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The Context-Tree Weighting Method: is to start processing only after a full context is available to both,
Extensions i.e., to start processing with,);1. The encoder then sends the first
contextz;z, - - - #p to the decoder in an uncoded way. This requires
Frans M. J. WillemsMember, IEEE D binary-code digits.
To study coding methods that do not assume availability of the
past symbolst1-p, z2—p,- -, 29 We first consider the case where

Abstract—First we modify the basic (binary) context-tree weighting  the encoder and the decoder do know the tree mSdsflthe source.
method such that the past symbolsc|_p,x0_p, -, xg are not needed

by the encoder and the decoder. Then we describe how to make the
context-tree depth D infinite, which results in optimal redundancy behav- B. Known Model

ior for all tree sources, while the number of records in the context tree T
is not larger than 2T — 1. Here T is the length of the source sequence In the situation where the encoder and the decoder already know

For this extended context-tree weighting algorithm we show that with the tree modelS, the source symbat; can be transmitted in an

probability one the compression ratio is not larger than the source entropy uncoded way, if itsavailable contextz z» - - - 2,—1 does not have a

for source sequence lengti” — oo for stationary and ergodic sources.  suffix! in S. If, on the other hand, the available context of a symbol
Index Terms—Binary stationary and ergodic sources, cumulative re- does have a suffix i¥ we use the Krichevsky—Trofimov estimator [2]

dundancy bounds, modeling procedure, sequential data compression, tree that corresponds to this suffix. This results in the coding distribution
sources, universal source coding.

Pl(«}]8) 2 27250 TT Pe(al (o), ().,
|. INTRODUCTION s€ES

The context-tree weighting method, first presented in [7], appears for all 21 € {0,1}",t =0,1,---, 7. (1)
to be an efficient implementation for weighting (mixing) the coding
distributions (universal over the parameters) corresponding to all tridere o/, («}) denotes the number of zeros that occurredeinat
models in clasgp, i.e., the set of all tree modelswhose maximum instantsr with 7 = 1, ¢ such thats is a suffix ofz]*, andb’, (z!)
depth does not excedd. A tree model is determined by a proper andienotes the number of ones:if at instantsr, = = 1, t, for which
complete se& of suffixes. Together these suffixes form a tree that isis a suffix of 27!, for s € 7. Furthermore, the estimatd?. (-, -)
grown in negative (i.e., time) direction. Each semi-infinite sequencés defined as
- xs—3x¢+—2x¢—1 has a unique suffix irb, i.e., it passes through a
unique leaf in the corresponding model tree. We restrict ourselves here
to binary sources. Then this suffix (leaf) determines the probabilit(jjf(a’
thatx., i.e., the next symbol generated by the (binary) source,lis a fora>0andb>0, etc (2)

The analysis of the context-tree weighting method turns out to
be very straightforward (see [8]). It shows that the performance is by
as good as we can possibly hope, not only asymptotically but also':Or the nL_metLar of unc_oded symb(_nsg(mi), €., tTh:el number of
for finite sequence lengths. Here we will propose two extensions %mbols;vr n o for which the available context; " does not
the basic context-tree weighting method and derive an interesti%Ve a suffix ins, we can write
consequence of these extensions. We will use the notation of [8].
Codewords are assumed to bimary, logarithms have bas2, and As(wy) =t — Z(ﬂé(ffi) + b5 (1)) (3)
information quantities are expressed in bits. s€S
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Note that (1) is asequentially availableoding distribution. Observe

B . gYOD'NG W'THOUT KNOWLEDGE OF that the number of uncoded symbais; (=] ) in the source sequence
AST SYMBOLS Z1-p, T2-p," ", AND o z{" depends on both the suffix s&tand the source sequencé.

