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ABSTRACT

For a real-time shared-memory database with optimistic concurrency control, an approxima
tion for the transaction response-time distribution is obtained. The model assumes that transac
tions arrive at the database according to a Poisson process, that every transaction takes an ex
ponential execution time and uses an equal number of data-items uniformly chosen, and that
the multiprogramming level is bounded. The analysis is based on a decomposition approach:
results for the closed system with a fixed number of transactions are used to derive the response
time distribution in the open system with Poisson arrivals. Numerical experiments that compare
analysis with simulation indicate that the approximation for the throughput and the response
time distribution works well for the closed system. For the open system the approximation for
the response-time distribution is useful if the load is not too high.

1. INTRODUCTION

Real-time databases combine the requirements of both databases and real-time systems. In a
database, transactions (database requests) should preserve database consistency. Subject to this
consistency requirement, the transaction throughput of the database should be maximized. In a
real-time system, the main requirement is timeliness, i.e., transactions must be executed before
their deadlines. Soft real-time systems are allowed to miss some deadlines when the system is
overloaded, but at least a certain fraction of the transactions should meet some prescribed dead
line. In a real-time database, both consistency and timeliness are important. We investigate soft
real-time databases in this paper and are interested in the probability that a transaction meets its
deadline.

To benefit from the increase in CPU power that parallel computer architectures offer, transac
tions on databases should be executed concurrently. However, concurrent execution can destroy
database consistency if conflicting transactions are incorrectly scheduled. Two transactions con
flict if they access the same data-item, at least one of them with the intention to write. Concur
rency control schemes govern the simultaneous execution of transactions such that overall cor-
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rectness of the database is maintained (see e.g. [7]). The two main concurrency control schemes
are locking and optimistic concurrency control.

Under the locking scheme, an executing transaction holds locks on all data-items it needs for
execution, thus introducing lock waits for transactions that conflict with it. Consistency is guar
anteed, however chains of lock waits can lead to long transaction response times.

When the conflict probability is low, it can be advantageous to use the optimistic concurrency
control (aCC) scheme proposed in [4]. Under acc, all CPUs can be used for transaction pro
cessing at the same time. Each transaction is processed in three phases: an execution phase, a
validation phase and a commit phase. In the execution phase a transaction T accesses any data
item it needs for execution, regardless of the number of transactions already using that data-item.
In the validation phase, all items used by T are checked for conflicts. If a conflict has occurred
with a transaction that committed after T started, T must be rerun. If no conflicts occurred, T
completes successfully and enters the commit phase, where the data-items used by T are up
dated.

There have been numerous performance studies of locking and optimistic concurrency con
trol: simulation studies as well as analytical models. aur primary interest is in analytical per
formance studies. Therefore, the only simulation study we mention here is [1], which gives
an extensive treatment of the influence the modeling assumptions with respect to resources and
transaction behavior can have on the outcome of a performance study. A collection of analytical
models for locking is [8]. Analytical models for acc are [3] and [5]. Actually, [5] compares
the performance oflocking and ace. ather analytical comparative studies are [6] and [10].

All analytical studies cited above are stochastic analyses that only consider average system
performance. Typical performance measures studied are the throughput, the mean response time,
the probability of a lock wait, and the average number of restarts needed for a transaction under
ace. To our knowledge, except for the study [2] for a variant of locking, no analytical perfor
mance studies of real-time databases exist that address the variance or the distribution of the
response time. An approximation for the response-time distribution is needed to estimate the
probability that a transaction meets its deadline, or the percentage of transactions that miss their
deadline; these quantities cannot be derived from the throughput alone.

In this paper we approximate the response-time distribution in a multi-processor shared-me
mory database with optimistic concurrency control. The approach is based on the throughput
analysis [6] of Morris and Wong. The model is explained in Section 2. In Section 3, an approx
imation is derived for the response-time distribution in a closed system with a fixed number of
transactions, and its results are compared with simulation results. In Section 4 we analyze the
response-time distribution in an open system with Poisson arrivals and test our approximation
against simulation. Section 5 contains some concluding remarks.

