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Abstract

In usual type theory, if a function f is of type ¢ -+ ¢’ and an argument a is of type
o, then the type of fa is immediately given to be ¢ and no mention is made of the fact
that what has happened is a form of G-conversion. A similar observation holds for the
generalized Cartesian product types, I,.,.7. In fact, many versions of type theory assume
that 8 holds of both types and terms, yet only a few attempt to study the theory where
terms and types are really treated equally and where S-conversion is used for both.

A unified treatment however, of types and terms is becoming indispensible especially
in the approaches which try to generalise many systems under a unique one. For example,
[Barendregt 91) provides the Barendregt cube and the Pure Type Systems (PTSs) which
are a generalisation of many type theories. Yet even such a generalisation does not use
B-conversion for both types and terms. This is unattractive, in a calculus where types
have the same syntax as terms (such as the calculi of the cube or the PTSs). For example,
in those systems, even though compatibility holds for the typing of abstraction, it does
not hold for the typing of application. That is, even though

M:N=A.p.M: yp N
holds, the following does not hold:
M:N=MP:NP

Based on this observation, we present a i-calculus in which the conversion rules apply
to types as well as terms. Abstraction and application, moreover, range over both types
and terms. We extend ihe calculus with a canonical type operator 7 in order to associate
types to terms. The type of fa will then be Fa, where F is the type of f and the
statement I' I { : o from usnal type theory is split in two statements in our system:
I+t and #{T',f) = ¢. Such a splitting enables us to discuss the two questions of the
typability of a term and of what is iis type separately. Again we believe that this splitting
is important and should be usually considered.

As a demonstration of what we can do with our calculus, we interpret Church’s A_,
in our calculus. This enables us to view our approach as an attempt to extend A_, with a
unified treatment for type and term substitution and conversion and at splitting ' -¢: o
in the two statements: T I ¢ and 7{T',t) =4 . Such an approach should eventually be
used to deal with the Barendregt cube and the Pure Type Systems.

Keywords: A-Calculus, Type Theory, Church Rosscr Theorvem, Types as Terms, A_,.
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1 Introduction

At the end of the nineteenth century, types did not play a role in mathematics or logic, unless
at the meta-level, in order to distinguish between different ‘classes’ of objects. Frege’s formal-
ization of logical reasoning, as explained in the Begriffsschrift ([Irege 1879]), was untyped.
Only after the discovery of Russell’s paradox, undermining Frege’s work, one may observe var-
tous formulations of typed theories. Types on the other hand, could explain away the paradox-
ical instances. The first theory which aimed at doing so, was that of Russell and Whitehead,
as exposed in their famous Principic Mathematica ([Whitchead and Russell 1910]). Their
‘ramified theory of types’ has later been adapted and simplified by Hilbert and Ackermann
([Hilbert and Ackermann 1928]).

Church was the first to define a type theory ‘as such’, almost a decade after he developed
a theory of Tunctionals which is nowadays called A-ealenius ([Church 1932]). This calculus
was used for defining a notion of computability that turned out to be of the same power as
Turing-computability or general recursiveness. However, the original, untyped version did
not work as a foundation for mathematics. In order to come round the inconsistencies in his
proposal for logic, Church developed the ‘simple theory of types’ ([Church 1940]).

From then till the present day, researcl on the arca has grown and one can find various
reformulations of type theorics. A taxonomy of type systems has recently been given by
Barendregt ([Barendregt 92]). A version of Church’s simple theory of types can be found in
this taxonomy under the name A_, or AL Church. This A_ has, apart from type variables,
so-called arrew-{ypes of the form 0 — &', for cach pair of types ¢ and o’. In higher type
theories, arrow-types are replaced by dependent products g.,.0', where the type ¢’ may
contain y as a free variable, and thus may depend on y. This means that abstraction can be
over types, similarly to the usual abstraction over terms: Ay, L.

But, once we allow abstraction over types, it would be nice to discuss the conversion
rules which govern thesc types. We propose couversion rules which act similarly to those
for terms. For example, if £, I’ are terms, o, o' are types, and if A and II are used for
abstraction over terms and types respectively, then not only (A, )t —g [y := '], but also
(Nyeo 0 Y —p o[y == 1],

This strategy of permitting [l-applicalion (11,.,.0')t' in term construction and using an
extended version of 3-reduction for such a Il-application, however, is not commonly used. Yet,
it is desirable. Especially now in the new tradition which atternpts to unify and generalise the
type systems. Sce for example the Barendregt cube in [Barendregt 92] and the fine structure
of the A-calculus in [KN 9y]j.

Moreaver, one may say that F-reduction has been invented as an expedient in order to
forebode a possible substitution. So why does one use a direct substitution as in equation 1
below, (which is used almost everywhere) if S-reduction can be used to do the job, as shown
in equation 27 {We omit the contexts, for the sake of simplicity):

If f:1,0.0" and a: o, then fa: o'y := a] (1)
If f:Yy0.0" and «: o, then fa:(ll,.,.0')a (which f—converts to fa : o'y 1= a]). (2)

In fact, it is more elegant and uniform to use the second notation instead of the first one.
The formulation of the theorics and the proofs becomes easicr. Furthermore, with the second
notation, one maintains a compelibility property for the typing of afl applications:

M N=>MP: NP



This is in line with the compatibility property for the typing of abstractions, which does hold
in general:

M :N = ApM :T,pN.

As an example, we give a simple derivation with the above-described compatible application
rule and with conversion on ll-application:

Arxb:Aa:A F a: A (start)

A:x,b: A Foo(Aaa-a): (Muq.4) (abstraction)
Arx b A Foo(Awa.@)b: {Tl,.4.A)0 (application)
Arx b A Fo(Aga.a)h: A (conversion)

It is our belief that it is simpler to treat terms and types in a unified manner. Moreover,
such a unified treatment provides a step towards the generalisation of type systems. In fact,
such a generalisation is an important topic of research at the present time. For example,
Barendregt’s taxonomy of type systems in [Barendregt 92] and our generalised system in
[NK 94] which accommodates all the systems of the Barendregt cube are attempts at com-
bining all the important results and structures of type systems in a compact and elegant way.
As a step towards this compact and elegant way, we believe that conversion should apply to
both types and terms. Hence, this paper aims al extending the conversion rules of terms to
types.

We start in Section 2 by presenting the caleulus A, being a form of A, in which terms
and types can be treated alike and where types contain abstraction and application rather
than being simple as in A,. The Church Rosser theorem is shown in Section 3 to hold for
the calculus. In Section 4, we present the technical machinery relevant for contexts and
variables. Important notions such as context ordering and the companion term of a context-
and-expression pair arc introduced and discussed for binding variables in terms and contexts.
For substitution purposes, contexts must be restricted Lo the well-behaved ones but it is shown
that this restriction is only cosmetic, in that for any (T', M), we can find an a-variant (I, M")
where I is well-Deliaved. In Section 5, we introduce the typing operator 7. This operator
will find the types of terms within contexts. 7 will satis{v inost of the desired properties of
typing operators, such as weakening, and substitution.

Typing a term however, is not the only important notion. We need to study the type of the
term too and to study the well-typedness of the term. In fact, we think that a more elegant
notion of typing can be obtained if we split the judgement T' F ¢ @ ¢ in two judgements:
I' F 1 and 7(I',1) =g o which say that 7 is well typed and has for type o. So instead of
concentrating on the whole formula I' = 1 : ¢ al once, we engage ourselves first in showing the
well-typedness of 7 and then in looking for its type. In fact, we believe that this separation is
important especially when we move away from the simpler type theories such as A_, to a more
involved ones such as those of the systeins of the Barendregt cube where types and terms are
inter-mingled. In such a case, not only we nced to discuss I' - ¢ but also that the type of ¢
is well-typed {or consistent). We use the notion consistent instead of well-typed in order to
cover for both cases when ' £ and I' F 7(I', (). For this reason, we introduce in section 6
the notion of consistency ol an expression with respect to a context. All terms which are
consistent with respect to a context, are typable (via 7) in the context and their types are
also consistent. lLe. if I' = ¢ then 7(1",1) is defined and ' F 7(I', ). Hence, we define I' - M
for M being a type as well as a term. Furthermore, all the information about binding and
freeness relevant to ¢ and to typing it in context T, is present in I" and in £. So the expression



I'F ¢t can he treated as a term on its right. We believe that scparating ' F ¢ : o into I' - ¢ and
7(1',1) =g ¢ deserves attention. Morcover, consistency + has all the desirable properties of
type theory. For example, Basis Letnma, Generation Lemma, Correctness of Subexpressions,
Weakening, Substitution, Context Reduction, Subject Reduction, Unicity and Correctness of
Types all hold for consistent expressions.

Hence the calculus presented unifies the treatment of types and terms, while preserv-
ing all the important properties, from Church Rosser to subject reduction and type unic-
ity /correctness. To give the reader a fecl for the elegance of the approach, we interpret in
Section 7 Church’s A_, in our calculus. The main result is that I' by & : ¢ iff T' F Z(%)
and T+ Z(o) in AL, for T being the interpretation function from AL to A_,. Moreover,
(T, 7(1)) = Z(o) in A.. Furthermore, if P F " in A, then there are T',¢ and o in A, such
that [V —sg Z(D), ¢~ Z(2), 7(1",#") =p Z(e) and T'k,_ 1 : 0. We helieve that our calculus
can be used to provide similar conditions for other type systems and it would be interesting
to extend these results for the Pure Type Systems. Henee AL, can be looked at as a system
which discusses and generalises conditions of typing in the known type systetns.

2 A,

We assume two kinds of expressions: types and terms. We assume moreover, an infinite set
V of type variables and an infinite set ¥V ol term variables. We let 7 be the set of types and
T he the set of terms and assume two absiraction operators 11 and A. The II absiracts over
types and the A over terms. Both 7 and 7 are defined as {ollows:

V=ol|V

V=gV

T = V| (Ty.r 7)) (TT)

T = V | (e 1) | (IT)

Note that this definition allows that types are applied to terms.

Examples of types are: o, (Il .,.(o’2")) and ((I;.,.0")2").

Examples of terms are: 2/, (Apq.(2"2)) and ((Ag.q.2")2).

We often omit brackets conforming o the usual conventions. We nuse the meta-variable 7
to range aver {A, 1T}, We let v,vy,... range over V and y, z,... range aver V., Also, w,w/,...
range over VUV and we assume that VNV =§. We use o,0”,0",...,0,,02,...t0 range over
T (the types), ,#,",... t1,l,. .. to range over T (the terms), and let L, M, N, P,... range
over 7T UT. We call the clements of 7 UT capressions.

Lemma 2.1 TnNnT =10
Proof: FEasy. mi

2.1 Variable manipulation

The free and bound variables in an expression M, denoted FV(M) and BV (M)
respectively, are defined as follows:

Definition 2.2 (Free Variables)

1. FV(w)=w

6



2. FV(7pe-M) = FV(a)U(FV{M)I\ {y})
3. FV(Mt)= FV(M)uU FV{1)
Definition 2.3 (Bound Variables)
1. BV{(w)=190
2. BV (my0.M) = {y} U BV(c)U BV (M)
3. BV(Mt) = BV(M)U BV (1)
Remark 2.4 Note that BV (M) C V.

Now we define the type of a bound variable in an expression as follows:
Definition 2.5 (Type of Bound Variables)

o Ify occurs free in M, then all its occurrences are bound with lype ¢ in 7., .M where

a2 A MeT endr=11if MeT.

o [f an occurrence of y is bound with lype & in M, lhen it iz also bound with type o in
Ty M, i M1, and, in case M €T, in (M'M).

As is usnal in the A-calculus, and for case of the proofs that we will carry out, we assume
Barendregt’s variable convention. That is: names of bound variables will always be chosen
such that they differ from the frec ones in an expression, so that one wouldn’t have (7., .3}y
but instead (7,.,.2)y. Such a conventiou is guaranteed via the use ol variable renaming and
is formally stated as follows:

Notation 2.6 (Barendregt’s Variable Convention)
For every M, BV(M)YNFV (M) = §.

Notation 2.7 (Iztended Variable Convention, VC)
We extend Barendregt’s Variable Convention with the following clavse: For every M, if A,
and A, occur in M then y £ =

Remark 2.8 Note that the condition that names of bound variables be distinct is desirable
in order to obtain that for a term obeying VC, also its subterms obey VC. Take for example
the term & = Ao Ayiary-y. 1L is cortainly the case that BV (i) n FV () = @, yet y occurs in
the free and bound variables of A,.,+,.y. Therefore, we impose the condition that names of
bound variables be distinct in order 1o make sure that for every cxpression we write down
(whether it is an expression or a subexpression of another expression), the free variables and
the bound variables are disjoint.

It should he further noted that without variable renaming, we could not have VC. Therefore,
we identify expressions modulo «-conversion. With V7 morcover, we get the following:

Lemma 2.9 Inn,.,. M, y g F'V (o).

Proof: BV (7,.,.M) = {y}UBV(c)UBV(M) and FV(x,.,.M) = FV(a)U(FV(M)\{y}).
Yy € BV (Ty0. M) =YC y & FV(m,, M) => y & FV(o)U(FV(M)\{y}) = y & FV{c). O

-1



Remark 2.10 Note here that with the identification of expressions modulo e-conversion, the
notion of a. bound variable becomes uscless.

