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1

SCOPE OF THE THESIS

1.1 INTRODUCTION

In many industrial and scientific disciplines there is a great interest in predicting the outcome of
physical processes by computer simulations. For example, for the design of burners in industrial
and domestic applications, the influence of variations in the composition of (natural) gas on the
combustion process is studied. Subjects such as flame stability and the prediction of the composi-
tion of exhaust gases are of main importance. Other examples are in aerospace industry where the
air flow around aeroplanes is studied to predict loads on the structure of a plane, in geophysical
science where one studies the dispersion of pollutants in ground and surface water to predict the
quality of water resources, and in petro-chemical industry where porous media flow simulation
is used to predict the recovery of oil from a well. The basis of the simulations is a mathemat-
ical model describing the underlying physical process. Many physical processes are described
by models involving partial differential equations inside a domain of definition, completed with
conditions at the boundary of the domain. Such models are called boundary value problems.

Usually the boundary value problems describing a physical process are too complex to obtain
an analytical solution, and they have to be solved mumerically. To obtain a numerical solution, the
partial differential equations and the boundary conditions are discretized using a grid consisting
of a finite number of points. The discretization process leads to a system of algebraic equations.
By solving this system one obtains a numerical approximation of the solution of the boundary
value problem on the grid. Clearly the grid size needed {or a reasonable representation of (an
approximation of) the solution depends on the variations of the solution. The finer the grid is, the
larger the system of algebraic equations and the higher the computational costs, i.e. CPU time
and memory requirements, are.

Often the variations of the solution are large only in a part of the domain and small anywhere
else. For such problems a uniform grid over the whole domain contains a large number of re-
dundant grid points. To approximate the solution, a large system of algebraic equations has to be
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Figure 1.1 A uniform fine grid and a truly non-uniform refined grid.

solved and information has to be stored at a large number of grid points. In general the advan-
tages of using a uniform grid, like simple data structures and the existence of simple, accurate dis-
cretization stencils and fast solution techniques for the resulting systems of algebraic equations,
do not counterbalance the disadvantage of having so many redundant grid points, and the use of
a global uniform grid is computationally inefficient. In such a situation adaptive grid methods
prove to be beneficial, since these methods attempt to adapt locally the grid size to the behaviour
of the solution.

Adaptive grid methods can be divided into two classes: methods using a priori adapted grids
and self-adaptive grid methods. In many numerical simulations requiring local refinement, it is
known in advance where the grid needs to be refined and at what scale. In this case a method us-
ing an a priori adapted grid can be applied. With the available information a locally refined grid
is generated. Then, an approximation of the solution is computed on this adapted grid. In many
other cases, however, the knowledge of whete to refine has to be obtained dynamically from fea-
tures of the emerging solution. In self-adaptive grid methods a posteriori error estimates on a
given grid are used to decide where to adapt this grid. The grid adaptation process is performed
recursively, starting from a coarse basis grid. Clearly, self-adaptive grid methods are more com-
plex than methods using a priori adapted grids. In this thesis we study the solution of boundary
value problems on a priori adapted grids.

In order to construct a grid which is adapted to the local behaviour of the solution, a local grid
refinement technique is applied. A great variety of local grid refinement techniques exists. The
counterpart of global uniform grid refinement is pointwise grid refinement. The pointwise grid
refinement technique leads to a truly non-uniform refined grid. In such a grid there is hardly any
structure in the position of the grid points. A grid point may be positioned anywhere inside the
domain and the distance between the grid points can be as small or as large as the variations in the
solution require. Such grids are mainly used in finite element computations. In Figure 1.1 botha
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Figure 1.2 Composite grids.

global uniform fine grid and a truly non-uniform grid are shown. Clearly, truly non-uniform grids
can be very well adapted to the variations of the solution in any part of the domain. An important
disadvantage is that such truly non-uniform grids result in rather complex data structures. The
data structure problem is even more pronounced for three space dimensions.

