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Summary

The Draw and Wall Ironing (DWI) process is a metal forming process, in which a deep
drawing step is followed by a wall ironing operation, resulting in a thin walled, cylin-
drical product. Industrial application is found in a large number of products: food
and beverage cans, battery housings, and gas and hydraulic cylinders. Currently, food
and beverage cans are lacquered on the inside and outside of the can. Several washing
steps are necessary to remove lubricants and emulsions. The washing and lacquering
of the cans are costly and, moreover, cause a significant environmental load.

In this thesis, an alternative method is studied, in which polymer coated sheet
metal is formed into a can. The coating functions as: (1) a lubricant during deforma-
tion, (2) a protection layer against corrosion (at the inside of the can), and (3) a basic
lacquer (at the outside of the can). It is expected that this approach cuts production
costs and leads to a significant reduction in environmental pollution.

To efficiently optimise the can making process and attain product innovation, the
use of numerical simulation is essential. The forming process is characterised by
large, localised strains, the movement of free surfaces, and, due to the high production
speeds, a significant thermo-mechanical coupling. To simulate the forming process, a
finite element model has been developed based on an Arbitrary Lagrange Euler (ALE)
description using an Operator Splitting technique (OS-ALE). After a Lagrange step, re-
sulting in an amount of mesh distortion, the positions of nodes are adapted such that
computation can be continued with a well conditioned mesh. State variables, such as
stresses and plastic strains, are transported to the new mesh with the Discontinuous
Galerkin (DG) method, which is an appropriate technique to transport discontinuous
variables accurately.

Due to the high deformation rates in the DWI process, both metal and coating ex-
hibit elasto-viscoplastic material behaviour. An analogous constitutive model is used
to describe this behaviour: the generalised compressible Leonov model. For the metal
and the polymer, a Bodner-Partom and an Eyring viscosity function are used, respec-
tively. Material parameters are determined by tension and compression tests at high
deformation speeds and under high hydrostatic pressures.

To verify the model, an experimental device has been built, in which thin strips
of polymer coated sheet metal are ironed. By employing a numerical-experimental
method, computed and measured global forces can be compared. Moreover, displace-
ment fields can be measured using a digital image correlation technique and com-



pared with simulation results,

The developed and experimentally validated finite element model of the wall iron-
ing process of polymer coated sheet metal can be used to design food and beverage
cans quicker and more efficiently. Influences of critical design parameters in the pro-
cess, such as die angle, material choice, deformation speed, and imposed reduction
have been examined. An easily manageable set-up has been realised in which realis-
tic experiments with respect to process conditions can be performed supporting the
choice of metal, coating, and tool.
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Chapter 1

Introduction

1.1 General introduction

Extensive development of can making techniques and of the raw materials used in
their manufacturing has taken place over the last 30 years. Considerable research ef-
fort has been put into the development of several new sophisticated drawing tech-
niques. Most of these are now firmly established in mass production. The standard
material to manufacture cans is so-called tinplate, which is essentially low carbon
steel between 0.14 and 0.49 mm thick, covered with a very thin coating of pure tin. The
tin layer gives the can an attractive appearance and has also tribologically favourable
properties.

Since the beginning of this century three-piece cans have widely been used for
packaging applications. They consist of a cylindrical body and two separate ends. In
early days, these parts were soldered together, but nowadays this is done in a welding
step. The ends are made from circular blanks, which are pressed into rather complex
membranes. The contour consists of a countersink, expansion rings and a seaming
panel. It has this shape to support internal pressure through tensile rather than bend-
ing stresses.

However, quality demands, cost considerations and convenience have led to new
approaches: the Draw Redraw (DRD) and the Draw and Wall Iron (DWI) process.
These techniques produce two-piece bodies, consisting of a cylindrical body and bot-
tom end in one piece, and a separate top end. Cans used for meat spreads, snack
foods, pet foods, and such (Figure 1.1) are made by the draw redraw method, while
beer and beverage cans (Figure 1.2) are mostly made by the DWI process.

DRD is a forming technique in which a deep drawn cup is redrawn once or twice
to one of a smaller diameter, resulting in a larger height. The advantages of the DRD
can over the three-piece can are that it is free of a side seam and has only one double
seam. Main disadvantage of the DRD technique is that it results in an unnecessar-
ily thick-walled and, thus, expensive product. An interesting application with DRD
products is the use of pre-lacquered plate material, thus avoiding costly and difficult
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Figure 1.1. Two-piece (DRD) and three-piece Figure 1.2. Typical DWI products.
tins.

post-cleaning and spray-lacquering (Morgan, 1985).

DWI is a forming technique, where a thin metal blank is subjected to a deep draw-
ing step, followed by three wall ironing operations in a so-called bodymaker (see Fig-
ure 1.3), resulting in a thin walled, cylindrical end product with a relatively thick can
end. The attainable height-to-diameter ratio is higher than in DRD products. Since
the introduction of DWI cans in the late 1960’s, there has been a drive to reduce the
unit cost of production (Nichols et al., 1995). In addition to this, there are legislative
and public pressures to reduce the overall packaging volume of consumables.

Figure 1.3. The bodymaker deforms a deep drawn cup to a can by a redraw step (r) and three
wall ironing steps (1-3).

This project focusses on the DWI process for food and beverage cans. In the next
section, the conventional DWI process is discussed. A new approach for this process
is given in Section 1.3. In Section 1.4, the objective and the approach of this research
project are given. The outline of the thesis is summarized in Section 1.5.
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1.2 The conventional DWI process

The development of the DWI process was aimed at the production of cans with a large
height-to-diameter ratio for pressurised beverages. The standard production of a DWI
can consists of a number of stages (see Figure 1.5):

1.

Blanking and Drawing; a circular blank is cut from a strip of tinplate, a controlled
amount of drawing lubricant is applied, and the blank is drawn into a cup.

. Redraw: the cup is redrawn to a final can diameter either in a single- or double-

action press, or integrally at the beginning of the next stage (see Figure 1.3).

. Wall ironing;: in the bodymaker (see Figure 1.4), the wall of the cup is ironed by

three or four ironing rings in a single operation, to thicknesses of approximately
35% of the original. The rings, or dies, have to be manufactured to a high pre-
cision, and carbide inserts are used to minimise wear. Emulsions are added for
lubrication at each of the dies and for cooling. The typical industrial ironing ve-
locity is 10 m/s with an output rate of 300 cans per minute.

. Doming; at the end of the wall ironing operation a concave dome is formed in

the base of the can by a reverse redraw operation.

5. Trimming: the can is trimmed to the correct height to remove an irregular rim.

6. Washing: the forming lubricants are washed from the can in a thorough wash-

ing step employing water-based detergents or organic solvents to ensure near
absolute cleanliness, followed by a drying step using hot air.

Doming tool*

Figure 1.4. The bodymaker in which the punch moves with one ring in the toolpack. In the

right part of the photograph, the doming tool is visible.
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7. A basecoat is applied for improved appearance, and is cured in an oven.

8. Decorating: the desired label graphics is applied. An over-varnish application
improves the can abrasion resistance and enhances can graphic quality with a
glossy appearance. A coating is applied on the bottom of the can.

9. Curing: in an oven the inks and coatings are cured.

10. Necking: the top end of the can is reduced in diameter by a series of spin and or
die forming operations to facilitate the use of a reduced area end closure.

11. Inside spraying: the inside coating is sprayed into the can to protect the product
integrity. In case of steel cans, two ‘in can’ lacquering steps are necessary.

12. Curing: the inside coating is cured in an oven.

13. After transport to beverage or food manufacturers, the can is filled with food or
beverage.

14. Closing: the end closure is sealed to the end of the can.
15. In case of food beverages, a pasteurisation step is needed.

To give an idea of the size of the world wide can market, an estimate of the world
production per annum of metal beverage DWI cans is given in Table 1.1 (Brown and
Nutting, 1997). In Europe, steel and aluminium have equal shares, but worldwide alu-
minium has an 84% share of DWI beverage can making capacity (Bergeson and Reil-
ing, 1997). Apart from application in beverage cans, DWI cans are also used in pack-
aging applications as foods, aerosols and batteries.

Part of the world Cans in billions
The Americas 126.5
Asia and Australasia 63.7
Europe 36.6
Middle East and Africa 11.7
Total 238.5

Table 1.1. Estimated world production of DWI beverage cans (Brown and Nhtting, 1997).

1.3 Anew approach for the DWI process

Innovative can manufacturing technology focusses on the use of polymer coated sheet
metal. In this so-called ‘pre-finish’ approach, the sheet metal is coated with a poly-
meric coating before the deformation by deep drawing and wall ironing. Instead of
tinplate, Electrolytic Chromium/chromiumoxide Coated Steel (ECCS) is used. In this
thesis, ECCS is simply referred to as steel. Chromiumoxide promotes adhesion be-
tween steel and polymer coating. In this approach, the mechanical behaviour of the
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Figure 1.5. Drawing and wall ironing operation sequence (after Morgan (1985)).
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coating becomes a matter of major concern as the coating has to resist the large, lo-
calised deformation. The advantages of this approach over the conventional process
will be discussed.

Cheaper production process

Post-lacquering of the inside and outside of the can, and subsequent curing becomes
superfluous in the proposed pre-finish approach. In Figure 1.5, the obsolete process
steps are given in the dashed blocks.

Emission-free coating

A polymeric coating is an emission-free ‘lacquer’ after the forming process, which is
a hot item in coating technology caused by environmental pressure aiming at zero
emission. Note that in the DRD process with pre-lacquered plate still volatile solvents
are emitted during curing.

Shorter cycle times
The time of production will be significantly reduced by the omission of the outside
and inside curing times.

This polymer coating, thus, accomplishes a number of functions: environmentally
friendly lubrication, protection against corrosion, and emission-free coating. More-
over, the outside coating has an aesthetic function by ensuring the can looks appealing
on the shelf.

For food packaging, a major consideration is whether the coating will impart a
flavour or odour to the product or will absorb from the product. This consideration
includes the factor of solvent removal as well as the cure of the coating. The Food and
Drug Administration (FDA) in the United States, the European Economic Community
Directives, and similar safety regulations in most countries impose strict rules on ma-
terials used for food and beverage packaging. Furthermore, coatings should be acid
and sulphur resistant, and absolutely pore-free. Depending on the product packed,
the coating must be able to withstand temperatures from 63 °C for 45 minutes for
products such as beer, to as high as 121 °C for 90 minutes for some meat products.

When a pre-finish approach is used in the manufacturing process of cans, not only
the FDA restrictions, but also the mechanical behaviour of the coating deserves emi-
nent concern. In this thesis, poly(ethylene terephthalate) (PET) is considered as coat-
ing polymer. PET shows mechanical behaviour that favours its choice, such as a high
glass transition temperature, T, a high melting temperature T,,, and a phenomenon
that is termed strain induced crystallisation, which is the ability to undergo crystalli-
sation during processing. Due to this crystallisation, the mechanical resistance to de-
formation increases.
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1.4 Objective and line of research

In the past, can manufacturing design was largely based on empirical knowledge. Fur-
thermore, the evaluation of new designs is costly in terms of tooling and lead times.
Fundamental insight in the process, prediction of trends resulting from changed pro-
cessing conditions and variables, which dominantly influence the forming process,
can be obtained using Finite Element based methods (FEM). Therefore, the objective
of this research can be formulated as the development of an experimentally validated
FEM simulation model for the wall ironing process of coated sheet metal. The vali-
dated model can then be used in a design environment to perform material design
and process optimisation.

The success of this approach depends on the combination of numerical simulation
and experimental verification. The numerical simulation of the wall ironing process
must be able to analyse: '

¢ complex material behaviour: thermo-elasto-viscoplastic material behaviour of
both polymer and metal

e large, localised deformations
¢ moving, free boundaries
e contact and friction

The line of research is as follows: first, a FEM model has to be developed, which is
able to capture the above requirements. Material parameters have to be identified. An
experimental validation tool has to be built on lab-scale, which comprises the proper
forming operation allowing the measurement of important quantities. Finally, experi-
mental verification is obtained by the comparison of numerical results with measure-
ment data on a full-size industrial forming process.

1.5 Outline of the thesis

In Chapter 2, a material model will be presented that can describe the material be-
haviour of both polymer and coating. In this chapter, also attention is paid to the de-
termination of parameters in these constitutive models. To handle large deformations
and free boundaries, an Arbitrary Lagrange Euler method (ALE) based on an Opera-
tor Splitted procedure (OS-ALE) is introduced in Chapter 3. Numerical validation has
been performed to show its feasibility. Experimental and model validation of the sim-
ulation tool for the wall ironing process is described in Chapter 4. Finally, conclusions
are drawn and recommendations for further research are given in Chapter 5.






Chapter 2

Constitutive modelling

2.1 Introduction

Due to the extreme processing conditions in the wall ironing process with strain rates
and (true) strains, typically in the order of 10% s™ and 1, the deforming materials
behave elasto-viscoplastically. In this chapter, the generalised compressible Leonov
model is presented, which is used to describe the elasto-viscoplastic behaviour of both
polymer coating and metal.

First, the kinematics of the deforming continuum are given. The compressible
Leonov model is described in Section 2.3. It is shown that with only a minor adap-
tation the elasto-viscoplastic model according to Bodner and Partom is obtained. The
materials of interest in this thesis are: PET, steel and aluminium. In Section 2.4, the
identification of material parameters of these materials is discussed. The numerical
integration of the constitutive equations is described in Section 2.5.

2.2 Kinematics

The deformation of a continuum C is schematically shown in Figure 2.1. The trans-
formation of the undeformed material G, to its current configuration C; is described
by the deformation tensor F. The deformation tensor is defined as F(%,, 1) = (Y_'705c') c
where X() is the evolving position in time t of an arbitrary point with reference po-
sition %,, and V, is the gradient operator with respect to the reference configuration
C,. In the following, the time dependence is omitted. The multiplicative decomposi-
tion of the deformation tensor F into an elastic (F.) and a plastic contribution (F)) is
assumed to exist

F=F,F, @2.1)

This decomposition follows from Leonov’s postulate of a stress-free plastic interme-
diate configuration C,. As this decomposition is not unique with respect to rota-

9
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Figure 2.1. Total and relative deformation gradient tensors relating the configurations G,, C,,
Cp,and C.

tional contributions, an extra assumption is needed regarding the rotations. Further-
more, it is assumed that during plastic deformation the volume change is zero, i.e.
Jp =det(F,) = 1and thus J = det(F) = det(F,). After Simo (1987), the elastic volume
deformation is decoupled from the isochoric distortional deformation by the defini-
tion of the tensor F, according to '

F,=J5F, (2.2)

The left Cauchy-Green strain tensor B = F - F¢ is used as a strain measure. Its volume
invariant elastic part is given by »

B.=F,-Ff (2.3)

The velocity gradient tensor L = ( %ﬁ)c = F - F™! can be written as the sum of the sym-
metric deformation rate tensor D and the skew-symmetric spin tensor 2

L=D+9Q ; D=%(L+L‘) ; Q:%(L—LC) (2.4
Using Eq. (2.1), we can split L in an elastic and a plastic part
L=L+L, ; L.=F, F}! ; L,=F,-F,-F;'-F,'!  (25)

leading to associated tensors D,, D), Q2. and ©2,,. For a kinematical interpretation of L,
and Ly, usually an unloaded state or ‘natural reference state’ is introduced (Besseling
and van der Giessen, 1994). However, the orientation of the unloaded state is irrel-
evant for isotropic materials. Therefore, both the elastic and plastic spin tensors are
undetermined. To make the decomposition in Eq. (2.1) unique, 2 » is chosen equal to
the null tensor. It has been shown by e.g. Boyce et al. (1989), that this specific choice
regarding rotational contributions has no significant influence on the overall stress-
strain behaviour.
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2.3 Generalised compressible Leonov model

In this section, a unified constitutive model is presented for the description of large
strain, time dependent mechanical behaviour of both polymer and metal. PET is mod-
elled with a generalised compressible Leonov model with Eyring viscosity function,
whereas for aluminium and steel the same model is used with the Eyring viscosity
function replaced by a Bodner-Partom viscosity function.

2.3.1 Compressible Leonov model with Eyring viscosity function

The generalised compressible Leonov model is a compressible generalisation of the
Leonov model (Leonov, 1976), proposed by Baaijens (1991). In the Leonov model with
hardening, the Cauchy stress o is additively decomposed in an effective stress s and a
hardening stress w, according to:

Co=s+w (2.6)

The deviatoric part of the effective stress s is related to E: through the generalised
Hookean relation. The hydrostatic part s” is coupled to the volumetric deformations
(see Baaijens (1991)):

‘=GB! ; s"=«(U-DI @.7)

Here G represents the shear modulus, « the bulk modulus, and I the unit tensor.

Hardening is modelled according to Gaussian chain statistics after Haward (1993),
as this model is applicable to a large number of thermoplastic polymers, both amor-
phous and semi-crystalline, up to very high extension ratios. A three-dimensional
generalisation of the Gaussian approach results in the neo-Hookean relation (Ter-
voort, 1996; Timmermans, 1997)

w= HB" (2.8)

where H is the hardening modulus. Crystallisation is not explicitly modelled, as it
is not clear whether strain induced crystallisation of PET takes place during or after
deformation in the wall ironing process of PET coated sheet metal.

