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We describe a realization of the maximum likelihood decoding algorithm 

when the messages are encoded by a low-density code and transmitted over 

a binary symmetric channel. The algorithm is based on the introduction of a 

tree structure in space consisting of all possible noise vectors and principles 

of sequential decoding with the use of a special metric function. We prove 

an upper bound on the exponent of the expected number of computations in 

the ensemble of low-density codes and show that it is much less than the 

exponent for the exhaustive search. 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

We consider an information transmission system wherein data are encoded 

by a binary, linear, block, low-density code C and transmitted over a binary 

symmetric channel. The code is defined by the parity-check matrix H having 

the dimension mN x kN, where m, k, and N are given parameters, which is 

constructed in such a way that, for all i = 1, ... , m, the submatrix consisting 

of rows (i- l)N + 1, ... , iN is obtained by some permutation of the columns 

of the matrix Ik,N = [IN ... IN] of dimension N x kN, where IN is the identity 

N x N matrix [1]. We will denote the set consisting of (kN)! permutations of 

indices 1, ... , kN by IIkN and the matrix obtained using the permutation 1r E IIkN 

of columns of the matrix Ik,N by 7rlk,N· The code rate satisfies the inequality 

R ;::: 1- m/k + (m- 1)/(kN) that follows from the observation that the vector 

of length kN consisting of all 1's belongs to the linear space of each submatrix 

of the parity check matrix consisting of the rows (i- 1)N + 1, ... , iN, where 

i = 1, ... ,m. 

Suppose that y E {0, 1 YN is the vector received at the output of a binary 

symmetric channel. Then the vector s0 = yHT E {0, 1 }mN can be interpreted as 



the received syndrome, and the decoder has to construct a vector e E { 0, 1 YN 

such that eHT = So. The vectors having this property form the set y EB C. Any 

element of this set is a valid estimate of the noise vector at the output of the 

decoder and e* = argmineEyE!lcwt(e) is a maximum likelihood estimate, where 

wt denotes the Hamming weight of a binary vector. 

Low-density codes were introduced by Gallager [1]. Investigation of iterative 

decoding procedures for these codes was continued by Zyablov and Pinsker [2] and 

other authors. We will present a revised version of [3] and describe a sequential 

decoding algorithm that allows us to construct a maximal likelihood estimate of 

the noise vector with lower complexity than that achievable by verification of all 

binary vectors having the Hamming weights 0, ... , wt(e*). 

SEQUENTIAL DECODING ALGORITHM 

To apply the sequential decoding technique, we factorize the space { 0, 1 }kN 

by introducing the following tree structure. Let the tree contain nodes associated 

with all binary vectors of length kN and have kN + 1 levels numbered 0, ... , kN. 

Since the probability of any vector being a noise vector is completely determined 

by its Hamming weight, we put (kf) vectors of the Hamming weight j to level j, 

where j = 0, ... , kN. We will deal with sequential updates of a current estimate 

of the noise vector e by changing one of the bits of e at each step. If the step 

is interpreted as passing through the edge of a tree, then the tree should be 

constructed in such a way that any two nodes are connected by the edge only if the 

Hamming distance between the corresponding vectors is equal to 1. However, the 

two guidelines above do not generate a tree and we need an additional constraint 

which prohibits the entering of the same node by several edges. One possibility 

is to use the lexicographic ordering for this purpose (see Figure 1). 
Definition 1: The error tree is a tree containing 2kN nodes associated with 

binary vectors of length kN. The edge going from the node associated with the 

vector e and leading to the node associated with the vector e exists if and only 

if e E £1 (e), where the set £1 (e) consists of all vectors e' E { 0, 1 YN having the 

following properties : wt(e') = wt(e) + 1; wt(e EB e') = 1; the last bit 1 of the 

vector e' is farther than the last bit 1 of the vector e. 

Definition 2: Let the function 

r( ' l ) wt(eHT EB s0 ) (') e so = + wt e 
m 

(1) 

0011 

0000 1111 

Figure 1: The error tree representing the set { 0, 1 }kN, where kN = 4. 

where s0 is the received syndrome, be the metric of the node associated with the 

vector e of the error tree. 

One can easily see that the definitions above and the fact that each column 

of the matrix H has the Hamming weight m imply the following properties of 

the metric function : if e' E £1(e), then f(e'Jso) - f(eJs0 ) E [0, 2]; if e is a 

valid estimate of the noise vector at the output of the decoder, then f(eJs 0) = 
wt(e). Consider a curve connecting the points (wt(e),r(eJs0)) for the vectors e 

associated with the nodes belonging to some path of the error tree. If none of these 

vectors is a valid estimate of the noise vector at the output of the decoder, then 

the curve is located strictly above the line with the slope + 1. All vectors of the set 

y + C specify the corresponding paths in the tree and the corresponding curves. 

