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Process Algebra with
Interleaving Probabilistic Parallel Composition

Abstract. In this paper we present a probabilistic version of the axiom system A4 CP ap-
propriate for the (algebraic) formal description of probabilistic processes. The proposed
formalism is built in a modular way, first Basic Process Algebra (prBPA) is constructed
which afterwards is extended by parallel composition (pr4CF). Probabilities are intro-
duced by an operator for internal probabilistic choice. In this way prACP contains both
non-deterministic and probabilistic choice cperators. Combining these two operators leads
to the situation where the idempotency law with respect to the alternative composition
does not hold anymore, so the axiom z 4z = z is weakened to hold only for atomic actions.
In defining the operational semantics for prBPA and prdCP, we use the alternating ap-
proach, where two types of transitions are allowed, probabilistic and action transitions. In
order to construct a complete term model for our process algebras we use a term deduc-
tion system over a larger signature than the signature of prBPA and prA CP, respectively.
We show that probabilistic (strong) bisimulation as proposed by Larsen and Skou is a
congruence and prove the soundness and completeness of the presented term model.

As an example of the application of pr4 CP we consider the Alternating Bit Protocol with

unreliable communication channels.

1 Introduction

By the increasing complexity and the number of components of real-life parallel systems, the
probability that a system or some of its components will be subject to failure during the work
is Increased, as well. This means that very often it is desirable or even necessary to “predict”
chances of failure occurring in the system. In these cases, it is insufficient to assume that the
system is reliable and to specify it under this assumption. But there is a need to describe the
probabilistic behaviour of the components and the system as a whole. For the last ten years
various traditional specification formalisms have been extended with a notion of probabilistic
behaviour for different models of probabilistic processes.

Besides this new, probabilistic approach in modelling concurrent systems, non-determinism
still has an essential role specially due to interleaving of activities of independent components
of a system. In the sense of treating non-determinism mainly two different approaches have
been proposed, one approach which allows both non-deterministic and probabilistic choices (e.g.
coneurrent Markov chain [21}, the alternating model [11]}, and one where only probabilistic choice
is allowed ([17, 9, 10, 15, 5, 8]).
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The objective of this paper is to introduce a probabilistic version of ACP ([6, 2]) where non-
determinism and probability are combined. We bring structure in our theory in a modular way.
That is, first we construct a basic theory which contains operators for sequential composition,
non-deterministic choice {alternative composition) and probabilistic cheice, called Basic Process
Algebra with probabilistic choice, and then we add new operators for parallel compositicn and
communication. A starting point for the construction of our probabilistic process algebras is
the setting of [4]. There, the authors described a version of process algebra (BPA 14 as well as
ACP ) with three different forms of choice: the usual, dynaimit alterhativé composition (+], a
collecting alternative composition (U}, and finally, the partial or static alternative composition
() in between the previous two. Also, it was noted that the partial choice operator might be
a good basis for obtaining a probabilistic choice operator. Thus we introduce probability into
BPA 4+ by replacing the pa-rtial choice operator with a probabilistic counterpart. In this way
we have two different choices in our algebra (in contrast to [5]): the standard non-deterministic
choice (+) and the probabilistic choice ( t, for each probability 7 € {0, 1}). This combination of
two different kinds of choice allows us to distinguish situations where quantitative (probabilistic)
information about the outcome of the choice is known from situations where the choice is non-
deterministic. For example, when specifying an unreliable communication channel preferably ihe
probabilistic choice operator is used to express for the two possible events, a message is lost and

a message is successfully transmitted, the probability of oceurrence of each of these two events.

[n the interleaving model which is essential to ACP-like process algebras, parallel compo-
sition clearly is modeled using non-deterministic choice. Preserving our intuition behind noa-
deterministic choice and the interleaving approach to parallel composition we propose a new
model for parallel composition of probabilistic processes (Example 3, p. 42). That is, the choice
of the process which executes the next action is considered to be non-deterministic choice. As
communication is included in parallel composition, the non-deterministic choice occurs between

three processes (axiom CM1, pg. 37).

Besides the axiom system in this paper we investigate the operational semantics of prob-
abilistic processes, based on probabilistic bisimulation equivalence as proposed by Larsen and
Skou ([17]) and the alternating model ([11]). The operational semantics consists of two types
of tramsition rules, probabilistic transitions which are unlabelled and action transitions which
are labelled with atomic actions. This will entail that each process in our model may make ei-
ther a probabilistic or a non-deterministic step, but not both. Therefore, we have to distinguish
processes that may execute only probabilistic steps, called static processes, from those that may
execute only action transitions, called dynamic processes. We achieve this by using a term de-
duction system over a larger signature than the signature of prBPA and prACP, respectively.
Namely, for each constant ¢ we add a new constant d which denotes the process that can suc-
cessfully terminate by executing atomic action @. For reasons of clearer representation of process

behaviour we use strict alternation between these two possibilities. We give a detailed proof of
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the soundness and completeness properties of the proposed term models. Later, we extend the
model with the projection operator and by approximation of infinite processes with their finite
projections we prove that each guarded recursive specification has an unique solution in the term
model (by proving that RDP and RSP hold).

As an example of the application of prACP we consider the Alternating Bit Protocol with
unreliable communication channels. The sender sends a message to the receiver via a commu-
nication channel. After having received a message the receiver sends an acknowledgment to the
sender via another channel. A channel may transmit a message correctly or it may corrupt it. Un-
rchiability of each channel is specified by a probabilistic choice 5 between correct transmission
of a message with probability 7 and corruption of a message with probability 1 — 7.

Moreover, using standard Markov chain analysis techniques we may prove liveness of the
protocol and compute the average performance of the system, like the mean number of times a

message has to be sent by the sender, needed for its correct transmission via the channel.

1.1 Related work

Vardi in [21] underlines that non-determinism is unavoidable in concurrent systems and intro-
duces concurrent Markov chains as model for probabilistic concurrent programs. He proposes a
technique to resolve non-determinism by a fair scheduler and gives an algorithm for the verifica~
tion of probabilistic concurrent finite-state automata.

In his thesis [11], Hansson defines a probabilistic version PCCS of CCS with both, proba-
bilistic and non-deterministic choice. PCCS, like CCS, does not have general multiplication -,
but only prefix multiplication which allows two types of processes in theory to be distinguished:
probabilistic and non-deterministic processes (different from our theory where we have only
probabilistic processes). He introduces an alternating model where each process can execute a
probabilistic or an action transition, but not both.

D’ Argenio, Hermanns and Katoen in [8] consider asynchronous generative processes and dis-
cuss the resolution of non-determinism in that setting. They define bundle transition systems,
wliere a certain set of non-deterministic alternatives is chosen with certain probability.

Based on the generative model, in [3] Baeten, Bergstra and Smolka propose ACF with gen-
erative probabilities. In this process algebra only probabilistic choice is allowed and parallel
composition is parametrized by two probabilistic parameters which determine the probabilistic

distribution for the next action.

2 Basic Process Algebra

The signature of Basic Process Algebra with Probabilistic Choice, prBPA, consists of a (finite)
set of constants A = {a,b,¢,...}, a special constant § € A (we usually denote A; = AU {})
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and the binary operators: + (non-deterministic choice, alternative composition), - (sequential
composition) and +5 (probabilisiic choice) for each 7 € {0,1). The axioms for + and - arc
standard axioms of BPA; ({2]) (Table 1, @ € A), except that axiom A3 (x + @ = z) is restricted
to atomic actions. A3 Is resiricted, because it does not hold anymore for processes involving the

new choice operator (see Example 1).

x4y =g+ Al
(+y)+z=x4+(y+z) A2
a+a =a AA3

(z4+y)-z =z-z24+y-z Ad
(z-y)-2 ==z-(y-z) Ab
48 ==z Ab
§.x =5 AT

Table 1. BPA; with restricted A3.

Intuitively, process ¢ t v behaves like 2 with probability = and behaves like y with probabilily

1 — m. The axioms for the new operators are shown in Table 2 (7 € (0, 1}).

z oy =ytH-sz PrAC1
zt(ythz) = (z e ¥) g p—mpz PrAC2
Ttz =z PrAC3
(rthy) 2z =z -zthy-z PrAC4
(zt=ry)+ 2 = (5 + 2) iy + 2) PrACSH

Table 2. Additional axioms for prBPA,

Axiom PrAC? also has a variant, as follows:

(zthy) Hrz = 2 th,(yHu-ne 2) PrAC?.

T—np

We introduce abbreviations in order to deal with probabilistic sums of several arguments:

zthythe = cth(yta_2) (v 4+p < 1)
pthythzH,w = :c-l:hr(ytl-l__g;z-th_z_ﬂw) (m+p+0< 1) ete.

This notation clearly presents the probability that a process behaves as one of its components.
For example, process & th, ¢ th, £a 7,24 behaves as process z;, i — 1,2, 3 with probability

m; and as process x4 with probability 1 — my — 7y — 73.
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From now on, we have that the operators bind in the following order: - binds stronger than

all other operators, and 5 binds the weakest.

Ezample 1. By this example we show the interpretation of non-determinism when it has been

mixed with probabilistic choice. In Figure 1 a) the graph representation of the following processes

are shown;

prBPAL (athib) + (cthd) = (a+c) e+ d)th(b+c)th{b+d).

An example in Figure 1 b) shows that the idempotency law with respect to alternative com-

position does not hold in prBPA. We have the equation:
prBPAL (athb) +(athb) = athy(a+b)Hd,
but

prBPAF athyh # ath (a +b)tho.

B

%l%+%l§= :
NV R

e
LN

1 i 1+ 1 l L
2 2 2 2
Fig.1. Examples of non-deterministic choice between probabilistic processes.

1
3

NN

b)

Propositionl. If prBPAbF p=pthq and p > 7 then prBPAL p=pthyq.

Proof. In prBPA the following equations hold for each ¢ € (0, 1):
pthe= (ptep)tha = ptbp(ptr;t;ﬂ;p q).

Using the assumption p > 7 we can choose ¢ = E{TTWT such that g}:—i? = 7. Therefore we

ir

cbtain: pti,¢ = pth,(pHxgq) = pty,p = p.

a



e : Process Algebra with Interleaving Probabilistic Parallel Composition

In [4] the authors propose a method for verification which is based on a partial ordering of
processes. They introduce the realization axiom: z < xzHy, which says that # has less static
non-determinism than z tty. By the following proposition we show that this approach ¢annot
be followed in the framework of prBPA because such a partial ordering cannot be defined in a

non-trivial way if probabilisties are involved.

Proposition2. If prBPA & p = qtfhp for some probability m € (0,1), then prBPA + p & 4,

where p & q denotes the probability of p being equal 1o ¢ has a imit of 1.

Proof. In prBPA the following equations hold:

p=qtrp =gt p) = (0t 0) the-nP = oo the-nP) = ¢ B eornp,
where 7y = 7(2— ). In such a way after n repetitions of this procedure we obtain: p = ¢t _,, p,
where 7,41 = 7,(2 — 7,). A solution of this recurrent equation is 7, = 1 — (1 — 7)*" and as

1 —7 < 1 weobtain lim 1—(1—m)% =1. O
=00
Proposition3. The following equations hold in prBPA:

Loyt ety . B 2t L R=E P TR - -
SR A= N D= PN = E RN T = IR T n N7 N R i, . &n,
foreachi,j,1<i<n—-1,1<jij<n—-1,i<jandn>3;
IR TR = .0 = N = ST 7 = S PSS = Y
=ZyHy, ety . S TaH ;__11 Tl ., T,
foreach 1 <i<n—1andn>?2
Proof. i. The proof is given by induction on n:

For n = 3 we have

e1thE 2, zs =2y ‘H’WI(EQ 'H‘l_ﬁ'%__ CC3) = (911 -H—,r_:.l}"” :Cz)‘ti"ﬂ-1+ﬂ-2 T3
=1 R

= (372 “H'_’E_E_ 331) thr 4y T3 = 2y th, (ZL‘1 ‘|:|'1_")H .’Lg) =z t5, 21 tH, 3.
m g —ry
Suppose n >4 and ¢,§ > 2, 1 < j. We obtain:

ESREPYE R NI S PSS TR S CTINN i = 35 R DR = 7 S

(let op = 2, for2<k <n—-1)

= oyt (Cate, . Hol iy, oz H 0 - e, 2a)  (by TH)
=zt (22t .. o, #8541 - He o, 20)

= ﬂil‘t"g;l:ltzﬂ',r,z . ‘H?r‘-__lZBJ' thrrj . --miﬂ}i$j+1 N 'tf‘ﬁn_lﬂin.

Now, suppose # > 4 and ¢ = 1, 5 > 2. We obtain:
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b T g 2 m N = SN P o PO E=E T TN I = S
{let ok = TiE-, for2<k<n-1)

=z bty (To by, .. 2 Hy, 2541 .-y, 2,) (by TH)
=zt (2 e, .. Ho,_, T to, @41 Ho,l, Tn)
=z, (25 He, (wath, ot P2 e Tt 20)
( where p = li’;j,for?;gkgn—l,k #37)

= (mﬁ-m;_, — i} pojoma (X3t - Byl 2a iy Ta)
2 7

=(z ‘th_ﬁlﬁﬂfj)ﬂ?n+wj (23t - o TeEp T4 -ty Zn)

= (; 'H'l—ﬁl;;iﬂl)thrﬁ-ﬁ (w3thpy -ty o b, @41 . o, Tn)

= (o o)ty (@9 s -y 02 )

=z th,(n th—fij (23th, .t 2ot Tjig1 ... Hyp,, 20))

(having px = 1—?;7 = (1—2"",;)/(1 - 1_1(]??;))

= 2t (o1t wsthe o 2otz a4 tr;r,_,_;;xn) (by IH)

= th, (Tt sathn . Hro s Hin o e )
—r; —x; ey —n; T—=;

El 7

= &j -tj_fﬁ'}' rg "d'ﬂ-? L3 'thra R 'tj'-,rj_l & tl'ﬂ-l Lig1-.- -lj_ﬂ'n—l .

1. The proof of this equation is sumilar to the previous one. a

2.1 Basic terms

Next, we define basic terms, which are useful for technical purposes in proofs. Because of the
Elimination theorem, if we want to prove some statement valid for all closed terms, it is sufficient

to prove it valid for all basic terms using structural induction as a proof method.

Definition4. We define the set of basic terms B inductively, with the help of an intermediary
set 4. In B\ By the outermost operator is a probabilistic choice operator. Elements of B, are
all constants and terms that have as the outermost operator a non-deterministic choice operator

or a sequential composition.

1. Au{é}CcB,.CBHB

2.a€A, teEB=2u-tEB,

3.84,5€eBy >t+s€ By

4. t,s € B=tHs € B for each m € (0,1).

Remark. If we consider terms that only differ in the order of the summands to be identical {i.e.
we work modulo axioms A1, A2, PrAC1 and PrAC2) we see that the basic terms are exactly

the terms of the form

z=x (zcBy)or (1)
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r=oyHy et 8. 2po1 By, &n and n > 1 ()
where ®; = 3 aiti;; + 3. by for certain atomic actions a;; and by, basic terms ti; and
J<£| k<m;
n,m;, I; € IN. We have the convention that: )~ s; = 8.
j<o

Further, by SP (called the set of static processes) we will denote the set of all closed terms
over the signature of prBPA, EprBPA'

Definition 5.- We define-an’ auxiliary set of closed terms D ¢ 'SP as follows:

2. 5eDtESP=s5-t €Dy
3. t,scD=2t4s5€ D

Remark. The closed terms from D are exactly of the form: 3 s;-¢;+ > a; for some n,m € N,
i<m ji<n
a; € Aj, closed D terms s; and closed prBPA terms ¢;. We have that By C D.

Proposition6. If s € D then prBPAF s = s+ s.

Proof. We prove this result by induction of the structure of s.

1. if s € A; then the result follows from axiom AA3.

2.if s = s -t for some s’ € D and t € SP then by the induction hypothesis we have that
prBPA b s’ = &' +5' from which we obtain: prBPAF s+s5= s -t+st =(s+5' )t =5t =5

3. if.s = s"-+5" for some s, s € D then by the induction hypothesis we have that prBPALF s’ =
s'+s and prBPA L 5" = 5"+ " from which we obtain: prBPA + s+s = (s'+5")+{s'+5") =
(4N +(s"+8)=5+5" =5 o

Lemma 7. The term rewrite system shown in Table 3 (w c (0, 1)} is strongly normalizing.

(t+y)-z2 —z-z2+y = RA4
(r-9)-z2 —z-{y 2) RAS
§-x — & RAT
(zthy) -z —z zthy- = RPAC4

(zthy) + 2z — (z+ 2) (v + 2) RPACS
T+ (ytwz) — (z +y) iz + 2} RPACS

Table 3. Term rewrite system of prBPA.
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Froof. In order to prove this proposition we use the method of the lexicographical variant of the
recursive path ordering ([3]). Suppose that we have the following ordering on the signature of
prBPA: - > 4+ > tf and we give the symbol - the lexicographical status for the first argument.
Then for each rewrite rule p — ¢ in Table 3 we can easily prove that p >, ¢. From Theorem

2.2.18 in [3] we obtain that the given term rewrite system is strongly normalizing. 8]
Lemma 8, The normal forms of closed prBPA terms are basic prBPA terms.

Proof. Suppose that p is a normal form of some closed prBPA term and suppose that p is not
a basic term. Let p’ denote the smallest sub-term of p which is not a basic term. Then we can
prove that p is not a normal form. We use the fact that each sub-term of p’ is a basic term. We

distinguish all possible cases:

1. p" € A;s: then p' is a basic term, which is in a contradiction with the assumption. So this
case does not occur.
2. ¢’ = p1 - py for some basic terms p; and po2: by case analysis on the structure of the basic
term p; we have:
2.1 p; € Ag: in this case p’ would be a basic term, which contradicts the assumption that
p’ 1s not a basic term;
22 p1 = a-pf for some ¢ € A and some basic term p}: then rewriting rule RA5 can be
applied. So, p is not a normal form;
2.3 p1 = p| + pf for some basic terms p| and p{: then rewriting rule RA4 can be applied.
So, p is not a normal form;
2.4 py = p!| t5p{ for some basic terms p} and p{: then rewriting rule RPAC4 can be applied.
S0, p i1s not a normal form.
3. p' = p1 + po for some basic terms p; and ps: by case analysis on the structure of both terms
71 and ps we obtain:
3.1 ifboth p; and p2 are basic terms from By then p’ would be a basic term, which contradicts
the assumption that p' is not a basic term;
3.2 if py = p| ) or p2 = ph thy pY then rewriting rule RPACS or RPACH is applicable.
So p is not a normal form.
4. p' = p; i p; for some basic terms p; and py and 7 € {0, 1): in this case p’ would be a basic

term which is in contradiction with the assumption that p’ is not a basic term. O

As a corollary of the previous two lemmas we obtain the following theorem:

Theorem 9. (Elimination theorem) Lei p be a closed prBPA term. Then there is a basic prBPA
term ¢ such that prBPAFp=yq. 0

Remark. If 5 is a closed D term, then the associated basic term which exists by the Elimination

theorem is a term from the set B, .
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2.2 Structured operational semantics of prBPA

The operational semarniics consists of two types of transition rules, rules for probabilistic tran-
sitions: ~+ (which are unlabelled) and rules for action transitions: = (which are labelled with
atomic actions a € A). Different from other proposed operational semantics, we do not use la-
belled probabilistic transition and we define a probability distribution function with as domain
the set of all processes, but which can easily be extended to the power set of the set of processes.
Besides the fact that a function only can be considered as a probability distribution function if
it is defined on the set of all processes {in other words only in that case it fulfils the conditions
for probability distribution [20]), we follow this approach because it gives a easier way to work
with the operational semantics.

As we have mentioned each process in our model may make either a probabilistic or an action
transition, but not both. This entail that two lypes of processes have to be considered in the
model. For this reason we consider a term deduction system with a signature different from the
signature of prBPA by the addition of new constants. If A is the set of atomic actions of prBPA
then we define the set of dynamic atomic actions A = {# : a€ As}. By asymbol @, (¢ #§)
we denote a process that can successfully terminate by executing a. By § we denote a process
that cannot execute any action.

Further we will denote EprBPA =(As U As -, He ).

Definition10. We define the set of dynamic processes PP in the following way:

1. 45 CDP;
2.5€DPte8SP=s-tcDP;
3.4, sEDP =t +sEDP.

We define a map ¢ : D — DP ag follows:

1. p(a) = a for each a € Ay,
2. o(s-t)y = ¢(s) - 1,
3. (s +1) = p(s) + (1)

If s € D then «(s) will be denoted by 3.
Proposition11. The map v is a bijection. O

By PR we denote the set of all static and dynamic processes, that is PR = SPUDP.

The semantics of prBPA is given by the term deduction system T' = (EprBPA= D) induced
by the deduction rules shown in Table 4. In these deduction rules e is a variable that ranges over
the set A.

We use the notation p ~+ z to denote that {static) process p may execute a probabilistic step

to (dynamic) process #, with other words there exists a nonzero probability with which p may
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behave as z. A value of this probability is defined by the probability distribution function u(p, )
(Definition 12).

Following the notation in other A CP-like process algebras by = p we denote that (dynamic)
process & can do an a-transition to (static) process p and by z 5 v/ we denote that z can do an

a-transition and then terminate.

Pz
@~ i S~ b _
pPg~Tq
P Ty ps T
ptg~zt+y pErg~ 3, gthEp~ =z
a T =P 2/
4=/
1 a
Ty —p-y Ly —y
a @
TP z =/

sty Spyte—p Ty Jyrz—y

Table 4. Deduction rules of prBPA.

Definition12. (Probability distribution function) We define a probability distribution function
1 PR x PR — [0, 1] inductively as follows:

u(a,d) =1,
(8, 8) =1,
plp-g2 ) = plp,2),

pp+ a2 +a") = plp, xp(g, 2"),

w(pthq, z)

= mpu(p, ) + (1 — m)plg, z),

u(p,z) = otherwise.

The definition of the probability distribution function for processes containing the proba-
bilistic cholce operator as the top operator shows that the probability to behave like z depends
on the probabilities of both processes in the probabilistic choice to behave like z. Namely, the
probability that ptt; ¢ behaves like 2 is obtained as a total probability of both processes p and

¢ to hehave as z, that is, as the sum of independent probabilities for each process.
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In order to have clearer presentation of probabilistic transitions we will use transition systems
where each probabilistic transition p~+ @ is labelled by the associated probability p(p, ©).

Because in the construction of the term model we use the Larsen-Skou probabilistic bisim-
ulation relation (Definition 17) we need to extend the probability distribution function to the

power set of PR.

Definition13. We define the map p* : PR x 2P® — [0, 1] in the following way:
p*{p, M)= > ul(p,z) for each M C PR,
TeEM

Proposition14. The map p* is well dej"ned.
Proof. We just need to prove that for each p € PR and M C PR, u*(p, M) € [0,1].

1. fp € As then
1, peM

wrp, M)y= 3 u(p,a:)={ .
xEM 0, otherwise
2, If p=gq -5 for some ¢,5 € PR then

wg-s,M)= 3 plg-s,z)= 2 ple-s,z)= 3 plg,2)=
zEM creM&3r z=al-s zhaxt se M
w (g, {e’ : ' s € M}) €[0,1] by the induction hypothesis.
3. f p=gq+4 s for some ¢,5 € PR then
plats,M)= 5 plg+s,z)= > u(g, z)p(s, x"") <
reM voEM&Ir o' =g 4ot
p g {z’ a2+ e MPp (s, {2" ¢ dz' 2 + 2" € M}) € [0,1] by the induction
hypothesis.

4. If p = gt s for some ¢,5 € PR and 7 € {0,1) then
p(qths, M) = EM mlgths,z) = mg(ﬂu(q, )+ (L= mp(s,2)) =
T3 g, e)+(L—m) > pls,z) = ap*(g, M)+ {1 — m)p™(s, M) € [0,1] by the induction
h;}f(;‘ihesis. e O

From now on we will denote g*(p, M) simply by p(p, M).
Corollary 15. p(pthg, M) = mp(p, M)+ (1 - m)p(e, M) 0

Corollary 16. Let us denote My - My = {m; -ma : my € My & ma € Ma}. Then
ulp - q, My - Ma) = p(p, My). a

Definition17. Let R be an equivalence relation on the set of processes PR. R is a probabilistic

bisimulation if:

1. If pRq and p ~+ 5 then there is a term ¢ such that ¢ ~ ¢ and sRt;
2. If sRt and s = p for some a € A, then there is a term ¢ such that ¢ = ¢ and pRg;
3. If sRt and s = +/, then t 5/,
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1. If pRq, then p(p, M) = u(q, M) for each M € PR/R.

We say that p is probabilistically bisimilar to ¢, denote p = ¢, if there is a probabilistic

bisimulation R such that pRq.

