

WOFLAN : a Petri-net-based workflow analyzer

Citation for published version (APA):
Hauschildt, D., Verbeek, H. M. W., & Aalst, van der, W. M. P. (1997). WOFLAN : a Petri-net-based workflow
analyzer. (Computing science reports; Vol. 9712). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/11a2c2a5-bbd4-4799-ad9d-fe8a040361ff

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

WOFLAN: A Petri-net-based Workflow Analyzer

by

D. Hauschildt, E. Verbeek and W. van der Aalst

editors: prof.dr. R.C. Backhouse
prof.dr. I.C.M. Baeten

Reports are available at:
http://www.win.tue.n1/winlcs

Computing Science Reports 97112
Eindhoven, August 1997

97112

WOFLAN: A Petri-net-based Workflow Analyzer

Dirk Hauschildt' Eric Verbeek Wil van der Aalst

Eindhoven University of Technology
Department of Mathematics and Computing Science

P.O. Box 513, NL - 5600 MB Eindhoven
{ dirk, wsineric, wsinwa }@win.tue.nl

Abstract

Workflow management systems facilitate the everyday operation of busi
ness processes by taking care of the logistic control of work. In contrast to
traditional information systems, they attempt to support frequent changes of
the workflows at hand. Therefore, the need for analysis methods to verify the
correctness of workflows is becoming more prominent. In this monograph we
present a tool based on Petri nets: Wofian. Woflan (WOrkFLow ANalyser)
is an analysis tool which can be used to verify the correctness of a workflow
procedure. The analysis tool uses state-of-the-art techniques to find potential
errors in the definition of a workflow procedure.

*On leave from University of Hamburg, Department of Computer Science, supported by the
MATCH project, EC, Human Capital and Mobility, CHRX-CT94-0452

1

Contents

1 Introduction 3

2 Architecture of Woflan 4

3 Data structure 7

3.1 Petri net .. 9

3.2 Analysis data 9

3.3 Analysis results 9

4 User interface 11

5 Analysis routines 13

5.1 Introduction . . 13

5.2 Static analysis . 15

5.3 Dynamic analysis 18

5.4 Invariant Analysis. 22

5.5 Data Structures . . 24

A The equation solver gold 26

References 29

2

1 Introduction

Workflow management systems (WFMS) are used for the modeling, analysis, en
actment, and coordination of structured business processes by groups of people.
Business processes supported by a WFMS are case-driven, i.e., tasks are executed
for specific cases. Approving loans, processing insurance claims, billing, processing
tax declarations, handling traffic violations and mortgaging, are typical case-driven
processes which are often supported by a WFMS. These case-driven processes, also
called workfiows, are marked by three dimensions: (1) the process dimension, (2)
the resource dimension, and (3) the case dimension (see Figure 1). The process
dimension is concerned with the partial ordering of tasks. The tasks which need to
be executed are identified and the routing of cases along these tasks is determined.
Conditional, sequential, parallel and iterative routing are typical structures specified
in the process dimension. Tasks are executed by resources. Resource are human (e.g.
employee) and/or non-human (e.g. device, software, hardware). In the resource di
mension these resources are classified by identifying roles (resources classes based on
functional characteristics) and organizational units (groups, teams or departments).
Both the process dimension and the resource dimension are generic, i.e., they are
not tailored towards a specific case. The third dimension of a workflow is concerned
with individual cases which are executed according to the process definition (first
dimension) by the proper resources (second dimension).

resources

process

/.~

cases

Figure 1: The three dimensions of workflow.

Managing workflows is not a new idea. Workflow control techniques have existed
for decades and many management concepts originating from production and logis
tics are also applicable in a workflow context. However, just recently, commercially
available generic WFMS's have become a reality. Although these systems have
been applied successfully, contemporary WFMS's do not facilitate advanced anal
ysis methods to determine the correctness of a workflow. Some WFMS's support
simulation to validate a workflow definition before it becomes operational. Clearly,
there is a need for tools to verify the correctness of a workflow definition. This is
the reason we developed Woflan.

Woflan focuses on the process dimension (see Figure 1) and assumes a "fair"
behavior of the environment (triggering and resources). Woflan also assumes that

3

a workflow procedure (i.e. the process) is specified in terms of a Petri net. As
many researchers have indicated ([EN93, MEM94, WR96]) , Petri nets constitute
a good starting point for a solid theoretical foundation for workflow management.
Unfortunately, most of the more than 250 commercially available WFMS's use a
vendor-specific ad-hoc modeling technique to design workflows. In spite of the ef
forts of the Workflow Management Coalition ([WFM96]) real standards are missing.
The absence of formalized standards hinders the development of tool-independent
analysis techniques. Fortunately, most WFMS's use a technique which can be trans
lated into a Petri net, because they either use a subclass of Petri nets or use high-level
constructs which can be mapped onto them.

Woflan is designed as a WFMS-independent analysis tool. In principle it can
interface with many WFMS's. At the moment, Woflan can interface with the WFMS
COSA (Software Ley [SL96]) and the BPR tool Protos (Pallas Athena). In the future
we hope to extend the set of WFMS's which can interface with Woflan.

This monograph describes the functionality, architecture and implementation of
Woflan. The reader is assumed to have some basic knowledge of workflow manage
ment and more extensive knowledge of Petri nets. For more detailed information the
reader is referred to [WFM96, EN93, Mur89, Aa196a, Aa196c, Aa195, DE95, Aa197,
Aa196b, AH97). This monograph is organized as follows. First, the architecture and
input format are discussed. Then a description of the internal data structure and
the user interface is given. Finally, the analysis routines are described.

2 Architecture of Woflan

As indicated in the introduction, Woflan (WOrkFLow ANalyser) is a Petri-net-based
tool to analyze the correctness of a workflow. The tool is workflow management
system independent, i.e. a number of import functions to download workflow-scripts
in Woflan (e.g. from COSA and Protos) are provided.

