let k € {0,...,p}. Then X* € V. So by Condition (3.5), [|X*u|® < (Au,u)
for all u € D. Since (Au,u) < ||Aul| [|lu] < ||Aul|f?, we get

IX*ull < || Aul

and

v (Au,u) < ||Au]|

for all w € D. This proves assertion P(0).

Assume assertion P(r—1) holds for some constant M,_; > 0 and r € {1,...,p}. Under
this assumption we shall prove P(r). By Corollary 3.7 there exists a constant N > 0 such
that for allu,v € Dand alln € {1,...,r}:

I((2dX)"(A)y, v)] < Ny/(Au, u)y/(Av, ).
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Using the standard commutation formula

XA-AX" =Y (1’;) (adX) (A X"

n=1

(see Lemma 2.10) we obtain for all u € D:

(AXTu,X"u) = (X Au,X"u)— Z (;) ((adX)"(A) X" "u, X"u)

n=1

IA

|(Au,X2fg)| +N Z (1’;) V(AXT=mu, Xr=mu)\[(AX7u, Xru).

n=1

By assumption P(r — 1) we get

(AX"u, X™u) < || Aul| | X" ul| + 2 My_1 N|| Aul|\/(AX v, X"u).

This is a quadratic inequality of the form z? < az+bwith z = /(AX"u, X"«) and a,b > 0.
It follows that z < 1(a+ Va2 +4b) < a+ Vb and hence that z2 < 242 + 2b. Thus we
obtain

(AX7u, X"u) < 27 M7 N2 || Aul? + 2| Aul| [ X*"u]|.
Let t € {1,...,p}. Since the operator A satisfies Condition (3.5) we have
IXHul? < (AX7u, Xu) < 2 M2 NP Aul + 2]l Auf || Xu.
Again for ¢t = r we get a quadratic inequality, so
1XPull < @M, 1N +2)]| Aul
and
(AXTu, X"u) < (2'+1/2M,;1N + 2)?)| Au|.
Finally, for t = p we derive
X7+ ull® < (272 M, 1N + 2)|| Aul®.
This proves assertion P(r) with M, := 2+V/2M, | N + 2. - ]
Lemma 3.9 Let W € L. Then there exists d > 0 such that for allu € D:
Wl < d u].
Proof. The operators
Xk v, ke{o....,2p},1€{0,...,2¢}
and

XYL Yixk, kedo,...,p}, 1€ {0,...,q}
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span the space L. So we only need to prove the lemma for these operators. If W = X* or
W =Y! for some k € {0,...,2p} or I € {0,...,2¢}, the result follows from Lemma 3.8.

Let k€ {0,...,p} and l € {0,...,¢}. By Lemmas 3.5 and 3.8 there exists M > 0 such
that for all u € D:

I(szu’u)[ < M(Au,u) [(Y?u,u)| < M(Au,u)
(AX*u, X*u) < M||Aul® (AY'w,Y') < M|[Au?.

Then for all u € D:
XY 1)|? = [(X#Y'u, Y'u)| € M(AY 'y, Y'u) < M2|| Au)?
and, similarly,

1Y X" u” < M2|| Au|l®.

Because of the previous lemma it makes sense to define the folléwing norm on L:
W] := inf{M >0 : Yuep[[|Wul| < M||Aul]]}.
We arrive at the following theorem.

Theorem 3.10 Let X,Y,H,D,p,q,V,L and A be as in Theorem 3.4 and suppose Condi-
tion (3.5) is satisfied. Then in the following cases

L p2max(},1),
L > % and ¢ =1 and X has a skew-adjoint extension,
L. p>1andp=gq=1 and both X and Y have skew-adjoint extensions,

we oblain that for all t > 0 there exists s > 0 such that the inclusion
S2mmt(A) C qu.pﬂ;s(X ’ Y)
s conlinuous.

Proof. (Cf. the proof of Lemma 6.2 in [Nel].)
1. Since ad X is a linear operator from the finite dimensional vector space L into L, the
operator adX is continuous and ||adX|| < oo. So for all n € IN:

I{adX)"(A)I] < [lad X ][] All] = [lad X [|".
1t follows from the definition of ||| ||| that for all u € D and n € IN:
[[(2dX)*(A)ul| < [lad X || Au]. | (3.6)

V Also, by Lemma 3.8 there exists M > 0 such that for all w € D and k € {0,...2p}:
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1Xkul < M) u. (37)

According to Theorem 3.3 with A = pg > 1 and § = 2p we obtain that there exists s; > 0
such that the inclusion

Sﬁmtz;t(A) - qu;sl(X )

is continuous.
Since also adY is a linear operator from L into L we obtain similarly that there exists
89 > 0 such that the inclusion

S2pq9;t(A) C SPP;-’?(Y}

is continuous. Let sq := max(sy, s;). We may assume that s; = 3, = so. By Lemma 3.1
there exists s > 0 such that the inclusion )

Sapioo(X) N Sppiso(Y) C Sgpppis X, Y)

is continuous. Then Spp,,.:(A) is continuously embedded in Sy, ,:5(X, Y).
IL As inlit follows that there exists s; > 0 such that the inclusion

S’A’Np;f(A) C Sppm(y)

is continuous. Also, it can be readily checked that ad(X?)(V) C span(V). So ad(X?) is a
linear map from L into L. As explained in I it follows that for allu € D and n € IN:

ll(ad(X?))*(A)u| < ||lad(X7)|["| Aul.
By Lemma 3.8 there exists M > 0 such that for all u € D:
[ XPull < M||Aul| and [ X*Pu]] < || Aulj.

So by Theorem 3.3 with A = pp and § = 2 we obtain that there exists s; > 0 such that the
inclusion

S?pp;f(A) - Spp;ax (X p)

is continuous. ,

Since the operator X has a skew-adjoint extension, it follows from Corollary 1.5 that
the Gevrey spaces Sp,(X?).and S,(X) are equal as locally convex spaces with equivalent
spectra. So there exists 83 > 0 such that the inclusion-

Spuia (XP) C Spiag(X)

is continuous. Then by Lemma 3.1 there exists s > 0 such that S,,,4(A) is continuously
embedded in S, p,:s(X,Y).

1I1. Both ad{X?) and ad(Y?) are linear operators from L into L. So with § = 1 and
A =2p 2> 1 we obtain that there exists s; > 0 such that the inclusion
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Sapit(A) C Szpisy (X?) 082536, (Y?) 7
is continuous. As in II it now follbws that thé inch'miQn'
S2p;t(A) C Sp.p;s(X’ Y)
is continuous for some s > 0. ‘ . O
In order to complete the proof of Theorem 3.4 we present the following general result.

Theorem 3.11 Let X,Y,H,D,p,q,V and L be as in Theorem 3.4 and let W € L. Let
p > 0. Then for allt > 1 there exists s > 0 such that the inclusion

Smpo;t(X H Y) C S2mp;s(W)
is continuous.

Proof. There exist constants ay, b;, ¢x; and dyy such that

Zp 24 P g '
W=Y aX +Y bY'+3 3 [caX Y + duY'X*].

k=0 I=0 k=11=1

Let M =14 max({laki, !bg;, ;ckd’ idkil}) Let
= 2(p + 1)(g + 1) Mt*E+)(2pge)?rer,

Let u € S,,,,;,,M(X Y). Let n € INg. Then W™ is a sum of [2(p + 1)(g + 1)]* terms of the
form 4yWio0...0W,, withy e €, |y| S M* and W; € V for all i €{1,...,2n}. Consider
one such term 7W1 .0 Wa,. Let

n, = card{i:W;e{l,X,...,X?}},
n, = card{i: W; e {Y,...,Y'}}.

i

Then n, + n, = 2n. So with ¢ := ||u||x,y;4p,p0;t We obtain:

IWWio...0oWaau|| < M et (pn, )19 (gn, )1P?
< Mt (2pn)Paene (2gn)Paen
< ¢ [Mtz(pﬂ)(?}’qe)h’” ]n ni?ae,
Now the theorem follows, because
[Wrul| < estni?Pee,
O

With this, Theorem 3.4 is proved completely. C 0

We extend Theorem 3.4 to higher dimensions. We need a lemma. The conditions of
the following lemma can be weakened, but these conditions are sufficient for our purpose.
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Lemma 3.12 Let n € IN. Let Ay,..., An, By,..., By be strictly positive operators in a
Hilbert space H, defined on e common invariant domain D. Suppose there exist positive
self-adjoint extensions A},..., AL, Bi,..., B} of the operators Ay,..., Ay, By,..., B, such
that for all k,1 € {1,...,n} with k # | the operators A}, and A] commule strongly, the
operators A% and B] commute strongly and the operators B, end B] commule strongly. Let
A2>20. Then

SxAr+...+ A+ Bi+...+ By =) Si(Ax + Bi)
k=1

as locally convex spacs with equivalent spectra.

