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Finding Errors in the Design of a Workflow Process 

A Petri-net-based Approach 

Abstract 

W.M.P. van der Aalst 

Department of Mathematics and Computing Science 
Eindhoven University of Technology, 

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands 
telephone: -31402474295, e-mail: wsinwawin.tue.nl 

Workflow management systems facilitate the everyday operation of business processes by 
taking care of the logistic control of work. In contrast to traditional information systems, 
they attempt to support frequent changes of the workflows at hand. Therefore, the need 
for analysis methods to verify the correctness of workflows is becoming more prominent. 
In this paper we present a method based on Petri nets. This analysis method exploits the 
structure of the Petri net to find potential errors in the design of the workflow. Moreover, 
the analysis method allows for the compositional verification of workfIows. 

Keywords: Petri nets; free-choice Petri nets; workflow management systems; analysis of 
workftows; business process reengineering; analysis of Petri nets; compositional analysis. 

1 Introduction 
Workflow management systems (WFMS) are used for the modeling, analysis, enactment, 
and coordination of structured business processes by groups of people. Business processes 
supported by a WFMS are case-driven, i.e., tasks are executed for specific cases. Ap­
proving loans, processing insurance claims, billing, processing tax declarations, handling 
traffic violations and mortgaging, are typical case-driven processes which are often sup­
ported by a WFMS. These case-driven processes, also called workflows, are marked by 
three dimensions: (1) the process dimension, (2) the resource dimension, and (3) the case 
dimension (see Figure 1). The process dimension is concerned with the partial ordering 
of tasks. The tasks which need to be executed are identified and the routing of cases along 
these tasks is determined. Conditional, sequential, parallel and iterative routing are typical 
structures specified in the process dimension. Tasks are executed by resources. Resources 
are human (e.g. employee) andlor non-human (e.g. device, software, hardware). In the re­
source dimension these resources are classified by identifying roles (resource classes based 
on functional characteristics) and organizational units (groups, tearns or departments). Bo­
th the process dimension and the resource dimension are generic, i.e., they are not tailored 
towards a specific case. The third dimension of a workflow is concerned with individual 
cases which are executed according to the process definition (first dimension) by the proper 
resources (second dimension). 
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Figure I: The three dimensions of workflow. 

Managing workflows is not a new idea. Workflow control techniques have existed for 
decades and many management concepts originating from production and logistics are also 
applicable in a workflow context. However, just recently. commercially available generic 
WFMS's have become a reality. Although these systems have been applied successfully, 
contemporary WFMS's have at least two important drawbacks. First of all, today's sys­
tems do not scale well, have limited fault tolerance and are inflexible. Secondly, a solid the­
oretical foundation is missing. Most of the more than 250 commercially available WFMS's 
use a vendor-specific ad-hoc modeling technique to design workflows. In spite of the ef­
forts of the Workflow Management Coalition ([20]), real standards are missing. The ab­
sence of formalized standards hinders the development of tool-independent analysis tech­
niques. As a result, contemporary WFMS's do not facilitate advanced analysis methods 
to determine the correctness of a workflow. 

As many researchers have indicated ([II, 16,21]), Petri nets constitute a good starting 
point for a solid theoretical foundation of workflow management. In this paper we focus 
on the process dimension. We use Petri nets to specify the partial ordering of tasks. Based 
on a Petri-net-based representation of the workflow process, we tackle the problem of veri­
fication. We will provide techniques to verify the so-called soundness property introduced 
in [4]. A workflow process is sound if and only if, for any case, the process terminates 
properly, i.e., termination is guaranteed, there are no dangling references, and deadlock 
and livelock are absent. 

This paper extends the results presented in [4]. We will show that in most ofthe situations 
encountered in practice, the soundness property can be checked in polynomial time. More­
over, we identify suspicious constructs which may endanger the correctness of a workflow 
process. We will also show that the approach presented in this paper allows for the compo­
sitional verification of workflow processes, i.e., the correctness of a process can be decided 
by partitioning it into sound subprocesses. To support the application of the results pre­
sented in this paper, we have developed a Petri-net-based workflow analyzer called Woflan 
([5]). Woflan is a workflow management system independent analysis tool which inter-
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faces with two of the leading products at the Dutch workflow market. 

2 Petri nets 
This section introduces the basic Petri net tenninology and notations. Readers familiar 
with Petri nets can skip this section. I 

The classical Petri net is a directed bipartite graph with two node types called places and 
transitions. The nodes are connected via directed arcs. Connections between two nodes 
of the same type are not allowed. Places are represented by circles and transitions by rect­
angles. 

Definition 1 (Petri net) A Petri net is a triple (P, T, F): 

P is a finite set of places, 

Tis afinite set of transitions (P n T = 0), 

F <; (P x T) U (T x P) is a set of arcs (jIow relation) 

A place p is called an input place of a transition t iff there exists a directed arc from p to 
t. Place p is called an output place of transition t iff there exists a directed arc from t to p. 
We use _I to denote the set of input places for a transition t. The notations te, • p and p. 
have similar meanings, e.g. p. is the set of transitions sharing p as an input place. Note 
that we restrict ourselves to arcs with weight 1. In the context of workflow procedures it 
makes no sense to have other weights, because places correspond to conditions. 