1.2 COMPOSITE GRIDS

Compromising between the extremes of globally uniform grid refinement and pointwise adaptive
grid refinement, each with its obvious advantages and disadvantages, leads to the use of locally
uniform grid refinement techniques. In these techniques a coarse basis grid, covering the whole
domain, is locally uniformly refined in certain parts of the domain. Locally uniform grid refine-
ment techniques result in composite grids with locally refined regions. In Figure 1.2 two com-
posite grids are shown. In Figure 1.2.a the locally refined regions are nested, which is typical for
composite grids resulting from a self-adaptive local uniform grid refinement technique. The grid
in Figure 1.2.b is a typical example of an a priori adapted composite grid.

Locally uniform grid refinement methods have been proposed in many different varieties. They
are used to solve elliptic partial differential equations in [18],[29],[48], hyperbolic partial differen-
tial equations in [1],[4],[28] and parabolic partial differential equations in [24],[64]. Self-adaptive
locally uniform grid refinement methods resulting in a sequence of locally nested grids are com-
bined with a multigrid solution technique in [7],[9]. In [43],[44] a self-adaptive multigrid method
with locally uniform grid refinement for solving the Euler equations is developed. There also the
discretization of steady conservation laws in the neighbourhood of coarse and fine grid interfaces
is studied.

In this thesis we consider the solution of boundary value problems on a certain class of a priori
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Figure 1.3 Global coarse grid with a rectangular and an L-shaped region of local refine-
ment.

adapted composite grids. Here we briefly describe typical examples from this class of composite
grids. In these examples we consider the case of two space dimensions and only one region of
local refinement.

The composite grids which we consider result from a uniform basis grid with grid size H cov-
ering a domain of definition by uniform refinement in a subregion of the domain, the so-called
region of local refinement. The uniform basis grid is called the global coarse grid. The region
of local refinement is assumed to be the union of a set of neighbouring coarse grid cells!. It is
assumed that at least one grid point of the global coarse grid lies in the interior of this region. In
Figure 1.3 two examples of local refinement regions satisfying the above assumptions are shown.
The part of the global coarse grid inside the region of local refinement is uniformly refined by a
factor o € IN, the so-called refinement factor. The uniform grid with grid size & = H/o, covering
the region of local refinement, is called the local fine grid. The composite grid is composed of the
global coarse grid and the local fine grid. In Figure 1.4 examples of a global coarse grid, a local
fine grid and a composite grid are shown.

In this thesis we study the solution of boundary value problems on composite grids as de-
scribed above. It is assumed that the variations of the solution of the boundary value problem are
relatively large in a small part of the domain, so that a locally strongly refined composite grid (i.e.
o > 1) is needed for numerically approximating the solution. For discretizing the boundary value
problem, finite difference methods will be used.

The composite grids described above have several attractive properties. Since they are highly
structured, data structures are very simple. The position of all grid points can be determined from
a small number of parameters. So, the composite grids are very manageable in a practical imple-
mentation. In some part of the domain the grid can be locally refined to any scale required by the
variations of the solution. So, the solution can be efficiently and accurately approximated on the
composite grid. Since the composite grid is composed of uniform subgrids, discretization of the
boundary value problem is standard in the greater part of the domain. At most grid points accu-
rate, uniform difference stencils can be used. Only at certain grid points on and near the coarse

THere a coarse grid cell is a square of size H generated by four grid points of the global coarse grid.
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a)

Figure 1.4 a) Global coarse grid and local fine grid; refinement factor 4. by Composite
grid with interface grid points (s) and slave points (o).

and fine grid interface the discretization process is non-standard and needs special care.

A large part of the computational work for pumerically approximating the solution of a bound-
ary value problem consists of solving systems of algebraic equations. In this thesis we study it~
erative methods which predominantly use the uniform subgrids underlying the composite grid.
In these methods systems of algebraic equations are solved on the uniform subgrids only. Often
systems of algebraic equations resulting from discretization on uniform grids can be solved very
efficiently.