We always have that
A. A Simple Adaptation of the Basic Context-Tree Weighting Method

In its basic form (described in [8]), where we assumed that the As(@ly < AT A ax 1(s)
actual tree modef € Cp, the context-tree weighting method needs, - s€S
for processing the symbal,, for ¢t = 1,2,---,T, the context

#'=h = w¢_pwe—py1--- w1 for this symbol. HereD is the depth wherel(s) is the length ofs. The number of uncoded symbols is

of the context tree. This implies that for processinghe encoder and also called the number of missing contexts.
decoder must have accessitopz2—p - - - 29 and forz, they need Let
xa—pxsz—p---x1, €tc. This is an unpleasant fact. The past symbols A
Z1—-p,T2—n, -+, andzg may not be available at all to the encoder () = {
and the decoder. A straightforward way to circumvent this problem

thus~(-) is the “smallest” convexa continuation off log = + 1 for

Manuscript received August 7, 1995; revised September 1, 1997. The< . <1 satisfying +(0) = 0. For the individual (cumulative)
material in this correspondence was presented at the IEEE Internatio

Symposium on Information Theory, Trondheim, Norway, June 27—July E@llj_undancy resulting from this coding distribution for the source
1994. ' ' ' sequencer! with respect to the tree source with modgl and

The author is with the Electrical Engineering Department, Eindhoveparameter vectos, we now obtain for all past source sequences
University of Technology, 5600 MB Eindhoven, The Netherlands.
Publisher Item Identifier S 0018-9448(98)00654-3. 1Also if xyxo - -+ 24—1 € S we say thateyzo - - - 24— has a suffix inS.
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L) (1,0)
12
- [Tt —6.)m6t 1)
Jog L1 111-p.8,0s) _ 0 ses 1116
Pi(2T|S) Q*As(IT)HPC(a(“b;) 1/16
scs (L1
I - 6,)"+ 0% 1/8

seS

< log
s log 9—Ag(x]) HPC((LL,, )
sES § (1’0) (4’3)
_ l (1 _ Hg){léﬁss ) T 1/2 -------------------------- 5/2048
= log Ty TAsE) 12 9/4096
= L bl
T - As(a? .
< |$|w,~<75(“1 )) + As(zi).
]
(5)
The first inequality follows from the fact that, > o/, = a/(27) 12)
andb, > b, = b(af), wherea, = a.(z!|29_)), respectively 1/16
1/16

by = bs(.rﬂ.zf‘{,D), is the number of times that, = 0, respectively

#, =1,inz{ for 1 < < T such thatel_} = s for s € Tp.

The second inequality is obtained as in [8, the Proof of Theorem - .
2, eq. (23)], where the parameter redundancy is bounded. Obsef/&, 1. Context treef; for =i = 0110100.

however, that here

Definition 1: To each nodes € 7» we assign a weighted proba-

Z(a; +0) =T — As(ay). bility which is defined as
o€s pe A [ EPu(ag,b) + LPY PP, for0<I(s)<D ©)
v P.(as,bs), for I(s) = D.

In the case of a known tree model, if the past symbols _ _ S _
x1_p,x2_p,---, and zo are available to the encoder and thel'he corresponding coding distribution is defined as
decoder, the (parameter) redundancy can be upper-bounded (sge ¢\ A zx, | D o t o,

[8, eq. (23)]) by |S|v(T/|S|). Therefore, regarding these upper Plan) 2 Pa(aile”). for allzy € {0.1}, #=0.1, T(7)
bounds, we may conclude that not knowing the past symbols cost . . . o .
at mostAs(«7) bits, if the encoder and the decoder do know th Just like before, we can prove that this coding distribution satisfies

ol . We say that thtaring redundanoys upperbounded 1,2, (O &, aL L s 8 prbabily ditbuton Moreawer 1
by As(zi). Note thatAs(zi) < AT < D since we assume q y up : 9 P g

that S € Cp. Therefore, this method never performs worse tha%omplexny needed to gpdate Fhls dlsFr!butlon Is not larger than linear

. . . .in T. Before we continue with deriving an upper bound on the
the (straightforward) method that was described in the previous . o S .
subsection redundancy of this modified context-tree weighting method, we give

an example.

C. Unknown Model TExampIe 1: Suppose that a binary source generated the sequence
) ) ) a1 = 0110100. For D = 2 we have plotted the context tree
Again suppose that the mod8&l&€ Cp. In this subsection we will 71, in Fig. 1. Nodes contains the countsa_q(,rﬂgn).Bg(:cﬂg’))).

show that, also in the case where the encoder ?nd _the_decodertl,gé) Krichevsky—Trofimov estimate?, (a.. b,). and the weighted
not know the mode§, we loose not more thaAs(x7 ) bits, if they probability P%(«7|sP). Nodes at depthD = 2 are listed only

do not have access to the past symbalsp, r2-n, -+, andzo. IN it their weighted probability?s («] |=”) which is equal to the
other words, the starting redundancy is again not more a1 ).  gricheysky—Trofimov estimaté’. (.. b.) there. The coding proba-
We demonstrate this by modifying the basic context-tree Weightiqﬂity PC(JTLT) _ Pk(w'ﬂ&_D) for the éequencéll()l()() turns out to
method. _ _ _ S be 9/4096.

