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Abstract 

Using a rolling horizon planning framework in inventory control leads to nervousness in the planning system caused 
by instability of order release decisions in successive planning cycles. For a single-stage inventory system with arbitrary 
stochastic demand it is shown analytically, how planning stability is affected by policy parameters if (s, nQ), (s, S), and 
(T,S) control rules are applied. It turns out that the reorder point s does not influence stability whereas the lot size 
determining parameters Q, S - s, and T can have a considerable impact. However, this influence turns out to be quite 
different for different measures of stability regarding order setup or order quantity deviations, respectively. Using these 
planning stability results the priority of the different control rules under the aspect of nervousness is discussed. (~) 1997 
Elsevier Sciencc B.V. 

Ke)~'ords: Nervousness; Planning stability; Rolling horizon planning; Inventory control rules 

1. The nervousness problem in inventory management  

Inventory management in a stochastic environment is usually based on simple control rules like reorder- 
level policies of  the (s, nQ)- and (s, S)-type or like periodic order-up-to (T, S)-policies. These basic policies 
are simply to apply in practice in order to control inventory and replenishment processes in an uncertain 
environment. They are also widely investigated in inventory theory, especially considering the performance of  
their specific structure and dealing with the problem of  optimal determination of  their parameters. 

In this context the performance of  control rules is traditionally evaluated with respect to the costs they cause 
and, in case of  avoiding estimation of  shortage costs, with regard to the service degree they provide. Besides 
these two traditional pertormance measures in practice a third criterion can be of  high importance. This is the 
level of  planning stability that can be achieved in a rolling horizon planning framework. 

The application of  rolling horizons in inventory management is often found when inventory control rules are 
integrated in production planning where safety stocks and lot-sizing techniques are used to create a medium- 
term sequence of  production and ordering decisions for a certain number of  planning periods. This is done at 
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the end-item level in master production scheduling (MPS level) as well as for all parts in a manufacturing 
system when a material requirements planning approach (MRP System) is used. In practice such planning is 
performed in a deterministic way replacing all stochastic inputs by appropriate quasi-deterministic forecasts. 
This means that the inventory control rules are also used with forecasted data as inputs. In an MRP context this 
procedure leads to what is called fixed order quantity (FOQ) planning or period order quantity (POQ) planning, 
respectively. Employing these planning rules can easily be shown to be identical to using inventory policies with 
fixed or variable lot sizes in a multi-period deterministic environment (cf. Lagodimos and Anderson, 1993). 

Neglecting uncertainties facilitates multi-period planning, especially for a multi-level production system, but 
it evidently enforces the need for some kind of planning flexibility. This is necessary to allow for reacting on 
incoming information about the past (i.e. realizations of stochastic parameters) and the future (i.e. updated 
forecasts) in the dynamic planning process. The standard procedure of doing this is by periodically revising the 
actual plan while rolling forward the planning horizon. Now, in a stochastic environment this way of planning 
leads to continuous replanning activities due to the permanent integration of new information. These replanning 
operations are regularly connected with discontinuities in maintaining former ordering decisions known as the 
nervousness syndrome (see Vollmann et al., 1988). Nervousness or, in other words, lack of planning stability 
can turn out to be a significant problem because it often generates a considerable amount of  short-run and 
medium-term adjustment efforts as well as a general loss of confidence in planning. Especially, in a multistage 
production environment ruled by an MRP system, nervousness on the top level (MPS-Ievel) is propagating 
throughout the system. Due to MRP time-phasing even future planning instability enforces present replanning 
actions. In many cases these consequences cannot be valued in terms of cost or lost profits, since relevant 
replanning expenses depend on time-varying availability of planning capacity, which can hardly be valued with 
respect to its contribution to a company's earnings. The same holds for the impairment of performance that 
short-term production control is facing due to quickly altering production decisions. Additionally, the loss of 
goodwill towards the planning system or the planning department generating a negative contribution to the 
behavior of people engaged in developing and executing production plans can never be expressed in money. 

So it seems reasonable to treat planning stability as an independent attribute for assessing an inventory 
control system, similar to the attribute of costumer service which cannot be replaced by cost or protit values in 
most practical situations. For this reason we will not integrate the aspect of nervousness into pure cost-based 
inventory models like for instance in Kropp and Carlson (1984) and Krupp et al. (1983). Instead, we will treat 
planning stability as a specific criterion and investigate how it is affected by different inventory control rules. 
We note here that planning stability can be measured easily in practice as follows from the discussion below. 

In order to evaluate these impacts, we have to define the phenomenon of planning stability more precisely 
(see Sridharan and LaForge, 1989; 1990). Undoubtedly, we face the most serious changes in the planning 
process when the actual order releases deviate from the planned orders that were determined in the previous 
planning cycle. Stability with respect to this dimension will be denoted by short-term planning stability. On 
the other hand, long-term stability considers the amount of planned order deviations in all periods of two 
consecutive planning cycles, including all prospective orders within the planning horizon. A further dimension 
of stability concerns the aspect of pure qualitative or quantitative changes of order decisions. A qualitative 
rcplanning action occurs if a planned production setup is canceled in a new planning cycle or if, vice versa, a 
new setup is planned. We denote stability with respect to this effect by setup-oriented stability. If  deviations in 
the order quantities of successive planning cycles are of relevance for the performance of a planning system, 
we describe the respective criterion by quantity-oriented stability. 

A general comparison of different control rules with respect to the dimensions of planning stability mentioned 
above is only possible if we use appropriate numerical stability measures. Unfortunately, up to now only little 
work has been done in developing and defining generally applicable measures of  nervousness. In a wide set 
of simulation studies, which investigate the impact of different planning parameters on system nervousness, 
especially in MRP systems (cf. Blackburn et al., 1987; Minifie and Davis, 1990; Sridharan and Berry 1990; Yano 
and Carlson, 1987), only ad-hoc measures of nervousness are used. A systematic discussion and development 
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of stability measures is only found in Sridharan et al. (1988), Kadipasaoglu and Sridharan (1996), and in 
a more general way in Inderfurth (1994) and Jensen (1993; 1996). For assessing control rules in this study 
we use the measurement concept proposed in Jensen (1996) where nervousness is measured by the ratio of 
expected (quantity or setup) deviations of orders over the expectation of maximum deviations that can occur 
under worst case inventory control. 

The simulation studies mentioned above don't give a precise and systematic insight into the dependence 
of nervousness on inventory control rules. In Jensen (1993; 1996) we lind a comprehensive investigation of 
reorder-point control rules which, yet, is limited in its informative value because it doesn't provide an analytical 
description of the interrelationship between control rules and planning stability. Analytical results of this type 
are presented in Inderfurth (1994) where, with respect to short-run stability performance, closed-form formulas 
are derived for the dependence of a setup-stability measure on the parameters of an (s, nQ ) and (s, S) inventory 
policy for uniform and exponential demand per period distributions. In our paper this analysis is extended to the 
quantity-stability situation, additionally incorporating more general demand distributions and also considering a 
reorder-cycle control rule. 