At any time a place contains zero or more tokens, drawn as black dots. The state, often 
referred to as marking, is the distribution of tokens over places, i.e., M E P -> N. We 
will represent a state as follows: 1 PI +2P2 + Ip3 +OP4 is the state with one token in place 
PI, two tokens in P2. one token in P3 and no tokens in P4. We can also represent this state 
as follows: PI + 2P2 + P3. To compare states we define a partial ordering. For any two 
states MI and M2, MI ::0 M2 iff for all PEP: MI(p)::o M2(p) 

The number of tokens may change during the execution of the net. Transitions are the 
active components in a Petri net: they change the state of the net according to the following 
firing rule: 

(1) A transition t is said to be enabled iff each input place p of t contains at least one 
token. 

(2) An enabled transition may fire. If transition t fires, then t consumes one token from 
each input place p of t and produces one token for each output place p of t. 

Given a Petri net (P, T, F) and a state MJ, we have the following notations: 

I Note that states are represented by weighted sums and note the definition of (elementary) (conflict-free) 
paths. 
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M J ~ M2: transition t is enabled in state MI and firing t in MJ results in state M2 

MJ ~ M2: there is a transition t such that MJ ~ M2 

MJ ~ Mn: the firing sequence a = tJt2t3 ... In-I leads from state M J to state Mn. 
. M I, M t2 t~_l 
I.e., I ~ 2 ----7 ••• --+ Mn 

A state Mn is called reachable from MI (notation MI ~ Mn) iff there is a firing sequence 
t1 12 t~_1 N h fi . 

a = t,l2 ... In_I such that MJ --+ M2 --+ ... --+ Mn. ote that t e empty nng sequence 

is also allowed. i.e .• MI ~ MI. 

We use (PN. M) to denotea Petri net PN with an initial state M. A state M' is a reachable 

state of (PN. M) iff M ~ M'. Let us define some properties for Petri nets. 

Definition 2 (Live) A Petri net (PN. M) is live iff,forevery reachable state M' and every 
transition t there is a slate Mil reachable from M' which enables t. 

Definition 3 (Bounded, safe) A Petri net (PN. M) is bounded iff, for every reachable 
state and every place p the number of tokens in p is bounded. The net is safe ifffor each 
place the maximum number of tokens does not exceed 1. 

Definition 4 (Well-formed) A Petri net P N is well-formed iff there is a state M such that 
(P N • M) is live and bounded. 

Paths connect nodes by a sequence of arcs. 

Definition 5 (Path, Elementary, Conflict-free) Let P N be a Petri net. A path C from a 
node n I to a node nk is a sequence (n I. n2 • .... nk) such that (ni. ni+l) E F for I :s i :s 
k - I. C is elementary iff, for any two nodes ni and nj on C. i oF j =} ni oF nj. Cis 
conflict-free iff, for any place n j on C and any transition nj on C, j ::f:. i-I => n j rt enj. 

For convenience. we introduce the alphabet operator a on paths. If C = (nl. n2 • . " • nk), 
then arC) = {nl. n2 •... • nd. 

Definition 6 (Strongly connected) A Petri net is strongly connected iff,for every pair of 
nodes (i.e. places and transitions) x and y. there is a path leading from x to y. 

3 WF-nets 

In Figure I we indicated that a workflow has (at least) three dimensions. The process di­
mension is the most prominent one. because the core of any workflow system is formed by 
the processes it supports. In the process dimension building blocks such as the AND-split, 
AND-join. OR-split. and OR-join are used to model sequential. conditional. parallel and 
iterative routing (WFMC [20]). Clearly. a Petri net can be used to specify the routing of 
cases. Tasks are modeled by transitions and causal dependencies are modeled by places. 
In fact. a place corresponds to a condition which can be used as pre- andlor post-conditions 
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for tasks. An AND-split corresponds to a transition with two or more output places, and 
an AND-join corresponds to a transition with two or more input places. OR-splits/OR­
joins correspond to places with multiple outgoing/ingoing arcs. Moreover, in [1, 3] it is 
shown that the Petri net approach also allows for useful routing constructs absent in many 
WFMS's. 
A Petri net which models the process dimension of a workflow, is called a WorkFlow net 
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single case 
in isolation. 

Definition 7 (WF-net) A Petri net PN = (P, T, F) is a WF-net (Worlifiow net) if and 
only if: 

(i) PN has two special places: i and o. Place i is a source place: oi = 0. Place 0 is 
a sink place: oe = 0. 

(ii) [[we add a transition t* to PN which connects place 0 with i (i.e. ot* = {oj and 
t*o = {ill, then the resulting Petri net is strongly connected. 

A WF-net has one input place (i) and one output place (0) because any case handled by the 
procedure represented by the WF-net is created if it enters the WFMS and is deleted once 
it is completely handled by the WFMS, i.e., the WF-net specifies the life-cycle of a case. 
The second requirement in Definition 7 (the Petri net extended with t* should be strongly 
connected) states that for each transition t (place p) there should be a path from place ito 
o via t (p). This requirement has been added to avoid 'dangling tasks andlor conditions' , 
i.e., tasks and conditions which do not contribute to the processing of cases. 

Q) 

o 
register " 

Figure 2: A WF-net for the processing of complaints. 

Figure 2 shows a WF-net which models the processing of complaints. First the complaint 
is registered (task register), then in parallel a questionnaire is sent to the complainant (task 
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send-lJuestionnaire) and the complaint is evaluated (task evaluate). !fthe complainant re­
turns the questionnaire within two weeks, the task process_questionnaire is executed. If 
the questionnaire is not returned within two weeks, the result of the questionnaire is dis­
carded (task timeJJut). Based on the result of the evaluation, the complaint is processed or 
not. The actual processing of the complaint (task process_complaint) is delayed until con­
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The 
processing of the complaint is checked via task checLprocessing. Finally, task archive is 
executed. Note that sequential, conditional, parallel and iterative routing are present in this 
example. 