Proof. Let k,! € {1,...,n}, k % [ and let v € D. Then ALA] is a positive operator
(Spectral Theorem), so

(Aru, Aiu) = (Agu, Aju) = (Ajdku,u) = (AjAku, u) > 0.
Similarly {Azu, Biu) > 0 and (Bgu, Biu) > 0. Hence for allu € D:
(A1 + ...+ Aa+ By + ...+ B)ul? =

n n

= 33 ((Ax + Buu, (A + Byu)
k=1 =1
— YA+ B+ Y (Aew, Aw) + 2 Aeu, Bus) + (Byu, Bru)

k=1 kje{l,..n}
ksl

v

3 1(Ae + Buyull®.
k=1

So
I(Ak + Be)ull € (A1 +...+ An+ Bi+ ...+ Bu)y||

forall ke {1,...,n} and u € D. Let k € {1,...,n}. Then forall u € D and m e INit
follows by induction that

I(Ax + Be)"ull < {|(A1+ ... + An+ By + ... + Ba)"ull,

since [Ag + Br, Ay + ...+ An + By + ...+ By] = 0. So for all £ > 0 we obtain that the
embedding

Sat(Ar+ ...+ A+ By + ...+ By) — Sxa(Ar + By)

is continuous and hence the embedding

S+ .+ A+ Bi+...+ By) = [ Sne(Ax+ B)

=
is continuous.
Since for all £ > 0 there exists s > 0 such that the embedding’
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3.1.
AL+ By

ﬂ Sxt(Ak + Bg) < S ,s(Al + By,..
k—
is continuous (see Corollary 1.32}, it follows by an elementary counting argument that for

all t > 0 there exists s > 0 such that the embedding

() Sxi(Ax+ Bi) = Sau(Ar+ ...+ Au+ By +...+ B,)
k==l
is continuous. ‘ ‘ a
Let n € IN. For k € {1,...,n} let Qk and Pk denote the restrictions of Q@ and Pk to
Schwartz’ space S(IR"), respectxvely
Theorem 3.13 Let n € IN, let py,...,PnyG1y---,0n € IN and let A > 1. S:zppose for all
k€ {1,...,n} at least one of the followmg four conditions is satisfied:
* ) > max(2pk, 21), :
6/\22aﬁdp&=l, ‘ ’
e A>2and g =1,
® pr=gq=1.
Then we have tke following characterization for a Gelfand-Shilov space
e 52 | A 52 .
S "" S QP +...+ QP+ P" +... + Py 1)
2p ™ ’2m )
as locally conver spaces with equivalent s;;ecfm
Proof. By Theorem 3.4 we obtain that o
SA(Qng an + _1'_‘, I) : - .
n}. So by Theorem 3.2

524.,4(@1;,»&)

Pk ' 29)

as locally convex spaces with equivalent spectra for all & € {1

and Lemma 3.12 we obtain that the following spaces are equal as locally convex spaces
with equivalent specira: ,

S'o‘fn’ *2qn
A Ay
Brro3

fn] S_A_,fa;(Qk,Pk),

2
k=1 TRA

ﬂS

ﬂ SA\(QP* + Bl 4 EI)

q QkyPk)
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and
S\(QP 4. .+ Q¥ 4 PI g  BYm ).
This proves the theorem. ]

Remark. The previous theorem can also be proved by copying the proof of Theorem 3.4
with

Vo= U{I1ka“aéiksﬁk,“'aﬁlg*s}

k=1

and
L := span({W, W, : W, W, € V})
followed by obvious modifications.

We finish this section with a Gevrey space relative to two unbounded closed linear
operators A, B; the operator A is not essentially self-adjoint; S, (A, B) = Sy(4)N S.(B)
for all A, p > 0 and the space ) (A4, B)is dense in H for all A > 1 and p 2 0.

Let H := L*([0,0)). For every function f on [0, co) define f : IR — € by

e {10 228

The map f — f mduces a map from L%([0,00)) into L?(IR), also denoted by f ++ f Deﬁne
the operator A in L*([0,00)) by

D(A) := {f € L*([0,00)) : f is continuous, f(0) =0 and f € D(P)}
Af:=Pf (f € D(A)),

and let B be the multiplication operator by the function z ~ z in L%([0, 00)). By [Wei],
Section 8.2 Example 1, the operator A is closed, symmetric and not essentjally self-adjoint.
Note that

D=(4) = {f € L*([0,9)) : f € D*(P)}.
Lemma 3.14 For the joint C*-domain D*(A, B) we have

D(4, B) = D®(4) " D™(B) = {f € L*([0,09)): f € S(R)}.
Proof. Let Hy := {f € H: f € S(R)}. Then

D®(A,B) ¢ D®(AND™B)={fcH:feD*P)}n{feH:feDQ)}
= {f€H: e D°(P)nD*(Q)} = Ho.

Clearly Hy C D(A), A(Ho) C Ho, Ho C D(B) and B(Hy) C Hy. So Hy C D*(A,B). 0O
Lemma 3.15 Let A\, p > 0. Then
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Su(AB)={feH:feS}}.
Proof. Trivial. ' ' ‘ D

Theorem 3.16 Let A, ¢t > 0. If A <1 then Syu(A, B) = {0}. If A > 1 then S»,(4, B) s
dense in L*([0, 00)). o

Proof. Suppose X < 1. Let f € Sy,u(A, B). Then f € S2. By [GS], Section IV.2.3, the
function f can be extended to an analytic function. But f(z) = 0 for all z < 0,'s0 f =0
and f=0. g ‘

Suppose A > 1. Let f € L*([0,00)) and suppose (f,g) = 0 for all g € Sy 4(A, B). Let
z € (0,00). By [GS], Section IV.8.1, there exists h € Sy such that supph C (0,00) and
h(z) # 0. Let y € IR. Then the function z — k(z)e™*¥, z € IR is an element of S3. Let g
be the restriction of this function to [0,c0). Then g € Sy (4, B) C 51 (A, B). Hence

oo

0=(f,9)= [ &*F(2)h(z)ds.
Then (f - )" =0, and f- h = 0 ace. Since h(z) # 0 and A is contmuous it. follows that
F =0 a.e. on a neighborhood of z. So f = 0 a.e. on (0,00). Then, f =0 i in, L3([0, 00)). O

Theorem 8.17 Let A, u > 0. Then S),.(A, B) = 5,(A) N S.(B) as locally conver spaces
with equivalent spectra.

Proof. If A < 1 then $\(A) = {0} since every f € 51(P) can be extended to an analytic
function. (See Paley-Wiener, [PW], Theorem L) So S (4, B) {0} = Sx(A) N S.(B) if
A<l WA OulE
Now suppose A > 1. Let Ap and By be the restrictions of A and B to D®(A, B) re-
spectively. By Lemma 3.1 we obtain that Sy (Ao, Bo) = Sx(Aoe) N S.(Bo) as loca,ﬂy convex
spaces with equivalent spectra. Since D®(A, B) = D*(A) N D>(B), also Sy u(A B)
Sx(A) N §,(B) as locally convex spaces with equivalent spectra. |

3.2 The az + b group
Let G := (0,00) x IR with the induced topology of IR>. Deﬁne a multiplication on G by
(@,8) (erd) = (ac,ad+8)  ((a,b), (c,d) € ).

a b
01
with a > 0 and b € R. Then G is a solvable Lie group. Let y denote the embedding from

G into IR?. Then (G,y)is a chart on G. By e = (1,0) we denote the identity in G. Define

9 -9
onl,’ O,

€

So G is a Lie group which is isomorphic with the group of matrices of the form

X =
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Then X,Y is a basis in the Lie algebra g of G and {X,Y] =Y. So by Theorem 2.16.11
and the Remark following Corollary 2.3 we obtain for every representation  in a Hilbert
space, all A > 1 and all g > 0 that

Sraldn(X),dn(Y)) = 5x(dr(X)) N S,(dn(Y))

as locally convex spaces with equivalent spectra.
Let exp denote the exponential map from g into G. Then

exp(aXJrﬂY)-_:{ gabf)i; ) gzig’

The az + b group has up to unitary equivalence two irreducible infinite dimensional repre-
sentations. For (a,b) € G there exists a unique unitary map U ;) from L*(IR) onto L*(IR)
such that

{U(f’b) flz) = e¥* f(z +loga) aezeR

for all f € C.(IR). Then (a,d) — U(a ) is & (continuous unitary) irreducible representation
of G in L*(IR). Let E be the multiplication operator in LZ(IR) of multiplication by the
function x +» €*, z € IR. Then

dU%(X) = —iP,
dU%(Y)

N
i
&

For A, > 0 we shall consider the Gevrey space S),(dU*(X),dU(Y)) = Sx.(P, E).
Since Sy (P, E) C D®(P), every element of Sj ,(P, E) is infinitely differentiable.