From the definition of the operational semantics and the definition of the probability distri-

bution function we obtain the following properties:
Proposition18. Leli p,x € PR. Then p(p,2) #0 iff p~ z. H]
Proposition19. Let p€ PR and M CPR. Then p(p, M) # 0 iff Iz € M : p~ z. O

Different from a bisimulation relation used in the construction of a term model of other ACP-
like process algebras, here we have an extra requirement that a probabilistic bisimulation has to
be an equivalence relation. This requirement is related with the fourth clause in Definition 17
which says that besides a simulation of probabilistic and action transitions between two processes
consldered ag bisimilar, the probability of both processes to pass to elements of one equivalence
class must be equal. For example, the processes presented by the transition systems a) and &) in

[igure 2 are not bisimilar and the processes @) and ¢) are bisimilar.

Fig. 2. An example for probabilistic bisimulation.

Next we give some properties of the probability distribution function which are used in proofs

that a glven equivalence relation is a probabilistic bisimulation relation.
Proposition20. If p € PR and My, Mo C PR such that My N Mz = 0, then

p(p, My U My) = plp, My} + p(p, M2).

Proof. Using the properties of the sum operator (for real numbers) we obtain easily:

plp, MiUMyy= 3 plpz)= 3 plp,e)+ 2 ppz) = plp, Mi)+p(p, M2). D
c€EMIUM,> TEM,; rEM-
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Corollary21. Lel p € PR and M; C PR,i € I for some [nite or countable inynite index sel
I, such that My W M; =0 for each i,j € 1,i # j. Then

ule, | Mo) =~ plp, Mo).
el iel
Proposition22. Let p,g € PR and M C PR. If M1, M2 C PR are such that:
M1+N12:{m1+mg tm EM & mZEMg}gM

then:
plp+q, M) = plp, My)u(g, M2) + p(p+q, M\ (M, + Ma)).

Proof. Tt 1s sufficient to prove that u(p + g, M1 + Ma) = p(p, Mi)p(gq, M2). Using the properties

of the sum operator of real numbers and the following property:

Ymg € My :V¥my € My imy +me € My + M, ()
we obtain:
plp+q, M+ M) = 5 plp+gz)= > p(p + ¢, m1 + m2)
cEM +M2 z=m+ma €M +Ma
(*)
= > plp,mpu(g,me) = 3 | wlp,ma) 2 #(q,mz))
mitma €M, +M, my EM, mo €M,

I

( > M(p,vm))( b ,u(q,mz)) = plp, M) p(q, Ma).
m16M1 ma€EMs
0

One can note that in these proofs non assumption about the structure of p or the elements of
equivalence classes are made and the given equalities depend on the ‘definition of the probability
distribution function. As in the following models (Section 3.2 and Section 4) we extend the
probability distribution function keeping the part for the operators from prBPA, in the later
sections we use these properties freely.

Here follow some useful properties of transitions.

Proposition23. Ifp is « SP term and p~» z, then z € DP (thatisz = 3 i -ti+ . d; for
1<m 1<n
somen,me N, a; € A;, DP lerms y; and SP terms t;).

Proof. The proof 1s given by induction on the structure of p.

1. p=6: then 6 ~ 5 is the only possible probabilistic transition and § e DP;

2. p = a: then a ~+ @ is the only possible probahilistic transition and & € DP;
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3. p =p1 - pp for some SP terms p; and py: then by the assumption p; - pp ~+ = we have that
p1 ~ z' with z = z’- py. By the induction hypothesis we have 2’ € PP from which we obtain
z € DP;

4. p = p1 + pa for some SP terms p; and po: then by the assumption p; + py ~+ z we have that

p1~ &' po ~+ 2" for some 2’ and 2" such that x = ' + 2. By the induction hypothesis we

have ' € P and z” € DP from which we obtain = ¢ DP;

P = p1 Haps for some §P terms p; and pa: then by the assumption p; t,ps ~» = we have

[

P1 ~+ & Of py ~» 2. But in both cases we have by the induction hypothesis that z € DP. O
Proposition24. If z is a DP term and x — p for some a € A, then p € SP.
Proof. It follows from the definition of the deduction rules and Definition 10. O

Remark. From Proposition 23 and 24 it follows easily that we can reduce our investigation as

following:

—_

. ~=C SP xDP,

. SCDP x SP,

.S/ CDP,

. for every probabilistic bisimulation R we have R C 8P x SPUDP x DP.

O

[

Using this result, we consider in later proofs probabilistic transitions for static processes only
and action transttions for dynamic processes only. Very often we construct a bisimulation relation
as an unton of relations. If one of these relations is a bisumulation relation then we do not consider
transitions for pairs belonging to that relation. If one of these relations is a subset of §P x 8P,
we consider only probabilistic transitions for pairs belonging to that relation. If one of these
rclations is a subset of PP x DP, we consider only action transitions for pairs belonging to that
relalion. Moreover, in proofs concerning the fourth clause of Definition 17, we suppose that an
equivalence class is a subset of DP. And if investigate the value u(p, M) often we assume that
there is element u € M such that p ~+ u, in other words we assume that A 1s a reachable from

p. By Proposition 19 if M is an unreachable class from p we conclude that u(p, M) = 0.

Proposition25. If z is a D term, then the only possible probabilistic transition of ¢ is ¢~ &

and plz, &) = 1.
Proof. "F'he proof is given by induction on the structure of z.

L. = € Ajs: then the conclusion follows from the definition of the operational rules and the

distribution function g;



16 : Process Algebra with Interleaving Probabilistic Parallel Composition

2. z =y-ifor some y € D and ¢ € SP: then by the induction hypothesis we have that y ~ j
is the only possible probabilistic transition of y. Using the definition of the operational rules
it follows that = ~+ § - t. But then we have ¥ = § -t from which we obtain that © ~ & 15 the
only possible probabilistic transition of . Moreover, p{z,2) = ply -, 1) = p(y. ) = 1;

3. 2 = yy + yg for some 1y, y2 € D: then by the induction hypothesis we have that y1 ~ i
is the only possible probabilistic transition of y; and y2 ~ §z of y2 and p{y;,$1) = 1 and
#{y2, §J2) = 1. From the definition of the operational rules it follows that = ~+ §; + #2. Bat
then werhave & = #; + ¥ from which we obtain that z ~> & is the 'only possible probabilistic

transition of z. Moreover, p{z, £) = p(ys + 2,91 + §2) = plvn, )ul(y2. %) = 1. )

As a corollary of the previous proposition and the definition of the operational rules we have

the following results:
Corollary 26. Ifzy,zq are D terms then xy - £2 iff v1 £ 22, O

Corollary 27. If x is a basic prBPA term and £ ~+ & for some ' € DP then 2’ is ¢ basic
prBPA term. Moreover z’ € By O

Proposition28. If R1 and Rz are probabilistic bisimulation relations then also R = Eq(Rio Ra)

15 a probabilistic bisimulation relation.

Proof. Suppose that pRr for some p,r € $P. It follows that there exists ¢ € P such that pfyq
and gRar.

Let p ~+ u for some v € DP. Then there exists v € DP such that ¢ ~ v and ulyv from
which it follows that there exists w € TP such that r ~» w and vRyw. We obtain the following:
if p ~+ u for some u € PP, then there exists w € DP such that r ~ w and uRw. In a similar
way we can prove that if r ~+ w for some w € PP, then there exists u € PP such that p ~ u
and wRu.

Suppose that uRw for some u, w € DP. It follows that there exists v € DP such that ulin
and vRow.

Let u 5 s for some @ € A and s € SP. Then there exists { € §P such that v = ¢ and
sRt from which it follows that there exists 0 € SP such that w = o and {Rq0. We obtain the
following: if u — s for some a € 4 and s € §P, then there exists 0 € SP such that w — o and
sRo. In a similar way we can prove that if w -% o for some o € SP, then there exists s € SP
such that u = s and sRo.

If u 5/ for some @ € A then v 5 / and also w = /, and vice versa.

Suppose that pfir for some p,r € SP and M € PR/E, M C DP. It follows that there exists
g € SP such that pRiq and ¢Rar. (&)

Moreover we have that A = |J M;: = |J M2 (I1 #0, Ir # 0) for some equivalence classes
i€f JEIq
My € PR/Ri,i € I and Mj» € PR/Rs, § € I, because R, Ry and Jy are equivalence relations

defined on the same set and 2y € R and B3 C R. From Corollary 21 and (A) we obtain:
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plp M) = p(p, U M) = 3 p(p, M) = 3 ple, Mi) = plg, g M) = p(q, M) =

1€h i€l HIN

ple, U Myz) = 30 plg, Mj2) = 30 plr, Myz) = p(r, U Mj2) = p(r, M). =
JEfa jEL2 j€l, jely

Proposition29. — is a probabiisiic bisitmulation relation.

Froof. First, we prove that « is an equivalence relation. The result that < is a reflexive and
syrmetric relat;on is trivial and from Proposition 28 it follows easily that < is a transitive
relation.

Second, we need to prove that the four clauses from Definition 17 hold for <.

Suppose that p « ¢ for some p, g € §P. From the defimition of = it follows that there exists
a bisimulation relation R such that pRq. If p ~ u for some u € DP, then ¢ ~ v for some v € DP
such that uRv from which v = ».

Suppose that u = v for some u, v € DP. From the definition of — it follows that there exists
a bisimulation relation R such that uRwv. If v % p for some a € A and p € SP, then v = ¢ for
some ¢ € 8P such that pRq which implies that p «¢. If v = v, then v 2 v/ as well.

Suppose that p «— ¢ for some p,g € SP and M € PR/ = . It implies that there exists
a- bisimulation relation R such that pRgq. Note that R C «— . Moreover, as R and « are

equivalence relations defined on the same set and R € <= we have that M = ] M, for some

ief
M;, € PR/R,ie I,1# 0. Then we obtain:
ulp, M) = p(p, UIMfR) = ZI#(P: Mip) = Z‘}u(q,an) = p(y, U; M) = plq, M). o
i€ i€ i€ i€

Remark. From Definition 17 and Proposition 29 it follows that < is the maximal probabilistic

bisimulation relation.
Theorem 30. — is a congruence relation on prBPA.

Proof. From Proposition 29 we have that — is an equivalence relation. We only need to prove
that < is preserved by the operators: +, - and 5,7 € {0, 1].

With respect to - : Let z,y, z and w be PR terms such that # — y and 2z & w. So, there
exist probabilistic bisimulations R; and R, such that 2Ry and zRow. We define a relation R in
the following way:

R =Eq(aU U R,),
where

a={(p s,q-t) : p,¢,5t€SP,pRig,sRat},

f={(u-s,v-1) : u,v €DP, s,t € SP,ulliv,sRyt}
and where E'¢ means the equivalence closure of the given relation.

Note that the relations « and 3 are equivalence relations and & € SPx 8P and § C DP xDP.

Suppose (p - s)R(q - t) for some p,q,s,t € SP where pRyg and sRst and p - 5 ~ u for some
u € DP. Then from the definition of the operational rules it follows that p ~+ u for some v’ € DP
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and u = u' - 5. Then g~ o' for some v’ € DP such that v’ Biv' and also ¢ - ¢ ~ v’ - and by the
definition of R we have that (v - s)R(¢' - £).

Suppose (u - s)R(v - t) for some u,v € PP and s,t € SP, where uRyv, sRat and u -5 = p
for some ¢ € A and p € §P. Then from the definition of the operational rules the following two

cases can occur:

L u> p’ for p € 8P such that p = p' - s: then v > ¢’ for some ¢’ € SP and p'Riq’. Then
v-t =+ ¢ -t and by the definition of R we have that (p’ - s)R(q’ t); L

2. u -5/ and p = s: then v = / and we obtain that v -{ - ¢ and by the definition of R we
have that sft.

Transitions of the form u - s = / cannot occur.

Suppose rRry for :c_aome r,ry € SP and M € PR/R,(M C DP). We have that for each
class M € PR/R, M = |J M; for some M; € PR/R> (I # 0) and also M = U K; for some
K; e PR/B (1 #0). Thligfresult follows from the fact that @ and Ry are equiieflénce relations
defined on the same set as R, and both By C R and 3 C R. (We consider equivalence classes
of A because from the previous discussion for probabilistic transitions of p - s and ¢ - ¢ it follows
that if p - 5 ~ u then there exists v such that g -t ~ v and ufv.)

As R is defined as an union of three relations, but only two of them K3 and o, contain pairs

of static processes, we discuss two possibilities:

1. If rRory, then M = U M, and

plr, M) = UM E.U(T‘ Mi) = 30w, Mi) = (711_UM) plre, M). (™)

2. If revry, then r =p . s, 11 =gq-t, for some pq,steSP such that pRiq and skat. If A s

an equivalence class reachable from p- s then it must be an element u; - s € K; such that

p-s~s uj s and p~s ;. Therefore, i; = [u; - s]g. Then from the definition of 5 we have

K; = {u; - slg = [uj]Rr, - [s]r, and using Corollary 16 we obtain:

p(p- s, K;) = u(p - s, ()R, - [slr.) = plp {ulr,) = (g, [vilr,) = ulg - 4, [ws]m, - [Hr.) =

pulg -t [u; - tlp) = plg - £, Kj)

and [u; - t]g = [t; - s]g because tRzs, which implies (u; - 1)B(xy - s).

In conclusion we obtain p(r, M) =pu(p-s,M)=p{p-s, |J K;)= 3 ple-t, K} =

jed JEJ
ple-t, U Kj) = ulg - £, M) = p(r, M).
jeJ
With respect to + : Let 2, y, z and w be PR terms such that x «— ¥ and z = w. So, there

exist probabilistic bisimulations /; and Ry such that xRy and zRsw. We define a relation R in
the following way:

R=E¢laUfURUR,),
where

a={(p+s,q+t) : p,¢s,1ESP,plig, st}
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B={(u+lLv+m) : wv,l,meDP, uRw, {Ram}
and where Eq means the equivalence closure of the given relation.

Suppose (p+ s)R(¢-+1) for some p, ¢, 5,t € SP such that pRiq, sRat and p+ s ~+ u for some
w € DP. Then from the definition of the operational rules it follows that p ~» »' and s ~ u”
{or certain v',uw” € DP such that v = v + v”. It implies that ¢ ~+ v and ¢ ~+ v" for some
v, v € PP such that ' Riv" and u”Rev”. Then ¢+ ¢ ~+ ' + " and by the definition of R we
have that (v + v )R(v' + v").

Suppose (u + [)R(v + m) for some u, v,{,m € DP such that uRiv, IRym and u +{ = pfor
some ¢ € A and p € §P. Then according to the definition of the operational rules the following

{wo cases can occur:

. u = p: then v = ¢ for some ¢ € SP such that pRyg. Then v +m = ¢ and by the definition
of R we have that pHg.

2. 13 p: this case is treated analogously to the previous case.

Suppose (u + {)R(v +m) for some u,v,{,m € DP such that uRyv and IRam and u+4 [ 5 /
for sonie @ € A. Then from the definition of the operational rules we have u = / or I = / which
implies v = +/ or m > v/. But in each of these cases it holds v +m = /.

Suppose rRr; for some r,ry € SP and M € PR/R,(M C DP). As R is defined as an union
of relations, but only three of them, R;, Ry and «, contain pairs of static processes, we discuss
the following possibilities:

I If » R, k = 1,2, then because By C R and Ry C R we have that M = |J M, (I £ 0) for

=
some equivalence classes M; € PR/R;. Then the equality u(r, M) = p(r1, M) in the both

cases can be obtained easily in a similar way as in (*). (**)
2. If raery, then »r = p+ s and vy = ¢ +1 for some p,q,s,t € 8P such that pR.q and sRHat. As

B C R it follows that M = |J M; for some M; € PR/ (I # #). (We consider equivalence

classes of A because from t}iglprevious discussion for probabilistic transitions of p + s and

¢ +1 it follows that if p + s ~+ u then there exists v such that ¢+t ~ v and ufv.)

Note that if M; is reachable from p+ s then there exists an element u; +1{; € M;, u;,l; € DP

such that p ~+ w; and s ~ I;. Moreover, from the definition of B (more precisely from the

definition of 73) it follows that Af; = [u;]r, + [li]r,- Then from Proposition 22 we have:

1p + 5, M) = plp+ s, [ui + Lily) = plp, [wl g, (s, [l]g,) = (e, [ulg, Jp(t, (lilg,) =

plg + b [us + L] g) = pla +t, My)

and from Corollary 21:

plp+ s, M) = %M(H&Mi) = %u(qﬂ:Mi) = (g +1,M).

With respect to 5 Let z,y, z and w be PR terms such that r & y and z & w. So
there exist probabilistic bisimulations R; and R3 such that £ R,y and zRsw. We define a relation

R in the following way:
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R =Eq¢(aURLUR,),
where

a = {(pbws, gt} : p,g,s,tESP,pRig,sRot}.

Suppose (pths)R(g tht) for some p,q,s,t € SP such that pRyq, sRot and pths ~ u for
some u € TP. Then from the definition of the operational rules it follows that either p ~~ u
or s ~ u. In the first case we obtain that ¢ ~ v for some v € DP such that uR;v and also
gttt ~ v and uRv. In the second case it follows that ¢ ~+ v for some v € PP such that uR4v
‘and also gt ~+ v and wRv. ' o

We proved that whenever ptt; s ~ u for some u € DP there exists v € DP such that
gttt ~ v and uRv.

Suppose rRry for some r,7y € 8P and M € PR/R, (M C DP). We have to consider the

following cases:

1. If rRery, k= 1,2, then in a similar way as in (**) the property can be proved.
2. If rary, then v = pth s and ri = g5t for some p,q,s,t € 8P such that pRi¢ and sfs!.

From Corollary 15 we have:
plpths, M) = mu(p, M)+ (1 — m)u(s, M) (3)

and M = |J Min= | Mj2 (It £ 48, I, # §) for some equivalence classes M;; € PR/ R,
i€f) j€la
and M;y € PR/R;. Using Corollary 21 we obtain:

plp, M) =3 plp, Min) = Y (g, Mir) = p(g, M) and

i€l ich
u(s, M) = Z,U.(S,Mjg): Z“(terz):ﬂ(tzM)' (4)
J€ls JEI2
From (3) and (4) we get:
p(r, M) = mp(p, M)+ (1 — m)u(s, M) = mpu(q, M) + (1= m)p(t, M) = p(r, M). o

In the proof of soundness we are faced again with the problem of equal values of the distrib-
ution function for both processes occurring in an axiom (the left side process and the right side
process). Considering the bisimulation relations defined for axioms we note that in most of the
cases at the same time they define a bijection on the set of processes and moreover (that is very
important) if M is an equivalence class and z € M then the image of z is in M, as well. The
following property gives us a possibilities to deal with the distribution function considering only

the existence of such a bijection.

Proposition3l. Letp,q € SP and M C DP and let ' : M — M be a bijection such that for
eachm € M, p(p,m) = u(q, m'). Then p(p, M) = p(q, M).
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Proof. Using the assumption that * : M — M is a bijection such that for each m € M, u(p,m) =

#{¢,m") we obtain:

plp, My = 3 plp,m)= Y ple,m') = ple, | {m'}) = ule, M).

meM meM meM

Theorem 32. (Soundness) Let z end y be PR terms. If prBPAF z =y then x = y.
Proof. Al: We define a relation R in the following way:
R= Eq({(p+q,q+p) g €ESPIU{(u+v,v+u) ¢ ou,u EDP}).

Suppose (p + ¢)R(g + p) for some p, ¢ € SP and p + ¢ ~+ u for some u € DP. Then from the
definition of the operational rules it follows that p ~ u', g ~ ¥, for some u’, v’ € PP such that
t = u' +v'. Then also ¢+ p ~+ v’ + ' and by the definition of R we have that (v’ 4 v')R(v' + u').

Suppose (u + v)R(v + u) for some u,v € PP and u + v > p for some @« € A and p € SP.
Then from the definition of the operational rules it follows that « — p or v — p. But in each of
these cases we have that v + v — p. Moreover pRp.

The other direction follows from symmetry.

If (u+v)R(v+u)anda€ Athenu+v = Vifu Jorv=/iffv+u./

Suppose (p+¢)R(¢+p) for some p,q € SP and M € PR/R, M C DP. We have the following
results: p(p—+q,u+v) = p(p, u)u(q, v) = p(q, v)p(p, u) = u(q+p, v+ ) and moreover u+v € M
iff v+ v € M. From Proposition 31 we obtain that p(p-+ ¢, M) = p(g + p, M).

A2: We define a relation R in the following way:

R= Eq({((p+q)+s,P+(Q+S)) 2,5 € SPHUA{((ut o)+ w,u+(v+w)) - u,v,wem’})-

Suppose ((p+¢q)+s) R(p+ (¢ +5)) for some p,q,5 € §P and (p + q) + s ~ u for some
u € DP. Then from the definition of the operational rules it follows that for some ', w"” € DP,
pt+q~ o', s~ w” and v = v’ +w”. It follows also that p ~+ u'f and ¢ ~ v for some u/,v" € DP
such that ' = v” + v"”. Then q + s ~ v + w” and also p + (g + s) ~ v” + (v" + w"). By the
definition of & we have that ((v" +v") + w")R(u" + (2" + w')).

Suppose ((u -+ v) + w)R(u + (v + w)) for some u, v, w € PP and (u + v) + w = p for some
@ € A and p € SP. Then from the definition of the operational rules it follows that v — p or
v =+ p or w — p. But from that it follows that « = p or v + w — p and also v + (v + w) = p.
Moreover pRp.

In a similar way we can prove the other direction.

For action termination for some ¢ € A we have: (u+4v)+w — /iffu+v S /or w5 /iff
= orv S Jorw=/iffuDs Jorv+tw S Jiff ut (v+w) >

Suppose ((p+q)+ s} R{p+ (g+s)) for some p,¢,5s € SP and M € PR/R,M C DP. For
the probability distribution function we have the following result: u({p+ ¢) + s, (u + v) + w) =
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#(ptq, utv)p(s, w) = pp, whp(e, v)p(s, w) and p(p+(g+s), vt{v+w)) = p(p, uhp(g+s, v+w) =
pl(p, v)p(q, v)ufs, w) and moreover (v + v) + w € M iff v+ (v + w) € M. From Proposition 31
we obtain that p((p + ¢) + 5, M) = u(p +{g + ), M).

AA3: We define a relation R in the following way:

R=Eq ({(a +a,a), (@ + &, c'l)})

~ We look at the transitions of both sides at the same time. Observe that they can.only do
a + @~ & + & and a ~+ @, respectively and (& + &, d) € R. Furthermore, an a—transition is the
only possible action transition of & + @ and &.

In order to prove that pla + o, M) = p(e, M) for each M € PR/R we only need to notice
that p(a + a,[d]g) = 1 = u(a;[d)g), and pla + a, M) = 0 = p(a, M) for any other equivalence
class M.

A4: We define a relation R in the following way:

R= Eq({((p+q)-s,p-s+qﬂs)) s p g, s €SP {((utv)-s,u-s+v-5)) : wv,vEDP, s¢ SP}).

Suppose ((p+4q)-s}R(p-s+q-s) for p,q,s € P and (p+gq) - s ~ u for some v € DP.
Then from the definition of the operational rules it follows that for some v’ € PP, p+ ¢y ~ v’
and u = u' - s. It follows also that there exist u”,+"” € DP such that p ~ u”, ¢ ~ " and
u’ = u" 4 v”. Therefore, p - s~ v -sand g-s~v” -sand alsop-s+¢g-s~ v s+ s
Moreover ((v" +v") - s)R(u" - s + 0" - 5).

Suppose p- 5+ ¢ - 5 ~+ u for some u € DP. Then from the definition of the operational rules
it follows that p - 5 ~ v, ¢ - 5 ~ " for some v/, "' € DP such that u = v’ + u”. From this we
obtain that p ~+ v, g ~ v for some v’,v" € DP such that v’ = v’ - s and v’ = v" - 5. Then
p+ g~ v + " from which (p+ ¢) - s ~ (v + v") - 5. Moreover {(v' +v") - s)R(v' - s 4+ v" - 5).

Suppose ({u+v) - s)R(u-s+v-s) for u,v € PP and s € SP, and (u+v)- s Z p for some
¢ € A and p € §P. Then one of the following situations occurs:

1. u4 v = ¢/ for some p' € SP such that.p = p’ - 5 this means that u — p’ or v = p'. So,
w-s>p -s0rv-8-5p s Therefore u-s+v-s > p. Moreover pRp.
2. u+v =/ and p = s: this means that © % \/or v = /. So, -5 = s or v-s — 5. Therefore

%-s4v-5 — p. Moreover pRp.

Suppose u-5+v-s - p for some a € A and p € SP. Then either u-5s % porv-s = p. In
P p p

the first case the following situations can occur:

1. u = p for some p' € §P such that p = p' - 5: then u+v = p' and also (v +v) -5 = p.
Moreover pip.
2. w2 \/and p = s: then u+ v > / from which (v +v) - s = p. Moreover pRp.
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The second case can be proved in a similar way.

Transitions of the form (v +v) -5 =/ and u-s+ v -5 = ./ are not. possible.

Suppose ((p+¢) - s)R(p-s+q-s) for some p,q,s € SP and M € PR/R, M C DP. Then we
have ul(p+ )+ 5, (u+v) - 8) = lp+ 4.+ v) = plp, W v) and (-5 -+ g 5,5+ v-s) =
plp s u-s)plg-s,v-8) = u(p, u)p(q, v) and moreover (u+v)-s € M iffu-s+v-s€ M. From
Proposition 31 we obtain that u((p +4q) -5, M) =plp-s+q -5, M).

