

The context-tree weighting method: extensions

Citation for published version (APA):
Willems, F. M. J. (1998). The context-tree weighting method: extensions. IEEE Transactions on Information
Theory, 44(2), 792-798. https://doi.org/10.1109/18.661523

DOI:
10.1109/18.661523

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://doi.org/10.1109/18.661523
https://doi.org/10.1109/18.661523
https://research.tue.nl/en/publications/1d58939e-ae79-4cca-9a2b-16a022b89215

792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

The Context-Tree Weighting Method:
Extensions

Frans M. J. Willems,Member, IEEE

Abstract—First we modify the basic (binary) context-tree weighting
method such that the past symbolsx1�D; x2�D; � � � ; x0 are not needed
by the encoder and the decoder. Then we describe how to make the
context-tree depthD infinite, which results in optimal redundancy behav-
ior for all tree sources, while the number of records in the context tree
is not larger than 2T � 1: Here T is the length of the source sequence.
For this extended context-tree weighting algorithm we show that with
probability one the compression ratio is not larger than the source entropy
for source sequence lengthT !1 for stationary and ergodic sources.

Index Terms—Binary stationary and ergodic sources, cumulative re-
dundancy bounds, modeling procedure, sequential data compression, tree
sources, universal source coding.

I. INTRODUCTION

The context-tree weighting method, first presented in [7], appears
to be an efficient implementation for weighting (mixing) the coding
distributions (universal over the parameters) corresponding to all tree
models in classCD, i.e., the set of all tree modelsS whose maximum
depth does not exceedD: A tree model is determined by a proper and
complete setS of suffixes. Together these suffixes form a tree that is
grown in negativet (i.e., time) direction. Each semi-infinite sequence
� � � xt�3xt�2xt�1 has a unique suffix inS, i.e., it passes through a
unique leaf in the corresponding model tree. We restrict ourselves here
to binary sources. Then this suffix (leaf) determines the probability
thatxt, i.e., the next symbol generated by the (binary) source, is a1.

The analysis of the context-tree weighting method turns out to
be very straightforward (see [8]). It shows that the performance is
as good as we can possibly hope, not only asymptotically but also
for finite sequence lengths. Here we will propose two extensions to
the basic context-tree weighting method and derive an interesting
consequence of these extensions. We will use the notation of [8].
Codewords are assumed to bebinary, logarithms have base2, and
information quantities are expressed in bits.

II. CODING WITHOUT KNOWLEDGE OF

PAST SYMBOLS x1�D; x2�D; � � � ; AND x0

A. A Simple Adaptation of the Basic Context-Tree Weighting Method

In its basic form (described in [8]), where we assumed that the
actual tree modelS 2 CD, the context-tree weighting method needs,
for processing the symbolxt, for t = 1; 2; � � � ; T; the context
x
t�1

t�D
= xt�Dxt�D+1 � � � xt�1 for this symbol. HereD is the depth

of the context tree. This implies that for processingx1 the encoder and
decoder must have access tox1�Dx2�D � � � x0 and forx2 they need
x2�Dx3�D � � � x1, etc. This is an unpleasant fact. The past symbols
x1�D; x2�D; � � � ; andx0 may not be available at all to the encoder
and the decoder. A straightforward way to circumvent this problem

Manuscript received August 7, 1995; revised September 1, 1997. The
material in this correspondence was presented at the IEEE International
Symposium on Information Theory, Trondheim, Norway, June 27–July 1,
1994.

The author is with the Electrical Engineering Department, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands.

Publisher Item Identifier S 0018-9448(98)00654-3.

is to start processing only after a full context is available to both,
i.e., to start processing withxD+1: The encoder then sends the first
contextx1x2 � � � xD to the decoder in an uncoded way. This requires
D binary-code digits.

To study coding methods that do not assume availability of the
past symbolsx1�D; x2�D; � � � ; x0 we first consider the case where
the encoder and the decoder do know the tree modelS of the source.

B. Known Model

In the situation where the encoder and the decoder already know
the tree modelS, the source symbolxt can be transmitted in an
uncoded way, if itsavailablecontextx1x2 � � � xt�1 does not have a
suffix1 in S: If, on the other hand, the available context of a symbol
does have a suffix inS we use the Krichevsky–Trofimov estimator [2]
that corresponds to this suffix. This results in the coding distribution

P
0
c(x

t

1jS)
�

= 2
�� (x)

s2S

Pe(a
0
s(x

t

1); b
0
s(x

t

1));

for all xt1 2 f0; 1gt; t = 0; 1; � � � ; T: (1)

Here a0s(x
t

1) denotes the number of zeros that occurred inxt1 at
instants� with � = 1; t such thats is a suffix ofx��1

1
, andb0s(x

t

1)

denotes the number of ones inxt1 at instants�; � = 1; t; for which
s is a suffix ofx��1