Lemma 3.18 Let A, 1t 2 0. Let f € 5x,(P,E). Then there ezist C,t > 0 such that for all
k,? 153 ]No.'
NE*P flloo < CE*HEMI,

Proof. There exist C,t > 0 such that ||f|lpgyus £ C. Then by a classical Sobolev
inequality we obtain for all £,/ € INg:

IE*P fle < YFIE*P'flls + 5IPE*P £,
< JECMHEFI 4 YO 4 1P
VECQ + (2R,

I

a

Paley and Wiener ([PW], Theorems I and IV) have given a characterization of the space
51(P) in terms of analytic functions. Because of our intersection results, this is useful in
the characterization of the spaces §1,.(P, E) where p > 0.
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Theorem 3.19 Let f € L*(IR). Then f € Si(P) if and only if there exist t > 0 such that
f can be extended to an analytic function F on the strip {z € C: |Im z| < 2t} and

sup |F(z + iy)|Pdz < oo.
ye(-4,8)

Theorem 3.20 Let p > 0 and f € L*(IR). The following conditions are equivalent:
I f € S},y(P, E),
II.  f € 5:(P) and there exist C,0,t > 0 such that f can be extended to an analytic
Junction F on the strip {z € C: |Imz| < 2t} and
&
|F(z +iy)| < Ce™*"
forallz € R and all y € (—t,1).
Proof. [ = II. By Lemma 3.18 there exist C,s > 0 such that ||E*P!f||., < Cs*E#]! for

all k,1 € IN;. Then we have for each N € IN and all 2,k € R the following estimate for
the remainder term of the Taylor formula:

}‘Nq}c(z\hl)(x) kY
— —— i —_— —_—— ==
e +h) = 1(&) - 1'2) e
So f(z+h) = T2 M1 fO(x)for all z € R and all A € R with ]ki < 2t, where t := (2s)71.
Hence f can be extended to an analytic function F on the strip {z € € : [Im 2| < 2¢}.

For the remaining part of the proof I = II we proceed as in [GS], Section IV.2. Let
z € R and y € (—t,t). Then for all k € Ny: '

i f(z + k)| < ClAIS".

P+ < 130 00

1=0

3 Clyl'stHae
1=0

< 20s*kF.

AN

So |F(x + iy)| < 2Cinf{ Az : k € INo}. Then by [GS], inequality IV.2.1.3 we obtain
that

. _ by
|F(z +iy)| < 2CeFee07e0%,
I1=> 1 Let k € IN. Then

[ieEys@tde < Varlfii+c? / ittt
R

VERIFI + uC? / ()% e vy ldy

i

V2r||f1I3 + nC?(20)(2k - 1)1
V2| 12 + pCPo~ k1 < co.

IA
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So f € D(EIM*) and [[(IE[M¥)f|l < ||fI|* + g0 k! for all k € IN. Hence f €
Si(|E|M*) = S.(E) by Theorem 1.4. So, by assumption, f € Si(P) N S,(E). Now we
use the intersection Theorem 2.16.I1 and the Remark following Corollary 2.3, in order to
conclude that f € S (P, E). m

Corollary 3.21 Let p > 0. Define W from L*(IR) onto L*(IR) by

W fl(z) := \/ig f(2) (aezeR).

for all f € L*(R). Then W is a unitary map in L*(IR) which maps S1,(P, E) onto
Sl,u(P ? E)

Corollary 3.22 Let p > 0. Then the Gevrey space S1,(P, E) is dense in L*(IR).

Proof. By Corollary 1.26 the space S1,1(P, E) = $11(dU*(X),dU%(Y)) = H“(U?*) is
dense in L2(IR), so the corollary follows from Corollary 3.21. 0

Lemma 3.23 The space Sy o(P, E) is trivial,

Proof. Let f € Sy4(P, E). By Lemma 3.18 there exist C,¢ > 0 such that ||[E*P!f||,
Ct¥H ]l for all k,1 € Ny. So f can be extended to an analytic function F on the stmp
{z€ C:|Imz|<t1}.

Let z € IR be such that ¢ > t. Then for all k¥ € Ny: e*|f(z)] < CtF, so |F(z)| =
|[f(z)] < inf{C(te *)* : k € Ny} = 0. Hence F =0 and f = 0. ]
Lemma 3.24 Let A € [0,1) and p > 0. Then the space Sy (P, E) is trivial.

Proof. Let f € $,,(P, F). By Lemma 3.18 there exist C,t > 0 such that ||E*P!f||,, <
Ct*HEHD for all k,1 € INo. Similarly to [GS], Section IV.2.2, it follows that f can be
extended to an entire function F for which there exist 7,y > 0 such that

|e¥* F(z + iy)| < Cit*k* exp(ly| ™)

for all z,y € IR and k € IN,. Similarly to the proof of Theorem 3.20 there exist 0,C, > 0
such that

lF(:II + 23/)' S Cze-»oc"/"‘"k‘l"iyll_}x

for all z,y € IR.
Let z = 2 + 4y € C. Then

|F(2) - Fliz) - F(—2) - F(—iz)| < Cleme#=re=/msarlel P8 gmaels-acosivgary ™,

Hence limypjoo F'(2) - F(i2) - F(—2)- F{—iz) = 0. By the Liouville theorem F(z}- F(iz)-
F{—2z)-F(—iz)=0forall z€ €. Then also F =0 and f = 0. 0

At this point it is not known whether the spaces S, 4(P, F) are trivial if A > 1. This
problem will be solved in the following lemma.
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Lemma 3.25 Let X > 1. Then the space S\p(P, E) is dense in LQ(IR) In partzcular the
Gelfand-Shilov space S} is a subspace of Sy o(P, E).

Proof. Let f € S}. Then there exist C,t > 0 such that |z|*|f®(z)| < Ct¥+1 for all
z € IR and k,1 € No. Then for all z € R\gy: |f(z)| < inf{Ct*|z|~* : k € INg}, so
f(z) =0for all z € IR, |z| > t. Therefore, for all k'€ INg: :

j () H(@)de < (e*)%«/é?ufuz,

hence f € SO(E)
Obviously, f€ S C S A(P) Therefore f € Sy{(P)NSs(E). Usmg a.gam the intersection
result Theorem 2.16.I1, we obtain that f € S\o(P, E). , 0

We summarize the results of the previous lemmas and corollary.
Theorem 3.26 Let A\, x> 0. Then the space Sy ,(P, E) is dense in L*(IR) if and only if
A>land p 20
or
A=1land p>0.

If = is a representation of an arbitrary Lie group X in a Hilbert space H and V;,...,Y;
is a basis in the Lie algebra of K, then Bruhat, [Bru], has proved that the space
H*(r) = D®(dx(Y}),...,dn(Y})) is K-invariant, i.e. m,(H®(r)) C H*(r) for all g € K
and the restriction representation of 7 to H *(x) is a continuous representation of K
in the locally convex topological vector space H®(wx). Later, in [Goo3], Theorem 2.1,
Goodman has proved similar facts in case the space H™(r) is replaced be ‘the smaller
space S, A(dr(Yi,...,dr(Yy)), where any A > 0 may be taken. We shall prove that for
all ¢ > 1 similar statements do not hold for the space S ,(dU*(X), dU*(Y)) In fact,
these spaces dare not even G-invariant.

Theorem 3.27 Let u > 1. Then the space Sy ,(dU*(X),dU%(Y)) is not G-invariant.

Proof. We have to show that there exist f € Sy (P, E) and g €G such that UXf ¢
S1,u(P, E). Define f: IR — IR by

A Vies?
f@)=e"""" (@ eR).

By Theorem 3.20 and a theorem of Paley-Wiener, Theorem 319, we obtain that f ¢
S1,.(P, E).

Let ¢t > 0 and let g := exp(tY). We shall prove that U¥f ¢ S‘l(P) and therefore
Uff & S1u(P, E).