The startm_g point of this modification is that the encoder and the ngte that for a context path to have nonzero counts it is necessary
decoder assign to all the unknown past symbals i, xp—2.- -, {5 contain no:’s at all, or to have the Structued e, w, - - - w1y for
andxo, the values. The values is theindeterminate symbolalue. ; _ 1, D. In the latter case, the sum of the counts cannot exceed 1.

Because of the alphabet extension we must change the binary conigi,e are onlyD such paths. In the figure, we see a pathleaving
tree’7, into aternarycontext treeZ,,. A node in this tree correspondsha oot node), and a pat.

to a string of symbols from the alphabéi, =,1}. To each nodes

in the ternary context tree, there corresponds a coufit; |<”) that We are now ready to state a theorem that upper-bounds the
denotes the number of zeros that occurfnat instantsr, 1 < 7 < ¢, redundancy of this new weighting method. First we repeat [8,
such thats is a suffix ofgn,r{*l, and a counf,_‘,(mﬂg”) that stands Definition 2]. The costl'p(S) of a modelS with respect to class

for the number of ones im} at instantst,1 < r < t, where Cp is defined as

L . ‘D/,T—1 . Sad . e j

s |_s a suf'fl_x qf& S for aII_ s € T_L;. The definition of_the T'n(S) A S| = 1+ |{s: 5 € S,1(s) # D}| ®)
weighted distribution is now slightly different from the basic one

given in [8]. where it is assumed tha& € Cp.
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Theorem 1: For any tree source with unknown modgl € Cp Combining this with (1), as in [8, eq. (25)], this results in the
and unknown parameter vect®rs, the individual redundancies with following upper bound for the model redundancy:
respect to(S, ©s) are upper-bounded by

ol |28 p. S, ) 106% Th(S). (15)
1
_L(ll) logp (z¥|2 S,05)
= UI 8 Substitution of (11), (15), and the 2 bits for the coding redundancy
T — As(x T i i
<Th(S)+ |8|7< |qs|(rl)> +As!) 42 (9) in (10) finally leads to the theorem. O

. ) Theorem 1 states that also in the case where the past symbols are
for all 21 € {0,1}", for all sequences of past symbal$_,, if we  not available to the encoder and the decoder, the loss of not knowing
use the coding distribution specified in (7). the modelS is bounded byl’;,(S) bits. This is completely identical

Proof: Consider a sequencel € {0,1}". As in [8, Proof of g the basic context-tree weighting result. In both the known and the
Theorem 2], we split the individual redundancy into three terms  ynknown model situation, the loss of not having access to the past

T cAa N TN 1 1 symbolsxi_p, w2 p, -+, andxg, i.e., the starting redundancy, is
platfeip,§,0s) = Ller) — log P.(2T|2% .S, 05) never more thams(={).
JACER) Po(zT]2Y 5. 8.0s) _Although the coptex} tredp is, in principle, ternary, it is pos-
= log XS og Pr(T1S) sible to show that’.(x7 ) is a weighting over coding distributions
e(x1) ) eATLIe P!(27|8) for all binary-tree modelsS € Cp. This is shown in the
<L(tl ) —log —— ) (10) Appendix.
P. (1) Although the coding distribution (6) suggests the use of a ternary

The last term in (10), the coding redundancy term, is upper-bounde@ntext tree, this is not necessary at all. Since only binary contexts

by 2. For the middle term, the parameter plus starting redundangd contexts of the form*zy’~¢ for d = 1, D can actually occur,
term, we use the bound given by (5) it suffices to implement a blnary context tree in which each node
P (7"1T|T? 5.8.08) T As(TT) contain_s a Boolean variable that_ in_di?ates whether or not this node

log ——————"—- < |$|~,r<7~“1) + As(al). has atail. A nodes € 7 has a tail, ifz'*) = s, andi(s) < D. The

Pe(1]S) |51 ( tail corresponds to the missing part of the context. If a nedas a

the product of the weighted probabilities of the childfés and

s of this node should be multiplied by/2.