1
, for s 2 TD: Furthermore, the estimatorPe(�; �)

is defined as

Pe(a; b)
�

=
1

2
� 3
2
� � � � � (a� 1

2
) � 1

2
� 3
2
� � � � � (b� 1

2
)

1 � 2 � � � � � (a+ b)
;

for a> 0 andb> 0; etc: (2)

For the number of uncoded symbols�S(x
t

1), i.e., the number of
symbolsx� in xt1 for which the available contextx��1

1
does not

have a suffix inS, we can write

�S(x
t

1) = t�
s2S

(a
0
s(x

t

1) + b
0
s(x

t

1)): (3)

Note that (1) is asequentially availablecoding distribution. Observe
that the number of uncoded symbols�S(x

T

1) in the source sequence
xT1 depends on both the suffix setS and the source sequencexT1 :
We always have that

�S(x
T

1) � �
max

S

�

= max
s2S

l(s)

where l(s) is the length ofs: The number of uncoded symbols is
also called the number of missing contexts.

Let

(z)
�

=
z; for 0 � z < 1
1

2
log z + 1; for z � 1

(4)

thus
(�) is the “smallest” convex-\ continuation of1
2
log z + 1 for

0 � z < 1 satisfying
(0) = 0: For the individual (cumulative)
redundancy resulting from this coding distribution for the source
sequencexT1 with respect to the tree source with modelS and
parameter vector�S , we now obtain for all past source sequences

1Also if x1x2 � � � xt�1 2 S we say thatx1x2 � � � xt�1 has a suffix inS:

0018–9448/98$10.00 1998 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 793

x01�D

log
Pa(x

T

1 jx
0
1�D;S;�S)

P 0
c(x

T

1 jS)
= log

s2S

(1� �s)
a �bs

2�� (x)

s2S

Pe(a0s; b
0
s)

� log
s2S

(1� �s)
a �

b

s

2�� (x)

s2S

Pe(a0s; b
0
s)

=

s2S

log
(1� �s)

a �
b

s

Pe(a0s; b0s)
+ �S(x

T

1)

� jSj

T ��S(x

T

1)

jSj
+�S(x

T

1):

(5)

The first inequality follows from the fact thatas � a0s = a0s(x
T

1)

and bs � b0s = b0s(x
T

1); where as = as(x
T

1 jx
0
1�D), respectively

bs = bs(x
T

1 jx
0
1�D), is the number of times thatx� = 0, respectively

x� = 1, in xT1 for 1 � � � T such thatx��1
��l(s)

= s for s 2 TD:

The second inequality is obtained as in [8, the Proof of Theorem
2, eq. (23)], where the parameter redundancy is bounded. Observe,
however, that here

s2S

(a
0

s + b
0

s) = T ��S(x
T

1):

In the case of a known tree model, if the past symbols
x1�D; x2�D; � � � ; and x0 are available to the encoder and the
decoder, the (parameter) redundancy can be upper-bounded (see
[8, eq. (23)]) by jSj
(T=jSj): Therefore, regarding these upper
bounds, we may conclude that not knowing the past symbols costs
at most�S(x

T

1) bits, if the encoder and the decoder do know the
model S: We say that thestarting redundancyis upper-bounded
by �S(x

T

1): Note that�S(x
T

1) � �
max
S � D since we assume

that S 2 CD: Therefore, this method never performs worse than
the (straightforward) method that was described in the previous
subsection.

C. Unknown Model

Again suppose that the modelS 2 CD: In this subsection we will
show that, also in the case where the encoder and the decoder do
not know the modelS, we loose not more than�S(x

T

1) bits, if they
do not have access to the past symbolsx1�D; x2�D; � � � ; andx0: In
other words, the starting redundancy is again not more than�S(x

T

1):

We demonstrate this by modifying the basic context-tree weighting
method.

The starting point of this modification is that the encoder and the
decoder assign to all the unknown past symbolsxD�1; xD�2; � � � ;

andx0; the value": The value" is the indeterminate symbolvalue.
Because of the alphabet extension we must change the binary context
treeTD into aternarycontext tree~TD : A node in this tree corresponds
to a string of symbols from the alphabetf0; "; 1g: To each nodes
in the ternary context tree, there corresponds a count~as(x

t

1j"
D
) that

denotes the number of zeros that occur inxt1 at instants�; 1 � � � t;

such thats is a suffix of"Dx��11 , and a count~bs(xt1j"
D
) that stands

for the number of ones inxt1 at instants�; 1 � � � t, where
s is a suffix of "Dx��11 , for all s 2 ~TD: The definition of the
weighted distribution is now slightly different from the basic one
given in [8].