Notation 2,11 M = N means that M and N are the same expressions or can he obtained
from each other by renaming bound variables. For example: #y.,.y = 7,.,.2 for z not free in
o. Now, if in clause 5 of Definition 2.12 helow, y € FV(P), then we write (m,.,.M )jw := P] =

(0. M[y := 2])[w := P] for = a fresh variable (note from Lemma 2.9 that y ¢ FV(¢)). With
this notation, we follow the lines of Barendregt in [Barendregt 92] in identifying expressions
that differ only in the name of bound variables, rather than using a-conversion. That is, the
identification is done in our mind rather than on paper.

2.2 Substitution and reduction

We introduce substitution, reduction and conversion by the following definitions:

Definition 2.12 (Substitution)

We define Mw := P)] to be the resull of substituting P in M for all free occurrences of w.
In this definition, we assume that FV(P)YN BV (M) = O; this is consistent with the variable
conveniion. M(w := P] is defined by induction as follows:

. wlw:=P)= P

2 wnfwy 1= Pl = if wy # w

3. (M)]w = P = Mw = Plilw := P

4o Ty M)y := P] = 7y M

5. (Tya-M)w 1= P = Typompp. Mw = Pl ify £ w

Lemma 2.13 (Substitution in Terms and Types)

L yeV, NeT then

s MeT = Mly:=~N]eT
e MeT — M[y::N]E’T

2. IfveV, NeT then

o MeT = My:=N]eT
e M cT = Mlv:=N]eT

Proof: Both by simultancous induction on the structure of M. a

Lemma 2.14 If M, M M, € TUT, w Z2& and o & FV{M:) then
Mlw = M)l := Ms] = M[w' 1= Ms]w := My’ = Ma]].

Proof: This is a corollary of Lennna 3.3 below. |

1Note that y could not be free in ¢ according to V¢, by Lemma 2.9.

r e



Definition 2.15 (One step Reduction —g, « relation on T U T')
One step reduction —g on T U1 is the least velalion closed under the f-rule (vule 1, below)
and the compatilility conditions (rules 2,3 and § below).

1. (Tyg- M)t —p5 My == 1]

2 Ift =gt then Mt —g M{'

3. If M —g N then Mt —y Nt and 70 M —5 7.0 N
4. If o —g o' then my o M —py 70 M

Definition 2.16 (Reduction —4, @ relation on T UT)
Reduction—g on T UT is the reflexive and transitive closure of —g. That is, —+p is defined
by the following rules:

2.0 M —g N lhen M —4 N
3. If M g N and N —p L othen M g I

Definition 2.17 (Conversion =g, a relation on T UT)
Conversion =g on T UT is the lcast equivalence relation closed under —g. That is:

1. If M ~»g N then M =5 N
2, Ifﬂ’[ =B N then N =p M
S If M =g N and N =4 L then M =4 I

Leinma 2.18

Let = be —y4 or =y or =4, Now, if M €T (respectively M € T) and if M>-N then N € T
{respectively N € T ).
Proof: Use Lemma 2.13 and induclion. |

Lemma 2.19 (—s-substitution lemme on T UT)
For M\N e TUT,zeV andl' € T, f M =z N, then Mz :=t'] »3 N[z:=1].

Proof: This is a corollary of Lemma 3.5 and Lemma 3.6 below. a
Corollary 2.20 (—»g-substilution lernma on T UT)
For MNeTUT,zeVandl' e T if M —4 N, then Mz :=1] —p N{z:=1].

Proof: By induction on —y using Lemma 2.19. 0

Definition 2.21 (B-redexes, f-nf)
o An expression of the form (r,... MW is called a 3-rede.
o [f an expression M has no B-redexes as a subexpression then M is said 1o be in 3-nf.

o [ft =pt where ' is in G-nf, then | is said to have a f-nf.



3 The Church Rosser Theorem

‘To prove the Church Rosser Theorem (in short CR theorem), we shall follow the method
presented in [Barendregt 84] working with types and terms alike. That is, even though we
use a similar strategy to that ol [Barendregt 84) to prove the CR. theoreni, the details will
extend all the notions of reductions, substitution and all the proofs in order to treat types as
well as terms in a unified manner. We start hy extending 7 and 7" to the following:
T=V|(gD) | (LD) | (1l,z. D)L
r=Vv]| (Ay:I-I) [ (ZT) (quz)l

In this section, M, N and P range over 7 U 1. Moreover, o,0',... range over 7 and
t,t', ... range over 1'. Furthermore, we use = to range ovel {A, 11}

Remark 3.1 Note that when we write an expression M this will never indicate 7,.,. M’ for
some M’ even if M occurs with an argument N in AN,

We extend the definition of free and bound variables by adding to Definition 2.2, the first
clause below and to Definition 2.3, the sccond clause helow (recall here however remark 2.10).

v((z,...M)) FV (@)U (FV(M)\ {y})U FV(1)

BV ((xyoM)t) = {y}U BV(a)U BY(M)U BV (1)

I

il

We still assume moreover the variable convention for 7 U T and consider expressions to be
equivalent up to variable renaming,.

3.1 Substitution and Reduction in Tu{

Substitution is exactly as in Definition 2.12 except that we add the following:
(T MY = P} = (g Ml = P 1= P iT g 2 w0
(Zyo M)Wy 1= P] = (10 M)
Now a similar version of Lemma 2.13 holds for Z U 7', That ts,

Lemma 3.2 (Substitution in Terms and Types)
1. IfyeV, Nel then

s Mel = Mly:
e MeT = Miy:

1
= =z
Mo M

2. IfyeV, NeT then

e Mel = M[y:=N]el
s MeT = Mly:=N]e L

Proof: Both by simullancous induction on the structure of M. d

Lemma 3.3 If M. M, M, € T LT, w#w andw & FV(M;) then
Mlw = Myjlw 1= M) = MW = MyJjw = My’ = M,]].

Proof: By induction on the length of lerms and types in T U T,

2The second clause is in accordance with the variable convention as y € FV(¢').
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M = w then lhs = M [w' = M, = rhs,
=z then lhs = My = vhs as w & FV(M,).
M=o and 0" Zw and " £ W' then ths = rhs = ",

Assume the property holds for M1 then obvieusly i holds for M1, ie.
(Mi)[w = M)’ = M) = (M1)[w 1= Ms]w = My 1= Ma]]

o Assume the property holds for M, then lel us show it holds for 7., .M.

~ case w Zy and " Z y then

(Tyio - M)w 1= Myl := M, =
Try:cr[u::M,}[w’::Mz]-ﬂJIw = ﬂ’[l][w' = ]\,/[3] =IH
Tyt :=Mollwi=sfwri=ba)) - M [w' 1= Molw := Myl 1= ML) =
(7o M) 1= Mollw = My == M,])
cuse w =y Hen
(Tyeo MMy 1= Mi]w' = Mal =
Tyolu’s=Ma)- ]'lfl[ = Mz} and
(Tya- M) := M)y 1= Mi[w' := M) =
Wy:,[u:_.zM,].M [ := M.
case ' =y and y ¢ FV{M;) then
(Tyoo-M)ew 1= M)y = M) =
Tysafwi=y - M[w 1= M,]
Morcover, (T, M)y = Myllw 1= My = M) =
(e M) := My = Mal] =
Tyolwi=py]- M {w 1= M)
case w' = y and y € FV(My) then (7. Mw 1= M;lly = Ms) =
(R awo - My := 2w := M [y := M) (Jor fresh z) =
(% sofwmnny - My = 2w = M)y := M) =
Trolw=dally=pa]- My = 2)lw = Mi][y = M,) ="H
Tasolyr=Malw=Mi[p=pg)- M [y 1= 2)[y 1= Ma)fw = My 1= M) =
(since y @ FV (o) by VC and y & FV(M[y := z]))
Tacafwi=Maly=an])- My 1= 2w = My[y := Ms]].
Moreover, (T,.,.M )|y := Myllw := My := My]) =
(Targ My := 2Dy 1= Ma)lw := My := M) (for fresh &'} =
(Toralympta)- My = ')y = Mo)w = Myly = M)l =
(since y g FV{(g) and y & FV(My:= 2'])
(Farg My = 2'))[w = My := Ml =
Tatowi=Mifp =) My = 2w 1= My := M)

e For ((m,., - M)t){w = Myl := Ma] use a similar proof.



We extend Definitions 2.15 and 2.16 to the following:
Definition 3.4 (Euxlended Reduction —pg and —5)
L. (Fy M)t =5 My := (] B B
(Tyo- M)t —p My = 1]
Ift —p 1" then (g, M)t —p (5, M) and Pt —5 Pt

ts

If M —g N then
Mt —5 NU, 7y M —p Tyo N and (7., MYt —p (7, Nt

Lo

5. If o —p o' then myo P —p Ty P and (7, Pl —p (Typ PN
6. ~»g s the transitive and reflevive closure of —p.
The relation —g on 7 U1 is indeed an extension of the relation —y on 7 U T
Lemma 3.5
Let M\N € TUT. Then: M —g N iff M —4 N.
Proof: By induction on M —5 N or M —5 N, respectively. ]
Lemma 3.8 (—g4-substitution lemma on TUT')
For M\NeZT UL, zeVandt' eI, if M —4 N, then Mz :=1'] —p N[z:=1].
Proof: By induction on M —g N. -

o Cause (myo M) —p My = 1],

1 Cuse z Z y:
(Fyua M= = U] = (7 g
Mz =ty := [z := U]
V.

2. Case 2z = y:
({(Tyea M)y = V') = (740 MM —8
My :=t] = M{y:=t]ly:= '] sincey & FV{1) by VC.

o) Mz =z = 1] —p
[z := '] by Lemma 3.3, since y § FV(¥') by

——
=
~
—_—
—_——

o Case (T,.,. M)t —y My = 1] is similar to the above case.

o The other cases arc casy.

O
Corollary 3.7 (—g-substitution lemma on T UT)
For MNecTUT,zeV and ! €T, if M —5 N, then M[z := '] —4 N[z:= ¢'].
Proof: By induction on —4 using Lenuna 3.6
B =

3.2 The relations between Tuland TUT
Definition 3.8 The map | [: TUT — T UT is defined as the erasing of all underlinings.
Definition 3.9 ¢ 7 UL — T UT is defined as follows:

1 plw) =w

2. G(MU) = $(M)g(1)°

'Note here that M is not LY
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3. (&g M) = S(M)[y := ¢(1)]

4 (e M) = Tygo).H( M)
We denote | M |= N and ¢(M)= N by M =l ¥ and M —® N respectively.
Lemma 3.10 For every M € TUT, FV(d(M)) C FV(M).

Proof: By induction on the siructure of M.
O

In what follows, read dashed lines as a quest for existence, or a prool and non dashed lines
as hypotheses.

Lemma 3.11 For every M,\N e TUT and M' € TUT, if M' =V M and M —45 N then
(AN[M' —5 N' AN =N This is pictured as follows:

M - == == — N

I 2o
¥

M N

Proof: Clearly this property holds for —p:

If M —4 N is the result of contracting in M a redex obtaining N, then N' can be obtained
from M’ by contracting the corresponding redex in M'. Now we prove by induction on the
definition of — 4 that it holds for —,.

o If M —y M obvious,
o If M —5 N comes from M —py N then from above.

o If M —p5 N comes from M —5 Ny and Ny —4 N and property holds for M —5 N,
and Ny —4 N then:

M - == . e A
1] K £

N - N
M B A

O

Lemma 3.12 For allw, M, and P in TUT with FV{PYn BV (M) =0, we have ¢(M)|w :=

$(P)) = ¢(M[w := P]).
Proof: By induction on M

o Cuse w:

wlw = Pl = P so p(wlw = P]) = H(P)

and P(w)w = ¢(P)] = wlw := $( )] = &(F)
o Cusew £ w:

wilw = Pl =w; so

Muwrlw 1= P)) = dlwy) = ¢lwy)|w 1= d(7)

13



o Case Mt:
Mitlw 1= P} = M{w = Pltfw := P} where TH holds for M, t. Hence
MO = (P)] =5
BN = ¢(P)] =
(M) = SPINBDw = d(P) =7
H(Mfw = P))p(t[w := P]) =*
H(Mw = Pltlw = P]) ="
H Milw = P))

o Cuse Ty o M and w = y:
(Tyo - M)y := P] = 7400 M s0
H(myo - M)y := P]) = d(7ye. M) =
Ty:p(o)- P M) =
(Ty.p(or-P(M)[y := S(P)] =
HTyea M)y = $(P)]

o Case Tyo M and w # y:
(Mg M )w := Pl = Tyopun=r). M[w = P] 20
Hryo MY = §(P)] =5
(Tyeg(ey- DM )]w 1= ¢(P)] =**
Ty lw=p(P)-(P(M)[w = ¢(P)]) =
Ty:p(ofw:=p])- P(M[w := P]) =*
HTyiowi=p- Mw 1= P]) =
#{(tyo Mo = P])

e Cuse (Ly:‘,.fw)t’ and w =y
(7yee- MW)y 1= P] = (7,0 M, s0

~ (e MWy i= S(P)) =*
G(M )y := ¢()ly == $(P)] =
M)y = $(1)] because y & FV (') due to the variable convention.
(T MYy = P =
¢((£y;a.ﬂ,’[)f.’) E¢
$( M)y = o(t')].

o Cuse (Ty - M) and w # y:
(- M) = P] = (2

B (g MY Yo = (P)] 20

S M)y := $(t)]jw 1= G(P)] =hemmos 33and 3.10

(note that y & FV(P) since FV(P)NBV((z,., M) =0)

P = Py = @) 1= o Y]] = by 11

H Ml = PDly = (¢ = P])] =¢ |

¢((£y:a[w:=P]'M[w = P])(t’[w = P])) =

H((Eyo- M) ) == P]).