Although in the examples above we consider two-dimensional composite grids composed of
two uniform subgrids, it should be emphasized that the methods and many of the results presented
in this thesis can be generalized to several other situations in a straightforward way. For the main
results we will give comments on possible generalizations. Here we already mention that the as-
sumption of one local fine grid is not restrictive. The methods and analysis in chapters 2-5 can
be easily generalized to composite grids composed of a global coarse grid and a number of local
fine grids, covering disjoint regions of local refinement. An example of such a grid is given in
Figure 1.2.b. We do not consider composite grids composed of a global coarse grid and a nested
sequence of local grids as in Figure 1.2.a. Instead of gradual refinement by a sequence of nested
uniform subgrids, where the refinement factor for two consecutive grids is only 2, we consider an
abrupt refinement by only one local fine grid. Finally we mention that the methods in chapters 2
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and 5 and the analysis in Chapter 3 can be easily generalized for three space dimensions.

1.3 CONTENTS OF THE THESIS

In the literature ([71,[30],{46]) one can find three basic iterative methods for approximating the
solution of boundary value problems on composite grids. In Chapter 2 these three methods are
introduced and compared. We believe that a uniform presentation and analysis of these methods
is a novelty. The methods are described for a model linear elliptic boundary value problem and a
model composite grid. The boundary value problem is discretized using finite difference methods.
In the local defect correction (LDC) method the boundary value problem is discretized both on the
uniform global coarse grid and on the uniform local fine grid. The right hand sides of the discrete
equations on the uniform subgrids are adapted in an iterative process. Each iteration step yields
approximations of the solution of the boundary value problem on the uniform subgrids. In the
LDC method no discretization of the boundary value problem on the composite grid is needed.
The fast adaptive composite grid (FAC) method is of a different nature. This is an iterative method
for solving an a priori given discretization of the boundary value problem on the composite grid.
The solution of the composite grid discretization is approximated by solving systems of algebraic
equations on the uniform global coarse grid and on the uniform local fine grid. The multi-level
adaptive technique (MLAT) is a multigrid approach on grids with local refinements. Like in the
LDC method the boundary value problem is discretized only on the uniform global coarse grid
and on the uniform local fine grid. For solving the systems of algebraic equations on the local fine
grid, a two-grid method is used.

Both for the LDC method and for the MLAT method the composite grid discretization, which
is actually solved by the method, ts an implicit result of the method itself. These composite grid
discretizations are the key to an analysis of the LDC method and the MLAT method. In Chapter 3
the composite grid discretization related to the LDC method is derived. Also an expression for the
iteration matrix of the LDC method is derived. In order to compare the LDC method and the FAC
method, the latter is applied to the composite grid discretization related to the LDC method. It is
shown that then, with a suitable choice of the initial approximation in the FAC method, the LDC
iterates and the FAC iterates are the same. For the MLAT method the composite grid discretization
which is actually solved by the method is derived too. The composite grid discretizations related
to the LDC method and the MLAT method are compared. It is shown that the composite grid
discretization related to the ML AT method depends on the restriction operator used in MLAT for
restricting local fine grid approximations to grid points of the global coarse grid,

In Chapter 4 the composite grid discretizations related to the LDC method and the MLAT
method are studied. Global discretization error estimates are derived for these two composite grid
discretizations, as well as for a third composite grid discretization, which is characterized by the
use of non-uniform finite difference stencils at the grid points on the coarse and fine grid interface.
First the composite grid discretizations are compared for the one-dimensional Poisson problem. It
is shown that already for this simple one-dimensional problem, the composite grid discretization
related to the LDC method has important advantages compared to the other two composite grid
discretizations. It is concluded that, from a discretization point of view, in the MLAT method
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trivial injection should be used for restricting local fine grid approximations to grid points of the
global coarse grid. The favourable properties of the composite grid discretization related to the
' LDC method remain valid for two space dimensions. For the two-dimensional Poisson problem
a sharp global discretization error bound, which is valid without restrictions on the coarse grid
size H, the fine grid size h and the refinement factor o = H/ h, is derived. This is a new result for
finite difference discretization error estimation on composite grids in which the two grid sizes H
and % are essentially independent.

In chapters 2-4 linear boundary value problems are considered. In Chapter 5 two methods for
solving nonlinear boundary value problems on composite grids are described. The first one, the
nonlinear LDC method, is a combination of an outer local defect correction iteration with inner
Newton iterations for solving systems of nonlinear equations on the uniform subgrids. Sufficient
conditions are given for the nonlinear LDC method to be well-defined, i.e. for all systems of non-
linear equations in the nonlinear LDC method to have a locally unique solution. It is shown that
the nonlinear LDC method is closely related to a composite grid discretization of the boundary
value problem. In the second method, called the Newton-FAC method, this composite grid dis-
cretization is solved by an outer Newton iteration and inner FAC iterations for solving Jacobian
systems on the composite grid.