Maximum likelihood decoding is equivalent to the selection of a curve that crosses 

the line with the slope + 1 at the point having the minimal abscissa. Suppose that 

the decoder knows the Hamming weight of the maximum likelihood estimate, 

wt(e*). Then the exponentially lower complexity of the decoding algorithm as 

compared to the exponent for the exhaustive search is possible only if based on 

the analysis of the metric of a node associated with a vector e that does not 

belong to the path leading to the node associated with the vector e*' the decoder 

typically can reject all paths containing this node. The properties of the metric 

function allows us to organize such a verification, namely our decoder rejects 

these paths if r(eJs0 ) > wt(e*). However, since the value of wt(e*) is unknown to 



the decoder, he uses the value of a threshold T instead, tries to find a vector e* 

with r(e* I so) = wt(e*) = T, and increases T by 1 if there are no vectors having 

this property. The formal description of the decoding algorithm is given below, 

where 0 denotes the all-zero vector of length kN and f z l stands for the minimal 

integer which is not less than z. 

[I] Initialization : 

- set t = 0, Eo = {0}, T = lf(Oiso)l. 

[S] Selection of the current node : 

- if Et = 0, then go to [B]; 
- select an element et of the set Et having the minimal metric; 

- if f(etlso) = t, then go to [T]; 

- if r(etlso) > T, then go to [B]. 

[F] The F-step : 

- set £t+I = £I(et); 

- if IEt+II < T- t, then go to [B]; 

- increase t by 1 and go to [S]. 

[B] The B-step : 

- decrease t by 1; 

- if t = 0, then increase T by 1 and go to [S]; 

- exclude the vector et from the set Et and go to [S]. 

[T] Termination : 
- output e = et as the estimate of the noise vector. 

The statement below directly follows from the description of the algorithm 

and properties of the metric function. 
Proposition : The [I-T] sequential decoding algorithm outputs a maximum 

likelihood estimate of the noise vector. 

AN UPPER BOUND ON THE EXPECTED NUMBER OF COMPUTATIONS 

Given e0 E {0,1}kN and 7r = (7ri, ... ,7rm), let 

Table 1: Some values of TJR(a0 ) and mR(a0 ) 

eta R R 
1/4 1/3 1/2 2/3 3/4 1/4 1/3 1/2 2/3 3/4 

aR/2 0.50 0.42 0.33 0.27 0.21 3 3 6 9 15 
aR/4 0.51 0.40 0.32 0.26 0.21 4 4 6 10 16 
aR/8 0.48 0.38 0.30 0.24 0.20 4 5 8 12 19 

ctR/16 0.47 0.36 0.29 0.23 0.18 5 6 9 14 22 
aR/32 0.45 0.35 0.27 0.22 0.17 5 6 10 15 23 

where H = 7r Ik,N denotes the matrix whose submatrix consisting of rows ( i -

1)N + 1, ... , iN is constructed as 7riik,N, i = 1, ... , m. If e0 is the noise vector 

constructed at the output of the decoder, then the algorithm terminates with T = 
wt(e0). Therefore, all vectors e with f(ele0HT) < wt(e0) and some vectors with 

r(ele0HT) = wt(e0) will be processed in [F]. If the computation is understood as 

computing the metric of the vector associated with some node of the error tree, 

then TkNCp(e0 ) is an upper bound on the number of computations. 

Let h(p) = -plogp-(1-p) log(1-p) and D(p II p') = -plogp'-(1-p) log(1-

p') - h(p) denote the binary entropy function and the divergence between the 

probability distributions (p, 1- p) and (p', 1-p'), respectively, where p, p' E (0, 1) 

(hereafter, all logarithms are to the base 2). Furthermore, let D(O II p') = 
- log(1 - p') and let lxl+ = x if x 2:: 0 and lxl+ = 0 if x < 0, for all x. 

Theorem: For all e0 E {0, 1 YN such that wt(e0) = kNa0 and a 0 E (0, 1/2), 

k~logCp(e0) :::; o(N-1 logN) (4) 

+ :~~~~ { a 0h (:J + (1 - a 0)h C ~'aJ -m I p(k)( k(a - a'), a + a') I+} 

where 

(5) 

for all a, bE (0, 1) and f)1k) = (1- (1- 2j3)k)j2. 

Given Rand a 0 , let TJR(a0 ) denote the ratio of the function at the right-hand 

side of (4) and h(a0 ), where k = m/(1- R) and the maximum is taken on all 

integers m = i(1- R), i = 2, 3, ... Furthermore, let mR(a0 ) denote the parameter 

maximizing this function. Then 'T/R(a0 ) can be considered as the gain in the 



exponent of the average number of computations of the decoder as compared 

to the exhaustive search when a 0 is the fraction of errors in the channel, the 

codes with the parameters (m, k) = (mR(a0 ), mR(ao)/(1 - R)) are used, and 

the decoding is correct. Some estimates of TJR(a0 ) are given in Table 1 where aR 

denotes the root of the equation R = 1- h( aR) corresponding to the Varshamov~ 

Gilbert bound on the minimal distance of a code of rate R. It will follow from 

the foregoing considerations that, for exponentially many low~density codes, this 

bound is attained, and the assumption of correct decoding when the fraction of 

errors is less than aR/2 can be used. 

