

The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K

Citation for published version (APA): Bolech, M., Cordfunke, E. H. P., Genderen, van, A. C. G., Laan, van der, R. R., Janssen, F. J. J. G., & Miltenburg, van, J. C. (1997). The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 in the to 1000 K. *Journal of Physics and Chemistry of Solids*, *58*(3), 433-439. https://doi.org/10.1016/S0022-3697(06)00137-5

DOI: 10.1016/S0022-3697(06)00137-5

Document status and date:

Published: 01/01/1997

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

THE HEAT CAPACITY AND DERIVED THERMODYNAMIC FUNCTIONS OF $La_2Zr_2O_7$ AND $Ce_2Zr_2O_7$ FROM 4 TO 1000 K

M. BOLECH[†], E. H. P. CORDFUNKE[‡], A. C. G. VAN GENDEREN[§], R. R. VAN DER LAAN[‡], F. J. J. G. JANSSEN[†] and J. C. VAN MILTENBURG[§] [†]KEMA, P.O. Box 9035, NL-6800 ET Arnhem, The Netherlands

\$Netherlands Energy Research Foundation ECN, P.O. Box 1, NL-1755 ZG Petten, The Netherlands Department of Interfaces and Thermodynamics, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

(Received 18 December 1995; accepted in revised form 11 July 1996)

Abstract—The heat capacities of cerium and lanthanum zirconate (Ce₂Zr₂O₇ and La₂Zr₂O₇) were measured from 4 to 400 K by adiabatic calorimetry. The derived thermodynamic functions, H° , S° and $\{G^{\circ} - H^{\circ}(0)\}/T$ were calculated. The standard molar entropies at 298.15 K were determined as $230.21 \pm 0.46 \text{ J/mol} \cdot \text{K}$ and $238.53 \pm 0.48 \text{ J/mol} \cdot \text{K}$.

Enthalpy increments relative to 298.15 K were measured by drop calorimetry from 500 to 900 K. From these data the thermodynamic functions, including the enthalpy and Gibbs free energy of formation of the two compounds were derived for temperatures up to 1000 K. Copyright © 1997 Elsevier Science Ltd. All rights reserved

Keywords: heat capacity, adiabatic calorimetry, zitconates.

1. INTRODUCTION

In case of a very severe nuclear reactor accident interactions of fission products with the zircaloy cladding (as well as the concrete basemat) are likely to occur. Formation of compounds during this interaction may greatly influence the release of less volatile but radiologically highly hazardous fission products, like the rare earth elements. For that reason better understanding of the energetics of compounds such as the light lanthanide zirconates, $Ln_2Zr_2O_7$, can enhance the accuracy of safety analyses for nuclear power plants.

Cerium zirconate $Ce_2Zr_2O_7$ (in the system Zr-Ce-O) is metastable at room temperature and will easily be oxidised to a solid solution of ZrO_2 and CeO_2 at temperatures above some 700 K [1, 2]. At elevated temperatures (T > 1600 K), in reducing atmospheres, 3+ becomes the stable valence of cerium in cerium oxide-zirconium oxide mixtures [3-5]. Conditions typical for a severe nuclear reactor accident would be high temperatures (up to some 2600 K) and a reducing (hydrogen containing) atmosphere. $Ce_2Zr_2O_7$ is therefore the relevant oxidic cerium-zirconium compound for nuclear safety analysis purposes.

There is a considerable interest in rare earth zirconates because of possible applications as host materials for fluorescence centres [6], high-temperature heating elements, oxidation catalysts [7], fuel cell electrode materials [8] and the mentioned importance in nuclear safety analysis. Despite this interest comparatively few data on their thermodynamic properties can be found. For this reason the thermodynamic functions of $La_2Zr_2O_7$ and $Ce_2Zr_2O_7$ have been determined from four to 1000 K. This has been done by adiabatic calorimetry for temperatures up to 400 K and drop calorimetry for temperatures between 500 and 900 K.