2. THEMODEL

We model acc in a shared-memory environment with N parallel CPUs as a multi-server
queueing system with feedback, see Figure 1 for an illustration. In the dashed area, which rep
resents the N CPUs, at most N transactions can be present. Each transaction is handled by one
CPU and either leaves the system (after a successful execution), or is rerun (in case of a conflict).
We assume that the time needed for one execution plus validation of a transaction is exponen
tially distributed with parameter fl. Further, it is assumed that the commit phase takes negligi-



ble time compared to execution plus validation, and that the validation can be efficiently imple
mented such that parallel validation is possible. The assumption that commit takes negligible
time compared to execution plus validation is reasonable, since there are no disks attached to
the system and all data-items are in main memory. Transactions arrive at the database accord
ing to a Poisson process with rate A. An arriving transaction that finds all CPUs busy joins the
queue. As soon as a CPU is freed by a departing transaction, the transaction that is first in queue
is taken into execution. We also refer to execution plus validation as one transaction run.

.---------------------, ,
: N:, ,, ,, ,. ,,, ', ,, ,, ,

c..:......-lt/I-+:--,--I ,,,,,,,,,,,,
:,,,
~--------------------~

Figure 1. Queueing model of the open system

The model described is largely the same as the model of Morris and Wong [6]. With regard
to transaction behavior, in accordance with Morris and Wong we assume that

• each transaction uses exactly a data-items, uniformly picked from the total set of d items,
• the time needed for a rerun of a transaction exactly equals the time of the first run, and
• all transactions write the data-items accessed, so there are no read-only transactions.

In light of these assumptions, we define b as the probability that two arbitrary transactions con-

flict. Then b can be computed from b = 1 - (d -;; a) / (~). In the remainder of this paper, we

will characterize the occurrence of conflicts only in terms of b.
We are aware that some of the assumptions made are not realistic (e.g., the exponentially

distributed execution time) or very restrictive (e.g., the uniform data-access pattern). However,
for our first attempt at analyzing the response-time distribution of a real-time database with OCC,
all these assumptions are needed. Once this model has been analyzed satisfactorily, the analysis
will be extended such that some restrictive assumptions can be dropped.

The queueing model ofFigure 1 is no standard feedback model. The probability that a transac
tion T must be rerun is not fixed, but depends on the number of transactions that departed (com
mitted) during the execution of T. The number of departures during T's execution depends on
the length of T's execution and on the number of concurrently executing transactions.

We analyze the model using a decomposition approach. First we approximate the response
time distribution in a so-called closed system with a constant population (multiprogramming
level) of k transactions (k :::; N). The population is kept constant at k by admitting a new
transaction to the system as soon as another transaction has committed. Next we consider the
open system with Poisson arrivals and approximate the distribution of the response time using
the results of the closed system. Such a decomposition approach has become fairly standard for
computing the throughput and average response time of complicated queueing systems. We will
investigate for the model of Figure 1 if the decomposition approach also gives accurate results
if it is used to approximate the entire distribution of the response time.



j---------------------I
~ k :
,,,,,,,,,,

3.1. Analysis
The closed system was analyzed by Morris and Wong [6]. They derived an approximation for

the mean response time of a transaction. The analysis of Morris and Wong can be extended to
an approximation for the entire distribution of the response time. In order to show this, we first
restate the throughput-analysis of [6], using our own notation. Morris and Wong make the fol
lowing assumption.

Commit Assumption: In the closed system with multiprogramming level k, a transaction T
in execution observes other transactions to commit (leave the system) according to a Poisson
process with rate ak.