AUXILIARY STATEMENTS 

Lemma : Given e E {0, 1}kN and w E {0, ... , mN}, let 

( 
T) } _ I{ 11"1, · · ·, 11"m E IIkN: "L-7-=.1 wt(e(7r;lk,N )T) :S: w }I 

Pr{wt eH :S w - [(kN)!]m 

Ifwt(e) = d E (0, kN/2), then 

(6) 

where p(k) is the function defined in {5} and EN(>-) = (2kN)-1 log(27rkN >-(1 - .X)) 

for all A E (0, 1). 

Corollary : For all a E (0, 1/2), 

1 
lim -logPr { wt(eHT) = 0, for some e with wt(e) = kNa} 

N->co kN 
1 + (1- 2a)k 

< h(a) - (1- R)log 
2 

(7) 

i.e., for any E > 0, one can find k0 (E), N0 (E) < oo such that there are exponentially 

many low-density codes having the parameters k ~ ko(E), N ~ No(E), and the 

minimal distance kN(aR- E). 
Proof : We will use the lower bound e:) ~ 2kN(h(a)-<N(a))' where a = 

d/(kN), which follows from Stirling's approximation for the factorial, and the fol­

lowing statement : let d = wt(e) and av(e) = I{ 71" E IIkN: wt(e(7rlk,N)T) = v }I 

for all v = 0, . . . , N. Then 

ave < inf fJ fJ ( ) (
N) (e(k))v (1 _ g(k))N-v 

d!(kN- d)! - v fJE{0,1) ,Bd(1- ,B)kN-d (8) 

Since Pr { wt(eHT) = 0} = a(;'( e)/[ (kN)! ]m, inequality (6) for w = 0 directly 

follows from (8). 

If w > 0, then we denote the number of permutations 71"1 , ... , 11"m E IIkN 

such that "L-';1 wt(e(7r1Ik,N)T) = f.l by AJt(e), f.l = 0, ... ,mN, introduce a formal 

variable z < 0, and write 

Thus, using (8) and assigning ,B independent of v E {0, ... , N}, we obtain 

1 N 
---,--------:::-:-""a (e)2zv 
d!(kN- d)!~ II 

Hence 

Given ,BE (0, 1), the expression on the right~hand side is minimized for z = zt) , 
where zhk) = logw -log(mN- w) -log(}hk) + log(1- (}hk)) and (}hk) > wj(mN) 

implies zhk) < 0. Using these observations and the definition of the divergence, 

we prove (6) for w > 0. 

Proof of {8} : Let us denote the column of the matrix Ik,N having 1 in the 

i~th row by li, where i E {1, ... , N}, and notice that wt(e(7rlk,Nt) = v if and 

only if there is a vector (k1o .. . , kN) satisfying the constraints 

N 

k1 , ... ,kN E {O, ... ,k}; L ki = d; l{i E {1, .. . ,N}: kiisodd}l = v (9) 
i=1 



such that k1 columns l1, ... , kN columns IN of the matrix 1rlk,N are located at 

the positions where the vector e contains 1 's. Thus 

d!(kN- d)! 

where the sum is taken on all vectors (k1, ... , kN) satisfying (9), s is a formal 

variable and g~~)(s) = (1 + s)k /2- (1- s)k/2, gi~l(s) = (1 + s)k /2 + (1- s)k /2. 

We introduce the variable f3 = s/(1+s) and since g~~)(s) = e1k) /(1-j3)k, gi~l(s) = 

(1- e1k))/(1- f3)k, express the last inequality as (8). 

To prove (7), we use (6), the inequality (kk::o:) ::; 2kNh(o:), and the definition 

of the divergence D( 0 II e~k) ). 

PROOF OF THE THEOREM 

Substituting (2) to (3) we obtain 

Cp(eo) = L Pr { wt((e EB eo)HT) ::; m(wt(e0 ) - wt(e))} . (10) 
eE{O,l}kN 

Let Xa,o<'(e0 ) be the set consisting of all vectors e E {0, 1}kN such that there are 

exactly kNa positions j with (eoj, ej) = (1, 0) and exactly kNa' positions j with 

(eoj, ej) = (0, 1). Then e E Xo:,o:'(e0 ) implies wt(e EB e0 ) = kN(a +a'), wt(e0)­

wt(e) = kN(a- a'), and using (6), we obtain that the logarithm of probability 

at the right-hand side of (10) divided by kN is upper-bounded by -mF(k)(k(a­
a'), a+ a')+ mEN (a+ a'). Furthermore IXa,a'(e0 ) I ::; 2o:oh(a/o:o)+(l-ao)h(a'/(1-ao)) 

and there are at most (kNa0 +1) 2/2 pairs (a, a') such that Xa,a'(eo) # 0. Using 

these observations and the inequality Pr {-} ::; 1, we derive (4) from (10). 
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