In Chapter 6 the numerical simulation of flat flames on composite grids is considered. The
numerical simulation of a combustion process typically requires the use of locally strongly refined
grids, since the chemically active layer, where the variations in the variables are large, is relatively
small compared to the size of the computational domain. The governing equations for reacting
gas flow in general and for burner stabilized flat flames in particular are summarized. A one-
dimensional combustion model problem is derived and the nonlinear LDC method from Chapter
5 is applied to this model problem. Properties of the nonlinear LDC method are illustrated by
numerical results. For example, the errors in the approximations resulting after 0, 1 and 2 local
defect correction steps are considered, as well as the error in the approximation obtained in the
limit by the nonlinear LDC method.
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INTRODUCTION OF ITERATIVE
METHODS ON COMPOSITE
GRIDS

In this chapter we describe three iterative methods for solving boundary value problems on compos-

ite grids: local defect correction {due to Hackbusch [301), the fast adaptive composite grid method
(due to McCormick [46]) and the multi-level adaptive technique (due to Brandt [7]). A basic feature
of the methods is that the greater part of the work is carried out on uniform subgrids. The methods
are all described for the same model setting,

The model boundary value problem and the model composite grid are introduced in Section
2.1. The local defect correction method is presented in Section 2.2. First the method is introduced
for the model setting. Then some typical features of the method are illustrated by numerical results
and important generalizations are discussed. In the local detect correction method boundary value
problems are discretized on uniform subgrids only, not on the composite grid. The discrete prob-
lem on the composite grid which is actually solved by the method is not a priori given, but it is an
implicit result of the iterative process. On the other hand, the fast adaptive composite grid method
is an iterative method for solving an a priori given discrete problem on a composite grid. The fast
adaptive composite grid method is presented in Section 2.3, The multi-level adaptive technigue,
which is presented in Section 2.4, is derived from the multigrid method for approximately solving
boundary value problems. As for the local defect correction method, the discrete problem on the
composite grid which is actually solved by the multi-level adaptive technique is an implicit result of
the iterative process. In Section 2.5 we discuss the similarities and the differences between the three
iterative methods. We use several results from Chapter 3, in which the three methods are analysed.

21

MODEL PROBLEM

In this section we introduce a simple model problem to be used for clarifying the iterative methods
in the sections following. The model problem is suitable for introducing the basic concepts of the
methods without the concern of technical and notational details.

The model boundary value problem1s the two-dimensional Poisson problem on the unit square
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with Dirichlet boundary conditions,

—Ay = f in£2:=(0,1) x (0, 1), (2.1a)
u=¢ on 0%Q2. 2.1b)

Here f is a given function on £, ¢ a given function on the boundary 9 of the domain £ and
A= a%zg + %2;, the Laplace operator. The closure of € is defined by = QU Q2. We assume
that the boundary value problem (2.1) has a unique solution, #* € C*(Q)N C (), and that the
variations of the solution are relatively large in some part of the domain and relatively small in
the remainder of the domain. The part of the domain where the variations of the solution are
relatively large is called the high activity region.

The model composite grid 2% is composed of a global coarse grid and a local fine grid. The
global coarse grid Q¥ is a uniform grid with grid size H covering the domain £

QF.=QinQ, 2.2)
with A
QF .= {(x,y)e R*|x/H e IN, y/H € IN}. 2.3)
We assume that 1/H € IN. The local fine grid Q! is a uniform grid with grid size h < H, covering
the region of local refinement Sy := (0, y1) x (0, 1) C
Q =", (2.4)
with
Q" :={(x,y) e R*|x/he N, y/h € N}. 2.5)

We assume that y3/H € IN, yo/H € IN and H/h € IN. The interface T is defined as the part of
the boundary 3€2; of 2; which lies inside €2,

=09 NnaQ. (2.6

We assume that the high activity region of the boundary value problem (2.1) lies inside the sub-
region ;. The composite grid Q™" is defined by

Qi .= Qi yQh, Q.7

and is shown in Figure 2.1.
The refinement factor o is defined as the ratio of the coarse grid size H and the fine grid size
h,
o:=H/h. 2.8)
Since we have assumed that H/h € IN, the refinement factor is an integer. In this thesis the re-

finement factor is an important parameter. We are particularly interested in composite grids with
large refinement factors.
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Figure 2.1 The uniform grids Qf, Q% and QF, and the composite grid Q" for
H=1/6,0=2and y) =y, = 1/2.