In order to determine the rate ak at which T observes the other (k - 1) transactions to commit,
we note that ak is (k - 1) times the rate at which one CPU commits transactions. The total time
a transaction spends in the system is ix if it requires i runs and has execution time x. Define
R k (x) as the number of runs needed for a transaction with execution time x. Denote the response
time of a transaction with execution time x by Sk(X). Then Sk(X) = Rk(x )x. By the commit
assumption, the probability that a transaction with execution time x has to be rerun is 1- e-C<k bx •

Thus

Figure 2. Queueing model of the closed system

,,,,,,,,,,,,,,,,, ,
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We consider the closed system of Figure 2, for a fixed multiprogramming level k. After a
transaction run, a transaction can either be fed back for a rerun (requiring the same amount of
time as the previous run), or leave. The moment a transaction leaves, a new transaction with a
freshly drawn execution time enters the system.

For both the closed and the open system, numerical results from the analysis are compared
with simulation results. In the simulation programs, the probability that a committing transaction
conflicts with a transaction in execution is taken equal to b, in agreement with the above model
description. Thus, no actual lists of data-items are used in the simulations. Also, the simulations
take the time needed for a rerun of a transaction exactly equal to the time of the first transaction
run.

3. RESPONSE·TIME DISTRIBUTION IN THE CLOSED SYSTEM



Hence, the expected response time of a transaction with execution time x is
00

E[Sk(X)] = L ixP(Rk(x) = i) = xe(Xk bx .
i=l

Define Sk as the response time of a transaction in the closed system with population k. Condi
tioning on the exponential execution time gives E[Sk] = fll(fl- cxkb)2. The long-term rate at
which a CPU commits transactions is 1/E [Sk], so

CXk = (k - 1) (fl- cxkb)2 (1)
fl

Now CXk can be solved from the quadratic equation (1). This yields

fl(1 + 2(k - l)b) - flV1 + 4(k - l)b (2)
CXk = 2(k _ l)b2 '

the second root of (1) being excluded by the requirement fl- cxkb > 0, which is needed to ensure
that E[Sk] is finite. An interpretation ofthe requirement fl- cxkb > 0 is the following. Consider
an arbitrary transaction T and define a T -invalidation epoch to be an epoch at which a transaction
commits that conflicts with T. Then fl- cxkb > 0 says, that the average time needed for one run
of T should not exceed the average time between two T -invalidation epochs: IIfl < IIcxkb.

Next, we extend the analysis of Morris and Wong to an approximation for the distribution
function of the response time Sk. Consider a transaction T with execution time x. Then

00

P(Sk(X) ~ t) = L P(Sk(X) ~ t IRk(X) = i)P(Rk(X) = i)
i=l

1 - (1- e-(XkbX)L~J, x ~ t.

Hence, under the commit assumption, with CXk given by (2),

P(Sk ~ t) = 1 - e-/l-t-it(1- e-(Xkbx)L:~Jfle-/l-Xdx. (3)

Two remarks must be made. First, for high values oftheconflictprobability b(say b > 0.6), it can
happen that the approximation (2) for CXk returns a value smaller than k"k1 fl. This would imply
that the throughput of the system, estimated as k~ 1 cxk, is smaller than fl which can never happen.
The closed system always contains at least one successful transaction so has a throughput of at
least fl. Thus, the approximation for CXk must be corrected. It can be shown that this correction
is needed when b > (k - Yk)/(k - 1). Morris and Wong modify (2) to read

{

fl(1+2(k-l)b)-flVl+4(k-l)b if b<k-Yk
CXk = 2(k - l)b2 - k - 1

k-l
--fl otherwise.

k
Note that whenever this correction is necessary, acc is not an attractive concurrency control
algorithm anyway. acc was designed for databases with a small conflict probability (see [4]).

As a second remark, we note that it can be seen from (2), that CXk approaches fllb as k ap
proaches infinity. Also, CXk is strictly increasing in k. Hence, according to the analysis, the
throughput k~l CXk of the closed system increases monotonically to fllb. Thus if the number
of CPUs becomes infinitely large, boundedness of the throughput implies unbounded response
times.