2. EXPERIMENTAL

2.1. Preparation of $La_2Zr_2O_7$

 ZrO_2 (Aldrich, Hf $< 2 \cdot 10^{-4}$) was heated at 1473 K to remove adsorbed moisture. La₂O₃ was prepared by dissolving La₂(CO₃)₃.8 H₂O in nitric acid, and subsequently producing a precipitate by addition of NH₃ (aq) in excess. The precipitate was dried in air and then heated in oxygen at 1173 K to remove the nitrogen containing fragments. The resulting lanthanum oxide was heated at 1473 K to remove any absorbed water, and analyzed as 99.9% pure. After drying the starting materials were stored in an argon-filled glove box.

Lanthanum zirconate was prepared by thoroughly mixing stoichiometric amounts of the constituent oxides. The mixture was uniaxially pressed to pellets and sintered in platinum boats under purified argon at 1773 K for 10 hrs. After heating and thoroughly grinding, the sample's phase composition was checked by X-ray diffraction. This procedure was repeated several times to obtain pure La₂Zr₂O₇. The final X-ray pattern (Guinier-de Wolff, Cu K $\alpha_{1,2}$) made it possible to determine the lattice symmetry as cubic, with lattice parameter 1.080 42 nm and space group F23 (196) [9]. So the structure of this zirconate is probably a slightly distorted pyrochlore, having lower symmetry than a true pyrochlore (space group Fd3m (227)).

2.2. Preparation $Ce_2Zr_2O_7$

The preparation of $Ce_2Zr_2O_7$ was comparable to the route taken for $La_2Zr_2O_7$. An accurately known quantity of dry ZrO_2 was introduced in a platinum beaker. A stoichiometric amount of an acidic $Ce(NO_3)_3$ (Merck, extra pure) solution of precisely known Ceconcentration (approximately 15 wt% Ce) was added to the ZrO_2 , and subsequently a precipitate was produced by adding NH₃ in excess. The precipitate-containing ZrO_2 - was dried in air and then heated in air at 1173 K to remove the nitrogen containing fragments.

The resulting stoichiometric mixture of ZrO₂ and CeO₂ was further homogenised with pestle and mortar. The powder was uniaxially pressed to pellets and sintered in platinum boats under purified argon at 1823 K for 8 hrs, then switching to argon +5% hydrogen for two additional hours at the same temperature. The last atmosphere was also used during cooling to room temperature to prevent reoxidation of the sample. The hydrogen was used to facilitate the reduction of Ce⁴⁺ to Ce³⁺ [6, 10, 11]. After heating and thoroughly grinding in a zirconia ball mill, the sample's phase composition was checked by X-ray diffraction. This procedure was repeated several times to obtain pure Ce₂Zr₂O₇. The final X-ray pattern (Guinier-de Wolff, Cu $K_{-1,2}$) is nearly identical to that published by JCPDS [12]. The cerium zirconate appeared to be isostructural with La₂Zr₂O₇, the diffraction pattern indicating a cubic lattice symmetry. The lattice parameter is 1.05877(19) nm and space group F23 (196). A list of observed diffraction lines is given in Table 1.

2.3. Calorimetry

Measurements of the c_p^{o} between 4 and 400 K were performed in a custom-built adiabatic calorimeter (version cal VII, a copy of cal V which was described elsewhere [13]). Deviations in measured heat capacities from the reference values for NBS (National Bureau of Standards, now known as NIST) standard reference material No. 720 (synthetic sapphire (Al₂O₃)) are smaller than 0.1% over the whole temperature interval. The experimental determination of the heat capacity was performed on samples of Ce₂Zr₂O₇ or La₂Zr₂O₇ weighing approximately 18 g.

The enthalpy increments above room temperature were measured in an isothermal diphenyl-ether calorimeter which was described previously [14]. The

Table 1. X-ray diffraction data of Ce₂Zr₂O₇

$d_{ m obs}/{ m \AA}$	$d_{\rm calc}/{ m \AA}$	hk l	I _{est}		
6.103	6.113	111	20		
5.282	5.294	200	5		
3.736	3.743	220	20		
3.186	3.192	311	10		
3.058	3.056	222	100		
2.648	2.647	400	60		
2.430	2.429	331	< 5		
2.364	2.368	420	< 5		
2.161	2.161	422	< 5		
2.036	2.038	333	< 5		
1.872	1.872	440	70		
1.597	1.596	622	80		
1.529	1.528	444	40		
CuKa	λ , λ :1.540:	598Å in	t.std a		
SiO ₂ sy	s:Cubic S.	G.: F23	(196) a		
10.5877	(19)Å Z:8	ρx:6.43	g·cm ⁻		
Figure of	of merit: F(13) = 26	(0.0293		
17)	,	,	`		