As the viscoplastic model describes time- and history-dependent behaviour, the
elastic (volumetric) strains must be updated by integration of appropriate evolution
equations for B, and J. For J we have

J = Jtr(D) (2.9)

where D is the deformation rate tensor.
The evolution equation for B,, being a tensor equation, must be objective with re-
spect to rigid material rotations. This implies that a so-called objective derivative must
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be employed. Here the Truesdell time derivative is used. Using the assumption that
the plastic spin tensor 2 p= 0, it can be shown (Timmermans, 1997) that the relation-

v
ship between this Truesdell derivative B, and the plastic deformation rate tensor D,
is given by

v v

B.=-D, B.—B.-D, with B,=B,— 1 B.,—B.-(I)° (2.10)
which can be used to update B, if, besides L?, D, is known. This plastic deformation

rate tensor is related to the deviatoric effective stress tensor s by the viscosity 7 :

1
D = _ g : 2.
P G, p T, D) @11)

where p represents the hydrostatic pressure in the material, T is its temperature and
D describes the intrinsic softening behaviour. The Eyring viscosity is specified by:

Ao

()

3I0

with A=Aoexp[§—;1+'li—f—D:l and 'L'o:R—VT

r"_—.

(2.12)

where

o= ,/gad cod (2.13)

is the equivalent Von Mises stress, A, is a time constant, AH is the activation energy,
R is the universal gas constant, T is the absolute temperature, u is a material param-
eter describing the pressure dependence, and V is the shear activation volume. The
current value of the softening variable D is determined from the evolution equation:

. D o
D=h{l1—-—) — 2.14
( Doo) «/é?) ( )

with initial condition D = 0, and where h is the softening slope and D, is the satura-
tion value of D.

2.3.2 Compressible Leonovmodel with Bodner-Partom viscosity func-
tion
Over the past three decades, many elasto-viscoplastic constitutive models have been

developed to describe rate dependent plasticity, creep, and stress relaxation of metals.
Bodner and Partom (1975) presented an elasto-viscoplastic model for metals, which
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has been applied to superalloys (Kolkailah and McPhate, 1990; Rowley and Thorn-
ton, 1996), aluminium alloys (Rowley and Thornton, 1996) and tin-lead alloys (i.e. sol-
ders) (Skipor et al., 1996).

The model has a similar base as the compressible Leonov model. Basically, a dif-
ferent viscosity function is chosen, which includes strain hardening behaviour instead
of an explicit hardening contribution in the constitutive equation. Again, plastic flow
is modelled according to a non-Newtonian flow rule, given by:

s

Dy = 2n(Ilp)

A principal feature is the assumption that the second invariant of plastic defor-
mation rate tensor Iy = 3Dy : D, is a function of the second invariant of the devia-
toric stress. This hypothesis is partially motivated by research in dislocation dynamics,
which has shown that the dislocation velocity and therefore the plastic strain rate is a
function of stress. In particular forms of this relationship, 1T D, which is a measure
for the dislocation velocity, is represented as a power function or as an exponential
function of the stress (Gilman, 1969). Rubin (1987) suggests the following generalised
form based on the work of Bodner and Partom:

Z 2n
HD,, =Toexp|— [5] (2.16)

where I’y is a constant, which reflects the smoothness of the transition from the elastic
to the (visco)plastic response, Z is the resistance to plastic flow, n is the rate sensitivity
of the viscoplastic response, and ¢ is the equivalent Von Mises stress. In accordance
with the evolution equation in the original Bodner-Partom model, the following form
for Z is chosen:

where Z; and Z; are the lower and upper bounds of Z (0 < Z, < Z < Z;), respectively,
and m > 0 is a material constant controlling the rate of work hardening. The vari-
able ¢, represents the equivalent plastic strain, which is defined by the following rate
equation

(2.15)

Ep= %D,, : D, (2.18)
Combining Egs. (2.13), (2.15) and (2.16), the viscosity function can be written as
& 1z
=——=¢exp|;5|= (2.19)
(Vv v (2 [o] )

The Bodner-Partom model corresponds to isotropic hardening and therefore does
not capture the Bauschinger effect. This can be accounted for by allowing D,, to alter
upon a change in sign of the load direction.



14 Chapter 2

2.4 Material parameters for the generalised compress-
ible Leonov model

For the presented constitutive models, parameter values have to be determined. The
usual strain rates to determine the parameters are in the order of 107 up to 1072 71,
However, in the industrial wall ironing process significantly higher strain rates occur.
Moreover, high hydrostatic stresses arise in the deformation zone during this process.
It is difficult to combine both a high strain rate and a high pressure in one experiment.
Therefore, several different experiments are performed, yielding one set of parame-
ters for each material fitting all experiments. In Subsection 2.4.1, the mechanical be-
haviour of PET is characterised. The material parameters of steel and aluminium are
identified in Subsection 2.4.2.

2.4.1 Material parameters for PET

PET Copolyester 9921W is a thermoplastic polyester copolymer that has been mod-
ified with 1,4-cyclohexanedimethanol (CHDM) to slow the crystallisation rate. The
test material has been supplied by Eastman Chemical Company, Kingsport (TN), USA.
The material shows initially (visco-)elastic material behaviour, followed by yield and
a substantial intrinsic softening, continued with strain hardening behaviour. Zaroulis
and Boyce (1997) combined mechanical tests with the differential scanning calorime-
try method (d.s.c.) to separate a contribution of molecular orientation from a strain-
induced crystallisation to hardening of PET with deformation. After a coating process
of the steel sheet, the PET layers are assumed to be in an amorphous state. Therefore,
experiments are done with amorphous PET.

The material parameters for PET are determined in two steps: first, yielding param-
eters are measured by tension tests under atmospheric conditions and under super-
imposed pressure. Then, the softening and hardening parameters are determined by
compression tests, as in tension necking results in an inhomogeneous deformation.

To determine the yielding parameters of PET, the yield stress is written as a function
of these parameters. For that purpose, viscosity equation (2.12) is rewritten in terms of

the equivalent Von Mises stress & = . /354 : s4 = 31(5)&,. Assumin: that, at the yield
q 3 p g yi

point, the total equivalent strain rate § = ZD: D is equal to the equivalent plastic
strainrate £, = /2D, : D, we can write:

+ 1 . o AH up

£= sinh( )exp(——= — ==+ D) (2.20)

\/§Ao \/gl'o *P RT To

This equation can be approximated by:

- 1 V30— H

= exp(3‘/— kP _AH | 5 2.21)

2+/34, Ty RT
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where we used the approximation sinh(x) = %(exp (x) —exp(—x)) ~ 5 exp(x), which
is allowed as 1y is in the order of 1 MPa and & in the order of 10-100 MPa. In case
of uniaxial tension under superimposed pressure p,, pressure p can be written as a
function of imposed uniaxial stress o

1
pP=po— -3—0' (2.22)

Substitution of Eq. (2.22) into Eq. (2.21) and omission of D as no softening has devel-
oped at yield, give for the initial yield stress o: '

AHT())

RT (2.23)

3 -
oy = ToIn(24/3408) + +
y «./5 +u ( 0 ( \/—AO ) K“po
This expression is used for fitting the experimental data up to yield.

At the Interdisciplinary Research Centre for Polymer Science and Technology (IRC)
in Leeds, tensile tests have been performed under high superimposed hydrostatic
pressures. The uniaxial tension tests have been carried out using a tensile device
placed in a pressurised oil chamber. The maximum pressure that can be obtained
is 800 MPa. In Figure 2.2, the yield stress is plotted against the imposed hydrostatic
pressure for a constant clamp velocity of 2 mm/min. The initial length of a specimen
is [ = 20.8 mm, giving an imposed strain rate of approximately 1.6 1073 s,

The measured curve can be compared with results of a study done by Christiansen
et al. (1971). They characterised the mechanical behaviour of several polymers under
high pressures, including PET. Their results are also depicted in Figure 2.2.

In Figure 2.3, the yield stresses of PET are plotted for a range of strain rates un-
der atmospheric conditions and superimposed pressures of 300 and 600 MPa. Only
a limited range of strain rates 10" — 1072 s™! can be covered by the tensile set-up un-
der hydrostatic pressure. In a conventional testing machine, oscillations of the device
hinder the determination of the yield stress for higher strain rates. The set of material
parameters {Ay, AH, u, 1o} have been determined using a least square fit of Eq. (2.23)
for all tension experiments. The fits are also shown in Figures 2.2 and 2.3.

The softening parameters h and D,, and hardening parameter H are determined
by compression tests with cylindrical specimens with an initial height hy, = 4 mm.
The stress-strain curve is measured for three deformation velocities: 0.6, 6 and 60
mm/min. In Figure 2.4, the measurements and fits of the compression tests are shown.
The constitutive model captures the severe softening after yield and subsequent hard-
ening.

In Table 2.1, the material parameters for PET are listed. Parameters G and K have
been supplied by the manufacturer.
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parameters
G K A AH To 7 Do | R H
[MPa] | [MPa] | [s!] | Umol™] | [MPa] | [] -] [ [-] | [MPa]
790 | 3670 |8.1107% | 2310° | 0.90 |0.047 |27.3|205| 26

Table 2.1. Material parameters for PET at room temperature.

2.4.2 Material parameters for steel and aluminium

The material parameters in the compressible Leonov model with the Bodner-Partom
viscosity are determined by uniaxial tensile tests. In uniaxial extension, the following
relations hold:

3. -
Ze?, ; 6=0 (2.24)

IIp =
where o is the tensile stress and &), is axial plastic strain rate. Substitution of these
relations into Eq. (2.16), this equation can be rewritten to yield:

In (— In (%\/FEE,,>> —2nIn(Z, + (Zy — Z)) exp(—mép)) +2nln(o) +1In2 =0
0

(2.25)

Using a least square estimator, the parameter set {Z, Z;, n, m} are directly fitted from
this relationship with the assumption that ¢ ~ &, for the range of (constant) strain
rates. Parameter I'y is fixed on 108 s"2, which appears to be a universal constant for a
range of metals, as reported in literature (Bodner and Partom, 1975; Rubin and Yarin,
1993; Kolkailah and McPhate, 1990; Chan et al., 1988; Rowley and Thornton, 1996;
Skipor et al., 1996).

Two metals are considered: steel (electrolytic chromium/chromiumoxide coated
steel (ECCS)) and annealed aluminium AA 1050. To determine the strain rate depen-
dence of the steel, the material is tested up to a velocity of 1.2 m/s (& = 27 s™! with
I, = 45 mm), as shown in Figure 2.5. Note that failure behaviour is not captured in the
constitutive models.

In the constitutive model for the metal, it is assumed that the material is not pres-
sure dependent. To validate this assumption, stress-strain curves of a uniaxial ten-
sile test under superimposed pressure are determined. In Figure 2.6, the stress-strain
curves are shown at atmospheric conditions and under superimposed pressures of
200 and 600 MPa for an imposed strain rate £ = 7.4 - 10" s™. No pressure dependence
is observed in the mechanical behaviour of the steel. ‘

The aluminium samples were cut from 1 mm thick stock sheet and annealed for
2.5 hours at 350°C. The annealing allowed us to obtain a stress-strain curve up to a
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Figure 2.5. Measured and fitted stress-strain = Figure 2.6. Nominal stress-strain curves for
curves for tension tests at different tension tests under superimposed
strain rates for steel (ECCS). pressure for steel (ECCS).

considerable strain, as shown in Figure 2.7. A significant influence of strain rate is
visible. Again, no pressure dependence of the metal is observed in the tensile tests at
astrainrate £ =7.4-10™ s}, see Figure 2.8.
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Figure 2.7. Measured and fitted stress-strain ~ Figure 2.8. Nominal stress-strain curves for
curves for tension tests at differ- tension tests under superimposed
ent strain rates for aluminium AA pressure for aluminium AA 1050.
1050.

The material parameters of both steel and annealed aluminium are given in Ta-
ble 2.2. Parameters G and K have been determined from measurements of the Young's
modulus and the Poisson’s ratio.

In this subsection, it has been shown that all materials exhibit elasto-viscoplastic
material behaviour. For the polymer, also pressure dependence should be taken into
account. For both metals, the assumption of pressure independent behaviour is justi-
fied up to high pressures.
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parameters
G K O n m Zy Z
[MPa] | [MPa] (s2] [-] (-] | [MPa] | [MPa]
steel 7.810* [ 1.5210°|1.010%|1.82| 20 810 930
aluminium | 2.610* | 7.8010* | 1.010% | 3.4 | 13.8 | 81.4 170

Table 2.2. Material parameters for steel (ECCS) and aluminium at room temperature.

2.5 Integration of the constitutive equations

Analysis of the DWI process implies that at every moment during the deformation his-
tory, the state of the deforming material must be determined. At every moment, the
state variables have to satisfy the balance equations - law of conservation of mass, of
momentum, of moment of momentum -, the constitutive equations, the boundary
conditions and the initial state. Certain state variables must be determined by inte-
gration of evolution equations over the total time history to determine their current
value. For the generalised Leonov model with the Eyring viscosity function, the evolu-
v

tion equations (2.9), (2.10) and (2.14) for 7, ii’e and D have to be solved in time, respec-
tively. For the model with the Bodner-Partom viscosity function, the latter variable is
replaced by Eq. (2.18) for 3 p-

Many constitutive models, including the Leonov model, are defined such that the
elastic spin tensor equals the total spin tensor, assuming the plastic spin tensor to be
zero. This implies that plastic strains are invariant: the directions of the plastic strains
are not affected by rigid body rotations. Especially for large rotations this is conve-
nient because the time derivative of the invariant plastic strains equals the material
time derivative. As the time derivative of the elastic strains is not objective, another
time derivative has to be used. Therefore, Rubin (Rubin, 1989; Rubin and Yarin, 1993;
Rubin and Attia, 1996) proposed to rewrite the evolution equation for the objective

Y

elastic strain B, into a much mere simpler evolution equation for the invariant plastic
strain. For this purpose, Rubin introduced the invariant plastic right Cauchy-Green
strain tensor C, and introduced the following general formulation for the constitutive
evolution equation:

C,=TA; T=G/n (2.26)

This equation states that the direction of the plastic strain rate is defined by the di-
rectional tensor A, while the plastic strain rate magnitude is governed by the charac-
teristic plastic deformation rate I'. Rubin showed that this alternative formulation, in
which a plastic predictor is used instead of a more common elastic predictor, resulted
in a fully implicit, robustly stable and efficient time integration procedure, suitable
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for numerically stiff evolution equations. In the next subsection, the compressible
Leonov model will be rewritten into Rubin’s formulation.

Numerical analysis implies that the state of the material is determined at a finite
number of discrete moments in time: ¢, : n =0, 1,2, ... The time increments At, =
In+1 — t, may have different lengths. Assuming the state at the begin increment time to
be completely known - with all equations satisfied -, the goal is to determine the equi-
librium state at #,,, the end of the increment. To integrate the evolution equations
during the increment, some assumptions have to be made. Also reformulation of one
of the evolution equations will prove to be advantageous. The incremental integration
procedure is described in Subsection 2.5.2. To simplify notation, we will consider the
last increment i.e. £, = t, the current time.

2.5.1 The Leonov model embedded in Rubin’s formulation

With the decomposition of the total isochoric deformation gradient tensor F into an
elastic and a plastic part, we can relate C, to B,:

F=F, -F, - C,=F,-F,=F.B . F @27

Taking the material time derivative of C,, results in:

v

~ ~ =] ~

=-F.B B, B F v ' (2.28)

(4

Cy
v = =
B.=-F.C;' ¢, C}F (2.29)
Lo Y

whereL=1’=F.F" is used. In the compressible Leonov model, B, is given by:
B -B. (2.30)
Combining Egs. (2.29) and (2.30) leads to the following expression for C p:

C,= g (é - %tr(iee)c,,) (2.31)

which is now written in the desired form € »=TA.

2.5.2 Incremental integration

To describe the kinematics of the incremental deformation, an updated Lagrange for-
mulation is used, where the reference configuration is chosen to be the begin incre-
ment state, configuration C, in Figure 2.9. The deformation tensor F, describes the
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F.

Figure 2.9. Total and relative deformation gradient tensors relating the relevant configurations.

incremental deformation and is defined by:
F,=F.F].. (2.32)

In each increment, the deformation path involves large rotations and, therefore, the
objectivity of the stresses must be preserved during the integration over time interval
Aty,. According to an integration scheme, proposed by Nagtegaal and Veldpaus (1984),
the incremental rotation is separated from the incremental deformation by the polar
decomposition F, = R, - U,. The incremental rotation tensor is initially left out of
consideration, while the rotation neutralised deformation tensor is assumed to evolve
in time with a constant rotation neutralised strain rate L = L° according to:

T—1In
Un@) = [0,] At L= 1 In(0) - @33)

where the bar superscript in L denotes the rotation neutralised form of L, defined as:
L=R°-L-R,. (2.34)

The evolving U,(7) and L are used to integrate the tensorial state variables (B,, o)
without considering any rotations. The rotations are incorporated afterwards using a
reverse operation of Eq. (2.34).

The implementation of Rubin’s formulation of the Leonov model in the updated
Lagrange environment is essentially the re-definition of the incremental rotation neu-
tralised plastic strain C,,(z) of Eq. (2.27):

C,, (v) = Un(r) - B () U.(0) (2.35)
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Using L'=0 n U ;1 =U ;,1 U n» the Rubin model in an updated Lagrange environment

becomes

. = 1 =

Cp,()=T(7) [C,,(r) - gtr(Be(r))Cpn(r)] (2.36)
where the incremental isochoric right Cauchy-Green strain tensor C,, is given by

Cn(v) = Un(x) - Un() (2.37)

In order to calculate C,,, rate equation (2.36) must be solved in time.