The paper is organized as follows. In Section 2 the basic concept of a stationary investigation of nervousness 
is presented based upon a steady-state analysis of inventory control rules under a rolling horizon scheme. 
Section 3 contains analytical results of setup stability for all basic control rules, while Section 4 is dedicated to 
the analysis of quantity stability. Finally, in Section 5 some conclusions are drawn. 

2. Steady-state analysis of planning stability 

2.1. Inventory control problem 

We restrict our analysis to a rolling horizon planning situation where a stationary inventory control rule 
for a single item is employed in a periodic review system. Every period we face a stochastic iid demand D with 
cdf Fo (.) The replenishment leadtime is without loss of generality assumed to be zero, unsatisfied demand is 
backlogged. In each planning cycle reorder decisions have to be made for an infinite planning horizon using 
demand forecasts/~t for period t which are assumed to be chosen equal to the demand expectation E[D] = b 
yielding constant forecasts for each period. Thus in each cycle an infinite sequence of planned orders is created 
which only differs from cycle to cycle if the initial inventory varies. 

Denoting planned order sizes for a period t by Qt and planned (starting) inventories by ~t the development 
of the planning process consisting of two arbitrary consecutive planning cycles can be visualized like in Fig. 2.1 
(cf. Sridharan and Berry, 1990). 

In Fig. 2.1 the actual decision for the first period of each cycle is merely symbolized by Q0 and Ql indicating 
that this order will indeed be released whereas the others are still prospective. Considering short-term stability 
only a deviation between the planned and executed order for period 1 (Q1 and Ql) in both cycles does matter. 
From the replanning logic it can be realized that a deviation between Ql and Q1 only can occur if the actual 
stock Zl differs from its expectation ~l. This will happen when the initial demand Do as realization of the 
random variable D deviates from the demand forecast D. 

2.2. Measures of planning stability 

Due to stationarity of both the demand D and the applied control rule 7-¢, in steady-state the starting inventory 
Z0 is a stationary random variable with a cdfthat depends on 7-~ and Fo(.). The same holds for the inventory 
after replenishment X0 = Zo + Q0 which has a steady-state cdf denoted by Fx(.). Note that Q0 may be zero. 
Thus, for any replenishment policy also the order decisions are stochastic variables which can be written as 
follows: 
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cycle (0)  I 

Do 

Q0 Q! (.~2 " ' "  order sizes Qt 
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re',.flized demand in t = 0 

cycle ( 1 ) 

QI 02 03 "'" adjusted lot sizes 
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DI /32 /33 demand fi~recasts 

• Zl 2]2 23 updated stocks 

Fig. 2.1. Rolling horizon order size planning. 

01 =~1(7"¢,X0), QI =qI(TZ, Xo, Do). (1)  

So it is evident that the order deviations under consideration are random variables for which expectations 
can be formulated according to the respective stability measure. Formalizing planning stabili ty as described in 
Section 1, setup stability is measured by 

E [ ] 8 ( a l )  - 8 ( Q l ) [ I  
7rs = 1 - , (2)  

max. , ,% E[  J s ( a l )  - 8 ( Q I ) [ ]  

with E [ . ]  denoting the expected value and 8 ( Q )  = I for Q > 0, 8 ( Q )  = 0 for Q = 0. 
Quantity stability, on the other hand, is formulated by 

E[IQI  - Q,I]  
'n'q = 1 - . (3)  

maxTz,Fo El  IOl - 01[] 

From relating a specific order deviation to its worst-case performance it is evident that both stabili ty measures 
are normalized to values between zero and one. Thus each decision rule ~ with any set of  parameters can be 
incorporated into a meaningful stability comparison when using these measures. The interpretation of  measure 
7r is evident: 7r = 1 means that a decision rule generates complete planning stability while ~- = 0 is equal to 
the situation o f  complete  (i.e. maximum) nervousness. 

The metrics for measuring stability as proposed in (2)  and (3)  are restricted to planned order deviations only 
referring to the most imminent period in each planning cycle, thus describing the above mentioned short-term 
stability. This is done for two reasons. 

First, order changes in the first period are generally the most awkward ones, because they leave minimal 
t ime for reaction. This idea is also reflected by Kadipasaoglu and Sridharan (1996) who incorporate order 
deviations occurring in all successive planning periods in their respective metric, but value these changes with 
declining weights. So our measure can be considered as a l imiting case where the whole weight lies on the first 
period. In a multi-level production setting one can also follow this line by constructing an overall nervousness 
measure which comprises the respective first per iod 's  order deviations of  all items at each level of  the production 
structure. This procedure can be considered to be an alternative to taking into account planned order deviations 
of  all per iods at the end-i tem level in order to include the effect of  MPS-nervousness on replanning activities 
at lower levels when an MRP system is applied. 
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The second reason for restricting considerations to short-term stability is the fact that our focus is on gaining 
analytical insight into the planning stability of production-inventory systems. This does not seem to be possible 
if a long-term stability measure including multiple period's order deviations is employed. However, as done by 
Jensen (1993; 1996), simulation can be used to investigate the impact of control rules on system nervousness 
under these circumstances. 

A necessary condition for applying the stability measures defined in (2) and (3) is the determination of 
worst-case stability. For setup stability it is clear that maximum nervousness occurs under conditions where the 
first period's setup always differs from its previous expectation. This means that 

max E[ I6 (QI )  - 6(01)1] = 1, 

which along with (2) results in 

7rs = 1 - E[ [6(Ql) - 6 ( 0 1 ) l ] -  (4) 

In other words, setup stability 7"rs can be described as the steady-state probability that 6 ( Q l )  will not deviate 
from the planned setup decision 6(01) ,  

7rs = P{~(QI )  = 6(01)  }. (5) 

Determining the maximum quantity order deviation in (3) is a far more difficult problem, because there doesn't 
exist a natural upper limit for the quantity deviation of orders. It may be argued that in the long run the amount 
/9 has to be ordered per period allowing the deviations IQ1 - 011 in two consecutive cycle comparisons to be: 
12t9 - 0l + ]0 - 2/9] = 4/9. Thus on the average a quantity deviation of 2/9 could be observed. This amount 
indeed can analytically be shown to be the maximum order deviation in the steady-state for a wide range of 
order rules and demand distributions. Nevertheless, as will be shown in a forthcoming paper, there exist extreme 
cases where the 2/9-limit can be exceeded. 

As the 2/9-boundary is not violated for any parameter constellation of the basic control rules and demand 
distributions that are considered in this paper, we use this limit as maximum absolute order deviation in (3). 
So we get a quanti ty  stabili ty measure as follows: 

1 
% = 1 - -~-~E[IQ1 - 01[]- (6) 

With (5) and (6) the analysis of basic inventory control rules, with respect to the level of nervousness they may 
generate, concentrates on determining P { 6 ( Q 1 )  = 8(01)}  and E[ [QI - Q l  []. The value of these expressions 
will depend on the type of control rule under consideration, on the values of the control rule parameters, and 
on the demand distribution. Now, irrespective of the stochastic of demand some general results can be obtained. 