The WF-net shown in Figure 2 clearly illustrates that we focus on the process dimension. 
We abstract from resources, applications and technical platforms. Moreover, we also ab­
stract from case variables and triggers. Case variables are used to resolve choices (OR­
split), i.e., the choice between processing_required and no-processing is (partially) based 
on case variables set during the execution of task evaluate. The choice between process­
ing_OK and processing.NOK is resolved by testing case variables set by checLprocessing. 
In the WF-net we abstract from case variables by introducing non-deterministic choices in 
the Petri-net. Ifwe don't abstract from this information, we would have to model the (un­
known) behavior of the applications used in each of the tasks and analysis would become 
intractable. In Figure 2 we have indicated that timeJJut and process-questionnaire require 
triggers. The clock symbol denotes a time trigger and the envelope symbol denotes an 
external trigger. Task timeJJut requires a time trigger ('two weeks have passed') and pro­
cess_questionnaire requires a message trigger {'the questionnaire has been returned'}, A 
trigger can be seen as an additional condition which needs to be satisfied. In the remainder 
of this paper we abstract from these trigger conditions. We assume that the environment 
behaves fairly, i.e., the liveness of a transition is not hindered by the continuous absence 
of a specific trigger. As a result, every trigger condition will be satisfied eventually (if 
needed). 

4 Soundness 
In this section we summarize some of the basic results for WF-nets presented in [4]. The 
remainder of this paper will build on these results. 
The two requirements stated in Definition 7 can be verified statically, i.e., they only relate 
to the structure of the Petri net. However, there is another requirement which should be 
satisfied: 

For any case, the procedure will terminate eventually and the moment the pro­
cedure terminates there is a token in place oand all the other places are empty. 

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbitrary 
task by following the appropriate route though the WF-net. These two additional require­
ments correspond to the so-called soundness propeny. 

DefinitionS (Sonnd) A procedure modeled by a WF-net PN = (P, T, F) issoundifand 
only if: 
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(i) For every state M reachable from state i, there exists afiring sequence leadingfrom 
state M to state o. Formally:2 

. . . 
VM(' --> M) =} (M --> 0) 

(ii) State 0 is the only state reachable from state i with at least one token in place o. 
Formally: 

VMU':' M /\ M2:o)=}(M=o) 

(iii) There are no dead transitions in (PN, i). Formally: 

3 .' M t , 
Vt€T M,M' I ~ ---:l>- M 

Note that the soundness property relates to the dynamics of a WF-net. The first require­
ment in Definition 8 states that starting from the initial state (state i), it is always possible 
to reach the state with one token in place 0 (state 0). If we assume fairness (i.e. a transition 
that is enabled infinitely often will fire eventually), then the first requirement implies that 
eventually state 0 will be reached. The fairness assumption is reasonable in the context 
of workflow management; all choices are made (implicitly en explicitly) by applications, 
humans or external actors. Clearly, they should not introduce an infinite loop. The second 
requirement states that the moment a token is put in place 0, all the other places should be 
empty. Sometimes the term proper termination is used to describe the first two require­
ments [14]. The last requirement states that there are no dead transitions (tasks) in the 
initial state i. 

Q) 

register o 

Figure 3: Another WF-net for the processing of complaints. 

Figure 3 shows a WF-net which is not sound. There are several deficiencies. If time....outJ 
and processing..2 fire or timeJJut..2 and processing_l fire, the WF-net will not terminate 
properly because a token gets stuck in c4 or c5. If time....outJ and time....out.2 fire, then the 
task processing.NOK will be executed twice and because of the presence of two tokens in 
o the moment of termination is not clear. 

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In [4] we 
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have shown that soundness corresponds to Iiveness and boundedness. To link soundness 
to liveness and boundedness, we define an extended net PN = (p, T, F). PN is the 
Petri net obtained by adding an extra transition t* which connects 0 and i. The extended 
Petri net PN = (p, T, F) is defined as follows: P = P, T = T U (t*), and F = 
FU ((0, t*), (t*, i)). The extended net allows for the fonnulation ofthe following theorem. 

Theorem 1 A WF-net PN is sound ifand only if(PN, i) is live and bounded. 

Proof, 
See [4] or [2]. o 

This theorem shows that standard Petri-net-based analysis techniques can be used to verify 
soundness. 

5 Structural characterization of soundness 
Theorem 1 gives a useful characterization of the quality of a workflow process definition. 
However, there are a number of problems: 

• For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF­
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng, 
Esparza and Palsberg [8].) 

_ Soundness is a minimal requirement. Readability and maintainability issues are not 
addressed by Theorem 1 . 

• Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does 
not identify constructs which invalidate the soundness property. 

These problems stem from the fact that the definition of soundness relates to the dynamics 
of a WF-net while the workflow designer is concerned with the static structure of the WF­
net. Therefore, it is interesting to investigate structural characterizations of sound WF­
nets. For this purpose we introduce three interesting subclasses of WF-nets: free-choice 
WF-nets, well-structured WF-nets, and S-coverable WF-nets. 

5.1 Free-choice WF-nets 

Most of the WFMS's available at the moment, abstract from states between tasks, i.e., 
states are not represented explicitly. These WFMS's use building blocks such as the AND­
split, AND-join, OR-split and OR-join to specify workflow procedures. The AND-split 
and the AND-join are used for parallel routing. The OR-split and the OR-join are used 
for conditional routing. Because these systems abstract from states, every choice is made 
inside an OR-split building block. If we model an OR-split in tenns of a Petri net, the 
OR-split corresponds to a number of transitions sharing the same set of input places. This 
means that for these WFMS's, a workflow procedure corresponds to a free-choice Petri 
net. 