sample is enclosed in a high purity silver ampoule (spherical, 20 mm in diameter and 0.25 mm wall thickness). The (filled) ampoule is heated to a temperature known to 0.1 K. After ample equilibration time, the container is dropped into the calorimeter. The energy of the silver ampoule plus the sample contained therein then melts the diphenyl ether, in equilibrium with its liquid in a closed system. The resulting volume increment is determined by weighing the displaced mercury. The calorimeter is calibrated against NBS standard reference material No. 720. The calibration results agree within 0.2% with the data given by the National Bureau of Standards. The enthalpy contributions of the silver ampoules were determined separately [15].

3. THE ENTHALPIES OF FORMATION OF Ln₂Zr₂O₇

The enthalpy of formation of La₂Zr₂O₇ has been determined by high-temperature solution calorimetry [9]. On trying to measure the enthalpy of formation of $Ce_2Zr_2O_7$ with the same technique, it appeared that the $Ce_2Zr_2O_7$ would oxidize to CeO_2-ZrO_2 in the atmosphere of the calorimeter. This was probably due to the oxygen potential of the solvent (molten $Pb_2B_2O_5$ at 974 K), because the oxidation could not be prevented by flushing $(\pm 25 \text{ ml/min})$ the calorimeter with purified argon (passed through Ti-filter at 1250 K). To be able to present a complete $\Delta_f G^{\circ}$ function for $Ce_2Zr_2O_7$ it is necessary to obtain a $\Delta_{\rm f} H^{\rm o}$ value. The enthalpies of formation for a series of lanthanide zirconates were measured by Korneev et al. [16]. They did however not arrive at $Ce_2Zr_2O_7$ but at $Ce_2Zr_2O_{7+x}$ (i.e. most Ce is 4+). So the enthalpy of formation measured by Korneev is not useful for our purpose. Therefore, an attempt has been made to

Table 2. Enthalpies of formation from constituent oxides (in kJ/mol) as measured by Korneev et al. [16] and an estimate thereof based on interatomic distances Ln-O

Fig. 1. Enthalpies of formation of $Ln_2Zr_2O_7$ from the constituent oxides $(Ln_2O_3 + 2ZrO_2 \rightarrow Ln_2Zr_2O_7)$ for the light lanthanides (Ln), as a function of 1/(sum of radii of Ln^{3+} and O^{2-}). The specific kind of $Ln_2Zr_2O_7$ is indicated in the figure with the element symbol for the lanthanide. The data are taken from Korneev et al. [16], Bolech et al. [9] and an extrapolation thereof.

'extrapolate' the value obtained for the enthalpy of formation of La₂Zr₂O₇ to the corresponding enthalpies of formation for smaller lanthanide zirconates.

Because in the formation-reactions for La-, Ndand Sm-zirconate (as measured by Korneev et al. [16]), the respective starting oxides and reaction products are isostructural, a linear relation between the enthalpy of formation-reaction and the reciprocal distance Ln-O may be presumed. Linear regression produces a relation between the enthalpy of reaction from the oxides and $1/d_{Ln-O}$:

$$\Delta_{\rm f} H(1/d_{\rm Ln-O}) = \{1522.1 \cdot (d_{\rm Ln-O})^{-1} - 724.4\} \, \rm kJ \cdot mol^{-1} \qquad (1)$$

where

$$d_{\rm Ln-O} = r_{\rm Ln} + r_{\rm O} \tag{2}$$

Given Ln-O distances are the sum of the effective ionic radii, as reported by Shannon [17] for the

Table 3. Enthalpies of formation of the light lanthanide zirconates from their constituent oxides, extrapolated from that of $La_2Zr_2O_7$