2.3. General  results f o r  ( s, nQ) -po l i cy  

Specifying inventory control rule ~ in (1) by an (s, nQ)-policy results in a planned order 0 as follows 
(omitting index "0" for notational simplicity): 

{k. Q, for X - / 9  < s, 
01 = 0, f o r X - D / > s ,  (7) 

with 

~= [s-X+b] -~ =k(s,Q,X). 
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In the same way the actually executed first period's order is formulated as 

k.Q, for X -  D < s, 
QI = 0, forX-D>~s,  

with 

k= [ s -  X + D] 

From (7) and (8) we immediately find 

I, for X - / )  < s, 
~ ( 0 1  ) = 0, for X - / )  ~> s, 

and 

(8) 

(9) 

1, for X -  D < s, 
8(QI)  = 0, f o r X - D ) s .  (10) 

Thus, from the definition of setup stability in (5), we get a stability measure 

s-: D s+Q 

rrs= / [ l - F l ) ( x - s ) ] d F x ( x ) +  f Fo(x-s)dFx(x),  (11) 

S $:./) 

where the cdf 's of  demand (Fo( . )  as given) and stock after replenishment (Fx(.) to be determined) are used. 
By transformation of variables the ors-expression in ( 11 ) can be transformed to 

Q Q-D 

7rs= . /  [1-Fo(Q-y)]dF~,(y)+ f Fo(Q-y)  dF~,(y), (12) 

Q-D 0 

if we replace X by Y = s 4- Q - X. Here Y represents the difference between maximum and actual stock at the 
beginning of a steady-state period. Since for an (s, nQ)-policy X is restricted to s ~< X ~ s + Q, tbr Y holds: 
0~<Y~<Q. 

Now, from inventory theory (cf. Hadley and Whitin, 1963, pp. 245-248) we know that cdf F~,(.) does not 
depend on reorder point s. Thus, from (12) it follows that the setup stability for an (s, nQ) control rule only 
depends on the lotsize parameter Q. 

It can be shown that the same is true for quantity stability. For evaluating (6),  we have to determine 
E[IQI- 01[]. From (7) and (8),  we find 

E[[QI -Oil] = E [Ik(s,Q,X,D) -k(s,Q,X)l .Q], (13) 
D,X 

Using the transformed variable Y, we can write (13) as 

E[IQI - ~)11] = E [[k(Q,Y,D) - gz(Q,Y)I' Q] ,  (14) 
D,Y 

with 

k(Q,Y,D)= I Y - Q + D  1 and ~(Q,y)= [ Y - Q 4 - b ]  
• , Q " 

With this result, we see that also quantity stability as defined in (3) does not depend on the value of the reorder 
point of an (s, nQ)-policy. 
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2.4. General results for  (s, S) and (T, S)-policy 

From the definition of an (s ,S)  inventory control rule ~ ,  we find the order sizes in (1 

and 

S - X + / 3 ,  for X - / 5  < s, 
01 = 0, f o r X - / )  >~s, 

to be 

15) 

S -  X + D, for X -  D < s, 16) 
QI = O, for X -  D ~ s. 

Obviously, 8(01 ) and 6(Ql ) still are expressed by formulas (9) and (10). 
If we define the difference between reorder level S and reorder point s to be the mimmum lotsize Q i.e. 

Q = S - s) setup stability for the ( s ,S )  rule can again be expressed by (4) or (5). 
As for (s, nQ) control it can be proved that the stability measures do not depend on the reorder level s. 

Using Y= S - X ,  we can rewrite (15) and (16) as follows: 

Ol = (Y+ff))l{y+l~>Q}, QI = ( Y +  D)I{y+D>Q}, 

and thus 

P{t~(Q1) = 8 (Qi )}  = P{l{r+fg>a} = l{r+D>a}}, 

E[IQI - 0111 = E [ l ( Y + b ) l { v + b > a }  -- (Y+D)I{r+O>Q}I] ,  

which only depend on Q and not on s. 
A (T, S)-policy which is characterized by a fixed reorder cycle of length T and a reorder level S is simple to 

analyze because in the first period of the cycle it is identical to an (s, S)-policy with S = s. For the other T - 1 
periods of  the replenishment cycle we have by definition: Q1 = Ql = 0. Thus, both setup and quantity stability 
will not depend on the order-up-to-level S while, in general, cycle length T will affect the planning stability. A 
special result turns out for setup stability if no zero demand can occur with positive probability. In this case it 
is evident that in each cycle one setup followed by T -  1 non-setups is planned as well as executed resulting 
in a 100% setup stability. 

Summarizing, we can conclude that for reorder point policies the size of  reorder point s does not influence 
the level of  planning stability neither in the setup nor in the quantity direction. The reorder point only has an 
impact on the level of the inventory process but not on the deviations between planned and executed orders. 
Different from that it has been shown that lotsizing may have an impact on the magnitude of nervousness that 
is faced when a reorder point policy is employed. This influence will be analyzed in detail in the next sections. 

3. Setup stabi l i ty  for s imple  inventory control  rules 

In this section we develop analytical expressions for the setup stability for the (s, nQ)-policy, (s, S)-policy 
and (T, S)-policy. The details of the analysis can be found in the appendices. In this section we restrict to the 
main results and a numerical comparison of setup stability for different demand distributions under different 
control rules. In the analysis we start from the general expressions for set-up stability as given in Section 2. In 
these expressions the probability distribution of Y plays a central role. We substitute the exact distribution of Y 
under the classical inventory control rules, which yields exact expressions for set-up stability. Further elaboration 
of these expressions enables the derivation of simpler exact expressions and practically useful approximations. 
In the sequel we assume that the demand per period is continuously distributed. The analysis for discrete 
demand distributions is quite similar. 
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3.1. ( s, nQ) -policy 

For the (s, nQ)-policy we have that the pdf of Y is given by (cf. Hadley and Whitin, 1963, p. 257) 

- Y  for 0~<y ~< Q. P{Y <~ y } -  Q, 

Our starting point is Eq. (12). 
We distinguish between the cases Q > b and Q ~< D. 

(17) 

(i) Q <<, E). Substitution of (17) into (12) yields 

a 

'I "n ' s=~  ( l--Fo(Q--y))dy. 
0 

Hence it follows that 

Q 

'I ¢r~s'nQ) = ! - ~ Fo(y)  dy. 

0 

(18) 

(19) 

(ii) Q > D. Substitution of (17) into (12) yields 

Q-D Q , /  1/ 
7"rs=~ Fo(Q - y) dy + ~ . ( l - - F D ( Q - - y ) ) d y .  

0 Q-D 

This finally yields straightforwardly 

a Q 

Q Q Fo(y) d y +  Fo(y)  dy. 

o 15 

(20) 

Concluding, we find for (s, nQ)-policies 

Q 

77.~s,nQ)" -- 0 Q 

° ': 
-~ FD(y) dy + -~ Fo(y) dy, 

o D 

for Q <~/5, 

for Q > /9 .  

(21) 

Note that  7"1"~ s'nQ) is a continuous function of Q. Furthermore note that q.g~s,nQ) can be computed exactly for 
most tractable distributions. 
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3.2. (s, S)-poli©' 

For the (s, S)-policy we have that the pdf of Y is given by 

M(y)  O<~y<~Q, 
P{Y  <<" Y} - M ( Q ) '  

where the renewal function M(.)  is defined as 

M(y)  = ~ F~*(y). 
n=0 

(22) 

(23) 

Again we distinguish between the case of Q ~< O and Q > / ) ,  where Q = S - s. 