What remains to be investigated is the first term, the model redl}f’j’”
dancy term. We can lower- bourid(bl1 ) in terms similar to the terms
that form P.(x{|S) in (1), as we shall soon see.

Consider the tree modé& which we know to be contained in the IIl. | NFINITE-DEPTH CONTEXT-TREE WEIGHTING
context tree7,. Leafsof S are nodes in the context treel, for
which s € S andinternal nodess’ of S are nodes ir/;, that are a
suffix of some strings € S,s # s'.

First observe that for nodes€ S we have that

In the previous section, we have dealt with a first unpleasant
property of the basic context-tree weighting method, the fact that
the past symbols were needed by the encoder and the decoder.
A second shortcoming of the basic method is that the ddpth

as (2t |eP) =al(a]), of the context tree7, is assumed to be finite. Only for models
and that fit into this finite-depth context tree, the weighting method
7o D e achieves desirable redundancy bounds. The second result in this
bs(171 |€ ) :bs(ﬁl'r] ). (12) . . .
A correspondence concerns a generalization of the basic context-tree
Next note that fors € 7p weighting method to the situation where the context-tree depth is
%Pg(ag(x'{’),b;(;p{’)), if sis a leaf ofS not bounded. In this case, we can still achigve a storage complgxity
with I(s) # D (number of stored records) which does not increase faster than linear
P.(d,(x]).b.(x])), i sis a leaf ofS in the sequence lengt.
b with I(s) = D The first observation that leads to this result is that after having
Po(ri|e7) 2 é s (TP (), if s is an internal node processed the source sequendg we have seert. semi-infinite
of S. andz'® £ contexts- - - s ---x-—1, One for eachr = 1, ¢ if we assume
POs T\ plsy T oo an infinite-depth context tree. It is important to note that all these
1P (@D)PY(2T),  if s is an internal node aep : p
i(s) contexts differ from each other.
of S, anda; /' = s.

(13) In Fig. 2, we have depicted all these contexts up to the
last s-edge for #% = 110100. We can observe the contexts
Combining these inequalities, starting in the leaves§ @ind working ---= (for z(),---el,---£11,---£110,---£1101, and ---211010
towards the root of the context tree we see that we loose 1 bit in eqfdr xs). Note that as in the previous section we assume that
internal nodes of S and leafs € S not at depthD, which adds up ---z_120 = ---ce. Instead of labeling the edges that connect
to I';»(8S) in total. In addition to this we get an increase of 1 bit irthe nodes with values from the alphabgt, ¢, 1} we label them
internal nodes; of S that occur as a prefix of the source sequenagith the time-index of the symbol in the last context that went
r1. Such a one-bit increase corresponds tmiasing contexbr, in  through this edge. For example, the last context=11010 was
other words, to an uncoded symbol. These additional costs addfapmed by symbols. - - zoziz2232425 and therefore the indices
to As(z]). ---012345 are found along the path representing this last context.
We get as lower bound for the coding probability The context corresponding to symbel was ---<110. Therefore,
fl(w{) _ f’;\,(;vﬂsu) > 5L p($)-As(a]) afterlriiving processed _symbmll, the ed_ges corres_ponding to context
-- 2110 were labeled with - - 0123. While processing the symbaok
. H P.(al(x] ), bi(x1)). (14)  with context=11010, the last two labels on this path were updated
sES again and changed frord3 into 45. Note that a straightforward

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2. Infinite complete context tre@., for i = 110100.

Fig. 3. Infinite context treel~, for &} = 110100 with sets of equivalent nodes.