	$\Delta(d_{1}, \alpha/\dot{\Delta})^{-1}$	$\Delta(\Delta H^{\circ})/(k I \cdot mol^{-1})$	$\Delta_{\rm ev} = \frac{H^{\circ}/(k \rm I mol^{-1})}{2}$		
$La_2Zr_2O_7$			-136.1 ± 6.4		
$Ce_{7}Zr_{7}O_{7}$	0.00265	4.4 ± 0.8	-131.7 ± 6.5		
Pr ₂ Zr ₂ O ₇	0.005 34	8.8 ± 1.6	-127.3 ± 6.6		
$Nd_2Zr_2O_7$	0.008 07	13.4 ± 2.4	-122.7 ± 6.8		
$Pm_2Zr_2O_7$	0.01067	17.7 ± 3.1	-118.4 ± 7.1		
$sm_2Zr_2O_7$	0.01297	21.5 ± 3.8	-114.6 ± 7.4		

M. BOLECH et al.

Fig. 2. Low-temperature heat capacity data for $Ce_2Zr_2O_7$ and $La_2Zr_2O_7$.

Fig. 3. Low-temperature heat capacity data, plotted in the form $c_p/T vs T^2$, for temperatures below approximately 32 K. The heat capacity of Ce₂Zr₂O₇ being lower than that for La₂Zr₂O₇ is not what would be expected theoretically. This is probably due to lattice-defects introduced during preparation that cause a residual entropy.

Fig. 4. The reduced enthalpy increments of $Ce_2Zr_2O_7$ and $La_2Zr_2O_7$ as a function of temperature. The high-temperature data are taken from enthalpy increment measurements (Table 6) and the low-temperature data are selected data from c_p measurements in an adiabatic calorimeter (Tables 4 and 5).

Т (К)	c_p^o (J/mol · K)	S° (J/mol · K)	$\begin{array}{l}H^{\circ}-H^{\circ}(0)\\(J/mol)\end{array}$	$\frac{-\{G^{\circ} - H^{\circ}(0)\}}{(J/mol \cdot K)}$	
20	1.493	0.5733	8.6	0.1433	
30	8.782	2.373	55.45	0.5243	
40	18.88	6.237	192.3	1.431	
50	30.00	11.57	433.4	2.902	
60	42.15	18.10	793.5	4.877	
70	54.60	25.53	1277	7.288	
80	66.92	33.61	1884	10.07	
9 0	79.31	42.23	2616	13.10	
100	91.34	51.21	3470	16.51	
110	102.85	60.44	4440	20.08	
120	114.08	69.87	5524	23.84	
130	124,78	79.43	6719	27.75	
140	135.04	89.06	8019	31.78	
150	144.71	98.71	9418	35.92	
160	153.89	108.35	10.912	40.15	
170	162.36	117.93	12.493	44.44	
180	170.71	127.45	14.159	48.79	
190	178.07	136.87	15 903	53.10	
200	185.05	146.19	17 719	57.60	
210	191.81	155 38	19 604	62.03	
220	197 71	164 44	21 551	66 48	
230	203.61	173.36	23 558	70 94	
240	208.91	182 14	25,550	75 39	
250	213.83	190 77	27 735	79.83	
260	218.33	199.25	29,897	84.26	
270	222 69	207 57	32 102	88.67	
280	226.82	215 74	34 350	93.07	
200	220.82	213.74	36 638	07 44	
290	230.00	220.77	38 531	100.98	
300	233.74	231.66	38.065	101.78	
300	234.33	231.00	13 778	101.78	
320	241.44	247.03	45,720	118.86	
260	247.02	201.80	52 620	10.00	
380	257.50	289.98	58,738	135.41	
			(C) 119(200)		
C _p	<u> </u>	$H^{\circ} - H^{\circ}(298)$	$-\{G^{\circ} - H^{\circ}(298)\}$	$\int \frac{\Delta_{\rm f} H^{\circ}}{\Delta_{\rm f}}$	$\Delta_{\mathbf{f}}G$
mol·K)	$(J/mol \cdot K)$	(J/mol)	(J/mol·K)	(J/mol)	(J/mol)
233.74	230.21	0	230.21	-4,133,800	-3,923,187
234.59	231.66	434	230.21	-4,133,749	-3,921,877
200.00	303.01	25,295	239.77	-4,130,212	-5,851,744
2/4.94	362.74	52,093	258.56	-4,125,475	-3,782,659
85.69	413.86	80,148	280.28	-4,120,346	-3,714,576
294.46	458.58	109,167	302.63	-4,115,089	-3,647,363
502.18	498.41	139,006	324.65	-4,109,796	-3,580,905
809.28	534.42	169,583	345.99	-4,104,506	-3,515,115
516.00	567.35	200,850	366.51	-4,105,192	-3,449,901