Fig. 1. Context tree~T2 for x
T
1 = 0110100:

Definition 1: To each nodes 2 ~TD we assign a weighted proba-
bility which is defined as

~P
s

w

�
=

1

2
Pe(~as;~bs) +

1

2
~P 0s
w

~P "s

w
~P 1s
w ; for 0 � l(s)<D

Pe(~as;~bs); for l(s) = D:
(6)

The corresponding coding distribution is defined as

~Pc(x
t

1)
�
= ~P

�

w(x
t

1j"
D
); for all xt1 2 f0; 1gt; t = 0; 1; � � � ; T:

(7)
Just like before, we can prove that this coding distribution satisfies

[8, eq. (6)], i.e., that it is a probability distribution. Moreover it
is sequentially updatable. And again the computational and storage
complexity needed to update this distribution is not larger than linear
in T: Before we continue with deriving an upper bound on the
redundancy of this modified context-tree weighting method, we give
an example.

Example 1: Suppose that a binary source generated the sequence
xT1 = 0110100: For D = 2 we have plotted the context tree
~TD in Fig. 1. Nodes contains the counts(~as(xT1 j"

D
);~bs(x

T

1 j"
D
));

the Krichevsky–Trofimov estimatePe(~as;~bs); and the weighted
probability ~P s

w(x
T

1 j"
D
): Nodes at depthD = 2 are listed only

with their weighted probability~P s

w(x
T

1 j"
D
) which is equal to the

Krichevsky–Trofimov estimatePe(~as;~bs) there. The coding proba-
bility ~Pc(x

T

1) =
~P �

w(x
T

1 j"
D
) for the sequence0110100 turns out to

be 9=4096.
Note that for a context path to have nonzero counts it is necessary

to contain no"’s at all, or to have the structure"dx1x2 � � � xD�d for
d = 1; D: In the latter case, the sum of the counts cannot exceed 1.
There are onlyD such paths. In the figure, we see a path"" (leaving
the root node), and a path"0:

We are now ready to state a theorem that upper-bounds the
redundancy of this new weighting method. First we repeat [8,
Definition 2]. The cost�D(S) of a modelS with respect to class
CD is defined as

�D(S)
�
= jSj � 1 + jfs: s 2 S; l(s) 6= Dgj (8)

where it is assumed thatS 2 CD:

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

794 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Theorem 1: For any tree source with unknown modelS 2 CD
and unknown parameter vector�S , the individual redundancies with
respect to(S;�S) are upper-bounded by

�(x
T

1 jx
0
1�D;S; �S)

�
= L(x

T

1)� log
1

Pa(xT1 jx
0
1�D;S;�S)

<�D(S) + jSj

T ��S(x

T

1)

jSj
+�S(x

T

1) + 2 (9)

for all xT1 2 f0; 1gT , for all sequences of past symbolsx01�D, if we
use the coding distribution specified in (7).

Proof: Consider a sequencexT1 2 f0; 1gT : As in [8, Proof of
Theorem 2], we split the individual redundancy into three terms

�(x
T

1 jx
0
1�D;S;�S) = L(x

T

1)� log
1

Pa(xT1 jx
0
1�D;S;�S)

= log
P 0
c(x

T

1 jS)
~Pc(xT1)

+ log
Pa(x

T

1 jx
0
1�D;S;�S)

P 0
c(x

T

1 jS)

+ L(x
T

1)� log
1

~Pc(xT1)
: (10)

The last term in (10), the coding redundancy term, is upper-bounded
by 2. For the middle term, the parameter plus starting redundancy
term, we use the bound given by (5)

log
Pa(x

T

1 jx
0
1�D;S;�S)

P 0
c(x

T

1 jS)
� jSj

T ��S(x
T

1)

jSj
+�S(x

T

1):

(11)
What remains to be investigated is the first term, the model redun-
dancy term. We can lower-bound~Pc(xT1) in terms similar to the terms
that formP 0

c(x
T

1 jS) in (1), as we shall soon see.
Consider the tree modelS which we know to be contained in the

context treeTD: Leafsof S are nodess in the context tree~TD for
which s 2 S and internal nodess0 of S are nodes in~TD that are a
suffix of some strings 2 S; s 6= s0:

First observe that for nodess 2 S we have that

~as(x
T

1 j"
D
) = a

0

s(x
T

1);

and
~bs(x

T

1 j"
D
) = b

0

s(x
T

1): (12)

Next note that fors 2 ~TD

~P
s

w(x
T

1 j"
D
)�

1
2
Pe(a

0
s(x

T

1); b
0
s(x

T

1)); if s is a leaf ofS
with l(s) 6= D

Pe(a
0
s(x

T

1); b
0
s(x

T

1)); if s is a leaf ofS
with l(s) = D

1
2
~P 0s
w (xT1) ~P

1s
w (xT1); if s is an internal node

of S; andxl(s)1 6= s
1
4
~P 0s
w (xT1) ~P

1s
w (xT1); if s is an internal node

of S; andxl(s)1 = s:

(13)