(i) Q <~ if). 
applying (22), we find 

7rs=P{Y + D > Q}=  I - P{Y  + D <<, Q} 
Q 

1 fFo(Q - y) dM(y) .  - 1  M(Q)  
0 

Since FD * M(y )  = M(y)  - 1, we find 

1 
7r s = 1 - - ( M ( Q )  - 1). 

M(Q)  

Thus it follows that 

1 .R-~ s,S) = 
M ( Q )  

For the case of Q ~< D, we have that P{QI > 0} = 1. Substitution of this result into (12) and 

(24) 

(25) 

(ii) Q >/5 .  For the case of Q > D, we find from substitution of (22) into (12), 

Q - D  Q - y  

1 / / d F o ( z ) d M ( y )  7rs- M(Q)  
0 0 

a fyo 

+ M(Q-~ 
Q-I )  Q - y  

Q 

+ M(O-------~ ( 1 - FD (Q - y) ) dM(y) .  

Q-D 

Q-D 

_ 1 / FD(Q - y) dM(y)  
M(Q)  . 

0 

This expression can be rewritten as 

Q-D 

~r'~s's)- l ~ {  f F o ( Q - y )  d M ( y ) } .  (26) 

0 

Both (25) and (26) are intractable in general, since tractable exact expressions for M(y)  do not exist, except 
for special cases. In the appendix we give an exact expression for M(y)  in case the demand is distributed 
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according to a so-called K2-distribution. De Kok (1985) shows that the exact expression for M ( y )  in this case 
is given by 

Y M ( y )  = l + ~ + y ( 1 -  e - & ) ,  
/ : t ~ ]  

y ) 0, (27) 

for some constants y and /3. The rhs of  (27) is proposed as a practically useful approximation for arbitrary 
renewal functions, when y and /3 are determined appropriately. In Appendix A expressions for Y and /3 are 
given. Summarizing,  we have 

{1 i M ( Q )  

1 -  M ( Q -  L)) + 2 

O-[  

o 

for Q ~</3, 

for Q > / ) .  
(28) 

In general rr~ s's) has a discontinuity at Q = /3 .  

3.3. (T, S)-policy 

As mentioned in Section 2.4 for the case of  a (T, S)-policy it is easy to see that 

~ s ) =  1. (29) 

3.4. Comparison of  control rules 

It follows from (21) ,  (28) and (29) ,  that 

~.~T.S) = 1 >~ "n'~ s'"Q) , ~.~T,S) ~> rr~s,s). 

It is not clear which relation exists between 7r~ s'nQ) and rr~ s's) with identical Q = S - s. To obtain insight into 
this relation we have numerically compared rr~ s'nQ) and rr~ s's) for different values of  Q and co, which is the 
coefficient of  variation of  D, i.e. cD = c r ( D ) / D .  We have chosen /3 = 1. 

We assumed Fo( . )  to be a mixture of  two Erlang distributions (cf. Tijms, 1986, pp. 397-400) .  Figs. 3.1-3.4 
show the results of  this comparison. For c~ = 0.1 and 0.25 (Figs. 3.1, 3.2) we have compared the exact 
expression for qT~ s'nQ), the approximation for rr~ s's) based on (27) and the "exact" value of  ~.~s.S) derived from 
discrete event simulation. For c 2 >/ 0.5 (Figs. 3.3, 3.4), we compare the exact expressions for ~.~s,nQ) and 
rr~ ' 's).  Furthermore note that the approximation for rr~ s's) is only valid for Q large ( Q / >  4/3, say).  Another 
interesting observation is that 7r~ ' 's) shows local minima for Q = kD, k E N, when c 2 < 0.5. This can be 
explained by the fact that the inventory position has a probability mass at S and D is close to b with high 
probability when c~ small. As Q gets close to kD it may happen that either k periods or k + 1 periods occur 
between two orders of  Q. This effect is apparently only visible for k = 1,2,3.  If  c2o /> 0.5 this effect has 
disappeared due to the high variations in D. 

The following conclusions can be drawn. For Q < / 3  we have rr~ s'nO) /> rr~ s's), while for Q -~ 2D and larger 
Q-values we have rr~ s's) >~ rr~ ''"Q). In most practical situations the latter holds true, so that an (s,  S)-policy 
should be preferred over an (s, nQ)-policy.  On the other hand, under JIT conditions (i.e. Q <~ D ) ,  we find that 
an (s,  nQ)-pol icy  is advantageous with respect to the amount of  planning stability it generates. 

In Figs. 3.5, 3.6 we show the impact of  demand variability on set-up stability. It is evident that the stability 
measure significantly deteriorates with increasing demand uncertainty. 
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4. Quantity stability for simple inventory control rules 

In Section 2 we introduced rrq as a measure for quantity stability. As in Section 3 we derive analytical 
expressions tbr rrq under (s, nQ)- ,  (s, S)-  and (T, S)-policies. We provide tractable exact expressions for K2- 
distributions for the case of ( s, S) -policies and arbitrary demand distributions for the case of (s, nQ)-  and 
(T, S)-policies. Tractable approximations are provided for arbitrary demand distributions under an (s, S)-policy. 

4.1. ( s, nQ) -policy 

As in Section 3.1 we distinguish between the cases Q ~< b and Q > D: 

(i) Q <~ /3. 
expressions for QI and 21: 

21 = { kQQ' f o r 0 ~ < Y ~ < ( 1 - w ) Q ,  
( k Q + I ) Q ,  f o r ( 1 - w ) Q < Y < ~ Q ,  

Ql = { 0 ,  f o r Y < ~ Q - D ,  
kQ, for kQ - D < Y <~ ( k + l )Q - D, k >~ l. 

The integer function kQ is defined by 

D = k Q Q + w Q ,  0 ~ < w <  1. 

From (14),  we find 

E[IQI - 21l] = E kQl{kQ<y+D<~(k+l)Q} -- kQQ - QI{(I_w)Q<y<~Q } . 
t., k=l  

In Appendix B we show that after intricate algebra we find 

t o  

211] = 2 / ( 1  - F o ( y ) )  dy. E[ IO, 
* l  

which is independent of Q! 

From elaborating expression (1) in Section 2 for the case of Q ~< [), we find the following 

(30) 

(31) 

(32) 

(33) 

(ii) Q >/3 .  

Q I = {  0, 
kQ, 

For the case Q > / 3  we have the following expressions for 21 and Ql: 

for Y~< Q - b ,  
f o r Q - D < Y < ~ Q ,  

for Y <~ Q -  D, 
f o r k Q - D  <~ Y< ( k +  I ) Q - D ,  k/> 1. 