Woflan uses Petri-net-based analysis routines to analyze the workflows at hand.
One of the central issues which is analyzed by Woflan is the so-called soundness
property. A workflow process is sound if, for any case, the process terminates prop
erly, i.e., termination is guaranteed, there are no dangling references, and deadlock
and livelock are absent. A formal definition of the soundness property is given in
[Aa197, Aal96b J. Clearly, this property is the basic property any workflow should
satisfy. In [Aal97) it is shown that standard Petri-net-based analysis techniques to
decide liveness and boundedness can be used to verify the soundness property. For
many workflows this can be decided in polynomial time. However, Woflan uses a
brute force approach by constructing the coverability graph to decide soundness.
This turns out to be satisfactory from a practical point of view: even complex work
flows have less than 100 tasks (< 200.000 states), this is no problem for Woflan.

4

Deciding whether the workflow definition is sound is not sufficient. In many cases
more requirements need to be satisfied. Moreover, if the workflow definition is not
sound, then the user should be guided in detecting the source of the error and
support should be given to repair the error. This is the reason Woflan offers a large
selection of analysis methods:

• Syntactical checks, e.g., detection of tasks without input or output condition.

• Detection of potential errors by listing suspicious constructs, e.g., constructs
violating the free-choice property, AND-split's complemented by OR-join's,
OR-split's complemented by AND-join's (well-structuredness), and parts of
the net which are not S-coverable.

• Detection of dynamic errors by listing unbounded places, non-safe places, dead
transitions and non-live transitions.

• Place and transition invariants. The absence of certain invariants indicates
the source of an error.

• Verification of the soundness property.

Woflan has an on-line help-facility which guides the user in using the tool and helps
to understand the analysis results.

Woflan consists of three main parts:

• parser
To load a so-called tpn-file representing a workflow process definition.

• analysis routines
A large collection of standard Petri-net analysis routines.

• user interface
To present the results to the end-user.

Figure 2 shows the architecture of WOFLAN.

In addition there will be a module for each WFMS which can interface with
Woflan. At the moment there is one such module which can convert COSA script
files into a tpn-file. This way Woflan can analyze any workflow process definition
constructed by using the COSA network editor (CONE). The same module can be
used to import process definitions made with Protos.

A workflow process definition is mapped onto a tpn-file which describes a standard
Petri net. Tasks are mapped onto one or more transitions and conditions are mapped
onto places. The tpn-file contains information on places and transitions in the net.
An example of a tpn-file is:

5

Ipn-fiI' 1/ . p~.,t<'tri n~
analysis

analysis data

I

.... .' . ..2 rQlJtin.es .
- "'". < - - - - - - - - - -3>

.user;j.ntetra.ee:
..... 1--"""'" .! .. ' .• t-<-------j '. .

Figure 2: Architecture of WOFLAN.

place start init l' ,
place cl;
place c2;
place c3;
place c4;
place c5;
place c6;
place c7;
place c8;
place c9;
place c10;
place cl1;
place c12;
place c13;
place c14;
place c15;
place c16;
place c17;
place c18;
place c19;
place c20;
place c21;
place c22;
place c23;
place klaar;

trans t1 ln start out c1,c7,c15;
trans t2 in c1 out c2;
trans t3 ln c2 out c3,c6;
trans t4 in c3 out c4;
trans t5a in c4 out c5;

6

trans t5b in c4 out c3;
trans t6 in c5,c6,c14 out c23;
trans t7 ln c7 out c8;
trans t8 in c8 out c9,cl0;
trans t9 in c6,c9 out c6,cl1;
trans tl0 ln cl0 out c12;
trans tll ln cll,c12 out c13;
trans t12 ln c13,c19 out c14;
trans t13 in c15 out c16;
trans t14a in c16 out c17;
trans t14b in c16 out c2l;
trans t15 in c6,c17 out c6,c18;
trans t16a in c18 out c19;
trans t16b in c18 out c17;
trans t17 in c15 out c20;
trans t18a in c20 out c16;
trans t18b in c20 out c15;
trans t19 in c2l out c22;
trans t20 in c22 out c22;
trans t2l in c22 out c19;
trans t22 ln c23 out klaar;

Figure 3 shows the example graphically.

3 Data structure

The data structure needed by WOFLAN can be divided into three parts:

1. Classes needed to hold the Petri nets. This structure is build up by WOFLAN's
parser and used by its analysis routines.

2. Classes needed to hold necessary analysis data. At the moment this structure
mainly holds the net's coverability graph.

3. Classes needed to hold the analysis results. When for instance the place in
variants are requested by the user interface, the user interface and the analysis
routine concerned have to agree on the way how the routine presents the place
invariants to the interface.

7

cl

t2

t3

t5a

c5

• start

tl2
cl9

t6

t22

klaar

Figure 3: The example.

8

3.1 Petri net

The object model (OMT) for a Petri net is rather straightforward: a Petri net
consists of nodes (which can either be a transition or a place) and connections
(which connect one place with one transition and are directed).

Figure 4 shows the object model of WOFLAN's Petri nets.

I Node I
.~ ~ ~

itsPreConnections itsPostConnections

I Transition I-. itsTransition I
Connection

I itsPlace .-I Place I l- I -L

itsConnections

• t itsTransitions ...
Net

I.a. itsPlaces

91. r

Figure 4: Object model of WOFLAN's Petri nets.

3.2 Analysis data

For the analysis routines the class AnaNet is introduced, which is a derived class of
Net. The class AnaNet contains all the analysis routines and the necessary analysis
data like the cover ability graph.

Figure 5 shows the object model of WOFLAN's analysis data.

3.3 Analysis results

Many analysis routines produce an answer which is built up from the Petri net's
nodes, sets and pairs. The routine which returns the place invariants for example,
has to produce an answer which is a set of set of weighted places.

The template class Array is introduced to hold any set, for instance the class
P -.Array is defined as Array<Place>.

Figure 6 shows the object model of WOFLAN's analysis results.

The next sections present the user interface of Woflan and illustrate the analysis
methods which can be used to detect and repair errors in a workflow design.