—pp-Mle = Pl)(H]w = P]) s0

Lemma 3.13 For M. M' € TUT, if M —p M' then (M) —p &(M'). That is:

14



Proof: Induction on M — 5 M':

o (My, MMt —5 Mly:=1] then

(o M) = BTy M) = (Tyaor HM) (D)
¢(M)[y = Qb(t)] L:_VC:’FV(:}OBV(M]:@,Lenmm 3.12 Q&(}V[[y = t])

o (M., -MMN - Mly = t] then
g M)0) —p LM 2= (1)) =¥ S=FVORBY N s 332 4y = ]

o Ift —pt implies ¢(1) —pu S(1') then

— GLPO =PI s P = SPE)
= $((Tyo-PN) —p S((Tye- PN
o If M —y N implies (M) —p G N) then
— G(M1) —p G(N1)
— $( e M) g YTy V)
= P Fyg- M) —p M@y N )

o [fo —pa implics (o) —4 $(a’) then

- Qs(ﬂ-y:a-lp) "",B Qb(ﬂy:a“}))
- ds((ﬁ'yap)t) —A QS(‘(Ey:a’-I))t)
o If M —p M then obviously ¢(M) —»y $(M)
o If M — 45 M’ comes from M —p M then (M) —p5 (M)

o [f M —p M comes from M —5 M" and M" —4 M' and the induction hypothesis
holds for M, M" and M", M" then ¢(M) —45 H{(M')

]

Lemma 3.14 For M € TUd and My, My € TUT., if M =W M, and M —* M, then

My ~»g My, That is:
W

My — — — — = A,
' g



Proof: By induclion on M e TUu T
o If M =w obvious.
o If M = M't where

M| = — — — = M} I = = = = 1y

then | M't |=| M' ||t |= Mty and $(M't) = H{M')d(t) = Myt,. Hence

Mt
y\jb
Mty — - — ~ *—F-,"\fl-;tg
11 ﬁ 2
o IfM=nm,, M where
M’ a
I b W
ﬂ.’“——————-—hﬂffé 03 — = — — = 02
then
Tyer M’
y\ﬁ
Tyioy-Mp = ~ = >y, M)
e IfM=(m,, M) where
M’ a t

Ad—i—-———-bt—ﬂf[; (Tl - = = — == (T3 [1 ‘____""‘[‘2
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then (My.q, M)ty —op (Tye, Mi)a —5p Myly = 2] and hence

(Ey:ﬂ' AJ')[

N

(e M3)ts = o MLy = 1]

3.3 The theorem and its corollaries

First we start by proving the strip lemma which will be used in the proof of the CR theorem.
Then we show the theoremn and three ol its corollaries.

Lemma 3.15 (Strip Lemma) For M, My, Ms, M3 € TUT we have:

A = My

Proof: Let M, be the resull of contracting R = (my...M")M" in M. Let M{ € TUT be
obtained from M by replacing I by R = (z,,. M YM". Then | M| |= M and $(M]) = M,.
By Lemmas 3.11, 3.13 and 3.14 we have M;, M3 (= ¢(My)) and the following diagram:

M My

] AN

M} « = — - —— - —— - s M}
B P =/
My - - = —— - — Lﬁ* Ms;

Theorem 3.16 (The Church Rosser Theorem)
For MN{,N, € TUT, if M —4 Ny avd M —p4 Ny then there exists N3 € T UT such that
Ny —g N3 and Ny —5 Ny

Prooft M —py Ny then M = My —p My —y My —4 ... —y M, = N1. Hence from
Lemma 3.15 we have:



M -~ N,
gl pois
Mommooo T
g, v
T T T T B
| |
| |
| |
| |
i |
By 1
5, Pl
N1 —————— - Ns
)i

Corollary 3.17 For M,N € Tul, if M =4 N then there cuists L € T UT such that
M —sgl and N —g L

Proof: by induction on =g.

If M =5 N comes from M —g N then take [ = N

If M =3 N comes from N =y M where property holds for N =4 M, nothing to prove.

If M =3 N comes from M =5 L and I. =3 N where property holds for M =5 L and
L =p N then there exisls Ly, Ly such that:

M L N

NN

j’l Lg

As L —p Ly and L —p Ly then by CR there erists Ly such that:

ill L"‘D

N

,L 3

Hence M —py Ly and N —4 Lj. a



Corollary 3.18
1. For M,N € TUT, if M has N as f-nf then M —4 N
2. An expression has at most one §-nf.

Proof:

1. M has N as fg-nf then M =3 N and N is a f-nf. Hence by corollary above, there
cxists L such that M —5 L and N —» L. This implies that N = L up to renaming of
variables and so M —5 N.

2. If M has Ny and Ny as f-nf then M —43 Ny and M —5 N, and so there exists M’
such that:

j\fl N2

M

But as Ny, Ny are in g-nf then Ny = M = Ny and hence Ny = Na.

Corollary 3.19 If M =4 nye. M’ and N =4 a then
(o1, M")[M —p 7oy, -M" and N —p5 aq].
Proof: By Corollary 3.7, (o'} N —p o' and 0 —=p o).
Hence of course, M =g 7.0 M'.
We apply again Corollary 3.17 to get
(Fo, M") M —vp Tyo, M" and 7,00 M' —g Ty M and 0’ —5 a4
Hence M —y myg, M" and N —4 0. O

Corollary 3.20 (=g-substifution lemma)
For MNeT Ul zeVandt' €T, if M =3 N, then Mz =1'] =4 N[z .=71].

Proof: If M =5 N, then lhere exisls M' such that M —5 M and N -5 M' by
Corollary 3.17. By Lemma 2.20, Mz :=1'] —5 M'[z := U] and Niz := '} -5 M'[z :=1'].
Hence, M|z := '] =g N[z :=7]. O

4 Statements and Contexts

Fundamental in typed lambda caleulus is the relation #4 has type ¢”. This relation is formal-
ized as the statement ¢ @ ¢. In associating types to terms, contexts play an important role.
The following definitions concern statcments and contexis.

Definition 4.1 (Statement, subject, type)
A slatement is of the form ¢ 1o withte T, 0€ 7.
t is the subject, o is the lype of the statement 1 : 0.
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Definition 4.2 (Contexts)
T is a context if T is a finite lincarly ordered set of statcments with (terin) variables as subjects.

We let CONS be the collection of all contexts. Contexts are written as lists of pairs (y: o)
where y € V and o € 7. We write ['(y : o) lor the context obtained by appending (y : o) at
the end of the list I'. Notations like T'(y : @)1 etc. are used in the same manner.

We use I', I, "1, '3, . .. as meta variables for contexts.

Definition 4.3 (Domain and Range of contexts)
For T € CONS, we define the domain of U, dom{T'} and the range of T, ran(T") as follows:

o dom(I')={y e V;(Fo € T)[(y:0) € T]}
s ran(I={ce7;(3y e V)[{{y:a) € I']}

Definition 4.4 (Free Variables of conterts)
For ' e CONS, we define the free variables of T, FV(T), to be Uperanmy £V (o).

Definition 4.5 (Bound Variables of conteuts)
For ' € CONS, we define the bound variables of I', BV (I'), lo be Uperunimy BV (7).

Definition 4.6 (Variables of conleats)
For T'e CONS, we defince the variables of ', VAR(T) to be FV(T)u BV(T") U dom(T').

Definition 4.7 (Substitution in conteats)
ForT e CONS, T =(y1:01) ... (Yn:0n);
Tw:= N]= (1 :oifw:= N])...(y, : Oulw = N]).

Definition 4.8 (One-step veduction of conteits)
For I'T" € CONS, we say I —g " if the following holds:
F=(pm:io).- (o) and T = (y1 : ) .. (v 2 0) with oy —p5 o for some i € {1,...,n}.

Definition 4.9 (Reduction of conteats)
I' =5 I' is the reflezive transitive closure of T —g 17,

Note that we use —4 and — 4 to mean hoth reduction of contexts and reduction of expressions.
This should not lead to confusion.

Example 4.10
Loy (Te)Z Wy s (e y) 2" (A 0-21)2") = (1 VI 2 (o )2 (A 0021)2)
2. (4 (M) WY ()2 (A, 21)2 ) = (v ()2 Wy (T,0v)2" )
3. (y : (nz:a"}’)z')(y’ : (Hz:a-v)zr(’\zl.a'zl)zl) s (U : (I‘Iz;a-’}’)»?')(ﬂ' : H/Z’)
4 (v (I )2 W (T )2 (As oo20)2 = (g )y 72)
Definition 4.11 (Restriction of conlexts Lo scts of variables)
IfIr e CONS and S CV then T|S is the restriction of T to S, that is the list TY obtained
Jrom T by removing all (y : o) from T with y & 5.

Remark 4.12 Note that (T[S} 5 = [[(SNS'). Note moreover that (I'T")[ .S = (P S)H1']S).
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4.1 Context ordering
We need an ordering relation on contexts:

Definition 4.13 {Ordering of conleris)
PO f =10y, IV = Py o)l and y ¢ dom(['))
The relation T is the rcflexive and transitive closure of C1.

Example 4.14 (z: o)y : 0 )C' (y: o)z :al(y: o’} and

(z:o)(y: 0 )T (z:o)y:o)y: o) fory ;+_" z.

Furthermore, (y; : o1 )(¥2 1 02) C (11t 02) (1 100 ) (W2t 00) (3 1 02)(y2 : @2)(ya 2 03) for y # y;
if { # 4.

The motivation of the condition y & dem(I'y) will be given in Lemma 4.23. Be careful not to
confuse C with set inclusion which we write as C. In fact, TC IV = ' C I, hut the reverse
is not true. The reverse however is true in the following case:

Lemma 4.15 If dom(T)Nndom(1") = @ then ' C T1Y.

Proof: By induction on the length of T, O
Lemma 4.16
FTCT, thenT(y:a) T T (y: o).

Proof:

o Case 'C' 1Y since T= 01T, Y 1y (202 =TV and = & dewn(1').
ThenT(y:0) =Ty o) C Iz 0" Ya(y : o) = Ty : o) since z € dom(T,), both
ifz=vy and if z £ 1.

e Case I' C TV by reflexivity or transilivily.
These cases are trivial.

Now, a notion which helps one understand C is that of part:

Definition 4.17 (Part)
A context T is a part of another context 1 if T is a sequence consisting of some statements
of T' written in the order in which they occurred in T'. We use < as a notation for ‘is a part

of .
For example, (32 1 02)(ya : 04) < (1 : a1 W(y2 : 02 )y 1 a3 )(ya - 0a) lor yi # y; Tor @ # 5.

Definition 4.18 For I' a context and (y : o)° a particular occurrence of (y : o) € T we
define L((y : 0)°,T) to be the contexl formed from the beginning (to the left) of T until (and
cecluding) this occurrence of (y : ).

Example 4.19

L((?Jz 02) (J1 : 0’1) (ya )(J 01) Y3 03)) = (J1 1 0y),

L((?h : 01) A 01) (w2 : a2} (1 ca )t (43 : a3)) =0,

L{{w ?0'1)2a(y1 : 01) (921 02) (11 01) {y3:03)) = {3 1 a1} (2 : 72).
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Note that it is possible that I' < IY but T' Z T". For example, (y : 0) < (y:0)(y:0’). It is
the case however that if I' C IV then I' < IY. Tlere is the lemma which gives the relationship
between C and the easier notion <.

Lemma 4.20

FCIff T <TIM and ¥y o) € '\ T,y € dom(L{(y: a)*, ")) N dom(T).
Proof:

= By induction on ' C IV,

o Case PCMI" then D =T C Dy(y: o)l =T, Hence T < 1Y, Furthermore, (y : @) is
the only occurrence in T\ T, and as ' C1 T then
y & dom(T'y) = dom(L((y : @), 1)) 3 dom(T).

o Case I C T obuvious.

o Case 'C Ty and I’y T I use [ and transitivity of < lo get T < IY. Furthermore, let
(y:o)y e I"\T.

— Case (y: o) € ['y then (y:a)* € '\ Ty, Henee by 11,

y & dom(L((y: @), ")) N dom{1')) DS deon( L((y : 0)°, T)) N dom(T).
— Case (y:a)° € Iy then (y:0)e U\ . Hence by 1H,

y & dom(L{(y: a)°, 1)) N dom(V) =TS dom(L{{y : o), T")) 0 dom(T).

<= By induction on the size of I"\ T, T\ I'|.

o Case I'\Ty <Ty(y: o)y and y & domn(L{(y: a),I'1(y: o)3))ndom(FT2) = dom(Ty),
then Ty C' 1.

o Assume [H holds for any T, where [T\ I'| = n. Take T,17 such that I’ \T| = n +1,
< andV(y:a)° e "\ T, y & dom(L{{y: o), I"})Ndom(T). As |[I"\T} =n+1,
let (z @ 01) be the leftmost element in 1"\ T, Hence 1V = Ti(z @ o)I% and z ¢
dom(I')Ndom(T) = dom(1). AsT < 1" and(z:0,) @ T, then I’ < T\, Furthermore,
Yy :o) € I'\T, y&dom(L{{y: o) ")) dom() implies V(y : ¢)° € (I T\ T,
y & dom{L((y:a)°, T1%)) 0 dom{ '} can be seen as follows: Let (y:0)° € (DT \ .