Note that we assumed that rcplenishment orders are triggered if the inventory position is below s. 
From (14) we derive the following expression for E[ IQl - 21l]: 

E[[QI - 2 I l l  = E  kQl{kQ<~r+o<(k+l)Q} -- QI{Q_b<r<Q} . 
'-' k=-I 

After cumbersome algebra, of which the major steps can be found in Appendix B, we find 

(34) 

(35) 
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O0 

E[ [QI - 011] = 2 / (  l - FD (y)  ) dy, 

b 

which is independent of Q and identical to (33)! 
Hence, we find that 

- O I I ] = 2 f f l - F D ( y ) ) d Y ,  VQ. E[[Q1 

Eq. (37) motivates the definition of ~-q as given in Section 2, 

E[IQI -0111 
7rq= l  

215 ' 

since we find from (37) that 

67 

(36) 

(37) 

E [ I Q I  - 011] ~< 2D, 

whereby we have that 0 ~< ¢rq ~< 1. Hence, we conclude that 

b 
(s,nQ) = 1 [ rrq ~ a ( 1  - Fo(y)) dy, (38) 

0 

where the superscript (s, nQ) emphasizes that this result holds for (s, nQ)-policies. Due to this strikingly 
simple result, we can obtain exact expressions for any tractable demand distribution used in practice. 

4.2. ( s, S)-polic~y 

As in Section 3.2 we derive exact analytical expressions for 7rq under an (s, S)-policy. We remark here that 
we do not obtain such an elegant result as in the case of an (s, nQ)-policy. Tractable exact expressions can 
only be given for K2-distributions, as was the case in Section 3.2. Again we distinguish between the cases 
Q < ~ / g a n d  Q > D ,  w h e r e Q = S - s .  

(i) Q ~D.  For the case of  Q ~ b ,  we expect a replenishmenteveryperiod. We lind the following expression 

for Qj and 01: 

Q1 = Y + / ) ,  Ql =(Y+D)I{y+D>Q}. (39) 

Hence, we find 

E[[Q1 - ~,{] = E[{(Y + D)l{r~o>Q} - Y -  DII .  (40) 

In Appendix C we elaborate the expression on the rhs of (40) to obtain 

Q 

E[IQI-Oil]  = 2  (1 - F D ( Y ) ) d Y +  M(Q-----S 
b o 

(41) 

Comparison of (41) with (33) shows that 
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E(" '"Q)I[QI-0I l l  <~ E~~'s)[IQ1- 0~I], Q~<D, 

where the superscripts indicate the control rule applied. Hence, we find 

~(s ,S )  "lT"(q s'nQ) /> , , q  , for Q ~</5, 

or, in other words, for Q ~< b the quantity stability of (s, nQ)-policies is greater than that of (s, S)-policies. 
In fact, any (s, nQ)-policy is more stable with respect to quantity stability than any (s, S)-policy with Q ~< D. 

(ii) Q > D. For the case of Q > D, we find the following expressions Ibr Ql and Q1 (cf. (15) and 

Ql = ( Y +  D)  l{r+b>a), Ql = ( Y +  D)l{y+o>a}. 

Hence, we find 

E t [ Q , - 2 , 1 ]  = E [ ] ( Y +  D)I{v+~>Q)- (Y + D)I{r+O>Q}[ ] . 

In Appendix C we elaborate the rhs of (43). This yields the following complicated exact expression 
E[ IQ I - QI [ ] :  

16)): 

(42) 

(43) 

~ r  

Q Q-D c~ 

fb+YaM(y)-D+2ff 1-F°(z)dzaM(y)M(Q) M(Q) E[la~ - QI[] = 
Q - / 5  0 Q - y  

Q-t) 

+2Q / i-Fo(Q-y)M(Q) d M ( y ) + 2  M(Q) M(Q)-M(Q-ID) 

0 
f (1 - F o ( z ) ) d z .  

h 

(44)  

The complete expression for 7r~ ''s) is found by inserting (41) and (44), respectively, into (6). Tractable exact 
expressions can only be found when D is K2-distributed because of the simple expression for M(-) in that 
case. Approximations can be derived along the lines sketched in Section 3.2. 

4.3. (T, S)-policy 

For the case of a (T, S)-policy we have to distinguish between periods in which we order and periods in 
which we do not order. Assume that at time 0 we just ordered such that the inventory position equals S at time 
0, which is the beginning of period 1. Define 

QI (t) := the actual order in period t, 

Then it is easy to see that 

T 

1 ~--~EIIQI(t) - 01(t) l] .  E[IQ - 0~I] = 
t=l 

QI (t) := the planned order in period t. 

(45) 

By definition 

Ol( t)  = Ql( t )  = 0 ,  t = 2  . . . . .  T. 

Thus, we find 
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E[IQ~ - ~ 1 ]  = 1 E [ I Q ~ ( I )  - {)~(1)11. (46) 

{)l (1) and Qi (1)  depend on the actual inventory position just before ordering at t ime 0. Because we order 
every T periods, we find 

~)l(1)  = D ( - T , - I ]  + / ) ,  QI(1)=D(-T,O]. 

Thus, we find 

E[]Q~ - {)~11 = E [ I D ( - I , 0 ]  - bl] = E[ID - hi] 
/7) o¢~ oo 

= / ( D - y ) d F o ( y ) +  f (y-D)dFo(y)=2 f ( y -b )dFo(y)  
o D D 

O 0  

= 2 / ( 1  - FD(y)) dy. 

This finally yields 

O O  

E[IQI - 011] = ~ ( 
D 

and 

1 - - F D ( y ) )  dy (47) 

l/  
TD (1 -Fo(y))dy. (48) 

/3 

Note the consistency between (48) ,  which holds for a (T,S)-policy, and (38) ,  which holds for an (s, nQ)- 
policy. Indeed, if T = 1 then both expressions on the rhs of  (48) and (38) are identical, which is consistent 
with the fact that for T =  1 a (T,S)-pol icy is identical to an (s, nQ)-policy with Q ~ 0. From (38) and (48)  
we conclude that 

rq( T,S 7.g~s,nQ), >~ V T,S,s,Q. (49) 

Furthermore, it is obvious that for T = 1 a ( T, S) -policy is identical to an ( s ,S) -po l icy  with s = S. From 
comparison of  (41) and (48)  it can be seen that in this case, of  course, planning stability of  both policies is 
equal. 

4.4. Comparison of control rules 

From the results obtained so far we can derive the following inequalities: 

_(.~,s) Vs, S, T, for Q ~< D, .Tr(qT, S) ~ .ff~s,nQ) ~ n q  , 

(T,S) > rr~S.,,Q), Vs, S, T, Q. qTq 

We do not have an inequality for Q > L) w.r.t. (s ,  S)-policies in comparison with (s,  nQ)-pol ic ies  due to the 
intractability of  (44) .  
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To provide insight into the relations b e t w e e n  7"l'(q s'nQ) and "rr (~'s)..q , we present numerical results in Figs. 4.1-4.4. 

We have chosen different values for c2o and let Q range from 0 to 4, where /) = 1 as a normalization. The 
results from our comparison lead us to the following conjecture: 

_(s.S) Vs, Q, S. 77"(q s'nQ) ~ ""q , 

For the quantity stability we find that approximation (27) for M(x)  pertorms reasonably well for Q ~< b 
and Q >/413. In between the approximation shows a hump effect, which is due to the approximation error in 
M(x) .  Again we find that 7r<q s's) shows local minima for Q = kD, k E N. 