Ad: We define a relation f2 in the following way:

RIE‘I({((P'Q)'S;P'(Q'S)) c g, sESPIU {{(u-q)-s,u-(g-5)) : weDP, q,seS’P})-

Suppose ((p - ¢) - 8)R(p - (g - s)) for some p,q,5 € SP and (p-¢) - s ~ u for some u € DP.
Then from the definition of the operational rules it {ollows that p - ¢ ~ o' for some v’ € DP
such that w = v’ s and also that p ~ v for some u” € DP such that ' = u” - g. Then we have
p-(g-8)~ u"(q-s). By the definition of R we have that ((v" -¢) - s}R(u" - (g - 5)).

Suppose p - (g - 8) ~ u for some u € DP. Then from the definition of the operational rules it
{ollows that p ~ v’ for some u’ € DP such that v = v’ - (g - 5). Then we have p-¢ ~ v’ - ¢ and
also (p - ¢) - s~» (v’ - q) - s. By the definition of R we have that {((v' - ¢) - s)R(u' - (g - 8)).

Suppose {(w - q) - s)R(u - (¢ - 8)) for some u € DP and ¢q,s € SP and (v ¢) - s = p for some
a € A and p € &P. Then from the definition of the operational rules it follows that u - ¢ 2 for

some p' € §P such that p = p’ - s. One of the following situations occurs:

1. w3 p"” for some p" € SP such that p’ = p” - ¢. Therefore, u - (g - 5) S (¢ - s). Moreover

((p"-q)-s)R(p"-(q-5)).
2. u\/, then p = qand p=¢q-s. Wehave u-(q-5) = p and moreover pRp.

Suppose - (¢ - 8) L p, for some @ € A and p € SP. One of the following situations occurs:

1. u 2 p' forsome ' € 8P such that p = p’-(g-s). Then u-¢ = p’-¢ and also (u-q)-5s = (p'-q)-s.

Moreover ((p' - ¢) - s)R(p’ - (¢ - 5))}.
2. u \/, then p=g¢ .5 Wehave u- g — ¢ and also (u - ¢) - s — p. Moreover pRp.

Transitions of the form (u - ¢) -5 = +/ and u - (g - s) -+ / cannot occur.

Suppose ((p-q)-s)R(p-{g-s)) for some p,¢,s € SP and M € PR/R, M C DP. Then we have
w((p-a) s, (w-q)-8)=plp-g,u ¢) = plp,u) and p(p- (¢ s),u- (g 5)) = u(p,v) and moreover
(v-q)-s € Miffu-(q-s) € M. From Proposition 31 we obtain that u((p-q) s, M) = u(p-(g-5), M).

AG: We define a relation R in the following way:

R= E'q({(P+5,p) cpeSP} U {(u+é,u) : uE’D’P}).

We look at the transitions of the both sides at the same time using the fact that the only
possible transition of § is § ~ §. From the definition of the operational semantics we obtain

p+ &~ u+ b iff p~su and moreover (u + §)Ru.
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And also pu(p+6, u+8) = p(p, u)p(8,8) = p#(p, u) and as u+8 € Miff u € M from Proposition
31 it follows that u(p+ &, M) = p(p, M) for each M € PR/R.

AT; We define a relation R in the following way:
R= Eq({(ﬁ-p,é) cpeSPY U {(6-pb)  pe S'P}).

We look at the transitions of the both sides at the same time. Observe that é - p and 6
can only do a probabilistic transition to §.pandsd, respectively, and (5 - p, 5) & R. Moregver,
(6 - p,6-p) = u(6,6) = 1. Then we obtain-u(é - p, [§]r) = (6, [81%) = 1'and for any other’
MePR/R ulb -p,M)=pu(b, M) =0.

PrAClI1: We define a relation £ in the following way:

R= Eq({(pﬁarq,qﬂi_w) CpgE 57’})-

Suppose (pth¢) R(gth_-p) for some p, ¢ € §P and pthH ¢ ~ u for some v € DP. Then
from the definition of the operational rules it follows that either p ~+ @ or ¢ ~+ w. In each of these
cases we have g Hh_,p~+ u and moreover uRu.

Suppose (pthq)R{gth-~p) for some p,q € SP and M € PR/R, M C DP. From Corollary
15 we obtain p(p g, M) = mpu(p, M)+(1-mp(q, M) = (1—m)pu(q, M)+ (1= (1—7))u(p, M) =
w(qgth-xp, M).

PraC2: We define a relation £ in the following way:

R= Eq({(pthr(qﬂw), (P @) Hrtp-nps) © PGS E ST’})-

Suppose (ptx(¢tps) R ((ptl- q) D tonp s) for some p, ¢, 5 € SP and

rr+pr— Ta
pt(gtH,s) ~ u for some v € DP. From the definition of the operational semantics it follows
that p ~ u or g4y 5 ~ u and also p~+ u or ¢ ~ u or s ~ u. In each of these cases we have that

((p-H— = q)-i:i—,wpw,rps)«»u.

T4p—mp

In a similar way it can be proved that if (p-l:l:r+
pﬂ—ﬂ(q Jd"ps) ~r U,
Suppose M € PR/R, M C DPP. From Corollary 15 we obtain:

r— 7}t p-np s~ u for some u € DP then

pth(gths), M) = np(p, M) + (1 — m)ulqgt,s, M)
= mulp, M)+ (1 — m)(pplq, M) + (1 — p)u(s, M))
= mp(p, M)+ (1 — )pplq, M) + (1 — m)(1 — p)pefs, M)

and
# ((Pﬁm’f_Tp q) Hirto-np$, M) =(m+p—mpu (pth,r;_,p ¢ M) + (1= (7 +p—7p)uis, M)
= mp(p, M)+ (1 — mpu(q, M) + (1 = m)(1 = p)u(s, M),
PrAC3: We define a relation R in the following way:

R =Eq({(ptpp) - pESPY).
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Trom the definition of the deduction rules it follows that pt5p ~ u for some u € DP iff
P~ u. Moreover uFRu.

From Corollary 15 for each M € PR/R, M C DP we chtain

wpthp, M) =mpu(p, M) + (1 — w)u(p, M) = p(p, M).

PrAC4: We define a relation R in the following way:

R= Eq({((Ptth) "5,prsthg-s) 1 pg,s€E 87’})~

Suppose ((ptdxq) - s) R(p-sthq-s) for some p,q,s € SP and (pthq) - s ~ u for some
u € DP. Then from the definition of the operational rules we have pth g ~ u’ for some v’ € DP
such that © = ' - s which implies either p ~+ @’ or g ~+ v’. In the first case it follows p - s ~+ u,
in the second ¢ - s ~ 1, and in both cases we obtain that p-sifq -5~ u.

Suppose p- sthq - s ~ u for some v € DP. Then either p- s~ w or ¢+ 5 ~ u. From the
definition of the operational rules it follows that for some u" € DP such that uw = w' - s, p~ o'
or g~ u'. In each of these cases using the deduction rules we obtain (pthg) - 5 ~ u.

Suppose M € PR/R, M C DP. From the definition of the probability distribution function
we obtain:

p((ptwq) - s,u' - 5) = u(ptrg,u') = 7u(p,u') + (1 — m)u(g, u’) and

plp -sthg-s,u'-s) =ap{p-s,u’ s) + (A —mp(g-s,u" - 5) = mp(p, ')+ (1 — 7)u(q, ).

Then from Proposition 31 we obtain p{(pthq) - s, M) = p(p- s g -5, M).

PrACSH: We define a relation R in the following way:

= Eq({((ptl-,rq)-i- s, p+sthg+s) : pg,sE S’P}).

Suppose ((pthy) + s) R(p+ s txq + s) for some p,q,5 € SP and (pth ¢) + s ~ u for some
w# € DP. Then from the definition of the operational rules we have pth ¢ ~ u’ and s ~ u”
for some o, u’ € DP such that © = v’ + " and also p ~ u' or ¢ ~+ u'. Then we obtain
p+s~u +u’ or g+ s~ u + v from which using the definition of the operational semantics
we oblain p+ st g+ 5~ u,

Suppose (p + s)tx(g + s) ~ u for some u € PP. From the definition of the operational
semantics we have that either p+ s ~+ v or ¢ + s ~ . In the first case it follows that p ~ o'
and s ~» u" for some u', u” € DP such that u = v’ + u”. Then ptzq~ o’ and (pthq)+ 5~ .
Morcover ufiu. In the second case we obtain ¢ ~ v’ and s ~ v for some v/, v” € DP such that
w=wu +u"’. Then pthq-~+ v and (ptxg) + s~ v and uRu.

Suppose M &€ PR/R, M C DP. Then from the definition of the probability distribution
function we obtain:

{(ptg) + s, u+t w) = p(pty g, u)p(s, w) = (ru(p, w) + (1 — 7)u(g, u))p(s, w) and

plp+sthg+s,utw)=maup+s,utw)+(1-mu(g+su+w)
mu(p, w)p(s, w) + (1 — mu(q, u)u(s, w).
From Proposition 31 we obtain u((pthq) + s, M) = p{p+ strqg + s, M) |

Il
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2.3 Completeness of prBPA

To prove completeness for prBPA with respect to presented term model, we use the direct method.
In order to do this, we first derive some results which relate a certain transition in the model with
a certain equality in the algebra. As the Completeness theorem is proved by induction on the
number of symbolis in closed terms, the following propositions give a way of handling it. Further

by op(x) we denote the number of operators of ciosed term z, defined in the standard way.
Proposition33. Let z fe o closed prBPA term and a € A. Then:

t.if g~ & and T = p(x,2') then m = 1 and z = 2’ and op(z") < op(x) or m < 1 and
x = z'thy for some y € 8P;
i if § <5/ theh ¢ = a+ 2,

Cea ipow 3
wi. if & —a' thenz =a 2’ + 2.

Proof. 1. Let z be a closed prBPA term and z ~ ¥ for some ¥’ € PP and 7= = p{z,2’). The

proof is given by case distinction on the structure of .

l. £ = 6§ or x = a: then z ~ ¥ is the only possible transition and p(z, %) = 1. Therefore the
conclusion holds;
2. z = y - 2 for some closed terms y and z: the assumption y - z ~» & implies y ~+ ¥ for some

i € DP such that 2’ =y’ - z. By the induction hypothesis we have either:

21 y=y and p(y, ) = 1 and op(v/) < op(y) from whichz = y-z = ¢/ -2 = 2’ and p(z, &) =
ply 2,4 -2) = wy,¥) = 1 and op(z'} = op{y/) + op(z) + 1 < op(y) + op(z} + | = op(x),
or

2.2 ply, ') < 1 and y = y' Hyy 3)y” for some ¥’ € SP from which p(z, #') = p(y, §) < L
and 2 =y -z = (¥ Yueyy") 2=y gy’ -2 = 2" Hue sz

3. 2 = y+ £ for certain closed terms y and z: by the assumption y + z ~ & we have y ~ ¥,

z ~+ ¥ for some ¥, ¥ € PP such thal 2’ = y' + 2. From the definition of the probability

distribution function we obtain p(w, ¥') = ply + 2, ¥ + ¥) = p(y, ¥)ulz, ¥'). (*)

By the induction hypothesis we have:

31y=y¢, wy,¥)=1and op(y/) < op(y) and z = &' and p(z,¥) = 1 and op(z") < op(z):
then from (*) we have u(z, ) = 1 and op(2') = op(¥/') + op(z") + 1 < op(y) +op(z) +1 =
op(z)and e =y+z=y +2 ==z, or

32y = ¢, plu.¥) =1, op(t/) < oply) and plz,¥) < 1 and z = 2/ th,(; 2" for some
2" € SP: then from (*) we obtain u(z, &) = p(z,#) < 1 and
z=y+z=y+ @ e = W+ N Buen ) = P e e + ) =
' Bz, (¥ + 27), or

3.3 w(y, 7)< land y =y Hyuy v and z = 2/, p(z,#) = 1 and op{2’) < op(z) for some

y” € SP: this case is similar to the previous one, or
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3.4 pu(y,#¥) < 1 and y = y’tl;‘(y,gr)y” and p(z,¥) < 1 and z = 2 (2,30 2"" for some
¥’ 2" € §P: then plr, &) = p(y, ¥')p(z, #) < 1 and

z=y+z= (y' H’p(y,g")yu) + (z’ 'H}L(z’é‘l)z”)
= (y’ + (z, _H_M(Z,E’) z”)) tht(y,f,"")(y” + (zf .H—ﬂ(z,}.")z”))
= (¥ + 2) Buge, o) (v + &) Bug,gn (8" + (2" gz, 2n2"))
= (' + ) Hugnue e (87 + ) Ha (' 4 (2 a0 2") = &' Hige 292"

with « € {0, 1) determined by axiom PrAC? and 2" = (v +2") Ha (v’ + (' Hyez,227));

4. x = yth,z for certain closed terms y and z and o € (0, 1): for the probability distribution

function we have p(z, ) = ou(y, #) + (1 — a)u(z, #). (A)

From the assumption yt 2z ~ & using the definition of the operational semantics we obtain

that one of the following cases can occur:

4.1 y ~+ & and —(z ~» &) which implies p(z,#’) = 0. Then by the induction hypothesis we

have:

(a)

(b)

y==z" and p(y, &) = 1 and op(z’) < op(y): then from (A} we have p(z,3) = o < 1
and r = ytaz = 't 2 and op(e’) < op(y) < op(z), or

p(y, &) < 1 and y = &' thy gy for some y € SP: then p(z, &) = ap(y, &) < 1
and z = ytaz = (#' Mgy ) Het = ' Hauen (¥ H2) = ' Hup sn2z” where
2" = o iz and ¢ is determined by axiom PrAC2;

4.2 z~+ & and —(y ~ #'). This case is similar to the previous one;

4.3 y~ &' and z~ &. Then by the induction hypothesis we have:

(a)

(b)

(d)

y=2a, p(y, #) =1 and op(2’) < op(y) and z = 2’ and p(z,#) = 1 and op(a’} <
op(z): then from (A) it follows pu(z, #) = 1 and op(z') < op(y) + op(z) + 1 = op(=z)
and z = ythz =o' tha' =z, or

y =2, u(y,2') = 1 and op(z') < op(y) and u(z,#) < I and 2z = 2"ty 802
for some z' € SP: then from (A) we have pu(z,#) = o + (1 — o)u(z,#') < 1 and
z = yhuz = o He(@ tye pn2) = (:t:’-t:l-m,)cv__cm}_y7 &) Hotu(z g0-au(z,5) % =
2ty 502, Or

ply, &) < 1and y = @' Hy(y )y for some y' € SP and 2 = &’ and p(z,%") = 1 and
op(2') < op(z): then from (A) we obtain pu(z,#) = ap(y, #) + (1 — a) < 1 and if we
denote shortly 8 = p(y, &) we have

= ytaz = (' Upy') o’ = &' tagp (m’ﬁ%y’) =

e )Y = 2 Hypy-o)¥ = 2 Hyany, or

l=—ox
T—ar P 1oag

= gt

uly, &) < 1 and y = &'ty ey and p(z, &) < 1 and z = ' H(; 32" for some
i,z € §P: then we have p(z, #') = ap(y, #) + (1 — a)u(z, ') < 1 and if we denote
shortly A = p{y, #") and ¢ = p(z, &) we obtain

T = ythey = (' thy ) ez’ th') = 2/ thy [y’th%);_r (w’tl'gz’)] =
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2 thp (B H_ e ¥ )Hu-merc-a 2| = 2 B (1 B )
1-ag

Sl ATeli—=a)
plz, 8y (1-a) _ enly 3 )s(z 2 ) 1-a) _
T—culy,&") l1—oply,E) -

for some 7 € (0,1} and where 5 = ap(y, &) +
ap(y, ) + (1 — a)u(z, &'). So, we have:
T = x’ﬁ?](y' thrz’) = mfﬂtau(y,i‘:")+p(z,:E")(l—a))(y’ T Z’) = rj'tha(z:,i")(yf 'H'TZI)-

i, Let us suppose that & = /. The proof is given by induction on z.

z = §: this case is not possible;

ﬁc:a:thenz:a+a:a+m;

x =z’ -z” for some closed prBPA terms 2’ and z”': then an ¢—transition to +/ is not possible;
z = z' + z” for some closed prBPA terms ¢’ and z': then from the assumption ¥ = |/ we
have that # = / or-3” 5 /. By the induction hypothesis we have that 2’ = a + 2’ or

z” = a + 2" but in each of these cases wehavez =2/ 4+ 2" =a+2' + 2" = a+ 2.
iii. Let us suppose that # 2 y for some y € SP. The proof is given by induction on .

x =6 or z = a: these cases are not possible:

r =z’ - 2" for some closed prBPA terms z' and z': then one of the following situations is

possible:

2.1 # 5y forsome 3y € SP such that y = y -2": then by the induction hypothesis we have
that 2’ =a -y + 2" fromwhiche={a-¢y +2") 2" =a-¢ 2"+ &' 2" = y+ 2,

2.2 # 5 \/ and y = 2': then by #. we have that 2’ = a + =’ from which we obtain:

z=(a+a)-a"=a-2"4+2" - 2"=a -y+=

.z = ' + 2" for some closed prBPA terms z’ and 2" then from the assumption & - y we

have that # % y or 3 = y. By the induction hypothesis we have that 2’ = @y + 2’ or

" =a-y+ 2" but in each case we have g =z’ 4 2" =a-y+ 2’4 2" =a -y +=. O

Proposition34. Let » and y be D terms. Then the following equivalence holds:

Ty oy,

Proof. This result follows from Proposition 25. d

The next proposition particularises a relation between a probabilistic transitions of a basic

term and its form as it was considered in Section 2.1. Here we are faced with the following

situation. If a process, say p, can do a probabilistic transition to a dynamic process & with

certain probability p(p, #) = =, then the associated process term z may appear more than once

as a sub-term of process term p in such a way that the sum of all probabilities related to x is

equal to m. According to the forms of basic terms in the remark on p. 8 we use an auxiliary set

() which contains all indexes of sub-terms of p that are syntactically equal to z. 1t is clear that

the set {(J- : =z is a sub-term of p} is a partition of the set {1,2,...,n} as it is given in that

remark.
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Proposition35. If p is a basic prBPA term in the form (2) (Remark p. 8), then p ~+ x with
plp,e)=piffe =z, andp= 3 = forsomei, 1<i<n, whereQy, ={j : 1<j<n,a=
JE€Qs,

n—1
it and 1, =1 - 5 w5,

j=1
Proof. Let p be a basic term in the form p = 2ty 2ot 23 .. . &n_1 5, _, Ty, for n > 2. The
proof is given by induction on n. Instead of Q, we shortly write Q);.

(«) Let n = 2, that is p = z; tf, £2. Then by Proposition 25 we have that the only possible

probabilistic transition of z; and zy is &; ~ &1 and w3 ~ &g, respectively, with p(z,, %) = 1

and p(wg, ) = 1. From Corollary 26 and the definition of the operational rules we obtain

. if &1 # x5 then p~+ &, and p~+ &> with g(p, %1) = m; and p(p, #2) = 1 — 71 and the result
holds because (21 = {1} and @» = {2};
2. if 2y = 2, then @1 = @2 = {1,2} and ). m; = 1 and we obtain p ~ &; with p(p, &) =
JEQ
T+ (1—m) =1.

Let p=a th,woth, ... th,_, &y = x1th, (a:ztl'l_w;_mg...a:n_lthrn_l xy,) for n > 3. From
T et

T—r;
Proposition 25 it follows Lthat the only possible probabilistic transition of x; is z; ~ #; and
(1, &) = 1 and from the induction hypothesis we have that for k, 2 < k < n, ¢ ~ &
and p(g, &) = pf, where g, = 3 T and @ = {j : 2 < j < myzp = 25} and ¢ =
Jjeq;
otz %3 ...Zn_1tme 1 Tn. Combining these two results we obtain the following:
I—my 1

-7y

1. if there exists k, 2 < & < n, such that z; = @) then Q; = @}, U {1} and p ~ #, and
p(p, &) = m + (L — m)pl = pr, where pp = > 7;. Morcover for all {, 2 < I < n, such that

JEQ
2y #F & we have that ¢4 = @} and from the definition of the operational rules we obtain
p~r & and pp, &) = (1 — m)p) = pr where py = 3~ 75
JEQ

2. if @y # xp for each k, 2 < k < n, then @} = Q¢ and Q; = {1}. From the definition of the
operational rules we have p ~ &; and p ~» & with p(p, 1) = 71 and p(p, %) = (1—7m1)pt =
prx where py, = 3 75,

jEQx
{=) Let n = 2, that is p = #; H, 22 and p~ & for some & € DP which implies p(p, &) € (0, 1].

From the definition of the operational rules we have that one of the following cases oceurs:

1. &y ~ & and —(x2 ~ &) which implies p{zs,2) = 0 and p(p, %) = myp(z;,#). Then by
Proposition 25 we have that p(zy, ) = 1 and x; = z. Using Corollary 26 we obtain z1 # x».

This means that @1 = {1} and p{p, &) = > 7;;
JEGQ
2. x9 ~» & and —(w1 ~ &) which implies p(z1, %) = 0 and p(p, £) = (1 —m )p(z2, #). In a similar
way as in the first case we obtain that p(zz,#) = 1 and 2 = and p(p,2) = Y. w;.
JEQ2
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3. 2y ~ & and z3 ~ ¥ and then u(p, ) = myp(zy, 8) + (I — m)p(x,, £). By Proposition
25 it follows p(x(,2) = 1, £ = z; and p(2y,8) = 1 and £ = =5 from which we obtain

Ql = QQ = {172} and ,U(p;-’f) - Z T = 1.

JEQ
Let p= oy Y, Cothy, ..t 8n = .',U]_"H'—,Tl(;'[,’z‘ti' 2 T3 a:,,_ltl-x,wi z,) for n > 3 and
p ~+ & for some & € DP which implies p(p, ¥) € {0,1]. From the deﬁnmon of operational rules

one of the following situations can occur:

1. 2y~ % and (2 -H-T%:cg . .mnglﬁfz_;f:cn ~ ) which implies ,u(p,i) = mule1, §). Then
from Proposition 25 it follows that p(z.,%) = 1 and z = 2. Moreover from the definition
of the deduction rules it follows easily that —(zy ~» &) which implies 2; # =z, for each &,
2 < k < n. Then we obtain that ¢4 = {1} and p(p, &) = Zr.:) ;.

i€

2. Tythz2 T3.. Tao1trass Zn & and —{z; ~+ £) which implies p(x,,2) = 0 and p(p, &) =
—7i 1—"1
(1 — m)p(y, £) where y = :Lgtl-_z_:ng 1 Hrasy Tn By the induction hypothesis it
follows that there exists k£, 2 < &k < n such that z = xk and p(y, &)= 3 =i where

1—my

jeqQ;
t=1{j : 2<j <n,z =2;}. From —(2; ~+ &) using Corollary 26 we have that z; £ z,

which implies Qk ={j : 1<j<nez=2x}=0Q and p(p,) = (1 — m)p(y, &) =

(1_"71) Z Tis

jEQk JEQk
3. 2, ~ 2 and z, 'l:]'1 2 Ta...Lp_ 1-I:t‘vrn_1 2, ~ ¥ and p(p, &) = mp(e, &) + (1 — 7)ply. £),
L

where y = z» Hir2 23 .. En- 11:l-rn 1 :En From Proposition 25 it follows that p(z,, %) = |
-2

T—my

and z = z;. Moreover from the induction hypothesis it follows that there exists &, 2 < & < n

such that z = #; and ply, &) = 1—:_%, where @, = {j : 2 < j < naep = 5}
JEQL
Then we obtain 7 = z and also Q@ = {j : 1 < j < n,zp = 2;} = @, U {1} and
,U(p,i?):71'1}1(1:1,53)—%(1—7?1),&(;@1,2"1):7T1+(1—7r1) z 1 < —TI'1+ E Ty = Z my. O
JEQ, ieq;, iEQ

Corollary 36. Let © be a basic prBPA term and M € PR/ = . Ifz ~ &, 1 <17 < n, are all
possible probabilistic transitions of x to elements of the equivalence class M with p(z, ;) = oy,
for some n € IN, o; € {0,1], then either n > 2 and

N o ! !
=y etz H o T,

m—1
for somem € Wym > noand pp € {0,1), 1 < k < m, (pm = 1 — 3 p;), and for some

Fa=1
partition Q1,Q2, ..., Qn of the set {1,2,...,m} such that Qs = {j : 1<j <mz; =2} and
S ps =0, or
JEQ,

e 7 /! f
A=t = P m PR A u

Pm—1 :E:'n -H-Pmy
for some m € N, m > 1 and p; € (0,1}, 1 <k < m and for some pariition Q1,Q2,...,Qy of

the set {1,2,...,m} such that Q; = {j : 1 <j<mz;=2;} and 3° p; = oq and for some
JEQ:
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basic termy, y ¢ M
or
n=1and oy =1 and

r=ziOy ety ...ty 21,

m=1
for somemeIN, m>1and pp € {0,1], 1 <k <m, {(pm =1- 3 p;).
Jj=1

Lemma37. [fp,q and v are PR terms and 7 € {0,1) such that ptrg o pitsr, then g = 1.