—~ Case (y:0) € I} then L{(y:0)°,1") = L{(y : o)°, T\ %) = L((y: 0)°,T%).
— Case (y : 0)° € I} then dom(L((y:0)°,I")) = dom(L{(y : o)°, [\ [%))u{z}.
£ Case z # y then as y & dom(L((y: a)*, ")) N dom(T), then
y & dom(L((y: 0)°, [\T%)) N dom(T).
* Case z =y then as (z:a0) € (TN, (z:a) € T\ T. Hence
2 @ dom{L{{z : e)°, ")) Ndom(T). But (z:0,) € L{{(z: 0)°, 7). Hence
z & dom(l'). And so, z & dom{L{{y : ), [Ty} N dem(L).

Hence by IH, T T 4T, Furthermore, as z @ dom(1)), then TT, C (2 @ 01)%.
Henee by transitivity of T, T C 17,

]
Corollary 4.21
fVy,y; € dom(I"),i# j =y £y and T <1V then T C IV,
Proof: Apply Lemma 4.20 |
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Now if, for example, I' = Ty(y : 1) 2{y : 02)T5, with y & dom(T3), then the statement
meaningful to a free y in I'; is the rightmost, viz. (y : @2), as we will see below. The following
lemma shows that context ordering preserves this property.

Lemma 4.22 IfT T IV and (y : o) is the rvightinost statement in T whose subject is y, then
{y: o) is the rightmost stalement in 1" whose subject is y.
Proof: By induction on I' C 1. a

This lemma is important. It says that if ¥ gets type o in T' and if T C IV then y gets type o
in IV. Le. T" knows everything that T knows together with some information about variables
which do not belong to dom(I'). We can capture this information by defining the binding
structure of a context-and-expression pair:

Definition 4.23 (The Binding Structure of a Context-and-Frpression Pair; Companion ez-
pression) '
We say that a variable occurrence y is free, respectively bound (with type o) in the pair (I', M)
= ((y1:00)... (Yu: an), M) iff the corresponding occurrence of y is free, respectively bound
(with lype a) in the expression

Myytayeer - Tynan - M wWhere r = A if M €T andza =1 if M € T.
This expression is called the companion expression of (1", M).

Example 4.24 Let (T\M)=((y1:0y) .- (Yaou ), M) U M =y and 3 & {yig1,. -, 0}y
then g is bound with type o; in the pair (I',y) with ' as above. If M = y and v &
{ys, 425 <, Un s then y is free in (U, y). U M = (A9} then y is bound in (', M) with type
o (as it already was in M itself). If o3 = (6 — 7)y;, then the occurrence of ¥y in 05 is bound
in (I', M) with type ;.

Definition 4.25

FV(T,M) = the free variables of the companion expression of M
BV (T, M) the bound variables of {he companion expression of M

Il

We define a notion of a-reduction hetween context-and-expression pairs:

Definition 4.26 (Variants of Context-and-expression Pairs)

(T, M) is w-equivalent with (or an a-variant of } (T, M"Y if the corresponding companion
expressions are a-equivalent. (Recall that we use a-cquivalence in our mind rather than on
paper.)

Lemma 4.27

o yedom(T) =y g FV(I',M).

o FPV(T,M)=(FV(I')u FV(M))\dom(T).
e BV(T,M)= BV(I')U BV{M)Udom(T')
Proof:

e By the variable convention which holds for my .0 ... .. Ty o -
where again ' = (y1:01) ... (Yu : Ou)-
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e There may be free variables in T which are also clements of dom(T), but these variables
are bound in (U, M) and we have VO holds for the companion expression of (I'y M).

e Obvious.

O

Note that Definition 4.23 establishes the binding pattern in a pair (I, M): each occurrence of
a variable in BV(T', M) which is neither a subscript of a. 7 in M nor a domain variable of T',
is linked to an occurrence of the same variable which is such a subscript or domain variable.
This linkage can be found by inspecting the companion expression of (T', M). Now it can be
shown that context ordering does not disturb this binding pattern:

Lemma 4.28

Let I' T T, If an occurrence of a bound variable y is linked in (T',M) to a certain other
occurrence of this y in (', M) (being cither a subscript of a m or a domain variable), then
this is also the case in (T, M), for the corrcsponding oceurrences.

Proof: It is sufficient to investignie the case I' = I C I'y(y 1 o)y = TV, The binding
pattern can only be disturbed when the inscrted domain variable y “takes over” the binding
for an already present bound occurrence of y.  (Nole thal y cannot be free in (T', M) by
Lemma 4.27.) Now it cannot be the case that an occurrcnce of y in (I'y M) becomes linked to
the inserted domain variable y, instead of its oviginal linkage. The reason is the restriction
y & dom(Ty) which is a consequence of C1. =

A consequence of this lemma is that context ordering doces not influence types of bound
variables:

Corollary 4.29 IfT T 1" and if y is bound with type o in (I, M), then y is bound with type
a in (I, M). m|

4.2 Well-Behaved contexts

In certain circumstances, which will become clear below, we need a. condition on the variables
in a context. Such a condition says that all variables in the domain of a context must be
distinct and that in a context I'(y : o), FV(a)ndom((y: o)) = 9.

The intuition is that we wish to be free to substitute @ for a variable in I or for a variable
‘depending on’ I, without running the risk that a free variable of @ becomes unintentionally
bound. See [Barendregt 91] where a similar discussion is given for contexts.

Definition 4.30 (Well-behaved conlexts)
A context ' = (31 1 04) ... (Yo @ 0n) is well-behaved, and we write WB(L), if for alld,j,k €
{1,...,n}:

1oy =y =t =4,

2. FV(o) Ny, . s} =0, That is, 5 € FV(ep) = 1 < < k.
We give a few lennnas concerning the well-behavedness of contexts.
Lemma 4.31

L IfWB() and T" < I then W B(T).
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2. IfWB(L), y & dom(T), y & FV(T') and y § FV{(e), then WB(I'(y : 0)).
3 IfWB(T) and T —5 I then WB(IV).
Proof:

1. Fasy.

2. LetT' =(y1:01) .. .(Yn:0n). Then forallh € {1,...,n}: FV{ax) N {y,. ., 0} = 0.
Hence, since y ¢ FV(op), FV{a) N {yx, - -y} = 0. Moreover, FV(a)N {y} =0
and y # y; for any 2 € {1,...,n}. So WB(U(y: a)).

3. Assume T —pg IV and comes from ' = Ty(y : o)y wherc o —g o' and 1" = I'y(y : o')T2.
Then use the fact that FV{a'}YC FV (o) and FV(a) 0 ({y} Udom(1;)) = .

The case I' —4 I is now a lrivial consequence.

Corollary 4.32
1. IfWB(I'Ty,) then WB(L').
2. If WB(T1I's) then W B(1,1Iy) where 1Y is a prefie of Ts.
2. IfWB(I') and TV T T then WI(T).
Proof: All of 1, 2, and 3 are corollarics of Lemma .31, part 1. O

Lemma 4.33
IFWB(I'(y:0)), then T C* T'(y : o).
Proof: Note that W.B(I(y : a)) implics that y ¢ dom(T).

Corollary 4.34
If WB(I'T,), then Ty C I'y Ty,

Proof: Induction on the length of the list Ty, Noie that by Corollary 4.32, part 2, all
' % with T, prefiz of Us are well-behaved. Lemma .33 plus transitivity of C give the desired
resull. O

Lemma 4.35 If WB(I") then TC T ff I' < IV,
Proof: This is a corollary of Lemma 4.20. |

Corollary 4.36 I[f WB(I') and I'y < T3 < I, then I'yt C T,
Proof: Use Lemmas 4.31 and 4.35. O

The following lemma shows that each context-and-expression pair is a-cquivalent with a
context-and-expression pair which has a well-behaved context, Hence, the restriction to well-
hehaved contexts is not an essential restriction.

Lemma 4.37
For each (U, M) there is an c-variant (T, M') such that W B(T").

Proof: Assume I' = (i1 : o1) .. (yn : 7n). Replace all occurrences of the first domain
variable y, and of all occurrences of y, linked to this yy in (I'; M), by a fresh variable y) and
repeat this procedure successively for the other domain variables ya,. .. yn- It is clear that we
obtain a pair (I, M") with «-equivalent companion cepression and such that W B(I"), O



5 A Typing Operator for A_,;

We let 7 be a canonical type operator in AL, That is 7 takes a context I' in CONS and a
term ¢t in T of A, and gives the type of 1 with respect to I'; according to the following typing
rules:

Definition 5.1 (Cuanonical Type Operator)
T :CONS x T — T is defined as jollows:

1. 7(I,y) = o if y is bound with typc a in (', y)
2. (D, u'y = (T, )t
FoT(U, Ay t) = W0 m(T{y o)1)

Here clause 2 may not he obvious at first sight. In fact, one may have expected 7(T, {t') to be
defined as 7(T,#)7(T',#'). This certainly cannot be the case for many reasons. First, recall that
a type applies to a term and not to a type. Sccond, if we allow types as arguinents to types,
then we must let 1T range over type variables instcad of ouly term variables. Farthermore,
think about the intuition belhind such a definition. When we look for the type of ¢, where ¢
has the form Ay.,.t" then we ohtain a Il-type Il,,,.0'. Now certainly the type of £ must be
o'y := '], which is a reduct of (1,,,.6").

Here moreover, we should draw some attention to the power of typing in A_,. We will
show below that any termi which is typable in Church’s A, is also typable in A_.. This
should not be surprising as A_, types fewer terms than other systems (sec [Barendregt 92],
and {BH 90]). We can type more terms however in A_,. For instance, we will see in Exam-
ple 5.4 that w = Ay,.yy is typable. Such a term cannot be typed in A_. Furthermore, the
fixed point operator £ = Ay ym,.,.0)(Ayyir-¥1{#242))( Aysio-#1(#292)) has a type which reduces to
IL,..q,.,..)o (see Example 5.4). This makes sense: it says that the type of the fixed point
operator is (o — ¢) — . Such a term however is not typable in A_, nor in the second order
system A; (see [Barendregt 92]). Now this brings the question of strong normalisation. We
say that an expression M is strongly normalising iff all reduction sequences starting with M
terminate. Now ww is not strongly normalising. Nor is the term (Ay.,.2)(ww) even though
this term has 2z as a normal formn. urthermore, we can type (via 7) such a non strongly
normalising term. That is, 7(0,ww) = ([l.,.09)k (sce xample 5.4). This should not lead to
problems however. That is, we conjecture that AL, is strongly normalising in the following
form:

Foral M e TUT,forallT € CONS, i I' b M thenr M is strongly normalising and if
M €T then 7(T', M) is strongly normalising,

Remark 5.2 The variable convention also holds for all pairs (T, ¢). For example,
((y : 02), Arioe-y) is not allowed, sinee for this (I, 1) both = € BV([,1) and z € FV(T,1).

Remark 5.3 Note that T is a partial function. For example (0, x) doesn’t exist. We write

[ 7(1,1) for 7(T, 1) defined.

Example 5.4
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1w = Ay yy) has type 7{0, Ao (1)) = Wyom(y & oyyy) = Wyoo(r(y & o,9)y) =
Hy.e-(ay). Morcover, y ¢ FV{a) by Lemna 2.9, Il we allow 7-conversion in our system,
7(0,w) would convert to a.

2. (0, ’\m:(m:o.v)-(Ay:w‘yl(yzyzn()\yz:v'yl(yz‘.f}z))) =
Hyl:(n.:,.o)-((Hy,;g-(l'lz;a-0)(y2y2))(/\y,=a-y1(yzy2))) g
Hy;:(ﬂ,-.,.u)‘((nyz'-a'a)()‘y,:a-yl(yzyz))) —p Hyﬁ(n,:,.o)-("
Furthermore, by VC, y; & FV(Il,.p.0) and z g 0.
Hence we write Ily,.a1, 0.0 as (6 — a) — a.

Remark 5.5 Note that IFV(r(I',t)) # FV([',t}). For example, consider the pair (I',1) =
((y1, 1) (Y2, a1 W3, @ay), 42). Then 7(I',1) = aeyy. Now y € FV(r(T,t)), but y, &
FV(T,1). Also, y» € FV(T,1), but y, & FV(7(T, 1)).

The following lemmas show that 7 is a well-behaved typing operator. That is, it satisfies
the weakening, reduction, restriction and substitution lemmas. In particular, the following
weakening lemma states that if I' T " and 7(T',¢) is defined then 7(1V,1) is defined and is
equal to 7(I',1).

Lemma 5.8 (T-weakening)
T T and | 7(U,0) then | r(I", ) and 7(1', 1) = 7(1".1).
Proof: By induction on t.

o Ift =y then y is hound with type o in (I',8) iff y is bound with type o in (I',1), by
Lemma 4.28. Hence, 7(D, 1) = (1", 1).

o Ift =11y then (D, t) = 7(1', 134} = 7(D )t =17 7(17, 4112 = 7(17,7).

o Ift=XA,.,.t" then by induction hypotheses (see Lemma 4.16):
Dy :e),t')y=7(T(y: 0),t'). It follows that
(T 1) = Nyo 7 (D(y 2 o), )Y =18 Ny 7T (g c o), 1) = 717, Ao ).

The following lemma states that if ' reduces to I and if #(I',t) is defined then 7(I",%) is
defined and 7(I',#) reduces to 7(IV,1).

Lemma 5.7 (Contect-reduction for )
IfT =4 I and | 7(T,t) then 1 7(17,t) and (T, 1) —p 7(I", 1).