In Figs. 4.5 and 4.6 we show the effect o f  variability on the quantity stability. We varied c~ as 0.1, 0.2, 0.5 
and 2. Q is again varied from 0 to 4. Note the strong negative influence o f  variability of  demand on stability. 

5.  C o n c l u s i o n s  

Quantifying nervousness in stochastic inventory control is a very new aspect in an inventory theoretical 
framework. In this paper it is shown that for basic inventory control rules like (s, nQ)-, (s, S)-, and (T, S)- 
policies, analytical insight in the effects on planning stability can be given that reveal interesting and to some 
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extent surprising results. For both setup and quantity stability it is shown that nervousness indeed is affected by 
the choice of a specific control rule. Hereby it turns out that it is not the reorder point s that plays a role but 
only the lot size determining parameter Q, S - s, or the cycle length T, respectively. Moreover, a bad choice of 
the lot size may cause a very poor stability performance of the inventory control system, and this is more likely 
for an (s, S)- than for an (s, nQ)-policy. In fact, quantity stability is independent of Q for (s, nQ)-policies 
and the quantity stability of (s, nQ)-policies is always higher than the quantity stability of (s, S)-policies with 
S - s = Q. That means that superiority of an (s, S)-type of control policy which can be shown to be optimal 
for a wide class of problems under pure cost consideration, has to be questioned with respect to a nervousness 
criterion. 

From the point of view of planning stability due to its constant replenishment cycles a (T, S)-policy obviously 
shows the best performance. However, from inventory control we know that this policy may be connected with 
poor cost effectiveness if we face considerable setup costs. 

For the case of long-term planning stability up to now only simulation results for the performance of basic 
control rules exist (see Jensen, 1993). These investigations indicate that the general aspects of control rule 
generated nervousness are the same as described above. Nevertheless, some additional properties like cyclical 
patterns in the stability functions ~r(.) will occur that are not found under short-term conditions. A very 
open question is how planning stability is affected by production and inventory control in multi-stage logistical 
systems. First simulation experiments for simple systems (see Jensen, 1996) give the impression that the control 
rule applied at the end-item level has a dominating influence on the stability performance of the whole system. 

Summarizing it can be stated that, if nervousness matters, inventory control rules and control parameters 
should be determined under additional consideration of their stability effects. Similar to service level constraints 
which supplement pure cost considerations in order to incorporate the aspect of costumer service in inventory 
control, the additional factor of nervousness can be included by setting analogous stability constraints. The results 
derived in this paper support considerations on how lotsizing in reorder point systems has to be restricted if 
such constraints with respect to a feasible amount of nervousness are prescribed by the management. 

Furthermore, for appropriate protection against nervousness-caused deficiency modified planning procedures 
(e.g. implementing frozen zones) and more complex control rules employing additional parameters for im- 
proving stability (cf. Blackburn et al., 1986 and Vollmann et al., 1988) may be useful. As is shown in Jensen 
(1993) the knowledge of specific stability effects of basic policies can be very useful to construct modified 
inventory control rules to avoid nervousness in a very effective manner. 
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Appendix A. Approximation for renewal function M(-) 

Let D denote the demand in an arbitrary period. Let Fo denote its cdf, i.e. 

Fo(x)  = P{D <~ x}, x >~ O. 

Furthermore, we define the random variable Y as 

Y := the difference between the order-up-to-level S and the inventory position at the beginning of  an 

arbitrary period. 

Hence 

e { o  ~< Y ~< Q} = I, 

with Q = S - s. The cdf of  Y is given by 

P{Y <~ x} = M(x)  M ( Q ) '  O<~ x<~Q, 

where M ( x )  is the renewal function associated with FD, i.e. 

O O  

F"* M(x)  =/__, o (x) .  
n=O 

Note that Y has a probability mass in 0, 

1 
P{Y = O} = M(Q)" 

The above results have been derived by standard renewal theoretic arguments. In general an exact expression 
for M(x)  is intractable. Fortunately, for the important class of  so-called Kz-distributions M(x)  has a simple 
form. A K2-distribution is defined by the form of  its Laplace-Stieltjes transform ~'o(s), where FD(s)  = 

f o  e-SX dFo(x) .  
Then Fo(s)  is given by 

1 + (al - / ) ) s  
P o ( s )  = 

1 + a l s + a 2 s  2' 

for some constants al and a2. It can be shown that for a K2-distribution M(x)  is given by 

M(x)  = 1 + D + y(1  - e-aX), x ) O, 

for some constants y and /3. In De Kok (1985) this exact form for K2-distribution is proposed as an approxi- 
mation for arbitrary renewal distributions. We need expressions/ 'or the coefficients/3 and y. We proceed along 
the lines as given in De Kok (1985).  We first note that 

xlimooM(x) - ( D  + 21-(1 + c 2 ) ) = 0 .  

Hence fl and y should satisfy 
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lim l + ~ + 3 / ( l - e  -/~x) 
x--,~ D 

x 1(1+C2o) =0 .  
D 2 

Hence 

73 

1 + r =  (1 

and thus 

Furthermore it can be shown that 

l i m M ' ( x )  = F ' ( 0 ) .  
xl0 

Hence, we find 

1 
-= + fly = F ' (O) ,  
D 

which implies that 

2 ( F ' ( 0 )  - / ~ - i )  

/ ~ =  c~ - ! 

It should be noted that in case D is exponentially distributed, then fl = 3' = 0. For mixtures of Erlang-distributions 
defined by 

k - I  1-1 

FD(X) = 1 - - p ~  e-lZx(]Zx)i~. (1 - p )  ~--~C -vx(vx)ii! ' 
i=O i=O 

we find 

p / x + ( 1 - p ) v ,  f o r k = l = l ,  
p/z, f o r k = l ,  1/>2,  

F ' ( 0 )  = (1 - p ) v ,  for k/> 2, / = 1 ,  

0, for k/> 2, l />2 .  

The determination of p,/.t, v, k and l for given values o f / )  and c2o can be found in (Tijms, 1986, pp. 397400 ) .  