Combining these inequalities, starting in the leaves ofS and working
towards the root of the context tree we see that we loose 1 bit in each
internal nodes of S and leafs 2 S not at depthD, which adds up
to �D(S) in total. In addition to this we get an increase of 1 bit in
internal nodess of S that occur as a prefix of the source sequence
xT1 : Such a one-bit increase corresponds to amissing contextor, in
other words, to an uncoded symbol. These additional costs add up
to �S(x

T

1):

We get as lower bound for the coding probability

~Pc(x
T

1) = ~P
�

w(x
T

1 j"
D
) � 2

�� (S)�� (x)

�
s2S

Pe(a
0

s(x
T

1); b
0

s(x
T

1)): (14)

Combining this with (1), as in [8, eq. (25)], this results in the
following upper bound for the model redundancy:

log
P 0
c(x

T

1 jS)
~Pc(xT1)

� �D(S): (15)

Substitution of (11), (15), and the 2 bits for the coding redundancy
in (10) finally leads to the theorem.

Theorem 1 states that also in the case where the past symbols are
not available to the encoder and the decoder, the loss of not knowing
the modelS is bounded by�D(S) bits. This is completely identical
to the basic context-tree weighting result. In both the known and the
unknown model situation, the loss of not having access to the past
symbolsx1�D; x2�D; � � � ; and x0; i.e., the starting redundancy, is
never more than�S(x

T

1):

Although the context tree~TD is, in principle, ternary, it is pos-
sible to show that~Pc(xT1) is a weighting over coding distributions
P 0
c(x

T

1 jS) for all binary-tree modelsS 2 CD: This is shown in the
Appendix.

Although the coding distribution (6) suggests the use of a ternary
context tree, this is not necessary at all. Since only binary contexts
and contexts of the form"dxD�d1 for d = 1; D can actually occur,
it suffices to implement a binary context tree in which each node
contains a Boolean variable that indicates whether or not this node
has atail. A nodes 2 TD has a tail, ifxl(s)1 = s, andl(s)<D: The
tail corresponds to the missing part of the context. If a nodes has a
tail, the product of the weighted probabilities of the children0’s and
1’s of this node should be multiplied by1=2.

III. I NFINITE-DEPTH CONTEXT-TREE WEIGHTING

In the previous section, we have dealt with a first unpleasant
property of the basic context-tree weighting method, the fact that
the past symbols were needed by the encoder and the decoder.
A second shortcoming of the basic method is that the depthD

of the context treeTD is assumed to be finite. Only for models
that fit into this finite-depth context tree, the weighting method
achieves desirable redundancy bounds. The second result in this
correspondence concerns a generalization of the basic context-tree
weighting method to the situation where the context-tree depth is
not bounded. In this case, we can still achieve a storage complexity
(number of stored records) which does not increase faster than linear
in the sequence lengthT:

The first observation that leads to this result is that after having
processed the source sequencext1, we have seent semi-infinite
contexts� � � ""x1x2 � � � x��1, one for each� = 1; t if we assume
an infinite-depth context tree. It is important to note that all these
contexts differ from each other.

In Fig. 2, we have depicted all these contexts up to the
last "-edge for xt1 = 110100: We can observe the contexts
� � � " (for x1); � � � "1; � � � "11; � � � "110; � � � "1101; and � � � "11010

(for x6): Note that as in the previous section we assume that
� � � x�1x0 = � � � "": Instead of labeling the edges that connect
the nodes with values from the alphabetf0; "; 1g we label them
with the time-index of the symbol in the last context that went
through this edge. For example, the last context� � � "11010 was
formed by symbols� � � x0x1x2x3x4x5 and therefore the indices
� � � 012345 are found along the path representing this last context.
The context corresponding to symbolx4 was � � � "110: Therefore,
after having processed symbolx4, the edges corresponding to context
� � � "110 were labeled with� � � 0123: While processing the symbolx6
with context"11010, the last two labels on this path were updated
again and changed from23 into 45. Note that a straightforward

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 795

Fig. 2. Infinite complete context tree~T1 for x
t
1
= 110100:

Fig. 3. Infinite context tree~T1 for x
t
1
= 110100 with sets of equivalent nodes.

implementation of the structure that we have just described would
yield a number of nodes that grows quadratically inT:

However, a second observation is that allunique nodes that
correspond to the same context areequivalentand can be replaced
by a single record (see Fig. 3). A nodes is said to be unique ifs
occurs onlyonceas a context in� � � ""x1x2 � � � xt: For example, for
source sequence110100 the nodes� � � ; "11010;11010;1010;010;
are all unique and correspond to the same context(� � � "11010):

They all can be replaced by a single record (we call this a leaf-
record). We can label this record with the node closest to the root
among the equivalent nodes. Furthermore, this record should contain
a pointer to the position in the source sequence where the segment
corresponding to the equivalent nodes occurs. This segment is formed
by the unique edges in the context. The pointer contains the index
of the most recent (closest to the root) edge in the segment. This
pointer is (may be) needed for later updates. The implication of
all this is that also the source sequencex1x2 � � � xt must be stored.
For example,010 was the unique node closest to the root resulting
from context� � � "11010: The corresponding segment with the unique
edges is� � � "110 = � � � x0x1x2x3: The first edge in this segment is
x3: The pointer, therefore, should have value3. See Fig. 3.