9

I Net J

I AnaNet I
itsProperties

init
NetProps

I-.. itsCoverGraph

r

()

I Marking I itsMarking J
State I , , .~

ES SE

ESState

I Edge L
SEState

Figure 5: Object model of WOFLAN's analysis data.

I NPL Array I
"itsMembcrs

I TCArray I NL Array I I Nl.-.istPair I PI Array I
, "itsMcmbers "itsMembcrs

first second
itsMembcrs , ; r

I T Invariant I .n N Array I l P _Invariant I
"itsMcmbers l'itsMcmbcrs itsMemhers

•
jWeightedTrans.j I Node I l WeightedPlace I

ilsTransition I A I ilSPlacc

I. I S(Jun:c D~' I • I Transition I I WeightedArc I I PL Array I l Place I
itsMembers " ~.itsMcmbers itsMcmbers itsMcmbers It

I T_Array I I W_Array I 'i P Array I

Figure 6: Object model of WOFLAN's analysis results.

10

4 User interface

The user interface is built using XVT, a CUI builder which supports, among others,
both MS Windows as Solaris.

For each Petri net loaded a window is opened containing a button bar (on the
lefthandside) and an area where the analysis results are displayed. Using the example
which was mentioned earlier we will browse through some of the displays.

The default display is the summary display (see Figure 7). This display shows
some basic characteristics of the net, like whether it can be covered by state machines
(S-coverable). The cover ability graph is not automatically generated, one needs to
press a button to do so. Figure 7 shows the summary display after the graph has
been generated so it also shows whether the net is bounded etc.

Figure 7: Screendump of WOFLAN's summary display.

The workflow display (Figure 8) shows whether the net is a workflow net (one
source place, one sink place, no source nor sink transitions and no (strongly) un
connected nodes) and one can als see for instance which nodes are not connected to
any source or sink place. The example net is obviously a workflow net.

The free choice display (Figure 9) shows why the example net is not a free choice
net: the cluster c5 c6 c9 c14 c17 t6 t9 t15 is not free choice. When more than
one not free choice cluster is found one can browse through the clusters using the
navigation buttons on the lefthandside.

11

Figure 8: Screendump of WOFLAN's workflow display.

Figure 9: Screendump of WOFLAN's free choice display.

12

The example net is also not well structured, as is shown by the structure display
(Figure 10). Apparently there are nine not well handle pairs (a place-transition pair
with multiple paths strongly connecting the second to the first)

Figure 10: Screendump of WOFLAN's structure display.

The example net however can be covered by state machines (five), as is shown
by the S-cover display (Figure 11). Nodes which are no part of any S-cover are also
listed.

Last the invariant display is shown (Figure 12), displaying (in this case) the
semi-positive place invariants found for the example net.

5 Analysis routines

5.1 Introduction

Most of the analysis routines described below can be performed either on the net
described in the Ananet instance or on an extended version of it, built by introducing
an additional transition, called Extension, which removes one token from every sink
place, i.e., place without output arc (see Section 5.2), and puts one token on every
source place, i.e., place without input arc. A 'sound' net, the desirable form of

13

Figure 11: Screen dump of WOFLAN's S-cover display.

Figure 12: Screendump of WOFLAN's invariants display.

14

a workflow model, has exactly one source place representing the initial state and
one sink place representing the final state. In such a net, the Extension transition
restarts a completed process again.

There are three groups of analysis routines: the static analysis is mainly consid
ered with graph properties of the net. They are described in Section 5.2. Section 5.3
is devoted to the dynamic analysis whIch is performed by building up and examin
ing the coverability graph. The invariant analysis which works by solving equation
systems derived from the incidence matrix is detailed in Section 5.4. Subsequently,
Section 5.5 gives some more technical information about the data structures used to
return the results of the analysis, and finally, the appendix describes the equation
solver used by the invariant procedures.

5.2 Static analysis

The Petri net is considered as a bipartite graph with the places and transitions as
nodes and the net arcs as edges.

5.2.1 The procedures

P_Array GetSourcePlaces o const
P _Array GetSinkPlaces o const
T_Array GetSourceTransi tions 0 const
T_Array GetSinkTransitions o const, and

return a list of all places (transitions) without input (output) arc. They are calcu
lated by a simple scan through the list of places (transitions).

5.2.2 The procedure

N-Array NotConnected (const Node &handle) const

computes the set of places which are not connected to the given node (parameter
handle) in the undirected version of the net graph, i.e., where arc directions are
ignored. The procedure

N-Array NotPseudoConnected
(const P _Array *in = 0, const P -Array *out = 0) const

returns all nodes neither connected to a source place nor to a sink place. Building the
extended net explicitly and calling NotConnected with the Extension transition as
parameter handle yields the same result. Note that the result of NotPseudoConnected
is non-empty if and only if any of the connected components contains no source or
no sink places (but possibly source or sink transitions). In particular, the procedure
returns all nodes if the net is strongly connected itself because it then has no source
or sink place at all.

The procedures work by iteratively visiting and marking all reachable nodes and
then returning all unseen nodes.

15

The parameters in and out are introduced in these and other procedures to
avoid repeated computations of the sets of source and sink places. If one of them is
non-zero, it should be a pointer to the list of source or sink nodes. If one of them is
zero (the default), the set is computed in the procedure.

5.2.3 The procedures

N..Array NotStronglyConnected (canst Node &handle) canst

and

N..Array NotStronglyPseudoConnected
(canst P _Array *in = 0, canst P ..Array *out = 0) canst

differ from the ones of the previous paragraph only by the fact that they work
on the directed net graph. NotStronglyConnected returns all nodes which are not
reachable from the node parameter handle or from which this node is not reachable.

A node belongs to the result of NotStronglyPseudoConnected if it is not reach
able from any source place or no sink node can be reached from it.

The procedures perform two sweeps through the net to mark all forward or
backward reachable nodes and then return all nodes not contained in the intersection
of the two node sets computed this way.