Integration of C,,

Equation (2.36) can now be approximated by an implicit backward Euler differential
scheme: '

Cp,(tn1) = Cp,(tn) = At (£n11) [&n(tn+l) - %U(Ee(tnﬂ))cp,.(tnﬂ)] (2.38)

Rearrangement of this expression results in the explicit relationship for C,, (£,4,):

A —=An) = '
Cp (b)) = =" €, (1) + Ans1Cy, (¢ (2.39)
p( +1) %U(Be(tn-}-l)) n( +l) n+1%p, ( n) ‘
where
1
Anpr = (2.40)

14 3 A LT (Ens ) (Be(tngr))

The scalar 1 is the so-called elasticity scalar, a state variable indicating the proportion
of incremental elastic/plastic strains with respect to the incremental total strains A=
1, fully elastic increment, and A = 0, fully plastic increment). Using Eq. (2.35) and
U.(t,) = I, we can write for C,,(tn):

Cp,,(tn) = f’n(tn) : ﬁel(tn) : f]n(tn) = ﬁel(tn) (2.41)

Assuming small incremental strains, the term %tr(f?e(t,ﬁ_ 1)) & 1, the total plastic strain
becomes:

Cp,(tnt1) = (1 — Any 1) Cr(tny1) + )»n+11~3;1(tn) (2.42)
where A, can be solved from

An+1(AtnF(tn+1) + 1) - 1 =0 (243)
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With a known A1, the deviatoric part of the Cauchy stress 0%, = Gi?:n .. can be ob-
tained by computing the plastic strain increment C,,(f,+:) from Eq. (2.36) and the
total elastic strain B, ,, from

€nt1

Eerﬂ-l =Ry,- ’Een+l ) R; = Fn : C;;},(tn+l) : I:':, (2.44)

where the bar transformation (2.34) and the definition of the incremental rotation
neutralised plastic strain (2.35) were used.
However, according to the viscosity definitions (2.12) and (2.19) the characteristic

plastic deformation rate I' = G/n is a function of equivalent stress o6 = ,/304: 09,
pressure p and -unknown- softening variable D or equivalent plastic strain &, for the
compressible Leonov model with the Eyring or the Bodner-Partom viscosity function,
respectively. Since this state variable is implicitly coupled to the unknown scalar A via
the equivalent stress in the evolution equation D (2.14) or & p (2.18), both this evolution
equation and the scalar equation for A (2.43) must be solved simultaneously in order
to obtain a reliable solution.

For the compressible Leonov model with Eyring viscosity, the evolution equation
is approximated with a backward Euler differential scheme:

AtD = Dpy1 — D, (2.45)
The coupled system of equations is given by:

f= A (At () +1) —1=0

g§= Dpn—Dp+At, D=0 (2.46)

For the compressible Leonov model with Bodner-Partom viscosity, one obtains the
next coupled equations after applying the same time discretisation scheme for £,

f= )"n+l(AtnF(tn+l)_+1)_l =0

- - ) 2.47
g§= gpn - 8Pn+l + Atné‘p =0 ( )

The coupled systems are solved using a Newton-Raphson iteration scheme.

2.6 Concluding remarks

In this chapter, it is shown that it is necessary to use advanced constitutive models
to capture the strain rate dependence of the materials and the pressure dependence
of PET. Moreover, PET exhibits a strong strain softening after yield which is followed
by considerable hardening behaviour. Compression and tension tests have been per-
formed to identify the material parameters in the constitutive equations. The assump-
tion that steel and aluminium behave pressure independent has been justified by ten-
sion tests under high superimposed pressure.
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The outline of an efficient solution procedure for the integration of the constitutive
equations has been presented. The formulation allows for a generic class of viscosity
definitions, where the viscosity is assumed to be a function of the equivalent Von Mises
stress, the pressure and a state variable, which has to be determined from an evolution
equation.
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Operator Splitted Arbitrary Lagrange
Euler method

3.1 Introduction

Extensive analytical work focussing on the DWI process has been done by Avitzur
(1968, 1983) using the upper bound method. He examined e.g. the influence of vari-
ations of the die angle and of friction coefficients on punch force, wall stresses in the
cup, and reductions in a single pass. Also the slab method has been employed to de-
termine the mean stress in the wall of the can (Saito et al., 1989; Kawai et al., 1992). To
obtain more accurate results, several authors (Odell, 1978; Huang et al., 1991; Tufekci
et al., 1995; Schiinemann et al., 1996), used the finite element method based on the
(updated) Lagrange formulation to simulate the (draw and) wall ironing process of
blank metal. In this formulation, a grid is fixed on the material that is deformed. In
that case, material points correspond to grid or mesh points. If deformations become
too large, the method may fail due to mesh distortion. For the wall ironing process
of polymer coated sheet metal, large deformations might occur, because the polymer
coating is relatively weak compared to the metal substrate.

An Euler formulation, using a finite element mesh which is fixed in space with the
material flowing through it, is not hampered by mesh distortion. This approach, how-
ever, is not very appropriate when free surface flows occur. The Arbitrary Lagrange
Euler (ALE) formulation is a suitable alternative as it decouples the motion of the com-
putational mesh from the motion of the material, see e.g. Schreurs ef al. (1986), Liu
et al. (1988), Huétink et al. (1990) and Baaijens (1993).

Globally, the ALE methods presented in literature are divided in two groups: first,
the method in which material and mesh points are updated simultaneously (Schreurs
et al., 1986; Liu et al., 1988), and, second, the approach, where the mesh points are
adjusted only after a Lagrange step to obtain a well conditioned configuration for the
next step (Huétink et al., 1990; Baaijens, 1993). The latter approach is more cost effec-
tive, while results are almost the same as those of the former method.

25
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In Section 3.2, the decoupled method, so-called Operator Splitted ALE, is eluci-
dated. Two transport methods are discussed in Section 3.3 and, based on a perfor-
mance study, a specific transport algorithm is chosen. In Section 3.4, the procedure is
numerically validated with two examples.

3.2 Operator Splitted ALE

By employing this approach, we need to solve the balance equations using the finite
element method in the Lagrange part of the procedure. In Subsection 3.2.1, this nu-
merical procedure is addressed, which is followed by a derivation of the consistent
stiffness matrix. In Subsection 3.2.3, the approach of the method is elucidated.

3.2.1 Numerical procedure and finite element formulation

At every time and in every material point, the balance laws representing conservation
of momentum, moment of momentum and mass have to be satisfied: - -

(%-a’)-{—if:ﬁ ; oc=0° ; o] = po Vi, V<t 3.1)

where o is the Cauchy stress tensor and g represents the body force per unit volume
in the current state. Taking T = ¢, the current time, the volume change between C,
and C; (see Figure 2.1) is represented by J = det(F), where F is the total deformation
gradient.

As described in the previous chapter, constitutive equations relate the stress o to
the strain B, and J. Current values of B, and J can only be determined by integrating

the evolution equations for B, and J over the total deformation history fp <t <t It
has been explained that this integration is only possible when the total time period is
subdivided into time increments. As before, we focus attention on the last increment
n. It is assumed that balance and constitutive equations are satisfied at the begin in-
crement time #,. The configuration G, is completely known. The state variables have
to be determined such that also at the current end increment time th+1 = t, balance
and constitutive equations, together with appropriate boundary conditions, are satis-
fied.

Instead of the equilibrium equation (% o)+ 4 =0, its weighted residual formu-
lation is a more suitable starting point for the solution procedure. Introducing the
weighting function w, its weak form reads:

Vi) :odQ= | w-GdQ+ [ #-pdT Vi@ (3.2)
Q(r) Q(t) re

where (¢) and I'(z) are the current volume and surface of the material and p rep-
resents the surface load per unit area in the current state. Using the deformation
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gradient tensor F, (see Figure 2.9), the integrals in Eq. (3.2) can be transformed to
integrals taken over Q, = Q(¢,) and I', = I'(¢,,). Also the gradient operator is trans-
formed according to V()= F!. V(). Writing the right-hand side, which represents
the external loads on the material as f_ (i, g, p), we have:

f (V) : (FL- o) det(Fr) A = foe(0, 3, B)  Vid(F) 3.3)
Qn

Taking the begin increment state G, as the reference configuration for deformation
variables, is known as the updated Lagrange procedure.

Starting from the known configuration C, at ¢ = t,, the above equation can be
used to determine the current state C.. Because of the large deformations occurring
in the current increment and the history dependent material behaviour, the value of
the state variables at the current time can not be determined directly. The well-known
Newton-Raphson iteration procedure is used to determine a sequence of approximate
solutions until Eq. (3.3) is satisfied to a certain degree of accuracy.

To describe the essential steps of the iteration procedure, it is assumed that an
approximate state C* is determined with values for F}, o* and the other state vari-
ables. The unknown current values are writtenas F, = H- F* = (I +8H) - F*and o =
o* 4 8o, where 8(.) indicates the difference between C* and C,, and 6H = (%*655)6,
where 8% = i is the iterative displacement. Substitution into Eq. (3.3) and some lin-
earisation result in:

Qn(%nzz;)c : [(F",‘,)" : (1 - (Vi) - (" + (Scr)] (1 +1I: (6*&)0) det(F?) dS2, =

fx(W,G,P)  YO(X) (3.4)

Further linearisation with regard to the iterative changes # and §o results in:

./ Ly :o* I L+ L} : 80 — L},  : (0*°- L})) dQ* =
fex(l_l}, Zi! ﬁ)_f LTUC:U* dQ* = r*(ﬂ')’ﬁ’ ﬁa 0*) VJ)(E) (3.5)
Q*

where LY, = V*i and L} = V*ii are introduced as abbreviations. The right-hand side
of this equation is the residual load, which has to become zero if all equations are
satisfied at the current time. To calculate r* and the first term in the left-hand integral,
the stress o*(¢) must be determined following the integration algorithm described in
Chapter 2.

Eq. (3.5) is used to determine an iterative displacement i of the material points.
This, however, is only possible, when the iterative change of the stress, §o, is expressed
in z. This relation can be written as:

So="M":L (3.6)
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where *M is a fourth-order tensor, which will be derived in the next subsection. Sub-
stitution of Eq. (3.6) into Eq. (3.5) results in:

/ (L*wc co* L L+ LM L — L (0*° - Lf)) dQ* =

r(w, 4, p,o*) Y (X) (3.7)

After introduction of a suitable coordinate system, vectors and tensors can be ex-
pressed in their components with respect to the coordinate axes. These components
are placed in columns as indicated below:

W—>w ; d=8—->u ; oc—>g ; G—>q ; p—p

Iteration equation (3.7) becomes

| BT M - ) LA = wo g, g0t Vw 68)
o =

where (.)” denotes transposition of column () and [ is a column with 0 and 1 as en-
tries on appropriate rows.

The scalar iteration equation (3.8) is now solved using the finite element method.
Spatial discretisation implies subdivision of the volume Q* into a finite number of ele-
ments ne. In every element, the unknown iterative displacement components are in-
terpolated between their values in the element nodal points, using local coordinates
§=1[6,6,8]" with -1 <& < 1forie({l,2 3} Following Galerkin’s method, dis-

placement and weighting functions are interpolated analogously. We can write:
u=NEU ; w=NEEw* (3.9)

where u° and w® are nodal point values of element e and N the shape functions. Sub-
stitution of these relations into Eq. (3.8) gives:

Z QJET [/ E*T (Q*{T —|—M* _ z*) E*dﬂe*] ye _ Z weTre*
e=1 Qe*

Yw®; e=1,..., ne 3.10)

or, with introduction of the element stiffness matrix K
ne ne
ZweTKe*ye=ZweT[e* Vw®; e=1,..., ne (3.11)
e=1 e=1
Assembling the elements results in the algebraic equation:

wiK'u=wTr Yw ' (3.12)
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The columns w and u contain all nodal point values and K* is the so-called tangential
stiffness matrix. Because Eq. (3.12) has to be satisfied for every possible w, the iter-
ative nodal point displacements u have to satisfy the next system of linear algebraic
equations:

Ku=r (3.13)

When the boundary conditions are taken into account, u can be solved from Eq. (3.13).
After calculation of the stresses and other state variables, a new approximation C** of
the current configuration C, is known. If the residual r** is small enough, the iteration
process is terminated, otherwise a new iteration step is carried out.

3.2.2 Consistent stiffness matrix

A fourth order Jacobian tensor S, providing a linear relationship between strain varia-
tions and stress variations, is used by many implicit finite element procedures to com-
pute a new estimation of the nodal displacements (~the strain field) from the error in
nodal forces (~the error in the stress field). In an updated Lagrange environment, the
Jacobian tensor relates variations of the incremental deformation tensor 8 F,, to varia-
tions of the Cauchy stress tensor do:

8o =4S:8F, (3.14)

which can be rewritten in the desired form of §o = *M" : L} (Eq. 3.6) . A fully consistent
Jacobian tensor can be derived for the generalised compressible Leonov model (Smit
et al., 1999). Here, the derivation is made more specific for the models presented in
Chapter 2. Rubin’s integration scheme in the updated Lagrange formulation, which
provides a non-linear relationship between the incremental deformation gradient ten-
sor and the total Cauchy stress tensor, is linearised at the end of the increment.

The starting point is a known incremental deformation tensor F, (and thus in-
cremental elongation U, and rotation R,), the elastic strain at the beginning of the
increment B,,, the time increment At,, and the associated solution in the form of the
scalars A, and plastic and elastic strains C,,(£:41), Een ..~ Also all other intermediate
quantities (e.g. I'n41, nn41) are assumed to be known before the calculation of the
Jacobian matrix. In the following, the subscripts n and n + 1 will be omitted for the
reason of clarity.

First, only the effective stress s is considered. Variation of the deviatoric part and
the hydrostatic part Eq. (2.7) yields:

55 = 8s% + 85" = GSB? + k8] 1 (3.15)
The variation of §s can be rewritten as:

8s=18,:8B,+1S,:F (3.16)



30 : Chapter 3

where 48, and “S, are the associated fourth order tensors for the variations of B, and
~ The variation of the elastic strain 8 B, follows from the linearised version of equa-
tion (2.44):

8B.=$F-C,' - F' - F-C}-6C,-C; - F'+F-C}} - 6F (3.17)

An expression for the variation of the plastic strain increment C » can be obtained from
Eq. (2.42):

8C, = (1—A)3C+ (B, (t,) — C)s». | (3.18)
Using C=0.0= f’c~f’, we can write for §C:
SC=8F - F+F .SF (3.19)

The variation of the constant initial elastic strain B.(t,) is zero. Using Eq. (2.42), we
can write f?el(t,,) —C= 1(C,— C) and §C, becomes:

8Cy= (1~ GF - F+F -5F) + 1(C, ~ D)3 (3.20)
Substitution of this relation into Eq. (3.17), yields for the variation of the elastic strain:
8B, =B, : 8F + B,5) (3.21)

An expreésion for A is obtained by variation of Eq. (2.43) usingI' = G/n:

55— AT

= GarTT & (3.22)

Now, a distinction is necessary between the model for the polymer and for the metal
because of the different choice in viscosity definition (see Chapter 2).

Compressible Leonov model with Eyring viscosity and strain hardening

In Appendix A, the expression for 82 is derived:
S\ =1LB. 6B, + LI:SF (3.23)
Substitution of this expression and §F = A : F into the relation (3.21), yields:

8B.="'By:*A:5F + ,B,B” : B, + LB,I : §F (3.24)
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An explicit relationship for § B, can now be written as:
~ ~d\ "1
$B, = (41 - 113232) . (*B1 : A+ LB,I) : 6F (3.25)
‘Substitution of this relation into Eq. (3.16) then yields:

8s=4S:8F (3.26)

Apart from the effective stress s, also the variation of the work hardening contribution
w should be considered. Using B=F - F°, the variation w can be written as:

Sw=H"I— %11) 4G : SF 3.27)
with‘G: 8F =8F - F + F-8F". Using 8F = *A : F, we can write:
Sw="H:8F ; ‘H=H(I- %11) 4G A (3.28)

Substitution of Egs. (3.25) and (3.28) into Eq. (3.14) yields the following relationship
for o

80 = (1S +*H) : 8F =*Sgy : 6F (3.29)

where “Szy is the fourth order Jacobian tensor for the compressible Leonov model with
Eyring viscosity function and strain hardening.

Compressible Leonov model with Bodner-Partom viscosity
In Appendix A, the expression for §A is derived:
Sr = b B : 8B, (3.30)

Following the same approach as for the compressible Leonov model with the Eyring
viscosity, we can write for 6 B,:

~ ~d\ "1 )
8B, = (41 - bleBe) 1B, :*A: 6F (3.31)
Substitution of this relation in Eq. (3.16) then yields:

S0 =8s="Spp:F (3.32)

where 4Sgp is the fourth order Jacobian tensor for the compressible Leonov model with
Bodner-Partom viscosity function.
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3.2.3 Configuration of OS-ALE

The Operator Splitted (OS-ALE) procedure (van der Aa et al., 1997, 1998a) is imple-
mented in the MATLAB (1996) programming environment. The finite element anal-
ysis is efficiently performed using the commercial finite element code MARC (1997).
After initialisation in MATLAB, an initial mesh, consisting of coordinate positions and
a connectivity, is generated and a MARC input file is written including boundary con-
ditions and (initial) state variables. A fixed number of (updated) Lagrange increments
are calculated, giving rise to a certain mesh distortion. MATLAB reads the coordinates
of the deformed material and state variables .S. For the compressible Leonov model
with Eyring viscosity and with Bodner-Partom viscosity, the state variables are given
by:

5EV;—— {E, B.,J, D} ; Spp = {Be,], Z‘p} (3.33)

Subsequently, the positions of nodes are adapted to preserve a well conditioned mesh.
Finally, the state variables are transported to the new mesh in a transport step accord-
ing to the Discontinuous Galerkin method, which will be described in the next sec-

* tion. This procedure is repeated until a steady state result has been obtained, when
the process forces, stresses and strains no longer change. A flow scheme of the im-
plementation is shown in Figure 3.1. MARC is used for the finite element calculation
due to its capability to implement complex non-linear material behaviour using user
subroutines (see Chapter 2) and to perform advanced contact analysis.