Proof: By induction on 7([,1) = o, as given in Definition 5.1.
o Ifr(1',y) = ¢ since y is bound with type o in (U, y), then use Definitions 4.9 and 5.1.

o [fr(Tit) = 7(D, 00, then [ 7(Ut), o by T, [ m(17,8) and 7(T', ) =g 7(I",1).
Hence T (1" 0" and 7(U00) = 7( 08 — 5 7(1 00 = 7(IV,107).

o If (I Ay t') = yo m(F(y - a), '), then
(asT(y:0) = Dy o) and | +(Iy:a),t')), it holds by 1H that
Tr(T(y: o)) and 7(I'(y : ), ") —p 7(I"(y 1 0), ). Hence | m(I", Ayo.t') and
7L, Ayeo ) = My (7(Ty 2 ), ) = Wy (715 @), ) = (17, Ay ).

27



The following lemma states that if | 7(T',¢t) then T ~(T' [ F'V(1),t) and (T [ FV(¢),t) = (T, ).

Lemma 5.8 (r-restriction)
If 1 7(T,¢t) then 7(T'TFV(1),1) = 7([, ).
Proof: By induction on t.

o Ifr(T,y) = o since y is bound with type o in (T, y). then inspection of the corresponding
companion ezpressions shows that y is bownd with type o in (T [{y},y), sor(T,y) = o =

(I TV (y), y).

o (I, t4ty) = (T, 1’1)10 =TH £([ [ FV (1), {y )y =Remerk 4.12
T((PfEV(1322)) [ FV(14), 8 12 =¥ T(T[‘]+ V(tyta), ta)ts = 7(T | FV(tits), t112)

e We have to show that 7(1', Ay.at) = T(T [ FV(Ayo d), Ayeo t).
First note that
T(I‘, Ayod) =
ot (L(y : 0),1) =17
Hyo . 7(T(y : o)} [ FV(1), 1),
Now also
T(I'TFV(Ayo-t), Ayeo ) =
Iy.e . 7{T(y : o) [ FV(1),1),
T(TFV (Ao ), Ayeot) =
My T((CTFV( Ayg )Ny o) 1) =
My (T [(EV (@) U (FV(O\{g} )y : @), 1) =17
My (L IFV(0) U (FVION ) 2 0) [FV(1),1) =

1. casey € FV(i):

Dyo T({CNFV (@)U (FV(ON{yID TFV()y : o), 1) SRemerk 412

Ny T(DN((FV (o) U (FYUNID NPV ()N y : o), 1) =vEFVEI Ve

]'Iy:c,.'r(f‘ [(FV(t)\{.U})(y : G'), ’) —Fincel NEVOM g} y:o)Ch(y:e)[ FV(#); secLemma 5.6
My . 7(P(y = @) [ FV(1),1).

case y & FV (1) (then FV(I)\{y} = FV(t)):

M...7(T ((FV(e) U FV (1)) | FV(1),1) =hemark 412

Hyo. T(TFV(L), 1) =

o7 (D(y = @) [(FV (1), 1).

)

Corollary 5.9 If | 7(I',1) then there is a Iy T I' such that T 7(Ly,1), 7(Iy,t) = 7(T',t) and
for all Ty, Ty, y and o with Ty = U'i{y : a)'s, we have y € FV(1).
Proof: Take I, =T[FV(i). o

Lemma 5.10 (7-Subsiitution Lemima)



1. If 1 7(D,1) then 7(I'[y 1= o'], t[y 1= a']) = 7([, )]y := o'].

2. Assume WB(T'(y: o )T).
Ifr(T(y: )M t)=0, y @ FV(') and 7(T, ') ~ o', then
(P )y := ¥, t[y := ¥']) ~ aly := t'], for ~ being —p5, =4 or =

Proof:

L. By induction on the lengih of t

o If (L, y) = 0 since y is bound with type o in (1',y), then

T(Cly := o'liyly = o'}) = 7(U[y := ¢',y) = oy := o
with type aly := a') in [y 1= '],

If (T, t185) = 7(T, 1) )t2 where 11 holds for 11,14, then
r(Lly = o'}, tata[y = o]} = 7Ty := '], ta[y 1= o'])la[y
(r(T,t)[y :i= o' Nealy := o' = (7(I' )y i= o'] = 7(T,
I 7(T, Ayo ) = Wy . 7(T(y = ), 0) where HI holds for ¢,

| because y is then bound

_ar] —IH
l 12)[7 = f’]

then

(Il = 0'), Ay D)7 = 0']) = 7(Tly = 0], (Ayeopy -a'Jf[v =0) =

yolyize-T(Iy 1= 'y 1 o]y := o))ty := o]} =
Hy:a['r::a’]-T(F(y : (T)[ﬁ." = OJL ![F}' = GJD =1
Hyopyze)(7(F(y : o), )y = 0'] =

(MUyo.m(L(y : o), 1))y := '] = 7([, A, . 0)[7 := ']

2. By induction on the length of t. We give the proof for — 4.
y & FV(a'y by WB(T(y: o’)T".

Ift=wy then

PPy = 0oy = #1) = 7Py = £]), ) b
(D) —p o = 'y =] = (r(Dy : oY 9y = ¢].

Ift=zwhere yZz and I'= [ Wz ey, then

(PP y =], 2y =) = r(D(My:=0]), z) = 0" =
a"ly =] = (r(T{y: N 2)) [y = 1]

Ift =z where y 2 z and 1" = I'1(z: 0"y, then

(MY y =], zlp =D = (T y:=t'D, ) =

oy =] = (r(D(y ), 2))ly o= ],

Ift = AL, 11 where z is a fresh variablet then

(T = ), gy )y 2= £]) =

(DI [y 1= ']), A 01[,, =iy = 1]) =

Mgy (T (2 2 0a))y := ] [y = 1)) —47°

Wiz (T (F(y o) (2 100}, )]y = ]) =

(1.0, T(l (y o' )Mz o), )y =t =

T(L(y - oMY, Ao, )|y 1= ).

Ift =13t, then

PPy = ), ataly 1= ) =

T((PI)y == 1], ta[y 1= t]ta[y

==

*Without loss of generality.
*Note that WB(T(y : ¢')['(z : &1)) because z was fresh and the variable condition holds for Asie, .t
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PPy o= 0] aly = ])ialy = 4] —2F
(T(T(y : oYty = VD[ =] =
(r(I'(y : "I 0 M)y = ] =

(7(P(y : o it Ny = ]

6 Consistency in A_,,

Note that our canonical type operator 7, can be defined for some term without being defined
for all its subterms. This can be secn from the following exanmple:

Example 6.1 Let t = (Ay,.y)z where 2 2 y. Then 7(ht) = (llyg.0)z —p olyi=2] =0 as
y & FV(a). But 7(0,z) is not defined.

For this reason, we introduce the relation = which takes a context and an expression (rather
than only a term) and checks the well typedness of the expression. We take F to range over
contexts and expressions rather than contexts and terms because a term might involve a type,
anil hence F also needs to check which are the lypes that are consistent within a term. When
I' F M, we say that M is consistent in T

First, we state the following convention:

Convention 8.2 (WB-convention)
All contexts T occurring in expressions T'F M are well-behaved.

The relation F is defined as follows:

Definition 6.3 ()

1. _
L'k
" I'e
- Ny:a)l"Fy
I'k Iy : d
3. 7 ly:a)k & withr=AifMeT anda=llifMeT
'k 7y M
Tkt TEHY (T, 1) =5 o, .02 (1) —p4 0y
4 T+t
5 .F }'— T I }—' 2 T —pg ﬂy,,,l.(fg T(I\.‘ !) —=pg T
' 't ot

By this definition, we rule out Example 6.1. In fact Bt/ £ where ¢t = (A,.,.9)z.

Remark 6.4 Note that in 2 and 3 above, y & dom(I') and y & FV (o) by the WB-convention.
Also, y & FV(I'). Recall moreover that we identify a-equal expressions. For example, if
I'F 7y.e.M, then also ' F 7., M[y:= 2] fov 2 g FV{(a) U FV(M).
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Example 6.5 The following can be derived in A_,,. (We use ¢; — o3 as an abbreviation for
Ily.,,.02 in the case that y & FV(e,).) Let a,¢' and 0” € 7, let moreover

Ni=pwio—0o,9:0 ~—a’,y; 0,
Ie=wypio—a,y: 0 — a”,
Ty=ypio—- o

Then,
ik s with 7(I'y, ) = (0 — a')ys —p o',
Iy F ya(hys) with 7(F'y, y2(11y3)) = (0 — 0" )Ny1ys) —p 0",
Ty b Aysio-Y2(9193) with 7(I'2, Ayyio-v2(0ny3)) =
I[y,:a-((’" — (7”)(?}13}3) —=p 0 0’”}
Pl F Ayz:(}“_;aﬂ-Aysza.yg(‘yl?j:}) with T(Fl, Ay;m‘—oa”-Ay.-.:cr-yZ(ylyS)) =

Wysiormgn My (0 — Y 1h1ys) —p
(U’_’O-”)_l‘(a’—:‘(r’f)’

F Moot -Aygior ot -Aysio -2 (1193) _\}fil.h T(D, Aypio-sot-Aygiotmson-Agsia-Y2 (Vi ¥s)) =
”?h:0—'6"H‘yg:a’-—oo“-uy,:a-(ol - U”)(ylyél) g
(@ —=a')—= (¢ = ") = (cd — "))

The following lemma relates F and 7.

Lemma 6.6 (Well-typedness of consistenl terms)
Foreverytel, I'e CONS, {fI'F t then | 7(1', ).
Proof: By induction on 1" F 1.

o [ft=y, then 'kt comes from Definition 6.3, clause 2, and 7(I',t) = 0.

o Ift = Ayolt!, then U F 1 comes from Definilion 6.3, clause 3, and the induction hypoth-

esis holds for T(y : o) F t'. Hence we get from [H that (0")[r(I(y : 0),t'} = o']. Now,
(L Ayeo ) = [y 7(Py : 0), 1) = oo’

o [ft=tyta, then T F 1ty comes from Definition 6.3, clause 4, and the induction hypoth-
esis holds for I'F 4y and T F ta. Hence, as T & 1y, we have (3o)l7(1',1,) = a1]. Now,
T(F,tlf-g) = T(Iﬂ,tl)tg = Ulig.

Now if we go back to the previous scction, we see that, even though 7 satisfied some of the
desirable lemmas such as weakening and substitution, other lemmas that are important in
type theory are not satisfied by 7. For example, there are no resirictions on the free term
variables used in a term. Morcover, the type of a term is not necessarily “preserved” when
the term is reduced. The use of the derivation rules of Delinition 6.3 give more satisfying
results: see the Basis Lemma and the Subject Redunction Lemma, which follow below,
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Lemma 6.7 (Basis Lemma)
IfT'EM then FV(M)NV C dom(I')°,
Proof: By induction on I' - M.

o The basic case (clauses [ and 2 of Definition 6.3) is trivial.

o IfTF myp.t is the result of clausc 3 then
(induction:) FV()NV Cdom(I(y :a)) and FV{(a)nV C dom(Il'), so
FV(myo )NV = (FV(a)n VYU ((FV I\ {y}D) 0 V) C dom(I') Udom(T) = dom(T).

o Clauses 4 and 5 of Definition 6.3 are also trivial 1o check using the Induction Hypotheses.

a

Note that this does not hold for | 7(T', A} instead of I' B M. For example, 7((y : 0),y2) = 0z
but FV(yz)nV & dom(I).

Corollary 6.8
IFT ¢, then FV(T,))nV C FV(IHnV.
Proof: Use that FV(T,t) = (FV(I) U FV())\ dom(1).

Lemma 6.9 (Generation Lemma)
For all expressions M, for all contexts ', if T F M then:

1 IfM =y then (A7, M"Y = My r(Voy)] such that y  dom(T")
2. IfM=my., M thenT ko and T{y:o)F M’

3o I M =ity then U b by, T'F ity and (3o, 02, 0)[7(F, 11) =4 10, .00 and 7(T, 1) —g
0.1]7

4. f M=ot thenT b o, I'F L and (3a1,02,9)[6 —p Ty, .02 and 7(1,t) —4 01].
Proof: By cases on the devivation I'- M

LIfM =y, then UE M comes from elause 2 of Definition 6.3, so (3o, UV, T")I'= D(y:
o )T, with y € dom(T") by the WB-convention. Hence 7(Uyy) = r(IM{(y o), y) = 0.

2. If M =7y M', then U M comes from clunse 3, so Uy oyt M and I' - 0.

3. If M = 1y, then T F M comes from clause . Henee (o, a4, g)[7(T, 1) —p g, .02 A
(T, ty) —p o1], TE &y and ' F 4.

4. If M = ot, then T F M comes from clause 5 and the proof is similar to that of clause

4.
O

®Note that if we replace ' - M by 7(I',2) = o only, then we don’t necessarily gel FV{t)nV C dom(T).
Take for instance example 6.1 above.
"Note that we have conversion —»g and not equivalence =,



The following lemma states that subexpressions of consistent expressions are also consistent.