Figure 3. Simulation versus analysis of P(SlO > t) and Ilk in closed system

3.3. Numerical results for the response-time distribution
Since the commit assumption seems to be reasonable, we may expect that the approximation

(3) of the response-time distribution is quite good. We are interested in the probability P(Sk > t)
that a transaction does not meet its deadline t. For good system performance, this probability
must be small. In this section, we test the quality of our approximation for P(Sk > t). The value
of P(Sk > t) produced by the analysis was compared with the simulation result, for various t
and k.

3.2. Verifying the commit assumption
The quality of the approximation for the distribution of the response time depends on the qual

ity of the commit assumption. Therefore, we studied the actual departure process of the closed
system by simulation. According to the commit assumption, the interdeparture time (i.e., the
time that elapses between two consecutive commits) is exponentially distributed with param
eter k:l ak· Simulation experiments indicated that the expected interdeparture time is indeed
approximately equal to (k - 1)j(kak). Moreover, the coefficient of variation ofthe interdepar
ture time in the simulations ranges from 0.98 to 1.03 so is very close to 1. Finally, simulation
showed that subsequent interdeparture times are practically uncorrelated and independent. Thus,
the commit assumption seems quite realistic.

(b) Ilk

J1k
k Sim Ana

b =0.01 2 1.96 1.96
6 5.47 5.47

10 8.51 8.52
b =0.10 2 1.67 1.68

6 3.18 3.22
10 3.99 4.04

b = 0.20 2 1.44 1.46
6 2.24 2.29

10 2.63 2.68
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(a) P(SlO > t)

For t ranging from 1 to 20, Figure 3(a) plots P(SlO > t). The lines show the analysis results,
the symbols simulation results. The different types of lines and symbols represent different val
ues of the conflict probability: b = 0.01, b = 0.1, and b = 0.2. In a database of size d = 1000,
b = 0.01 corresponds approximately to a transaction size a = 3, b= 0.1 to a = 10, and b = 0.2
to a = 15. The mean execution time (1/11) was taken equal to 1. The numerical integration
method used for evaluating (3) was adaptive Simpson's quadrature (with an error smaller than
lE-5). The figure shows that our analysis of the response-time distribution closely matches the
simulation. This is also true for other values of k « 10). The largest absolute difference found
is 0.02. Figure 3(b) contains simulation and analysis results for the throughput of the closed
system, denoted by Ilk. The differences between analysis and simulation are very small.



4. RESPONSE-TIME DISTRffiUTION IN THE OPEN SYSTEM

We now analyze the open system of Figure 1. Transactions arrive at the system according to
a Poisson process with rate A and transactions that find all CPUs occupied wait in a queue. The
response time consists of waiting time plus the time spent executing inside the dashed area.

where 7ro is computed from the normalization condition L 7ri = 1.
i=O

Support for part 1 is the fact that, as long as there are transactions waiting, the dashed area
of Figure 1 behaves like a closed system with N transactions, for which the commit assumption
gives a good approximation of the departure process. According to the commit assumption, the
departure process is a Poisson process. Thus the time until the next departure is approximately
exponentially distributed with parameter J-LN. Part 2 comes down to just ignoring that the num
ber of concurrently executing transactions changes through time. Whether this yields a good
approximation for the distribution of the time a transaction spends in the dashed area, cannot be
said beforehand. Approximation part 3 is (like 1) also based on the commit assumption. Under
the commit assumption, the system behaves as a state-dependent exponential server with rate
J-lk when k transactions are in service. The steady-state probabilities are thus approximated by
the steady-state distribution of a birth-death process with birth rate A and death rate J-Lk (with
J-lk = J-lN for k > N).