5.2.4 A net is called well-founded if it has exactly one source place, exactly one
sink place, and it is strongly connected: The procedure

int IsWellFormedNet (canst P ..Array *in = 0, canst P _Array *out = 0) canst

tests for this property. There is no extended version of it since a net extension
cannot be well-founded by definition.

5.2.5 A cluster of a net N is a connected component of the net N' obtained from
N by deleting all transition-to-place edges. Let P be the set of places in a cluster
C and T contain its transitions. C is called free-choice if all transitions in T have
the same set of input places (namely P), and consequently all places in P have T
as their set of output transitions.

The procedure

NL_Array NotFreeChoiceClusters 0 canst

calculates the set of clusters not enjoying this property, and

int IsFreeChoice 0 const

answers the question of whether the net contains such a cluster.

The procedures work by scanning through the list of transitions. If a transition
t does not belong to a cluster visited before, the cluster containing t is calculated by
iteratively traversing all place-to-transition edges (directly or indirectly) connected

16

to t. During this calculation, the free-choice property is tested by comparing the
preset of every transition in the cluster with the one of t. If any differences are
encountered, the cluster is output as non-free-choice.

There may be clusters not detected by the procedure, but they consist of a single
sink place and have the free-choice property.

5.2.6 The procedure

W _Array MultipleArcs 0 const

computes all ordered node pairs (nl, n2) for which there exists more than one edge
from nl to n2'

int HasMultipleArcs 0 const

returns true if such a pair exists. Impure nets, e.g., nets with node pairs (nl, n2)

and arcs both from nl to n2 and from n2 to nl are not detected.

The procedure scans through all edges and conducts some bookkeeping about
the sets of connected node pairs. If an edge between two already connected nodes
is encountered, the pair is put into the return set.

5.2.7 A pair (nl,n2) of nodes consisting of one place and one transition is called
not-well-handled if there are two node-disjoint paths (except for the start and end
node) leading from nl to n2.

Two paths starting (ending) in a place usually describe the begin (end) of two
alternative subprocesses while different edges starting (ending) in a transition cor
respond to parallel subprocesses. Not-well-handled pairs normally derive from a
mismatch of these two concepts are therefore a likely indicator for an error in the
design of the model.

The procedures

NPL-Array NotWellHandledPairs () const

and

NPL-Array NotWellStructuredPairs
(const P ...Array *in = 0, const P _Array *out = 0) const

compute the set of not-well-handled pairs in the net itself, and in its extension,
respectively.

The mere question of whether such pairs exist are answered by the procedures

int IsWellHandled 0 const

and

int IsWellStructured (const P _Array *in = 0, const P _Array *out = 0) const.

To test for disjoint paths, we apply the max-flow min-cut technique as described
e.g. in [Eve79J. Its problem is given by a directed graph with a designated start

17

node s, a designated final node j, and a maximal edge capacity for every edge. The
method allows to compute some edge weights lying between 0 and the corresponding
capacities for which the flow (number of units transported simultaneously) from s
to j is maxiaml.

To apply the algoritm to our problem, we have to (conceptually) replace every
node n by a node n' inheriting all input edges of n, a node n" inheriting all output
arcs, and a new edge from n' to n". If we set the capacity of all new edges to one,
the maximal flow between s" and f' is equal to the number of disjoint paths between
sand j in the original graph. The capacities ensure that every node is visited at
most once.

Our algorithm is a simplification of the algorithm proposed in [Eve79] which
makes use of the fact that we just want to find out whether or not the flow exceeds
one.

5.3 Dynamic analysis

The procedures described in this section have to to with the cover ability graph of
the net. They either build it up or analyse its properties. For nets with a finite
reachability set, this graph is identical to its reachability graph.

Except for DeleteCoverabilityGraph and sound, all procedures carry two pa
rameters ini t, describing the initial marking of the net (or the initial state of the
system), and extend which indicates whether the graph should be built for the or
dinary net or its extension. ini t is of the type LMarking, which is a synonyme for
*unsigned. The length of the array is implicitly given by the number of places in
the net.

Since building up the graph can be time-consuming, it is not deleted after a call
of an analysis procedure, but preserved for subsequent calls. At the begin of every
call it is checked whether a graph already exists and, if so, whether it was built up
with the same initial marking as given in the procedure call. If this is not the case,
the graph is (re-) built.

A procedure called with extend = 0 also works with an extended coverability
graph and a call with extend = 1 may lead to an extension (rather than a rebuild)
of a possibly existing graph for the ordinary net. Nevertheless, building an ordinary
graph and later extending it is slower than building up the extended graph in the
first place since some auxiliary data structures have to be recomputed. We now
describe the procedures in detail.

5.3.1 The procedure

unsigned GenerateCoverabili tyGraph
(const LMarking init, int extend = 0, int preserve = 0) const

18

builds up the graph unconditionally even if a graph with the same initial marking
exists. It returns the number of states in the graph. This may be useful if the net
has changed.

Setting an optional parameter preserve prevents the rebuild if the initial mark
ing is still the same. This way the procedure can be used to query the size of the
graph.

There exist different versions of coverability graphs and trees in the literature.
One distinction is made by the question of whether two nodes with the same marking,
but reached on different firing sequences should be joined into one and when and
how often in the process of building the node these equality test are performed.

Another choice has to be made for the question of when a finite number of tokens
on a place has to be replaced by an 'w'-symbol (meaning that the number can get
arbitrary high) to avoid the construction of an infinite graph.

Our procedure always joins two nodes with identical markings. A distinction
is made between 'tree edges' leading to a new node and 'other edges' connecting
already existing nodes. Whenever the procedure finds an enabled transition in the
marking of a certain node n, it performs the following steps.

(i) It first builds the successor marking.

(ii) It then checks for existing identical markings in the graph.

(iii) If not successful, it checks for smaller or equal markings on the unique path
from the root to n consisting of tree edges. It sets the number of tokens to w

on all places for which a smaller or equal marking was found which differs for
this place. Even if the marking has changed this way, it does not restart the
search process to find some markings smaller or equal to the changed marking.