Table 4. Thermodynamic functions of Ce₂Zr₂O₇

coordination numbers in a pyrochlore structure [18]. The enthalpies of formation that could be estimated with the regression function are given in the right column of Table 2. The data are graphically represented in Fig. 1. The enthalpy of formation from oxides of lanthanum zirconate, determined by Bolech *et al.* [9] as $136.1 \text{ kJ} \cdot \text{mol}^{-1}$, deviates from the estimate in Table 2 ($125.2 \text{ kJ} \cdot \text{mol}^{-1}$). Because Korneev used an oxygen bomb calorimeter, pyrochlore formation may have been incomplete (glassy phases and lattice defects in the pyrochlore could have been produced without being noticed in the subsequent check with X-ray diffraction). Furthermore the error $(2 \cdot s_{mean})$ in the data of Korneev *et al.* $(20 \text{ kJ} \cdot \text{mol}^{-1})$ is about 3 times as large as the error in $\Delta_{\text{f from oxides}}H^\circ$ for

> La₂Zr₂O₇ reported by Bolech *et al.* $(6.4 \text{ kJ} \cdot \text{mol}^{-1})$. Therefore this enthalpy of formation of La₂Zr₂O₇ was extrapolated, using the $d_{\text{Ln}-\text{O}}$ dependence of function 1 (from Korneev's data) multiplied by 136.1/125.2, to deduce the enthalpies of formation from oxides of Ln₂Zr₂O₇ according to:

$$\Delta(\Delta_{\rm r}H^{\circ}) = \Delta(d_{\rm Ln-O})^{-1} \cdot (1655 \pm 292) \,\rm kJ \cdot mol^{-1}$$
(3)

where

$$\Delta(\Delta_{\rm r}H^{\rm o}) = \Delta_{\rm f\ from\ ox}H^{\rm o}({\rm Ln}_2{\rm Zr}_2{\rm O}_7) - \Delta_{\rm f\ from\ ox}H^{\rm o}({\rm La}_2{\rm Zr}_2{\rm O}_7)$$
(4)

	T	Cp ^o	S°	$H^{\circ} - H^{\circ}(0) -$	$\{G^{\circ} - H^{\circ}(0)\}/T$	
	<u>(K)</u>	$(J/mol \cdot K)$	$(J/mol \cdot K)$	(J/mol)	(J/mol · K)	
	20	3.892	1.315	19.72	0.3287	
	30	12.59	4.369	98.05	1.101	
	40	24.44	9.602	282.8	2.533	
	50	36.75	16.37	588.3	4.603	
	60	49.29	24.17	1018	7.202	
	70	61.87	32.72	1574	10.23	
	80	74.38	41.79	2255	13.60	
	90	86.03	51.22	3057	17.26	
	100	97.52	60.88	3975	21.14	
	110	108.41	70.69	5005	25.19	
	120	118.84	80.57	6141	29.40	
	130	128.34	90.46	7377	33.71	
	140	137.51	100.31	8707	38.12	
	150	146.19	110.10	10,126	42.59	
	160	154.60	119.81	11,630	47.12	
	170	161.92	129.40	13,213	51.67	
	180	169.37	138.87	14,870	56.26	
	190	175.64	148.18	16,593	60.85	
	200	181.94	157.35	18,380	65.45	
	210	187.54	166.35	20,227	70.04	
	220	192.60	175.19	22,127	74.62	
	230	197.61	183.87	24,078	79.18	
	240	202.06	192.37	26,077	83.72	
	250	206.24	200.71	28,118	88.23	
	260	210.13	208.87	30,200	92.71	
	270	213.87	216.87	32,320	97.17	
	280	217.14	224.71	34,475	101.58	
	290	220.26	232.38	36,663	105.96	
	298.15	223.05	238.53	38,470	109.50	
	300	223.41	239.91	38,883	110.30	
	320	229.12	254.53	43,413	118.86	
	340	234.03	268.56	48,045	127.26	
	360	238.41	282.06	52,769	135.48	
	380	241.55	295.05	57,571	143.54	
		C ⁰	110 110(200)	(0.0 110/200))		
``	$C_{\rm p}$	\mathcal{S}	$H = H^{-}(298)$	$-\{0^{\circ} - H^{\circ}(298)\}_{i}$	$(I \Delta_{\rm f} H^{\circ})$	$\Delta_{f}G$
)	(J/mol·K)	(J/mol·K)	(J/mol)	(J/mol·K)	(J/mol)	(J/mo
98.15	223.05	238.53	0	238.53	-4,130,400	-3,930
00	223.41	239.91	413	238.53	-4,130,372	-3,929
00	243.45	307.25	23,869	247.58	-4,128,088	-3,862
00	255.42	362.95	48,851	265.25	-4,124,859	-3,796
00	264.26	410.33	74,852	285.58	-4,121,900	-3,730
00	271.63	451.63	101,655	306.41	-4,118,108	-3,666
00	278.22	488.34	129,152	326.90	-4,114,334	-3,601
00	284.35	521.47	157,284	346.71	-4,110,613	-3,537
)00	290.20	551.73	186,013	365.72	-4,106,941	-3,474