Lemma 6.10 (Correctness of subexpressions)
IFT M and M’ is a subcxpression of M then (317)[TT" F M'].
Proof: By induction on I' - A,

o If clauses  or 2 apply then obvious.
e If clause 3 applies, i.c. if 'V w0 M where ' o and T(y : o) b M, then
— case M' = y: As T} g, then we get from clause 2, Definition 6.5,
that T'(y : o) & y. (Note that WIB(T(y : a)).
— case M’ is a subezpression of M, then use IH on Iy :a) - M.
— case M’ is a suberpression of o, then use Hlon TR o,
o If clause | applies, i.c. if t = 11ty then 1 is a subcxpression of € or 1 is a subexpression

of t. But U' b=t comes from amongst other things, T F {y and T + t;. Now from the
induction hypothesis the vest Jollows.

o If clause 5 applies, then use same argument as that of clause 4.

With the help of this lemma, we can prove the following:

Lemma 6.11 If = M, then M fulfills the vaviable condition.
Proof: By induction on the devivation of [+ M.

o If clauses { or 2 apply then obvious.

o If clause 3 applies, then M fulfills the variable condition by induction. Now y & FV (o)
since WB(I'(y : o)) by the WB-convention, so also m,.,. M fulfills the variable conven-
tion.

e If clause 4 applies, i.e. if t = ti1y, then I'F ¢y and ' 1z, and both 11 and t; fulfill the
varieble condition by induction. By the flasis Lennma, all free term-variables in both t;
und iy are elements of dom([). Now assume that y is free in ty and bound inty. Theny
occurs in a subexpression A, .0" of {2, By Correciness of Subexpressions, TI" F A, ...
Hence, by the Generalion Lenana, UMy o) B U, Bul since y is free inty, y € dom(I')
and thus I'l"(y : &) is nol well-behaved, contradicling the WB-convention.

o If clause & applies, then usc the same argument as that of clause 4,

The following lenima uses the well-behaveduess of contexts in a derivation of ' F M.

Lemma 6.12 (Weakening)
IfI'EM, TCU and WB({I"), then TV + M.

Proof: By induction on the devivalion of T &+ M, Definilion 6.3. First, rename bound
variables in M such that dom(I"YNBV(M) =0 and FV(I"YN BV{M) = @ (see Remark 6.4).

It is sufficient to prove the lemma for the case ' T 1Y,
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e Basic case where I' b v is obvious.
o Assume ' =T (y: o)y and I'y(y: o) by comes from Ty b a. Then

— either IV = I'{(y : o)y with T'y = I'{IY and [, = T{(z: o"}T{",
—or " =T(y: o)l with Ty = 51y and Ty, = T3 (2 : o' )TY.

In the first case, by induction from I'1 = a: Ty & a (note that W B(T,) by Corollary 4.32,
part 1). Se I y.
In the second case, I F y follows immediately from 'y + o,

o Assume I' = Th'Ty O Ty(z oo = 1, Tk myu M (for y # 2z and y & FV(c'))?
and comes from clause 3, so 'k o and Iy : oY M. Now I'(y : 0) O T'(y : o) by
Lemma 4.15. Moreover, W B({"(y : 0)) as WB{(I(y :0)) and y # z and y & FV(o').
So, by induction: I'F o and Ty : o) M. Hence 'k wyp M.

o IfI'F Mt comes from T+ M, I'F ¢ and clauses | or 5, use Il to get ' b M and
IY F t. Moreover, use Lennna 5.6 to deduce T(17,t) = 7(T,t) and if case applies to
deduce T(I", M) = 7(I', M). Hence I" F ML

O

The following lemmas are needed in some of the proofs:

Lemma 6.13 I[fWB(T) and U'|X + M then ' X'F M for any X' D X.
Proof: WB(T') = WB(I'[ X'} by Lemnma 4.31. Furthermore, as [ X <T[X' < T then
by Corollary 4.36, T X T I'[ X'. Now using Lemma 6.12 we gel V[ X' F M. !

Remark 6.14 In the proofs of I' F M below, we only show W B(T') when it is not obvious
that T' is well-behaved. Otherwise, we don’t mention anything about W B(T').

The following lemma is important. Tt states that if £ is consistent within a well behaved
context I', then the type of ¢ is also consistent in I'.

Lemma 6.15 (Correctness of types)
IfT ki, then T & 7(T,1).
Proof. (Note that T 7(I',1) by Lemma 6.6.) Induction on T F 1.

o IfT Ftis Dy : o) F y and comes from IV & o, then also I'(y : o)T" F o by
Lemmas 4.35 and 6.12 so '+ a = ([, y).

o IfT'F Ay,.t comes from clause 3 of Definition 6.3, then Tyt o)t and I' - 0. By IH,
I(y:o)F 7(D(y:0),t). Hence U+ Tyo.m(N(y c0,0)) = 7(1', Aya t).

o IfT'F tyiy comes from clause 4 of Definition 6.3, then
I'ty,I'Fty and (301,00, 9)[7(1,11) —p Ty, .00 AT(V,12) =5 04].
flence from IH, U'F (I, 11). Now (T, 113} = 7(I", £; )t.
Using clause 5 of Definition 6.3, we get that I' - 7(1,))ta.

®Note here that this condition is necessary. For example, # - Ay.,.y but {y : o) I/ Ay.r.y. Furthermore,
BF Aoy but (2 : 0y} b Ayio.y. (See Remark 6.4.) The condition is satisfied since we started the proof with
renaming bound variables in M.



The following lemma states that if M is consistent in a context I' then it is consistent in the
restriction of the context to the free vartables of M and to those of its type (il applicable).
in other words, if I' - M then TV b M where I is I' from which statements 5 not relevant to
the free variables of M or the free variables of the context to the right of M are removed.

Lemma 6.16
IfT(y:o)"F M,y g FV(I") and y & FV(M), then

1. TP+ M and

I T r(Vy: e, M), then | 71T, M) and 7(U(y : )", M) = #(I'T", M).

Proof: Simultancously, by induction on Ty : e)U' F M.

o [f M =~ then obvious.

o IfT(z:0 )2 & z comes from Ty F o', then:

— Case I'y = Iy : o)Y; by 1N, I'TY F o', hence V1" (z 1 o')l'a F z. Moreover,
(DY (z: 6" \a,2) = 7Dz 0’ e, 2) = o

— Case [y = Th(y : o)1, then immediately from Uy b o', Pi(z 0 o)1 = 2 and
T(Ta(z a5y o), 2) = 7(Th(z : )T, 2) = 0.

— Case (z:0") = (y: o) is impossible since y § FV(M).

o If T(y: o) b 7,0 M comes from U'(y : o)I' b o' and I'(y : o)'(2: 0') b M, then
since y € FV (5,0 M), y & F'V{c') and y & FV(M). Hence by IH: TT' + ¢’ and
I'TM(z:eYF M, sol'T" b 71,00 M.

Moreover, v(D(y : o)1, Aypr ) = T 7(L(y s o)1 (2 1 &), 1) =12
g 7 (IT (2 1 0'),t) = 7(T1Y, Ao t).
o IfI{y:o)["Ft' comes from I(y:o)l" k1,

Ty : )" H 1, 7(T{y 2 ), 1) —p N,p.00 and 7(Diy : o), ') —p a1, then note
that y & FV(t) and y & FV(1'). Hence by IH: I'T" & 1 and I'T" - &', Moreover,
o(TT,0) =M 2(D(y 2 o)1) —p 0,00 and 7T ') =M 2(D(y 2 a)I7, 1) ~4 o4,
so TT it

Also, 7(T(y : )17, 1) = 7(U(y : o 00 =17 (P10 = 7V, 1),

o If(y:0)"t ot comes from Py o)V ko,
My :o)"Ft, 0 —p 1,00 and T(T(y : @)1V, 1) —p oy, then similar.

Corollary 6.17 [f T - M then theve is a Uy T T suech that Ty B M and for all Ty, Ty, y
and & with Tye = Uiy : o)y, we have y € FV(1'y) or y € FV(M). Morcover, such a I'y is
unique.
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Proof: By induction on the length of I'. Assume ' = (y1 :+ o1)... (¥ : 04). If for
all i, € FV((#ig1r : Tig1) - (g 2 0n)) o0 gy € FV(M), then we are ready. Otherwise,
let (y; @ o;) be the last statement in ' such that 3 ¢ FV({(Yir1 ¢ 0ix1) - (yn @ 02)) and
¥ € FV(M). Then by Lemma 646, (y1 1 01) .. (Yicr : Gim1 (WY 2 i) - (4 1 00) B M,
and we can apply induction. We leave il to the reader to show the uniqueness of Iy, »;

Cowmpare this with Corollary 5.9 and note that I';(y : )T’y of the present corollary needs not
only ¥y € FV(M) but also y € £'V(T'y). This is becausc-our I’s in T'F M check types as well
as terms, 7 however only deals with terms.

Definition 6.18 If '+ M, then 'y is the (unique) context described in the Corollary 6.17.
We call Tps the context relevant for T H M. When T and Uy are the samne, we simply say T’
is relevant for M.

Now the following lemma shows that consistency accommodates substitution.

Lemma 6.19 (F-substitution Lemina)
IFr(l,t) =5 o, D H 4, T(y : o)1 = M, then TT[y := (] - M[y :=1]. (Note that y ¢ FV(T) by
the WB-convention.)

Proof: By induction on I'(y: o)l F M.
Remark: as U(y : o)1” is well-behaved, then from Remark 6.4, y € (FV(I')U FV(0o)). More-
over,

as I'F1 then FV (¢

YNV C dom(l") by Lenmna 6.7.
Hence FV (1) Ndom(1") =

B. Therefore, T [y := 1] is well-belaved.
o If M = then obvious.

o I[fT(y:0)"F y comes from T+ @, then note that I' T Ty := ] from Corollary 4.36.
Now, TT'[y := t) b 1, using Lemma 6.12 and the remark in the beginning of this proof.

o IfI'(z:0")a(y:0)" b 2 comes from I'y o', then use the same remark.

e IfP(y:o) 1 (z: 0"y b 2 comes from Iy : o)1 F @' then
IT[y :=t] - o'y =] by IH.
Hence, [Ty = t)(z : &'y := I )1a[y == {] & = by Definition 6.3 and the remark above.

o Ifly: o)V F Ay M comes from Uy :o)l" b o and I{y : o)"{(z: a") - M then by
HL Ty =t F o[y :i=t] and TT [y = 8)(z : a'[y := 1)) - My :=t].
Hence, TT'[y := ) b N orpyze M [y == ] by Definition 6.3.

o If T(y : o)T' F Uty comes from T(y @ o)l" B 4,y : o) = b, 7(T(y : o), 1) —p
Hyrigy .00 and T(I'(y : o)V, o) — 4 oy then (take y' # y):
— by IH, TT[y := 4] F 1]y := &) and UI"[y := 1] F ty]y == ¢].

— r(PT[y = t], taly 1= 1]) = 7(T(y : o)1, 11)]y := t] by Lemma 5.10P
=g yr0, .02y := t] by Corollary 3.20

— 7(TTy := t),tay :=1]) =p (T{y : M, 12)[y 1= 1] =p o[y :=1].

*Note that ¥ € FV(t) as y & dom{T) by Lemuma 6.7,
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Hence by Corollary 3.19, o], o}, such that
T(T[y := 1), 1]y 1= 1]} —p Ty .0h and 7(TT'{y = ], fo(y 1= 1]) —5 0.
Hence, TT'[y :=t] F (114:)[y :=1].

o If clause 5 of Definition 6.3 applies, then similar to above.

The following lemma is not interesting on its own, but is needed to show the subject reduction
theorem.

Lemma 6.20

1. If Tk (my0 M)t then I'F M[y := 1)

2. If T F (Ayg-t1)ts then (1, (Ao ta)a) =5 7(T, [y = t,]).1°

Proof:

1. As T F (7y.,. M)t then by Lemma 6.9 we get that 7(I",1) =4 o as follows:

o Case M =i; and m = A:
(0, Apiety) = Wyo. 7(F(y s @) t1) —p o, .02 and
7([,t) =4 o1. Henece 0 =4 oy and so v(', 1) =4 0.
o Case M = ¢ and = = 1l:
Hyo.0" =25 o, .00 and

(T, 1) —»p a1. Hence a —py a1 and so 7(F, 1) =5 .

Moreover, T' & (7y.0. M )t then by Lemma 6.9, we get T' b my.o . M and T' - £,

We apply Lemma 6.9 again to U ¢: 7. . M and get: T(y o) b M. Now, T'F 1, 7(T,1) =p
o, and Uy : o) - M. So from Lemma 6.19, we get I'F My :=t].

2. First, we prove that 7(I', t;) =p o in the same way as above.
Furthermore, W B(T(y : o)) as y & dom(LYU FV(a} and W B(1').
Moreover, y § FV(1a) by VL.

Hence, by Lemma 5.40, 7(T, 41y = ta]) =p 7(I'(y : o), 11)[y 1= 1a]. Also,
7(T, (Agia-t1)ta) = (e 7(U(y 2 o), b )2 —p (1 (g a),th)[y := 12].
Hence (T, (Ay.o t1)l2) =5 7(I' 11y := f2]).

In what follows, if 7(I', M) is undefined (in particular if A/ € 7), we take FV(r(T, M)) to be
empty.

Lemma 6.21 [fz: € FV(M)U FV(r(T'(z:a)I". M) and (= : o)1+ M then 'k 0.
Proof: By induction on P(z: o)V F M.

107t is this B-convertibility which will disable proving Theorem 6.24 and its first corollary using —+g instead
of =4. (See the final case of the proof of Theorem 6.24.)
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I'(z: o))" F v obvious.

If (2 : )" F z comes from I o obvious.

I'y(y: 0" )\Ta(z: o) F y is not applicable as FV{a')nz = 0.

IfT(z:a)l1(y: o' )2 by comes from Uz : a)'1 b o where z € FV ('), then use IH.