(iv) If the last step resulted in a change of the marking, another equality check is
performed.

If one of the equality checks was successful, an 'other edge' is inserted into the
graph, otherwise a new node is created and connected by a 'tree edge'.

5.3.2 The procedure

void DeleteCoverabilityGraph 0 const

destroys the graph. It should be called on changes of the net or simply to recover
the memory space used by the graph.

5.3.3 The procedure

P _Array Not..k_Bounded (const LMarking init, unsigned k,int extend = 0) const

carries an additional parameter k and computes the set of places for which a reach
able marking exists on which the place holds more than k tokens. To just find out
whether such places exist, one can call the procedure

19

int Is...k...Bounded (const LMarking init, unsigned k, int extend = 0) const.

Both procedures work by traversing the whole coverability graph along the tree
edges. They stop as soon as all nodes are found to be not k-bounded, or, in case of
Is...k...Bounded, the first not k-bounded node has been found.

5.3.4 The procedures

P ..Array Not Bounded (const LMarking init, int extend = 0) const and
int IsBounded (const LMarking init, int extend = 0) const

are interfaces to the procedures described in the previous paragraph. They can be
used to test for unbounded places.

Similarly

P _Array NotSave (const LMarking init, int extend = 0) const and
int IsSave (const LMarking init, int extend = 0) const

just call Not...k...Bounded and Is...k...Bounded with k = 1.

5.3.5 The procedure

T _Array Dead (const LMarking init, int extend = 0) const

computes the set of transitions which do not occur in any firing sequence starting
at the initial marking of the net.

int HasDead (const LMarking init, int extend = 0) const

just investigates the question of whether such transitions exist.

Similar to Not...k...Bounded and Is...k...Bounded, these functions traverse the graph
and maintain a set of transitions not encountered so far. They stop as soon as this
set is empty or the whole graph has been traversed.

5.3.6 The procedure

T _Array NotLi ve (const LMarking init, int extend = 0) const

is actually a misnomer. A transition is included into the output set if there exist a
node in the coverability graph from which no arc labelled by this transition can be
reached. Therefore {t }-continuality of the net (existence of an infinite firing sequence
in which t occurs infinitely often) is a necessary but not sufficient condition for t
not to be included in the output set of this procedure. The latter property, in turn,
is necessary but not sufficient for liveness. But for bounded nets, the procedure
computes exactly the set of non-live transitions.

The procedure

int IsLive (const LMarking init, int extend = 0) const

tell us whether the set returned by N otLive is empty.

20

Both procedures calculate all strongly connected components of the coverability
graph with the additional property that no arc from inside the component is leading
to an outside node. More exactly, they compute the set of root nodes of these
components.

This computation is done in linear time by a depth first search through the graph
and actually simpler than calculating all strongly connected components. Once a
component is found, an interior loop is started by a call to Dead. It computes the set
of transitions not occurring in the component. The union of these sets is returned
as not live. Since also Dead works in linear time and every node belongs to only
one component, and therefore is visited in at most one call of Dead, the overall
complexity remains linear to the size of the graph.

As in the previous procedures, the search is stopped when all transitions are
found to be non-live and a call to Dead proceeds only as long as it can possibly
decover a new non-live transition.

5.3.7 A net is called sound if it is well-founded and the reachability set from the
initial marking consisting of exactly one token lying on the only source place has
four additional properties.

(a) There is only one reachable marking containing tokens on the only sink place.
(b) This marking, called the final marking, contains one token on the sink place

and all other places are empty.
(e) The final marking is reachable from all other reachable markings.
(d) There are no dead transitions.

One can show that for well-founded nets, these four conditions are equivalent to
the extension of this net being live and bounded.

The algorithm to check for soundness follows the above definition closely. If the
net is well-founded at all, the coverability graph from the initial marking defined
above is built and then up to four traversals through the graph are started to test
for the properties above. Properties (a) and (b) can be verified simultaneously but
two sweeps are necessary for property (e).

The initial marking is given implicitly in the definition of soundness. Moreover,
since an extended net is never well-founded, and therefore also never sound, extend
can be assumed to be zero. Thus both of the usual parameters init and extend
are obsolete and omitted.

5.3.8 Let an equivalence relation between the places be defined by the fact that
they contain the same number of tokens in every reachable marking. Then we can
partition the set of places into a set of equivalence classes. The procedure

PLArray Equi valentPlaces (const LMarking init, int extend = 0) const

lists all such equivalence classes containing more than one place.

21

int HasEqui valentPlaces (const LMarking init, int extend = 0) const

can be called to find out whether there are any equivalent places at all.

For every reachable marking, every equivalence class calculated so far is splitted
into a set of places containing as many tokens as the first place in the class and the
set of other places. The latter one is appended to the list of equivalence classes and
might be splitted again during the investigation of the actual marking. Sets with
less than two places are discarded during this computation. The computation is
stopped as soon as the set of remaining equivalence classes is empty.

5.3.9 Let a pair of places be called exclusive if there is no reachable marking
in which both of the places contain at least one token. The set of such pairs is
computed in the procedure

PL_Array Exclusi vePlacePairs (const LMarking init, int extend = 0) const.

There is also a procedure

Int HasExclusivePlacePairs (const LMarking init, int extend = 0) const

which just answers the question of whether there are any such pairs.

Again, the procedures sweep through the graph. They maintain a list of places
which are still exclusive to other places and keeps a Bi tSet for every place in the
list which contain the set of places exclusive to it so far.

In the treatment of a certain marking, the set of non-empty places in this marking
is subtracted from any Bi tSet kept for a marked place in the list. The place is
removed from the list as soon as the BitSet becomes empty this way. The whole
search is stopped when the list itself becomes empty.

5.4 Invariant Analysis

Solutions x of C . x = 0 where C is the incidence matrix of the net and x is a vector
containing a weight factor for every place of the net are called P-invariants. They
have the property that the scalar products x . m and x . m' are identical for every
pair m, m' of markings where m' is reachable from m.