(4)

00

IT (-~-}o ,1 5, i 5, N

k(=\ )J-l~_N
- 7rN, i > N,
J-lN

4.1. Analysis
The system of Figure 1 resembles an M / G/ N queueing system, with the exception that the

service times are neither independent, nor identically distributed. As seen in Section 3, the dis
tribution of the response time of a transaction in the dashed area depends on the number of trans
actions concurrently in execution. In the open system, the number of transactions concurrently
in execution changes through time. Thus, the distribution of the service time in the open system
(i.e., the time a transaction spends in the dashed area) is not known beforehand. As no exact ex
pression exists for the response-time distribution of an M / G/ N system, there is not much hope
for an exact expression for the response-time distribution in the even more complicated model
of Figure 1. Therefore, an approximation for the response-time distribution is desired. Define
the throughput of a closed system with k customers by J-Lk (= k~l ak from Section 3). The ap
proximation we suggest consists of 3 parts:

1. Approximate the distribution of the waiting time Wi of a transaction that has i transactions
waiting ahead of it by an Erlang( i + 1, J-lN )-distribution.

2. For 1 ::; k ::; N, approximate the service-time distribution of a transaction that finds k-l
CPUs busy on entering the database by P (Sk ::; t), that is, the response time of a transac
tion in a closed system with population k. Approximate the service-time distribution of a
transaction that finds all CPUs busy on its arrival by P(SN ::; t).

3. Approximate the steady-state probability of having a total of i transactions in the system
by



00

Substituting the distribution of SN yields after some algebra

Using 1,2,3, and the PASTA [9] property, we get as approximation for the distribution of the
response time S in the open system:

(5)

N-l i (A) {r }P(S> t) = ~ II --;; 1r0 io (1 - e-ai+lbx)L~Jf.le-J.LXdx + e-J.Lt +
.=0 k=l f.l 0

{

e-(J.LN->..)t e-J.Lt _ e-(J.LN->..)t }
+ 1rNf.lN + +

flN - A flN - fl - A

i t {I [(J.LN->")X(1 -aNbx)]ll.J-l+ 1rNflN - e - e x e-(J.LN->..)(t-X)(e(J.LN->")X -1)(1 _ e-aNbx)
flN - A 0 1 - e(J.LN->')X(1 - e-aNbx )

+ (1 - e-("N-A)(t-l~J"»(1 - e-"N'")l~J } I'e- P"dx.

The remaining integrals in the expression have to be evaluated numerically. They are of the same
type as the integral in the approximating expression for P(Sk > t) in Section 3.

4.2. Numerical results for the response-time distribution
We tested the quality of the approximation for P(S > t) against simulation, for the three cases

b = 0.01, b = 0.1 and b = 0.2 (fl = 1). In order to prevent that the number oftransactions in the
system explodes, the transaction arrival rate AN for a system with N CPUs should not exceed
flN, the maximum throughput when all N CPUs are used. Therefore, define p = AN / flN as
a measure for the load (utilization) of the system. We considered systems with p = 0.5, 0.7,
0.8, and 0.9, for which numerical results are given in Table 2(a), (b), (c), and (d), respectively.
Arrival rate AN was computed from AN = pflN. The value flN was obtained from the analysis of
the closed system. As seen in Section 3, the analytical approximation for flN seems to be quite
good. However for large P (0.9), the errors relative to 1 - Pbecome important.

N-l 00

P(S> t) = 2: 1riP(Si+I > t) +2: 1riP(Wi-N +SN > t),
i=O i=N

L 1riP(Wi-N + SN > t)
i=N

with Wi an Erlang( i + 1, flN )-distributed variable, and 1ri given by (4).
Evaluating the second term of (5) by conditioning on Wi- N and by assuming independence

of W i - N and SN gives

1rNflN e-J.LNte>..t + 1rNflN [e-J.Lt _ e-(J.LN->..)t]
flN - A flN - f.l - A

+ 1rNf.lN it e-(J.LN->")y i
t
-

y
(1 - e-aNbx )l7Jfle-J.LXdx dy. (6)

The latter double integral can be reduced to a single integral. Our approximation for the response
time distribution thus is



The tables contain simulation and analysis results for E[S], P(S > 2), P(S > 10), and either
P (S > 5) or P(S > 20). As the mean work requirement of a transaction is 1, P (S > t) corre
sponds to the probability that a transaction spends more than t times its average required execu
tion time in the system. Note that we evaluated the integrals in the approximation for P(S > t)
by adaptive Simpson's quadrature, with an error smaller than lE-5.