Definition 9 (Free~choice) A Petri net is a free-choice Petri net iff, for every two transi­
tions tl and t2 •• tl n .t2 "# 0 implies .tl = -t2. 
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It is easy to see that a process definition composed of AND-splits, AND-joins, OR-splits 
and OR-joins is free-choice. If two transitions tl and t2 share an input place (otl not2 "# 0), 
then they are part of an OR-split, i.e., a 'free choice' between a number of alternatives. 
Therefore, the sets of input places of tl and 12 should match (otl = ot2). Figure 3 shows 
a free-choice WF-net. The WF-net shown in Figure 2 is not free-choice; archive and pro­
cess_complaint share an input place but the two corresponding input sets differ. 

We have evaluated many WFMS's and just one of these systems (COSA [18]) allows for 
a construction which is comparable to a non-free choice WF-net. Therefore, it makes sense 
to consider free-choice Petri nets. Clearly, parallelism, sequential routing, conditional rout­
ing and iteration can be modeled without violating the free-choice property. Another rea­
son for restricting WF-nets to free-choice Petri nets is the following. If we allow non-free­
choice Petri nets, then the choice between conflicting tasks may be influenced by the order 
in which the preceding tasks are executed. The routing of a case should be independent of 
the order in which tasks are executed. A situation where the free-choice property is vio­
lated is often a mixture of parallelism and choice. Figure 4 shows such a situation. Firing 
transition tJ introduces parallelism. Although there is no real choice between t2 and t5 
(t5 is not enabled), the parallel execution of t2 and t3 results in a situation where t5 is not 
allowed to occur. However, if the execution of t2 is delayed until t3 has been executed, 
then there is a real choice between t2 and t5. In our opinion parallelism itself should be 
separated from the choice between two or more alternatives. Therefore, we consider the 
non-free-choice construct shown in Figure 4 to be improper. In literature, the tenn confu­
sion is often used to refer to the situation shown in Figure 4. 

Figure 4: A non-free-choice WF-net containing a mixture of parallelism and choice. 

Free-choice Petri nets have been studied extensively (cf. Best [7]. Desel and Esparza [10, 
9,12], Hack [15]) because they seem to be a good compromise between expressive power 
and analyzability. It is a class of Petri nets for which strong theoretical results and efficient 
analysis techniques exist. For example, the well-known Rank Theorem (Desel and Esparza 
[10]) enables us to fonnulate the following corollary. 

Corollary 1 The following problem can be solved in polynomial time. 
Given afree-choice WF-net, to decide ifit is sound. 

Proof. 
Let P N be a free-choice WF-net. The extended net P N is also free-choice. Therefore, 
the problem of deciding whether (PN, i) is live and bounded can be solved in polynomial 
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time (Rank Theorem [10]). By Theorem I, this corresponds to soundness. o 

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide sound­
ness. Moreover, a sound free-choice WF-net is guaranteed to be safe. 

Lemma 1 A sound free-choice WF-net is safe. 

Proof, 
Let P N be a sound free-choice WF-net. P N is the Petri net P N extended with a transition 
connecting 0 and i. PN is free-choice and well-formed. Hence, PN is covered by state­
machines (S-components, cf. [10]), i.e., each place is part of such a state-machine compo­
nent. Clearly, i and 0 are nodes of any state-machine component. Hence, for each place 
p there is a semi-positive invariant with weights 0 or 1 which assigns a positive weight to 
p, i and o. Therefore, PN is safe and so is PN. 0 

Safeness is a desirable property, because it makes no sense to have multiple tokens in a 
place representing a condition. A condition is either true (l token) or false (no tokens). 

Although most WFMS's only allow for free-choice workflows, free-choice WF-nets are 
not a completely satisfactory structural characterization of 'good' workflows. On the one 
hand, there are non-free-choice WF-nets which correspond to sensible workflows (cf. Fig­
ure 2). On the other hand there are sound free-choice WF-nets which make no sense. Nev­
ertheless, the free-choice property is a desirable property. If a workflow can be modeled as 
a free-choice WF-net, one should do so. A workflow specification based on a free-choice 
WF-net can be enacted by most workflow systems. Moreover, a free-choice WF-net allows 
for efficient analysis techniques and is easier to understand. Non-free-choice constructs 
such as the construct shown in Figure 4 are a potential source of anomalous behavior (e.g. 
deadlock) which is difficult to trace. 

5,2 Well-structured WF -nets 

Another approach to obtain a structural characterization of 'good' workftows, is to balance 
AND/OR-splits and AND/OR-joins. Clearly, two parallel flows initiated by an AND-split, 
should not be joined by an OR-join. Two alternative flows created via an OR-split, should 
not be synchronized by an AND-join. As shown in Figure 5, an AND-split should be com­
plemented by an AND-join and an OR-split should be complemented by an OR-join. 

One of !he deficiencies of the WF-net shown in Figure 3 is the fact that the AND-split 
register is complemented by the OR-join c3 or the OR-join o. To formalize the concept 
illustrated in Figure 5 we give the following definition. 

Definition 10 (Well-handled) A Petri net P N is well-handled iff,for any pair of nodes x 
and y such that one of the nodes is a place and the other a transition and for any pair of 
elementary paths C I and C2 leading from x to y, a(CI) n a(C2) = Ix, y) =} CI = C2. 

Note that the WF-net shown in Figure 3 is not well-handled. A Petri net which is well­
handled has a number of nice properties, e.g. strong connectedness and well-formedness 
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-------

0: ~D 
AND-split --- ------ AND-join 

0: - ~)J -
OR-split --- ------ OR-join 

Figure 5: Good and bad constructions. 

coincide_ 

Lemma 2 A strongly connected well-handled Petri net is well-fonned. 