Suppose U f € $1(P). By the same theorem of Paley Wiener, there exist s > 0 and
an extension h of U# f defined on the strip {2 € C: |[Im z| < 2s} such that
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sup j |h(x + 1y)*dz < o0.
yE(~3,3)
For all z € IR we have
) ite® t'e’-e}ﬁ
h(z) = (Uff(p(ey)f )(2) = (Ui pf N z) = 5 f(z) = &**

1422

So h(z) = e*“"‘""’ for all z € € with |Imz| < min(2s,1). Let y = F}min(s,1).
(The sign corresponds to U%.) Let 7 > 1 be such that 7 < y. Let M > 0 be so large that
1+ |z + iy|* < 7%z and {"/#~D% < L¢|siny| for all z > M. Then for all z > M:

e—"Re e%,/w(x%y)z < 6!-};\X1+(s+iv)el-z < e-};\/l-l'lx-{-iyl?—x < eg;m-x < %tl siny].

Re [iite"*"’ — ek 1"'(”7”‘-”)2' > t|sinyle” — 1t|sinyle® = 1¢|sinyle”.

Hence

So

Re [:k“ea:-ﬁy_c‘xi‘/w

|h(z +1y)| =€ ] > edtlsingle”

for all z > M and therefore the function z — h(z + iy) is not an element of LY(IR).
Contradiction. - : , ‘ o

Also in this section we consider the problem whether a Gevrey space S, (P, E) is
equal to the Gévrey space‘ relative to one single operator. Let A > 1 and p > 0. We shall
prove that there exist 7 > 0 and a positive self-adjoint operator A in L*(IR) such that
Sxu(P, E) = S,(A) as locally convex spaces with equivalent spectra. More precisely, for
v > 0 let Eg be the restriction of the operator E¥ to the space D*(P, E) H>(U *)V. Let
F; be the restriction of P to D°°(P E). Let g€ IN. Let Ao 1= P —i—Eo ® 4 I. Then Agis
essentially self-adjoint and Sy ,(P, E) = 841 (Ao) as locally convex spaces with equivalent
spectra.

Let v > 0. Define the unitary operator W, from L*(IR) onto L*(IR) by

Wfl(@) = —=f(2) (se.z €R)

7
for all f € L*(IR). (Cf. Corollary 3.21.) For all f € H®(U*) we have W, f € D®(P) =

D>(dU%(X)) and W, f € D*(E) = D®(dU*(Y)), so W, f € H®(U*) by Theorem 1.23.
Let P, and Ey be the restrictions of P and E to H*®(U#) respectively. Let

EL = W EW,. |
Note that (E} f)(z) = ¢**f(z) for all z € R and f € H*®(U*). Moreover
V—IPO = W;lP()W,,.
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Theorem 3.28 Let A >'1, >0 and ¢ € IN. Let
A
Aoi=PR4ES 1.
Then the operator Ao is essentially self-adjoint and S ,(P, E) = S241(Ao) as locally convez

spaces with equivalent spectra.

Proof. Let v := % Then Ay = W1 ((VPO)Z‘Z + qu + I) W,, so Ay is unitarily equivalent
with the operator
By := (vP)* + Eg" + 1.

By [Goo6], Corollary 4.1, the operator By is essentially self-adjoint and H*(U*) = D*(By).
So Ay is essentially self-adjoint and D®(A,) = D®°(W; BoW,) = W; 1 D*(B,) =

W H®(U%) = H*(U%). Moreover, by the same Corollary it follows that there exists
M > 0 such that for all k € {0,...,2¢}, for all X,..., Xy € {Po, Eo} and all u € H*(U*)
we have ‘ '

| X1o0...0Xkul| £ M| Bou|.

Since span({iPy,iEo}) is a Lie algebra, now it follows that there exists N > 0 such that
forall n € IN, all X;,..., X, € {P, Eo} and all u € H*(U%) we have

|ad X7 ... ad X, (Bo)u|| £ N™||Boul|-
Hence by Theorem 3.3 we obtain that
S2gx(Bo) C S (Po, Eo) |
as sets. By an elementary counting argument we obtain also that
Saa(Po, Eo) C Sz24a(Bo).
Therefore
Saga(Bo) = Saa(Po, Eo) = Sx(Po) N Sx(Eo) -

as sets, by Theorem 2.16.11.
As sets, we obtain by Theorem 1.4: Sy(E%) = Sy(E¥)NH®(U*) = S,(E)NH®(U*) =
Su(Ev). So '

W,S20r(Ao) = Saga (Wi AoW; 1) = Spor(Bo) = Sx(Po) N Sx(Eo)
and o

Saga(Ao) = W, IS\(Po) NW,1S\(Ey)
~ = S\W,'RW,) N S\(W, EW,)
= Sx(r~'Po) N Sx(Ey)
= S)(Po) N Su(Eo)

= S,\,“(Po, Eo)



100 ’ 3. Ezamples of Gevrey spaces

The last equality is again by Theorem 2.16.I1. Since D®(A;) = H*(U*) = D®(P, E), we
obtain that Sy (Ao) = Si (P, E) as sets. Because the operators P, E and Ay are closed,
then also S3,0(Ag) = Sy.(P, E) as locally convex spaces with equivalent spectra. (See
Corollary 1.22.) 0

3.3 The real unimodular group SL(2,IR)

The group SL(2,IR) consists of all 2 x 2 real matrices with determinant 1. It is common
practice to identify the Lie algebra of SL(2,IR) with the Lie algebra si(2,R) of all 2 x 2
real matrices with trace 0. Let

(1) *a(h 8 v-3(e)

Then A, X,Y is a basis in si{2,IR) and
[A,X]=2Y, [AY]=-2X, [X,Y]=-1A

Define in the complex universal enveloping algebra of sl(2,IR) the Casimir element
C = L(4X? +4Y? - A%).

Then C commutes with A, X and Y.
For k € Z define 4 : T — € by

w(z) = 2* (2 €T).

Let Hp := span({vx : k € Z}). Then Hp is a dense subspace of L?(T). Let s € IR be
fixed. Define the operators Ag, Xy and Y5 on Hj by

Ao"ﬂg = -—ik’y&,
Xowe = —5(F+14is)mes + k-1 = i),
Yoo = (k+1+ishmgz + HE—1—is)ys,
where k € Z. Then _
d
0 t3
(Xof)(e®) = -3 sm29 ( I”) % cos20 f(e),
(%f)(e) = beos2s & ( &)~ 15 in 99 f(e),

for all f € Hy and ¢ € IR. Moreover, Ao, Xo and Y, are skew-symmetric operators
which satisfy the same commutation relations as A, X and Y, namely [4o, Xo] = 2Y5,
[Ag, Yo] = —2X, and [Xo, Yo] = —} Ao. So the map

aA+zX +yY — ahdp+2Xo+yYs (a,2,y € R)
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from s/(2, IR) into the real vector space of skew-symmetric operators in L?('T") with domain
Hy, is a representation of sl(2, IR) by skew-symmetric operators on Ho. Let Ag := A2+
X2+ Y2 Then Agye=—-1(1+s%+ 5’92)’)7: forallke Z. So

Hp = So(Ao) C SI(AO)

Since Hy is dense in L*(TT), it follows from [Nel], Lemma 5.1 that the operator Ao is essen-
tially self-adjoint. Hence by [Nel], Theorem 5 there exists a unique unitary representation
U of the universal covering group [SL(2,R)}” of SL(2,IR), such that

dU(A) = Ay, dU(X)=X,, dU(Y)=Yo

(Actually, U can be restricted to a unitary representation of SL(2, IR), see Van Dijk, [vD],
§2.) Since Aoy, = -—%(1 + 5% 4+ 5k?)y;, and Agy; = —tky;, for all k € Z, it follows that for
all A >0 '

Sax(Ao) = Sr(4o)

as locally convex spaces with equivalent spectra. So by Theorem 1.24 we obta,‘invfor all
A>1:

Sxan(dU(A), dU(X),dU(Y)) = Sx(Ao) = Sx(dU(A))

as locally convex spaces with equivalent spectra. In particular, H*(U) = 8,(4o) is equal
to the set of all real analytic functions on TI'. 'We shall prove that also for all A > 1

H)\(U) = S322(dU(A), dU(X),dU(Y)) = Sy, (dU(X), dU(Y))

as locally convex topological vector spaces and the last two. spaces are equal as locally
convex spaces with equivalent spectra. In the proof the Casimir element plays an essential
role. Because §(4X3 + 4Y7 — AZ) = —1(1 + s?)I, we have dU(C) = —4(1 + s?)I. We can

put this in a more general setting. We need a theorem on ”analytic” dominance.