Appendix B. Derivation of  "ri'(q s'nQ) 

A: Q > / ) .  We start from (35) with 

E[ IQI - Qll] =E[ ~ kQI{kQ<~Y+D<(k+I)Q} - QI {Q_b<y<~Q} ] 
L, k=-I 

Q-D (k+l)Q-y  Q Q-y  cg2 

f (~-I f kQdFD(Z))dFy(y)+ f : QdFD(z)dFr(y) 
0 kQ-y Q-D 0 
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Q (k+l)Q-y  

Q - D  kQ-y 
We can combine the first and third term on the rhs of  the above expression to obtain 

Q (k-t-I)Q-y Q 

oS(  s ) EIIQ~ - 0,1] = k Q d F o ( z )  dFr(y )  + 

kQ - y  a _ f) 

Q (k+l)Q-y  

- f (D S QdFD(Z))dFy(y). 
Q-D kO-y 

a - y  

i QdFD(Z) dFr(y) 
0 

(B.1) 

Firstly, we note that 

Q Q - v  Q 
- o o  

i 
a-b o a-o 

Q Q - y  Q 

(k+l)Q-y 

i QdFD(z))dFy(y) 
k Q - y  

i QdFt)(z) dFr(y) 
Q_/) 0 Q-/5 Q-y  

Q Q 

=Q S dFv(y)-2Q f (I-Fo(Q-y))dFr(Y) 
Q - D  Q - D  

Q 

=/3-2 i (1-Fo(Q-y))dy 
Q-D 

= / 3  - 2f(1 - FD(y)) dy. 
0 

(B.2) 

Next, we turn to the first term on the rhs of  ( B . I ) ,  

Q (k+l)Q-y  

o kQ-y 

- ( - ) Q - .  0 - k Q - y  0 k 1 

Q o o  ~ Q oo  oo 

= / ( ~-~10 kj, kQdF°(z))dFY(y)-S(~-lo - kQ-vS (k-l)QdFD(z))dFr(y) 
- -  _ ,  ° 
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Q cx~ 

=p_ f / dFD(z)dFy(y) 
0 k=-I k{~-y 

oo Q f<l - F o ( k Q - y ) ) d y  
k=l 0 

kQ OQ 

= Z  f ( I - F D ( z ) ) d z  
#=-1 (k-I)Q 

=if). 

Combining (B . I ) ,  (B.2) and (B.3),  we obtain 

b 

E[IQt  - 0,11 = 2 D  - 2f(1 - Fo(y)) dy 
0 

= 2 . / ( 1  - Fo(y)) dy, 

b 

which is (36) .  

B: Q <~ D. S i n c e Q ~ < / ) , w e c a n  w r i t e b a s  follows: 

[) = kQQ + wQ, 

It is easy 

01= 

Similarly, 

a l  = 

Using (32) and the definitions of  w and kQ, we find 

(1 -w)Q Q - y  

E[IQ,--011] = / f kQQdFD(z)dF},(y)+ 

0 ~ < w < ~ l ,  kQ E N. 

to see that Q1 is determined as follows: 

kQQ, for 0 ~< Y ~< (1 -w)Q,  
(kQ+I)Q, for (1-w)Q<~Y<Q.  

we find for QI the following expression: 

0, forO~ Y + D ~ Q, 
kO, for kQ <~ g + D <~ ( k + l )Q, k >/ l. 

0 0 

( I - w ) Q  oo 

0 k=l 

Q O(3 

+ f 2  
( I - w ) Q  k=l 

(1-w)Q 

( k + l ) Q - y  

f ]kQ - koQ I dFo(z) dFy(y) 
kQ-y 

(k4 I ) Q - y  

f IkQ- (ka+ l)OldFo(z)dFv(y). 
kQ-y 

Q Q-y 

f f ( k a + l ) Q d F o ( z ) d F v ( y )  

o 

75 

(B.3) 

(B.4) 

(B.5) 
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The summations on the rhs of (B.5) can be elaborated analogously as we did for the case of Q > D. We give 
details for the first summation: 

( l - w ) Q  ( k + l ) Q - y  

f ~-'~ i [kQ - kQQldFD(z) dFy(y) 
0 k=l k Q - y  

( I - w ) Q  kO ( k ~ - l ) Q - y  

= f ~ f (kQ-k)QdFD(z)dFl,(y) 
0 k=l k Q - y  

( l - w ) Q  ( k + l ) Q - y  o<) 

+ f Z S (k-ka)QdFo(z)dFr(y) 
0 k=kQ~-I k Q - y  

( l - w ) Q  kQ ~ (1-w)Q kQ 

0 k=l k Q - y  0 

( l - w ) Q  oo 

q- i ~ i (k-kQ)QdFD(z)dFy(y) 
0 k=kQ+l k Q - y  

( l - w ) Q  oo oo 

-- i ~ i (k-kQ)QdFD(Z)dFy(y) 
0 k=kf)+l (k-:- I ) Q - y  

(I - w ) Q  kQ oo 

: f Z S (kQ-k)QdFD(z)dFy(y)- 
0 k=l k Q - y  0 

( l - w ) Q  ~ 7 
+ i Z (k- kQ)QdFo(z) dFr(y) 

0 k=-kQ+l k Q - y  

( 1 - w ) Q  oo o ?  
P 

i - [ ~ (k - 1 - kQ)aaFo(z) dFr(y) 
. I  
0 k=-kQ + I k Q - y  

( l - w ) Q  o0 

= i i(ko-1)QdFo(z)dFy(Y)- 
0 Q - y  

( I - w ) Q  oo 

+ J ~ S QdFo(z)dFv(Y) 
1 0 k=kQ+ k Q - y  

( kQ - k )Q dFo( z ) dF~,(y) 
k=l (k- - l ) Q - v  

( l - w ) Q  oo ( l - w ) Q  kQ oo 

i i kQQdFo(z)dFI'(Y)- i Z i QdFt)(z)dFi'(Y) 
0 Q - y  0 k=l k Q - y  

( I - w ) Q  ~ c~ 

f ~ f QdFD(z)dFI'(y) 
0 k--- k Q - y  

l -w)Q ,~ 

/ z 
k=-2 k Q - y  
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( 1 - w ) Q  oc 
+ / ~-~ f QdFo(z)dFv(y). 

0 k=kQ+l kQ-y  

Analogously, we find 

Q ( k + l ) Q - y  

f ~ i IkQ-(kQ+ I)QIdFD(z)dFy(y) 
( 1 -w)Q k=l kQ-y  

= j (kQ+l)QdFD(z)dFy(y)- E 
( l - w ) Q  Q - y  ( l - w ) O  

Q oc cx~ 

+ i E / QdFo(z)dF.(y). 
( I - w ) Q  k=kQ+2 kQ-y  

Substituting (B.6) and (B.7) into (B.5), we obtain 

oo 

f QdFo(z) 
k=l kQ-y  

dFr(y) 

( l - w ) Q  Q - y  Q 

E [ I Q I - Q l l ] =  i ,f kQQdFD(z)dFy(y)+ / 
0 0 ( l - w ) Q  

( I - w ) Q  oo Q 

+ i J kQQdFo(z)dFr(y)+ f 

a - y 

i (k O + I)QdFD(Z) dFr(y) 
0 

oo 

i (kQ + 1)QdFD(z) dFr(y) 

+ 

0 Q - y  ( l - w ) Q  Q - y  

,f E QdFD(Z) dFr(y) - E QdFD(z) dFr(y) 
0 k=l kQ-y  ( I - w ) Q  k=-I kQ-y  

<w. y 
j ~ QdFD(z)dFr(y)+ QdFD(z)dFr(y). 
0 k=k.Q+l kQ-y ( l - w ) Q  k=kf~+2kQ-y 

Now, we note that 

( l - w ) Q  Q - y  Q Q - y  

0 0 ( 1 -w)Q 0 

/j + # kQQaFD(z)aFr(y)+ (kQ+I)QaFD(z)dFr(y) 
0 Q - y  ( l - w ) Q  Q - y  

( 1 -w)Q Q Q 

= i koQdFr(Y)+ i (kQ+I)QdFv(y)=kQQ+ f QdFv(y) 
0 ( l - w ) Q  ( I - w ) Q  

= kQQ + wQ, 
where we used that Fr(y) = y/Q. Substituting this result into (B.8) and combining summations, we find 