Proof. 
Let PN be a strongly connected well-handled Petri net. Clearly, there are no circuits that 
have PT-handles nor TP-handles ([13]). Therefore, the net is structurally bounded (See 
Theorem 3.1 in [13]) and structurally live (See Theorem 3.2 in [13]). Hence, PN is well­
formed. 0 

Clearly, well-handledness is a desirable property for any WF-net PN. Moreover, we also 
require the extended P N to be well-handled. We impose this additional requirement for 
the following reason. Suppose we want to use PN as a part of a larger WF-net PN'. PN' 
is the original WF-net extended with an 'undo-task', See Figure 6. Transition undo corre­
sponds to the undo-task, transitions t I and t2 have been added to make P N' a WF-net. It 
is undesirable that transition undo violates the well-handIedness property of the original 
net. However, PN' is well-handled iff PN is well-handled. Therefore, we require PN to 
be well-handled, We use the term well-structured to refer to WF-nets whose extension is 
well-handled. 

PN': 

PN o 
" 

Figure 6: The WF-net PN' is well-handled iff PN is well-handled. 

Definition 11 (Well-structured) A WF-net P N is well-structured iff P N is well-handled. 

Well-structured WF-nets have a number of desirable properties. Soundness can be verified 
in polynomial time and a sound well-structured WF-net is safe, To prove these properties 
we use some of the results obtained for elementary extended non-self controlling nets. 
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Definition 12 (Elementary extended non-self controlling) A Petri net P N is elementary 
extended non-self controlling (ENSC) iff. for every pair of transitions tl and t2 such that 
otl n ot2 # 0, there does not exist an elementary path C leading from tl to t2 such that 
otl n a(C) = 0. 

Theorem 2 Let P N be a WF-net. If P N is well-structured, then P N is elementary ex­
tended non-self controlling. 

Proof. 
Assume that P N is not elementary extended non-self controlling. This means that there 
is a pair of transitions tl and tk such that otl n otk # 0 and there exist an elementary path 
C = (tl' P2, t2, ... , p" tk) leading from tl to tk and otl n a(C) = 0. Let PI E otl n otk. 
CI = (PI, tk) and C2 = (PI, tl, P2, t2, ... , p" tk) are paths leading from PI to tk' (Note 
that C2 is the concatenation of (pd and C.) Clearly, CI is elementary. We will also show 
that C2 is elementary. C is elementary, and PI ¢ a (C) because PI E otl. Hence, C2 is also 
elementary. Since CI and C2 are both elementary paths, CI # C2 and a(CI) n a(C2 ) = 
(PI, td, we conclude that PN is not well-handled. 0 

'" 

o 
o 

Figure 7: A well-structured WF-net. 

Consider for example the WF-net shown in Figure 7. The WF-net is well-structured and, 
therefore, also elementary extended non-self controlling. However, the net is not free­
choice. Nevertheless, it is possible to verify soundness for such a WF-net very efficiently. 

Corollary 2 The following problem can be solved in polynomial time. 
Given a well-structured WF-net, to decide if it is sound. 

Proof. 
Let P N be a well-structured WF-ne!. The extended net P N is elementary extended non­
self controlling (Theorem 2) and structurally bounded (see proof of Lemma 2). For bounded 
elementary extended non-self controUing nets the problem of deciding whether a given 
marking is live, can be solved in polynomial time (See [6]). Therefore, the problem of 
deciding whether (PN, i) is live and bounded can be solved in polynomial time. By The­
orem 1, this corresponds to soundness. 0 

Lemma 3 A sound well-structured WF-net is safe. 
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Proof. 
Let PN be the net PN extended with a transition connecting 0 and i. PN is extended 
non-self controlling. PN is covered by state-machines (S-components), see Corollary 5.3 
in [6]. Hence, PN is safe and so is PN (see proof of Lemma I). D 

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases 
soundness can be verified very efficiently and soundness implies safeness. In spite of these 
similarities, there are sound well-structured WF-nets which are not free-choice (Figure 7) 
and there are sound free-choice WF-nets which are not well-structured. In fact, it is pos­
sible to have a sound WF-net which is neither free-choice nor well-structured (Figures 2 
and 4). 

5.3 S-coverable WF-nets 

What about the sound WF-nets shown in Figure 2 and Figure 4? The WF-net shown in Fig­
ure 4 can be transformed into a free-choice well-structured WF-net by separating choice 
and parallelism. The WF-net shown in Figure 2 cannot be transformed into a free-choice or 
well-structured WF-net without yielding a much more complex WF-net. Place c5 acts as 
some kind of milestone which is tested by the task process_complaint. Traditional work­
flow management systems which do not make the state of the case explicit, are not able 
to handle the workflow specified by Figure 2. Only workflow management systems such 
as COSA ([18]) have the capability to enact such a state-based workflow. Nevertheless, it 
is interesting to consider generalizations of free-choice and well-structured WF-nets: S­
coverable WF-nets can be seen as such a generalization. 

Definition 13 (S-coverable) A WF-net P N is S-coverable iff the extended net P N = (P, 
T, F) satisfies the/ollowingproperty. For each place p there is subnet PN, = (P" T" F,) 
such that: pEP" P, <; P, T, <; T, F, <; F, P N, is strongly connected, P N , is a state 
machine (i.e. each transition in PN, has one input and one output place), and/or every 
q E P,andt ET: (q,t) E F=? (q,t) E F,and(t,q) EF=? (t,q) E F,. 