The accuracy of the approximation compared to simulation is summarized in Table 1. When
b = 0.01, the approximation is excellent for all considered values of p. When b = 0.1, the
approximation is good for p up to 0.8, but is not accurate for p = 0.9. Finally, when b = 0.2
the approximation is only satisfactorily accurate for p = 0.5 and 0.7. For b = 0.2 and p = 0.8
or 0.9, the approximation is quite bad: the analysis differs too much from the simulation and
severely underestimates E[S] and P(S > t). The reason for the discrepancy between analysis
and simulation in these cases is twofold.

Table 1
Accuracy of the analysis compared to simulation

b
P 0.01 0.10 0.20

0.5 ++ ++ +
0.7 ++ + +
0.8 ++ +
0.9 +

The first part of the discrepancy is caused by the error we make in estimating the throughput Ilk
of the closed system (k :::; N). In Figure 3(b) of Section 3, we saw that this error is quite small,
but in open systems with a high load, a small error in the throughput estimate can result in a large
error in the system performance. Since we overestimated IlN and chose )w = 0.9IlN, the actual
utilization ofthe open system is not 0.9 but larger. E.g. for N = 10: '\10 = 0.9·4.04 = 3.64, and
;:~~ = 0.91 for b = 0.1. For b = 0.2, '\10 = 0.9 . 2.68 = 2.41, and ;::~ = 0.92. So the systems
we looked at with presumed utilization 0.9 in reality have higher loads. As the performance
measures involve the term 1 - p, an error of 2 percent in p leads for p = 0.8 to an error in the
response time S in the order of 10 percent, for p = 0.9 even to an error of 20 percent.

Even if the throughput is estimated perfectly, so if the analysis is done with values for Ilk re
sulting from a simulation of the closed system, there still remains a gap between analysis and
simulation. This remaining second part of the discrepancy between analysis and simulation is
caused by the 3-part approximation we used (as described in Section 4.1). Roughly said, this 3
part approximation accounts for two-third of the gap between analysis and simulation, and the
throughput error accounts for one-third of the gap.

We investigated which of the 3 approximation parts is responsible for the bad results. It turned
out from simulation experiments, that the waiting-time distribution of a transaction that has i
transactions waiting ahead ofit is well approximated by an Erlang( i +1, IlN )-distribution. Also,
simulation showed that P(Sk :::; t) [P(SN :::; t)] is a fairly good approximation for the service
time distribution of a customer that finds k - 1 [N] CPUs busy upon arrival (k :::; N). So part
1 and 2 of the approximation describe the system well. Hence, the most severe error must have
been made in approximation part 3: the approximation for the probability 7ri that i transactions
are in the system. This conclusion was confirmed when we repeated all analysis experiments



without part 3 as approximation for the probabilities Jri but with simulation results for Jri (for
i :s; L with L large). The analysis then produced values for P (S > t) that were almost identical
to the simulation results for P(S > t) (even though the ilk'S used were not exact).

Thus, for high system loads the approximation for P(S > t) should be improved by improv
ing the approximation for the steady-state probabilities of the model. This however is not easily
done. The system resembles an M / G/ N system but has dependent service times of which the
distribution is not known beforehand: the distribution depends on the number of transactions ex
ecuting concurrently. Treating the system as an M / G/ N system with the service time of every
customer distributed as the random variable SN leads to a clear overestimation of the response
times, so is not feasible. Furthermore, simulation experiments showed that the squared coeffi
cient of variation c2 of the time a transaction spends in the dashed area of Figure 1 is very large
(e.g. for p = 0.9, when b = 0.1: c2

::::::; 2 for N = 2 up to c2
::::::; 25 for N = 10; when b = 0.2:

c2
::::::; 2 for N = 2 up to c2 > 100 for N = 10). Consequently, existing MjG/N approxima

tions, which are all only appropriate for c2 :s; 2, cannot be used and failed when we tried them.
Finally, using the first two moments of the service time from simulation, fitting a hyperexponen
tial distribution to these moments, and modeling the open system as an M / HdN system (for
which the probabilities Jri can be determined exactly) also did not give us a good approximation
for Jri.

