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Reader Aids - 
General purpose: Widen state-of-art, explain model 
Special math needed for explanations: Probability, statistics 
Special math needed to use results: Same 
Results useful to: Reliability analysts, statisticians 

Summary & Conclusions - The intuitively attractive additive 
hazards model is compared with the proportional hazards and ac- 
celerated failure time models. The lack of identifiability limits the 
use of the model and prevents the application of regression ver- 
sions using covariates. Fortunately, data analysis based on non- 
homogeneous Poisson processes or on proportional hazards is likely 
to yield most of the information available in the data, even though 
they: 1) do not necessarily represent the underlying process, and 
2) even seem unlikely in certain situations. In particular, propor- 
tional hazards modeling appears very robust and requires few 
assumptions. 

1. INTRODUCTION 

This paper briefly discusses 3 well-known models: 

proportional hazards, 
accelerated failure time, 
competing risks. 

A fourth model, additive hazards, is reasonable & attractive and 
is prompted by the 3 others. Although the additive hazards 
model is intuitively attractive, its applications are limited by 
an identifiability problem. Because the model is not identifiable, 
the observation of explanatory variables adds nothing to the 
knowledge obtained from the event data. Thus if an additive 
hazards model is hypothesized, then the money & time spent 
on measuring explanatory covariates is wasted and no decisions 
can be based on the assumption that different operating condi- 
tions lead to differences in performance.' 

The models imply that the time reverts to zero after each 
event (usually a failure). At the event, the item is restored (eg, 
repaired, adjusted, replaced) to some known condition and time 
is set back to zero. Thus, the distribution of times between evena 
is an ordinary Cdf, as opposed to a type of process wherein 
there are many events, and time is measured from the beginn- 
ing of the process. 
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Hazards Models? 

It is easiest to build the models in terms of the hazard rate 
for the current interval [ 1,2]. Aspects of aging can be reflected 
in: 

the behavior of the hazard rate between failures 
values of the hazard rate at the beginning of each interval. 

Since a hazard rate can be interpreted as an aging rate, a change 
of time scale, or a simple scaling up of the hazard rate, can 
capture the effects of explanatory factors between failures. The 
effects of repair can be captured in the initial value of the hazard 
rate. A hazard rate that is zero at time zero could indicate that 
a repair has removed all age effects. 

This paper discusses the behavior of the hazard rate, both 
within an interval and at a repair. The observations apply cor- 
respondingly to the analysis of data from non-repairable systems 
where a common underlying model is assumed to be modified 
by field or experimental conditions. 

Acronyms2 & Nomenclature 

AFT accelerated failure-time model 
AH additive-hazards model 
PH proportional-hazards model 
CAM competing-risks model 
series implies a system that fails iff at least 1 component fails. 

Notation 

X 

T 
& 

4%) 
Z 

e"" 
a 

interval between events, or lifetime of a subject; a r.v. 
the X under baseline operating conditions 
time of events in a process; a r.v. 
covariate, to describe the operating conditions 
relative-risk factor (dependence of the model on z); 

number of riskdhazards in the system 
[X, z] for risWhazard i ;  i=O is the baseline value 
coordinate j of vector zi for risWhazard i 

$(z) 2 0, $(Zbaseline) = 1 9  

[pdf, Cdf, Sfl for risWhazard i; i=O is the baseline 
value 
hazard [rate, function] for risWhazard i ;  i = O  is the 
baseline value 
implies the system value 
parameter of baseline distribution 
parameter of J.. 

Other, standard notation is given in "Information for Readers 
& Authors" at the rear of each issue. 

'Acronyms, nomenclature, and notation are given at the end of the 
Introduction. 'The singular & plural of an acronym are always spelled the same. 
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2. ACCELERATED FAILURE-TIME MODELS 
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AFT is perhaps the most intuitively attractive model. In 
AFT, the effect of the covariates is seen as changes in the time 
scale for the system. The duration is a r.v. and the covariates 
are summarized in a vector. The basic assumption is: 

The life is stochastically increased or decreased according to 
whether $ < 1 or $ > 1. The behavior of the model is most 
easily understood by considering the effect of the transforma- 
tion (1) on a 1-parameter family of distributions. 

Let X, be described by a 1-parameter Cdf, Fo(x;8); the 
system with covariate zj=(G1, G2, ..., Gk) has: 

F,(x;zj, 8 )  = Fo -. ( 7 0) 

A detailed treatment of estimation-interpretation for such models 
is in [12-141. 