Proof. Suppose pthyg & ptr. Then there exists a bisimulation R such that {(p+ ¢)R(p = 7).

We consider the following relation:
R = Eq(RU{(q,7)}).

In order to prove that 2’ is a bisimulation we only need to prove that the four clauses in Definition
17 are satisfied by the pair (g, r).

At first we have the following property: for each equivalent class M € PR/R, u(q, M) =
r, M). It follows from the fact: u(pthh g, M) = p(ptr, M), that is mp(p, M)+ (1—m)p(g, M) =
wp(p, M)+ (1 — m)u(r, M). It implies that

(g, M) # 0 iff u(r, M) # 0. (5)

Suppose ¢ ~ z for some z € DP, which means that u(g, [z]5) # 0. By (5) we have that
wir, fz]5) # 0, that is there exists y € DP such that r ~ y and xRy, which implies zR'y. In a
similar way we obtain that if r ~+ y for some y € PP then there exists x € DP such that ¢ ~ 2
and z R'y. Moreover, for the relation R’ we have that (R'\ R)N (DP x DP) = @ which implies
DP/R = DP/R. As we only consider equivalence classes M C DP from these results we obtain
that if M’ € DP /R’ then M’ € D'P/R which implies p(q, M') = u(r, M"). m|

Lemma38. Let y be a D) term and a € A. Then we have:

Ly y=4;
oy a =y —a.

Proof. 1. The proof is given by induction on the structure of y.
1. y = 6 this case is trivial;
2. y = a for some a € A: then as# ¢ and this case cannot occur;
3. ¥ =y - y2 for terms y; € D and ya € SP: then we have that y; < 6 (this can be proved
by showing that the relation R' = Eq(RU {{y1,8), (i1, 5)}) is a bisimulation, where R is
a bisimulation between y and &). Then by the induction hypothesis we have that y, = 6

from which we obtain: y =y -ya = 3 -y = §;
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Yy = 1 + y2 for some terms y1,¥2 € D : then we have that y; «— & and ¥y = & (these
can be proved by showing that the relation R' = Fq(R U {(y1, 8}, (ya, 8), (11, 5), (Jz, 5)})
is a bisimulation, where R is a bisimulation between y and §). Then by the induction

hypothesis we have that 1 = 6 and y, = é from which we obtain: y = 31 +y2 = §+6 = 6.

2. The proof is given by induction on the structure of y.

I. y = 6: then 6% a and this case cannot occur;

s b

. 4 = b for some b € A: 1t is clear that b = q;

P

. Y=y -y for sometermsyy € D and y, € §P: this case canriot decur; ™

. ¥ = y1 + y2 for some terms y1,y2 € D : then we have that ¥, « @ and y» — a (these

can be proved by showing that the relation B’ = Eq(RU {(y1, a), (¥2, a), (#h, &), (J2,4)})
is a bisimulation, where R is a bisimulation between y and a). Then by the induction
hypothesis we have that y; = @ and y; = a from which we obtain: ¥y = y1+y2 = a+a = «.

O

Theorem 39. (Completeness) If z and u are closed prBPA terms, then z = u = prBPAF z = u.

Proof. Let us suppose that z and u are basic prBPA terms such that z = u. We give the proof

using induction on the structure of z.

1. z = é: then from the assumption z « u it follows that there exists @' € PP such that u ~ i

and # < 8. According to Proposition 33 we have to consider two possible situations:

1.1

1.2

p(u, @) = 1 and w = o' and op(u') < op(u): then as v’ € D by Proposition 34 and
Lemma 38 we have that «’ = 6, from which it follows that u = § = z;
plu, @) < 1 and u = 'ty a0y’ for some v’ € §P: as p(u, it'} < 1 we obtain that u

can make more than one probabilistic transitions. Then by Corollary 36 we have that
—_ ] L '
w=uHy, us Ho gL Hy Ly,

for somen € IN, n 22, 0; € (0,1} and v; € B4 and where foreach i, 1 < i< n, @ 5.
If we suppose that there exists j,1 < j < n, such that @} & 5, then it implies u £ &
which contradicts the given assumption. This provides us with considering one form
only from Corollary 38. From Proposition 34 and Lemma 38 we have that for each

i, 1 <i<n, u; = 6§ from which we obtain u =8 = z.

2. z = a: then from the assumption z < u it follows that there exists 4’ & TP such that w ~ '

and @' = &. According to Proposition 33 we have to distinguish two possible situations:

2.1

2.2

p(u, @) = 1 and v = v’ and op(v') < op(u): then as v € D from Proposition 34 and
Lemma 38 we have that @’ = a from which it follows u = a = z;

plu, @) < 1and u = v’ Hy anu” for some v’ € SP: as p(u, &) < 1 we obtain that u
can make more than one probabilistic transitions. Then from Corollary 36 we have

— ! ‘ !
u=1u, "d',,luz ‘B’gzus- o ﬂ-a"_lun
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for some n > 2, o; € {0,1) and v € By and where for each i, 1 < ¢ < n, @ « &
If we suppose that there exists j,1 < j < n, such that U & &, then it implies u £ @
which contradicts the given assumption. This provides us with considering one form
only from Corollary 36. From Proposition 34 and Lemma 38 we have that for each
t, 1 <i<n, u, =afrom which we obtain u = a = =z,

3. z = a1 for some basic term ¢: then from the assumption u = a -t it follows that there exists

#' € DP such that ¥ ~+ &' and &' < & -¢. According to Proposition 33 we have to consider

two possible situations:

3.1 p(w,#') =1 and v = v’ and op(u’) < op(u): then from Corollary 27 we have that u' € By.
By case distinction on the structure of #’ we prove that v’ = z. By the assumption a1 = v’
it is clear that v’ ¢ As.If «' = a5 for a basic term s, we obtain ¢ = s, from which by
the induction hypothesis (which is applicable because op(t) < z and op(s) < op(u)) we

have t = 5, Therefore we have &' = a-s =a-¢ = z, from which 1t follows u = o’ = z.

If ' = uy + us for some terms u;, 13 € B4, we can prove that either

(a) vy =6 and up = a-tor

(M) vy =éand vy =a-tor

(¢} w3 =ra-tand ug e=a-t.

Suppose that u; < a-t. From Proposition 34 we have that i, 4 &-¢, which implies #; £
or ii; % v, but v ¢ for some v € SP.

In the second case we have that &' = v and by assumption i’ < #; + ti we obtain that
v = ¢, which i5 a contradiction.

In the first case we obtain that iy = w, for some w € SP, because by the assumption
it. has to be that @ -5 w. Moreover w < ¢. By this we proved that #s < & - ¢ from
which, using Proposition 34 we have us — a - {. Then from the induction hypothesis we
obtain us = @ -t. Moreover, if we suppose that there exist 6 € A,4 2 @ and v € P
such that i 2y then this implies that i’ LA v, as well, but & - ¢ -,t» which contradicts
to the assumption u' — a -t. S0, we get that @; can not perform any action transition,
which implies that i, — 5. Because uy € B, € D using Proposition 34 and Lemma 38

we obtain that u; = §.

In a similar way we prove the case where us b a-1.

In the third case uq = a - £ and us — a - ¢ by the induction hypothesis we have u; = a - ¢
and s = a - L.

The assumption u; <4 a -t and g & a -t leads to a contradiction with the assumption
that wy + s —=a-1.

With this we prove that exactly one of the cases (a), (b) or (c) is possible.

In each of these cases we obtain ¢’ = u; +us = a-t = 2, from which it follows u = v’ = z;
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3.2 p(u, @) <1 and u = vt gnyu' for some v € SP: as p{u,#') < 1 it implies that u

can make more than one probabilistic transitions. Then using Corollary 36 we have that

!

—_ / ! i
=)t uy e g Yy Ly,

for some n > 2, o; € {0,1) and u} € By and where foreach i, 1 <i<n, @ —a-t. If
we suppose that there exists 7,1 < j < n, such that @} <4 d -, then it implies n b a -t
which contradicts the given assumption. This provides us with considering one form only
from Corollary 36. By Propositioﬁ 34 and the induction hypotli:aéis We have that‘for each

i, 1<i<n, uf =a- tfrom which we obtain u =a -t = z.

4. z = 71 + z3 for some basic terms z1, 22 € By then from the assumption z — u it follows

that there exists &' € DP such that u ~+ &' and %' = ¥ + ¥;. By Proposition 33 we have to
consider two possible situations:

4.1 p(u,@') =1 and v = «' and op(u’) < op(u): then by Corcllary 27 we have that v’ € B,.

By case distinction on the structure of v’ we prove that v’ = z. If ¢’ is a basic 5. term
of the form a or a - ¢ for some a € Az and t & B, then the result follows from cases 1,
2 and 3. So, we only need to consider the case where ' = u; + ug for some basic B
terms uy and uy. From Theorem 30 (Congruence theorem) and the assumption z — u’
we obtain: z == u' 4+ z and v = v’ + 2. We will prove that assumption z = 41 + uz + =
implies z = u; + z and z & ug + z. In order to prove the first property we consider the

following relation:

R = Eq(RU {(Z,Ul +Z):(E:&1 + E)})i

where R is a bisimulation relation such that zR{uq + us).

As z,u; € By C D we obtain from Proposition 25 that z ~+ # and uy ~ ; is the
only possible probabilistic transition of z and uj, respectively, with p(z,¥) = 1 and
uluy, i) = 1, from which we have that the only possible probabilistic transition of
up +zis Uy + 2~ @1 + Z and p(uy + 2,4, + ¥) = 1 Moreover by the definition of B’ we
have (2,4, + #) € R

Let ¥ % g for some ¢ € A and z € SP. Then also #; + ¥ <%  and moreover z R’z

Let &, -% y for some @ € A and y € SP. Then from v’ = u; + ug and & = ty -+ i it
follows that ii' = y and using the assumption it’ & z we obtain there exists & € $P such
that ¥ -% 2 and 2Ry which implies z R'y.

By this we prove that R’ is a bisimulation relation such that (z,u:+z) € R’ which means
that z & u; + z. In a similar way we can prove the relation between z and us + z.

In conclusion we'have: z =uv' 4+ 2 @ s =u +us + 2 z = u +z and 2 = us + z. By
the induction hypothesis we have that » = u; + z and z = us + 2z, and using Proposition

6 we obtain

z=z4z=utus+z=1u +=z (%)
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Moreover ' o 24+ v’ @ v o+ m+u @ v =2 + v and o = 23 + » which can
be proved as the case above. By the induction hypothesis we have that v’ = z; + v and

u' = z3 4+ v, from which using Proposition 6 we obtain
W=t =+t d =2+ (7

Finally, from (6) and (7) we obtain z = «/, from which it follows « = z.
4.2 p(ur, 1) < 1 and u = o " for some u” € §P: as pluy, #;} < 1 we obtain that u can

make more than one probabilistic transitions. Then using Corollary 36 we have that

7

— ! /
w=u) Hy us iy, us .ty Uy,

for some n > 2 and ¢; € (0,1}, «] € By and where foreach i, 1 <i<n, & =% + 2.

Suppose that there exists j,1 < j <n, for which @} & # + 2 (*). Then we have

w(z, [f14+5] o ) = Thut plu, [H+5] o) = 1- > plu, (%] o ). From the assump-

Gig[F1+52] =

tion (*) we have that b p(u, [i;] o ) > 0, which implies p(u, (% + %2] o) < 1.
¢ (B 2] o

"This is a contradiction with the assumption that z & u. This provides us with considering

onc form only from Corollary 36.

Finally, by Proposition 34 and the induction hypothesis we have that foreach 7,1 < i < n,

) = 21 + zp from which we obtain v =z,

H. z = z; H5 24 for some basic prBPA terms z; and zo2: because there exists a equivalence class
K € PR/ =, K CDP, such that u(z, K) # 0 we suppose z ~ ¥/, 1 <1 < p, are all possible
probabilistic transitions to elements of K, for some p € IN,p > 1. From Corollary 36, because
z & By, we have that

PR = TS - A = SN

or

= th, e, 2s. . He,  2znHe y,mn > 1
for some n € IN, 07 € (0,1), 1 < j < n, such that for each 4, 1 <7 < p, p(z, %) = Z o,
Q: ={j  z; = =}, and for some basic term y, ¥y ¢ K. (The case n = 1 is not ;;f)géible
because 1t contradicts the assumption 2 = z; th 22.)
The assumption z « u and the previous assumption about probabilistic transitions of z

determine the probabilistic transitions of u and from Proposition 35 we obtain:

[ ! 7 !
w =y Hp, Ut us . Yy, Uy

n the first case or

u = uyH, uyth vy

!
Pm—1 Um -H—Pm w,

in the second case, for some m € IN, basic term w, such that w ¢ K and p; € (0, 1] for each

J, 1 < j < m. (One can note that here we allow m to be 1 which covers the case where
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u = u}). This means that © ~+ #;, 1 < j < m, are all possible probabilistic transitions of

to elements of the class A" and p(u, @}) = 12%’. pi, where @ = {! : w; = w;}. Moreover we
have ¥ — ) for each i, j. '
In the first case by Proposition 34 and the induction hypothesis we obtain that zf = w; for
each #,5,1<i<n,1<j<m,andz/ =z foreach 4,k, 1 <i<n, 1 <k <nyand uy =y

for each 4,{, 1 < j < m, 1 <1< m Then we easily obtain:

— I M [ v ' [
PN = P 0w - N w. U = PRS- = PSR, = PR

Tn—1%n

and
u= o)t ul e ul 1 ' o=, u) ) t 'u' = )
1 Hp g Thp g ... Tp,, Uy 1 Bp Uy Hp, Uy - Ty, U 1

from which we obtain 2z = u.
In the second case we also have the results: z] = u; foreach i,j,1<i<n,1<j<mand
zi =z foreach ik, 1 <i<n, 1<k <n,and v =uforeach 5,0, 1<j<m, 1 <7< m

Then we have

JETT— 7 7 / _ ~ ' W
= ezt e, 4ty =2 Hy, 2] D7) . He, 5 e, ¥
!
= zltfz-‘nﬁloay

and

— 1 i I i — i i I .
(TR T = AT = L R = I T © P (i T = p P TE A = W TR = ST L =y S

ot
=y ‘HEJ_m:lpjw.

Using the Soundness theorem we have: z — z] Hzn and v = u)Hy= ,,w and also
= 0 re Y =W UER p;

from the assumption z — u it follows that z| Hyr sy iouc u) Ham o0 Moreover

n
w(y, K) = 0 = plw, K) from which pu(z{ tx= oy, K) = ._Zlcr,; and p(u) e, w, K} =
m n m =
3 p;j and also Y. o; = 3. pj. Let us denote this sum by «.
i=1 1=1 i=1
We have ] thy — u) Haw and 2] = u} and by Theorem 30 we obtain ] Bow = v tHhw
and zj th y = 2 thw. Using Lemma 37 we have y « w.
Finally, we have 2{ — u}{ and y = w and by the induction hypothesis we get z] = u] and

y = w from which it follows that z = u. o
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3 Extension with merge and communication

3.1 Axiom system

Next, we extend prBPA with additional operators. The signature of prA C'P consists of the oper-
ators [rom prBPA, three new binary operators: || (merge), || (left merge) and | (communication
merge) and encapsulation dg with H C A, prACP is parametrized by a communication function
v: As x As — As ([2]). Notice that we use non-deterministic choice, not probabilistic choice,
in the expansion of the merge operator, contrary to [5]. The axiom of new operators are given in
Table 5 with a,b € As and 7 € {0, 1).

alb = v(a, ) CF
zly =slly+ylz+zly CM1
a|| = =a-z M2
a-z| ¥ =ua {r|ly) CM3
(z+y)lz =z|lz+y| = CM4
(zty)lz ==l = thyll = PrCM1
alb-x =(e|b)-z CM5
a-x|b =(aid) -z CMeé
a-z|b-y =(a|b) (z|z) CM7
(zt=y)|z ==z|zthyiz PrCM2
z|(ytwe) =o|lythr|s PrCM3
33((1) = lfﬂ.é HD]

Ar (e} =& ifec H D2
Ol +4) = dn(x) +0a(y) D3
d(z-y) = 0u(c) Ou(y) D4
BH(ItI?ry) = 8H(a:)t|;,8;1(y) Prinl

Table 5. Additional axioms for prACP.

We can note that the distrtbution laws of alternative composition w.r.t. communication merge
are not included in this axiom system. Instead of these laws we add the rules in Table 6.

By the following example we show the reasons why we have this restriction in DyPR.
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s=s+z=2(z4y)|s=z|z+yl|z
z=z+z= zi(z+y)

I

zlz+z|y

Table 6. Dynamic Processes Rule (DyPR)

Ezample 2. Tiet-us-assume that the distribution laws of alternative compositiofi w.r.t™ cotiniuind

cation merge hold and let us compare two processes: (a+b) | (ctHad) and a|(ctrd)+b|(ctxd).

For the first of them by PrC M3 we have:

(a+8)| (cthud) = ((a+8) [e) s ((a -+ 6) [d) = (a[c+b |c)thn (ald + b]a).

For the later one by the assumed distribution laws we have:

al(cthd)+b|(cthd) = (alcthald)+ (b|cthb|d) =

(ale+b|c)the(ald+ble)Hrm(e|c+ b]|d)tHrp_mnlajd+b|d).

It is easy to conclude that these two processes are different. The second process has two sum-
mands which are the alternative composition of two processes each of which has been obtained by
communication with a different atomic action in the probabilistic choice ¢t d. Such summands

do not occur in the first process. O

But if a probabilistic choice occurs between equal processes (or bisimilar) then this problem
does not occur. For this reason the condition z = z + z i1s given in the rule. This condition is

fulfilled by all processes which cannot do probabilistic steps to different equivalence classes.

Theorem 40. {Elimination theorem of prACP) Let p be a closed prACP term. Then there s a
closed prBPA term q such that prACPF p=q.

Proof. Let p be a closed prACP term. The theorem is proven by induction case distinction on

the structure of p.

1. p€ Aj: then pis a closed prBPA term;

2. p = p1 - p for certain closed prACP terms p; and ps: by the induction hypothesis there exist
closed prBPA terms q; and ¢4 such that prACPF p; = q1 and prACP - py = ¢2. Then we
have prACPF p=p1-pa = q1-q2 and ¢ - q2 is a closed prBPA term;

3. p = g1 + ps for certain closed prACP terms py and po: this case is treated analogously fo
case 2;

4. p = p1|lpa for certain closed prACP terms py and pz: by the induction there are closed
prBPA terms q; and g2 such that prACPF py = ¢y and prACPF ps = ¢3. By Theorem 9
there are basic terms r; and #9 such that prBPAF ¢ = r1 and prBPA F ¢ = ro. But then
also, prACP v p1 = ry and prACP & py = ra and prACPE py|| pa = ri|| r2. By induction
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on the structure of basic term r; we prove that there 1s a closed prBPA term r such that

prACPE ry|lr =r.

41 ry =a€ Ag:then || vo =al vz =a r; and a-r; is a closed prBPA term;

4.2 vy = a7} for some ¢ € A and basic term r{: then r1|| r» = a-r{| 72 = @ (r] || r2). By the
induction hypothesis there exists a closed prBPA term s such that prACPF r]||ra = s
and a- 5 is a closed prBPA term,

4.3 7| = r{+r{ for some basic terms r{ and r{: then r1[| ro = (r{ +7{)| r2 = ri{ ra+7{| 2.
By the induction hypothesis there exist closed prBPA terms s and s” such that prACP
rilLrs = 5" and prACP & v{|[ 72 = §". Then prACPl rillro = s+ 5" and s’ + ¢ is a
closed prBPA term;

4.4 r| = 2}t r! for some basic terms ») and #{ and 7 € {0, I}: then || vo = (¢ tr!)| 72 =
r{|| ro Hxr{|| 72. By the induction hypothesis there exist closed prBPA terms s and s”
such that prACP F | ro = s and prACP F »{|| 7o = s". Then prACP F r|{ry =
s’ 5" and s’ t5 5" is a closed prBPA term;

5. p = py | p2 for certain closed prACP terms p; and p»: by induction there are closed prBPA
terms ¢ and ¢o such that prACPF py = ¢1 and prACP F py = g». By Theorem 9 there
are basic terms v and ry such that prBPA - ¢q; = r; and prBPA & g3 = ro. But then also,
prACPF py = ry and prACP LV ps = v and prACP ¢ py lpa = 71| rs. By induction on the
structure of basic terms r; and ry we prove that there is a closed prBPA term r such that
prACPEr |ry =1,

51 7 = a € Ag and 7o = b € As: then prACPE ry|ro = a|b = ¥(a,b) and y(a,b) is a
closed prBPA term;

52 vy = a and ro = b -}, for some a,b € As and basic term rf: then prACPF ry)|ry =
(a}b)-rh and (a|b) - rh is a closed prBPA term;
53 ry = a-r] and ry = b for some a,b € A; and basic term r: this case is treated

symmetrically to the previous case;

5.4 ry=a-v) and ro = b rh for some a,b € A; and basic terms r] and rh: then prACP
r|ra = (a|b)- (v ]| r5). By induction there is a closed prBPA term s such that prACPF
iy = 5. S0 prACP & ry|rg = (a]b) - (r}]||7}) = (a]b) - s and (a|b) - s is a closed
prBPA term;

5.5 vy = r{ + r{ for some basic terms 7| and r{: according to the structure of ry there are
two cases:

(a) if ry € By then rq + r2 = r2 (by Proposition 6) and by DyPR we obtain prACP -
ri|re = (v} +rY) | ra = r{ |72 + r{| r2. By the induction hypothesis there are closed
prBPA terms §' and s such that prACPt r]{ry = s" and prACPF r{|rq = 5". So
prACPE vy |ra =r] |ro+ ¢ |ra =5 + ¢ and &' + 5" is a closed prBPA term;

(by if rz € B\ By then for some n € IN,n > 2 there exist u; € By and m; € {0, 1}, for

1 <4 < nsuch that ry = uy S5, ua th, . tn-1 T, -, 4. Moreover because u; € By
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we have that u; + u; = u; for each 4,1 <4 < n from which we obtain the following:
prACPE ry{re = (r] + 70} [ (uy i o Hy - Un—1 B, _, Un)
= (ri ) st (0L + 7)) [uzth, - e, (D407 |un
= (r] |ur + o [w) U, (] [ ue - 7 |ue) Bay oo e, (0] e + 7 | un)-
By the induction hypothesis there exist basic prBPA terms s},s, 1 < ¢ < n such
that prACPF v} |u; = s} and prACPF i {u; = s¥. Then we obtain:
prACPE ri|re = (s + sV) e, (sh + 590ty . (55, + sg_l) 1‘:1-#"717‘(.3;1 4+ s:;) ;}ng_lr
() + &)t (sh + 85ty - (sh 1+ 50 1)t _, (5, + 511} is a closed prBPA term;
5.6 re = rh + rf for some basic terms r5 and r4: this case is treated symmetrically to 5.5;
5.7 ry = 7| Hxr{ for some basic terms r} and r{ and = € (0,1) and ra is of arbitrary form:
then prACP & ry|re = (r{txr!)|ry = r{|ryth ! | r2. By induction there are closec
prBPA terms s’ and §” such that prACP b r{|r: = s'vand prACP b-rf |ry = s”. So
prACPF ri |7 = v} |re e v | ra = & 8"’ and 5" = 5" is a closed prBPA term;
5.8 rq = rftry for some basic terms ) and 74 and = € {0,1) and »| is of arbitrary form:

this case is treated symmetrically to the previous one;

. p = p1|lps for certain closed prACP terms p; and pa: then the result follows from axiom

C M1 and cases 4. and b;

. p = Oy{p,) for a certain closed prACP term p; and H C A: by the induction hypothesis

there exists a closed prBPA term g; such that prACPF p; = q1. By Theorem 9 there is a
basic term r; such that prBPA F q; = r; which implies prACP F p; = r;. By induction on
the structure of the basic term r; we prove that there is a closed prBFA term r such that
prACPE Qu(r) = r.

T1ri=a€ As:thenifa € H, Oy(r1) = & and 6 is a closed prBPA term. If @ ¢ I then
Or(r1) = a and a is a closed prBPA term;

7.2 r1 = a-r{ for some a € A and basic term 7}: then dx(ry) =0 (a-r]) = dula) - Dy (+]).
By the induction hypothesis there exist closed prBPA terms 5" and s” such that prACPF
Oy(a) = s" and prACP & dy(r() = s”. Then prACPF Oy(r1) = s - s” and s - 5" s a
closed prBPA term;

73 r1 = r{ + #{ for some basic terms r] and r{: then 8u(ri) = 8u(ry) + Iu(¥¥). By
the induction hypothesis there exist closed prBPA terms s’ and s such that prACPF
O (ry) = ¢ and prACPF dp(r) = s”. Then prACPF Og(r)=s' +s" and s' +5" is a
closed prBPA term;

7.4 ry = r{ tsr{ for some basic terms r{ and v and & € {0, 1): then
g (ry) = Ou(r)) 5 0u (r!). By the induction hypothesis there exist closed prBPA terims
s" and s"” such that prACPF 8y(r]) = s' and prACP + 84(r{) = 5". Then prACP
Ou(r1) = s’ Hys” and ¢ H; " is a closed prBPA term. O
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3.2 Structured operational semantics of prACP

Tn prACP as in prBPA we need to distinguish static from dynamic processes. Indeed, we obtain
the term model of prACP as an extension of the term model of prBPA, that is, by extension of
the signature and the set of deduction rules of the term deduction system given in Section 2.2.
We consider the signature: Zu'prACP =(As U As,+, -, B, 1L, 1, 0u).