This definition corresponds to the definition given in [10]. A subnet P N, which satis­
fies the requirements stated in Definition 13 is called an S-component. P N, is a strongly 
connected state machine such that for every place q: if q is an input (output) place of a 
transition t in P N, then q is also an input (output) place of t in P N ,. 
The WF-nets shown in Figure 2 and Figure 4 are S-coverable. The WF-net shown in Fig­
ure 3 is not S-coverable. The following two corollaries show that S-coverability is a gen­
eralization of the free-choice property and well-structuredness. 

Corollary 3 A sound/ree-choice WF-net is S-coverable. 

Proof. 
The extended net PN is free-choice and well-formed. Hence, PN is S-coverable (cf. [10]). 
D 

Corollary 4 A sound well-structured WF-net is S-coverable. 
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Proof. 
PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable (cf. Corol­
lary 5.3 in [6]). 0 

All the sound WF-nets presented in this paper are S-coverable. Every S-coverable WF­
net is safe. The only WF-net which is not sound, i.e. the WF-net shown in Figure 3, is not 
S-coverable. These and other examples indicate that there is a high correlation between S­
coverability and soundness. It seems that S-coverability is one of the basic requirements 
any workflow process definition should satisfy. From a formal point of view, it is possible 
to construct WF-nets which are sound but not S-coverable. Typically. these nets contain 
places which do not restrict the firing of a transition, but which are not in any S-component. 
(See for example Figure 65 in [17].) From a practical point of view, these WF-nets are to be 
avoided. WF-nets which are not S-coverable are difficult to interpret because the structural 
and dynamical properties do not match. For example, these nets can be live and bounded 
but not structurally bounded. There is no practical need for using constructs which violate 
the S-coverability property. Therefore, we consider S-coverability to be a basic require­
ment any WF-net should satisfy. 

S-coverability can be verified in polynomial time. Unfortunately, in general it is not pos­
sible to verify soundness of an S-coverable WF-net in polynomial time. The problem of 
deciding soundness for an S-coverable WF-net is PSPACE-complete. For most applica­
tions this is not a real problem. In most cases the number of tasks in one workflow process 
definition is less than 100 and the number of states is less than 200.000. Tools using stan­
dard techniques such as the construction of the coverability graph have no problems in 
coping with these workflow process definitions. 

The three structural characterizations (free-choice, well-structured and S-coverable) turn 
out to be very useful for the analysis of workflow process definitions. S~coverability is a 
desirable property any workflow definition should satisfy. Constructs violating S-cover­
ability can be detected easily and tools can be build to help the designer to construct an 
S-coverable WF-net. S-coverability is a generalization of well-structuredness and the free­
choice property (Corollary 3 and 4). Both well-structuredness and the free-choice prop­
erty also correspond to desirable properties of a workflow. A WF-net satisfying at least one 
one of these two properties can be analyzed very efficiently. However, we have shown that 
there are workflows that are not free-choice and not well-structured. Consider for example 
Figure 2. The fact that taskprocesLcomplainttests whether there is a token in c5, prevents 
the WF-net from being free-choice or well-structured. Although this is a very sensible 
workflow, most workflow management systems do not support such an advanced routing 
construct. Even if one is able to use state-based workflows (e.g. COSA) allowing for con­
structs which violate well-structuredness and the free-choice property, then the structural 
characterizations are still useful. If a WF-net is not free-choice or not well-structured, one 
should locate the source which violates one of these properties and check whether it is 
really necessary to use a non-free-choice or a non-weB-structured construct. If the non­
free-choice or non-well-structured construct is really necessary, then the correctness ofthe 
construct should be double-checked, because it is a potential source of errors. 
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o 

Figure 8: Task refinement: WF-net P N 3 is composed of P N I and P N ,. 

6 Composition of WF -nets 
The WF-nets in this paper are very simple compared to the workflows encountered in prac­
tise. For example, in the Dutch Customs Department there are workflows consisting of 
more than 80 tasks with a very complex interaction structure (cf. [3]). For the designer of 
such a workflow the complexity is overwhelming and communication with end-users using 
one huge diagram is difficult. In most cases hierarchical (de)composition is used to tackle 
this problem. A complex workflow is decomposed into subflows and each of the subflows 
is decomposed into smaller subflows until the desired level of detail is reached. Many 
WFMS's allow for such a hierarchical decomposition. In addition, this mechanism can 
be utilized for the reuse of existing workflows. Consider for example multiple workflows 
sharing a generic subflow. Some WFMS-vendors also supply reference models which cor­
respond to typical workflow processes in insurance, banking, finance, marketing, purchase, 
procurement, logistics and manufacturing. 

Reference models, reuse and the structuring of complex workflows require a hierarchy 
concept. The most common hierarchy concept supported by many WFMS's is task re­
finement, i.e., a task can be refined into a subflow. This concept is illustrated in Figure 8. 
The WF-net PN I contains a task t+ which is refined by another WF-net PN" i.e., t+ is 
no longer a task but a reference to a subflow. A WF-net which represents a subflow should 
satisfy the same requirements as an ordinary WF-net (see Definition 7). The semantics 
of the hierarchy concept are straightforward; simply replace the refined transition by the 
corresponding subne!. Figure 8 shows that the refinement of t + in P N I by P N , yields a 
WF-net PN3. 

The hierarchy concept can be exploited to establish the correctness of a workflow. Given 
a complex hierarchical workflow model, it is possible to verify soundness by analyzing 
each of the subflows separately. The following theorem shows that the soundness property 
defined in this paper allows for modular analysis. 