SEPMESH, which is the mesher of finite element code SEPRAN (1995), is used to
create and update the finite element mesh. The mesher generates a structured mesh
over the deforming domain. Edge nodes of the deforming domain have to remain on
the edge, but may be re-positioned to preserve mesh quality. Inner nodes of the mesh
are adapted using a smoothing algorithm, which places a node at the average position
of its adjacent nodes. Certain points on the edge such as inflow and outflow bound-
aries must be re-positioned to their original position as they do not change in space.
To control the contour of deforming domains, SEPMESH uses so-called usercurves,
which contain the node sets that describe the contour edges.

3.3 Transport algorithms

After the generation of a new mesh, the history dependent variables have to be trans-
ported from an old, deformed mesh to this new, well conditioned mesh. However,
these variables are generally discontinuous across the element edges. Several algo-
rithms exist to perform this transport step: Local Coordinate Matching (LCM), Dis-
continuous Galerkin (DG), Streamline Upwind Petrov Galerkin (SUPG) (Brooks and
Hughes, 1982)) etc.

An important parameter in the numerical solution of convection problems is the
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MATLAB
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Figure 3.1. Flow scheme of Operator Splitted ALE.

Courant number Cr, given by

rd_efg
T h

where U is a characteristic measure for the displacement, and & a typical element
length. The Courant number and the discontinuous nature of history dependent vari-
ables across element edges, however, limit the number of suitable transport algo-
rithms. Two transport algorithms have been investigated: the LCM and DG method,
which are described in Subsections 3.3.1 and 3.3.2, respectively. The performance of
the transport algorithms is evaluated in Subsection 3.3.3 for a one-dimensional and a
two-dimensional test problem.

C (3.34)

3.3.1 Local Coordinate Matéhing method

Mesh rezoning is one of the techniques to redefine the finite element mesh due to
element distortion during simulation of deformation processes. Here, the rezoning
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W
o

o

- v original solution
--- smoothed solution — LCM solution — DG solution

OHF—¥O—F—————%—0C%—%O
old mesh ﬁ j E j

Figure 3.2. Principle of LCM method (a) and (b), and solution using DG (c).

procedure Local Coordinate Matching will be investigated. The LCM method works as
follows: ’

e a continuous (or smoothed) field of state variables is calculated for the old ele-
ment mesh by extrapolating the integration point values to node values using the
element shape functions. The contributions of different elements are averaged
in the nodes.

o for each node of the new mesh, the location in the old mesh is determined.

o the values in the nodes of the new mesh are determined by interpolation from
the averaged nodal values using the element shape functions.

A number of procedures exist to construct a continuous field for the state variables:
conjugate approximation functions (Oden and Brauchli, 1971), least square fit meth-
ods (Hinton and Campbell, 1974), local smoothing with triangularization (Gelten and
de Jong, 1987) etc.

~ The LCM method is illustrated for a one-dimensional discontinuous solution in
Figure 3.2 (a) and (b). The old mesh consists of three elements with 2 nodes (o) and
2 integration points (x). The nodes of the central element are shifted to obtain the
new mesh. In Figure 3.2 (a), the smoothed solution is shown for the original field. The
LCM solution is then obtained by interpolation in the nodes of the smoothed solution
(Figure 3.2 (b)). This solution is continuous across the element edges.

3.3.2 Discontinuous Galerkin method

The Discontinuous Galerkin method takes advantage of the discontinuous character
of the fields of history variables and solves the describing transport equation, yielding
again a discontinuous transported solution. The determination of the field of history
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variables on an updated mesh, which is a transport problem, is in several aspects sim-
ilar to a convection problem. To show this similarity, the transport equation is derived
from a convection problem.

A material variable ¢ is dependent on position vector ¥ and time t: (X, t). The
material derivative 2: of ¢ has to equal zero:

Dw

Dr =0, (3.35)

which can be rewritten into:

0 L =

X 15 (V) =0, ‘ (3.36)

at

where ‘:.’,‘f is the (partial) time derivative of ¢, ¥ is the material velocity, and Visthe gra-

d1ent operator. A possible choice to perform a discretisation in time, is to approx1mate
w1th an implicit Euler scheme!:

P(X, ta1) — (X, )

A + - Vo(&, tps1) = 0. (3.37)

By multiplication of Eq. (3.37) by A¢, a displacement based formulation is obtained
instead of a flow based one:

O(%, tar1) — (%, 1) + ih - Vo(X, tny1) =0, (3.38)

where i is the material displacement vector in the convection problem. Labelling ¢* =
@(X, t,) and ¢? = @(X, t,41), the transport equation for state variable ¢* to its new
value ¢? must be solved:

@ — ¢ — il VP =0 (3.39)

where il,, is the mesh displacement and Vithe gradient operator. Due to finite element
discretisation (see Subsection 3.2.1), the state variables become discontinuous across
the element boundaries. To transport a discontinuous solution with minimal diffu-
sion, the Discontinuous Galerkin method, introduced by Lesaint and Raviart (1974),
is used to solve the transport equation (3.39). Considering the spatial domain §2 with
boundary I', the DG method is formulated as:

/w(w”—w“—ﬁmﬁw")dQ—Zfwﬁm-ﬁ(wb—gof,’x,)dr‘zo Vw
Q@ Ve e
(3.40)

IMain reason for this choice is its unconditional stability and its relative simple implementation
compared to higher order implicit schemes.
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Here, w is a weighting function, I'; is the inflow boundary (ii,, - 7 > 0) of an element e
with outward unit normal 7, and ¢, is the value of ¢ on the adjacent upstream side
of I';. In Appendix B, the DG method is derived for the one-dimensional case.

In Figure 3.2 (c), the solution using DG is given. Note that for the second element
the solution matches the original solution. Moreover, the DG solution may be discon-
tinuous over the element edges in contrast with the LCM solution.

An efficient implementation of the method has been developed by Brokken et al.
(1998). In this implementation, variable ¢?,, can be made explicit by using ¢" of the
previous increment, the solution ¢? can be determined by an element-by-element
(EBE) method (see Appendix B). To obtain sufficient accuracy, the Courant number Cr
can be limited by splitting the convective step into a number of sub-increments. The
accuracy of the transport step is guaranteed by imposing a desired Courant number,
which leads to a number of sub-increments. In Appendix B, also the two-dimensional
implementation is discussed. In the next subsection, the performance of both trans-
port schemes are evaluated using 2 examples.

3.3.3 Performance of the convection schemes

The performance of the Local Coordinate Matching and the Discontinuous Galerkin
method are elucidated for two specific test cases. First, a one-dimensional convection
problem with large discontinuities is solved to illustrate the ability of both methods in
handling them. Then, a two-dimensional Molenkamp test is considered to show the
conservative quality of the methods for a smooth field, but with steep gradients in two
directions.

1D convection of a discontinuous field

To illustrate the influence of the Courant number for the LCM and DG method, the
transport of a block function is considered. On domain 2 = [0, 20], 40 equally sized
linear elements describe the solution @(x) = 1for 5 < x < 15, while ¢(x) = 0 else-
where. The discontinuous solution is fixed and the mesh is transported with mesh
displacement u,, = 2.8.

In Figures 3.3 and 3.4, the initial solution and the solution after transport with LCM
and DG are shown for a corresponding Courant number Cr = 5.6. A good solution
for LCM is obtained as the transported solution only shows a minor deviation in the
neighbourhood of the discontinuities. A severe diffusion of the DG solution is ob-
served. In Figures 3.5 and 3.6, the LCM and DG solutions are compared with the initial
ones for Courant number Cr = 0.1. A large diffusion of the LCM solution is seen and
a good preserved solution using the DG method. ,

Obviously, the Courant number plays an important role in the proper choice of a
transport algorithm. Note that the loss of accuracy of the DG solution (see Figure 3.4)
can be preserved by splitting the total transport step in 56 sub-increments, limiting the
Courant number to 0.1 and giving the result as shown in Figure 3.6. In this solution,
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0 5 10x1‘5 20 25 0 5 10 15 20 25
X

Figure 3.3. Initial (dashed) and transported Figure 3.4. Initial (dashed) and transported
(solid) solutions ¢ using LCM for (solid) solutions ¢ using DG for
Courant number 5.6. Courant number 5.6.

some over- and undershoot is observed. For even smaller Courant numbers, this (un-
wanted) effect increases, but less diffusion is observed. Therefore, Cr = 0.05 is chosen
based on experience and will be used in the rest of this thesis. With a known mesh
displacement and element size over the entire mesh, the number of sub-increments
is determined to guarantee Cr = 0.05.

In conclusion, it has been shown that Local Coordinate Matching is an appropri-
ate transport method for large Courant numbers, and gives a diffusive solution for
small Courant numbers. Discontinuous Galerkin shows the opposite behaviour of
LCM: the method is diffusive for large Courant numbers and conservative for small
Courant numbers. However, the numerical scheme to solve the constitutive and bal-
ance equations (see Sections 2.5 and 3.2) requires small increments to obtain con-
vergence. Thus, the DG method will be a better method for the transport of history
dependent variables.

o 5 10 15 20 25 o 5 10 15 20 25
x - x
Figure 3.5. Initial (dashed) and transported Figure 3.6. Initial (dashed) and transported

(solid) solutions ¢ using LCM for (solid) solutions ¢ using DG for
Courant number 0.1. Courant number 0.1.
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Figure 3.7. Initial field .

2D convection of a continuous field: Molenkamp test

The Molenkamp test is a two-dimensional test problem (Vreugdenhil and Koren, 1993)
by which the performance of convection schemes can be evaluated quantitatively due
to the existence of an exact solution. In the problem, a ‘cloud’ of material, represented
by a field g, is transported. The Gaussian distribution of this field is given by:

2 2
o(x, ¥, 1) = 0.01%° : r= \/(x + % cos(me)) + (y + % sin(27rt)> (3.41)

where t € [0: 1], x € [-1:1], and y € [—1: 1]. This equation represents a (rigid) ro-
tation of field ¢ over a fixed grid and the numerical solution is requested after one
revolution, i.e. t=1. The initial distribution of ¢ is shown in Figure 3.7. Note that ¢
only represents a pseudo time, which defines the number of steps 1/At to complete
a full revolution. In contrast to the standard Molenkamp test, we will rotate the grid
over a fixed field ¢.

The performance of the LCM and DG method is determined by the || . [|; norm,
the || . ||c norm, and the maximum and minimum value of ¢ after transport, Q. and
®min, respectively. The norms are defined by:

n s — »
“ . ”1 —_ Zl:l |‘Pml,rll (pexact,t{ : ” . ”oo — miaxl(pcal,i _ ¢exact,i| (3'42)

where n is the number of nodes.
Two situations are considered: first, the performance of both methods for a sub-
division of the revolution in 200 steps. Note that DG uses sub-increments to obtain a
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| Method(mesh,steps,sub-incs) [ [[.1i | .-lloo | @max | @Omin |
DG(20x20,200,9) 0.0127 0.3273 © 0.8225 -0.0341
DG(30x30,200,13) 0.0111 0.2882 0.8947 -0.0197
DG(40x40,200,18) 0.0109 0.2712 0.9369 -0.0154
DG(20x20,4000,1) 0.0060 0.1750 0.8555 -0.0288
DG(30x30,4000,1) 0.0031 0.1038 0.9288 -0.0131
DG(40x40,4000,1) 0.0016 0.0568 0.9608 -0.0089
LCM(20x20,200) 0.0460 0.8633 0.1419 -0.1501
LCM(30x30,200) 0.0402 0.7945 0.2108 -0.1483
LCM(40x40,200) 0.0355 0.7300 0.2756 -0.1316
LCM(20x20,1) 3.76 107 | 1.10 1072 | 0.9966679 | -3.80 1077
LCM(30x30,1) 1.0310™* | 2.8810°% | 0.9985399 | -7.10 10713
LCM(40x40,1) 4.2010°% | 1.15107°3 | 0.9997270 | -2.231071°

Table 3.1. Results of the Molenkamp tests.
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Figure 3.8. Transported solution ¢ for 200 Figure 3.9. Transported solution ¢ for 200
steps using DG. steps using LCM.

desired Courant number of 0.05. The results for DG and LCM method are shown in
Figures 3.8 and 3.9. For LCM, a large diffusion is seen and even large negative values
are obtained after transport.

Secondly, the ‘optimal’ performance of both methods is shown. For that purpose,
DG takes 4000 steps (giving rise to one sub-increment with Cr = 0.05) and the LCM
takes one step. The results for both methods for the two situations are shown in Ta-
ble 3.1. It can be seen that for DG with the 40 x 40 mesh, although a similar number
of total step are taken (200 steps in 18 sub-increments versus 4000 steps in 1 sub-
increment), the peak value is (slightly) better conserved and significantly smaller er-
rors are observed for the latter case. This is caused by the fact that the spatial discreti-
sation error of (only) a linear approximation of the field ¢ is smaller for an incremental
smaller displacement of the mesh.
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The choice of convection scheme is dependent on the Courant number Cr. For
large Courant numbers LCM performs best, while for small Courant numbers DG
seems the appropriate method. For large Courant numbers, the accuracy of the solu-
tion can be preserved by splitting the total transport step in sub-increments, limiting
the Courant number. In the presented OS-ALE method, the transport step is deter-
mined by the displacement in the updated Lagrange computation, which is limited
due to the (strongly) non-linear constitutive behaviour of the deforming materials (see
Chapter 2). The associated Courant numbers are small (Cr < 0.1) and, therefore, the
Discontinuous Galerkin method will be used to perform the convection step.

3.4 Validation of the method

Before starting simulations with the developed numerical tools, validation is needed
by comparing the OS-ALE solution with an analytical or a Lagrange solution using the
finite element package MARC. However, for many (forming) problems an analytical
solution can not be derived, and accuracy of the Lagrange solution is only guaranteed
for relatively small mesh distortion. In this section, two test problems are considered:
(1) the backward extrusion forging problem and (2) the wall ironing of blank steel, as
a first step in the direction of the industrial application of interest.

3.4.1 Backward extrusion forging problem

Liu et al. (1988) show a number of examples to verify the quality of an Arbitrary La-
grange Euler Petrov-Galerkin method. One of the examples considers the backward
extrusion forging problem. This forming problem is an illustrative example where a
large deformation occurs and a moving free surface has to be tracked.

The material shows elasto-plastic behaviour with isotropic hardening. It has a
Young's modulus of 10* MPa, a Poisson’s ratio of 0.4, an initial yield stress of 300 MPa
and a hardening modulus of 100 MPa. The initial mesh is rectangular consisting of
20 x 15 linear elements (see Figure 3.10). The punch has a radius of 6.5 mm. The die
and punch are assumed to be rigid. Results of the OS-ALE method can only be com-
pared with results from the Lagrange method up to a point in the simulation where
the calculation with the Lagrange method is still reliable, i.e. where the Lagrange ele-
ments show only a minor distortion. One Lagrange computation of 20 increments is
performed with an incremental punch displacement of 0.2 mm. For the OS-ALE cal-
culation, in which state § = [0, £,] must be transported, 20 sequential computations
are done of only one increment imposing a displacement of 0.2 mm.

Figure 3.11 shows that the contour of the free surface computed with OS-ALE is
identical to that of the Lagrange computation. Moreover, in the neighbourhood of
the punch, the OS-ALE method keeps the mesh well-conditioned in contrast with the
large distorted mesh for the Lagrange computation. The load-displacement curves
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are identical as shown in Figure 3.12. The computed equivalent plastic strains are
compared in Figure 3.13.

10}

@ 3
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Figure 3.10. Problem description: (1) punch,

(2) material and (3) die.
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Figure 3.12. Load-displacement curve of the

Lagrange method (solid) and OS-
ALE method (dashed).

3.4.2 Wall ironing of blank steel

20

10t

-10 0 10

Figure 3.11. Deformed mesh of the OS-ALE
method (left part) compared with
the Lagrange method (right part).
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Figure 3.13. Comparison of the equivalent
plastic strain for the OS-ALE
method (left) and the Lagrange
method (right).

The wall ironing process of blank steel is simulated using an axisymmetrical model.
For the blank metal, the parameters for ECCS are used, as determined in Subsec-
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tion 2.4.2. The model for the wall ironing process of blank steel is schematically de-
picted in Figure 3.14. For the cup, 450 (bi-)linear elements are used, after some mesh
refinement trials. The moving punch and stationary ring are modelled as rigid bod-
ies. The ring has a commonly used die angle & = 8° and a land zone of 0.5 mm. The
imposed reduction is 29% from initial thickness #, = 0.322 mm to #; = 0.228 and the
ironing velocity is 1 m/s.