Theorem 3.29 Let d,dy € IN. Let Z,,...,7Z; and X;,..., Xy, be operators in a Hilbert
space which are defined on a common invariant domain D. Set

el ;= max(flull, | Xaul, .- - [ Xeul)) (€ D).

Suppose there exist A > 1 and M > 0. such that for all w € D, all n €N, all ji,...;jn €
{1,...,d},allje{l,...,d} and k€ {1,...,d:}:

1Zull < M[ulll,
ladZ;, ... adZ;,(Xa)ul < M nI||jull].
Then for all't > 0 there exists s > 0 such that

Sret(Xyeiny Xdl) C Sn.nslZhy.. .3 24)
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and the canonical inclusion is continuous.
Proof. See [GW], Theorem 1.1. o

Theorem 3.30 Let G be a Lie group with Lie algebra g. Let r be a representation of G
in a Hilbert space H. Let d;,dy € IN and let X;,...,X4,,Y1,..., Yy, be a basis in g. Let

C=X{+..+X; - —...=Y. €U(y).

Suppose C belongs to the center of U(g) and suppose there exists T € IR such that
or(C) =rl.

Let > 1. Then

..........

as locally convex spaces with equivalent spectra.

Proof. First we prove that 5. A(07(X1),...,07(Xy,),07(Yh),...,07(Yy,)) =
Sron(02(Xy), ..., 07(X4,)) as locally convex spaces with equivalent spectra.
Let u € H®(x). Then
rllulf® = (ru,u) = (87(Clu,u) =
= (Or(X:)Pu,u) + ...+ (07(Xg)?u,u) — (Or(Y1)?u,u) — ... — (07 (Yy,)?u,w)
= —Jlor(Xy)ull® — ...~ |ox(Xa, Jul* + [[Or(Va)ul® + . . . + |9x(Ya, ul|?.
So for all j € {1,...,d,} we obtain
[l + 10Xyl + ..+ 105X, o]
(Virl+ Vs ymax{|lu], |ox(Xs)ul .., [87(Xa, Jul)
(Wil + Valifull

and clearly for all £ € {1,...,4d;}

lox(Xeul < (Virl + vl
Let Zy = Xy,..., 24 1= Xy, 24,41 ;= Y1,..., Z4:= Yy, where d := dy + d,. Since gis a
Lie algebra, we obtain for alln € IN, all j1,...,j, € {1,...,d}, all k € {1,...,d;1} and all
u € H*(r) that adZ;, ...adZ;, (X,) is a linear combination of Zi,...,Z, and that

lad@n(Z;,) .. addn(Z;,)@r(Xa))ul < M A (|0x(Zo)ull + ... + |0x(Za)ul))
< M@(fir] + )il

where M is the maximum of the absolute values of the structure constants of g with respect
to the basis Zy,...,Z4.
So by Theorem 3.29 for all ¢ > 0 there exists s > 0 such that the embedding

107 (Y )ull

IA A
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Snag(Om(Xy)y .., 07(Xa,)) = Sy, ps(07(X9);. .., 00 ( Xy, ), On(Y1),. .., 07(Yy,))
is continuous. Hence | |

81,.207(Xa), ..., 07(Xa)) = 55,..2(07(X1), . ,a«(xdl);aw(nj,'...<,an(};,2))(3.8)

as locally convex spaces with equivalent spectra.
We shall prove that

He*(x)

it

D®(dr(Xy),...,dr(X4))
= D¥(dn(Xy),...,dn(Xy),dr(¥1),...,dr(¥Ys)).

Then we can replace dr(Xy) by dn(Xi) and 9n(Y;) by dr(Y;) in (3.8) and we have
proved the theorem. By the first part of Theorem 1.23 we already know that H°°(7r)
De{dr(Xy),. .., dn(Xy,), dn(Y3),. . ., dx(Yy,)). So it remains to prove that

He(r) = D®{dn(X3),...,dn(Xy))
as sets. This is stated in the following theorem.

Theorem 3.31 Let G be a Lie group with Lie algebra g. Let © be a representation of G
in a Hilbert space H. Let dy,d; € IN and let X, . s Xan Y, Yy be o basis in g. Let

Cim X2t 4 XD —¥im ...~ Y] € U@).

Suppose C belongs to the center of U(g) and suppoée there exists € IR such that
n(C) =11

Then
H®(x) = D®(dn(X1),...,dn(X4,))

as sets.

Proof. We may assume that G is connected. I;etr Zy = Xy, Zgy = Xcgl,Zggl =
Yi,eooyZq:=Yy, where d :=dy + da. Let ’ : : S

A = Zi+...+Z2eU(p),
Ay = XP4...+ XL €U(g),
K = Bt +2,

' &1 = 3&?-{—...'{-%21.

Here Z denotes the left invariant vector field on G which corresponds to Z. Letue
D®(dn(Xy),...,dn(Xa,)) be fixed. Let m € IN. Let v € H*(x). Then (&,v)(g) =
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(mqu,v) = (u,7g-10) for all g € G, so (%, v) is an infinitely differentiable function from G
into C. Let n € IN and let 7y,...,j, € {1,...,d}. Then for all g € G:

[Zj ©...0 Zj"(ﬂ,v)](g) =

3
ot
a
ot

0

0

/]
a_tn (7rg7rexp(t1Zjl) ER Wexp(thj,.)ua 'U)
0
0]
< 3| (Foth Texp(~taAd(@)Z;n) - - - Texp(~:Ad(a)Z5,)?)
n o

= (=1)*(myu, r(Ad(9)Z;,). .. Or(Ad(9)Z;; Jv)
= (=1)"(mgu, Or(Ad(9)(Z;, - - - Z;,))v)-

Let W € g. Then Ad(exp W)(C) = 23" (C) = C, because C belongs to the center of U(g).
Since G is connected, Ad(g)(C) = C for all g € G. Note that A = 2A; — C. So we obtain

for all g € G:

[Am(, )] (9)

where

(mgu, dr(Ad(g)(A™))v)

S-1F (1) (o, (AL OO O (Ad(0) 20" 4)0)
k

k=0

i(_l)k (T;Z) (7gu, [aw(C)]k dr(Ad(g)(2A1)™ %))

k=0

g%(—l)k (T’:) (wgu, T*0r(Ad(g)(2A1)™ %))
(myu, Or(Ad(9)((2A1 — T)™))v)

[2&: - 7)(@,v)] (9)

(@,v)(9),

wi= (2 il:[dw(Xk)]2 - TI) u.

(Recall that u € D*(dn(X}),...,dr(Xg,)).)
Now let ¢ € C2(G). Let A be a right Haar measure on G. Then

/ A™(g)(8,v)(9)dN ()
G

[ (o) [A(3,v)] (9)x(s)
G

[ #(9)(@,0)(9)dx(o).

Since H>(x) is dense in H, it follows from Lebesgue’s theorem on dominated convergence

that

[ Bme(9)@,0)a)drs) = [ #(9)(®,0)(9)dA(s)
G G
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forallve H. ' -
Let v € H. Then the function {#,v} is a weak solution of the equatxon Am f ( )
Since (@,v) is 2 continuous function and A™ is an elliptic operator of order 2m, it follows
from the local regularity theorem for elliptic operators that (&,v) has locally L* derivatives
of order < 2m. (See Folland, [Fol}, Theorem 6.30.) Hence by [Fol], Lemma 6.9 (the Sobolev
lemma), the function (%,v) is 2m — d times continuously differentiable. Therefore (#,v)
is infinitely differentiable for all v € H. By Theorem 1.28 (Poulsen) it follows that
u € H(r). This proves the theorems. 4 : oo

Corollary 3.32 Let G be a Lie group with Lie algebra g. Let © be an zrreduczble repre-
sentation of G in a Hilbert space. Let d1, dy € IN and let Xl, Xdl,Yl, ., Yy, be a basis
in g. Let ‘

C=Xl4...+X-Y2-...-Y2ecU{g.
Snppose C beiongs to the center of Ulg). Let A2 1. Then '
o (dR(X), oy dn(Xay), dR(K2), . ., dn (Vi) = S, p(dR(Xa), - dn(Xay))
as locally convexr spaces with equivalent spectm |

Proof. Since « is irreducible, by [Tay], Chapter 0 Proposmons 4. 3 and 4 5 there ex:sts
r € € such that 81&'(0) = 7] o : SR

Corollary 3.33 LetG be a semzszmpfe Lie group wztfz Lze afgebm g Let r 56 a represen-
tation of G in a Hilbert space H. Let C € U(g) be the Casimir element. Suppose there
exists T € € such that 9x(C) = 7I. Let g = ¥+ p be a Cartan decomposition of g and let
K be a subgroup of G with Lie algebra ¥. Then

H=(x) = H*(rx)
as sets. Moreover, for all A > ¥ we have
Hy(r) = Hy(r|x)
as locally conver spaces. In particular, HY(7) = H*(x|k).