implementation of the structure that we have just described woulidr =s) and are, therefore, equivalent and can be replaced by one
yield a number of nodes that grows quadraticallyZin record. Again we label this record with the node closest to the root (in
However, a second observation is that ahigue nodes that Fig. 3 this is nodé)) and again this record should contain a pointer
correspond to the same context @guivalentand can be replaced to the most recent edge in the corresponding source segment. This
by a single record (see Fig. 3). A nodeis said to be unique it segment is formed by the edges through which only all contexts in
occurs onlyonceas a context in-- ez 25 - - - ;. FOr example, for the mentioned set pass. In the figure, the segment corresponding to
source sequencél0100 the nodes --,£11010,11010,1010,010, contexts---=110 and---<11010 is formed by the edge$ and 0
are all unique and correspond to the same context=11010). labeled withzs and z5. The most recent edge in the segment is
They all can be replaced by a single record (we call this a leafs. The pointer is thereford. Also the length of the corresponding
record). We can label this record with the node closest to the ra®gment should be stored now (two edgesand s in the figure,
among the equivalent nodes. Furthermore, this record should contidie length is therefore).
a pointer to the position in the source sequence where the segmerih addition to the pointer to the most recent edge (symbol) of the
corresponding to the equivalent nodes occurs. This segment is forncedresponding source segment, the length of that segment, aiad the
by the unique edges in the context. The pointer contains the indaxd b counts, an internal record contains pointers to0isz=-, and
of the most recent (closest to the root) edge in the segment. Thishild records. Two of these pointers are mdh- so an internal
pointer is (may be) needed for later updates. The implication abde has two or three children. Updating the tree with a new context
all this is that also the source sequenge: - - - x; must be stored. always creates a new leaf record. Therefore, after having processed
For example010 was the unique node closest to the root resultinthe entire sequence!, the total number of produced leaf records
from context - - £11010. The corresponding segment with the uniquevill be T while the number of internal records is at m@st 1. This
edges is --c110 = - - - zoa1 z223. The first edge in this segment isresults in a storage complexity.@7" — 1 records) which grows not
z3. The pointer, therefore, should have valieSee Fig. 3. faster tharlinear in the source sequence lendgth Note that also the
The third observation is that also nonunique nodes that share Hsgjuence itself should be stored but this is also linedk. il should
same set of contexts are equivalent and can be replaced by a sibglenentioned here that the described implementation of the context
record (called internal, see Fig. 3). For example, the n6dasd10 tree strongly relates to the DAWG concept proposed by Blumer
both share the context - =110 (for 1) and the context--<11010 et al. [1].
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Apart from maintaining the context-tree structure, the counts Proof: We start this proof with the statement
@, and b, (note that nows € 7..), the estimated probabilies

~ T S T oo —2|8|—-Ag(zT)
P.(ds,bs), and the weighted probabilitieB,, .. should be updated. Proo(a1) = Py oo (a1 [27) > 2F IS1=2s(=1)
In accordance to (6), takin = oc, we can now define the weighted . H P.(al(x]),b,(x])) (20)
distribution and the resulting coding distribution. eS8
Definition 2: To each nodes € 7., we assign a weighted which holds for all tree model§. This inequality is identical to the
probability which is defined as statement (14), however, for the infinite-depth context-tree weighting
LP (i, b) method the cost of a modd is 2|S| — 1 instead ofl' (S). If we
o Lpos _pes  pls . combine this with the arithmetic coding result (see [8, Theorem 1])
Py = 3 Pl Fuloo Pulec. - for nONUNIGUes (16) and use the fact that
L for uniques. ai(at) < as(ef |22 o
The corresponding coding distribution is defined as and
Pty 2 P (a}|c®),  foralls € {01}, t=0.1,--,T. bi(xt) < bo(ai 22 )
17)

First note that equivalent nodes all have the same counts and obtain lower bounds on the codeword length, one for each tree

therefore the same estimated probability. Note also that since med els.
estimated probabilities of the equivalent nodes in a leaf record woulg (,1'y < 10g _

all be equal tal /2, the weighted probability of all these nodes is also P oo (af )

1/2. In an internal record the situation is slightly more complicated. < log 1 F2US| -1+ As(flhr) 19
Although the estimated probabilities are equal for all equivalent - Hpe(ai(flT)abé(%T))

nodes, this does not hold for the weighted probabilities of these ey

nodes. They are, however, easy to calculate and only the weighted 1

probability corresponding to the node closest to the root is actually HP (au(@T |22 ), by (2T ]2 _))

needed (by its parent). For example, for the equivalent nbdesd s ! o

0 in Fig. 3, the weighted probabilities are + 28] =14 As(af ) + 2. (21)

P =1iP. + i) P
For the termsP.(-,-) we now apply the lower bound [8, eq. (10)]

and .
which states (fore + b > 1) that

w, 00

Pl =3P+ 5P = 3P + 1 PUIL P \
1 1 ‘ “ b
respectively. Here P.(a,b) > = 3 < ¢ ) < ) . (22)