Table 5. Thermodynamic functions of La₂Zr₂O₇

and

Т (K)

$$\Delta (d_{\text{Ln-O}})^{-1} = (r_{\text{Ln}} + r_{\text{O}})^{-1} - (r_{\text{La}} + r_{\text{O}})^{-1} \qquad (5)$$

Using the method described, the following table of enthalpies of formation (from the constituent oxides) can be compiled.

4. RESULTS AND DISCUSSION

The low-temperature heat capacity measurements are shown in Figs 2 and 3. No phase transitions of any kind were observed for La₂Zr₂O₇ nor Ce₂Zr₂O₇. Smoothed thermodynamic functions were evaluated by extrapolating to 0 K and integrating. Values of the functions at selected temperatures are given in Tables 4 and 5. For the very lowest temperatures the experimental heat capacity of cerium zirconate drops to lower values than would be expected (e.g. compared with $La_2Zr_2O_7$ or from a Debye extrapolation). This is probably due to residual entropy stemming from lattice defects introduced by sintering in a hydrogen containing atmosphere. The effect is small however, and probably can not be prevented because of the rapid oxidation of $Ce_2Zr_2O_7$ under atmospheres with traces of oxygen. Interestingly, this phenomenon was not observed for cerium silicate even though its preparation was done under argon plus 5% hydrogen too [19].

The high-temperature enthalpy increments are

439

	-•.	2				
${H^{\circ}(T) - H^{\circ}(298.15)}/(J/mol)$						
T/K	exp.	calc.	$\Delta\%$			
(a) Cc ₂	Zr ₂ O ₇					
500.7	51,990	52,286	-0.57			
526.3	59,193	59,366	-0.29			
577.8	73,489	73,829	-0.46			
623.5	87,123	86,888	0.27			
669.8	100,137	100,312	-0.17			
715.8	114,022	113,830	0.17			
762.2	127,977	127,637	0.27			
808.0	141,658	141,426	0.16			
849.6	154,076	154,083	0.00			
896.4	168,140	168,470	-0.20			
(b) La ₂	Zr_2O_7					
480.8	43,684	43,966	-0.64			
526.7	55,594	55,705	-0.20			
573.0	67,633	67,746	-0.17			
619.0	79,712	79,887	-0.22			
665.3	92,313	92,271	0.05			
711.2	104,837	104,701	0.13			
757.7	117,884	117,440	0.38			
803.7	130,229	130,182	0.04			
850.2	143,106	143,198	-0.06			
897.6	156,421	156,601	-0.12			