Proof. Let B denote the Killing form of g. Let Xj,..., Xy, be abasisintand ¥3,...,Y,
be a basis in p such that B(X;, X;) = ~&;; and B(Y,,Y;) = §;; for all ,j. Then C =
4 Y2 -Th, X2 So by Theorems 3.31 and 1.23 we obtain that
H®(r) = D®(dr(X1),...,dn(Xy,)) = H®(x|k)
as sets. Moreover, by Theorems 3.30 and 1.27 we obtain that .
Hy(r) = S alde(Xy),...,d=(Yy,))
Sxen(@n(X1), ..., dr(Xg))
Hy(r|x)

as locally convex spaces. rl
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Example 3.34

Let n € IN, n > 2. Let 7 be a representation of SL(2,IR) in a Hilbert space H. Let
K = S0(n,IR) C SL(n,R). Let C € U(sl(n,IR)) be the Casimir element. Suppose
there exists v € € such that 9x(C) = rI. (For example, suppose r is irreducible.) Then
H>(n) = H®(7|g), H*(x) = H*(x|g) and Hy(n) = H\(x|g) for all X > 1.

Let A, X,Y be the basis in si(2,1R) as in the beginning of this section. Let C :=
F(4X2 4 4Y2 - A7),

Corollary 3.35 Let = be a representation of [SL(2,IR)]"in a Hilbert space and suppose
there ezists T € IR such that Ox{C) = 71. Let A, p, A3 2 1. Then

L Snasn(dr(A),dn(X),dn(Y)) = 5, (dn(A)) N Sy, (dr(X)) N Sx(dn(Y)) =
Sxnldr(A)) if M < X and Xy < Xs, ,

IO Sxpeas(dr(4),dn(X),dn(Y)) = Sy, (dr(A)) N Sy, (dr(X)) N Sy, (dr(Y)) =
Sx, (da(ANN Sy, (dr(X)) if A € Ag,

as locally convex spaces with equivalent spectra.

Proof. 1. This follows immediately from Theorem 3.30 and Lemma 1.1. ‘
11. By I and Corollary 2.3 we obtain that for all £ > 0 there exists £, > 4y > ¢ such that
the following inclusions are continuous: :

Sapapsa(@r(A), dx(X),dm(Y)) C Syu(dn(A)) N Sxyu(dr(X))

Saannn (@7(A), dr(X), dr(Y)) 0 Sye(dr(X))
St it (d(A4),d(Y)) N Siyys, (d(X))
Sxsdereta(dT(A), dr(X), dm(Y))

Sy aneits (@7 (A), dr(X), dn(Y)).

NN NN

Now the corollary follows. ]



Appendix A

Topological vector spaces

Most of the following definitions are taken from the monogra,ph of Wilansky, [Wil]. The
scalar field is C.
Let X be a vector space and let A be a subset of X. Then

spanA :={ %()Z}Wl a0yt N € N ay,.. .,aN E_A,)r\l,v )\ng € 'U} Lf;i% g
denotes the span of A. Ais convez if AMA+ (1~ A)A C A for'all d €{0,1] and A is balanced
if A\AC Afor all A € C with JA] <.1. A is called-absolutely convez.if A # §, A is convex
and balanced. A is called absorbing if for every x € X there exists € > 0 such that Az € A
for all A € € with [A| < & Let B be a subset of X. Then A-absorbs B if there exists
M > 0 such that B C MA for all A € € with |A| > M..

Let X be a vector space. A map p from X into IR is a seminorm 1f for all T,y € X and
Ae € ,

pz} 20,

p(z+y) < p(z)+ p(v)a

L p(Az) = {Alp(=)..

A topological vector space (TVS) is a vector space with a topology such'that vector addition
and scalar multiplication are continuous. Two topological vector spaces X, Y are called
isomorphic as topological vector spaces if there exists a bijection from X onto Y which is
linear and a topological homeomorphism. Let P be a set of serninorms on a vector space
X. The P-topology for X is the smallest topology 7 for' X such that (X,) is a TVS and
such that all elements of P are continuous seminorms. P separates the points of X if for
every z € X, x # 0 there exists p € P such that p(z) # 0. A LCSTVS is a locally convex
separated topological vector space. Let X be a LCSTVS. A local base of neighborhoods of 0
in X is a set B of neighborhoods of 0 such that for each neighborhood U of 0 there exists
VeBwithV cU.

Let (X, ) be a LCSTVS and let A be subset of X. A is bounded if every neighborhood
of 0 absorbs A. A is a bornivore if A absorbs every bounded subset of A. A is a barrel if
A is an absolutely convex absorbing closet set. X is called bornological resp. barrelled if
every absolutely convex bornivore resp. every barrel is a neighborhood of 0. Let 7" be the
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finest locally convex topology for X such that (X,7°) has the same bounded subsets as
(X, 7). We call (X, 7?) the bornological space associated with (X, 7).

Let X be a TVS. A Cauchy net in X is a net (2,)s¢7 such that for each neighborhood
U of 0 there exists ap € I such that a > ap and § > o implies z, — 25 € U. A sequence
(zx)ren is a Cauchy sequence if (zx)ren is a Cauchy net in X. X is called complete,
boundedly complete and sequentially complete if every Cauchy net, every bounded Cauchy
net respectively every Cauchy sequence in X is convergent. A Fréchet space is a metrizable
complete LCSTVS,

Let (X,)aca be a family of LCSTVS’s, let X be a vector space and for each a € A
let u, : Xy — X be a linear map. Suppose X = span({us(z) : o € A,z € A,}). The
inductive limét topology for X is the finest topology 7 for X such that (X, ) is a locally
convex TVS and each u,, o € A is continuous. An inductive limit X = {J,eq X 5 called
regular if A is a directed set, X, is a LCSTVS which is a vector subspace of X for all
a € A, for all o, B € A with a £ B the space X, is continuously embedded in Xj, the
topology for X is the inductive limit topology generated by the spaces X,, o € A and,
moreover, for every bounded subset B of X there exists « € A such that B is a bounded
subset of X,. X is called an LB-space if A =IN, for all £ € IN, X; is a Banach space and
X C X as a vector space, X} is continuously embedded in X; if k£ < ! and the topology
for X is the inductive limit topology.

Let A, B be totally ordered sets. For all « € A and B € B let X, and Y; be LCSTVS's.
Suppose X,, C X,, and the embedding map is continuous for all oy, a3 € A with oy < 0
and, similarly, suppose Y, C Y, and the embedding map is continuous for all §;,5, € B
with £y < fa. Let X = U,ea Xa and Y = Uses Ys. The topologies for X and Y are the
(natural) inductive limit topologies. We call X =Y as locally convez spaces with equivalent
spectra if for all o« € A there exists f € B such that X, C Y3 and the embedding map
is continuous, and secondly, for all # € B there exists a € A such that Y3 C X, and the
embedding map is continuous. It follows then that X = Y as locally convex topological
vector spaces. (See [Wil], Theorem 13-1-8.)

Let (Xo)aea be a family of LCSTVS’s, let X be a vector space and for each o € A let
Uy : X — X, be a linear map. The projective limit topology for X is the weakest topology
7 for X such that each u,, @ € A is continuous. Then (X, 7) is a locally convex TVS.



Appendix B

Spaces of type S, ~

In this appendix we give a summary of the report [tE] where the smoothed spaces S, ¢ are
introduced. These spaces establish a generalization of the analyticity spaces Sy of De
Graaf, [Gra]. (See Example 1.2.) Let G be a locally compact Abelian topological group
with a Haar measure g and let = be a (continuous unitary) representation of G in a Hilbert
space H. For all f € L'(G) define the continuous operator #(f) on H by

(x(f)u,0) = / J@)(wou,v)dp(e) (w0 € H).

Then #(f *g) = n(f)x(g) for all f,g € L’{G) Let C be a fixed subset of L‘{G) Suppose
the pair {C, ) possesses the following properties:

Pl. Forall f,g € C there exists h € C such that 1 and 2 hold:
1) f = h or there exists f € L'(G) such that f = h* fy,
2) g = h or there exists g; € L'(G) such that g = h * gy.

P2, There exists a net (fa)res in C such that for a!l u € H we have lim, x(fA)u = u.