3. PROP(3rRTIONAL HAZARDS 

PHM is widely used for studying the effects of covariates. 
The basis of PHM is the simple assumption that the hazard rate 
is affected in a multiplicative way by a relative-risk factor. Since 
the hazard rate is a measure of aging, an increase in relative 
risk indicates a more rapid aging. The model is expressed in 
terms of h&) 8c $(z). The system hazard rate is: 

The most common choice for $(z) is the Cox-Model: 

The basic properties of the model are easy to deduce. The most 
valuable property is: If the baseline hazard rate is unspecified, 
then the analysis of the effects of covariates can proceed on the 
basis of a partial likelihood that is independent of b. PHM 
details are readily accessible in the literature [ 1, 2, 41 and in 
statistical packages such as BMDP. 

4. COMPETING RISKS 

CRM [7 ,  81 has two interpretations: 

the life of a system is subject to several competing risks 
the life of a system of several components ends as soon as 

The failure times can be regarded as a vector of r.v.’s {Xi} so 
that the failure time is the minimum of the Xi. Let the n Xi be 
s-independent; then - 

one of the components fails. 

n 

h,(x) = hi(X). 
i = l  

CRM are often used in reliability problems, in particular in the 
analysis of series systems and from weakest link arguments for 
systems of s-independent components. The p-factor method for 
dealing with s-dependency is also a version of CRM since it, 
in effect, splits the system into two parts: 1) the s-independent 
components, and 2) a common-cause component in series [ 1 1 : 
chapter 71. 

5. ADDITIVE HAZARDS 

Considering the AFT, PH, CAM in chapters 2 - 4, it is 
reasonable to develop an additive analogue of the PHM in which 
ho is modified in an additive way by covariates [15, 161: 

Rj(x) = exp[-f$(x)] = exp[-$(z,).x - Ho(x)l 

The distribution of X is the distribution of the minimum of 2 
s-independent r.v., 

X = min(Xl, X2), 

Thus the AHM is a form of CRM [8] with 2, possibly fictional, 
components in series. However, the failing component cannot 
be determined. This point is useful for simulating data from 
an AHM, since Xis simply the minimum of an exponential r.v. 
X1 sampled from the distribution with parameter $(zj) and a 
r.v. &. 

The moments are easily obtained by Laplace transforms. 
The transforms are: 

R; (s) = so Rj(x)exp(-J . jx)exp(-sx)dx  = R&s+$~) 
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Notation 

U, non-central moments 

mp moment p .  

Setting s =O in these 5 equations gives the first moments; higher 
moments can be derived by differentiating under the (implied) 
integral. 

Cn vn+l/(n+l) 

$7 m 

= ( - l ) ,  -c, 
n! 

n=O 

By repeatedly differentiating (2) the higher moments are: 

Observations are made at n values of the covariate, z l ,  z2, . . . , 

Notation 

x,,, 
0, 0 parameters: P E W ,  0€Rq 
0 parameter vector for fo 

L U) ( P J )  contribution to the log-likelihood for observations 

observation i (censored or actual) at level z, 

$1 , $(z j ;P l j  

(censored or actual) at zj ,  
a 

$j;k - $ ( z j ? P )  
a f i k  

hor, Hor derivatives of [h,, HO] w.r.t B r .  

The likelihood equations are: 

The partial derivatives are: 

This equation has defined uj ( P , 0 )  

The maximum likelihood equations are: 

This can be written as a matrix equation by setting $ = ( $ j ; k )  T: 

Eq (3) shows that for a fixed 0 there is always the solution: 

- Xj,  = 0, j = l ,  . . . , p  (4) 
1 

i € D j  $ j + h o ( x j i )  i E C j U D j  

and that the existence of other solutions depends on the rank 
of q. In particular, if the gj are not functionally related, but 
each is simply a parameter of distribution j ,  then ($ j ;k )  is an 
identity matrix and (4) gives the unique solutions. When p < 
n the rank of $ is at most p and there are solutions determined 
by the null-space of $ as well as those from U. Further, hazard 
rates satisfy (3) in the sense that [19]: 

E { l / h ( x ) }  = E{x}. ( 5 )  

Thus if Gj + h(t) is a hazard rate, then it should satisfy (5): and 
the empirical version of (5) is just (4). This means that solu- 
tions determined by the null-space of * that do not also satisfy 
(4) do not yield hazard rates. Conversely solutions of (4) which 
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are not in the null-space of * do not allow the values of J. to 
be estimated. In short there is an identifiability problem in which 

n 

rn = xi. 
the values of J.i can be estimated, but not the parametric form. i = l  

Thus the Laplace transform of gn(t )  = pdf{tn} is: 

6. REPAIRABLE SYSTEMS 

The ideas of a renewal process can be extended to a system 
that after repair - 

is returned to the working state, but in a condition between 
the new state and the failed state. 
can age more rapidly than before. 