Analogously, we extend the sets of static and dynamic processes as follows:

Definition41. A set of static processes SP{prACP) in prACP is the set of all closed terms over

the signature of prACP, EprACP =(As,+, 5, . 1. |.88)
An auxiliary subset of SP(prACP), denoted by D(prACP), is defined as follows:

1. As CD{(prACP);
2. 5,0 e D(prACP) = s +t,s|t,0u(s) € D(prACP);
3. s € D(prACP),t € SP(prACP) = s -t,s||t € D(prACP).

A set of dynamic processes DP(prACP) over the signature jprA op is defined inductively as

follows:

1. As CDP(prACP),
2. 5,t e DP(prACP) = s +t,5|t,0u(s) € DP(prACP);
3. s € DP(prACP),t € SP(prACP) = s -1, 5]t € DP(prACP).

By PR(prACP) we will denote the set of all static and dynamic processes in prACP, that is

PR(prACP) = SP(prACPyUDP(prACP).
We extend the map ¢ in Section 2.2 to ¢ : D(prACP) — DP(prACP) as follows:

1. pla) = & for each a € As; 2 (s 1) = @(s) - t;
3. 0(s +1) = p(s) +¢(1); 4. 9(s|Lt) = ¢le)[Lt;
5. ¢(s|t) = ¢(s)|e(b); 6. (0 (s)) = Bu(e(s))-

The operational semantics for the new operators in prA CP is defired by the deduction rules
given in Table 7 where a, b, ¢ range over A and H C A and the definition of the probability

distribution function (Definition 42) extended over the new terms containing the new operators.

Definition42. The probability distribution function p: PR(prACP) x PR{prACP) — [0, 1] is

defined with the equalities given in Definition 12 and the following:

plplle,2'|Le+ v lLp+ 2" 1y") = ulp, 2)ule, v )plp, ") (e, ¥"),
p(plle='Lg) = p(p, '),

uiplg |y = p(p, 2" )plg, "),

#(0r (p), On (") = pp, z').
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P~ P T, gy
plla~ z|lg ple~ x|y
prarz gy por s’ gy pro
pla~='lly+vlLs+z" |y dn(p) ~ Ou(z)
& Sp xi.\/
sy Sy Ty >y

. 1) b
zpy— g vieb)=c zpy—v(eb)=c

|y =plle Ty =p

a b a
z—+\/,y—rq,"r(a,b)=c I_’\/:y_b’\/:'}’(a‘)b):c

x|y S q Tly =
T >pag¢ H t = ag H
dm(z) > dn(p) Au(z) =/

Table 7. Operational semantics of prAGP.

Ezxample 3. In Figure 3 we give an example of parallel composition of probabilistic processes

using labelled transition systems. We denote e = ajc and f = b|c.

%i%nf ‘
ERIERRE A

Fig. 3. Parallel composition.

[EuT.

—

c

1
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Proposition43. Let p,q € SP(prACP) and M;, Ny, K;, M C PR(prACP) fori=1,2. Then:

Lop(pllg, Myl Ma + Ny No + K1 | K2) = p(p, M)p(eg, NO)u(p, K1)p(g, K2) where
My Ma + Ny|| Ny + Ky | Ko =
{mi|l mog +ni|lna+ ki ks o my € My, my € My, € Nyyng € Ny ky € Ki, ks €
Ko},
2. ul(pllg, Mi|l Ma) = ulp, M1) where Mi|| My = {mi|[ms : my € M;,mz € Ms};
3 plp|g, My | My) = u(p, My)u(q, Ma) where My | My = {m; |ma : my € My, ma € Ma};
4. 1{(8u(p),8u(M)) = u(p, M) where g(M) = {Ou(m) : me M}.

Proof. 1. We use the abbreviations: [ for (my,ma, 1, ny, k1, k2), T for (m1,q,n,p, k1, ko), L
for My x My x N1 x N2 x K1 x Ky and L' for My x {g} x Ny x {p} x K| x K,
Then we have
ppllg, Ma Mz + Nl N2 + Ky | Ko) =
w(pllg, {mall mo + nallne + k1| ke © (my,ma,ny,ne, ki, ko) € L)) =

2oppllgmillme+mllna ki lk2) = 30 plplle,mullg+rallp+ kil k) =
Tel Ter

> X wlpyma)p(g, n)ulp, ki)ulg, k) =

m EM n1EN k€N k2EK,

( 2 u(wnl))(“]%)M#(q,nm))(hgﬁ#(nkl))( > u(q,kzz)) =

miEM) ke Ky
p(p, M1)p(q, Ni)plp, Ki)plp, Ko).

2. Using the definition of the probability distribution function we obtain:
#(plLe, Mrll M2) = p(pllag, {millma : v € My, mo € Ma}) =
2 plpllgmllma) = 30 wulplie,mile) =

{(my,ms)EM xM> miEM1,ma=q

Yo a(p,ma) = plp, Ma).
my €My

3. Using the definition of the probability distribution function we obtain:
p(ple, My Mz = u(pig {malme : mi € My,mg € Ma}) =
2 pelem|me) = 50 30 plpyma)u(g,ma) =

(my,ma)EM XM, mi1EM; maeM,
( > ulp, ml))( > u(q,mz)) = ulp, My)p(q, Ma).
my €My mgEMs,

4. Using the definition of the probability distribution function we obtain:
101 (p), Ou (M)) = (8n (p), {Ou(m) : me M}) =

m;M u(0r(p), O0g(m)) = %{ wlp,m) = p(p, M). O

Definition44. The probabilistic bisimulationin prACP is defined in the same way as in prBPA.
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Theorem 45, «— is a congruence relation on prACP.

Proof. With respect to || : Let z,y,z and w be PR(prACP) terms such that » — y and
z & w. S0, there exist probabilistic bisimulations ; and Rz such that zRyy and zRaw. We
define a relation R in the following way:

R = Eq(a;, U BnUR URs),
where

am = {(Rll¢;s|1?) : pa,5,t € SP(prACP),(p,s) € By (g, ) € Rad, -0 - - o v oo

B ={(ullg+ollp+o |t +ELs+V|E) : p,g,s.te SP(prACP),

w,u, Lk, u' v Uk e DP(prACP),
(7,5), (1), (', 1) € Ry, (g,8), (v, k), (v, k') € Ro)
and where ¢ means equivalence closure of the given relation.

Suppose (pl|g,s||t) € R for some p,g;5,t € SP(prACP) and p|lg ~ m for somme m €
DP(prACP). According to the definition of the operational rules it follows that for certain
w,v,u', v € DP(prACP), p ~ u, ¢ ~ v, p~ v and ¢ ~ v and m = ul| ¢+ vilp + | v".
Then we have that for some L, k,I', k" € DP(prACF), s ~ [, 1 ~ k, s ~ ', 1 ~ k' and
(w,D), (v, 1) € Ry and (v, k), (v, k') € Ry. It follows that s||{ ~ n where n = || t + k|| s+ [ &
and by the definition of R we have that (m,n) € R.

Suppose (u|| g+v|l p+u’ |V, I {+k| s+ | k') € Rfor some w, v, v, o', Lk, ', k' € DP(prACP)
and u|l ¢+ v p+«' [v/ = r for some a € A and r € SP(pr4CP). Then from the definition of

the operational rules the following cases can occur:

1. ull g > »: then
1.1 w3 ¢ for some 1 € SP(prACP) such that r = ' ||¢: then we have I = o' for some
o' € SP(prACP) such that (', 0') € Ry, from which {[| ¢ = o ||2. So I t+ kil s+ | & =
oIt and (' llg,o i) € R;
1.2 u % /and r = q: then we have ! 5 ./ from which I|| ¢ 5 ¢ Sol||t + k| s+ | & =,
and (¢,t) € R;
2. v|| p 2 r: this case is similar to the previous one;
3. u'|v" 3 r: then
31w > ', ¥ = ¢ for some ', 7" € SP(prACP), b,c € A such that y(b,c) = a and
r = 7'||r": then [ LA o', k' % o” for some o, 0" € SP(prACP) such that (r', o'} € Ry
and (r" 0") € Ry. It follows that ¥ |k’ % o' || 0", so It + klls + F ik = o || 0 and
([l of 1) € R

32w X v, ¥ = ¢ for some b,c € A such that y(b,c) = @ and r = »': then I' L Vs
k' 5 o for some o € SP(prACF) such that (r,0") € Ry. It follows that ¥ | k' = 0",
soll[t+klls+ 0k % 0" and (', 0") € R;

33w 5 ', v 5 \/ for some b,c € A such that v(b,c) = a and r = ¢': this case can be

proved in a similar way as the previous one.
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Suppose (u| g+v| p+u' | o, I t+k|L s+ | k') € Rforsome w, v, v, o', L, &, ', k" € DP(prACP)
and u|| g+v|| p+u’|v' = \/ for some a € A. This transition is possible only in the case u' | v* = /,
that is u' % Vv, v 5/ for some b, ¢ € A such that y(b,¢) = a. By the assumption we have that
P kS so Uk S Sand [ £k s+ 0|k D

Suppose rRry for some r,ry € SP(prACP) and M € PR(prACP)/R,M C DP(prACP).
We consider only the case ray,ry, the cases »Riry and #Rary are trivial. From the assumption
rev,m it follows that » = p||¢ and ry = s||t for some p,g¢,s,t € SP(prACP) such that pR;s,
¢st. Moreover, from the previous discussion about the probabilistic transitions of p|| ¢ and s||t
we obtain that if p|| ¢ ~ u then there exists v such that s||t ~ v and uf,v, and vice versa.
Moreover because M = (J M;, I # 0, for some equivalence classes M; € PR{prACF)/fr,, we
are allowed to consider olrflly B equivalence classes.

As we are interested in reachable classes from p||¢ and s|jf, we assume that there is an
clement ;|| ¢ + v|| p + u} Jv; € M; such that p ~ u;, ¢ ~ v, p~ uj and g ~ 2}, so M; =
(|| @ + wi|| p+ ul |v!]g,.. Moreover from the definition of 3, we get easily M; = [u]r, || [¢]r, +
[vi]r i [Pl R,y + (4R, | [Vi]a,. Then using Proposition 43 we obtain:

w(pllg, M:) = p(pllq, [ulr, L lglr. + (o e L [PlR, + [4] R, | [vi]R,)
= p(p, [wi] m )il g, [oilr ), [vi] Ry ), [V o)
= (s, [uer, )t [l rajpe(s, (], ) pelt, (vl R,)
= p(s|It, [wilm, L [E)R. + [vilra (L [s]R, + [ui]R, | [¥]]R,)
= p(s ||t Twllt +vell s + ullvils,.) = p(silt, Mi)

where the last equality holds because pRi1s and ¢Hst which implies
(Lt + wills + ol [ o) (sl 7 + vellp + | 0f), and
[uslL L+ will s + i [ v, = [willg + will P+ ui | vilp..

By Proposition 20 we obtain:

uiplia, M) =3 ulplle, Mo) = 3 ulslit, Mi) = p(s|lt, M).
icM iEM

We proved thatif # = y and z & w then there exists a bisimulation R such that (z || 2) R(y || w),
which implies (z || z) = (¥ || w).

With respect to || : Let 2, y, z and w be PR(prACP) terms such that » < y and » = w.
So, there exist probabilistic bisimulations £, and R, such that #F,y and zR.w. We define a
relation R in the following way:

R=FEqlaUBUamUpfyUR UR:),
where

o ={(plLe,sllY) : p¢,5tESP(prACP),(p,s) € Ri,{q,t) € Ra},

B={(u]¢,v|[t) : ¢,t € SP(prACP), u,v € DP(prACP), (u,v) € R1,(q,t) € Ra},

and oy, and f,, are defined as before.
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Suppose (p|| ¢.s/lt) € R for some p,q,s,t € SP(prACP) and p|l ¢ ~ u for some v €
DP(prACP). Then from the definition of the operational rules it follows that there cxists
u' € DP(prACP) such that p ~ u' and u = u'|| ¢. It follows that for some v/ € DP(prACP),
s~ v" and (u',v") € R, and also s|l # ~ v'|| §. Moreover (u'{| g,%'|| 1) € K.

Suppose (u| g,v|/¢) € R for some u,v & DP{prACP) and u| g < r for some ¢ € A and
r € SP(prACP). Then from the definition of the operational rules it follows that either

1. u = 1’ for some r’ € SP(prACP) such that r =1’ || g: then v = o for some o' € SP{prACE)
such that (#,0') € Ry, from which v|| ¢ % o' || and (+' || g, o' ||1) € R, or
2. u =/ and r = q: then we have v = / from which {|| t = ¢ and (g,t) € R.

The case u|| ¢ -~ +/ cannot occur.

Suppose rRry for some r,ry € SP(prACP) and M € PR(prACP)/R, M C DP(prACP). We
consider only the case rerp, the cases rRyr; and rRary are trivial and the case ram,ri follows
from the previous proof. From the assumption rar; it follows that r = p|l g and r, = s|| ¢ for
some g, ¢, s,1 € SP{prACP) such that pR;s, ¢ Rat. Moreover, from the previcus discussion about,
the probabilistic transitions of p|| 4 and s|| ¢ we obtain that if p|| ¢ ~ u then there exists v
such that s|| £ ~» v and ufv, and vice versa. Moreover because M = U M;, I # 0, for some
equivalence classes M; € PR(prACP)/83, we consider only 8 equivalencéecIlasses.

As we consider reachable classes from p|| ¢ and s|| ¢, we assume that there is an element
uill ¢ € M; such that p|l ¢ ~ u;|| ¢ and p ~+ u,;. In this way we obtain that M; = [ui|[ ¢]s-
Moreover from the definition of 3 we get M; = [w]gr,|| l¢]r,. Then using Proposition 43 we
obtain:

upll g, Mi) = ppll g, [vila, Lldr.) = p(p, [w]r,) = p(s, [uiln,) =

p(slL2, [ulr, L[] r.) = p(s|Lt, Mi)
where the last equality follows from the assumption ¢R»t which implies (u;|| ¢)8(u:|l ).

By Proposition 20 we obtain:

ppllg, M) =3 wlpllg, Mi) = 3 plslLt, Me) = p(slLt, M),
ieM ieM

We proved that ifz & y and z & w then there exists a bisimulation R such that (x| ) R(y|| w),
which implies (2| z) = (y|| w).

With respect to | : Let @, y, z and w be PR(prACP) terms such that z — y and z = w.
So, there exist probabilistic bisimulations K, and Ry such that 2 Riy and zRyw. We define a
relation R in the following way:

R=FEqcUBUapUfyUR; URy),
where

a=1{(p|q,s|t) : p,q,51€SP(prACP),(p,s) € Ry, (q,t) € Ra},

B={(u|v,l]k) : u,v, i,k € DP(prACP), (u,l) € Ri,{v, k) € Ra},

and oy, and G, are defined as before.
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Suppose (plq,s|t) € R for some p,¢q,5,t € SP(prACP) and p|g ~ m for some m €
TP(prACP). According to the definition of the operational rules it follows that for certain
u,v € DP(prACP), p~+ u, g ~+ v and m = u|v. Then s ~» I, £ ~+ k for some { k € DP(prACP)
such that (u,l} € By and (v, k) € Ra. It follows that s |t~ 1]k and (u|v,l|k) € R.

Suppose (u|v,1| k) € R for some u,v,{,k € DP(prACP) and u|v = r for some a € A and

r & SP(prACP). Then from the definition of the operational rules the following cases can occur:

Lou o, v 5 ¢ for some bc € 4 and #, 7" € SP(prACP) such that y(b,c) = a and
#=7'||r": then { L o' and k % o” for some o', 0" € SP(prACP) such that (+/,0'} € Ry and
(#" 0") € Ry from which I |k = o || 0" and (' || ", || o) € R;

2wt Vs v = 7" for some " € SP(prACP), b,c € A such that y(b,¢) = a and r = »": then
L/ and k < o for some o' € SP(prACP) such that (r,0") € Ry from which 1]k % o”
and (r",0") € R;

3. ul », v =/ for some r' € SP(prACP), b,c € A such that v(b,c) = a and r = r': this case

is similar to the previcus one.

Suppose u|v 2 /. It follows that u LN v and v -5/ for some b, ¢ € A such that y(b,¢) = a:
then { 2 V and k& =/ from which { |k = /.

Suppose rRry for some r,r; € SP{(prACP) and M € PR(prACP)/R, M C DP(prACP). We
consider only the case rary, the cases rf217 and rRory are trivial and the case rap,r follows
from the previous proof. From the assumption rar; it follows that » = p|g and r; = s|t for
some p, ¢, §,t € SP(prACP) such that plt1s, gRst. Moreover, from the previous discussion about
the probabilistic transitions of p{q and 5|t we obtain that if p|g ~+ u then there exists v such
that st ~ v and wfv, and vice versa. It allows us to consider only equivalence classes of 3,
becanse M = |J M;, I # 0, for some equivalence classes M; € PR(prACP)/8.

As we conasci(lzler reachable classes from p|¢ and s|{, we assume that there is an element
u; |v; € My such that p|¢ ~» w;|v;. In this way we obtain that M; = [u; |v;]s. Also, from the
definition of 8 we get M; = [w;] &, |[v:]#.. Then using Proposition 43 we obtain:

w(plg, M:) = p(plg, [wilr, |[vilr) = plp, [wlr ile, [vilr.) = #(s, [w]r, )u(t, [vir,) =

pls 1t [uilr, [{vilr,) = u(slt, Mi).

By Proposition 20 we obtain:

pple, M) = plple, Mi) = D ul(s|t, M) = p(s|t, M).
€M iEM

We proved that if z & y and # < w then there exists a bisimulation R such that (x| z)ft(y | w),
which implies that (z|z) = {y|w).

With respect to dg : Let z and y be PR(prACP) terms such that  — y. So, there exists
a probabilistic bisimulations &, such that zR;y. We define a relation R in the following way:

= EqlaUpuU Ry,

where
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o = {(Bu(p),9u(g)) : p,q € SP(prACP),(p,9) € R1},

B8 ={(0u(w),0u()) : u,v&DP(prACP), (u,v) € R1}.

Suppose (Ju(p),0u(q)) € R for some p,g € SP{prAdCF) and dg(p) ~ u for some v €
DP(prACP). According to the definition of the operational rules it follows that for certain w' &
DPP(prACP), p~+ u' and u = du(n’). Then we have that for some v’ € DP(prACP), g ~+ v’ and
(v, v') € Ry and also 85 (q) ~ du(v'). Moreover, 8y (u') 8 9 {v’) which implies 8g (v'} R dg(v').

Suppose (8x(u),0r(v)) € R for some u,v € DP(prACP) and 9y (u) = r for some a € A
and r € DP(prAGP). From the definition*of ‘the operational rules it*follows that’ & g H and” =
there exists s € SP(prACP) such that u - s and r = dg(s). Then for some t € SP(prACP),
v 2 ¢ and (s,t) € Ry from which we have dg(v) = dy(t) and 8u(s) @ g (t). From here we get
du(s) R dult).

Suppose dp(u) = / for some a € A which means a ¢ H. Then it follows ©v & / and v - /
from which dg(v) = /.

Suppose rRr, for some r,r; € SP{prACP) and M € PR(prACP)/R,M C DP(prACP).
We consider only the case rary, the case rRirq is trivial. From the assumption rary it follows
that » = 8 (p) and ry = Ju(g) for some p,q¢ € SP(prACP) such that pR,q. Moreover, from
the previous discussion about probabilistic transitions of dg(p) and Oy (g) we obtain that if
Ou (p) ~ u, then there exists v such that dy(g) ~ v and uBv, and vice versa. It allows us to
consider only equivalence classes of 8, because M = |J M;, I # 0, for some equivalence classes
M; € PR(prACP)/8. e

As we consider reachable classes from Jy(p) and dy(q), we assume that there is an element
Op(w;) € M; such that dy(p) ~ Jy{u;) and so M; = (@ (w;)]s. Also, from the definition of 3
we get M; = 8 ([w]r,). Then using Proposition 43 we obtain:

#(0u(p), Mi) = p(On(p). Ou([wlr, ) = p(p, [wilr,) = ple, [wilg,) =
#(0m (2), Ou([uilr,)) = p(u(g), Mi).

By Proposition 20 we obtain:

p(@u(p), MY =D (A (p), M) = Y 1(Bu(a), Mi) = p(Bp(q), M).
ieM icM

We proved that if £ — y then there exists a bisimulation R such that dg(2)R3g{y). which
implies that 9y (x) = du(y). o

Lemma46. If ¢ € SP(prACP) and &~ z', then ' € DP(prACP).

Proof. The proof is similar to the proof of Proposition 23. O
Lemma 47. If 2 € DP(prACP) then 2 =z 4 =,

Proof. 1t follows directly from the definition of the operational rules of prACP, 0

Lemmad8., Ifz,y,z € DP(prACP) and s +y=z thenae+: oz and y+2 < 2
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Proof. As 2,y,2 € DP(prACP) we consider only the action transitions of the processes. The
proof that the right side (each action transition of 2) s simulated the by left side (z + z) is
trivial. The proof that the left side (z + z) is simulated by the right side (z) follows from the

assumplion z + y « z and the definition of the operational rules. O
Remark. If x,y, z € SP(prACP) this property does not hold in general.

The following lemmma matches probabilistic transitions of processes z and = + z. As we find
the proof as too technical we give an example which may make the idea behind the proof more

understandable.

Frample 4. Let us consider process
z=(a+b+c)tr (a+b)th,(a+c)tr,atz,b

and we investigate possibilities of reaching a class [y +y| . from z + z for some process y such
that @ ~+ . The following lemma says that always exists a process y such that e +z ~ y+y is
the only possible probabilistic transition from z + 2 to [y + yf . . ($)

[n the given example one can note easily that this is true for processes d, b and & + & But
for classes: [d 4 b+ ] <~ and [d+ b] ~ we have the following:

trrdtbtEs et dtbtE+a+b+8,

;vfw(‘i+5,:ﬂ-\(”1+“c':>zc+:c'v>5,+5+t‘i+5and

b+ Etd bt atbtars,
which means that [&-+0+Z] - isreached from z+& trough different processes. A similar situation
is with [& + &] . , that is:

Tt b et d+b+a+b,

I«»Eﬁ,:ﬂ«»ﬂ:}m-{-xwéﬁ-gand

G4+ b+a+bed+b

Tn the following proof we use the iteration on the number of reachable processes from 2 which
is a finite number. Then starting from one of them, more precisely from the index of one of these
processes, in each iteratlon, we increase the set of indexes in the following way: if we denote
a+b+casz, atbas zsand so on, b as x5, we start from I} = {1}. In the next step we add to
I, the indexes of two processes for whose non-deterministic sum is bisimilar with & + b + &, for
example, 2,3 € I hecause @ + btd+é=d+ b+ &

In the next step, we consider processes @ +E(E z3) and &+ &(= m3) and two pairs of processes
whose non-deterministic sum is bisimilar to & + & and & + &, respectively. In such a way we form
the next set of indexes I3 = I, U {4,5},

The main idea is to prove that I, \ I # 0 as well as I3\ Iz # 0, under the assumption that
such a term y in () does not exist (assumption (*) in the proof) and independently of the choice

of a starting process. o
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Lemmad49. Let x be a closed prACP ferm such that & ~ 21, ~ o, ..., & ~ Ty, n > 1 are all
possible probabilistic transitions of @ and for each i,j, | <i<n, 1 <j < n,if i # J then z; £ ;.
Then there ezists an m,1 < m < n such that © + 2~ Ty + Zm is the only possible probabilistic

transition of ¢ + x 1o equivalence class [y + 2] o -

Proof. We start the proof from the negation of the conclusion of the lemma for which we will
prove that leads to a contradiction to the assumption about probabilistic transitions of .