Theorem 3 (Compositionality) Let PN I = (PI, TI, FI ) and PN, = (P" T" F,) be 
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two WF-nets such that TI nT, = 0, PI n P, = (i, 0) and t+ E h PN 3 = (P3, T3, F3) 
is the WF-net obtained by replacing transition t+ in PN I by PN" i.e., P3 = PI UP" 
T3 = (TI \ {t+)) U T, and 

F3 = {(x,y)EFllx¥<t+ /\ y¥<t+) U {(x,Y)EF,I{x,y)n(i,0)=0) U 

{(x, y) E PI X T, I (x, t+) E FI /\ (i, y) E F2} U 

{(x,Y) E T, x PI I (t+,y) E FI /\ (x, 0) E F2}. 

For P N 1- P N , and P N 3 the following statements hold: 

1. If PN 3 isfree-choice, then PN I and PN2 are free-choice. 

2. If P N 3 is well-structured, then P N I and P N , are well-structured. 

3. If(PN I, i) is safe and PN I and PN, are sound, then PN3 is sound. 

4. (PN I, i) and (PN" i) are safe and sound iff(PN 3, i) is safe and sound. 

5. P N I and P N , are free-choice and sound iff P N 3 is free-choice and sound. 

6. If P N 3 is well-structured and sound, then P N I and P N 2 are well-structured and 
sound. 

7. If .t+ and t+. are both singletons, then PN I and PN, are well-structured and 
sound iff P N 3 is well-structured and sound. 

Proof, 

1. The only transitions that may violate the free-choice property are t+ (in PN I) and 
{t E T, I (i, t) E F,} (in PN ,). Transition t+ has the sarne input set as any of the 
transitions {I E T, I (i, I) E F,) in PN 3 if we only consider the places in P3 n PI. 
Hence, t+ does not violate the free-choice property in PN I. All transitionst in PN 2 

such that (i, I) E F, respect the free-choice property; the input places in P3 \ P, are 
replaced by i. 

2. PN I (PN 2) is well-handled because any elementary path in PN I (PN ,) corresponds 
to a path in PN3 . 

3. Let (PN I, i) be safe and let PN I and PN 2 be sound. We need to prove that (PN 3, i) 
is live and bounded. The subnet in P N 3 which corresponds to 1+ behaves like a 
transition which may postpone the production of tokens for 1+ •. It is essential that 
the input places oft+ in (PN 3, i) are safe. This way it is guaranteed thatthe states of 
the subnet correspond to the states of (PN " i). Hence, the transitions in T3 n T, are 
live (1+ is live) and the places in P, \ PI are bounded. Since the subnet behaves like 
1+, the transitions in T3 n (TI \ {t+)) are live and the places in P3 n PI are bounded. 
Hence, P N 3 is sound. 

4. Let (PN 1> i) and (PN" i) be safe and sound. Clearly, PN 3 is sound (see proof of 
3.). (P N 3, i) is also safe because every reachable state corresponds to a combination 
of a safe state of (P N I, i) and a safe state of (P N 2, i). 
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Let (P N 3, i) be safe and sound. Consider the subnet in P N 3 which corresponds 
to t+ X is the set of transitions in T3 n T2 consuming from .t+ and Y is the set 
of transitions in T3 n T2 producing tokens for t+ •. If a transition in X fires, then it 
should be possible to fire a transition in Y because of the liveness of the original net. 
If a transition in Y fires, the subnet should become empty. If the subnet is not empty 
after firing a transition in Y, then there are two possibilities: (I) it is possible to move 
the subnet to a state such that a transition in Y can fire (without firing transitions in 
T3nT,) or (2) it is not possible to move to such a state. In the first case, the places t+. 
in P N 3 are not safe. In the second case, a token is trapped in the subnet or the subnet 
is not safe the moment a transition in X fires. (PN 2, i) corresponds to the subnet 
bordered by X and Y and is, as we have just shown, sound and safe. It remains 
to prove that (PN" i) is safe and sound. Since the subnet which corresponds to 
t+ behaves like a transition which may postpone the production of tokens, we can 
replace the subnet by t+ without changing dynamic properties such as safeness and 
soundness. 

5. Let P N , and P N 2 be free-choice and sound. Since (P N " i) is safe (see Lemma I), 
PN 3 is sound (see proof on.). Itremains to prove that PN 3 is free-choice. The only 
transitions in P N 3 which may violate the free-choice property are the transitions in 
T3 n T2 consuming tokens from .t+. Because P N 2 is sound, these transitions need 
to have an input set identical to t+ in P N, (if this is not the case at least one of the 
transitions is dead). Since P N 1 is free-choice, P N 3 is also free-choice. 
Let P N 3 be free-choice and sound. P N, and P N 2 are also free-choice (see proof 
of \.). Since (PN 3, i) is safe (see Lemma I), PN, and PN 2 are sound (see proof 
of 4.). 

6. Let P N 3 be well-structured and sound. P N, and P N 2 are also well-structured (see 
proof of 2.). Since (PN 3, i) is safe (see Lemma 3), PN, and PN 2 are sound (see 
proof of 4.). 

7. It remains to prove that if PN, and PN 2 are well-structured, then PN 3 is also well­
structured. Suppose that P N 3 is not well-structured. There are two disjunct elemen­
tary paths leading from x to y in P N 3. Since P N 1 is well-structured, at least one of 
these paths is enabled via the refinement of t+. However, because t+ has precisely 
one input and one output place and P N 2 is also well-structured, this is not possible. 

o 

Theorem 3 is a generalization of Theorem 3 in [19]. It extends the concept of a block with 
multiple entry and exit transitions and gives stronger results for specific subclasses. 