Throughout this appendix we su}:;posé that the pair (C,r) has ‘Propefties P1 and P2.

Remark. These conditions are weak, but sufficiently strong to enable us to construct the
space Syc. In practice one meets sets C' which have much more stronger properties such
as:

P1'. For dll f,g € C there exist h € C and fl: o € Ll(G) such that f = b f; and
cg=h¥g. = :

P2, There eztsts an L‘(G) bounded net ( fx),\e.} in c sz:.cf& that for afl u€ H we have
- hm;‘fr(.ﬁ)u-—u

P2, There ezzsts an LY(G)- bounded net ( fA) xeJ. in C such that for all g€ LI(G) we have
lim), fy * g = g in L(G).

Of course: P1’ implies P1, P2 implies P2’ and P2’ implies P2. For f § L(G) define
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Ny := {u€e H:n(f)u =0}, thekernelof (f),
Ry = =(f)(H), the range of 7 (f),
Qf = W(f)IN!J. . N}L — Rf.

Then € is a bijection. Since N# is a Hilbert subspace of H, there exists a unique norm
f ] 1

|| |l on Ry such that R; becomes a Hilbert space and Q; is a unitary map. So for all

f,g € LY(G) with f = g« h we obtain that Rj is continuously embedded in R,. Define

Src = U Ry.
fec
By Property P1, S, ¢ is a linear vector space. The topology cinq for Sy ¢ is the inductive
limit topology generated by the Hilbert spaces Ry, with f € C.

By Property P2 it follows that S;¢ is dense in H. Moreover, Sy ¢ is continuously
embedded in H and the topology oi,q is Hausdorff.

In order to describe the topology oing for Sy ¢ we need some structure theory for unitary
representations of locally compact Abelian groups. For this we introduce a so called Stone-
representative (A, m, I, A;,7;, W) for x. To this end, let A be a locally compabt Hausdorff
space, m a measure on A, defined on the Borel o-algebra of A, let I be an index set, for
all 2 € I let A; be an open subset of A with induced topology and let 7; : G > A;bea
topological homeomorphism. Let W be a unitary operator from H onto L?(m). The tuple
(A,m, I, A;,7;, W) is called a Stone-representative for x if and only if:

(AnA;=0ifi#]j (,jel),

A =Uer 4, : R

The map Y +— m(7;(Y)), Y a Borel measurable subset of G, is a finite
regular measure on G (i € I),

O<m(A)<oo (i€l

m(Z) =T eym(Z 0 A;))  (Z C A Borel measurable),

For all f € L'(G) let ¥ be the continuous function on A such that }(T,’(‘)’)) = f('y)
forallicIand vy € G. Then Wr(f)W-1¢ = F - ¢ for all f € L}(G)
and ¢ € L*(m).

By [HR2], Remark 33.6 and [HR1], Theorem C.37, there exists a Stone-representative
for =.

Let Bor(G, C) be the sét of all complex valued Borel measurable functions on G and
let Bory(G,C) be the subset of all bounded elements of Bor(G, C). With the aid of a
Stone-representative for 7 we can extend the set of operators 7(f) with f € L!(G) to a set
of operators #[F] with F € Bor(G, C). Let (A,m, I, A;,7;, W) be a Stone-representative
for 7 and let F be a Borel measurable function on G. Define the Borel measurable function
Fon A by

F(r:(7)):=F(y) i€l,7€q).
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For every F € Bor(G, C) define the normal operator x[F, Ajon H by x[F, A] :== W-1MpW,
with My the multiplication operator by F on L?(m). We prove that the operator x[F, A]
does not depend on A. For a detailed proof we refer to the report [tE], Lemma 2.5, Theorem
2.6 and Lemma 2.9, here we present a sketch of the proof. Let (A,m, I, A;, 7, W) be a
Stone-representative for . For every uniformly bounded sequence (Fy,)nen

in Borb(é’, €) such that F(%) := limy 00 Fr(y) exists for all vy € & we obtain by Lebesgue's
theorem on dominated convergence that 7[F, A] = s — limy_,. 7[Fj, A]. Since {f : f ¢
LY(G)} is dense in Co(G) and #[f, A] = #(f) does not depend on the Stone-representative
for all f € LY(G), it follows that x[F, A] does not depend on the Stone—representatwe for
all F € Co(G). Now let V be an open subset of G and let

X = clo{x[F, AJ(H): F € Co(@), 0 < F < 1y}

Mainly by the regularity and finiteness of the measure ¥ m(r:(Y)) on G, it follows
that #[ly, A] is the projection of H onto X. So n[ly, A] does not depend on the Stone-
representative. Now it is easy to show that the operator »[F, A] does not depend on the
Stone-representative for all F' € Bory(G, €) and even for all F e Bor(G, ).

Let C be the fixed subset of L(G) which has Properties P1 and P2. Corresponding
to the set C we define the two subsets of Bor(G, €) and seminorms on Syc:

c# {F € Bor(G,C) : for all f € C the function f - F is bounded},
C# = {FeC*: 3V s[F()> €}

For all F € C#* define sp: 5,0 — R

sp(p) = ||7[Flp|l (9 € Sxc)-

Then sp is a oina-continuous seminorm on S, ¢. Because 15 € Cf, the set of seminorms
{sr : F € C#} separates the points of Sy c. So {sr : F € C#} defines a Hausdorff topology
for Sx ¢, which is denoted by 045, Then aprg; C oing, but not necessarily 01,9 = proj. (For
a counter example, see [tE], Corollary 4.7.) In [tE] a necessary and sufficient condition has
been presented for the equality oimg = Oproj. Also a sufficient condition is presented:

P3. There exist a sequence of Borel measurable disjoint sets Q1,Q,... in G and a se-
quence of posttive real numbers by, b, ... such that G= 20 1 @ and 352, 671

and for all f € C there exists g € C and 6 > 0 such that for alln € IN: -

bosup{[F ()] : 7 € Qu} < Sinf{|3(7)| : ¥ € Qu}.

If the pair (C, ) has Property P3, then 6ing = 0pro; as locally convex spaces. (See [tE],
Corollary 2.31.)
Finally we introduce two more properties.

PL Vg, [(Veos F - K is bounded]) = 3reoTeno [l1 ,epipemipaseny) = ]
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PE. Vyppoid.o [(VxeoslF- K is bounded]) = 3yecTeso [|F] < clf]]-

Clearly Property P4’ implies Property P4.
Now suppose the pair (C,7) has Property P3. Then the following conditions are
equivalent.
I.  The pair (C, ) has Property P4.
L $:0 = (pecg DixIF)).
III. S, ¢ is complete.
IV. 5, ¢ is sequentially complete.
V. Every bounded sequence in S, ¢ has a weakly convergent subsequence.
VI

. For every bounded subset B of S, there exist f € C and a bounded subset By of
H such that B = »{(f)}{(Bo).

VIL S, ¢ is reflexive.

For a proof, see [tE], Theorem 3.12.
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Samenvatting

In dit proefschrift wordt een klasse van lokaal konvexe topologische vektorruimten inge-
voerd en bestudeerd, namelijk de klasse der zogenaamde Gevreyruimten. Elke Gevrey-
ruimte wordt vastgelegd door een eindig aantal operatoren Ay,..., Ay en niet-negatieve
getallen A, .., Ay en wordt aangegeven door Sy, »,(A1,. .., Ag). Voorbeelden van Gevrey-
ruirten zijn de klassieke Gelfand-Shilov ruimten S2, de ruimten van analytische vectoren
D¥(Ay,...,Aq) van Nelson en de ruimte van symmetrische Gevrey vektoren Gx(4s,. .., A4)
van Goodman-Wallach. Er geldt namelijk dat S8 = S, 4(Q, P), D“(Ay,..., Ag) =
S1,.a(Ayy . Adden Ga(Ay, .. ., Ag) = Saa (A1, ..., Ag). De definitie van Ga(4y,. .., 44)
is geinspireerd op de klassieke definitie van Gevreyfunktie door Gevrey, terwijl de defini-
tie van Sy, 2,(Ay,..., Aq)is geinspireerd op Roumieu’s definitie van (niet-symmetrische)
Gevreyfunktie. Een grote klasse van niet triviale voorbeelden ontstaat door voor de opera-
toren Ay, ..., Ay infinitesimaal generatoren van unitaire representaties van Lie groepen te
nemen. De Gevreyruimten worden voorzien van een natuurlijke induktieve limiet topolo-
gie. Voor deze topologie wordt een gedetailleerde karakterisatie van eigenschappen als
volledigheid, kompaktheid, begrensdheid, enz. afgeleid.