. Let us assume that @ ~ g1, @~ @y, .. 0~ 2, n 2 1 are. all possible probabilistic transi-
tions of ¢ and for each 4,7, 1 < ¢ < n,1 < j < n,if ¢ # j then @; <4 «;. It follows that z ~ 2,
1 < i < n, is the only possible probabilistic transition of @ to equivalence class [z;]._. which
implies that if y € [2;] . and z ~+ y then z; = y. (o)

Let us assume that the conclusion does not hold, that is:

Vicdjjlizte~eijtn&ejtooe o &z Z2eveEy) (%)

First, we consider processes £1. From (x) it follows that there exist 71, j1 such that

x4z~ r; +;, and #;, + 25 < x) +xy and (&, £z oor ¢y, F w1). (k)
From Proposition 48 it follows that z;, + ) — 2, and z;, 4+ 2, = 1 and ai this point we know
{@1,2i, + 23, 2j, + 21} C [x1] = . By I we denote the set of all indexes of processes which have
been already taken into consideration, that is Iy = {1,41,71}-

Second, we consider processes ;; and z;,. From assumption (%) it follows that there exist
i11,%12 such that

T+ &~ Tiy, + Tiy, and &4, + iy, 3 + 2y, and {x,, F €, or T, F Ti,) (1)
and there exist 711, 12 such that

&b~ @y, xy, and T+, o a2y, and @y, FEoay, or x5, £ oy, (2)
Using the Congruence theorem (Theorem 45) and Proposition 48, from (1) we obtain:

£y, + i, + ¥ = &, + 1 = ¥y which implies z;,, + 21 =@ for k=1,2.
In a similar way we obtain ;,, + 2; ==, for k= 1,2,

In this step we have

{1, + 1,25, + &1, 3, F 81,30, + 31,25, + 21,25, Fo1} C e o

{Zi, zin + 2y, Zigs + 20y} C [24] o

{25,250 + Tio 2500 + 25, C 2] =

and we form the new set of indexes Iy as In = I U {i11, 113, j11, J12}-

Next, we will prove that =({#11, 712, f11,J12} C {1,41,71}), that is o \ I; # 0, which means
that in the second step at least one new process has been taken into consideration. Investigating
the various cases can occur, we will prove that assumption {211,412, 511,532} € {1,741, 71} leads

.to a contradiction. Moreover, taking into account that:

(a) if we assume that z;,, = 2;5,, = «;, then we obtain: z;, = z;,, +#;,, &= 25, +2;, = z;, which
implies #;, = #;, and also, ) = ;, +7j, = rj, +;, = z;, which implies z; = x;, and this

contradicts ()
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(b) in the assumptions we have =(z;,, = zi,, = #;,) and (2, = 25, = 24,),

we make the following restriction:

(H') Liyy ';é Lj, OF X4y, ?_é Liis
(I)) Lisa ':té Ty OF &y, = &y, and Li1 7‘:‘;— Tj, OF Tjy, ?_é Liys
(¢} we do not consider symmetrical cases, their correctness may be proved in a similar way as

the presented one.
We have to consider the following cases:

Loif @, =2, = @y, then 2;, &z, + 4., & 21 + 21 = &1 which implies z;, = 2. (3)
1.1 If zj,, = 21 (independently of z;,,), then z;, & ;, + 2;,, < 21 + z;,, & z1 which
implies z;, = z; and from (3) it follows 2;, = 1 = z;, which contradicts (#x).
1.2 If z;,, = z;, and &;,, = z;,, then it is case 1.1 because of (3).
For all cases left we have that z;, # %, and 2;,, #x;,,.
2. if 2, =1 and ;,, = x4, then z;, =y, + 24, = &1 + @, = &1 which implies
r;, =T, (4)
2.1 if z;, = z1 (independently of z;,,) we obtain x;, = z;,, + #j,, & 21 + z;,, & #; which
implies z;, = @, and from (4) it follows #;, = x; = ;, which contradicts ().
22 If 25, = w;, and z;, = x;, then zj, &= x;, + @, = =, + &j, & z; which implies
z;, =21 and from (4} it follows z;, = =) = x;, which contradicts (sx).
3. il 2y, ==, and 2;,, = x;,, then &;, & &, + 25, =21+ z;, = £y which implies
2y = @1 (5)
3.1 If z;,, = & (independently of 2;,,) we obtain z;, = #;,, +z;,, = 21 + z;,, = 21 which
implies zj, = 1 and from (5) it follows 2;, = z; = z;, which contradicts (+«).
3.2 If z;,, = x;, and x;,, = x;, then &;, = z;,, + 2;,, = ¥, +&;, = &; which implies
2;, = 21 and from (5) it follows z;;, = £ = z;, which contradicts (#).
T'he next case covers all situations where {ay,,, 5, 2.} € {&i,, 25, }
4 0f z;), = xy, and x4, = 25, then a;, o &y + 25, & @, + 25, « 2 which implies
T, = X1 (6)
The only possible case is the following: if ;,, = #;, (independently of ;) then z;, = z;,, +
Eji, = i, + 24, © Ty + 2, & 21 which implies z;, = 2y and from (6) it follows z;, = z; =

xj, which contradicts (x#).

We point out that in cases 1.1, 2.1, 3.1 and 4. where process &;,, = x1, results do not depend
on process z;,, and for that reason we do not take alternatives of this process into account.

By this we proved that at least one of processes x;,,, ;,,, ;,, and z;,, is different from z,,
2i, and «;,, that is b\ [} £ .
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In the third step we consider zi,,, ;,,, %;,, and z;,, and processes that exist from () for
them. We form the set I3 and in a similar way by case distinction we can obtain that I3 contains
at least one new index.

By repeating this procedure n— 1 times (in the worst case) we will obtain that |I,_1| =n—1,
that is {1,2,..., 0} \In_1 # 0. Let m € {1,2,...,n} Y I,-1. Then from (*) it follows that there
exist my and mo such that

AT Ty + Tmg & Ty + Ty 2 B+ T & (T, F T V Timg F Tom).

From-the previous discussion, @,,; “or-z;,, must be-a new "process whos¥ index doc ndt secur
in I,_1, but such a process does not exist. By this we have proved that the assumption (¥*)
contradicts the condition of the lemma about n probabilistic transitions made by . Thus, there
is a T, such that £ +  ~+ 2, + &, 18 the only possible probabilistic transition of @ + & to

equivalence class [Em + Zm} - - O

Lemma50. Let & be a closed prACP term such that x — 2 +x. Then if z ~ &’ and z ~ " for
some z', 2" € DP(prACP), then o’ = a".

Proof. Without loss of generality we can suppose that z is a term such that x does at most one
probabilistic transition to an equivalence class. From Lemma 49 it follows that exists a process
y such that z ~+ y, and = + £ ~+ y + y is the oniy possible probabilistic transition of = 4 =
to equivalence class [y + y] - . We will prove the lemma by proving that p{z,y) = 1. It follows
casily from the assumption z & ¢ + 2 which implies u(2,[¢] ~ ) = p(z + z,[y] = ). Having that
ple, [yl =) = plz,p), plz 2,y +ylo) = plz+2,y+y) = uz,y) and [y o = [y+yl= we
obtain p(x,y) = 1. O

Theorem 51. (Soundness) Let p and q be PR(prACP) terms. If prACP+ DyPR Y p = q then
p=q.
Proof. This theorem can be proved easily by construction of a suitable equivalence relation for

each axiom which relates the left and right side of an associated. axion.

CF: We define a relation R in the following way:

R=Eq ({(c, alb), (& | 5)}),

where we denote shortly (a,b) = c.

We observe that the only possible prohabilistic transition is ¢ ~+ & and a|b ~+ & |5, respec-
tively. An action termination for both terms, & and @|¥ is possible only if & 2 §. Then we
have: & = \/ and &|b < /. For the probability distribution function we get: (e, 8) = 1 and
p(a|b,a|b) = 1, and the conclusion about R equivalence classes follows from the assumption
(Z,a]8) € R.

CM1: We define a relation R in the following way:

R= Eq({(pllq,pLLq +alrp+rle) - pge STJ(P?"ACP)})-
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Suppose (p||g)R(plLg + g9llp + p|g) for some p,g € SP(prACP) and p|| g ~ u for some
w € DP{prACP). Then from the definition of the operational rules it follows that p ~» o', g ~+ v/,
p~ w' and ¢ ~» v" for some v’, v’ u”,v" € DP(prACP) such that u = «’|| g++'|| p+u” | v". Then
also p|| g~ o'l ¢, gl p~ ¥'|L p and p| g ~+ v” | v" from which we obtain that p|| ¢ +¢[ p+p]| g~
w| g+ V[l p+ | v”. Moreover (v'| ¢+ |Lp+ " [V R | g+ V| p+u”|v).

Suppose that p|| ¢ + ¢!l p + p|g ~ u for some v € DP(prACP). Then from the definition
of the operational rules we obtain that p|l ¢ ~ o', ¢]l p ~ v" and p| g ~ w for some u’, v, w €
DP(prACP) such that v = v’ + v + w. It follows that p ~ u”, ¢ ~ v", p~+ w' and g ~ w”
for some u”,v", w', w"” € DP(prACP) such that v’ = v"|| ¢, v/ = v"| p, w = v’ | w”. Then also,
pllg~ ' g+ v p+ o |w”. Moreover (v'| ¢+ ¢"|lp+ v |w")R(u| g+ v"|Lp+ 1 |w').

Suppose (p || ) R(p| ¢+q|l p+p | ¢) forsome p, ¢ € SP(prACP)and M € PR(prACP)/R, M C
DP(prACP). From the previous discussion about the probabilistic transitions of these terms we
get that if uw € DP(prACP), then pl||¢ ~ u ifl p|| ¢ + ¢|l p + p|¢ ~ u. From Proposition 31 we
obtain p(p|lq, M) = u(plLg +qllp+ple. M)

COM2: We define a relation R in the following way:

R:Eq({(al_l_p,a-p) . p € SP(prACP)} U (il p, & - p) pESP(pTAC’P)}).

We look at the transitions of both sides at the same time. Observe that a{| p and @ - p can
only do a|| p~ & -pand a-p~s &.p, respectively, and (&|| p)R(& - p).

Observe that d|{ p and & - p for some p € SP(prACP) can perform only an action transition
i p—pand d-p-> p, respectively. Moreover pRp.

Tn order to prove that p(a|| p, M) = u(a -p, M) for each M € PR{prACP)/R we only need
to notice that p(a|l p,&|lp) =1 and pla-p,d-p)=1landi||peMifa-pec M.

CM3: We define a relation 12 in the foilowing way:

k= Ey({(e plLa,a (ollg)) : g € SP(rACP}U{(E-plLg, @ (21l 0) : p,q € SP(praCP)}).
Suppose (a - p{| ¢)R(a - (p||q)) for some p,q € SP(prACP). Then from the definition of the

operational rules it follows that the only possible probabilistic transition for each of these terms
is:a pllg~ G -pllganda-(pllg) ~ @ (pl¢g). Moreover by the definition of R we have that
(@-pll e}(é- (pll2))-

Ohserve that & - p|| ¢ and & - (p|| ¢) for some p,q € SP{prACP) can perform only one action
transition, viz. & - p|l ¢ = p|l¢ and & - (p|{ ¢) < p|| ¢, respectively. Moreover (plle)R{(p| ).

From the previous discussion about the probabilistic transitions of a - p|| ¢ and @ - {p]| ¢} it
follows that for each M € PR/R either pla-p|l ¢, M) = ple - (pllg), M) =1 or
pla-pllg, M) = p(a-(pllg), M) =0.

CM4: We define a relation R in the following way:

k= EQ({((P+Q)U_5=P1LS+QU_5) ¢ p,g,8 € SP(prACP)}
UL ((u+ o)l s, ulls+v|s) : u,vED’P(prACP),sES’P(prACP)}).
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Suppose ((p+q)| s)R(p|l s+ql|| 5) for some p, ¢, s € SP(prACP) and (p+q)|| 5 ~+ u for some
u € DP(prACP). Then from the definition of the operational rules it follows that (g + ¢) ~ v
for some v € DP(prACP) such that v = v|| s and also p ~ v’ and ¢ ~ ¥" for some v/, " €
DP(prACP) such that v = v" +v”. Then we obtain that p|| s ~ v'|| s and ¢|] s ~ v"|| s and also
pils+alls ~ v'[L s + v"|| s. Moreover we have that {(v' + v")|| s)R(v'|| s + v"|| s).

Suppose that p|| s + ¢|| 5 ~ u for some u € DP(prACP). Then from the definition of the
operational rules it follows that p|| s ~ v and ¢|| s ~ w for some v, w € PP(prACP) such thal

u = +w.-And also p ~» v and g~ w'" for some v'; w’ '€ DP{prAEP) such that'v ="3'{|"s*aiid =~

w = w'|| s. Then we obtain that p 4 ¢ ~ ¢’ 4w’ and also (p + ¢)|| s ~ (v' + w')|| s. Moreover
we have that ((v' + w')|| s)R(v' | s + w'|Ls).

Suppose ((u + v){ s)R(u| s + v|[ s) for some u,v € DP(prACF), s € SP(prACF) and
(u+ )| s = p for some a € A and p € SP(prACP). Then from the definition of the opera-
tional rules it follows that u +v = p/ for some p’ € SP(prACP) such that p = p’|| s. Then either
w - p’ and in this case we obtain u|| s = p, or v = p’ which implies v|| s =+ p. Tn each of these
cases we have that u|| s + v|| s = p. Moreover pRp.

Ifull s +v| s S pforsomeac Aand pe SP(prACP), then either ull s = p, from which it
follows that w = p’ for some p/ € SP{prACP) such that p = p'|| 5, or w|| s = p, from which we
obtain that v = p' for some p’ € SP(prACP) such that p = p|| 5. In each of these cases we have
that u 4+ » = p’ and also (u + v)|| s = p. Moreover pRp.

Suppose ((p + q)}|Ls)R(p|Ls + ¢l s) for some p,q,s € SP(prACP) and M € PR/R, M C
DP(prACP). From the previous discussion about the probabilistic transitions we get that:
(p+a)ls~ (u+ vl siff plls+qlls~ (u|] s+ 0| s) for some u,v € DP(prACP) such that
p ~ u and ¢ ~+ v. Moreover, using the definition of the probability distribution function we
obtain:
wl(p+ @)l s, (u+v)|Ls) = p(p+ g, u 4 v) = p(p, u)p(q,v) and
#plLs + gl s ull s + vils) = p(plLs, vl s)uglls, vlLs) = p(p, wi(g, v).

.The result p((p+ q)|l 5,M) = p(p| s + q| s, M) follows from Proposition 31.

PrCM1: We define a relation R in the following way:

R=EBq({(pto)ll 5,plLstalls) : p,0,5 € SPprACP)}).

Suppose ((pthrq)|l s)R(p|l st ¢l s) for some p,q,5 € SP(prACP) and {(pt=q)|ls ~ u
for some u € DP(prACP). Then from the definition of the operational rules it follows that
(pthgq) ~ v for some v € DP(prACP) such that u = v|| 5. Two situations can oceur:

1. p~» v: then from the definition of the operational rules it follows that p|| s ~+ »{| s and also
p|| s 5% ¢| s ~ 4. Moreover uRu.

2. g~ v: then from the definition of the operational rules it follows that ¢|| s ~ v|| s and also
pl s twy|] s ~ u. Moreover uRu.
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Suppose that p|| sthq|l s ~ u for some u € DP(prACP). Then from the definition of the

operational rules it follows that one of the following situations is possible:

1. pll s ~ w: then from the definition of the operational rules we have that p ~+ v for some
v € DP(prACP) such that v = v| s and also pt3z g ~» v. Then we have (pth )l s ~ v| s,
that is (pth ¢)|| s ~ u. Moreover uRu.

3. g|Ls ~ u: then from the definition of the operational rules we have that ¢ ~+ » for some
v € DP(prACP} such that v = v|| s and also pth ¢ ~» v. Then we have (pts g)|Ls ~ v| s,
that is (pt¢)|| 8 ~ w. Moreover uRu.

Suppose ({(pthq)|l s)R(p| s twq| s) for some p,q,s € SP(prACP) and M € PR/R, M C
DP(prACP). From the previous discussion about the probabilistic transitions of (ptd ¢){| s and
Pl s il s we have that (pHzg)|l s ~ || s iff p|| s thrgq|l s ~ v|| 5. Moreover,
iu((ptsg)ls, vl s) = ulpthq,v) = mp(p,v) + (1 — 7)u(g,v) and
p(pll s trall 5,01l 5) = ma(plL s, il 5) + (1 = malall s, il 5) = walp,0) + (1 — Pa(g, ).

It follows that p{(pthq)| s, M) = u(p|l s =gl s, M).

CMa: We define a relation R in the following way:

R:Eq({(a-pfb,(alb)-p) . p e SP(prACP) U {(a-p|b,2 p) - pESP(prACP)})

where we denote shortly v(a,b) = ¢.

Suppose (a - p|5)R((a|b) - p) for some p &€ SP(prACP). Then from the definition of the
operational rules it follows that the only possible probabilistic transition for each of these terms
isia-p|b~s dp|band(a|b)-p~s &p. Moreover by the definition of R we have that (&-p | E)R(Ep)

Suppose that {& p| E)R(E p).Ifé= & then both terms cannot perform any action transition.
If & # &, then both terms can perform only a c—action transition as follows: & - p|B = p and
&-p -5 p. Moreover pRp.

From the previous discussion about the probabilistic transitions of @ - p|b and (a]b) - p we
have that p(a - p|b,d-plb) = 1 and p((alb) -p,é-p) =t and &-plbe Mif&-p e M.
From here it follows that for each M € PR/R either pla-p|b,M) = u({a|d)-p,M) = 1 or
e pib, My =p((alb) p,M)=0.

CMé6; We define a relation R in the following way:

k= 1g({(alb-p.(a]t) p) : peSPHrACA}U{(@|}b-p,&-p) : pe SP(praACP)})

where we denote shortly v(a,b) = e.
The proof that R is a bisimulation relation is similar to the proof of axiom CM5.

CMT: We define a relation R in the following way:

R=Iyq ({(a-p 16-q,(a|8)-(plla)) : p,q € SP(prACP)}{(&p|b-0. 8(p]l9)) : p. g € SP(PTACP)})

where we denote shortly y(a,b) = e.
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Suppose {a-p | b-q)R((a!b)-(p||¢)) for some p,q € SP(prACP). Then from the definition of the
operational rules it follows that we need to consider only the following probabilistic transitions:
a~dand b~ band alsoa p~r G-p, b-g~ b-gq Thus, a -p|b. ¢ ~ & p|b-q¢ and
(a18)- (pllg) ~ & (pllq). Moreover (&-p|b- g)R(Z - (p[|9)).

Suppose that (& -p|b - q)R(&- (pil¢)). If &€ = § then both terms cannot perform any action

transition. If ¢ # &, then both terms can perform only a e—action transition as follows:

&-p|b~q—c>p||q and ¢ (pllq) —C>p||q. Moreover (p|l g)R(p|| q)-

From the-previeus discussion about the probabilistic transitiohs ofx “p ¢ and (a1 ' (F[l¢) ™

we have that p(a-p|b-g,4-plb-q) =L and p((a|b) - (pliq),é-(pllq)) = 1 and &-p|b-q € M iff
é-(pllq) € M.It follows that for each M € PR/Reither p(a-p|b-q, M) = p{(a]b)-(plig), M) =1
or pa-p|b-a, M) = (e ]8) - (o | a), M) = 0.

PrCM2: We define a relation £ in the following way:

R=Eq({((ptha)|5,plsthals) : pa,s € SPrACP)}).

Suppose ((pthq)|s)R(p|st=g|s) for some p,q,8 € SP(prACP) and (ptrq)|s ~ u for
some u € DP{prACP). Then from the definition of the operational rules it follows that pts ¢ ~ v

and s ~ w for some v, w € DP(prACP) such that u = v |w. Two situations can occur:

1. p~» v: then from the definition of the operational rules it follows that p|s ~» v|w and also
plstrgls~ u. Moreover uRu.
2. ¢ ~ v: then from the definition of the operational rules it follows that ¢|s ~ v |w and also

plsitig|s ~» v|w. Moreover uRu.

Suppose that p|sthg|s ~ u for some u € PP(prACP). Then from the definition of the

operational rules it follows that either

1. p|s ~ u: then p ~ v and s ~> w for some v,w € DP(prACP) such that u = v|w and

ptsq~ v and also (ptq)|s ~ v|w, that is (pthg) | s ~ v. Moreover uRu.

2. q|s ~+ u: then ¢ ~ v and s ~ w for some v,w € DP(prACP) such that v = v|w and
ptirg~ v and also (ptq) | s~ v|w, that is (pt= ¢) [ s ~ u. Moreover wfiu.

Suppose ((pthq)|s)R(p|stxy]s) for some p,q,58 € SP(prACP) and M € PR/R, M C
DP{prACP). From the previous discussion about the probabilistic transitions we get that:
(ptzq)|s~v|wiff p|sthq¢|s~ v|w. Moreover
#((pEra) | s, v|w) = p(pthrq, v)pu(s, w) = (mp(p, v) + (1 — m)ple, v))u(s, w) and
plsthqls,v|w)=mu(p|s,v|w)+(1-m)u(g|s,v|w) = mu(p, v)u(s, w)+(1—7)p(q, v)u(s, w).

It follows that u((pthq)|s, M) = pu(p|stxaqls, M).

PrCM3: We define a relation R in the following way:

R=Eq({(p|(ars),p]sthp|s) : pa,5 € SP(rACP)}).
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In a similar way as in the proof of axiom PrCM2 we can prove that K is a bisimulation relation.

Further, we give the proof of soundness of DyPR rule. In contrast to previous proofs, in which
we construct a relation for which we prove that it is a bisimulation relation, in this proof we use
as a hisimulation relation « .

Let s € SP(prACP) such that s = s+ s and W = {w; : w; € DP(prACP),s ~» w;}. By
Lemma 50 we have that for each w,w’ € W, w = w'. Moreover u(s, W) = 1.

We will prove that for arbitrary p, ¢ € SP(prACP), (p+4q)|s<=p|s+q|s.

Let us suppose that (p+q) | s ~ u for some u € DP(prACP). We have that p+gq ~+ u’, s~ w
for some «' € DP(prACP),w € W such that « = v’ | w and also there exist v,v' € SP(prACP)
such that p ~ v,q¢ ~+ v/, %' = v 4+ v'. Then we obtain p{s ~» v]lw and g|s ~ ¢/ |w and also
pls+q|s~ v]w+v'|w. Weproved that if (p+¢q) | s~ (v+v') | wthen p|s+q|s~ v|w+o |w.
According to the definition of bisimulation relation we need to prove
v+v)|wev|w+v|w. (1)

Let us suppose that p|s + ¢|s ~ u for some u € DP(prACP). It follows that there exist
v, u" € SP(prACP) such that p|s ~ u',¢q|s ~ " and u = v’ + u”. Then it follows that
there exist v, v’ € SP(prACP), w,w' € W such that p ~» v,8 ~ w,g ~ v',s ~ w' and
o =w|w, v’ = v |w'. Thus, p+ ¢ ~ v+ v from which (p-+¢)|s~ (v + v} | w. With this we
proved that if pls+ ¢|s ~ v|w + v |w then (p+q)}s ~ (v+ v')|w. Moreover we need to
prove that {v+ ) jw=viw+ o jw' (2)

One can see that (1) is a special case of (2). According to this it is sufficient to prove case
(2).

Suppose that (v 4+ v')|w — p for some a € A and p € SP{prACP). It implies that there
exist b,¢c € A and p',p" € SP(prACP) such that v + v L ¢, w = p” and y(b,c) = a and
p=p'||p”. Then either v Lptorv & o'. In the first case we obtain that v |w -> p’ || p’’ and also
olwo' |w S p'||p” and p' || p” = p' || p”. In the second case by the fact that w — ' we obtain
that w' = pY for some pf € SP(prACP) such that p” < p{. Then we obtain v/ |w' = p'!|p/
and also vlw 4 o' |w' < p'||p/. By the Congruence theorem (Theorem 45) we obtain that
P e P B

Suppose that v|w +v' |w L p for some a € A and p € SP(prACP). It follows that v |w = p
or v |w 2 p. In the first case we have that there exist §,¢ € A and p/,p" € SP(prACP) such

I

that v — P, w = p” and y(b,¢) = a and p = p'[|p”. Then we have that v + v/ 2 o and also

(v+v)|w = p'||p". Moreover p/||p” = p'|lp”. In the second case we have that there exist

hyee A and p',pf € SP{prACP) such that v 2, o, w5 pY, ~(b,¢) = ¢ and p = p' || p{- By the

fact that w < w' we obtain that w — p” for some p" € SP(prACP) and p” = p/. Then we obtain

v+ % p and also (v+v'}|w = p' || p”. Moreover by Theorem 45 we have p' || p” = ¢ || pY.
Herewith we proved (1) and (2) are valid.

Let us consider the value of u((p+¢)|s, M) and p(pis+q|s, M) for M € PR(prACP)/ =,
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M C PP(prACP). From the previous discussion about the probabilistic transitions of (p+ ¢) | s
and p[s+ ¢|s we have that:

Lif (p+g)|s~ uthen u = (v+ v')|w for some v, v’ € DP{prACP) and w € W. Then
pls+qgis~vlw+v |wand (v 4+ o) |w—=v|w+v |w,
2. ipls+gls~v|w+v |wthen p|s+gjs~ v|w+v |w as well and moreover

v|iw+v |wev|wt o |w for each w' € W.