The third observation is that also nonunique nodes that share the
same set of contexts are equivalent and can be replaced by a single
record (called internal, see Fig. 3). For example, the nodes0 and10
both share the context� � � "110 (for x4) and the context� � � "11010

(for x6) and are, therefore, equivalent and can be replaced by one
record. Again we label this record with the node closest to the root (in
Fig. 3 this is node0) and again this record should contain a pointer
to the most recent edge in the corresponding source segment. This
segment is formed by the edges through which only all contexts in
the mentioned set pass. In the figure, the segment corresponding to
contexts� � � "110 and � � � "11010 is formed by the edges1 and 0

labeled withx4 and x5: The most recent edge in the segment is
x5: The pointer is therefore5. Also the length of the corresponding
segment should be stored now (two edges,x4 andx5 in the figure,
the length is therefore2).

In addition to the pointer to the most recent edge (symbol) of the
corresponding source segment, the length of that segment, and the~a

and~b counts, an internal record contains pointers to its0-, "-, and
1-child records. Two of these pointers are non-nil so an internal
node has two or three children. Updating the tree with a new context
always creates a new leaf record. Therefore, after having processed
the entire sequencexT1 , the total number of produced leaf records
will be T while the number of internal records is at mostT �1: This
results in a storage complexity (<2T � 1 records) which grows not
faster thanlinear in the source sequence lengthT: Note that also the
sequence itself should be stored but this is also linear inT: It should
be mentioned here that the described implementation of the context
tree strongly relates to the DAWG concept proposed by Blumer
et al. [1].

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

796 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Apart from maintaining the context-tree structure, the counts
~as and ~bs (note that nows 2 ~T1), the estimated probabilies
Pe(~as;~bs), and the weighted probabilities~Pw;1 should be updated.
In accordance to (6), takingD =1, we can now define the weighted
distribution and the resulting coding distribution.

Definition 2: To each nodes 2 ~T1, we assign a weighted
probability which is defined as

~P
s

w;1

�
=

1

2
Pe(~as;~bs)

+ 1

2
~P 0s
w;1

~P "s
w;1

~P 1s
w;1; for nonuniques

1

2
; for uniques:

(16)

The corresponding coding distribution is defined as

~Pc(x
t

1)
�
= ~P

�

w;1(x
t

1j"
1
); for all st1 2 f0; 1gt; t = 0; 1; � � � ; T:

(17)
First note that equivalent nodes all have the same counts and

therefore the same estimated probability. Note also that since the
estimated probabilities of the equivalent nodes in a leaf record would
all be equal to1=2, the weighted probability of all these nodes is also
1=2. In an internal record the situation is slightly more complicated.
Although the estimated probabilities are equal for all equivalent
nodes, this does not hold for the weighted probabilities of these
nodes. They are, however, easy to calculate and only the weighted
probability corresponding to the node closest to the root is actually
needed (by its parent). For example, for the equivalent nodes10 and
0 in Fig. 3, the weighted probabilities are

~P
10
w;1 = 1

2
Pe +

1

2
~P
010
w;1

~P
110
w;1

and
~P
0
w;1 = 1

2
Pe +

1

2
~P
10
w;1 = 3

4
Pe +

1

4
~P
010
w;1

~P
110
w;1

respectively. Here

Pe = Pe(~a10;~b10) = Pe(~a0;~b0):

Only ~P 0
w;1 is really needed (by the root record labeled�).

The individual redundancy of this infinite-depth context-tree
weighting method is as expected. The only thing that changes is
the cost of a model which is2jSj � 1 bits for all S now.

Theorem 2: For any tree source with unknown modelS and
unknown parameter vector�S , the individual redundancies with
respect to(S;�S) are upper-bounded by

�(x
T

1 jx
0
�1;S;�S)

�
= L(x

T

1)� log
1

Pa(xT1 jx
0
�1;S;�S)

< 2jSj � 1 + jSj

T ��S(x

T
1)

jSj

+�S(x
T

1) + 2 (18)

for all xT1 2 f0; 1gT , for all sequencesx0�1 = � � � x�1x0 of past
symbols, if we use coding distribution (17).

IV. A CHIEVING ENTROPY FOR ARBITRARY

STATIONARY ERGODIC SOURCES

Now that we can use the context-tree weighting algorithm for
arbitrary-depth tree sources and without having access to the past
symbols� � � x�1x0, we can show that this method achieves entropy
for arbitrary binary stationary and ergodic sources.