The conclusion from the numerical experiments is, that we have a good approximation for the
response-time distribution of a transaction in open systems with a load up to 0.8. For p = 0.9
and b = 0.01, the approximation also serves well. For p = 0.8 and b = 0.2, or p = 0.9 and
b = 0.1 or b = 0.2, the system is so volatile that it is very difficult to find a good approximation
for the response-time distribution. However, designers of real-time databases would then proba
bly choose another (non-optimistic) concurrency control algorithm anyway, since OCC performs
badly in these cases (the response-time distribution has a very fat tail).

5. CONCLUDING REMARKS

We analyzed the response-time distribution in a real-time shared-memory database with opti
mistic concurrency control. The analysis went beyond previous performance studies because not
the average but the entire distribution of the transaction response time was considered. Knowl
edge about the response-time distribution is essential for the design of real-time database sys
tems. For a given database design, the response-time distribution indicates which percentage of
transactions will miss its deadline. The number of CPUs needed to guarantee that this percent
age does not exceed some prespecified value can thus be obtained from an approximation for the
response-time distribution.

Approximations were derived for the response-time distribution in a database with a fixed mul
tiprogramming level (the closed system), and for the response-time distribution in a database
where transactions arrive according to a Poisson process (the open system). The approximation
for the response-time distribution in the closed system was within a few percent of a simula
tion of the closed system. For the open system with utilizations up to 80%, the approximation
also performed satisfactorily compared to simulation. However for higher loads, the resulting
approximation for the response time in the open system is too optimistic, so cannot be used to
give performance guarantees. One reason for the bad results is that under high loads a small
error in the approximation of the throughput leads to a large error in the approximation of the



response-time distribution. The other reason for the large error in the approximation is the use of
the flow-equivalent-server concept to approximate the steady state of the system. It is of utmost
importance that an alternative to the flow~equivalent-serverapproximation is sought that does
perform well under high system loads. Such an alternative method would be a very significant
step forward in the analysis of queueing networks.

For the cases where the analysis works well, it is worthwhile to try some extensions of the
model. Presently we are considering non-exponential work requirements and the so-called broad
cast-OCC scheduler. Under broadcast OCC, a transaction is aborted and rerun immediately when
a conflicting transaction commits.

Finally, we note that for the cases where the analysis did not do well (that is, when both the
conflict probability and the system load are high), OCC is not advisable anyway, since the per
centage of transactions that miss their deadline is high. Then pessimistic concurrency control
schemes in which data-items are locked before they are accessed and in which only one transac
tion can use a data-item at a time will perform better. We intend to make an analytical comparison
of the response-time distribution in databases with locking (see [2]) and ace.
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Table 2: Response-time distribution in open system

E[S] peS > 2) P(S> 5) P(S> 10) E[S] P(S> 2) pes > 5) P(S> 10)
N AN f1N Sim Ana Sim Ana Sim Ana Sim Ana N AN f1N Sim Ana Sim Ana Sim Ana Sim Ana

b = 0.01 2 0.98 1.96 1.35 1.35 0.23 0.23 0.02 0.02 0.00 0.00 b = 0.01 2 1.37 1.96 2.01 1.99 0.38 0.38 0.08 0.07 0.01 0.00
6 2.73 5.47 1.08 1.09 0.15 0.15 0.01 0.01 0.00 0.00 6 3.83 5.47 1.27 1.27 0.19 0.20 0.02 0.02 0.00 0.00