. . Va+b\a+bd a+b
Pc:sz(&loqblo):P@(&quO)- ) T 0
S Fora = b = 0 we have thatP.(a,b) = 1. Denotinga,(z; |z2 )
Only P, . is really needed (by the root record labeled by a. andb.(z] [+%..) by b., this leads to the upper bound
The individual redundancy of this infinite-depth context-tree
weighting method is as expected. The only thing that changes g, L < Z <a5 log = b +b,log = 0
the cost of a model which i8|S| — 1 bits for all S now. [P (asb0) "oes.in, o0 s bs
Theorem 2: For any tree source with unknown modél and ses 1
unknown parameter vecto®s, the individual redundancies with + = log(as + bs) + 1)
respect to(S, Os) are upper-bounded by 2
s + by as + by
T, 0 - VA T 1 = <a log 22T 0 +b,log —= b)
x|l .,S,0s) = L(x 1 s log s 108
p(’“l |‘1 o0y © q) (‘Ll) og Pa(TT| 0 sEZS ags bg
1 ,
<2|$|_1+|$|7<T AQ(T1 ) + Z <§10g(as—|—bs)—|—l>
|‘S| s€S:as+bs>0
+ As(at) +2 18 s + bs o+ bs T
s(er) (18) §Z<asloga + +bslog(’ ;_ >+|S|7<?>.
for all 27 € {0,1}7, for all sequences” ., = ---z_xo of past ses s s ISl
symbols, if we use coding distribution (17). (23)
IV. ACHIEVING ENTROPY FOR ARBITRARY Note that by conventiofilog(0) = 0. The last inequality follows
STATIONARY ERGODIC SOURCES from arguments as in [8, eq. (23)]. If we now combine (21) and (23)
Now that we can use the context-tree weighting algorithm fo¥e obtain
arbitrary-depth tree sources and without having access to the past "

as + bs as +b
symbols- - - z_ 2o, We can show that this method achieves entropy L(a1) < Zq <”’S log + bs log b, )
for arbitrary binary stationary and ergodic sources. o€

T . ) T
Theorem 3: For any binary stationary and ergodic source +1Sly <|s|) 2[5 =1+ As(ry) +2. (24)

lim SupL(‘tlT) < H..(X) with probability one (19) Now assume thaf = 0,1,2,--- and letS be determined by!.
t—oo T Ford = 0 let S = {\}, i.e., a (memoryless) tree with only a root
if we use the coding method and distribution (17) presented in thede. Ford = 1,2,---, take S = {0,1}7, i.e., a full @th-order
previous section. Markov) tree with depthd.
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Fix somed: Then forT > |S| = 27, and noting that\s (2] ) < d,
we have that

, s + bs s+ bs
L(stZ(aslog“j +hlog )

s€S

_ T
+2”"1og2—d+3-2"’+d+1. (25)

Note thates andb, are now the number of zeros respectively ones
in 27 that follow contexts € {0,1}%.

Next let
A Lde T
(T, d) 2 gt log 2 +3-2%+d+1. (26) Fig. 4. Binary model{00,10,1} and ternary mode00,0=0, <0, 10,
10,e,1}.
Then, from this definition and (25), we obtain that
L(‘rl) < Z << 71 “g - lLl b ) d — oc of the individual infinite length source sequence. Both
cs T T the empirical normalized block entropy and the empirical conditional
e + be de + be (T, d) _entr(_)py have the_ same limit so the me_thod prese_nted here is opti_mal
“\77 log T T (27) " in this sense. This also holds for the Ziv—Lempel incremental parsing

method (see [10, Theorem 2]).
From the ergodic theorem (see, e.g., Shields [4]), 5'”09 the actuathe storage complexity of the method that we have described in
source is stationary and ergodic, we know foe {0,1} that this manuscript turned out to be not larger than linear in the source