1t follows that (wsv') |w € M iffw|w o' jw e Mifl v]w+o' v &M for w' &Wo- ~(3) -

Under the assumption that M is a reachable class from (p+ ¢} |s and p|s + ¢|s we define
the following subsets of M:

My ={v +v){w : v,v' EPPprACP} U{v|w+ v |w'  w' € W v, o € DP(prACP)},
for each w € W. Tt is obviously that if m € M\ ( {J M) then both ~((p + ¢)|s ~ m) and
—{p|s+¢|5 ~ m) and moreover if w # w' then M;UEDWMWJ = 0. Then for each w € W we have:

wp+a)is, Mu) = ullp+a)!s, {(v+2)w : v,v' €DP(prACP)}) =
5 i((p+ )5, (v ) [0) = 35 ol o) (@

v,u

and
plels+q|s, My)=plp|s+q|s,{vlw+v|w © weWv v eDP(prACP)}) =
> owpls+alsvlw+v |w)= 3 plpvplq,v)uls, wip(s w') =

5 wlp, o)pla, ¥ uls, w) (5 wls, w)) = 5 plp, o)l v, w)pls, W) =
E’Ir w(p, v)plg, v )uls, w). | (5)

From (4) and (5) we obtain that for each w € W, p((p + ¢) |5, Mw) = p(p|s + ¢|s, My) and

using Propsttion 21 we obtain:

plp+ads,M)y=p((p+q)is, U Mu)= Y pllp+ )]s, Mu)= 3. plpls+yqls, My) =
weW welW weW

ppls+ais, UWMw)=u(pls+q|s,M)- O
we

3.3 Conservative extension theorem. Completeness of prACP

In order to prove the Completeness theorem of prA CP we use the method proposed in [22, 3, 7!
which is based on an analysis of the operational semantics of both, prBPA and prACP. More
precisely this method is based on an analysis of the form of the deduction rules which built
the operational semantics, and the operationally conservative extension property as well as the
equational conservative extension property which says that the added operators ||, ||, | and 0
do not yield any new identilies between prBPA terms. Briefly, we will give the basic concepts of
this approach and some necessary definitions and theorems which are taken from [3] and adapted
to the presented problem.

Let 37 be a signature, V an infinite set of variables, T, a set of relation symbols and T, a set

of predicate symbols. We denote the set of closed terms aver X' by /(L) and the set of (open)
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terms by O(X). If P € T,, R € T, and s5,t,u € O(X) then we call the expressions Ps, tRu
(positive) formulas.
As in our operational semantics negative premises do not appear, we consider only positive

formulas.

Definition52. A term deduction system is a structure (£, D, Ty, 7,) with X a signature and D

H
a set of deduction rules. A deduction rule d € I} has the form — with H a set of formulas and
C

C' a formula. The formulas from H are called hypotheses of d and C is called the conclusion of
d. If the set of hypotheses of a deduction rule is empty we call such a rule an axiom.
Often instead (2, D, T, T, ) we will write shortly (X, D).

Definition 53. Let T' = (X, D, T,,T;) be a term deduction system. Let I and J be index sets
of arbitrary cardinality, let ¢;,5;,¢ € O(X) for alli € I and j € J, let P;, P € T, be predicate
symbols for all j € J, and let £;, R € T, be relation symbols for all ¢ € . A deduction rule

d € D 1s in path format if it has one of the following four forms:

{Pjs; : jeJYU{tiRiy; : i€}
f(ml,...,mn)Rt

with f € & an n—ary function symbol, X = {zy,.. ,zx}, Y ={yi : i€} and XUY CV a

set of distinct variables;

{Pjsj ¢ jeJU{tiRiy: « i€ T}

)

Tkt
with X = {2z}, Y ={w : 1€} and X UY CV aset of distinct variables;

{Pjsj : jEJ}U{iiRiyi : iEI}
Pf(.??l,...,.’.lin)

with f € ¥ an n—ary function symbol, X = {z;,...,2x}, Y ={y : i€l}and X UY CV a
set of distinct variables or
{Pjs; : jeJYU{tiRiy; - ie T}
Pz ’

with X = {a}, Y ={w : i€} and XUY CV aset of distinct variables.
If in the abaove four cases var(d) = X UY we say that the deduction rule d is pure.
We say that a termi deduction system Is in path format if all its deduction rules are in path

format. We say that a term deduction system is pure if all its deduction rules are pure.
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Definition 54. Let 2y and Xy be two signatures. If for all operators f € Zg N X, the arity of
fin Xy is the same as its arity in X}, then the sum of Ty and X, notation Ty @ X, is defined

and is equal to the signature Xy U X.

Definition55. Let Ty = (Yo, Do) and 7% = (X, D) be two term deduction systems with
predicate and relation symbol T,_,’;' and T7 respectively ( = 0,1). Let Xy ® X, be defined. The suns
of Ty and T3, notation Ty & 71, is the term deduction systemn (Zo @ 2y, Do U D4) with predicate

and relation symbols 7 UT) and T;” U T}, respectively. : . e -

According to this concept and the prohlem we are faced with, in the following we consider the
term deduction system T'(prBPA) = (Zu‘prBRfi , DprBPA) with the term deduction rules given in
Table 4, the term deduction system T, = (EprA Cps Des) with the term deduction rules given
in Table 7 and the sum of these systems, the term deduction system T ':'("‘iprACPf DivrA cp)
with the term deduction rules given in Table 4 and Table 7.

Definition56. Let T = (X, D) be a term deduction system and let F be a set of formulas. The
variable dependency graph of F' is a directed graph with variables occurring in F' as its nodes,
The edge © — y is an edge of the variable dependency graph if and only if there is a relavion
tRs € F with z € var(f) and y € var(s).

The set F' is well-founded if any backward chain of edges in its variable dependency graph
is finite. A deduction rule is called well-founded if its set of hypothesis is so. A term deduction

system is called well-founded if all its rules are well-founded.
It is not hard to verify that the following lemmas are valid.

Lemma57. The term deduction system T(prBPA) is a pure well-founded term deduction system
tn path format. O

Lemma 58. The term deduction system T, is ¢ pure well-founded term deduction syslem in
path formal. 0

Definition 59. Let Ty = (£, Dp) and 7y = (51, Dy) be two term deduction systems with
(X, D) = Ty @ T defined. Let D = IXT,,T;). The term deduction system T is called an
operationally conservative extension of Ty if for all 5,1 € C(Xy), for all relation symbols R € T,

and predicate symbols P € T, and for all t € C(X) we have
Tk sRt & Ty sRi

and

ThPue Tk Pu



Operational semantics of prACP 61

Now we give a theorem providing us with sufficient conditions so that a term deduction
system is an operationally conservative extension of another one. This is a restricted version of
the theorem (Theorem 2.4.15) formulated in [3].

Theorem 60. Let Ty = (Xo, Do) be ¢ pure well-founded term deduction system in path format.
Let Ty = (X1, D) be a term deduction system in path format. Then if T = To @ Ty is dejned

then T 45 an operationally conservaiive extension of Tp. O
As a conclusion of Lemma 57, Lemma 58 and 60 we obtain the following result:

Lemma6l. The term deduction system T(prACP) is an operationally conservalive extension of
the term deduction system T(prBPA). o

As the main aim is to prove the equational conservativity of two theories, it is needed to
connect this property with the notion of operationally conservative extension proved above.
And this method provides this relation using as an intermediate step, the notion of operational
conservativity up to an equivalence relation . Here, ¢ equivalence is some semantical equivalence

that is defined in terms of relation and predicate symbols only.

Definition62. Let 75 = (23, D) and 71 = (X}, [4) be two term deduction systems with
T(E2, D)y =Ty ® T} defined. If we have for all 5,1 € C(Zy)

. _0
s*wt@s_wt

we say that 7" is an operationally conservative extension of 7 up te ¢ equivalence, where ¢ is
some semantical equivalence relation that is defined in terms of relation and predicate symbols
only. By s =, t we mean that s and ¢ are in the same ¢ equivalence class. The superscripts &

and 0 are to express the system in which this holds.

As we need to get an operationally conservative extension up to the probabilistic bisimulation,
we need to check if this relation is defined “in terms of predicate and relations symbols”. Besides
the fourth clause in Definition 17, the probabilistic bisimulation is defined obviously in terms of
predicate and relation symbols. Then from the previous theorem for operationally conservative
extension we obtain that for each closed prBPA term s, its term-relation-predicate diagrams in
both T(prBPA) and T'(prACP) are the same. And also for these terms the probability distribution
function is defined in the same way in both T(prBPA} and T(prA CP), which provides us with a
conelusion that the fourth clause in Definition 17 does not disturb the notion of the probabilistic
bisimulasion in terms of predicate and relation symbols only.

Next, we give few results more which finally iead to the completeness property.

Theorem 63. Let Ty = (Zg, Do)} and 11 = (21, D1) be two term deduction sysiems and let
T, D) =TodT be desned. If T is an operationally conservative extension of Ty then ¢t is also



62 Process Algebra with Interleaving Probabilistic Parallel Composition

an operationally conservative exlension up io p equivalence, where @ 15 an equivalence relation

deyned ezclusively in terms of predicale and relation symbols. 0

Lemma64. Term deduction system T'(prACP) is an operationally conservative extension up lo

the probabilistic bisimulation of term deduction system T(prBPA). O

Definition 65. Let Ly = (X, £o) and Ly = (£, £1) be two equational specifications and let
LB X, be defined>The sum: L@ L, of Ly and L, is the equational specification (T X1, EpUE, Yo

Definition 66. Let Ly = (Xy, Fy) and L, = (X, E1) be two equational specifications and lel
Lo & X be defined. We say that L is an equaticnally conservative extension of Ly if for all
5,1 € C(Eu)

LFEs=teo Lok s=t.

Theorem 67. Let Lo = (X, Eo) and Ly = (X1, E1) be equational speciycation and let L =
(ZE) = Lo @ Ly be dejned. Let Ty = (T, D) and 11 = (X, D) be term deduction systems
and let T = Ty @ T1. Let @ be an equivalence relation that is deynable in terms of predicate
and relation symbols only. Lel Ly be a complete aziomatization with respect o lthe ¢ equivalence
model induces by Ty and let L be a sound aziomatization with respect {o the ¢ equivalence model
induced by T". If T' is an operationally conservatlive exiension of Ty up {o ¢ equivalence then L

s an equationally conservalive extension of Lo, O

Lemma68. prACPF is an equationally conservative extenston of prBPA, that s, tf L and s arc
closed prBPA terms, then

prBPAFL{ =5 prACPHE = s

Theorem 69. If in addition to the conditions of Theorem 67 the equational specijcation L has
the elimination property for Lo, the we have that I is a complete aziomatization with respeci to

the ¢ equivalence model induced by the term deduction system T 0
Now from the previous results and from Theorem 39, Theorem 40 and Theorem 51 we obtain:

Theorem 7T0. (Completeness) If t and s are closed prACP terms, then
t=s = prACP+ DyPRE L = 5. (]
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4 Extension with infinite processes

In this section we extend the thecry by the notion of infinite processes. First, we give a definition
of recursive specification and guarded recursive specification. A standard way to treat infinite
processes is dealing with their finite projections. For that reason, secondly, we extend prBPA by
tle projection operator and then in the term model, in an appropriate way, we match infinite
processes and their finite projections. This concept of recursive specification is taken from [2]

and omitted proofs may be found there.

Definition71. A recursive equation over pr8PA Is an equation of the form
A =s(X)

where s(X) is a term over prBPA containing variable X, but no other variables.

A recursive specification F over prBFPA is a set of recursion equations over prBFPA. By this

we mean that we have a set of vartables V' and an equation of the form
X =sx(V)

for each X € V, where sx (V') is a term over pr#PA containing variables from the set V.

V' contains one distinguished variable called the root variable.

Definition 72. A solution of a recursive equation X = s(X) in some model of prBPA is a process
# by which the equation is satisfied, that is p = s{p) holds in the model.

A process p is a solution of a recursive specification £ in some model of prBPA if after
substituting p for the root variable of F, there exist other processes for the other variables of E
such that all equations of & are satisfied.

If E is a recursive specification with root variable X, then (X|F) denotes a solution of this

specification.

Definition73. Let s be a term over prBPA containing vartable X. We call an occurrence of X
in s guarded if s has a sub-term of the form a - ¢, where @ € A and ¢ a term containing this
occurrence of X; otherwise we call the occurrence of X in s unguarded.

We call a term s completely guarded if all occurrence of all variables in s are guarded and
we call a recursive specification £ completely guarded if all right hand sides of all equations of
E are completely guarded terms.

A term s is a guarded, if there exists completely guarded term ¢ such that prBPAF s =1,

A recursive specification B is guarded, if we can rewrite F to a completely guarded specifi-
catton, by use of the axioms of prBPA and by repeatedly replacing variables by the right-hand

side of their equations. Otherwise, F is called unguarded.
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4.1 Projection

Next, we extend prBPA with projection operator IT,,, which helps in an approximation of infinite
processes. The axioms of the projection operator are given in Table 8 withn e N,n > 1, ¢ € A;

and p € {0, 1). The new process algebra is called prBPA with projeciion, prBPA,,,.

Hn(ﬂ.) =a . . PRI'
' Ma-7) =a PR
Mol 2) = a- Tu(x) PR3

Ha(z +y) = Mu(e)+ Dn(y) PRA
Ha(zthy) = () B 10a(y) prPR

Table 8. Axioms for projection operator

LemmaT74. If s is a basic term and n € N, n > 1, then there exisis a closed prBPA term t such
that prBPA,,, b Ma(s) = t.

Proof. The proof is given by the double induction on n and the structure of s.

For n = 1 we have the following:

1. if s=a € As then the conclusion follows from axiom PR1;

2. ifs=a-s fora € As and some basic term s,: then prBPA ., I~ IT1(s) = a and a is a closed
prBPA term;

3. if s = s1Dsy some basic terms s; and s; with O € {4, t;}: then prBPA,,., F II(s) =
I (51} (s2) and from the induction hypothesis there are closed prBPA terms ¢ and (s
such that prBPA,,, - IT1(s1) = t; and prBEA,., & II1(s2) = t. Thus, we obtain prBPA,,,
IT1(s) = 1,0ty and ¢, 01y is a closed prBPA term.

For n > 1 we have the following:

1. if s=a € A then the conclusion follows from axiom PRI,

2.if s =a- 5 for ¢« € As and some basic term s1: then pT‘B.PAp’,.O F Oa(s) = a- MTao1(s1)
and by the induction hypothesis there exists a closed prBPA term ?; such that prBPA,,, =
M_1(s1) = t;. Thus, we obtain: prBPA,, + I.(s) = a-t) and a %, is a closed prBPA term;

3. if s = s10s; for some basic terms s; and s; with D € {4, t }: then prBPA, , F [I:(s) =
I, (5,)8101,(52). From the induction hypothesis there are closed prBPA terms t; and {5 such
that prBPA,,, +- I,(s1) = 11 and prBPA, , b IIh(s3) = t5. Thus, we obtain prBPA,,, F
T, (s) = t10t3 and ¢, 0%y is a closed prBPA term. ]
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Theorem 75. (Elimination of the projection operalor) Let s be a closed term over the signature
of prBPA,, .. Then there exists a closed prBPA lerm i such that prBPA,  tFs=1.

Proof. By the induction on the structure of s and using the Elimination theorem in prBPA we

obfain:

1. if s=a € As then the conclusion follows directly;

2. 5 = s10s for some closed prBPA,,, terms sy and sp with O € {.,+, t;}: then by the
oro Fs =1
and ])?"BPAP,,O b~ 89 = ¢5. Then we obtain prBPA,., F s =110t and ¢, 0¢5 is a closed prBPA

term.

induction hypothesis there are closed prBPA terms ¢; and 2 such that prBPA

3. il s = I,(s)) for some n > 1 and closed prBPA,, term s;: then by the induction hypothesis
there is a closed prBPA term ry such that prBPA,., - s = r1. From the Elimination theorem
in prBPA we have that prBPA b r; = ¢; for some basic term t;. Then, from Lemma 74,
there is a closed prBPA term t such that prBPA,,., & I,(r1) = t. The conclusion follows
since prBPA, ., F s = [,(s1) = () = IL(t) =t O

Proposition76. Let s be a closed prBPA,,, term. Then there exists n € N, n > 1 such that
prBPA, & [ (s) = s, for ecach k > n. 0

In the next subsection we will introduce infinite processes as solutions of (guarded) recursive
specifications. For that reason it is necessary to establish some extra principles (rules) which
relates the notion of a (guarded) recursive specification, its solution and finite projections of the
solution. The main goal is to prove that each guarded recursive specification determines exactly
one process, that is, it has the unique solution in the term model. Foliowing the approach in [2]
we obtain this result combining two principles given below, RDP~ and AIP~. We note that the
definition of bounded non-determinism is not given here, it can be found in [2]. Informally, process
p has hounded non-determinism if the set of all reachable processes from p in n transitions, n > 1,
(including both probabilistic and action transitions, in our case) is finite. The main reason why
we do not work explicitly with the bounded non-determinism is that we treat guarded recursive
specifications only and, as it will be shown later, each guarded recursive specification determines

a process which has bounded non-determinism. Thus, we deal with the following principles:

Definition77. The Recursive Definition Principle (RDP) is the following assumption: every

recursive specification has a solution.

Definition 78. The Approximation Induction Principle (AIP) is the following assumption: a

process is determined by its finite projections, that is,

(Vn>1:I,(2) =) = z=y.
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Definition 79, The Restricted Recursive Definition Principle (RDP ™) is the following assumip-

tion: every guarded recursive specification has a solution.

Definition80. The Restricted Approximation Induction Principle (AIP~) is the following as-

sumption: a process is determined by its finite projections, that is,

(¥n>1:H,(z) = II.(y) & 2 has bounded non-determinism) = z = y.

Definition 81. ‘The-Recursive Specification Principle {RSP)'is the-following  assumhptionevery =

guarded recursive specification has at most one solution.

4.2 Term model with infinite processes and projection

In Section 2.2 and Section 3.2 we presented the term models of prBPA~and prAGP, respectively,
which have the completeness property for closed term. Next, we extend the domain of these
models by adding new constants which present solutions of guarded recursive specifications, We
consider guarded recursive specification only because, as it will be proved later, they define a
unique process. By this it has not been made a severe restriction because all real concurrent
systems of interest may be described using guarded recursion only. Also, we extend the domain
with finite projections and using them we approximate infinite processes. We follow the same
schema as before and define a subset of the set of all processes which contains dynamic processes,
that is processes which may execute action transitions only. Thus, we define the domain P and

two auxiliary subsets in the following way:

Definition82. The set of static processes, notation Psp, is defined as:

1. As C Pgp;
2. If I is a guarded recursive specification and X is a variable of E, then (X|E)} € Psp;
3. Ift,s € Psp then t .51+ 5,tth 5, [1,,(t) € Pgp for cach p € (0,1) and n > 1.

We define the following auxiliary set Pp:

1. A; C Pp;
2.1 EPp,s EPsp =15, M,({) € Pp for each n > 1;
3. t,sePp=>1+s5€Pp.

Definition83. The set of dynamic processes, notation Ppp, is defined in the following way:

1. A5 C Ppp;
2.tePpp,s€Psp =2>t-511,(1) EPpp foreach n > 1;
3. 4,s€EPpp =>it+5€Ppp.
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Definition84. P = Pgp U Ppp.

Definition85. In a similar way as it is done in Section 2.2 we define a map ¢ : Pp — Ppp as

lollows:
1. p(a) = d for each a € Ag; 3. (s +1) = p(s) + @(t);
2. 05 1) = p(s) - t; 4. o(f,(s)) = I, ((s5)).

Again, we denote shortly ¢(s) = 3.

Definition86. The term model with infinite processes and finite projections, denoted by prP =
Psp/ = , is defined with the operational rules in Table 4, Table 9 and Table 10 and the
probability distribution function determined by Definition 87 which is an extension of Definition
12 and the bisimilation as it is defined by Definition 17. Here (tx|E} is the right hand side of

the equation for X in E, with every occurring variable Y replaced by (Y| ).

{tx|E) ~ u
{(X|E})~ u

Table 9. Deduction rule for recursion.

P~ I
10(3) ~ 1n(z)
z 2 p 35 & >p

Mat1(z) S Hu(p)  Hulz) SV Mi(z) >

Table 10. Deduction rules for projection

Definition 87, (Probability distribution function) The function given in Definition 12 is ex-
tended to g P x P — [0, 1] with

u(X|E), w) = u({tx1E), )

p(IT1(a), (&) =1

wlla(e ), o{d-2)) =1

#(ITn(p+ @), Ta(u +v)) = p(Ta(p), 115.(0) p(Tn(g), Ha(v))
n(a(ptpe), To(w)) = pulTn(p), Mn(u)) + (1 — p)u(MTn{q), Hn(u))
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Remark: One can see that SP C Psp, PP C Ppp and D C Pp. Moreover, the form of
terms belonging SP is the same as the form of terms in Psp, and the same holds for the other
sets. For these reasons, from now on, we will write &P inslead of Psp, PP instead of Ppp, PR
instead of P and D instead of Pp, except in situations where the distinction between these sels
is necessary. As the assumption of closed terms in proofs of properties in Section 2.2 (including
the proof of the Soundness theorem as well as the Congruence theorem) has not been used at all, ..
by this we make valid all propositions in Section 2.2 (where all properties concern closed terms

only) in P.

Theorem 88. (Soundness theorem) Let @ and y be PR processes. If prBPA, ,t x =y then

T ey,

Proof. In addition we prove the soundness of the axioms for the projection operator.

PRI: We define a relation R in the following way:

R = Eg({(M(a), 0), (I1,(8),)}).

From the operational rules it follows directly that @ ~+ & and T;{a) ~ [I;(&) and (II,(a),&) €
R. For action transitions & - / and IT;(&) 2 /.

From the definition of the probability distribution function we have: p(a,d) = 1 and
w{(a), 11(&)) = 1, that is pla, [@r) = p(Ii(a), [1(d)]r) = 1. For any other R equivalence
class M, pla, M) = p(l(a), M) = 0.

PR2: We define a relation R in the following way:

R=Eq({(L(e-p).a), (I(E-p).8) : peSPY).

For probabilistic transitions it follows from the operational rules that [, (a - p) ~ I11(d - p)
and @ ~ & and (/T (&-p), @) € R. For action transitions it follows that & = \/ and T} (d-p) = /.

From the definition of the probability distribution function we have: p(a, &) = 1 and
p(l(a - p), Ti(a - p)) = 1, that is p(e, [8lr) = p(1(a - p), [{11(d - p)jr) = L. For any other R
equivalence class M, u(a, M) = p(Jli(e - p), M) = 0.

PR3: We define a relation R in the following way:

R = Bq({(Tass(a p),a Ta(p) : p € SPYU((Lana(G -p),a- Malp) : p € SPY).

Suppose [In41(a - p) ~ w for some w € DP. From the definition of the operational rules it
follows that w = I1,,41(x) for some u € DP such that a - p ~ u, from which v = 4 - p. Then
a-Hy(p)~ - Hn(p) and (Toq1(&-p), - T,.(p)) € R.

As @ IT,(p) ~ @- IT,(p) it the only possible probabilistic transition of @ - IT,(p) we have that
it is simulated by transition T,11(a-p) ~ (4 -p).
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From the definition of the operational rules it follows that the only possible action transitions
are the following: I, 11(& - p) = Ha(p) and & - I, (p) -5 Ma(p). Moreover, (II,(p), n(p)) € R.
Action termination is not possible for both processes (even for n = 1).
From the definition of the probability distribution function we have:
(e p), Haes{@-p)) = 1 and pla - 1a(p), & - H.(p)) =1, that is
p{iTngr1(a - p), [ Hop1(&-p)R) = e - Ha(p), [ Tn(p)]r) = 1. For any other R equivalence class
M, p(a - To(p), M) = w(ITnss(a - p), M) = 0.
PRA4: We define a relation R in the following way:

= Fy ({(Hn(p+q),Hn(p)+Hn(q)) D g € SPIU{(Tp(utv), Tp(u)+T,(0) : w,v € 'D'P}).

Suppose [T,(p + ¢q) ~ w for some w € PP. From the definition of the operational rules it
follows that w = [M,(u) for some u € DP such that p+ ¢ ~ u. It follows u = u; + us for
some wuy, vy € PP such that u = vy + uy and p ~» uy and g ~» uy. Then [, (p) ~ H,(uy) and
1,(q) ~ 11, (ug) from which II,(p) + Hn(q) ~ Hp(1uy) + T, (us). Moreover,

(In(uy + u2), Ho(ur) + Hnlus)) € R.

Suppose IT,,(p) + II,(¢) ~ z for some z € DP. From the definition of the operational rules
it follows that there are 21,23 € DP such that z = z; + 23 and I, (p) ~ z; and I7,(g) ~ z2. It
implies that z; = fM,(u1) and z; = T, (usy) for some uy, us € DP and also p ~ vy and g ~+ us.
Then, p+ ¢~ uy + uz and H,(p + q) ~ Ta(t; + u2). Moreover,

(I () + Hp(us), Mp(uy + ug)) € R.

Suppose [T, (u + v} = p for some a € A and p € SP. From the definition of the operational
rules it follows that this transition is possible only if n > 1. Then p = II,_(g) for some
¢ € SP such that v + v = ¢. This transition implies that © = ¢ or v = g, from which
In(w) S H._1(q) or Ha(v) S Hp(g). In both cases it is that [T, (u) + I, (v) = H,_1(q).
Moreover, (ITn_1(g), fTn-1(q)) € R.

If o (u) + . (v) % pforsome a € A and p € 8P, then from the definition of the operational
rules it follows that f7,(u) = p or II,(v) = p. Then following the operational rules we have
that in both cases n > 1 and p = IT,_1(q) for some ¢ € SP such that u = ¢ in the first case
and v — ¢ in the second case. In both cases 4 + v — ¢ such that p = I _1(g), from which
Tp(w+v) S 11,_1(q), and moreover (/T,-1(¢), Tn_1(g)) € R.