Similarly, solutions x of CT . x = 0 are called T-invariants. If the Parikh image
of a firing sequence is a T-invariant, the marking after the occurrence of such a
sequence is the same as before.

The procedures described in this section compute different representations of
these sets of invariants. Like in the last section, they all contain a parameter extend
which determines whether invariants of the original or of the extended net are to be
computed.

22

5.4.1 If one allows negative weight factors to occur in the invariants, the invariant
set forms a vector space. The procedures

PLArray PlaceInvariantsBase (int extend = 0) const
TLArray TransitionInvariantsBase (int extend = 0) const

compute a base B <;;; zn of it, where n is the number of places. Every integral
invariant has a representation as a linear combination of B with integral coefficients
and every rational invariant can be constructed with rational coefficients.

B is computed by calling the equation solver contained in the program gold
described in the appendix.

5.4.2 The procedures

PLArray
TLArray

PlaceInvariantsSemiPos (int extend = 0) const
TransitionInvariantsSemiPos (int extend = 0) const

deal with non-negative solutions. They compute a set B containing the minimal
elements of the set of non-negative non-zero solutions of the equation system. Every
invariant x <;;; N" can be represented as a linear combination of B with natural
numbers as coefficients.

Both procedures incorporate the program gold with the parameters' In' and
'1m'.

5.4.3 The procedures

PLArray PlaceInvariantsExt (int extend = 0) const
TLArray Transi tionInvariantsExt (int extend = 0) const

attempt to calculate all 'intuitively useful' basic invariants in zn by incorporating
an adaption of the inequality solver.

Given a system A . x ~ 0 of equations and inequalities with n variables, these
procedures simultaneously solve 2n inequality systems. They all are obtained from
the original system by adding either the inequality Xi ~ 0 or -Xi ~ 0 for every
variable xi.

Let the support of a vector be the set of its non-zero components. Then the
procedure computes a set B of all non-zero solutions x of A . x ~ 0 with minimal
support, i.e., the support of no other non-zero solution is a strict subset of the
support of an x E B.

Consequently, every invariant in zn has a representation as a linear combination
of B with natural numbers as coefficients. Empirical observations have shown that
these procedures are fast enough for P-invariants, but often turn out to be too slow
if T-invariants are to be computed.

23

5.4.4 For a node n (a place or a transition) n of a net let 'n be the set of nodes
n' for which there exists an edge from n' to nand n' be the set of nodes n' with an
edge from n to n'.

An S-component e of a net N without multiple arcs is a non-empty, strongly
connected subnet of N with two additional properties.

(a) For every place pin e, both 'p and p' belong to e as well.
(b) For every transition t in e, we have Ie n 'tl = 1 = Ie n t·l.

One can show that any S-component consists of the support of a minimal support
P-invariant and the transitions adjacent to these places. But not every such P
invariant defines an S-component.

If the net has no multiple arcs, any P-invariant defining an S-component has no
other weight factors than 0 or 1. The S-components are computed by the procedure

NL_Array S_Components (int extend = 0) const.

The calculation is done in two steps. First the P-invariants are computed by a
call to the program gold with the parameters' Ir' and' In'. In the second step, every
invariant is augmented by adding all transitions connected to a place belonging to
its support and a check for Condition (b) above is performed.

There are two more procedures dealing with S-components.

N-Array Notln.l'-Components (int extend = 0) const

joins all S-components as defined above into one set and then returns the complement
of it and

int S_Cover (int extend = 0) const

returns true iff the set computed by NotIn_!LComponents does not contain any place
(but possibly some isolated transitions).

5.5 Data Structures

The analysis routines either return some boolean information in a variable of type
int (coded as usual: 0 for false and 1 for true) or they use a data structure called
Array(T) to return a list of pointers to objects of a type T.

The arrays can be accessed by two functions

int Array(T):: length 0 const

which returns the number of elements in the array and

T & ArraY(T): : operator [] (unsigned) const

to address some element. If a is an array and 0 ::; i < a . length 0, then a [i]
returns the i-th element.

24

There is also a function

T * Array(T) : : Get (unsigned i) const

which returns a pointer rather than a reference to the element. Moreover, it checks
for the validity of its argument and returns 0 if it is not smaller than a . length O.

The arrays are returned by value, because this is the only way to create array
objects in the scope of the calling procedure which are later automatically deleted
without requiring an explicit delete-statement.

C++ uses the Array(T): : Array (Array &) constructor to initialize procedure
arguments and return values if they are defined as value parameters. For the arrays
defined here, these operators are defined in such a way that they copy the 12-byte
header, but not the actual pointer array. The same holds for the (rarely used)
assignment operator.

This saves a lot of copying (especially for nested arrays) but it implies that
arrays given away as value parameters cannot be any more accessed in the calling
procedure. If copying is really necessary, it is done through the Array(T): : Array
(const Array *) constructor.

The intended way of using a procedure proc returning an array is either by

Array(T) a = proc (...);

in which case the array is deleted at the end of the scope of the variable a (or it is
further returned by value as a function result) or by

~

Array(T) *a = new Array(T) (proc (...));

eventually followed by an explicit

delete a;

There is a subtype of Array(T) called DeIArray(T) which only differs by the fact
that upon deletion of a DelArray(T) not only the array of pointers to instances of
T is discarded, but also the instances themselves.

These two data types allow us to build up the data structures in such a way that
upon deletion of the return value of an analysis procedure all objects created in the
procedure are deleted as well.

In the simplest case, a procedure returns a list of net elements in one of the data
types

P...Array = Array(Place),
T...Array = Array(Transition), and
N...Array = Array(Node).

If the list elements are created in the procedure, the list has the form DelArray(T)
as In

25

W...Array = DelArray(WeightedArc),
P_Invariant = DelArray(WeightedPlace), and
LInvariant = DelArray(WeightedTransition).