IfT(z: o)1 F 7y .M comes from L(z:o)l" o' and T(z : o)["(y : o') - M then

— case z € FV(o') then use IH.
— case z € FV(M) then use 1.

— case z € FV{(r(U(z:a)[V, e M), thenm = X and 2 € FV(Il,.,.. 7(T'(2: o)"(y :
o), M). I = € FV(a"): see above. If 2 € FV(r(T(z: o)1"(y : ¢), M)), then use
If.

o If M = Mt then use [H,

Lemma 6.22 If Iz :a)IVF M, I'(z: o)1V is relevant for M and z € FV(1"), then 'k 0.
Proof: By induction on the length of T'.
Assume ' = Ty(y: o)z and = € FV(a').

o Ifye FV(M), then by Lemma 6.21: T(z: o)\ F o', Again by Lemma 6.21: T'F o.
o Ifye FV(T,) then by IH: T(z : o)1 b o', Henee by Lemma 6.21: T F o.

o The case y ¢ FV(M) and y ¢ FV(I's) cannot occur since U'(z : o)[1(y : o")Ty is
relevant for M ; see Definition 6.18.

Corollary 6.23 [f ' M, 1" is relevant for M and U= 1'y(z: )y, then 'y F o,
Proof: AsT is relevant for M, then either z € FV(I'3) or 2 € FV{M). In the first case
use Lemma 6.22. In the second case usc Levoma 6,21, O

The following theorem is important. Tt shows that our notions of consistency and of typing
are compatible with that of reduction.

Theorem 6.24 (Subject and Context Reduction Theorem)

LIfM =g M and TEM then T M and if M €1 then 7(, M) =5 7(I', M’).
2 T =g I" and UM then UV M.

Proof: Simuliancously by induction on the derivation T'v M.
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o case I' by then 1 is obvious. Moreover, 2 is obvious as W B(1") from Lemmau 4.31, part
3.

o case I'(y o) F y comes from T & o then 1 is obvious. Moreover,

—case I —g I then by IHT" F o and so I (y: 0)[" F y.
— case 0 —g o then by IH '\ o' and so I'(y : e )" b y.
— case I" =g " then D(y : o)T" F g

o case I'F mye M comes from Tk o and Uy : o) b M then

— case ¢ —g o' then by I, T F o’ and I'(y:0'YF M and hence, I' b 7.0 M.
Furthermore, if 1 = X and M = t then 7(I', A, 4) = I, 7(L(y @ 0),t) =p
Myor.7(I(y  a'),2) by Lemina 5.7.

— case M —y M’ then by INT(y o) b M' and hence U b my, M.
Furthermore, if m = A\, M =t and M' =1’ then
T(T, Ayio ) = 1y 7 (1My : 0). 1) =g Myo.7(T{y s @), 1) by IH.

Moveover by IH, I"F o and I"{(y : o) - M, hence I F 10 M

e case I' 111 comes from I'F iy, P F1,7(1 1) —p ., .02 and 7(T',1) —p5 01. Assume
ty g ta, then by I T F &y and 7(I')1y) =4 7(T,t1). Hence, by Corollary 3.19,
(Fat,a5)[r (1 1s) —p ypr 05 and (V. 1) —p o]

Now, from T(D,ty) —p Hypr .05, 7(V, 1) —p oy, 'L and I'F 1y we get T+ tat.
Furthermore, 7(D,1:1) = (T, 4y)t = 7(I', L)t by {1,

Moreover, by IH and Lemma 5.7, I" - (;,I" F ¢, 7{I", t;) =5 7(1',11) and 7(I",t) =4
7(T,1}).

Hence, by Corollary 3.19, (3al,at)[7(I",11) —p Nypr .oy and 7(I", 1) —p a1].
Now, from T(I",11) —p g 04, (1", 1) =g o, T"F L and T F 1y we get I 131,

o case ly —g iy and T'F My then similar lo above.
o casc o' —y4a” and T'F a't then similar to above.

o case (Tye MMz —p My = t2] and T F (7y.q. M )2 then from Lemina 6.20,

I'F My := 1a]. Moreover, if M € 1" then again we use Lemina 6.20
to get (T, (Ayo. M ¥t2) =p 7(T, M[y := La]).

Furthermore,

—case M =1 then T' b (Ayo.t)z comes from ' F Ayp i, T'F Ly, (T, Ayisit) —p
.00 and 7(I',13) —4 o1, Now the fact that
I F (Mg t)ls follows from T b (Ao has already been treated above (case
'k tt).

— cnse M = o' then similar lo above.
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Corollary 6.25 If M —g M’ and I' = M then I' - M’ and if M € T then 7(I', M) =4
([, M').
Proof: By induction on M -5 M’ where ' M.

o If M —g M then obvious.
o IfM —g M' comes from M —5 M' and if U':- M then use Theorem 6.24.

o If M —g M' comes from M —pg My and My —g M’ and if T - M then
by IH, ' My and T'H M'.

Also if (T, M) = o then by HI, 7(I', M) =y 7(I', M ). Similarly by IH, v(I,M") =4
T(I', M1). Hence 7(Py M) =5 7(1', M'}.

(]

Note here that the version of this corallary for the case F is replaced by 7 does not hold.

Example 6.26 Take t = (A,,.5)z. Then | 7(0,(Ap0.y)x) and 7(0, (A,.0-y)x) —p o2 yet
7(0, yly := z]) = 7(0,2) is undefined. Note however that in the case of (A,.,.2)(ww) —4 z, we
have that 7{(z : ¢'),( Ay 2 Nww)) —p 6" = 7((z: '), 2).

Now the following lemma is obvious. It states that if A is consistent in a context I', then it
is consistent in any reduct of T

Corollary 6.27
fI'y =Ty and '\ E M then Ty - M and if M €T, then 7(I'y, M) =4 (T2, M).

Proof: By inducltion on the number of one step reductions of I'y —5 Iy, using Theo-
rem 6.24 and Lemma 5.7. O

Here note that the version of this corollary replacing F by 7 holds, as has been shown in
Lemma 5.7.

Finally, the following lemma is very useful. It shows that if ¢ and ¢’ are consistent and
B-equal, then their types are also equal.

Lemma 6.28 (Unicity of types)
Ifl=pt', TFtand T'F 1t then 7(I',1) =5 T(I',1').

Proof: By Corollary 3.17, (A1 —p ") A (' =5 1")].  From Corollary 6.25 we get
that 7(D, ") =5 7(L,t) and 7(0,¢") =5 7(T. 1), Hence 7(I',t) =5 7(T,¥"). O

Note that it is possible that T F M and M =4 M’ without I' F M’. For example, (y : y) F y
and a = (Aziy.Ayy 2)Y( Ay z) = ¥ bul (y:1v) W .

Up to here, we have shown thal our calculus is atiractive. Terms and types are treated
alike and f-conversion is used with both forms of expressions. Church-Rosser holds for the
calculus and all the desirable typing conditions are satisfied. The following table summarises
these properties for 7 and F.
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Table 6.29 (Properties of T and )

I K |k ]

Subject- Reduction | No Yes
Contert- Reduction | Yes Yes
Restriction Yes Yes
Substitution Yes Yes |
Busis Nao Yes
Generalion — Yes
Subexpressions — Yeu
Weakening Yes Yes
Unicity of Types — Yes |

Next, we will interpret Church’s A_, in our calculus showing that a term # of A_, is consistent
iff the type of ¢ via 7 converges to the type of the term in A_. We will show morcover that
all the work that one carries out in A_, can also be carried out in A_,,. Moreover, A_,, gives a
unified treatment of types and terms. Such a treatment can generalise to many known typing
systems.

7 The relation of A, to A_,

7.1 Church’s A and its interpretation in A,

We start by presenting the system A_. We present types of AL, (7,), terms of A_,, (T, and
the typing rules of A_.

Definition 7.1 (A_)
We use the same object and mela level notation as i AL, and define types and terms as

follows:
T, =V (T2 = 1)
T_. =V | (AV:T_.-T—») ! (T_,T__,)

We define statements here similarly to the way we defined them in Definition 4.1, Further-
more, we lake a basis (instead of a context) to be a set of statements where the subjects are
variables which occur at most once. So we no longer insist on the idea of a context as an
ordered set for this section. This is consistent with our assmmption that in a well-behaved
context, all subject variables occur at most once. The second condition of a well-behaved
context which says that in T(y : o)1, V(o) N dom({y : 0)I") = @ is satisfied because from
Remark 7.4 below, FV{(a)NV = ). In fact, bases arc the A_, version of well-behiaved contexts
(see Corollary 7.12). Even stronger, bases of AL, correspond to the simply typed contexts of
A, (see Corollary 7.13).

We take K to he the collection of all bases of A_, and use the same meta-notation for
contexts. That is I', TV, 11, Ty ... will range over elements in AL

Definition 7.2 The typing rules of A, arc the following:
1, T'ka_y:e fiy:a)el

'y, t:i{a—0a") Pha_t'o
| SN A

0
Ao a




My:a)bs_ t: 0
Ikl ()‘y:a-i) : (G — ')

Example 7.3 The following can be derived in A_ {cf. Example 6.5).
Let o,0' and ¢" € 7_,. Let moreover,

L=yio—d,y2:0" —a" a0

Ih=ypio—-0,yp:0 o

la=wy 10—

Then,

Ly Fgnys o

Ty E g2{1ys) - o

Ta b Aygo-v2(tnys) t o — a”

Fg + /\y::a"—-a”-/\ya:a-y‘z(ylyfl} N (0” — 0'") — (G’ — g

+ Ay;:a—-a")\'yg:a‘—-a“-’\ys:a-;UZ(yl?h) : ((T - OJ) - ((GJ - 0”) - (U - U"))

Remark 7.4 Nole that for o € T_,, we have FV (o) CV and BV (a) = 0.

We define an interpretation function from A, to A, as [ollows

Definition 7.5 Z : (T, U7T.) — (T'UT) is defined as follows:

LIy =
2 Iy)=vy
3. I(o — o') = ll,.3¢0).L(0") where y is fresh.

L

Tty = T(OI(E)
T Ao 1) = Ayizior (1)

bl

Definition 7.6 We extend T to K as follows:
IT{(y o) (@)} = G (1) oo (Y s T{an ) )} int some order,

Note that even though Z(Af) is well-defined, Z(T) is not well-defined, because the elements
of a set can be listed in many different orders. However, this does not affect our main results,
as Theorem 7.8 below shows,

Definition 7.7

o A well-behaved context T' in A, is ealled permutable if T' = (g1 1 01) ... (yn : 0n) with
% & FV({oy,...,00}) for all 1.

o A permutation of a well-behaved context ' = (i @ o1). .. (y, 1 on) is @ context TV =
(yi, 1 00,) - - (i, 0i,) such that iy, ..., 1, is a permulation of 1,...,n.

Theorem 7.8 Let I' be a permutable context in A, (and henee well-behaved) and let T be
o permutation of T. Then for all M such that T'F M, we have:
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1. VM and
2. If1 (T, M) then T 7(T", M) and (I, M) = r(I', M).

Proof: By sunuvitaneous induction on 't M. The only non-trivial case is that T+ M is
I'y(y: o)y by as a consequence of Ty b a. It follows from Lemma 6.16 that O F o (induction
on the number of statements in I'y). Let 1V = T'|(y : o)1 be a permutation of Ty(y : o)Ts.
Then O & o implies T b o, by Lemma 6.12. llence 1"+ y and 7(I",y) = 7(T,y) = 0. O

7.2 Some useful machinery

In this section we present some lemmas and remarks which will be used in proving the main
lemmas and theorems concerning the interpretation of A in A_,.

Lemma 7.9 For M € (T UT.), we have FV(I(M)) = FV(M).
Proof: Obvious. a

Remark 7.10 Note that in Z(o — o’) = Il.70,).Z(0"), y ¢ VAR(Z(c))UV AR(I(c')), from
the condition that y is fresh.

Corollary 7.11 For o € 7_,, FV(Z(c)) C V.
Proof: Obvious using Remark 7.4. D

Corollary 7.12 I' € K < WB(Z(T").
Proof: Obuvious. 4

Corollary 7.13 I' € K = I(T) is permulable.
Proof: Use Corollary 7.12 and Rewmark 7.10. O

Lemma 7.14 For anyo € 7, and I' € CONS, if WB(T) then I' - Z{o).
Proof: By induction on T_,.

o Ifa iz then according to Definition 6.3, clause [, T'F 7.

o Assume 0 is 0y — 04 where I holds for o and
oy and I(oy — 03) = W10,y L(02) where y is fresh. Then by 11,
'tZ(oy) and 'y : Z{oy)) F Z{ay).

Now apply clause 3 of Dcfinition 6.3 to U'F T(oy) and I'(y : T(a1)) F Z(a2), to obtain
'k I(O'l —* 0'2).

O

Corollary 7.15 For any o € T, for any permutable T € CONS, 7'+ I{o).
Proof: Use Lemima 7.14. O



Lemma 7.16 Ifo € 7., and I(c) —4 o' then Z(a) = o'
Proof: By induction on o ¢ 7_,

¢ Cuasc o0 = 7y then obuvicus.

o Assume ¢ = oy — 03 where [H holds for oy and a,. I(0) = My.z(0,)-Z(02) where y is
fresh and (o) —p o',

Now this can only be possible if @' = 1ly.q1.05 where T(o1) —p 0y,2(a;) —p 04 and y
is still fresh.