Suppose I1,,(u + v) — / for some a € A. We investigate two possible situations:

1.ifn > 1then Tu(utv) = /iffutv = /iffu= Jorv S Jiff Tp(u) 2 /or Ta(v) >/
HE 7T (u) 4+ Ta(v) = /.
2. 1if n =1 then from I1(u + ) - \/ one of the following follows
2.1 u+v 3/ from which v % \/ or v =+ /, and also ITy(u) = / or IT,(v) = /. In both
cases IT,(u) + ,(v) N Vi or
22 u+ v = r for some » € SP, from which « % » or v = #, and also o(u) = / or

Mp(v) 2 /. In both cases o(u) + T (v) 2 Ve
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If I, (w) + M (v) > +/ in a similar way we can obtain that either u+v = \/or u+v = rfor
some r € SP and in both cases ITi{u +v) = /.

Using the definition of the probability distribution function we obtain:
10+ §), ot + ) = p(Ta(), Ta(w)){ (@), Ha(0)) and
(I (p) + Hn(q), Haulu) + Ho(v)) = p(Ia(p), Tn(u))p(Ha(q), [{v)). The result follows from
Proposition 31.

prPR: We define a relation R in the following way:

wl o 1OFT awoe

‘R:"Eq({(ﬂn(pﬂpq),Hn(p)ttuﬁn(@‘) pae SP})‘ |

Suppose M, (pth¢) ~ w for some w € DP. From the definition of the operational rules it
follows that w = H,(u) for some u € DP such that pH,q ~+ u, from which p ~ w or g ~ u.
Then If,(p) ~ H,(u)or I,{g) ~ Hn(u), and in both cases IT,(p) t; 11,(q) ~ Ila(u). Moreover,
(ITa(), () € R. |

Suppose T,(p) H;1,(q) ~ z for some z € PP. From the definition of the operational rules
it follows that Hn(p) ~ z or II,(¢) ~ z. Then for some z1 € PP such that z = [1,(z1) either
P~ 21 OF ¢~ z1. In both cases we obtain [T, (ptq) ~ 2.

Using the definition of the probability distribution function we obtain:

(ot ), (1)) = pis(Ta(p), Tn@)) + (1 = Pu(ITu(g), Tafw)) and
p(ITn{p) H n(q), a(u)) = pu(IlL{p), I (u))+ (1 —p)u(I15(g), I, (u)). The result follows (rom
Proposition 31. a

The following two propositions can be proved easily and they show that each process in our
model has bounded non-determinism, with the meaning described before. This provides us with

the result that in PR there is no difference between ATP and AIP~ principles.
Proposition89. Ifp € PR then the set {u : p~+ u} is Fnite. |
Proposition90. If u € PR then the set{p : u Lpac A} 1s Fadte. g

Next, we give the notion of head normal form and using the Soundness theorem we prove
that each definable process has a head normal form. Having this property we may deal easily
and get useful properties for infinite processes (for example, Proposition 93 which is used in the

proof of the Congruence theorem).

Definition91. We say a process p has a head normal form if there is an n € N, processes p;
and probabilities p;, 1 <1 < n such that
p=prte P2 Prno1th. P

and for each i,

pi= Y aipii+ Y bu

F<s, k<t
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for certain s;,2; € N with s; 4+1; > 0, atomic actions aj;, bi; and processes p;.
A process p is definable if p can be obtained from the atomic actions from A and & by means

of the operators of prBPA and guarded recursion.
Lemma92. Fach denable process has a head normal form.

Proof. The proof is quite similar to the prooflin [2]. The only difference in proof is for probabilistic
choice for which the conclusion follows directly from the definition of head normal form, and for

non-deterministic choice where distribution laws should be applied, O

Remark. It is easy to see that each D process p has a head normal form as following:

p= Zaij"Pij+Zbik
J<si k<t
for certain s;,¢; € N with s; +¢; > 0, atomic actions a;;, b;; and processes pi;. And each dynamic
process 4 € D'P has a form:
u= Z&z’j “pij + Zbik
J<si k<t
for certain s;,t; € N with s; +¢; > 0, atomic actions a;;, b;; and processes p;;.

We will refer to this special head normal form as dynamic head normal form, for both.
Proposition93. Ifp € 8P and u € DP then p(p,u) = p(,(p), Ho(u)) forne N, n> 1.

Proof. It follows directly from a head normal form of p, the operational rules and the definition

of the probability distribution function for projection. a
Corollary 94. For arbitrary set M C PR and n > 1, u(p, M) = p(f,(p), Ta(M)).

Next we prove the congruence property of — with respect to the projection operator. Later
on, using the results that have been oblained we prove that AIP holds in the term model and
combining this result with Lemma 101 and Lemma 96 we obtain the uniqueness of solution of a
guarded recursive specification in prP.

In advance we will give a few remarks to make the proof more understandable. The first
part, about transitions, both probabilistic and action, is given in the standard way. The last
pari, considering g function and equivalence classes of the relation R which has to be proven
to he a hisimulation rélation, depends of the definition of relation R. We choose relation £ in
such a way that for each equivalence class []g,, I1,,([z]r,) is an R-equivalence class for a given
bisimilation relation Ry (see the next example and the proof of the Congruence theorem). We

give an example which describes informally the results used in this part of the proof.
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Ezample 5. Let us consider the following two processes: p=atha p and

qg= a-l:f%(a—i-a) tha (a tféaoq). We have p — ¢ because the following relation is a bisunulation:
Ry = Eq({(a,a), (a,a+a),(a pa- (a-\:l-%a. -q));(atha peth(a+ ajthia- (athia- q)),

We construct relation R, as it is given later in the proof, and obtain:

R—Eq({(ﬁ (a), T (a)), (Tn(a), Hn(a + @), (Tn{a - p), Hufa - (athya - q))),
(In(atha-p), ln (ath {a+ cz) tha (athia-q))), (H,‘,,(‘Ei), Hn(&)), (ﬂn(ii), Hnl(ri +a)),
({3 p), (i - (aya-q))) : nEN,n > 1}).

We obtain easily that: [@]gp = {8}, [#]r, = {&,a+a}, [{1(&)g = {[1.(8), T1(d+a)} = H1{[ir,)
and [& 'p]Rx - {Ei' ' P;&(at’%a ' Q}):
And

p(p,[dr,) = u(p, &) + p(p, &+ &) = plathya - p, &) + platha pa+d) = 3,

p(I(p), [M(8)]R) = p((athya - p), [11(8)) + p(M (athya - p), 11(d + ) = 5.

In a similar way using the definition of the probability distribution funection about recursion we
obtain:

#(p,(@-plr,) = plp, @-p)+ulp dlatha-q) = platha-pd-p)+ulatyapdlatiaq)) = 5

and

u(T1(p), [H1(é-p)lr) = p(i(atha p), (@ p)) + p(Ii(atha-p), hd(etye-q)) =

Thus for each equivalence class M = [u]g, it can be proven that u(p, [u]g,) = p{T:1(p), [/T1{(u)]r)

and p(q, [u]r,) = p(1(g), [[I1(uv)]g) and having p(p, [u]r, ) = p(g, [u]k, ) the result follows.
That this is not the case in general we consider relation — instead of K. Thus, having thal

Coles

I1(d) = 1 (a - p) and G 54 & - p we obtain p(p, [d] = ) = p(p, &) = plathe - p &) =
w(I(p), [H1(8)] . ) = p(ITi(atha p), (&) + p{fi(atha p), Th(a p)) = 5 +

Theorem 95. (Congruence theorem) + is ¢ congruence relation on prP, that s — s«
congruence relation with respecl to +, -, H, and I, forpe (0,1) and n € N,n > L.

Proof. Once more we emphasise that the proof of Theorem 30 (the Congruence theorem of
prBPA) has been adapted for definable processes as described in Remark on p. 68. We just nee
to prove that < is a congruence relation with respect to [1,, operator.

Let us suppose that £ — y which implies that there exists a bisimulation relation [2; such
that xR y. We need to construct a relation R such that IT,(z}R[T,{y) which is a bisimulation.

We consider a relation

R= {(In(p),11a(q)) : PSP & (pg)€ R1, n€N,n 2> 1}
U{(Tp(u), Ta(v)) @ w,v€DP & (u,v) € Ry, neN,n > 1}
We note that R; is an equivalence relation implies R is an equivalence relation too.
Suppose II,(p)RII,(g) for some p, ¢ € SP such that pRy¢ and T,(p) ~ u for some v € DP.

Then from the definition of the operational rules it follows that uw = [T, (") for some v’ € DP
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such that p ~+ w’. Then g ~ o' for some v/ € PP and v Ryv’, from which I7,,(g) ~ H.(v').
Moreover because u' Ry’ it follows IT, (v RIT. (V).

Suppose o {w)RIT,(v) for some n > 1 and u,v € DP such that uRjv and H,(u) = p for
some a € A and p € §P. From the definition of the operational rules it follows p = [T, (p") for
some p' € SP such that v <% p’. Then v = ¢’ for some ¢' € SP such that p’Ri¢’ from which
Ta(v) & Hpo1(q) and I, _1(p )RIT,_1{{¢)-

Suppose that /7, (u) = / for some a € 4 and uR;v. Dependent on n there are two possibil-

ities:

L. For any n using the operational rules from ,(u) = / we obtain that © % ./ from which it
follows that v = +/ and also IT,,(v) = +/.
2. If n = 1 then from IT(u) N »/ we obtain that u S p for some p € 8P. Then as uR;v it

follows that for some ¢ € SP, v = ¢ and pR1¢ from which using the operational rules we get

H]_(”U) ‘i \/

Now let us assume that (T,(p), n(¢)) € R and M € DP/R. From the previous proof
for probabilistic transitions we have that M is a reachable from I7,,(p) iff there is a process
ITo{u) € M such that I,(p) ~ H,(w). Thus, M = [IT,(u)]r. Moreover, there is a process
I,(v) € M such that [T,{(q) ~ H,(v). Also, from the definition of R we obtain that v €
[w]g, iff T,(v) € [T,{u)]g, which means that there is a bijection between [u]r, and [{,(u)]g-
Combining this result and Proposition 93 we obtain that p(p, [ulr,) = u(Ta(p), [[T.(u)]g) and
also u(g, [vlr,) = u(TL(q), [Ta(v)]r). And since [u]r, = [v]g, and [[T,(u)]r = {IIn(v)]g and

((p, [ se,) = 1(q, [v]r, ) the conclusion follows. a

Let us summarize the items which have been introduced up to now. We introduced infinite
processes as solutions of guarded recursive specifications. Then we gave the notion of a definable
process and showed that these processes have a head normal form (Lemma 92). One can note
that only definable processes have been added to the domain of the new term model. Using this
property in addition we can work with the head normal form of processes, which is very suitable.
Also, we explained that in this model there is no difference between AIP and AIP~ because
cach process has bounded non-determinism. In the rest of the section we show that each guarded

recursive specification has a unique solution in prP.
Lema96. RDP~ holds in prP. O

Proposition97. Let p € Pgp. All Tnile projections of p are bisimilar with processes from SP.
0

Proposition98. Let u € Ppp. All Tnite projections of u are bisimilar with processes from DP.
0
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Proposition99. Let p and g be processes such that for some n € N, n > 1, a(p) = IL(¢).
Then for each k < n, H(p) = He(q). 0

Theorem 100. (Projection theorem) Let E be a guarded recursive specii cation with solulions
p and g. Then for alln > 1 we have I, (p) = ,(q). O

Lemma101. AIP~ tmplies RSP. O

FErample 6. Before giving the next theorem.we give the following example 4o describerthe idea of=
the proof. Let us consider the following processes: p = atha-ptha-e-p. 1t is easy to check
that for each n > 3 it holds:

plpld] o ) = p{lla(p), [Hal@)] o ) = %=
w(p, (8- pl o) = p(Ta(p), (Ha(d-p)] ) = } and
u(p[d-a pl o) = p(Ha(p), Ha(d-a-p)] o) = 4, that is for each M € PP/ =

1, M) = p(I,(p), 110 (M)).

And this result does not holdif n =1 or n = 2.
Theorem 102. (AIP tn prP} If for alln > 1, II,(p) = . (q) thenp = q.

Proof. Let us consider the following relation on PR

R= Eq({(p,q) C P g €SP & V¥n > 1: Ma(p) = Hala)}
U{(,v) : w0 €DP & ¥n > 1: Ha(x) ﬁnn(v)}).

Let (p, q) € R for some p,q € SP. We have that p and g have a head normal form and let for

some n € N, processes p; and probabilities p;, 1 < i < n,
r=n 'ti'plp2---pn—-l'tton_lpn (8)

where for each -,

pi:Zaij‘Pij‘l‘ Zbik

F<gi E<h,
for certain g;, h; € N with g; + h; > 0, atomic actions a;;,b;; and processes p;; and for some

s € N, processes g; and probabilities o;, 1 < i < s,

q:":Ilthnqz---‘Is—lﬁ'a,_l(b ((J)

where for each i,

Qi:ZCij‘Qij+Zdik

F<e: k< f.

for certain e;, f; € N with e; + f; > 0, atomic actions ¢;j, d;; and processes g;;. And let us assume

Vm > 1: Hni(p) = Hm(q).
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Let us suppose that p ~ u for some process u. From the definition of the operational rules

and from (8) it follows that « = §; for some 4,1 < i < n. Now define, for mn > 1
Sio={v : g~v & Hn(pi) = n(v)}).
We can make the following observation:

1. Because IT,(p) = Mn(g) and I, (p) ~ Im(p;) it follows that there exists a /7,,(v) such
that 11 (¢) ~ (v} and i (v) < T (P:). But from (9) we have that 11,,(v) = I (§;) for
certain t,1 < ¢ < 5. Moreover, from (9) we also get that ¢ ~ §; and combining these results
we obtain that §; € S%,. By this we proved that S?, # @ for each m > 1.

2. Foreach m > 1, 8, C {q1,..., ¢} from which it follows that 5% are finite sets.

3.8 D8 2. since Hoy1(Fi) = Dnga(G) implies T (5:) = Om(d)-

From here we obtain that there exists an Wt € N with
=] Sh#0
m>»1
which leads to the conclusion that there is a v € [ Si, such that g ~ v and I7,,(v) & M, (w)
m>1
for each m > 1, that is ¢ ~+ v and (u,») € .
Let (u,v) € R for some u, v € DP. Then u and v have a dynamic head normal form, that is

U = Z&J -8 -+ Z};k
i<g k<h
for certain ¢, h € N with g + A > 0, atomic actions @;, b; and processes s; and
T IR o
j<e k<f

for certain e, f € N with e 4 f > 0, atomic actions ¢;, d; and processes r;. And let us assume
Vi > 1 Hp(u) o Oy (v).

Let us suppose that u - p for some process p and atomic action a. From the definition of
the operational rules and the form of u it follows that @ = a; and p = s; for some j,1 < j <g.

In a similar way as before for each m > 1 we define a set:
Sto={g v q& Hn(ds) = Ha(g)}.
Again we obtain that:

L. 83, # @ for each m > 1 since {, (1) = Tp(v) and o (v) = Mmo1(s;) and since [, (v) -5
g a(re) and i (re) = I _1(8;) and v L for some k < e (according to the form of

v).

2. For each m > 1, §i, C {ry,...,r.} from which it follows that Si, are finite sets.
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3. 5808 0. ., since Hmy1(p) <> My (q) implies Tm(p) = Tn(q).
Then we can conclude that {1} 5/, is a non-empty set and choose ¢ in this intersection we
i>1
obtain that v -% ¢ and T (p) gjbm(q) for each m > 1, that is (p, ¢) € R.

At last we need to prove that for an arbitrary equivalence class M € PR/R and a pair
(p,¢) € R, where p,¢g € SP, it holds pu(p, M) = p{q, M). Again we consider only reachable
classes, that is we assume that there are elements w,» € M such that p ~ © and ¢ ~ v. (The
previous discussion .about probabilistic transitions provides-that-u-exists if and only if*v existg) -
Thus, for » and v we have that II,,(u) = M, (v) and also [[1n(u)] = = [HIn(v)] = for ecach
m > 1.

Up to now we have

#(p, [¥]r) = p(Tm(p), Tm([u]R)),

#(a, [ulr) = p(llm(q), dm(lu]r)) and

(T (p), (] =) = p(i 0 (g), (6] —)), for each m > 1.

Claim There is an ™ € N, 7 > 1 such that

p(Telp), Tl[¥lr)) = p(Tm(p), T{w)] = )-

Then it follows easily that p(p, M) = u(q, M). This finishes the proof of the theorem. Next

we give the proof of the claim.

Proof of the Claim: Ii is easy to prove that [T, ([u]r) C [[Tm(u)] o for each m > 1 which implies

1 (p), Hm([u]r)) < p(Tm(p), [Hm(u)] = ).

Let us suppose that p(1m(p), Im({u]r)) < (% (p), [Tm(u)] - ) from which it follows:
D = [I;m(w)] = \ Hm([u]r) # 0. Then we obtain that there is w € Dy, z € PP and a natural

number.n, such that I ¢p) ~ wand -

cw=En ()& p~ oz

M (2) = o (u)

.2 & [ulr

A, () &y, (u) (from 3.)

. Vk < m: I (z) = Hi(w) (from 2. and Proposition 99)
-ny>md My, (2) € [T, (u)] o (from 4. and 5.)

AL ()¢ D, (from 6.)

=1 @ O L B e

Moreover from Proposition 99 and since Yv : i 41(v) ¢ Hms1([Ulr) = Hn(v) ¢ Hn([w]n)
(which follows directly from the definition of I,n([u]r) ) we have that for each m > 1,
Dm 2 Dya. (8)
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Thus having that the set of reachable processes from p which are in Dy, say Z = {z : p ~ 2},
is a finlke set from the previous discussion we obtain that for each z; € Z there is a natural number
7, such that th_(z,‘) :éﬁn(u) Let denote by 7., the least of all such numbers that exist for
zi. From the conclusion 7. we have that [T5, (zi) ¢ Dg, and moreover since (8) if 7i;; < 7, then
. () ¢ Dﬁzj. Now as we have that Dy 2 Dy, D Dy, ... 1s a decreasing sequence of finite
sets and by taking

= rmaz{R,, ) (z;) € D) & p~ 2}

we obtain that Vz; € Z : [Ii(z) € Dy & p~ 5 = IIx(z) € D It means that
tf [T(p) ~ Hm(z) then (ITm(z) € [Ta(w)] o« iff T7(2) € Hm([u]r)). |

An extension of prACP with infinite processes can be made in a similar way following the
approach in [2] (Section 4.5). As non new important result is obtained in this investigation, we

omit this part.

5 Alternating Bit Protocol

As an example of the application of prACF we consider the Alternating Bit Protocol with un-
teliable communication channels as it 1s described in [2]. We give a specification in prACP of
ihe constituent processes of the protocol and of the whole system. In the theory we derive the
recursive specification of the behaviour of the protocol which can be viewed (in the term model)
as a Markov chain. Using standard Markov chain analysis we prove some properties and do some
performance analysis of the system.

The protacol is modeled as four processes, (see Figure 4), one sender process S, one receiver
R and two communication channels K and L. The sender sends a message to the receiver via
the unreliable communication channe]l K. After having received a message the recetver sends an
acknowledgment to the sender via channel L. A channel may transmit a message correctly or
it may corrupt it. In order to avoid a possibility of lost a message in a channel, each message
lias attached a control bit & which is changed alternatingly. When S read a datum d at port 1
it passes on a sequence d0,d0,d0... of copies of this datum, with a bit 0 appended, to K until
an acknowledgement O is received at port 6. Then, the next datum is read and sent on with a
bit 1 appended and so on. If a channel corrupts a message it passes on L. Unreliability of each
channel is specified by the probabilistic choice operator tf, correct transmission of a message
with probability = and corruption of a message with probabality 1 — .

Let D be a finite set of data and let A be a set of standard read, send and communication
actions. We use the standard read/send communication function given by ri(x) | si(z) = cx(2) for
communication port & and message x. The four processes are given by the recursive specifications

in Figure 5.
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3 4

6

Fig. 4. Components of the proiocol~+ - -

Sender :
S =85-51-5
Sy = > ri(dy- S, (b=0,1)
dep
Sha = sa(db) - ((re(1 = B) + re(L)) - b, +76(8) (5 =0,1,d € D)
Receiver :
R =R -Ro-R
Ry =( Z r3(db) + ra(L))- ss(b) - B + z ra{d(1 — b)) - sa(d) -s5(1 —8) (b=0,1)
deD deD
Channels :
K= Z 'f‘g((u}) - (Sg(db) 'thrsa(J-)) ' I\"
deD,be{0,1}
L = E Ts(b) . (Ss(b) ‘U’pﬁs(l)) - L
be{0,1}

Fig. 5. Specification of the four components of the protocol.

The behaviour of the protocol is obtained by parallel composition of these four processes:
ABP =t;0d(S|| K| L|| R), (1)

where H = {rp(db),s,(db) : k € {2,3,5,6},d€ D,b € {0,1}} is the set of encapsulated atomic
action and #; is the pre-abstraction operator ([1]), that renames all internal action into {.

One may notice that this specification of ABP differs from one given in ACP in [2], in the
specification of the channels only. As ACP does not have a features to describe a (probability)
dependent internal behaviour of systems, which is the case here, the authors use an extra ¢ action
which serves to make a choice, between the correct transmission and the corruption of a message,
non-deterministicly. Moreover, using the full (fair) abstraction operator they prove that this
system behaves as a one-place buffer, that is, it is a correct communication protocol. An advantage
in this probabilistic approach, particularly in this protocol, is that the full abstraction is not
necessary at all. Namely, the meaning of the probabilistic choice operator and its appropriate
axioms cover a need of the abstraction operator in ACP. In this way, using the axioms of praC'P

only without any extra principles (like KFAR, CFAR) we obtain the recursive specification for
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ABP, which can be considered as a Markov chain. Thus, from (10) we can derive the following
recursive specification for ABP:

X = z Tl(d)'Yd
deD

Yd:i~(t-54(d)-Z‘thrt-t-t-Yd)
Z=t-(t-Xtht-t-t-2)

The behaviour of the whole process is depicted in Figure 6. Using the standard Markov chain
techniques we may prove various properties of this system. For example, we can prove liveness
for the protocol by proving that the state X is a recurrent state. Moreover, as no internal actions
have got lost, we may also compute the mean number, M(x), of sending a message from the
sender needed for its correct transmission via the channels. This result is obtained by computing
the mean first-passage time from the state Yz to the state B. In Figure 7 the obtained numbers
are given for different values of 7. For example, if the probability of correct transmission of a

message d is 0.5 then the average number of execution of the action ¢3(d) is 2.

Fig. 6. The behaviour of the whole system.

7] 0.1 015 0.2 9.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Af{x)[16.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22 2.00 1.82 1.67 1.54 1.43 1.33 1.25 1.18 1.11 1.05

Fig. 7. Mean number of sending a message for different =.

6 Conclusion and Future Work

In this paper we have presented a probabilistic version of the axiom system ACP. The proposed

probabilistic process algebra is based on the process algebra with partial choice, ACP ... The
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main idea has been to keep the standard, non-deterministic alternative composition and to add a
family of probabilistic choice operators, Uy for each non-zero probability 7. The outcome of the
probabilistic choice depends only on the internal behaviour of the system, that is, the behaviour
of the system which is not influenced by the environment.

The operational semantics of prACP is based on the alternating model and it has been
defined by a term deduction system of which the signature contains an extended set of constants
(each atomic action has a dynamic counterpart) and of which the deduction rules include two
transition types: probabilistic and -action transition. In-construction of the term modéls we have
used probabilistic bisimulation and we have shown soundness and completeness of the term model
with respect to the proposed axiom systems,

The extension with infinite processes is treated also. We have introduced infinite processes
as solutions of guarded recursive specifications and using the finite projections we proved that
each guarded recursive specification has unique solution in the term model.

A goal of in our work has been to find an appropriate probabilistic version of ACP where the
interleaving axiom (CM1) is kept. It means that we followed the most direct way in the extension
the non-probabilistic process algebra ACP with the probabilistic choice operator. Preserving our
intuition behind non-deterministic choice and the interleaving approach to compositionality we
proposed a new model for parallel composition of probabilistic processes. That 1s, the choice
of the process that executes the next action is considered to be a non-deterministic choice.
As communication is included in parallel composition, non-determinism occurs befween three
processes. By giving the specification of the Alternative Bit Protocol and obtaining some results
from performance analysis of the protocol, we have shown that this model works well for certain
systems. Unfortunately, we have found out that for some systems it does not give sufficient results.
We have got some preliminary results of ongoing work on an improved probabilistic version of
ACP.

Another direction in our future research is the development of algebraic verification methods
in the given framework, which includes an algebraic method for resolving non-determinism in
concurrent systems in order to facilitate their performance analysis. Proposition 2 says that the
partial order approach, as it has been proposed in [4] for partial choice operator, cannot be
applied here. We further mention as a possible option for future work the integration of a timed

and probabilistic version of ACF.
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