A WeightedArc is used in the file MultipleArcs.h and has three components

const Node *Source, const Node *Dest, and unsigned Weight.

The last components holds the number of arcs from *source to *dest.

Similarly, the types P _Invariant (T _Invariant) have the components

const Place *itsPlace and const int its Weight, or
const Transition *itsTransition and const int itsWeight, respectively.

They are used as components of an invariant.

Lists of lists occur in the form

NL...Array = DelArray(N...Array),
NL...Array = DelArray(P ...Array),
PI...Array = DelArray(P ..1nvariant), and
TI...Array = DelArray(T ..1nvariant)

to build sets of node lists or invariants.

Finally, the type NPL...Array in WellStructured.h has the components

N...Array first, and N...Array second.

Both component describe two otherwise disjoint paths between the common start
and end nodes first[O] = second[O], and first[first.Length 0-1] = second[second.Length
0-1].

A The equation solver gold

The program gold reads a system of equations and inequalities from an input file
and writes the solution of the system to an output file. Besides several options, the
filenames are read from the command line.

The first parameter (possibly extended by '.mat' for matrix) gives the input file
name. If just '-' is given, the input is read from the standard input. The output
and protocol file (used if the debug option is given) are specified by the next two
parameters (possibly extended by '.erg' and '.prt', respectively). If these parameters
are missing, the basenames of the files are taken from the input file parameter. This
behaviour can be overruled by the parameter '-' which selects stdout and stderr,
respectively.

The input and output file format is quite simple. Every line has the form

26

and describes one equation or inequality A· x R b. R can be any of '=', '>=', or
'<='. In the latter case, the inequality is replaced by -a· x ::0: -b. If one further
takes an equation a . x = b as two inequalities a . x ::0: b and -a· x ::0: -b, the set of
equations and inequalities can be seen as one system A· x ::0: b of inequalities.

It is also possible to replace both Rand b by a question mark. Then the line
is ignored in the computation, but the product a . x is shown in the output of the
solution.

The solution is described by three sets X, Y, and Z. All vectors in them consist
of integers and all vectors in Y and Z are normed such that the greatest common
divisor of them is one. The meaning of the sets is best explained in the opposite
order.

Z is a vector space basis of the set {x I A . x = O}. The elements of Yare the
extremal rays of the solution cone of {x I A . x ::0: O} in the orthogonal space of
Z. One can also describe Y as the set of solutions y for which A· y is of minimal
non-empty support or as the smallest set such that the solution set of A . x ::0: 0
coincides with

L fJy . y + L Vz . Z with Vy E Y: fJy E IQ+ and Vz E Z: V Z E IQ.
yEY zEZ

If the parameter' 1m' (for minimal) is set, Y contains those vectors y orthogonal
to Z, for which A· y is minimal under the non-zero non-negative solutions. This
includes all vectors which would belong to Y without the parameter '1m'. In this
case, all integral solutions have a representation as

L fJy . y + L Vz . Z with Vy E Y: fJy E Nand Vz E Z: V Z E Z.
yEY zEZ

Finally, X contains all 'sufficiently small' solutions x of A . x, in the sense that
no element of Y can be subtracted from x without turning at least one component
of A . x - b negative. Every integral solution of A . x ::0: b can be represented as

x + L fJy . y + L V z . z with x E X, Vy E Y: fJy E Nand Vz E Z: V Z E 2:,
yEY zEZ

i.e., using exactly one element of X.

If the parameter '!r' (for rational) is set, only the corners of the base poly
gon of the solution set is computed. Then every rational solution is still a linear
combination of the form

with

L Ax . x + L fJy . y + L V z . z
xEX yEY zEZ

"Ix E X: Ax E IQ+, L Ax = 1, Vy E Y: fJy E IQ+, and Vz E Z: V Z E IQ,
xEX

27

but rational coefficients may have to be used to describe integral solutions.

Setting this parameter can improve the performance of the algorithm signifi
cantly. It is implicitly set when the system is homogenuous (as for Petri net invari
ants) and' 1m' is set, because in this case X must consist of just the zero vector.

In the output, every vector x in any of these sets is displayed together with the
scalar products a . x for all inequalities a in the system and also for all lines in the
input file ending with a question mark. With' I cols: n' on the command line, the
output width of the number representations can be set. The default is 2.

The last parameter influencing the result of the computation is 'In' (for non
negative). It has the same effect as including one inequalities Xi 2: 0 for every
variable Xi in the system, but is is somewhat faster in execution. Z is always empty
when this option is set.

The parameters '/d' (for debug) writes some protocol data about the computa
tion into the protocol file. '/d:2' produces some more output.

If 'It' (for trace) is set, some trace information about the state of the compu
tation are produced on the screen. The program uses the termcap library for this
purpose and thus depends on the termcap file to be set up correctly. Again, 'It: 2'
increases the output.

Finally, '/h' displays a usage text on the screen and exits.

How does the program work? It first builds an equation system A' . x = 0 by
picking up all equations from A and applies the algorithm of Kannan and Bachem
([KB79]) to solve it. This algorithm has the advantage over the ordinary Gaussian
elimination algorithm that the size of the numbers occurring in the computation is
better controlled. Therefore it is more likely to produce small solutions.

Different to the Gaussian algorithm, it would provably run in polynomial time
even if arbitrary precision arithmetic was used in the computation (which is not
the case). This step can be suppressed by setting parameter' Ie'. In that case, an
equation a . x = b is treated similar as two inequalities a . x 2: b and -a . x 2: -b.

The remaining inequalities are treated one by one. In every step considering an
inequality a· x 2: b, the solution set is intersected with {x I a· x 2: b}. This can be
done quite easily as "long the scalar product a· z is non-zero for some element of Z.

The other case is more involved. It is handled in up to three steps .

• Firstly, the program follows an algorithm of Burger ([Bur56]) and incorporates
some improvements proposed by Colom and Silva in ([CS89J) to compute the
set of outer rays x of {x I A"·x 2: O}, where where A" consists of the inequalities
considered so far.