Een belangrijk gedeelte van dit proefschrift is gewijd aan voorwaarden op de opera-
toren Aj,...,Ajqen de getallen Ay,..., A; waaronder Sy, »,(A4,...,Aq) gelijk is aan de
doorsnede van de Gevreyruimten S, 4, (Bi1y- .., Ba,) en S,y 0, (Ch, ..., Cyy) met dy +
dy < d? In het bijzonder worden er voorwaarden gegeven waaronder Sy, ,(As,...,Aq)
gelijk aan de doorsnede van Gevreyruimten gerelateerd aan één operator? Dit is bijvoor-
beeld het geval als de operatoren Ay, ..., Aq een Lie algebra opspannen.

Concrete uitwerkingen worden gegeven voor representaties van de Lie algebras van de
Heisenberggroep, de az + b groep en de unimodulaire groep SL(2,IR).
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STELLINGEN
behorende bij het proefschrift
GEVREY SPACES RELATED TO LIE ALGEBRAS OF OPERATORS
door A.F.M. ter Elst

1.

Zij L{H) de verzameling der kontinue operatoren in een (niet noodzakelijk separabele)
Hilbertruimte H. Voor een niet lege deelverzameling M van L(H) en T € L(H) definieer de
afstand d(T, M) := inf{||T — M|| : M € M}. Zij N, Un, C resp. Inv de deelverzameling
van L(H) bestaande uit de normale, unitaire, kompakte en inverteerbare operatoren. Een
operator T € L(H) heet antinormaal als d(T,A) = |T|. Voor elk oneindig kardinaalgetal w
zij »

C. := afsl{§ € L(H) : dim S(H) < w}.

Zij T € L{H) en stel dimKer T < dimKer T*. Zij w := max(Ro, dim Ker T*) en zij
a(T) = inf{z > 0 : dim 1 5(|T}]) > max(Ro, dim Ker 77)}.

Dan zijn de volgende uitspraken equivalent:

L T is antinormaal.

I1. 7T is essentieel antinormaal, d.w.z. (T, N +C) = ||T}}.
L. TN +C.)=|T).

IV. ||T|| = »(T).

V. Erzijn o > 0, een niet surjektieve isometrie W en een positieve Hermitische kontraktie
K € C,r, waarbij o’ = max(Ng, dim Ker W*), 20 dat T = aW (I - K).

VI. Vooralle U € Un geldt o(UT)= {z € C:|2| < ||T|}.
VIL d(T,Un)=1+]|T|.

VIIL d(T,Un +C) = 1 + ||T}.

IX. d(T,Un+C,)=1+|T].

X. d(T,Inv)=|T|.

X1 d(T,Inv+C)=|T].

XII. d(T,Inv+C.) = ||T.

Literatuur: [E1], [I].

2.

Zij H een (niet noodzakelijk separabele) Hilbertruimte en zij T € £{H ). Dan geldt voor
de afstand d(T",U{n) van T tot de verzameling i{n der unitaire operatoren in H:



(T, Un) = max(l -~ m(T),||T]| - 1) als dimKer T = dim Ker T*,
(TUR) = max(1+ n(T), || - 1) als dim Ker T < dim Ker T*.
Hierbij is

m{T) = inf o(|T|)

en n{T) als in Stelling 1.
Literatuur: [E2], [R].

3.

Zij H een (niet noodzakelijk separabele} Hilbertruimte en zij F C L(H) een {(niet noodza-
kelijk aftelbare) kollektie Hermitische operatoren met AB = BA voor alle A,B € F. Dan
bestaan er een lokaal eindige maatruimte (X, B, m) en een unitaire afbeelding U van H op
L*(m) zo dat voor alle A € F de operator U AU™! een vermenigvuldigingsoperator op £2(m)
is.

4.

In [EGK] is het tweede deel van voorwaarde A.I overbodig. De symmetrie konditie A.IV
kan vervangen worden door de zwakkere konditie A IV’

VeeottIoeadeso [I{AGR”:(()&bcsa(A)}(A) = 0] .
Onder aanname van voorwaarden A.I, A.Il en A.III zijn de volgende beweringen equivalent:

1. Het paar (@, A) heeft eigenschap AIV’.

II.  (Ta(4) Toroj) = (Sat(4), Oina) als topologische vektorruimten.

I11. (T@{ A),rpmj) is bornologisch.

IV. (Ty(ay, Tproj) is getond.

V. (Tg(a), Torej) is reflexief.

VI (Sz(4), Oma) Is volledig.

VIIL (Sq,( A)aoind) is rijvolledig.

VIIL (S5(4), Oina) is zwak begrensd volledig.

IX. Elke begrensde rij in (Sg(4),0ina) heeft een zwak konvergente deelrij.

X.  Voor elke begrensde verzameling B in Sg(4) zijn er ¢ € ® en een begrensde verzameling
By in X zo dat B = p(A) e Bo.

X1. (S*P(A})oind) is reflexief.
Literatuur: [E3].

5.

Zij » een standaard irreducibele representatie van de Heisenberg groep A(IR) in de Hilbert-
ruimte H = L*(R). Zij @, > 0 en stel :+ 8 > 1. Dan bestaat er cen deelverzameling Cy 5
van L'(A(R)) zo dat

sE= U =(nHE)

1€Cas



als verzameling in de volgende gevallen:

I Bz1,
1I. B71e2NN,
II. a=4,

IV. a+f=1en 3e€NN.

en in de overeenkomstige gevallen met o en J verwisseld.
Ook bestaan er deelverzamelingen C; en C; van L'(A(IR)) zo dat

SM) = |J =(f)(A)
fet
en

DR)= ) «(f)(H).

f€C,

6.

Zij Do de differentiatieoperator en Q¢ de operator van vermenigvuldiging met de funktie
z ++ z op de ruimte S(IR) van Schwartz. Zij Ao := (I + 2Q¢Dg). Dan is de operator Aq
essentieel zelfgeadjungeerd in L3(IR). De analyticiteitsruimte van de afsluiting Ap bestaat
uit alle funkties f op IR waarvoor een @ € (0, %) bestaat zo dat f uit te breiden is tot een
analytische funktie F op {re*’ : r € R\ {0}, % € (—0,90)} en

sup ]]F(re“”)Pdr < o0,
YR

PE(~0,w0

7.

Zij E,F twee lokaal konvexe Hausdorffruimten waarbij de topologie op E en F wordt
voortgebracht door verzamelingen halfnormen P en @ resp. Veronderstel bovendien dat de
halfnormen in P en Q afkomstig zijn van halfinprodukten. Dan is op de tensorproduktruimte
E ® F op een natuurlijke wijze een lokaal konvexe Hausdorfftopologie r te definiéren door
middel van halfnormen die afkomstig zijn van halfinprodukten. De topologie hangt niet af
van de keuze van P en Q. Als F en F Hilbertruimten zijn, dan is de kompletering van
(E ® F,r) gelijk aan het Hilbertruimte tensorprodukt van F en F. Als A en B positieve
zelfgeadjungeerde operatoren zijn in Hilbertruimten X en Y resp., dan is de kompletering
van (Tx 4 ® Tv,p,7) gelijk aan TTxgy;401,128-

Literatuur: [E4], Appendix C en Chapter 8 en [EG], Theorem I11.6.5.

8.

Zij g een Lie algebra met universele overdekkings algebra U(q). Zij di,d2 € IN en zij
X1y-e0y Xayy Y1, .-, Y4, € 9. Stel g = span({X1,..., X4, Y1, ... Ye, ). Zij Vi = {1,...,d1}
en Vo 1= {1,...,d2}. We gebruiken dezelfde notaties als in dit proefschrift. Voor alle a €
M(V;) definieer X, € U(g) op de voor de hand liggende wijze analoog aan blz. 12 van dit
proefschrift. Definieer net zo Yy € U(g) voor alle § € M(V;}. Dan zijn er konstanten M,s > 0
en voor alle n,7 € M{Vy) en 8,6 € M(Vy) met [|y]| + |I6]] < l|8]] is er c';:f, € € zo dat voor
alle & € M(V}) en B € M(V3) geldt



XaYp=3 3 2 ) YeXae)

2)
Iil+sli<lial

en bovendien geldt

Y
’cn

,2} < Shall (M“ﬁn)llﬂll-i-llﬁll—Il'vil-iléli

voor alle voorkomende 7,5,7, 8.

9.

De schriftelijke examens op zaterdag zullen snel worden afgeschaft indien ook hoogleraren
als surveillant worden ingezet.
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