Theorem 3: For any binary stationary and ergodic source

lim sup
t!1

L(xT1)

T
� H1(X) with probability one (19)

if we use the coding method and distribution (17) presented in the
previous section.

Proof: We start this proof with the statement

~Pc;1(x
T

1) = ~P
�

w;1(x
T

1 j"
1
) � 2

1�2jSj�� (x)

�
s2S

Pe(a
0
s(x

T

1); b
0
s(x

T

1)) (20)

which holds for all tree modelsS: This inequality is identical to the
statement (14), however, for the infinite-depth context-tree weighting
method the cost of a modelS is 2jSj � 1 instead of�D(S): If we
combine this with the arithmetic coding result (see [8, Theorem 1])
and use the fact that

a
0
s(x

T

1) � as(x
T

1 jx
0
�1)

and

b
0
s(x

T

1) � bs(x
T

1 jx
0
�1)

we obtain lower bounds on the codeword length, one for each tree
model S.

L(x
T

1) � log
1

~Pc;1(xT1)
+ 2

� log
1

s2S

Pe(a0s(x
T
1); b

0
s(x

T
1))

+ 2jSj � 1 +�S(x
T

1) + 2

� log
1

s2S

Pe(as(xT1 jx
0
�1); bs(xT1 jx

0
�1))

+ 2jSj � 1 +�S(x
T

1) + 2: (21)

For the termsPe(�; �) we now apply the lower bound [8, eq. (10)]
which states (fora + b � 1) that

Pe(a; b) �
1

2
�

1
p
a+ b

a

a+ b

a
b

a+ b

b

: (22)

For a = b = 0 we have thatPe(a; b) = 1: Denotingas(xT1 jx
0
�1)

by as andbs(xT1 jx
0
�1) by bs, this leads to the upper bound

log
1

s2S

Pe(as; bs)
�
s2S:a +b >0

as log
as + bs

as
+ bs log

as + bs

bs

+
1

2
log(as + bs) + 1

=

s2S

as log
as + bs

as
+ bs log

as + bs

bs

+

s2S:a +b >0

1

2
log(as + bs) + 1

�
s2S

as log
as + bs

as
+ bs log

as + bs

bs
+ jSj

T

jSj
:

(23)

Note that by convention0 log(0) = 0: The last inequality follows
from arguments as in [8, eq. (23)]. If we now combine (21) and (23)
we obtain

L(x
T

1) �
s2S

as log
as + bs

as
+ bs log

as + bs

bs

+ jSj

T

jSj
+ 2jSj � 1 + �S(x

T

1) + 2: (24)

Now assume thatd = 0; 1; 2; � � � and letS be determined byd:
For d = 0 let S = f�g, i.e., a (memoryless) tree with only a root
node. Ford = 1; 2; � � � ; take S = f0; 1gd, i.e., a full (dth-order
Markov) tree with depthd:

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 797

Fix somed: Then forT � jSj = 2d, and noting that�S(x
T

1) � d,
we have that

L(x
T

1) �
s2S

as log
as + bs

as
+ bs log

as + bs

bs

+ 2
d�1

log
T

2d
+ 3 � 2d + d+ 1: (25)

Note thatas and bs are now the number of zeros respectively ones
in xT1 that follow contexts 2 f0; 1gd:

Next let

c(T; d)
�
= 2

d�1
log

T

2d
+ 3 � 2d + d+ 1: (26)

Then, from this definition and (25), we obtain that

L(xT1)

T
�

s2S

�
as

T
log

as

T
�

bs

T
log

bs

T

� �
as + bs

T
log

as + bs

T
+

c(T; d)

T
: (27)

From the ergodic theorem (see, e.g., Shields [4]), since the actual
source is stationary and ergodic, we know fors 2 f0; 1gd that

lim
T!1

as

T
=Pa(X

d

1 = s;Xd+1 = 0)

and

lim
T!1

bs

T
=Pa(X

d

1 = s;Xd+1 = 1) (28)

with probability one. Moreover, for alld = 0; 1; 2; � � �

lim
T!1

c(T; d)

T
= 0: (29)

Therefore, with probability one

lim sup
T!1

L(xT1)

T
�H(X1;X2; � � � ; Xd; Xd+1)

�H(X1;X2; � � � ; Xd)

=H(Xd+1jX1; X2; � � � ; Xd): (30)

This bound holds for alld = 0; 1; 2; � � � : Since

lim
d!1

H(Xd+1jX1; X2; � � � ; Xd) = H1(X)

we may conclude that for all binary stationary and ergodic sources
the codeword lengthL(xT1) divided by the sequence lengthT is, with
probability one, not larger than the entropyH1(X) of the source.