In Figure 3.15, the axial force F, and radial force F; on the ring evolve to steady state
values in 0.7 mm punch displacement. The little spikes on the curves are caused by
elements coming in contact and loosing contact with the rigid tools, and by the fact
that after the transport step the system has to iterate to equilibrium again.

In Figure 3.16, the evolution of the equivalent plastic strain &, in time is shown. A
steady state value of 0.42 is obtained. This value can be compared with an analytical
solution (Avitzur, 1983) for the equivalent total strain:

=2
B

This approximation is valid for ironing under a plane strain situation, for small angles
(a < 8°) and the neglect of friction.

€ In(%/tr) = 0.399 (3.43)

ring
e land zone
b cup ity 1=
punch -

> v=1m/s

/R = 32.98 mm

Figure 3.14. Model of the wall ironing process with blank steel.

Simulations have shown that the important variables, which influence the process
characteristics, are:

o die angle «
e ironing velocity v

to—l'f

¢ ironing reduction r = .
0

In Chapter 4, attention will be paid to these process variables.
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Figure 3.15. Load-displacement curves for Figure 3.16. Development of the equivalent
axial force F, and radial force F; plastic strain to a steady state sit-
on the die. uation.

3.5 Concluding remarks

In this chapter, it has been shown that Operator Splitted ALE is an appropriate method
to simulate forming processes. For the transport, the Discontinuous Galerkin method
is chosen as it has proven to be the less diffusive transport method for the intended
application of the method.

In the first example, the solution of OS-ALE is compared with the Lagrange so-
lution. It has been shown that free surface motions can be tracked, while keeping
the mesh well-conditioned. An identical load-displacement curve is obtained and the
equivalent plastic strains compare well for a classical elasto-plastic material model.

In the second example, it is shown that OS-ALE can handle continuous processes
and that the method can be combined with the elasto-viscoplastic model, which has
been presented in Chapter 2.






Chapter 4

Experiments and model validation

4.1 Introduction

In this chapter, the OS-ALE method, presented in Chapter 3 is experimentally vali-
dated using the constitutive models and their parameters of Chapter 2. Two types of
validation experiments are discussed. First, experiments are carried out with an in-
house developed strip ironing device, which allows to perform a ‘basic’ ironing defor-
mation in a setting with good accessibility for measurements and visualisation. ‘Sec-
ondly, simulation results are compared with a full-scale experiment done at Hoogovens
Research & Development, Centre for Packaging Technology, Jmuiden.

4.2 Strip ironing device

In this section, various experimental ironing devices are reviewed and compared. Based
on the review, objectives and requirements for an experimental set-up to verify the
OS-ALE simulations are formulated. The resulting experimental device is described in
Subsection 4.2.2. In Subsection 4.2.4, the verification strategy is discussed. A part of
the verification is addressed to displacement field measurement to obtain flow paths
and strain fields, which is described in Subsection 4.2.3.

4.2.1 Literature review of experimental devices

Fukui et al. (1962), Wilson and Cazeault (1976) and Devenpeck and Rigo (1979) devel-
oped a metal strip drawing apparatus in which a strip is ironed symmetrically through
a pair of dies. The ratio of the drawing force and the die splitting force was used to cal-
culate a process friction factor. In these three studies, it was not possible to calculate
Coulomb friction coefficients nor was the strip supported by a moving punch. The
friction factor at the die surface increased with increasing die angle and decreasing
reduction.

45



46 Chapter 4

Kawai er al. (1982a,b), Kenny and Sang (1986) and Jaworski et al. (1997) developed
an experimental apparatus to measure the friction coefficient on the die surface in the
strip ironing process. A metal strip combined with a back-up plate (punch) was pulled
through a bearing and a die. Ironing travel, reduction and lubrication were varied
to study their effects on the die friction coefficient, surface appearance and galling.
Another non-symmetrical testing apparatus has been developed by Wang et al. (1986).
Here, a thin strip was ironed between a die and a rotating drum. The drum torque and
normal and tangential forces on the die were measured in order to calculate both the
punch and die friction coefficients.

Saito et al. (1989) and Kawai et al. (1992) used a similar cup ironing device with a
splitted punch in order to measure frictional forces at the punch/sheet interface. The
slab method was used to calculate the friction on the die surface. Shawki (1970) stud-
ied the effects of die geometry and friction conditions on the ironing of axisymmetri-
cal cartridge brass cups. Besides punch load and punch head load, also the tangential
strain at the outer cylindrical surface of the die was measured. Using this set-up, both
punch and die friction coefficients were determined.

Appleby et al. (1984) used transparent dies in a plane strain strip drawing apparatus
in order to measure die-interface velocities. In this way, incremental displacement
boundary conditions were obtained as input in a FEM analysis. Doege et al. (1992)
and Deneuville and Lecot (1994) combined the use of strip ironing experiments and
a FEM program to obtain friction coefficients for the die surface, punch surface and
land zone. The experimental/numerical approach resulted in a powerful analysis tool
for the wall ironing process.

Deneuville and Lecot recognised the fact that most (strip)ironing devices are op-
erated at low speeds compared to production speeds in can making. Their set-up is
able to work up to moderate speeds (up to 2 m/s), but it is hampered by alignment
difficulties. A good alignment can be obtained by a construction which is loaded sym-
metrically.

The experimental studies discussed above are summarised in Table 4.1. Attention
is paid to the following aspects:

 Measurement of tool forces in order to calculate Coulomb friction coefficients
on die and punch surfaces, 1.4 and u,, respectively. It is difficult to determine
the right boundary conditions (i.e. friction) for the numerical simulation, except
by explicitly measuring them. -

e Symmetric loading of the sheet metal, which is necessary to avoid alignment
problems.

* Realistic geometry and ironing speed compared to the industrial DWI process.
Friction conditions and process forces are strongly dependent on the ironing ve-
locity.

* Possibility to visualise the deformation process using a digital camera. Using
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authors Ua wp | moving | symm. | velocity | visua-
punch | design | [mm/s] | lisation
Fukui et al. (1962) - - - + 340 +
Shawki (1970) + + + + - -
Wilson and Cazeault (1976) - - - + 130 -
Devenpeck and Rigo (1979) - - - + 6100 +
Kawai et al. (1982b) + - + - 1 +
Appleby et al. (1984) - - - - + 8.310™ +
Wang et al. (1986) + + + - 530 +
Kenny and Sang (1986) + - + - 8.5 +
Saito et al. (1989) + + + + 1 -
Kawai et al. (1992) + + + + 10 -
Doege et al. (1992) + + + + - +
Deneuville and Lecot (1994) + + + - 2000 -
Jaworski et al. (1997) + - + - 1500 +

Table 4.1. Literature table on experimental studies in chronological order. In column two and
three, the measurement of the friction coefficients on the die and punch, p, and
p, Tespectively, is symbolised by the use of the positive and negative symbols. In
column four and five, it is indicated whether a moving punch and a symmetrical
design is used in the experiments. Maximum ironing velocity is given in column six,
and column seven indicates the capability of the experimental set-up to visualise the
deformation process. However, not one paper actually performed the visualisation.

a two-dimensional strip ironing device with a non-moving die allows to record
displacements and strains in the deformation zone.

Table 4.1 shows that the experimental set-up used by Doege et al. meets most of the
requirements, however, no velocity is mentioned. In the next section, the strip ironing
device used in this study will be discussed.

4.2.2 Configuration of the strip ironing device

Earlier studies of the ironing process concentrated on the influence of process pa-
rameters, such as die geometry, friction conditions, ironing travel, ironing reduction
and surface appearance (see Subsection 4.2.1). In the present study, not only process
forces and friction coefficients are determined, but also the deformation is investi-
gated using a two-dimensional plane strain configuration instead of an axisymmetri-
cal set-up. :

At the Eindhoven University of Technology, an experimental device has been devel-
oped (van der Aa et al., 1998b), which is schematically shown in Figure 4.1. The strip
ironing device basically consists of a splitted punch (5) and two die blocks (6), sup-
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ported by a frame (4). The frame is attached to the traverse of an hydraulic high-speed
Zwick REL 20 kN universal testing machine. A proportional valve is used to control the
volume flow rate of hydraulic fluid through the system. The maximum speed of the
punch is 10 m/s, which equals speeds in industrial can making practice. The splitted
punch is connected to the moving piston of the testing machine, which has a stroke of
250 mm. Rotation of the punch is suppressed by punch guide (11).

a. accelerometer

ié) @i& 11 1. piezo cell for punch force F,
2. piezo cell for bottom force F,

it 3. piezo cell for die force F;,

4. frame

5. splitted punch

6. dies

8. reduction bolt

: : 8. die fixation bolt

0160 : 6 18 L7] 9. die guide

3 10. polymer coated strip

° L 11. punch guide

Figure 4.1. Strip ironing device.

A 300x32 mm polymer coated strip (10) is bended around the rectangular punch
after which the punch is guided towards the two die blocks. During the movement
of the punch between the two dies, the wall thickness of the strip is reduced. Since a
relatively thin strip (thickness is 0.32 mm for PET coated steel) is used, a plane strain
situation is realised in the strip. In the wall ironing process of cylindrical cups, also
a plane strain situation is approximated provided that the tangential strain is small.
Therefore, the strip ironing process is assumed to be a representative experiment for
the wall ironing of cylindrical cups in the manufacturing of food and beverage cans.
The amount of reduction is controlled by the position of the reduction bolt (7), which
determines the distance between the two die blocks. Three process forces are mea-
sured using piezo-electric cells (1,2,3): the punch force F, (20 kN, Kistler 9331A), the
punch bottom force F; (35 kN, Kistler 9021A), which is the force exerted on the nose of
the punch, and the normal force F; (60 kN, Kistler 903A) on the die. In ironing experi-
ments with a velocity above 1 m/s, it is required to correct the measured punch forces
for dynamic effects. For this purpose, an accelerometer (a) is attached to the punch,
close to the piezo cell that measures the punch force F,.

The position of the punch is measured using the encoder in the tensile tester. By
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Figure 4.2. Forces and acceleration in a wall Figure 4.3. Process forces after correcting for
ironing experiment at 10 m/s. dynamic effects.

triggering position measurements at fixed sampling rates, the velocity of the punch
can be measured directly. The left die block is supported in the frame by four die guide
bars (9) which ensure a nearly frictionless horizontal movement of the block. In this
way, the piezo-electric load cell (3) is always properly loaded without introducing a
axial force or a moment on the cell. A (small) prestress is applied on the load cell using
a spring. This set-up allows rapid change of process parameters such as die angle or
reduction. The dies and punch are constructed from tool steel, heat-treated to HRc 60-
62 and polished to about 0.1 xm in surface roughness Ra. No land zone is present in
the geometry of the dies. Before each ironing experiment, a film of Quakerol cupping
lubricant is applied to the coated strip. This semi-synthetic oil is used in its pure form,
providing good lubrication during the ironing process.

Because of the high accelerations in the high speed experiments, it is required
to correct the measured punch forces for dynamic effects. For this purpose, an ac-
celerometer (a) is attached to the punch, close to the piezo cell that measures the
punch force F,. An example of the acceleration and the three forces encountered dur-
ing an ironing experiment is shown in Figure 4.2. In order to account for small vari-
ations in width of the strip, it is chosen to divide the measured force by the width b.
The dimension of F, F, and F;, is N/mm. After 17 mm punch displacement, the strip
first makes contact with the two dies resulting in oscillations in all transducers. Before
this point, only acceleration forces are exerted on the punch load cells. The corrected
process forces on the punch, F, .o and Fp corr, are now calculated:

a

Fp,corr. = Fp“mp'z 4.1)
a

Fb,corr. = F—myp- E (4.2)

where m, and m,, are the equivalent masses for the punch and the punch bottom,
respectively, which are determined in an experiment at 10 m/s without a specimen.
In that case, only acceleration forces are measured. The mass of the punch m,, is 3.29
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kg and mass of bottom part of the punch m,, is 0.34 kg. Figure 4.3 shows the three
process forces after accounting for dynamic effects. The acceleration forces in the first
17 mm of the stroke have disappeared and a steady state situation is reached for all
forces between 70 and 110 mm. In the rest of this study, the punch forces are always
corrected for dynamic effects and are referred to as F, and F,. In the experiments,
acceleration effects become dominant at punch velocities of about 1 m/s and higher.

4.2.3 Displacement measurement: Digital Image Correlation

One of the experimental techniques to access kinematics of forming processes is the
so-called Digital Image Correlation (DIC) method. This technique is developed at
the University of South Carolina (e.g. Bruck et al., 1989; Sutton et al,, 1986) and suc-
cessfully used by Meuwissen (1998) for small deformations. The method is based on
the correlation of gray values of successive digital images of undeformed and one (or
more) deformed specimens. It is a versatile alternative to the placement and track-
ing of individual markers on a sample, which is a cumbersome and time-consuming
procedure, and not always possible, for instance when examining small samples. Pro-
- vided that the images have a sufficient contrast, a set of images can be processed with
DIC. For the experiments, good contrast is obtained by sand blasting the surface of
the specimen to remove its shiny reflections. Then, small speckles of a matt black and
white paint are sprayed on the specimen.

Images of the deformation zone in the strip ironing experiment are obtained with a
CCD camera (Charge Coupled Device, Philips type LDH 0703/30) and a PC controlled
framegrabber. A Leica monozoom 7 lens (type 312977) is mounted on the digital cam-
era to focus on the small deformation zone of approximately 1 mm? (see Figure 4.4).
The deformation zone is illuminated by a white light source (Dedocool T2).

The Digital Image Correlation technique is based on correlation of contrast distri-
butions between two images. The images of the specimen are stored as 400x400 sets
of 8-bit numbers. Each number in this set represents the intensity of light absorbed
by a small area of the camera sensor, which is referred to as a pixel. A value of 0 corre-
sponds to black and a value of 255 to white and intermediate values correspond to a
range of gray shades. In an image, pixels are identified by their (x, y) coordinates. The
set of possible positions is denoted by:

I={(x,y) € R*|0<x <400, 0 <y < 400} (4.3)

A pixel at the initial position (x,, y,) in the first image is displaced to the deformed
position (x4, y4) in the second image as is shown in Figure 4.6. A (rectangular) subset
A, € I isdefined around (x,, y,) and this subset is mapped onto a subset 4, € I in the
second image. The deformation of subset .4, is approximated by the first terms of a
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Taylor series expansion:

u u

X = x1+u+-5;Ax+—é;Ay 4.49)
v v

Y2 = J’1+v+an+5;Ay (4.5)

where (x, y1) is the position of a material point in 4;, (x,, y») is the position of the
same point in 4, u and v are the displacements in x and y direction at (x;, y;,), and
& & &%, 3 are the displacement gradients at (x;, y,). The distances Ax and Ay rep-
resent the distance from pixel (x;, y1) to the midpoint pixel of subset 4;:

AX=x — x, ; Ay=n-—y (4.6)

To identify the unknown parameters u, v, %, %, &, %, a correlation function r is

introduced which correlates the gray levels in the undeformed subset 4, to the gray
levels in the deformed set 4,:

1 .
r= —C—f/ a1 (xy, 1)@ (xz, y2)dxdy 4.7)
A

where a, (x1, y1) and a,(x;, y2) denote the gray values of the subsets 4, and 4, respec-
tively, and the scaling factor C is given by:

C=\//L a%(xl,YI)dxldYI// az(x, y,)dxdy (4.8)
iy A
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Figure 4.6. Deformation of subset 4; .

The correlation function r equals 1 if the gray values of the two subsets match exactly.
Due to measurement and discretisation errors, r will be smaller than 1.

In practice, the gray values are discretised on the pixel level, since a pixel has a finite
area and the gray value of a pixel is constant. In this discrete case, let 48 C 4, bethe
n x m subset of integer positions (x;;, %1;). Then, the discrete correlation function r¢
has to be maximised, which is defined by:

1 n m
ré = E—dzzal(xmylj)@(xﬁ’ ¥2i) @9

i=1 j=1

m n m

Cl= \J ZZ ai(xai, 1) ZZ a5 (X215 Yaj) : (4.10)

i=1 j=1 i=1 j=1

with

au au '

Xoi = Xy + u+——axAx,-+5;ij “.11)
dv v

y2j=J’1j+U+aAXi+a—yij (4.12)

where Ax; and Ay; are defined by
Ai=xu—% 5  Ayi=pi-y (4.13)

The positions (x,;, y»;) will generally not coincide with the integer position at which
the second image is sampled. Therefore, the gray levels at non-integer positions are
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approximated using a bicubic spline interpolation. Then, displacements can be com-
puted with an accuracy smaller than the size of a pixel, so-called subpixel accuracy.

To maximise the value of the discretised correlation function r¢, a two step ap-
proach is adopted:

1. First, only the parameters u and v are determined, assuming the four displace-
ment gradients to be zero. Then, Egs. (4.11) and (4.12) reduce to:

Xpi = Xu+u (4.14)
Y2j = njtv (4.15)

and correlation function r¢ becomes:

1 n m
rd=azzax(xli,.}ﬁj)ﬂz(xu-!-% Yij+v) (4.16)

i=1 j=1

A very efficient manner to calculate r? is to determine the Fourier transforms
of a; and a,, due to the equivalence of convolution in the spatial domain and
multiplication in the frequency domain.