By HI, o = I(o1) and ol = L(a3) and so, ' = I(a, — 03) = I(o

Lemma 7.17 Ifo,0' € T, and I{a) —p I{o') then ¢’ = a.
Proof: By induction on o € T_, using Lenuna 7.16. O

7.3 A, generalises A

Here we shall prove that ¢ is typable in A_, iff Z(%) is consistent in A_,,. Furthermore, if o
is the type of ¢ in AL then the type of Z(¢) in AL, f-reduces to T{o). Note here that the
reason why we get f-reduction instead ol equivalence is that we keep the whole structure of
our terms and types. lLe. we don’t assuwme the traditional lines of saying that if f has the
arrow type ¢ — ¢’ and @ has the type a then fa has the type o', Rather we say that fa has
type (¢ — ¢')a. So we still have to perform a f-reduction. A_, on the other hand, follows the
traditional lines.

Lemma 7.18 Let T € K.t € 1, and o € T,. IfT" ky_ t : o then ZI(T) F I(t) and
T(Z(T),Z(t)) —p I(0).

Proof: By induction on the derivation I'-5_ {1 0.

o I'Fy_ y:o comes from (y:o) €', then T(U') = T(I")(y : Z(a))I(T") for some I" and
" with I'UT"U{(y : )} = T. Now, WB(I(1")) by Corollary 7.12, henee T(I") + (o)
be Lemma 7.14. Il jollows that Z(T' )y : Z(e))I(1") = Z(T") + y by Definition 6.3 and
(Z(I'),y) = (o).

o 'y, 1t a comes from ' by tio — @ and U b, ' : o and where TH holds
Jor t and t' then T(I(T),Z(t)) —p (o — ') = N1y Z(0")), where y & I(a’), and
T(Z(T),Z(t")) —5 Z(0o).

Hence r(Z(T),Z(tt'))y = (T, THZ (') = m(Z(I),Z(1))I(t') —p

y.z(0y-Z(0" ))I (o) —p I{c' )y == I(a)]| = L(c') as y & FV(I(a')). Morcover, by IH we
also have I(TYE Z(2) and Z(I') F Z{¥'). Now use clause 5 of Definition 6.3 to gel that
I(T)YF Z(tt").

o 'yl Aot 0 — @' comes from Ty o) ba_ o and HI holds for t then 7(Z(T)(y

I(0)), Z(t)) —p I(c’) and
T(Z(1), T( Ay 1)) = T(I(T), Ayizo). Z(1)) = Nyez(oy 7(Z(T)(y - Z(0)), Z(1)) —p

—
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lyz(0).Z(0") = I(0 — o').
Moreover, by IH, T(I')(y : Z(o)) b Z{1). Morcover, from Lemma 7.14, we get that
I(I) F I(o). So now, apply clouse 3 of Definition 6.3 to obtain that I(T) F I(Ay.0.1).

O
Theorem 7.19 LetT'e K,t €T, undo € T_,. If ' Fys_ t : o then
L ITFI{o)
2. (YR I
3. T(I(1),Z(t)) —p I{o).
Proof: Use Lemmas 7.1 and 7.18.
a

Theorem 7.20 Ift € 1, and I' is a sct of stuiements of A_, then Z(T') F I(t) implies

(FBo e T sl t o AT(Z(T),Z(8)) —p I()].

Proof: Note that Z(T') - Z(t) implies that W B(Z(1'}) and hence by Corollary 7.12, T € K.
Now the proof is by induction on L € T.,.

o Caset =y then from Lemma 6.9, (3UT")I(T) = Z(I")y : 7(Z(T),y))Z(1I")]. Hence,
e € T, such that I(a) = 7(Z(T),y) and so 7(I{T),Z(1)} = 7(Z(1),y) = I(7). More-
over, I'(y: o) Fo_ 1o as WH_(T(y: o)1) and y & dom(T'T").

o Cuse t = Ay,.t' then from Lemma 6.9, I(T') b Z(a) and I(I')(y : Z(a)) F Z(t'). Now
by TH, (o' € T[Ty : T(a)), L(#")) —p L(a"YAT(y : o) Fa_, ' 1 o', Hence
T(I(T), Z(Ayo 1)) = WNyq(oy. T(Z(L)(y - Z(0)),Z(1")) — Nyp(0).Z{0") = I(0 — ¢') and
Chyl Aot o — 0.

o Case t = tyt,. If I(T) b Z(tyty) then by lemma 6.9, I(T) & I(ty), Z(T) F I(t),
T(I(T), I(t1)) =5 Wyio, .00 and 7(I(T),I(12)) —p 0:.

But by IH, 301,0] € T, such that:

I, T = LoD AT | 4y 10}

T(Z(I'),Z(ty)) ~»p Z{o{)AL Fa_ ta: 07

But by Church Rosser, (Ao )[oy —p 08 AL{o}) —p4 of].

As ol € T, then of = I(a]), from Lemma 7,16, so gy —p5 T(ay).
Now, Ny.o, .07 =g My.qr.09 = I(a}),

hence again by Church Rosser, (303)[lly.00.00 —p 03 AI(07) —p 03,
As o) € T, then o3 = I(o}') from Lemma 7.16.

Hence, y.gouny.00 —p I(oy). Tt follows that Z(ay) must stavlwith a 11, so 0] = 03 — 04
for some a3 and o4 € T_,,

Then T(oy) = 1,100y T(04), hence

Wy.z(0ry.Z(02) =g Wiizay) Z{0a). 1t follows that

y =z, I(0o}) —p I(03) (henee of = a3 by Lenna 7.17) and a3 —»g T(04).
Concluding:



L From ' by 1y :0] (le. U Fal by 1 (03 — a4), or T by 1y (o) — o4)) and
Pl faiof, we obtain T by_ t1ls : ay.

2, T(I(F),I(tl)) - Ily:g(a;l).ag g Hy:z(‘,a).l-(ﬁ‘;), S0
T(I(F),I(tltg)) = (T(I(F),I(fl))[rg —*g 1(04)

O
Corollary 7.21 Ift e T, and T € K,
then T(T) F Z(t) iff Bo € T[T s Lo AT(Z(D),Z(1)) =5 Z(a) AI(I') + I(a))
Proof: Use Theorems 7.19 and 7.20. O

Hence, if I' and #', helonging to A_,, are images of 'and Lin A ie. IV = Z(T) and ¢’ = Z(1),
then I'" F ¢ implies T F,_ ¢ ¢ for some o, There is a comparable theorem for general I and
' in AL,

If I k¢, then there are I'y 2 and ¢ in AL such that I —g T(1), 7" —5 Z(¢), 7(T",1') =5 Z(0),
and 'y t:o.

In order to prove this, we first give a number of definitions and lenunas.

Definition 7.22

o Leto e 7. We call o simple (or a simple type) if there arc no applications in o. The
set of all simple types in T is denoted by T*.

o A context I' in A_,. is called simple if all 0 € ran([') are simple.

It follows that simple types in AL, can he constructed using the following abstract syntactic
rule:

T'=V | (Hy.7:.T")

which is a restricted version of the syntactic rule:
T=V|(lys.T)|{TT)

of Section 2. Now we have the following:

Lemma 7.23 All simple types arc in noreal form.
Proof: A simple type contains no applicalion, hence no redezes. o

Lemma 7.24 Ifoe T and P €¢ CONS then I'F 0.
Proof: By induction on o ¢ T*. o

It is also clear that simple types do not contain occurrences of terms ¢ € T’ (except for the
binding variables y being a subscript of the IT). Tu particular, there are no occurrences of
variables in a simple type, but for the mentioned binding variables. This means that all
binding variables y (subscripts of 11's) actually bind nothing at all,

Hence, there is a well-defined backwards transkation from AL, Lo A, for simple types:
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Definition 7.25 The mapping J : T* — T, is defined as follows:

T(7)
T(My.0")

Note that the mapping Z, being injective, defines an embedding of the types of A_, in those
of AL, (i.e. 7). The mapping 7 is the inverse of Z on 7.
We will now show that every consistent type in A_, is f-cqual to a simple type.

’}l
o — o

i

Lemma 7.26 Let o € T be such that I'F o for some T. Then there is a ¢’ € T* such that
a —>g O".
Proof: By induction on '+ .

{. Case Ut~ is trivial.
2. Case I' k My,p.0q comes from T F o and I(y : o) b oy, By Ill: 0 — o' € T* and
o, —pg 0y € T*. Hence ll,,,.00 —p ll,.0.00 €T,

8. Case I' b ot comes from Tk o, ' 1, 0 —g ., .0 and (I, 1) —p5 01. Then by TH:
o — o' €T By Theorcm 3.16 and Lewma 7.23 it follows that W,., .00 —p o'. Hence,
o' = Iy, .00 € T, Hence at ~—+p (l'ly:,¥.ag)£ — (Nl 05} —p o3[y 1= t] = a} since
oy 18 also a simple lype, containing no (free) variables.

O

Corollary 7.27 If 'k o then there is a 01 € T, such-that 0 —p5 I(ay). O

Next we concentrate on the terms of A,

Definition 7.28 We call a term ¢t € T a Church-terin if all types occurring in i are simple,
We denote the set of all Church-terms by T".

There is a nice relation between terms in AL, and Church-terms:

Lemma 7.29 Let t € T such that I' F 1 for some T. Then there is a t' € T°" such that
{ g i
Proof: By mnducltion on I'F L,

{. Case I'(y: o) F y is trivial.

2. Case T'F Ayt comes from 'k o and Uy a) - L. By Lemimna 7.26: there ise’ € T°
such that o — o' . Morcover, by [H: there is ' € T" such that t —5 t'. Hence,
Ayiod —2p Ay 8! € TP

3. Case T b Uty comes from U'F 4, Tk by, 7(11) =4 0,00 and 7(T,41) —4 0y,
By IH: there is t' € T such thal 1 —p t' and t) € T* such that U -»g t]. Hence
Ly —sg Ut € T" since the applicalion of I! to ty cannot introduce an application in the
types occurring in t't].



We can extend the mapping J of Definition 7.25 to Church-terms:

Definition 7.30 7 : (7" UT*) — I, is defined as follows:

J(v) = v
J(Myp0’) = a—d
I(y) =y

TOpet) = Mgy T ()
T (t1tz) = J(t1)T(t2)

Note that 7 is well-defined. Note also that a Church-term ¢ cannot contain a Il-redex of the
form (Il,., .11 )2, since simple types contain no applications.

As the main result of this section, we prove the following theorem. Recall the definition
of I, being the context relevamt to I'F M (sce Definition 6.18).

Theorem 7.31 Let TV = '. Then there T',0 and o in AL such that T byt 0, ! —g I(1)
and 7(I", ") =g I(a). Moreover, ', —p I(T).

Proof: ;From T' F ¥ follows T, bt (Corollary 6.17).

Let ¥, be (y1 1 o1) . (Y 1 0n). Then (y1 0 o1) . (i1 @ Gica) b ooy by Lemma 6.21.

Hence there are o € T* (i = 1,...,n) such that 0; —5 ol by Lemma 7.26. It follows that
I'" = (y :01) .. (v 2 0h) B " by Corollary 6.27. Take T = (1n @ T(a)) .- -(yn : T(oL))-
Then clearly I(T) = TV, so I}, —4 T(I').
Moreover, by Lemma 7.29, there is 1 € T* such that ' —g " and I(T') + 1" by Coro-
laary 6.25. Take t = J(U"), then " = Z(t) and T(T') & Z(1). Then by Corollury 7.21,
there is ¢ € T, such that T by_ t 1 a. From Theorem 7.20: 7(I(T),Z(1)) —p Z(0o), i.e.
(I, 4") —p I(e). By Corollary 6.27: 7(T" ") =p T{c} and it follows from Lemma 5.7 that
T(I",1) =5 Z(0o).

The various entries in this preof can be picturcd in Figure 1, O

Finally, note that even for Church-terms, 7 and I' do not coincide. That is, we know that if
I'+t then | 7(T,t). However, even il t € 7" and il | 7(T, 1}, we still don’t get T F ¢. In fact,
look at Example 6.26 where | 7((), 1) vet O I/ {, for £ = (A.0.9)2.

8 Conclusion

In this paper, we presented a calculus A, where types and terms arc treated alike and where
f-conversion is used for both forms of expressions. We showed that the Church Rosser theorem
holds for the calculus and extended it with typing and cousistency operators. These operators
satisfy most of the important results concerning typing, such as weakening and substitution.
The aim of our calculus is to provide a general calculus which accommodates types and
terms in a unified way and which preserves the characteristics of the typing systems. More
importantly, compatibility of typing in our calculus holds for both abstraction and application
whereas in most of the known type theories (especially in PT'Ss), compatibility holds only for
abstraction. Furthermore, I' - ¢ : ¢ is split in two judgments: I'F ¢ and 7(I',t) =g ¢ which
is another step towards getting a fine structure for the typing relation and for separating the
two distinct notions of whether a term has a type and of what is its type.

As an example, we interpreted Church’s A_ in our caleulus and showed that in order to
type a term in A, , il is enough to show il consistent in A_,. Similarly, one can interpret other
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Figure 1: Dependencies between A, and A,

typing systems in A_,, and show similar results. The system A, is the first which provides
an extended treatment of unifying tvpes and terms while preserving most of the desirable
properties of typing systems. Furthermore, the line ol this paper should be followed in the
future to deal with other systems than A_. We believe that the same startegy can be used
for those systems of the Barendregt cube giving yet a more clegant structure of generalised
type systems.
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