V. SOME REMARKS

Coding schemes for the class of stationary sources were probably
first studied by Shtarkov and Babkin [5]. They showed, using a
combinatorial approach, that over this class the average codeword
length converges to the source entropy.

We have shown here that the extended version of the context-tree
weighting algorithm achieves entropy for all binary stationary and
ergodic sources in the sense that with probability one the compression
ratio (i.e., the number of code symbolsL(xT1) divided by the
sequence lengthT) is not larger than the source entropyH1(X) for
T !1: A similar result was proved for the Ziv–Lempel incremental
parsing procedure (tree algorithm) presented in [10].

Moreover, Ziv and Lempel showed that for any finite-state code
the achievable compression ratio for an individual infinite-length
sequence is lower-bounded by the limit of the empirical normalized
block entropyH(x1; x2; � � � ; xd)=d of this sequence ford!1 (see
[10, Theorem 3]). The extended context-tree weighting algorithm
achieves a compression ratio which is upper-bounded by the limit
of the empirical conditional entropyH(xd+1jx1; x2; � � � ; xd) for

Fig. 4. Binary modelf00; 10;1g and ternary modelf00;0"0; ""0; 1"0;

10; "; 1g:

d ! 1 of the individual infinite length source sequence. Both
the empirical normalized block entropy and the empirical conditional
entropy have the same limit so the method presented here is optimal
in this sense. This also holds for the Ziv–Lempel incremental parsing
method (see [10, Theorem 2]).

The storage complexity of the method that we have described in
this manuscript turned out to be not larger than linear in the source
sequence lengthT: It should be mentioned that the storage complexity
of the Ziv–Lempel incremental parsing algorithm is smaller, and
behaves roughly likeT= log(T): For the computational complexity
the comparison is similar. The Ziv–Lempel method visits a new node
in the dictionary tree for each processed source symbol, while for the
context-tree weighting method it is necessary to go from the root
of the context tree to a leaf for each processed symbol. Wyner and
Ziv [9] showed thatlog(t) divided by the number of nodes that are
visited in the context tree for processingxt converges in probability
to H1(X): Stronger results appear in Ornstein and Weiss [3] and
Szpankowski [6].

Although it is possible to extend the context-tree weighting method
to the nonbinary case, we emphasize that here only coding for binary
sources is considered.

APPENDIX

WEIGHTING OVER THE BINARY-TREE MODELS

We will show here that, although the context tree~TD is in
principle ternary, ~Pc(xT1) is a weighting over coding distributions
P 0c(x

T

1 jS) for all binary-tree modelsS 2 CD: To see this, first
consider, e.g., a binary-tree modelS = f00; 10; 1g (see Fig. 4). A
ternary-tree model that coexists with this binary modelS is, e.g.,
~S = f00;0"0; ""0; 1"0; 10; "; 1g: A ternary model ~S coexists with
binary modelS if S � ~S: The cost~�D(~S) of the ternary model~S
with respect to class~CD of ternary models is defined as

~�D(~S)
�
=
j ~Sj � 1

2
+ jfs: s 2 ~S; l(s) 6= Dgj (31)

where it is assumed that~S 2 ~CD: Analogous to the binary case (see
[8, Lemma 2]) we can show that~Pc(xT1) is a weighting over all
ternary models~S: The weight of a ternary model~S is 2�

~� (~S): We
can, therefore, write

~Pc(x
T

1) =

~S2 ~C

2
�~� (~S)

s2 ~S

Pe(~as(x
T

1 j"
D
);~bs(x

T

1 j"
D
))

=

S2C ~S2 ~C

2
�~� (~S)

� 2�� (x)

s2S

Pe(a
0
s(x

T

1); b
0
s(x

T

1))

=

S2C

2
�� (S)

P
0
c(x

T

1 jS): (32)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Note that there is only one (underlying) binary modelS that ternary
model ~S can coexist with. The weights of all ternary models~S 2 ~CD
that have underlying modelS (i.e., models ~S ! S) sum up to
2�� (S): Furthermore, observe that

s2 ~
S^ s62S

Pe(~as;~bs) = 2
�� (x)

since the nodess in this product must accommodate the�S(x
T

1)

missing contexts. Finally, (1) is used to obtain the last equality.
Equation (32) can be used to give an alternative proof of (15). To

see this note that

~Pc(x
T

1) � 2
�� (S)

P
0

c(x
T

1 jS):

ACKNOWLEDGMENT

The author wishes to thank Associate Editor M. Feder and a
reviewer for the comments which led to improvements of the present
correspondence.

REFERENCES

[1] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConell,
“Linear size finite automata for the set of all subwords of a text: An
outline of results,”Bull. Eur. Assoc. Theoret. Comput. Sci., vol. 21, pp.
12–20, 1983.

[2] R. E. Krichevsky and V. K. Trofimov, “The performance of universal
encoding,”IEEE Trans. Inform. Theory, vol. IT-27, pp. 199–207, Mar.
1981.