All of the models (AFTM, PHM, CRM, AHM) can incorporate 
these aspects. The 2 questions about such a system are: 

Can the state of the system through time be predicted? 
Can the effects of various operating conditions be incorporated 
in the model, eg, can the effects of modification or a different 
maintenance regime be modelled? 

The easiest assumption is that the behavior of the interval lengths 
is modelled by changes in the covariates. The techniques outlin- 
ed for samples can be extended following Cox [6] to a &lared 
renewal process by assuming that in place of the ordinary 
renewal process the assumption of i.i.d. intervals is dropped 
and replaced by that of interval length depending only on the 
state at the beginning of the interval. The modulated renewal 
process is a Markov renewal process [4: chapter 31 in which 
the sequence of intervals is deterministic and the distributions 
of interval length are modulated by another process; the assump- 
tions are strengthened by taking the covariates zj as deter- 
ministic. The assumption is that ? has Cdf F4 (x) . The aim 
of the models is to reflect in the Fx;.(x) the changes in the 
system as its history unfolds. Through such models we hope 
to discover whether the system improves or deteriorates through 
time, and eg, determine optimal repair policies. 

The simplifying assumption that 4 has Cdf Fx,(x) means 
that the durations of xj can be treated simply as a sample, and 
used to construct a log-likelihood L o  for that interval alone. 
The log-likelihood is: 

j =  1 

This log-likelihood also provides log-likelihoods for the 
parameters of Fx;.(x) as functions of explanatory variables. 
The estimators are, in principle, obtained as solutions of the 
likelihood equations obtained setting the appropriate derivatives 
of 6: to zero. 

Techniques for the analysis of renewal processes can also 
be carried over, in principle, to the modulated renewal process, 
although explicit closed formulas for measures of interest are 
mostly not available. The strong assumption that the explanatory 
variables are deterministic (eg, interval number), allows a direct 
imitation of the renewal process argument: the time of event 
n, rn is simply the sum of the n s-independently distributed in- 
terval lengths xi: 

n 

g,*(s) = nA,(s) 
i = l  

The renewal function V (  l )  has Laplace transform: 

m 

P ( S )  = ( l / s )  gAs). 
i =  1 

PHM & AFTM can only model the rate of aging between 
events. However, if these models are based on ho(x) with the 
property h,(O)=O, then every interval hazard rate hi also 
satisfies hl{O) =O. If h (0) = 0, then the system is instantaneous- 
ly as good as new after a repair, even though thereafter it might 
age faster. The additive hazards approach provides a means of 
modelling situations in which hj(0) > 0. Hardly any of the 
common distributions fulfil the requirements of a hazard rate 
(and thus pdf) that is non-zero at time zero and has an increas- 
ing hazard rate. Apart from the exponential, all the common 
distributions have a zero or an infinite hazard rate at time zero. 

Additive hazards arise reasonably from the desire to model 
a system that: after a repair is better than it was just before the 
repair, but not as good as new. Thus if a new system has inter- 
val hazard rate h, (x) after failure j - 1, then the interval hazard 
rate is $j + h, (x) . The model is a simple additive analogue 
of PHM in which each fafiure contributes something to the age 
of the system. Moreover, AHM offers hazard rates that are not 
zero at time zero. 

Figure 1, Simulated Additive-Hazards Process 

Figure 1 shows a simulated AHM with imperfect repair. 
The stippled lines indicate the times of the random events, and 
the solid lines show how the hazard develops through time. The 
rate of aging between events repeats itself, while aging is seen 
in the rising initial value for the hazard rate. However, in view 
of the difficulties of estimation described above, it can only be 
used in a phenomenological way to measure the magnitude of 
the jumps $j in the hazard rate. Models for gj  which use ex- 
planatory variables yield unsatisfactory estimators of the 
parameters [15, 161. The statistical problems are unfortunate 
since in this case the Laplace transforms required for a renewal 
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process approach are likely to be more readily obtained. The 
Laplace transforms of g, ( t )  & V ( t )  are: 

g , ( t )  & V ( t )  are: 

m 

v * ( s )  = (11s) gi‘(s1. 
i = O  

In a study of failure data [9, lo], Pijnenburg [15] showed 
that on the basis of a graphical analysis, an AHM seemed plausi- 
ble with the sequence number of the failure as an explanatory 
variable, but failed to find estimators for the AHM: 

The reasons for the lack of estimators are now clear from this 
paper- 
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