• If the parameter' 1m' is set, an exhaustive search has to be invoked to find all
minimal solutions of A" . x :::: 0 with non-minimal support. This makes the
algorithm very slow in the general case.

28

Fortunately, inequality systems derived from Petri net incidence matrices have
very few non-zero entries normally containing small numbers. In those cases,
the' area' in which the solutions have to be sought for is very small, and the
performance of the algorithm is acceptable again .

• Finally, the set X has to be updated if parameter' fr' is not set. Again, an
exhaustive search has to be started and the remarks of the previous item apply.

References

[AaI95] W.M.P. van der Aalst. A class of Petri net for modeling and analyz
ing business processes. Computing Science Reports 95/26, Eindhoven
University of Technology, Eindhoven, 1995.

[AaI96a] W.M.P. van der Aalst. Petri-net-based Workflow Management Software.
In A. Sheth, editor, Proceedings of the NFS Workshop on Workflow
and Process Automation in Information Systems, pages 114-118, Athens,
Georgia, May 1996.

[AaI96b] W.M.P. van der Aalst. Structural Characterizations of Sound Workflow
Nets. Computing Science Reports 96/23, Eindhoven University of Tech
nology, Eindhoven, 1996.

[AaI96c] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based
Workflow Management System. In S. Navathe and T. Wakayama, edi
tors, Proceedings of the International Working Conference on Information
and Process Integration in Enterprises (IPIC'96), pages 179-201, Came
bridge, Massachusetts, Nov 1996.

[Aa197] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and
G. Balbo, editors, Application and Theory of Petri Nets 1997, Lecture
Notes in Computer Science, page (to appear). Springer-Verlag, Berlin,
1997.

[AH97] W.M.P. van der Aalst and K.M. van Hee. Workflow Management:
Modellen, Methoden en Systemen (in Dutch). Academic Service,
Schoonhoven, 1997.

[BCH95] K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in Extended
Non Self-Controlling Nets. In G. De Michelis and M. Diaz, editors, Ap
plication and Theory of Petri Nets 1995, volume 935 of Lecture Notes in
Computer Science, pages 25-44. Springer-Verlag, Berlin, 1995.

[Bur56] E.Burger: Uber homogene lineare Ungleichungssysteme, Zeitung fiir ange
wandte Mathematik und Mechanik 36 (1956), 135-139.

29

[CS89] J.M.Colom, M.Silva: Convex Geometry and Semiflows in PIT Nets.
A Comparative Study of Algorithms for Computation of Minimal P
Semiflows, Proceeding lOth International Conference on Application and
Theory of Petri Nets (1989), 74-95.

[DE95] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge
tracts in theoretical computer science. Cambridge University Press, Cam
bridge, 1995.

[EN93] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems.
In M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993,
volume 691 of Lecture Notes in ·Computer Science, pages 1-16. Springer
Verlag, Berlin, 1993.

[Eve79] S.Even: Graph Algorithms, Pitman, London (1979).

[ES90] J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In
G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lec
ture Notes in Computer Science, pages 210-242. Springer-Verlag, Berlin,
1990.

[KB79] R.Kannan, A.Bachem: Polynomial Algorithms for Computing the Smith
and Hermite Normal Forms of an Integer Matrix, Siam Journal of Com
puting 8 (1979), 499-507.

[MEM94] G. De Michelis, C. Ellis, and G. Memmi, editors. Proceedings of the
second Workshop on Computer-Supported Cooperative Work, Petri nets
and related formalisms, Zaragoza, Spain, June 1994.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceed
ings of the IEEE, 77(4):541-580, April 1989.

[SL96] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, 1996.

[WFM96] WFMC. Workflow Management Coalition Terminology and Glossary
(WFMC-TC-1011). Technical report, Workflow Management Coalition,
Brussels, 1996.

[WR96] M. Wolf and U. Reimer, editors. Proceedings of the International Confer
ence on Practical Aspects of Knowledge Management (PAKM'96), Work
shop on Adaptive Workflow, Basel, Switzerland, Oct 1996.

30

Computing Science Reports

In this series appeared:

96/01

96/02

96/03

96/04

96/05

96/06

96/07

96/08

96/09

96110

96111

96112

96/13

96114

96115

96117

96/18

96119

96120

96/21

96/22

96/23

96/24

96/25

97/01

97/02

97/03

97/04

97105

97/06

97/07

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. vander Aalst

S. Mauw

T. Basten and W.M.P. v.d. Aatst

W.M.P. vander Aatst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
LT. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and 1.1. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. vanderStok

M.A. Reniers

L. Feijs

L. Bijlsma and R. NederpeJt

M.e.A. van de Graaf and G,J. Houben

W.M.P. van def Aalst

M. Voorhoeve and W. van def Aatst

M. Vaccari and R.C. Backhouse

B. Knaack and R. Gerth

J. Hooman and O. v. Roosmalen

J. Blanco and A. v. Deursen

I.C.M. Baeten and LA. Bergstra

I.C.M. Baeten and 1,1. Vereijken

M. Franssen

I.C.M. Baeten and I.A. Bergstra

Department of Mathematics and Computing Science
Eindhoven University of Technology

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SDL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Fonnal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

AUTOMA TH and Pure Type Systems, p. 30.

A Correspondence between NuprJ and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. 11.

Real-Time Distributed Concurrency Control Algorithms with mixed time con
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues, p. 15.

97/08 P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.

97/10

97/11

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P.C.N. v. Gorp, EJ. Luit, D.K. Hammer
and E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

Distributed real-time systems: a survey of applications and a general design model,
p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p.30.

	Abstract
	Contents
	1. Introduction
	2. Architecture of Woflan
	3. Data structure
	3.1 Petri net
	3.2 Analysis data
	3.3 Analysis results
	4. User interface
	5. Analysis routines
	5.1 Introduction
	5.2 Static analysis
	5.3 Dynamic analysis
	5.4 Invariant Analysis
	5.5 Data Structures
	A: The equation solver gold
	References