[3] D. S. Ornstein and B. Weiss, “Entropy and data compression schemes,”
IEEE Trans. Inform. Theory, vol. 39, pp. 78–83, Jan. 1993.

[4] P. C. Shields, “The ergodic and entropy theorems revisited,”IEEE Trans.
Inform. Theory, vol. IT-33, pp. 263–266, Mar. 1987.

[5] Y. M. Shtarkov and V. F. Babkin, “Combinatorial method of universal
coding for discrete stationary sources,” inProc. 2nd Int. Symp. Informa-
tion Theory(Tsahkadsor, Armenian S.S.R., 1971). Budapest, Hungary:
Publishing House of the Hungarian Acad. Sci., 1973, pp. 249–256.

[6] W. Szpankowski, “Asymptotic properties of data compression and suffix
trees,”IEEE Trans. Inform. Theory, vol. 39, pp. 1647–1659, Sept. 1993.

[7] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “Context tree
weighting: A sequential universal source coding procedure for FSMX
sources,” inProc. IEEE Int. Symp. Information Theory(San Antonio,
TX, Jan. 17–22, 1993), p. 59.

[8] , “Context tree weighting: Basic properties,”IEEE Trans. Inform.
Theory, vol. 41, pp. 653–664, May 1995.

[9] A. D. Wyner and J. Ziv, “Some asymptotic properties of the entropy of
a stationary ergodic data source with applications to data compression,”
IEEE Trans. Inform. Theory, vol. 35, pp. 1250–1258, Nov. 1989.

[10] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,”IEEE Trans. Inform. Theory, vol. IT-24, pp.
530–536, Sept. 1978.

The Reed–Muller Code Is
Not -Linear for

Xiang-Dong Hou, Jyrki T. Lahtonen,Member, IEEE,
and Sami Koponen

Abstract—We show that the Reed–Muller codeR(r;m) is not 4-
linear for 3 � r � m � 2, proving a conjecture by Hammons, Kumar,
Calderbank, Sloane, and Sol´e.

Index Terms—General affine group, 4-linear code, Reed–Muller code.

I. INTRODUCTION

In the pioneering work [1], Hammons, Kumar, Calderbank, Sloane
and Soĺe introduced the concept of4-linearity of binary codes.
A binary code of even length is called4-linear if it is, up to a
permutation of the coordinates, the image of a linear code over4

under the Gray map. The significant discovery of [1] is that several
well-known families of nonlinear binary codes are actually4-linear.
A question raised there was about the4-linearity of the Reed–Muller
codeR(r;m): The authors of [1] proved thatR(r;m) is 4-linear for
r = 0; 1; 2;m� 1; or m; but not 4-linear for r = m� 2 (m � 5):
Their conjecture was thatR(r;m) is not 4-linear for3 � r � m�2:
In this correspondence, we will prove the conjecture.

The multiplication by�1 in a linear code over 4 induces a fixed-
point-free involutory automorphism of its binary image. Such an
automophism interchanges the two halves of the codewords in the
binary code. A key step in proving4-nonlinearity is to classify the
fixed-point-free involutory automorphisms of the binary code. Indeed,
the proof of the 4-nonlinearity of the Golay code in [1] was based on
the classification of the conjugacy classes of the Mathieu groupM24:

II. BACKGROUND AND NOTATION

The Gray map�: 4 ! GF(2)2 is defined by

0 7! (0; 0)
1 7! (0; 1)
2 7! (1; 1)
3 7! (1; 0)

(2.1)

and the Gray map�: n

4 ! GF(2)2n is defined coordinate-wise
using (2.1). A binary codeC of even length2n is called 4-linear
if, up to a permutation of coordinates,C = �(C) for some subgroup
C of n

4 : The following criterion was established in [1].

Theorem 1: A binary linear codeC of even length is 4-linear if
and only if there is a fixed-point-free involution� 2 Aut (C) such
that

(u+ �(u)) � (v + �(v)) 2 C; for all u; v 2 C (2.2)

where� is the coordinate-wise product (bitwiseAND) of vectors.
The ambient space of the Reed–Muller codes is the algebraPm

of all Boolean functions on GF(2)m: Every f 2 Pm is uniquely
expressed as a polynomial function inX1; � � � ; Xm with coefficients

Manuscript received May 17, 1996; revised March 28, 1997.
X.-D. Hou is with the Department of Mathematics and Statistics, Wright

State University, Dayton, OH 45435 USA.
J. T. Lahtonen and S. Koponen are with the Department of Mathematics,

University of Turku, FIN-20014 Turku, Finland.
Publisher Item Identifier S 0018-9448(98)00844-X.

0018–9448/98$10.00 1998 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 13,2010 at 11:41:37 UTC from IEEE Xplore. Restrictions apply.