as sequence length. It should be mentioned that the storage complexity

Tlgrio T =Pu(X{ = 5, Xa41 = 0) of the Ziv—Lempel incremental parsing algorithm is smaller, and
and behaves roughly lik&'/log(T). For the computational complexity
lim bs _ Po(X¢ =5, Xy = 1) (28) _the com_pgrison is similar. The Ziv—Lempel method visits a new node
T—oo T in the dictionary tree for each processed source symbol, while for the
with probability one. Moreover, for alf = 0,1,2,--- context-tree weighting method it is necessary to go from the root
o(T, d) of the context tree to a leaf for each processed symbol. Wyner and
lim —Z—=0. (29) Ziv [9] showed thatlog(t) divided by the number of nodes that are
fee visited in the context tree for processimg converges in probability
Therefore, with probability one to H..(X). Stronger results appear in Ornstein and Weiss [3] and
) L(z7) } ) Szpankowski [6].
hinjiPT <H(X1,Xo,++, Xa, Xay1) Although it is possible to extend the context-tree weighting method

to the nonbinary case, we emphasize that here only coding for binary

- H(X1, X5,++, Xa) sources is considered.

= H(Xa1| X1, Xau -+, Xa). (30)
- . . APPENDIX
This bound holds for all = 0,1.2,---. Since WEIGHTING OVER THE BINARY-TREE MODELS
lim H(Xa41]|X1,X2,-++,X4) = Ho(X) We will show here that, although the context trée is in

prlnuple ternary,P.(x1) is a weighting over coding distributions

we may conclude that for all binary stationary and ergodic sourcgs ,7|s) for all binary-tree modelsS € Cp. To see this, first
the codeword lengtth (=1 ) divided by the sequence lengthis, with consider, e.g., a binary-tree mod®l= {00, 10,1} (see Fig. 4). A
probability one, not larger than the entrof.. (X') of the source. ternary-tree model that coexists with this binary models, e.g.,

S = {00,020,£20,120,10,£,1}. A ternary modelS coexists with

V. SOME REMARKS binary modelS if S ¢ S. The costT'»(S) of the ternary model
Coding schemes for the class of stationary sources were proba@§f§? respect to clas§p of ternary models is defined as
first studied by Shtarkov and Babkin [5]. They showed, using a A8 -1
combinatorial approach, that over this class the average codeword In(8) = —5— +{s:s €5.1(s) # D} (31)

length converges to the source entropy.

We have shown here that the extended version of the context-tiégere it is assumed that € Cp. Analogous to the binary case (see
weighting algorithm achieves entropy for all binary stationary ark®, Lemma 2]) we can show thak.(«{) is a weighting over all
ergodic sources in the sense that with probablllty one the compressiernary modelsS. The weight of a ternary mode is 2~ o) we
ratio (i.e., the number of code symbols(x]) divided by the can, therefore, write
sequence length) is not larger than the source entroffy.. (X) for T P& T D ., T D
T — oc. A similar result was proved for the Ziv—Lempel ir(lcr;mental Pe(ar) = Z 27 P HPC(“S(‘“ CRORAC )

parsing procedure (tree algorithm) presented in [10]. S€Cp €5
Moreover, Ziv and Lempel showed that for any finite-state code =3 3 2t
the achievable compression ratio for an individual infinite-length S€Cp §eép s
sequence is lower-bounded by the limit of the empirical normalized A (T ST T
block entropyH (x1, x2, - - - , £4) /d of this sequence fat — oo (see -gmastn) H P(a (1), bs (1))
[10, Theorem 3]). The extended context-tree weighting algorithm i €8 -
achieves a compression ratio which is upper-bounded by the limit = > 27O PplaTs). (32)

of the empirical conditional entropy (zq+1|z1,x2, -+, xq) for S€Cp
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Note that there is only one (underlying) binary modethat ternary
modelS can coexist with. The weights of all ternary modéis C,,
that have underlying mode$ (i.e., modelsS — &) sum up to
2=1'p(8) | Furthermore, observe that

P.(as, I;:.) — 2*38(75?)

since the nodes in this product must accommodate thes (] )
missing contexts. Finally, (1) is used to obtain the last equality.
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The Reed-Muller Code R(r,m) Is
Not Z4-Linear for 3 < r < m —2

Xiang-Dong Hou, Jyrki T. Lahtonerviember, IEEE
and Sami Koponen

Abstract—We show that the Reed—Muller codeR(r.m) is not Zs-
linear for 3 < r < m — 2, proving a conjecture by Hammons, Kumar,
Calderbank, Sloane, and Sd:

Index Terms—General affine group, Z4-linear code, Reed—Muller code.

Equation (32) can be used to give an alternative proof of (15). To

see this note that
P(al) > 270 Pt s,
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