Figure 9 shows a hierarchical WF-net. Both of the subflows (handle-LJuestionnaire and 
processing) and the main flow are safe and sound. Therefore, the overall workflow repre­
sented by the hierarchical WF-net is also safe and sound. Moreover, the free-choice prop­
erty and well-structuredness are also preserved by the hierarchical composition. Theo­
rem 3 is of particular importance for the reuse of subflows. For the analysis of a complex 
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Figure 9: A hierarchical WF-net for the processing of complaints. 

workflow, every safe and sound subflow can be considered to be a single task. This allows 
for an efficient modular analysis of the soundness property. Moreover, the statements em­
bedded in Theorem 3 can help a workflow designer to construct correct workflow process 
definitions. 

7 Woflan 
To allow users of today's workflow management systems to benefit from the results pre­
sented in this paper we have developed Woflan, a tool which analyzes workflow process 
definitions specified in terms of Petri nets, Woflan (WOrkFLow ANalyzer) has been de­
signed to verify process definitions which are downloaded from a workflow management 
system ([5]). Clearly, there is a need for such a verification tool, because today's work­
flow management systems do not support advanced techniques to verify the correctness of 
workflow process definitions. These systems typically restrict themselves to a number of 
(trivial) syntactical checks. Therefore, serious errors such as deadlocks and livelocks may 
remain undetected. This means that an erroneous workflow may go into production, thus 
causing dramatic problems for the organization. An erroneous workflow may lead to extra 
work, legal problems, angry customers, managerial problems, and ill-motivated employ­
ees. Therefore, it is important to verify the correctness of a workflow process definition 
before it becomes operational, 
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At the moment there are two workflow tools which can interface with Woflan: COSA 
(COSASolutions/Software-Ley, Pullheim, Germany) and Protos (Pallas Athena, Plasmolen, 
The Netherlands). COSA (COSA Solutions) is one of the leading products in the Dutch 
workflow market. COSA allows for the modeling and enactment of complex workflow 
processes which use advanced routing constructs. However, COSA does not support veri­
fication. Fortunately, Woflan can analyze any workflow process definition constructed by 
using CONE (COSA Network Editor), the design tool of the COSA system. Woflan can 
also import process definitions made with Protos. Protos (Pallas Athena) is a so-called 
BPR-tool. Protos supports Business Process Reengineering (BPR) efforts and can be used 
to model and analyze business processes. The tool is very easy to use and is based on Petri 
nets. To facilitate the modeling of simple workflows by users not familiar with Petri nets, 
it is possible to abstract from states. However, Protos cannot detect subtle design flaws 
which may result in deadlocks or livelocks. Therefore, it is useful to download workflows 
specified with Protos and analyze them with Woflan. 

Q) 

o 
register 

Figure 10: An alternative WF-net for the processing of complaints. 

If the workflow process definition is not sound, Woflan guides the user in finding and cor­
recting the error. Since a detailed description of the functionality of Woflan is beyond the 
scope of this paper, we will use the example shown in Figure 10 to illustrate the features 
of Woflan. For this particular workflow net, Woflan gives the following diagnostics: 

• Woflan points out the fact that place cIO is not bounded in the net extended with 
transition t' which connects the output place ready with the input place staN. This 
means that it is possible to terminate and leave a token in cIO (Le. a dangling refer­
ence) . 

• The OR-split c3 is complemented by the AND-join archive, Le., there are two dis­
junct paths (one via cIO) leading from place c3 to transition archive. Such a con­
struct may lead to a potential deadlock. In this case it does! 
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• Woflan reports that the workflow net is not covered by state machines (S-components) 
i.e., the net is not S-coverable. In fact, Woflan indicates that c10 is the only place 
not in any S-component. 

• The fact that something is wrong with cia is also highlighted by the fact that place 
cia is not in the support of any of the semi-positive place invariants generated by 
Woflan. 

The above diagnostics clearly show that the optional synchronization of the two parallel 
flows via place cia is the source of the error. Removing cia or replacing cia by the con­
struct shown in Figure 2 solves this problem and results in a sound workflow process def­
inition. For a small workflow with only 8 tasks these results may seem trivial. However, 
workflows encountered in practice may have up to a 100 tasks. Experience shows that for 
workflows with more than 20 tasks it is not easy to locate the source of the error if the 
workflow net is not sound. Therefore, the support offered by Woflan is of the utmost im­
portance for the verification of workflow process definitions. 

To assist the user in repairing the error, Woflan offers an on-line help facility. The on-line 
help is based on a step-wise approach to locate and remove constructs which violate the 
soundness property. This enables users without a background in Petri nets to operate the 
tool and repair an erroneous workflow process definition. 

8 Conclusion 
In this paper we have investigated a basic property that any workflow process definition 
should satisfy: the soundness property. For WF-nets, this property coincides with live­
ness and boundedness. In our quest for a structural characterization of WF-nets satisfying 
the soundness property, we have identified three important subclasses: free-choice, well­
structured, and S-coverable WF-nets. The identification of these subclasses is useful for 
the detection of design errors. 
If a workflow process is specified by a hierarchical WF-net, then modular analysis of the 
soundness property is often possible. A workflow composed of correct subflows can be 
verified without incorporating the specification of each subflow. 
The results presented in this paper give workflow designers a handle to construct correct 
workflows. Although it is possible to use standard Petri-net-based analysis tools, we have 
developed a workflow analyzer which can be used by people not familiar with Petri-net 
theory. This workflow analyzer interfaces with existing workflow products such as COSA 
and Protos. 
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