77 

(B.6) 

(B.7) 

(B.8) 
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E t l Q ~  - 0111 =kaQ + wQ - f QdFD(Z) dFy(y) 
0 k=l kQ-y 

-j j 
( l - w ) Q  (k,2+l)Q-y 

Q 

- f f QdFD(z)dFy(y). 
( I -w)Q  (kQ . - l )Q-y 

Q 

Q dFo( z ) dFr(y) + /  
0 

Z QdFD(Z) dFy(y) 
k=kt2.~ 1 kQ-y 

Now, we substitute Fv(y) = y/Q and elaborate the second integrations to yield 

ko Q F 
E I I Q ~  - 0~1] = kQQ + wO - Z / ( 1  - FD(kQ - y)) dy 

k=l 0 
, /  

Q Q oc 

-2 / (l-FD((kQ+l)Q-y)dy+ ~_~ f~l-F,.,~kQ-y~)dy. 
( l - w ) Q  k=ko t- 1 0 

(B.9)  

Next, we  apply the fol lowing identity: 

Q kQ 

f ( l - F D ( k Q - y ) ) d y =  f 
o (k - I )Q  

(1 --FD(Z)) dz. 

Substituting this identity into (B .9 ) ,  we find 

kq kQ 

E [ [ Q I - O J l l = k Q Q + w Q -  Z f ( 1 - F t g ( z ) ) d z  
k=l ( k - l )Q  

Q kQ 

-2 / (1-FD((koW1)Q-y))dy+ ~-~ / 
( I -w)Q  k=kt2+l ( k - l ) Q  

ZeQ 

= k o Q + w  Q - f (l - Fo(z) )dz  
0 

Q 

-2 f 
( l - w ) Q  

( I  - F D ( z ) ) d z  

7 
(1 --  FD((kQ + 1 ) Q  - y ) )  dy + / ( I  - Fr~(z))  dz. 

k~2Q 

Next, we  use the fol lowing identities: 

kfdQ 

(1 - F o ( z ) ) d z  

0 

= / ~ - -  f ( l - F D ( z ) ) d z ,  

k~d Q 
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Q kQQ+wQ 

/ ( l - F D ( ( k Q + l ) O - y ) ) d y =  / (1-FD(z))dz. 
( l - w ) O  /odQ 

Thus, we obtain the following result: 

kQQ.~ wQ oo 

 EIQ, f 
k¢2 Q kQQ 

¢x3 

= k o Q + w Q - B + 2  f (1-Fo(z))dz.  
kO Q 4- wQ 

Finally, we subst i tute/3 = koQ -t- wQ. This yields 

¢yo 

El [QI - ~)tl] = 2 f - F~(z)) dz, 
f) 

which is (33) .  

79 

Appendix C. Derivation of ~r (s's) q 

A: Q <~ [). We start from (40) ,  

E[[QI  - QI[] = Eli(Y+ D)I{y+D>Q} - Y - bll. 

This expression can be elaborated further by conditioning on Y and D, 

Q Q - y  Q /) 

o o o Q - y  

Q 

+ f  / ( z - D )  dFD(z)dFr(y). 
o B 

After some algebra this can be rewritten into 

oo Q Q oo 

E[[Ql -O~ll]=2 f (l - Fo(z))dz /dFr(y)  - , f  (1-FD(z))dzdFr(y) 
b o o Q-y 

Q Q Q 
-Q / (  i - Fo(Q - y) ) dFr(y) + / ydFy(y) + D / dFr(y). 

o o o 

This expression can be simplified considerably along the following lines. The Laplace-Stieltjes transform of  
M(x) is given by 
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o o  / 1 
l~I(s) = e ...... d M ( x )  - I - F o ( s ) "  

o 

The second term on the righthand side of  the above equation is the convolution of  M ( x ) / M ( Q )  with G(x) ,  
where G ( x )  is defined by 

x 

G ( x )  = f (  1 - FD ( z )  ) dz. 

o 

It is easy to see that (~(s), the Laplace-Stieltjes transform of G(x) ,  is given by 

O(s) = l - Pv(s) 
S 

Hence the Laplace-Stieltjes transform of M * G ( x )  is given by 

M 1 ~ ( s )  = 1F4(s) C_,(s) - 1 1 - FD(S) _ I 
1 - F D ( S )  S S 

Hence M * G( x ) = x. Then it follows that 

Q Q - y  

f f ( 1 - F o ( z ) ) d z d F r ( y )  - Q M ( Q ) "  
o o 

Analogously, we can show that 

Q 

(1 - FD(Q - y)  ) d F y ( y )  = M ( Q )  " 

o 

Substituting the above results into the expression for E[ IQI - 211], we find 

~ Q 

E[IQI - 2 ,  I] = 2  f ( 1 -  F D ( z ) ) d Z  + M----~ / y d M ( y ) .  

D o 

Hence, we find that 
oo 

limE[IQIQi0 - 2111 =ef(i - F o ( z ) ) d z .  

b 

Note that the above expression can be routinely evaluated for K2-distributions and for mixtures o f  two Erlang 
distributions assuming the approximate form for M ( x ) .  

B: Q > / ) .  We start from (43),  

EL la, - 2,11 = E[I(Y + D) ~y+~>o~ - ( r  + Z~)l~+b>m I]. 

This expression for E[ IQl - 211] turns out to be considerably more complicated than for the case of  Q ~</). 
For computational purposes we proceed along the same lines. By conditioning on Y and D, we find 
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E[[QI - Ol[] = 

Q-t) oc Q Q - y 

f f(y+z)dFo(z)dFr(y)+ f f(y+D)dFo(z)dFr(y) 
0 Q-y Q_t) 0 

Q b Q 

Q-t) Q-y Q-t) t) 

After considerable algebra, we find that 

Q Q-/-) cx~ 

E [ I Q I - 0 1 l ]  = f ( £ ) + y ) d F y ( y ) + 2  / f ( l - F D ( z ) ) d z d F y ( y )  

Q-t )  0 Q-y 

Q oo Q 

- f  f(1-Fo(z))dzdFr(y)-Qf(l-Fo(Q-y))dFv(y) 
o Q-y o 

Q-t) ~ a 

+2Q f (l-FD(Q-y))dFv(y)+2 f(l-Fo(z))dz f dFy(y). 
0 t) Q-D 

The third and fourth term on the rhs of  the above expression can be elaborated as shown for the case of  Q <~ D, 
to yield 

Q Q-D 

E [ I Q I - Q I [ ] =  . f  ( D + y ) d F v ( Y ) - D + 2  f / ( l - F D ( z ) ) d z d F r ( y )  
Q_t) o Q-y 

O.-t) ~ O 

+2Q f ( 1 - F o ( Q - y ) ) d F y ( y ) + 2  f ( 1 - F o ( z ) ) d z  f dFr(y ) ,  

0 D Q-D 

which, when inserting F r ( y )  = M(y)/M(Q), is identical to (44).  
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