Table 6. Enthalpy increments of $La_2Zr_2O_7$ and $Ce_2Zr_2O_7$

listed in Table 6, and were fitted to obtain smoothed high temperature data. Boundary conditions for the fit were $\{H^{\circ}(T) - H^{\circ}(298.15)\} = 0$ at T = 298.15 K and c_{p}° at 298.15 K = value obtained from adiabatic calorimetry (as listed in Tables 4 and 5). For Ce₂Zr₂O₇ the following function was obtained (500-900 K):

$$H^{\circ}(T) - H^{\circ}(298.15) = \{4,078,234 \cdot (T/K)^{-1} + 262.4280 \cdot (T/K) + 0.02882741 \cdot (T/K)^{2} - 94,483.9\} \text{ J/mol}$$

For $La_2Zr_2O_7$ the obtained function reads:

$$H^{\circ}(T) - H^{\circ}(298.15) = \{3,034,999.2 \cdot (T/K)^{-1} + 241.88260 \cdot (T/K) + 0.02567399 \cdot (T/K)^{2} - 84,579.0\}$$
 J/mol

The standard deviations in these fits are 282 J/mol for cerium zirconate and 222 J/mol in the case of lanthanum zirconate. The smoothed thermodynamic properties of cerium and lanthanum zirconate from 298.15 to 1000 K were derived from the given functions. For selected temperatures the values are given in the lower sections of Tables 4 and 5, respectively. The values for $\Delta_f H^{\circ}$ and $\Delta_f G^{\circ}$ have been calculated using the enthalpies of formation discussed before and data on the pure elements taken from the works of Cordfunke and Konings [20]. As can be seen in Fig. 4, the sets of data for low and high temperature measurements join smoothly at room temperature. As neither of the two zirconates were measured before, there are no literature values to compare.

REFERENCES

- Fu-k'ang F., Kuznetsov A. K. and Keler E. K., *Izv.* Akad. Nauk SSSR, Ser. Khim 7, 1151 (1964).
- Portnoi K. I., Timofeeva N. I., Salibekov S. E. and Romanovich I. V., *Izv. Akad. Nauk SSSR*, *Neorg. Mat.* 8, 406 (1972).
- Yoshimura M. and Sata T., Bull. Tokyo Inst. Technol. 108, 25 (1972).
- Heussner K. H. and Claussen N., J. Am. Ceram. Soc. 72, 1044 (1989).
- Leonov A. I., Andreeva A. B. and Keler E. K., *Izv. Akad. Nauk SSSR*, *Neorg. Mater.* 2, 137 (1966).
- 6. McCauley R. A. and Hummel F. A., J. Lumin. 6, 105 (1973).
- Korf S. J., Koopmans H. J. A., Lippens B. C., Burggraaf A. J. and Gellings P. J., J. Chem. Soc., Faraday Trans. 1 83, 1485 (1987).
- Labrincha J. A., Frade J. R. and Marques F. M. B., J. Mater. Sci. 28, 3809 (1993).
- Bolech M., Cordfunke E. H. P., Janssen F. J. J. G. and Navrotsky A., J. Am. Ceram. Soc. 78, 2257 (1995).
- Ingo G. M. and Righini G., Appl. Surf. Sci. 55, 257 (1992).
- Ingo G. M., Dal Maschio R. e Scioppio L., Surf. Interface Anal. 18, 661 (1992).
- 12. JCPDS card # 8-221.
- van Miltenburg J. C., van den Berg G. J. K. and van Bommel M. J., J. Chem. Thermodyn. 19, 1129 (1987).
- 14. Cordfunke E. H. P., Muis R. P. and Prins G., J. Chem. Thermodynamics 11, 819 (1979).
- Cordfunke E. H. P., Konings R. J. M. and van der Laan R. R., Thermochimica Acta 157, 315 (1990).
- Korneev V. R., Glushkova V. B. and Keler E. K., Izv. Akad. Nauk SSSR, Neorg Materialy 7, 886 (1971).
- 17. Shannon R. D., Acta Cryst. A 32, 751 (1976).
- 18. McCauley R. A., J. Appl. Phys. 51, 290 (1980).
- Bolech M., Cordfunke E. H. P., van Genderen A. C. G., van der Laan R. R., Janssen F. J. J. G. and van Miltenburg J. C., (to be published).
- Cordfunke E. H. P. and Konings R. J. M. (Editors) Thermochemical data for reactor materials and fission products North-Holland, Amsterdam (1990).