2. Secondly, the values of u and v are used as an initial guess in the optimisation
of the correlation function r? (4.9) using Egs. (4.11) and (4.12). For this purpose,
the BEGS algorithm (Gill ez al., 1981) is used with as initial values of v and v the
estimates obtained in the first step and the initial estimates of the displacement
gradients set to zero. ’

The displacement of a material point can be retrieved from two images. The first
image A is the reference configuration (see Figure 4.7) and image B is referred to as
the deformed state of the specimen (see Figure 4.8). First, in image A a window A,, is
defined around a point of interest, as shown in Figure 4.7. The pixel levels of A,, are
stored in a matrix format. Now, in image B of the deformed specimen, the best match
of window A, is located in image B,,, which maximises correlation function Eq. (4.9).
As a time saving measure, a search area S is defined, which covers all possible positions
of the window B,,. The dimensions and location of S are chosen on the base of the
maximum displacement occurring between the two images. In this study, windows
of 20x 20 pixels and search areas of 45x29 pixels are used, where the dimension of a
pixel corresponds with approximately 11 wm. The recorded ironing experiments are
performed at a velocity of 0.1 mm/s, with a time difference between the two images of
1 second. This implies a displacement of about 9 pixels between image A and image
B.

As the strip ironing experiment is a steady state forming operation, in principle,
only two subsequent images should suffice to determine flow paths and strain fields.
Then, the sequence described above is repeated. Therefore, the coordinates of the
material point of window B,, are used in image A to define a new window A,,. Again,
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the correlation technique finds the positions of this point in image B. This procedure
is repeated until the material point has reached the end of the deformation zone.

In the case that no optimum or a wrong optimum is found in the second step, the
estimated position of step one is used to continue the process. Since this occurs in
less than 5 percent of all calculations, the accuracy of the method is at least at pixel
level. The accumulation of errors from image to image may reduce the maximum
attainable accuracy considerably. The maximum displacement resolution depends
on: the number of pixels, the size of the subset, the contrast level, the interpolation
techniques, the displacement steps, etc.

To determine strain fields in the specimen, a grid of particles is followed during
deformation. First, the flow paths of n? material points, arranged in a rectangular grid
of n x n in the undeformed part of the strip, are determined using the digital image
correlation method. Considering the relative change in position of all particles, an
estimation for the deformation gradient tensor F can be found, using the gradient-
deformation method developed by Geers et al. (1996). The irregularity of the grid and
the existence of high strain gradients require the use of a second-order approach to
minimise errors in the calculation of F. The right polar decomposition of the deforma-
tion tensor (F = R- U, where R is the rotation tensor and U is the elongation tensor) is
calculated in order to obtain the natural logarithmic strain field during deformation.
The incremental logarithmic strain Ae can be calculated as

Ae=R-In(U)- R°

The total logarithmic strain is obtained by adding the strain contributions of each in-
crement. The same method is used to calculate the logarithmic strain fields from the
numerically obtained displacements field.

4.2.4 Numerical-experimental verification strategy

A big advantage of the strip ironing device used in this study is the possibility to cal-
culate friction forces between the metal strip and the tools during wall ironing. A
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Figure 4.9. Geometric relations in strip ironing device.

Coulomb friction model is assumed, where the shear stress is proportional to the nor-
mal stress. Figure 4.9 shows the forces acting on the tools during ironing. The geomet-
ric relations for the friction coefficients are given by

_Ep B L
F F, cos(a) — Fysin(«
pa=tre b (a) — Fysin(a) 4.18)

Fua = Fjcos(a) + Fpsin(w)

where ., is the friction coefficient between punch and strip and ., is the friction co-
efficient between die and strip. Furthermore, « is the entrance angle of the die, Fp
and Fy, are the frictional forces on the punch and the die, respectively and Fpq is the
normal force on the die surface. For the PET coated steel strip, the determination of
the friction coefficient w4 on the die/strip interface is within the accuracy of the mea-
suring method. The combination of small die angles, good lubrication, the favourable
tribological properties of PET in combination with polished steel and the large iron-
ing velocities results in extremely low values of x4. Therefore, in the numerical sim-
ulations, (4 is set at 0.001, for velocities above 1 m/s. However, at lower velocities,
friction increased and p4 can be determined accurately enough. '

The wall ironing process is studied using a combined numerical-experimental ap-
proach, using the numerical procedure OS-ALE addressed in Chapter 3 including the
constitutive model described in Chapter 2 and the experimental set-up described in
Subsection 4.2.2. First, process forces and the punch acceleration are measured in
the strip ironing device using piezo-electric cells and an acceleration transducer. The
forces F, and F, are corrected for acceleration effects according to Egs. (4.1) and (4.2).
Steady state values of the corrected process forces are used to calculate the friction
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Figure 4.10. Numerical-experimental approach for the strip ironing experiment.

coefficients 1, and p4 using Egs. (4.17) and (4.18). These friction coefficients are in-
serted in the OS-ALE simulation as boundary conditions for the contact bodies. Fur-
thermore, material parameters for the sheet metal and the polymer coating are used,
which have been determined in tension and compression experiments described in
Chapter 2. Then, numerical simulations and experiments are compared in two ways:

o Comparing process forces measured in the strip ironing device with the forces
calculated in the simulations.

e Visualising the deformation process in the experiments using the digital image
correlation technique, and comparing flow paths and strain fields with the strain
fields from the simulations.

The numerical-experimental strategy is illustrated in Figure 4.10.

Apart from the fact that the three forces F,, Fp, and F; have to be measured for
the computation of the friction coefficients, bottom force F, and die force F, are also
interesting for other reasons. A too large bottom force F;, will result in failure of the
metal in the ironed part of the strip, close to the bottom of the U-shaped strip. In
the industrial cup ironing process, failure of the side wall close to the bottom of the
cup limits the ongoing weight reduction of the cans. For the axisymmetric case of
wall ironing, die force F; is related to the circumferential stress present in the ring. To
prevent failure of this ring, too high circumferential stresses should be avoided.
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Figure 4.11. Two-dimensional, plane strain mesh used in the simulation of the wall ironing
process of 0.26 mm steel, coated on both sides with a 30 um PET layer.

The simulation of the strip ironing process is performed using an isothermal, two-
dimensional, plane strain model. Besides the deformed strip, the model geometry
includes a moving punch and a stationary die, both modelled as rigid bodies. As
the problem is symmetric, only one side of the strip is modelled, as shown in Fig-
ure 4.11. On the right side of the strip in Figure 4.11, an incremental displacement is
prescribed, equal to the incremental displacement of the punch. For the coated spec-
imens, perfect adhesion is assumed on the interface between metal and coating. The
other boundaries are either free surfaces or in contact with rigid bodies. A total num-
ber of 1350 quadrilateral bi-linear elements with four integration points is used. To
obtain sufficiently accurate simulation results, 3 elements are used through the thick-
ness of both substrate and the coatings. To prevent locking of these elements, reduced
integration is performed by using the constant dilatation option in MARC (1997).

4.3 Results

Following the presented approach, a comparison is made between the strip ironing
experiments and the numerical simulations using the OS-ALE software. Process forces
measured in the experiments are compared with the numerical predictions. In the ex-
periments, three critical parameters, which dominate the mechanical behaviour of
the materials, are varied systematically. Subsection 4.3.1 focusses on the influence of
the die angle. In Subsection 4.3.2 and 4.3.3, the influence of the ironing velocity and
the reduction are investigated. In the strip ironing device, 8 sets of die angles are con-
structed: 2, 4, 5, 6, 8, 10, 15 and 25°. The parameter study of Subsection 4.3.1-4.3.3
is performed with the PET coated steel laminate. This industrial laminate, consisting
of a 0.26 mm steel substrate coated on both sides with a 30 um PET layer, was man-
ufactured at Hoogovens Research & Development by sandwiching preheated ECCS
between sheets of PET with two pressure rollers. The laminate is post-heated in-line
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and immediately quenched, rendering the PET amorphous and yielding a strong ad-
hesion between polymer and steel. Subsection 4.3.4 addresses the sensitivity of the
equivalent strain for variations in pressure dependence and velocity in the wall iron-
ing process of PET coated steel sheet. In Subsection 4.3.5, the PET coated aluminium
sheet is used to compare the flow paths and strain fields obtained in simulations and
experiments due to visualisation problems with coated steel sheet. The laminate is
aluminium AA 1050 coated on one side with a 0.5 mm PET layer. It is manufactured by

melting granulates in a hot press together with the 1 mm thick aluminium sheet and
quenched afterwards.

4.3.1 Influence of die angle

The process conditions are chosen in a same order of magnitude as the settings in
the industrial wall ironing process. Therefore, to investigate the influence of the die
angle on the tool forces, a realistic punch velocity of 1 m/s and a reduction of 25% are
applied. Figure 4.12 shows the three measured process forces for the entire range of
die angles. A number of strips (between 3 and 10) are ironed to reduce the uncertainty
associated with the values of the process forces. Error bars are used to indicate the
50% measuring accuracy interval. Numerical simulations are only performed for die
angles of 2, 5 and 15° due to long computation times. The punch forces F, and F,

increase only slightly with increasing die angle, while the die force F; is strongly angle

dependent: the smaller the die angle, the larger the die force F;. In the experiments,
it is observed that the PET coating survives the ironing process perfectly for die angles

between 2 and 10°. However, at die angles of 15 and 25°, the coating often fails and is
usually scraped from the steel substrate at the die side.

g
1200+ \\
= \ -- F,;, experimental
= | r .
E \ -- Fp, experimental
> 800F \ — F, experimental
E : . ¢ F;, numerical
a \ o Fp, numerical
59 R .
N - < Fp, numerical
= L ~ ~
400 “y-. I
B L
N e, @ummimmimimn
0 5 10 15 20 25
die angle [°]

Figure 4.12. Influence of die angle on process forces.
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In the development of strains during ironing, hydrostatic pressure plays an emi-
nent role. To elucidate this influence, the pressure and the equivalent total strain € in
the upper PET coating, and the equivalent plastic strain ¢, in the steel, are computed.
In Figure 4.13, these quantities are shown as a function of the position in the deforma-
tion zone relative to the die outlet. The equivalent strain ¢ is defined as

For die angles of 2 and 5°, pressure is built up over a large region, resulting in a block
shaped pressure curve. An extreme high peak pressure of almost 800 MPa is computed
for a die angle of 15°. At a 2° die angle, ¢ of PET initially develops quickly and subse-
quently increases slowly to a maximum of 0.43 at the outlet of the die. Once the strip
leaves the deformation zone, the elastic contribution in the equivalent total strain is
released. At 5°, a slightly higher strain for PET is found. For 15°, a strong increase
in € is seen at the end of the deformation zone, to a maximum of 1.2. After releas-
ing the elastic strain, an equivalent total strain of 0.75 is maintained, which intuitively
corresponds to the often observed failure of the coating at this die angle. As may be
expected, the equivalent plastic strain £, in the steel substrate hardly changes for the
three die angles.
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Figure 4.13. Influence of die angle on pressure, equivalent strain ¢ in PET and equivalent plas-
tic strain &, in steel for a reduction of 25% and a velocity of 1 m/s.

A strong link exists between the pressure built up under the die and the resulting
plastic deformations (or even failure) of the PET coating. As already observed in the
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tensile tests under superimposed pressure in Subsection 2.4.1, PET is pressure sensi-
tive, which results in an improved deformation resistance at higher pressures. Appar-
ently, enough pressure must be built up in the coating to resist the imposed deforma-
tions. To explain this, it is necessary to consider the deformation of the coating.

To visualise the deformation occurring during strip ironing for the die angles of 2, 5
and 15°, a grid consisting of 5 x 5 points is positioned in the upper coating. Using the
incremental displacements, these 25 particles are tracked through the deformation
zone. In Figure 4.14, the deforming grids are shown. The indices (a)~(d) correspond
to (a) the initial grid, (b) the grid halfway the deformation zone, (c) the grid just before
leaving the die outlet, and (d) the grid after having left the die.

@ () © @

-~ B o=
-~ B B w
a=15 &\X

(a) (b) } () @

Figure 4.14. Particle tracking of a rectangular grid of a 5 x 5 points in the coating for die angles
@ =2, 5,15°. The indices (a)-(d) correspond to the positions in the upper picture.

The following aspects attract the attention:

o the deformation of the coating consists of two phases, which are dominated by
a shear (b) and an elongation (c) deformation, respectively. These phases can
be discerned in Figure 4.13 for the built up of pressure and the equivalent total
strain at position -2, -0.8 and -0.2 for the three angles. It can be observed that,
for o = 2 and 5°, a gradual accumulation of pressure effectively stops the strong
increase in the equivalent strain, which is mainly caused by shear. The subse-
quent (elongation) deformation results in a slower increasing equivalent strain.
For & = 15°, the built up of pressure can not prevent the extreme shear deforma-
tion.



Experiments and model validation 61

e due to a die swell phenomenon, which occurs during transition (c)-(d), a ‘volu-
metric’ expansion of the grid is observed which partially recovers the shear de-
formation. This explains the relative large release of the equivalent total strains
in Figure 4.13 after the die outlet for the three die angles.

In conclusion, it can be stated that a decrease’in die angle will improve the perfor-

mance of the coating, giving rise to a gradual pressure accumulation and smaller de-
formations.

4.3.2 Influence of ironing velocity

Since the set-up is mounted in a hydraulic tensile testing machine, it is possible to in-
vestigate the influence of ironing velocity up to industrial speeds of 10 m/s. Figure 4.15
shows the die force F; as a function of the die angle «, for velocities of 0.1, 1 and 10
m/s and a reduction of 25%. Simulations are performed for die angles of 2, 5 and 15°
and show a quite good agreement with the experimental results. A velocity increase
of two decades results in a considerable increase in F; of 400 N/mm for a die angle
of 2°. This increase is explained by the strain rate dependence of both PET and steel,
causing a higher deformation resistance. Figure 4.16 shows that in the experiments it
is not possible to determine an unambiguous influence of the ironing velocity on the
punch force F,. For bottom force F,, numerical results predict a slight increase with
increasing die angle and increasing velocity, as shown in Figure 4.17.
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Figure 4.15. Influence of ironing velocity on  Figure 4.16. Influence of ironing velocity on
die force F. punch force F),.

The Coulomb friction coefficient 1, between punch and sheet is calculated from
the experimentally obtained process forces using Eq. (4.17). Friction on the interface
between punch and sheet decreases with decreasing die and increasing velocity, as
shown in Figure 4.18. A minimum in u, of 0.01 is found for a 2° die angle and a ve-
locity of 10 m/s, which is similar to what would be expected if a quasi-hydrodynamic
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Figure 4.17. Influence of ironing velocity on  Figure 4.18. Influence of ironing velocity on
bottom force Fj,. : friction coefficient .

mechanism controlled entrainment of lubricant (Wilson and Cazeault, 1976). Appar-
ently, for smaller angles, it is more likely that a fully developed film will give rise to
lower friction. In general, it is observed during the experiments that a higher deforma-
tion velocity has a positive effect on the visual performance of the deformed coating,
which has more gloss and less scratches. :

4.3.3 Influence of ironing reduction

In this subsection, the influence of the reduction on process forces and friction is stud-
ied at a velocity of 10 m/s and for eight die angles. Figure 4.19 shows the die force F;
as a function of the die angle as determined in experiments and numerical simula-
tions, for reductions of 10, 20 and 30%. In the numerical simulations, the die forces
are determined only for two die angles (5 and 10°). Increasing the reduction results
in a larger die force F,, which implies an increased pressure in the deformation zone.
The deformation resistance of PET will increase because of this enlarged pressure in
a similar way as for small die angles. However, Figure 4.19 shows that E, is increased
far more by decreasing the die angle than by increasing reduction. Figure 4.20 illus-
trates the increase in punch force F, with increasing reduction for an ironing velocity
of 10 m/s. Aminimum in F, is found in the experiments for a die angle of 7 to 8°. The
numerically obtained punch forces for die angles of 5 and 10° show a good correspon-
dence with the measurements.

The increase in bottom force F, with increasing reduction is shown in Figure 4.21.
A minimum for F, is found for a 5° die angle. Numerical simulations are performed
for die angles of 5 and 10°, which match the experimental results quite well.

The influence of the die angle and reduction on the friction coefficient u p is de-
picted in Figure 4.22. At small die angles (2 to 10°) and a large ironing velocity (10
m/s), a quite low friction coefficient u,, is found (below 0.03). At larger die angles,
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friction increases for larger reductions. In the experiments, it was noticed that for die
angle o = 25°, the coating is regularly scraped from the steel substrate, which gives
rise to large deviations in measured friction coefficients. This explains the large error

bars for this angle.
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Figure 4.19. Influence of ironing reduction on
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4.3.4 Sensitivity study of pressure and velocity dependence

To examine the influence of the pressure dependence and deformation velocity on the
total equivalent strain in the coating, three simulations of the strip ironing process for

PET coated steel sheet are compared:
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e astrip ironing simulation at 1 m/s with pressure coefficient 4 = 0.047
e astrip ironing simulation at 1 m/s with pressure coefficient x = 0
e astrip ironing simulation at 1 mm/s with pressure coefficient . = 0.047

For all simulations, the die angle o« = 5° and the reduction of 25% are kept constant. In
Figure 4.23, the total equivalent strain in the upper coating for the three situations is
shown as a function of the position in the deformation zone relative to the die outlet.
The total equivalent strains after the die outlet are: 0.32, 0.57 (+78%) and 0.37 (+16%),
. respectively. Therefore, pressure dependence and strain rate dependence of a polymer
significantly contribute to the deformation resistance of the coating.
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Figure 4.23. Influence of pressure dependence and deformation rate on equivalent strain ¢.