10 4.26 8.52 1.09 1.10 0.15 0.15 0.02 0.02 0.00 0.00 10 5.97 8.52 1.20 1.20 0.17 0.17 0.02 0.02 0.00 0.00
b = 0.10 2 0.84 1.68 1.50 1.49 0.25 0.25 0.04 0.04 0.01 0.01 b == 0.10 2 1.17 1.68 2.42 2.26 0.41 0.41 0.13 0.11 0.02 0.01

6 1.61 3.22 1.43 1.43 0.19 0.19 0.05 0.04 0.01 0.01 6 2.25 3.22 1.85 1.85 0.25 0.26 0.07 0.07 0.02 0.02
10 2.02 4.04 1.58 1.55 0.20 0.19 0.06 0.05 0.02 0.02 10 2.83 4.04 2.00 1.99 0.23 0.23 0.08 0.07 0.03 0.03

b == 0.20 2 0.73 1.46 1.64 1.63 0.26 0.26 0.05 0.05 0.01 0.01 b == 0.20 2 1.02 1.46 2.84 2.52 0.43 0.43 0.16 0.14 0.04 0.03
6 1.15 2.29 1.71 1.66 0.21 0.20 0.06 0.05 0.02 0.02 6 1.60 2.29 2.36 2.31 0.27 0.28 0.10 0.09 0.04 0.03

10 1.34 2.68 1.90 1.81 0.22 0.20 0.07 0.06 0.03 0.02 10 1.88 2.68 2.66 2.54 0.25 0.25 0.10 0.09 0.05 0.04

(a) p = 0.5 (b) P = 0.7

E[S] P(S> 2) peS > 10) pes > 20) E[S] P(S> 2) P(S> 10) P(S> 20)
N AN f1N Sim Ana Sim Ana Sim Ana Sim Ana N AN f1N Sim Ana Sim Ana Sim Ana Sim Ana

b == 0.01 2 1.57 1.96 2.88 2.83 0.51 0.51 0.03 0.02 0.00 0.00 b = 0.01 2 1.76 1.96 5.62 5.36 0.71 0.71 0.16 0.15 0.03 0.02
6 4.37 5.47 1.56 1.55 0.27 0.27 0.00 0.00 0.00 0.00 6 4.92 5.47 2.52 2.43 0.47 0.47 0.02 0.01 0.00 0.00

10 6.82 8.52 1.37 1.37 0.21 0.21 0.00 0.00 0.00 0.00 10 7.67 8.52 2.01 1.92 0.37 0.36 0.01 0.01 0.00 0.00
b = 0.10 2 1.34 1.68 3.65 3.24 0.55 0.54 0.07 0.05 0.01 0.00 b = 0.10 2 1.51 1.68 7.61 6.21 0.74 0.73 0.26 0.20 0.08 0.04

6 2.57 3.22 2.50 2.36 0.35 0.36 0.04 0.03 0.01 0.01 6 2.89 3.22 5.30 3.91 0.59 0.56 0.15 0.08 0.04 0.01
10 3.24 4.04 2.44 2.43 0.28 0.30 0.04 0.04 0.01 0.01 10 3.64 4.04 4.74 3.68 0.51 0.49 0.12 0.06 0.04 0.02

b = 0.20 2 1.17 1.46 4.68 3.66 0.58 0.56 0.12 0.07 0.03 0.01 b = 0.20 2 1.31 1.46 11.6 7.08 0.78 0.74 0.38 0.25 0.18 0.06
6 1.83 2.29 3.39 3.06 0.38 0.39 0.06 0.05 0.02 0.02 6 2.06 2.29 13.4 5.25 0.66 0.60 0.29 0.14 0.15 0.03

10 2.14 2.68 3.43 3.27 0.31 0.33 0.06 0.05 0.02 0.02 10 2.41 2.68 8.12 5.22 0.56 0.52 0.20 0.11 0.10 0.03

(c) p = 0.8 (d)p = 0.9