4.3.5 Analysis of flow paths and strain fields

The influence of the die angle on the tool forces for PET coated annealed aluminium
is determined for a punch velocity of 8 m/s and a reduction of 25%. Figure 4.24 shows
the three measured process forces for the entire range of die angles. Numerical simu-
lations are performed for die angles of 5, 10, 15 and 25°. The punch forces F, and F,
do hardly change over the range of die angles while a large die angle dependence is
observed for F;. As observed for the coated steel, die force F; increases considerably
for small angles. A good correspondence is found for the measured and computed
global forces. In the experiments, in contrast to the coated steel experiments for large
angles, no failure of the PET coating is observed for the entire range of die angles.

The digital image correlation technique of Subsection 4.2.3 is used to determine
displacement fields from recorded video images. In order to visualise the deformation,
a relatively thick strip is used, since the magnification of the zoom lens is restricted.
All digital images of the specimen surface are recorded at a punch velocity of 0.1 mm/s
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Figure 4.24. Influence of die angle on process forces.

for a die angle of 15°, using an 1 mm aluminium strip coated on one side with a 0.5 mm
layer of PET. An annealed aluminium AA 1050 substrate is chosen instead of steel to
prevent the polymer from being squeezed out of the deformation zone in the direction
of the camera. Figure 4.25 shows the flow paths of 23 points, that originally form a
vertical line, in the deformation zone between punch and die. Figure 4.26 shows that a
shear deformation homogeneously spreads over both aluminium and polymer during
the deformation.

Figure 4.25. Experimentally obtained flow Figuré 4.26. Visualisation of shear in the de-

paths of material points in the formation zone. PET and alu-
PET coated aluminium sheet. minium show an equal amount
of shear.

In order to calculate the total equivalent strains in the experiments, a rectangu-
lar grid of 121 material points is defined in the undeformed section of the strip. The
equivalent strains are calculated in both experiments and simulations using the sec-
ond order technique described in Subsection 4.2.3. Figure 4.27 shows the experimen-
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tally and numerically obtained strain fields in a steady state flow for three reductions
(10, 20 and 30%) at an ironing velocity of 0.1 mm/s.
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Figure 4.27. Total equivalent strain fields with reductions of 10, 20 and 30%, for polymer coated
aluminium.

Obviously, larger reductions give rise to higher equivalent total strains. A reason-
able correspondence is found between experimental and numerical results. For all
reductions, the numerically calculated strains show a small overestimation of the to-
tal equivalent strains. This deviation might be caused by the fact that a plane stress
situation in the experiment is compared with a plane strain computation.



Experiments and model validation 67

4.4 Full-scale experiment

Experiments on industrial scale have been performed at Hoogovens Research & Devel-
opment (van Rijn, 1998). The force that can be measured is the toolpack force, which
is the force working on the frame in which the ironing rings are fixed. During the wall
ironing process, the cup is deformed separately by each ring, because otherwise fail-
ure of the can occurs. Thus, the force exerted on each ring can be measured separately.
In Figure 4.28, the position, where force F; is measured, is schematically depicted. A
measurement of the toolpack force is shown in Figure 4.30. In the experiments, PET
coated steel is used and three ironing rings. The strong increase of the toolpack force
in the first ring is caused by an increasing wall thickness in the cup due to the deep
drawing step preceding the wall ironing operation. For the second and third ring, a
more constant force level is observed.

In the simulation, only the first ring of 8° with a reduction of 28% and a 0.5 mm
land zone is considered. The velocity of the punch at this position is estimated on 2.5
m/s.available. Therefore, based on the experiments with the strip ironing device, the
friction coefficients between punch and coated sheet metal x, = 0.017 and between
die ring and coated sheet metal ;s = 0.010 are chosen. The computed toolpack force
of 12.3 kN is shown in Figure 4.30.by prescribing the (increasing) wall thickness during
the ironing simulation.

%{

Figure 4.28. Measurement of force F, working  Figure 4.29. Different stages of the can: (c) af-
on the toolpack. ter cupping, (1)-(3) afterring 1, 2
and 3.

The results of an isothermal simulation are compared with a thermo-mechanical
coupled simulation. However, it is quite difficult to determine the proper thermal
boundary conditions for the coupled analysis. The set of history dependent variables
is extended with temperature T. The following assumptions are made:
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Figure 4.30. Measured toolpack force for three ironing rings and the computed toolpack force
(dashed) for only the first ring.

* Good cooling conditions by the emulsion are assumed using a heat convection
coefficient « = 2000 W/m?K (Balmer, 1990).

e The influence of elevated temperatures on the yield stress of PET is taken into
account based on tensile tests performed at 40 and 60 °C.

¢ For the mechanical behaviour of the sheet metal, no influence of temperature
on the resistance to plastic flow Z is assumed.

In a coupled elasto-viscoplastic analysis, two finite element formulations, coupled
through viscoplastic work, are decoupled at each time step and solved in a staggered -
procedure. The following solution scheme is applied:

1. The heat conduction equation is solved during a small time step by introduction

of the updated geometry and heat generation to the solution of the finite element
heat conduction equation.

2. The temperature is updated.

3. The mechanical problem is solved during the same time interval, while the up-

dated temperature is held constant. Also, heat generation by viscoplastic work is
calculated and saved.

4. The geometry is updated.
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Table 4.2 gives additional material parameters for PET and steel: mass density p,
thermal conductivity k, thermal expansion « and specific heat c. The material prop-
erties are given by the suppliers Eastman and Hoogovens, respectively.

properties
J) k o c
kgm?] | WmK™" | K] | Dkg'K]
PET 1330 0.28 80107° 2150
steel | 7800 50 1.210°° 480

Table 4.2. Material properties of PET and steel (ECCS) at room temperature (293 [K]).

For the coupled thermo-mechanical simulation, the temperatures of the steel and
the inside and outside coating are shown in Figure 4.31. The steady state temperatures
of the steel is 135 °C. The temperature of the outside coating (75 °C) becomes signifi-
cantly higher than the temperature of the inside coating (42 °C), because of the larger
deformation occurring in the outside coating, which gives rise to more heat generation
due to plastic work. Note that the temperature in the outside coating is higher than the
glass transition temperature under atmospheric conditions (7 ~ 70 °C). Therefore, it
is interesting to compare the computed equivalent total strain in the coating with an
isothermal computation. In Figure 4.32, the equivalent total strain for the coupled
thermo-mechanical and the isothermal simulation are depicted versus the position
relative to the die. It is seen that a relatively small increase in equivalent strain of less
than 5% is caused by taking into account temperature effects.

The limited influence of thermal effects on the mechanical behaviour of the PET
layer is due to an opposing effect of high hydrostatic pressure. To illustrate the effect,
Zoller and Bolli (1980) have examined the influence of pressure on the glass transi-
tion temperature T,. For amorphous PET, T is increasing with pressure according to
dT,/dp = 0.36°C/MPa over a measured pressure range 0-200 MPa. According to this
ratio, T, hypothetically rises to 250 °C for a pressure of 500 MPa.

4.5 Conclusions

In this chapter, the simulation model for the wall ironing process of polymer coated
sheet metal has been validated under realistic processing conditions using (model)
experiments on a strip ironing device and an experiment on an industrial production
machine. Friction coefficients obtained in a plane strain strip ironing device were di-
rectly used in the numerical simulation, thus no assumptions with relation to fric-
tion were required. Simulations were performed with an Arbitrary Lagrange Euler
method based on an Operator Splitting procedure (OS-ALE) using advanced constitu-
tive models. Experiments and numerical simulation have proved to be complemen-
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tary. From the investigation using the strip ironing set-up, the following conclusions
can be drawn:

In the strip ironing of polymer coated steel, small die angles enforce a gradual
accumulation of pressure, which suppresses the shear deformation, and subse-
quently a moderate development of the equivalent total strain. For the polymer
coating, this increase in pressure is the key parameter to survive the process.

Increasing ironing velocity gave rise to larger pressures in the deformation zone
because of the strain rate dependence of both steel and PET. Therefore, it is nec-
essary to incorporate elasto-viscoplastic material behaviour in the constitutive
models.

In the ironing experiments, it was observed that a minimum in punch force and
punch bottom force is found for die angles of 7 and 5 degrees, respectively. Both
punch force and punch bottom force increase for increasing reduction and are
nearly independent of the ironing velocity.

Small punch friction coefficients in between 0.01 and 0.03 are measured for PET
coated steel for die angles between 2 and 10°, at an ironing velocity of 10 m/s.
Increasing the velocity significantly reduced the punch friction coefficient.

Using a digital image correlation technique, strain fields were obtained and com-
pared to simulations, showing a reasonable agreement. The polymer coated alu-
minium deformed as an homogeneous material, with equal shear and plastic
strain in polymer and metal.

From the experiment on the bodymaker, we can conclude that it is quite difficult to
obtain the appropriate mechanical and thermal boundary conditions. However, the
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strip ironing device can be used to measure friction coefficients for the full-scale pro-
cess, provided that the tribological conditions in the device are made similar to those
in a bodymaker using the same lubricant and emulsion.

Thermal conditions might strongly influence the mechanical behaviour of the poly-
mer coating. However, hydrostatic pressure opposes the loss of mechanical properties
due to thermal effects.
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Conclusions and recommendations

In order to obtain a cheaper and environmentally cleaner can production process, can
manufacturers must be able to deform polymer coated sheet metal properly, without
delamination or failure of the coating. Modelling of the process is one of the possibil-
ities to gain fundamental insight in the process and subsequently improve it without
costly tooling and lead times.

In this thesis, a simulation model has been presented to describe the wall ironing
process of polymer coated sheet metal. The complex constitutive material behaviour
of sheet metal and coating are described using the generalised compressible Leonov
model. The model is based on an Arbitrary Lagrange Euler method to prevent mesh
distortion and to track the free surfaces. Model validation has been performed for a
range of die angles, deformation velocities and reductions. Measurement of the tool-
pack force in a full-scale experiment has been compared with results from a coupled
thermo-mechanical simulation.

5.1 Conclusions

A numerical-experimental strategy has been developed to accurately verify the finite
element model OS-ALE. An experimental device has been realised by which realistic
experiments can be performed regarding the deformation process, the occurring hy-
drostatic pressures and the deformation speeds. Moreover, this device can be used to
examine friction behaviour of deforming materials under realistic processing condi-
tions. Digital image correlation has proved to be a beneficial tool to obtain displace-
ment fields. The conclusions related to the thesis are:

e The advanced constitutive equations have appeared to be of eminent impor-
tance in the understanding of metal and polymer behaviour undergoing large
deformations at high strain rates and high pressures.

o Operator Splitted ALE is very well suited to handle large deformations combined
with free surface flows.

73
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¢ The Discontinuous Galerkin method is a successful transport method for the
simulation of forming processes with OS-ALE: discontinuous fields of state vari-
ables are incrementally transported with a minimum of diffusion.

* The pressure accumulation in the polymer coating is a key parameter for the wall
ironing process of polymer coated sheet metal.

* Another important parameter is the strain rate dependence of the polymer, which
also improves the deformation resistance of the coating.

¢ Using aluminium with a PET coating in the strip ironing experiment, measure-
ment of the displacement field shows a similar deformation pattern in both alu-
minium and PET. ‘

¢ Temperature rises due to plastic deformation and friction have a minor influence
on the mechanical behaviour of the polymer coating.

5.2 Recommendations

In this thesis, the attention was focussed on the wall ironing process of virgin coated
plate for a single die. Of course, the model has to be extended with a deep drawing
and a redraw step preceding this die, and two ironing steps, which follow the first one.
With respect to the ironing operations, the presented model can be re-used after the
first ironing step by putting the deformed material once again in the ironing model.
In fact, instead of starting the forming process with a virgin material, the values of the
history dependent variables are used for the second ironing steps.

Up to now, only visualisation experiments have been performed for a 1 mm thick
aluminium sheet with a 0.5 mm PET coating at a low deformation velocity. It is in-
teresting to scale this experiment down to thin coated sheet using a microscope. The
experiments with PET coated sheet metal failed as the PET is squeezed out of the de-
formation zone, which gives rise to focussing problems. A transparent plate could be
used to suppress this deformation. Then, the die swell phenomenon of the polymer
at the outlet of the die can be investigated. Also experiments at higher deformation
rates can be performed to examine the increasing deformation resistance of PET at
higher velocities. Known problems at higher velocities are vibrations of the frame,
which hamper the recording of sharp images.

Another topic that deserves attention is the determination of failure criteria for the
coating using the presented numerical-experimental technique. Characteristic for the
failure of the PET coating during wall ironing is a phenomenon called ‘micro-voiding),
in which small voids cause a whitening of the PET film. In Figure 5.1, this effect is
illustrated by performing an uniaxial tension test under atmospheric conditions, and
under 600 MPa hydrostatic pressure (see Subsection 2.4.1).
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Figure 5.1. Specimens after an tension test under atmospheric conditions (lower figure) and
superimposed pressure of 600 MPa (upper figure).

Hydrostatic pressure is an effective method to suppress this phenomenon. Wide Angle
X-ray Scattering (WAXS) measurements of both specimens have shown (Schrauwen
et al., 1998), that for both specimens the material is amorphous and no crystallisation
effects are observed. Using in-situ Small Angle X-ray Scattering (SAXS), characteris-
tic craze formation patterns are observed. Conclusion of their experiments was that
stress whitening is caused solely by cavitation. This indicates that a high hydrostatic
pressure (or small die angles) also favours the aesthetic performance of polymeric
coatings for the wall ironing process of pre-coated cans, but further investigation in
this direction is necessary.

A topic closely related to failure mechanisms of coating material is the develop-
ment of design methodology for coatings. Jayachandran et al. (1995) present an ap-
proach to design multilayered coatings to provide the desired mechanical behaviour
during indentation. Using a parameter variation study using the finite element method,
a suitable coating is tailor-made by a careful selection and placement of different ma-
terial layers required during service. Jayachandran et al. have obtained good results
using a bilayer polymer coating system, with a soft coating on the metal substrate and
a hard coating on top of it. Then, a low interfacial shear stress is maintained during
indentation, and the level of surface tensile stress is minimised. Some of their ideas
can be used in the coating design of the current application.

The influence of the strain induced crystallisation for semi-crystalline polymers
has to be investigated. In Chapter 2, it is stated that no distinction is made between
hardening due to molecular orientation and strain induced crystallisation. Using the
differential scanning calorimetry method, Zaroulis and Boyce (1997) examined the
crystallinity content as a function of the mechanical loading (effects of temperature,
strain rate, and strain state on the finite deformation). Main conclusion is that above
glass transition temperature Ty, the mechanical behaviour is characterised by a strong
sensitivity of the strain hardening behaviour to strain rate. High strain rates favour
orientation and possible strain-induced crystallisation results in pronounced strain
hardening. In the wall ironing process of coated material, it is questionable whether
strain-induced crystallisation occurs during or after the actual forming process. More-
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over, the influence of the high hydrostatic pressure on this effect has to be investigated.
The developed tools can be applied to design an optimised die geometry. Impor-
tant design variables are:

o the equivalent plastic strain in the coating which is important with respect to
failure of the coating (see Section 4.3.1).

e the bottom force F, which is important with respect to failure of the total can. It
was found in Section 4.3.3 that the bottom force F, shows an optimum for a die-
angle ¢ = 5°.

o the die force F,; with respect to failure of the die. For the axisymmetric case of
wall ironing, this force is strongly related to the hoop stress present in the ring. To
avoid failure of the ring, this stress is a design variable, which should not exceed
a critical limit.

Apart from die optimisation, also further research is necessary to investigate other
coating materials than PET.
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Details on the stiffness matrices of the
material models

Objective of this appendix is to determine the variation of elasticity scalar 61 caused
by the variations & B, and 8 F for both elasto-viscoplastic models. Starting point is the
relation (3.22):

AALT

_ 1
= Garty " @&.1)

A.1 Compressible Leonov model

Viscosity function (2.12) depends on the equivalent Von Mises stress 6 = G %Be : E:,
pressure p, and softening variable D. The viscosity can be written as:
AH up 4

2440 [
N=—=exp| w55 +——-D-— ]
Vol /A
where we used the approximation sinh(x) = (exp(x) — exp(—x)) ~ 1 exp(x) as pro-
posed in Subsection 2.4.1.
The variation 7 can be written as:

3 9 maD._  anaD
8n = a’.’aa+a;7)3p+agaas +agap

and for 66 and dp, one obtains:
2
s6=30 B on' =3CH 5B, sp=—Ju(F) (A4)
20 20
For the partial derivatives of the discretised evolution equation D,,, = D, + AtD
(2.45), we can write:

8_D=At<%>+§292) | QB_A(BD+§23D>

(A.2)

sp (A.3)

do dD do ap dp 90D Ip
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and, thus:

ap A2 ap A

= = — : =0 (A.5)

o 1- A2 P11 A2

The partial derivatives in Eq. (A.3) yield:

o _ (1 1 ) o _ nu ) on _

D D 3D  Dpu D . h&

&~ 31, P 9D V6Doon) ‘
Substitution of & and dp into Eq. (A.3) gives:

on=mB’: 6B, + mI:5F (A.8)
with scalars h; = 32 ( + —2’,3%2) and hy, = —«J (a—" —{,—a—D) Insertion of this relation
in Eq. (3.22) yields:

S =0LB": 6B, 4 LI:5F (A.9)

AAtTh Lh
A0°- — 72
with scalars ll-— AtGHn andlz— B

A.2 Bodner-Partom model

Viscosity function (2.19) depends on the equivalent stress 6 = Gy3 3B B and the
equivalent plastic strain &,. The variation of §7 consists of the contrlbutlons

08y
s =55 o+ 5 a" Zrse (A.10)
do p 00
For the partial derivatives with respect to the equivalent Von Mises of the discretised
evolution equation &, n41 = €p,, + A, We can write in analogy with Eq. (A.5):

- 3,
% _ _A.t_aé_ A.11)
1-Atle

The partial derivatives now read:
an

317 _— 77 ==~2n-12n . —_ ~-=2nr72n -
55 = g nno zZ ; 55 = —mnno “"Z (Zo Zl) exp(—msp 1)
(A.12)
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=z ) s o
¥, - (1 I ) 9€, Ep3z,
5—8)”(—5‘? ’ %, 7 (A13)

Substitution of §o into Eq. (A.10) and insertion of the result in Eq. (A.1) yields:

AAT 3G? (8n on @)

~d _~
=bB,: ’ _— = | == — =
0+ =hB. : 3B, ’ by AtG+n 26 \do 08, 35

(A.14)
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Derivation and implementation of the
Discontinuous Galerkin Method

In this appendix, the Discontinuous Galerkin method is described in more detail. In
Section B.1, the Discontinuous Galerkin method is derived for the one-dimensional
case. The implementation for the two-dimensional case is discussed in Section B.2.

B.1 One-dimensional derivation of the DG method

For the one-dimensional case, transport equation (3.39) reads:

b ‘
5)2— =0 (B.1)
dax
Let 2 be the domain of interest, which is subdivided into N elements Q¢: x € [x,_;, X,)].
Along the boundary I' of the domain, we assume no inflow of material: u(x = x) =
u(x = xy) =0onT. Here, u,,(x) is the mesh displacement and the material does not
move in space to maintain equivalence with the Lagrange formulation. The weak form
of the transport equation (B.1) is given by:

/ A (cp”(x) — % (x) — um(x)W) w(x)dx =0 Yw(x) ’ (B.2)

=Xp

(pb—go“—um-

Using the finite element method, domain 2 is subdivided into N elements, which
results in:

N Xn
> (sob(x) — () — tm(x) ""”;’fc")) wxdx=0 Vw(x) (B3
n=1 Y ¥=Xp-1

The functions ¢*(x), ¢?(x), and w(x) are allowed to be discontinuous at all mesh
points. In the neighbourhood of these points a small interval is defined. The inter-
val for point x = x,,_; is {xX,—1 — Ax, x,—; + Ax] and is shown in Figure B.1. Now, Eq.
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On(Xn-1)
On—1(Xn-1) | I
| @n(x)

Pn—1 (x) I l

o, !

| |
|

| |

n—1 | ! ] n
Xn—2 Xp-1 —AX Xpo1  Xpo1+ Ax Xn

Figure B.1. Neighbourhood of interval [x,_, — Ax, X,,—; + Ax].

(B.3) can be split up in four parts:

N Xp—Ax
3 f (cob(x) — () = tm (%) 3“"’(")) w(x) dxt
n=1Y X

=Xp_.1+AX ax

N Xp-1+Ax b
> | ) (rp"(x) — (%) — () 3“’8;")) w(x) dxt
n=2 v X=Xp-1—Ax

Xo+Ax b
/ (fp”(x) — (%) — um() 2 (x’) w(x) dxt

%0 ox

f N (fp”(x) —¢*(x) — um(x)a—‘”;(c—x)) w(x)dx=0 Y w(x) (B.4)

=xny—Ax

The second term of this equation describes the transport of the material varjable through
the discontinuities due to mesh displacement 1,,.

On the interval around x,,, according to Figure B.1, ¢(x) is defined by:
P(x) = @n-1(x) + €(x — Xp-1) (@n(X) — Pu_1(x)) (B.5)
where €(£) is the unity step function:

«@={5 iz 0 ®6)
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The derivative of the unity step function ‘k@) is the Dirac pulse §(&), which has the
properties:

5(&) =0 for £E£0 and ' (B.7)

[ r@se-wa =r@ ®8)

Oninterval [x,_; — AX, x,-1 4+ Ax], we get:

do(®) _ om0 s Y on(x) = gna (X)) +

dx dx
_ d(On(x) . d‘pn—l(x)
e(x—x,_1) < Tx Tx ) (B.9)

After substitution of Egs. (B.5) and (B.9) into Eq. (B.4), and letting Ax — 0, only terms
multiplied with the Dirac pulse § result, due to its filtering characteristic given in Eq.
(B.8). The resulting equation is given by:

Z f («p () — () — i) 2 m)w(x)dx—

N

D {wEn 1) U (X 1) (@5 (Xn1) — -1 (Xn1))} =0 (B.10)

n=2

Now, a choice has to be made how to evaluate w(x,_,), which is undefined since w(x)
is discontinuous at x = x,_;. A possible choice is a weighted average over the lower
and upper limit values:

W(Xp—1) = AWy (Xn_1) + (1 = @) Wp(Xn-1) (B.11)

Substitution of this relation into Eq. (B.10) gives:

Z / (- - a2

x=.

) w(x)dx—

Z {own1 (Xn-1) U(Xn-1) (@5 (Xn-1) = o1 (Xn1)) +

n=2
(1 = @) wa(Xn-1) U(Xn-1) (@5 (Xn-1) — P51 ($n1))} =0 (B.12)

Cons1der element n and rename w = wy(Xp—1), W2_; = Wy (Xn-1), P8} = @2(xp-1),
and ¢? | = ¢’ _| (x,—1), where the upper index indicates the element node number,
then we get:

f " (wb(x) —¢*(x) — um(x)a—(p;;(cﬂ> w(x) dx—

=Xn—1
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AWy Uy (05 = 9721) + (1 — )whudd, (o8 — g2 ) =0 (B.13)

Using interpolation of w, ¢ and u,, with linear interpolation functions N* and N2 gives
in component form:

Xn 1 b1 al
o] w5

=Xp-1

1 2 urln,n QE aNz ﬁoﬁl _

l1-o)ul,, —(1—a)ul Qi
n Wh_ [ ( mn mn 5o [=0 B.14
[wn " 1] au}n,n _au}n,n (022—1 ( )
This relation can be simplified to:
Xn bll b12 zl all a12 al
[ e[ e ][5 - [ @ ][ VE P
I-a)u, —(1-a)u opt ] _
[oh ]| G o ~O T e g B.15)

Assembling the system to w”Agp? = w”By*, gives the following structure in matrix A
in the neighbourhood of element n, which are written in bold characters:

Bl +... bz,
b%zl—l h%:2—1+au}n,n "aur‘n,n
A—eyup, bl —(1—ayul, , b
bﬁl blzlz +au}n, n+l _au}n,n-i-l
A-ajuy, 0 B - - a)u}n,n+l b,
e ot

The parameter o allows for partial upwinding (see Hulsen (1992)). In general, « is
chosen such that upwinding occurs only in the upstream direction. For positive u(x),
this would lead to « = 0 in this formulation. Then, Eq. (B.13) reduces to:

Xn b
L. (¢ = 0) = un 2 )i - wi, e — g2 =0
o (B.16)

which is the Discontinuous Galerkin formulation of Eq. (B.1) for positive u,,(x) for the
one-dimensional case.
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B.2 Two-dimensional implementation of the DG method
For the two-dimensional case, the discretised form of Eq. (B.1) has to be solved:

@ — % — i Ve? =0 (B.17)
For this equation, the Discontinuous Galerkin method results in:

/;zw((ob—(o“—iim-%(pb)dﬁ—z‘/ Wil - R (9" —92)dl =0 Y w (B.18)
Ve <

in which I'¢ is the inflow boﬁndary (m - 1 > 0) of an element e with outward unit
normal 7, and ¢Z,, is the value of ¢’ on the upstream side of I'®. Using a Cartesian
vector base {€;, &}, elaboration of the first term of Eq. (B.18) for element e gives:

NT aNT
[ aa +uya ]dQ(p (B.19)

M K

Q.

o' [ NNaR@t g -u' [ N
lo.

where IV is the element shape function column, which is filled with the components
of the shape function of a 4-noded bi-linear quadrilateral element.

Introducing N; = DN as the shape function on the boundary of an element with
D = D;, in case of evaluation of the current element and D = D, in case of evaluation
of the adjacent upstream element, the upwinding term can be written as

/ NBwBu,,(NB<pB NB(pE o) AT
where u, = ii,, - . Further elaboration yields

wp fr NgunNpdl (¢, — 0} o) =

(me) fNBu"NBdF(Dtn¢ —ex(p )'—

~ext
\———-W_J
9

w” D},Q,D;, 9" —w'D,Q.D, ¢* (B.20)
N e’ “—z——“
Qin Qex

The D matrices are used to select the nodal values from the upstream element, be-
longing to I',. Substitution of Egs. (B.19) and (B.20) into Eq. (B.18), gives

wM(¢" — ") —w'K¢" —w'Q, ¢"+w'Q ¢* =0  Vu

—ex~ext
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which results in the following system of equations:

(M —K- Qin) ?b = M(Pa - Qex?fxt ‘ (B.21)
Although the DG method is unconditionally stable due to the (implicit) backward Eu-
ler discretisation scheme, it is diffusive for large Courant numbers as shown in Chap-
ter 3. Therefore, to avoid excessive diffusion, the Courant number is limited by split-
ting the transport step into a number of sub-increments bsub=1,..., lsub max-

Eq. (B.21) is solved subsequently for all elements in a semi-explicit/implicit man-
ner, inspired by Baaijens (1994). The implicit/explicit solver is given by:

A pitl b
é(eb ’ = Mg.oa - _Q.ex?gxt (B.22)
whereA=M — K — Q‘n and g:ob i denotes the estimated g_o” atiterationi=1,..., inu

with as first estimate:
¢ =g (B.23)

A pitl
This equation is solved for each element separately, resulting in an updated (pb+ for
this element, which is not only used in the next iteration, but also for the remaining
elements in this iteration, for the estimation of the external term of the right-hand

side. This results in a new global (2)"'“, which is used to obtain a better estimation in
the next iteration, until convergence is obtained.

Implementation of the algorithm can be efficiently done by storing the inverse of
the element stiffness matrices A~ and Q,, and re-using these every subincrement
and iteration. To reduce computational costs even further, the values of Me* for every
element are calculated every subincrement and re-used every iteration. A flow scheme
of the implementation is given in Figure B.2.
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I Start l

Map solution data from
integration points to nodes

e
y
Isi=1and | Y8 | Calculate A™*, M¢* and Q
lsup = 12 and store them  —*
no

y
Get A, My®and Q
from Storage™ "

y
Solve p* = A" (M¢" — Q_¢

b )

ext

Calculate new M¢“ and store it

yes
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X
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Map solution data from
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End

Figure B.2. Flow scheme of the implicit-explicit DG implementation.
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Samenvatting

Het Draw and Wall Ironing (DWI) proces is een metaalomvormproces, waarin een
dieptrekstap wordt gevolgd door een wandstrekbewerking resulterend in een dun-
wandig, cilindrisch eindproduct. Industriéle toepassing vindt plaats ten behoeve van
een groot aantal producten: drank- en voedselbussen, batterijhulzen, en gas- en hy-
draulische cilinders. In het huidige productieproces van drank- en voedselbussen
worden binnen- en buitenkant van de bussen gelakt. Meerdere wasstappen zijn daar-
om nodig om smeermiddel en emulsies te verwijderen. Het wassen en lakken van de
bussen is kostbaar en vormt een aanzienlijke milieubelasting.

In dit proefschrift wordt een alternatieve methode beschreven, waarbij metaal,
dat aan beide zijden met een polymeerlaag is gecoat, tot een bus wordt omgevormd.
Deze coating fungeert daarbij als: (1) smeermiddel tijdens het omvormen, (2) bescher-
mingslaag tegen corrosie (aan de binnenkant), en (3) basislaklaag (aan de buitenkant).
Verwacht wordt dat deze werkwijze leidt tot een kostprijsreduktie en een aanzienlijke
vermindering van de milieubelasting.

Ten behoeve van efficiénte optimalisering van het fabricageproces en verbetering
van het eindproduct is numerieke simulatie essentieel. Het omvormproces wordt ge-
karakteriseerd door grote, gelocaliseerde rekken, de beweging van vrije oppervlak-
ken, en, vanwege de hoge productiesnelheden, een aanzienlijke thermo-mechanische
koppeling. Om het omvormproces te simuleren is een eindige elementen model ont-
wikkeld, gebaseerd op een Arbitraire Lagrange Euler (ALE) beschrijvingswijze gebruik-
makend van een Operator Splitting techniek (OS-ALE). Na een Lagrange stap, resulte-
rend in een aanzienlijke vervorming van de elementen, worden de posities van knoop-
punten aangepast, zodat met een goed geconditioneerde mesh verder gerekend kan
worden. Toestandsvariabelen, zoals spanningen en plastische rekken, worden daarna
naar de nieuwe mesh getransporteerd met de Discontinuous Galerkin (DG) methode,
die bij uitstek geschikt is voor het nauwkeurig transporteren van discontinue variabe-
len.

Vanwege de optredende hoge deformatiesnelheden in het DWI proces, vertonen
zowel metaal als polymere coating elasto-viscoplastisch materiaalgedrag. Ter beschrij-
ving hiervan wordt voor beide materialen een analoog model gebruikt: het gegenera-
liseerd compressible Leonov model. Voor het polymeer wordt een Eyring viscositeits-
functie gebruikt en voor het metaal een Bodner-Partom viscositeitsfunctie. Materiaal-
parameters in deze modellen zijn bepaald door het uitvoeren van trek- en compres-
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sieproeven bij hoge snelheden en hoge hydrostatische drukken.

Voor de verificatie van het model is een experimentele opstelling gebouwd, waarin
strips gecoat materiaal dungetrokken worden. Door middel van een numeriek-experi-
mentele methode kunnen berekende en gemeten proceskrachten worden vergeleken.
Bovendien kunnen met behulp van een digitale image correlatietechniek verplaat-
singsvelden bepaald en vergeleken worden met simulatieresultaten.

Het ontwikkelde en experimenteel gevalideerde eindige elementen model voor het
wandstrekken van polymeergecoat plaatmateriaal kan gebruikt worden om gerichter
en sneller drank- en voedselbussen te ontwerpen. Invloeden van de belangrijkste pa-
rameters in het proces, zoals gereedschapshoek, materiaalkeuze, deformatiesnelheid
en diktereductie zijn onderzocht. Een handzame opstelling is gerealiseerd waarmee
realistische beproevingen qua procesomstandigheden kunnen worden gedaan m.b.t.
keuze van metaal, coating en gereedschap.
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Stellingen

behorende bij het proefschrift

Wall ironing of polymer coated sheet metal

. Drukopbouw in de polymere coating is van essentieel belang voor het
succesvol wandstrekken van polymeergecoat plaatmateriaal.

Dit proefschrift, hoofdstuk 4

. Door de keuze van de viscositeitsfunctie kan met één constitutief mo-
del het mechanisch gedrag van polymeren en metalen goed worden
beschreven.

Dit proefschrift, hoofdstuk 2

. Inzicht in het wandstrekproces van polymeergecoat materiaal wordt
in belangrijke mate verkregen door numerieke modelvorming van dit
complexe vormgevingsproces (grote deformaties, hoge deformatiesnel-
heden, hoge hydrostatische drukken en thermo-mechanische koppe-
ling).

Dit proefschrift, hoofdstukken 2 en 3

. Bij voldoende drukopbouw in de polymere coating gedurende het om-
vormen van polymeergecoat metaal zal de (veranderende) glastempe-
ratuur niet bereikt worden, mits de door wrijving en plastische defor-
matie opgewekte warmte een kritische grens niet overschrijdt.

Dit proefschrift, hoofdstuk 4

. Zonder inzicht in het wiskundig model én kennis van numerieke opti-
malisatie (formulering van doelfunctie met beperkingen, bepalen van
gevoeligheden, schaling e.d.) faalt procesoptimalisatie.

B. Stok and A. Miheli¢ (1995). Optimal design of the die shape using nonlinear
finite element analysis. In S. Shen and P. Dawson, editors, Proc. Fifth Int. Conf.
on Numerical Methods in Industrial Forming Processes, 625-630.

. Een modelexperiment is essentieel voor het bestuderen van een proces
in een grootschalige opstelling.



7. Voor vruchtbare samenwerking van industrie en universiteit, bepaalt
de eerste de doelstellingen en de laatste de te kiezen weg.

Symposium Hora Est ‘Onderzoek in Evenwicht, 16 mei 1997

8. De overdraagbaarheid van software wordt aanzienlijk vergroot door het
na de ontwikkelingsfase in te bedden in een commercieel pakket.

9. Een groeiend aantal promotiewerken komt beter tot zijn recht als de
bijbehorende proefschriften op cp-ROM verschijnen, aangezien dit de
interpretatie en presentatie van simulatieresultaten en experimenten
vergemakkelijkt.

10. Zet, bij gebrek aan afstudeerders, familie in.

Maycel van der Aa,
Eindhoven, 4 maart 1999.
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