Remark 2.1 Often sequences of locally nested uniform grids of decreasing grid size are used for
solving boundary value problems. The grid size ratio of two consecutive grids is usnally small
(e.g., 2). In this thesis we consider a global coarse grid 2 and one local fine grid QF and a large
refinement factor o = H/h (e.g., 0 = 16). O

Besides the uniform global coarse grid ¥ and the uniform local fine grid 2%, another two
uniform grids are used in this chapter. The local coarse grid QF is defined by

Qf = QP N, 2.9)

with Q7 from (2.3). The local coarse grid Q@ is a uniform grid with grid size H, covering the
subregion §; (see Figure 2.1). Since H/h € IN, all grid points of F are grid points of the local
fine grid ¥ too. The local coarse grid Q7 will be used in the local defect correction method. The
global fine grid Q" is defined by
Q= QF N Q, (2.10)

with QF from (2.5). The global fine grid ©2* is a uniform grid with grid size k covering .

We conclude this section with some definitions and notation concerning functions on grids.
We recall that a grid is a set of points.

Definition 2.2 A gridfunction on a grid V is amapping v: V — IR. The set of all grid functions
on a grid V is denoted by (V).

Definition 2.3 The restriction w,, : V — R of a (grid) function w : W — Rtothegrid VC W

is defined by

ly

ww(x) = wX) xe V.
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Definition 2.4 The maximum norm of a grid function v € (V) is defined by

vl := max [u(x).

Definition 2.5 For an ordering of the grid points of a grid V, say x;, X3, ..., Xy, the vector rep-
resentation of a grid function v € F(V) is defined by

v = (U(xy), v(x2), ..., v(x))Y.

The component of the vector v corresponding to a grid point x € V is denoted by v(x).

The notion of grid functions and vector representations will be used throughout the remainder of
this thesis.

2.2 THE LOCAL DEFECT CORRECTION (LDC)
METHOD

In this section we describe the local defect correction (LLDC) method. In Subsection 2.2.1 the
LDC method is introduced for the model boundary value problem and the model composite grid
from the previous section. Some properties of the method are illustrated by numerical results in
Subsection 2.2.2. The LDC method introduced here is a special case of a general local defect
correction technique due to Hackbusch [30]. Important generalizations of the LDC method are
considered in Subsection 2.2.3.

2.2.1 Description of the Method

The common approach for solving a boundary value problem on a grid consists of two steps. First
the boundary value problem is discretized on the grid and then the resulting system of equations
is solved. In the LDC method we do not a priori define discrete equations on the composite grid
Q% The LDC method is an iterative process and in each step systems of linear equations re-
sulting from discretizing the boundary value problem (2.1) on the global coarse grid £ and on
the local fine grid QF are defined and solved. The solutions of the discrete problems are used to
define an approximation of the solution of the boundary value problem (2.1) on the composite
grid Q%4

For discretizing on the uniform subgrids finite difference methods are used (see e.g. [321.[50]).
Ateach grid point the differential equation is approximated by an algebraic equation in which the
derivatives have been replaced by appropriate difference quotients. For discretizing the Poisson
problem (2.1) central differences in the x and y direction are used:

—~Aulx,y) = H  [4u(x, y) —u(x+ H, y) —u(x—H, y) —u(x, y+ H) —u(x,y— H)], 2.11)
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Figure 2.2 Values used to define artificial Dirichlet boundary values on the interface;
H=1/6, 1=y, =1/2.

for a uniform grid with grid size H. The formula on the right hand side of (2.11) is the well-
known five-point formula for the Laplace operator. Difference quotients at grid points close to
the boundary involve points on the boundary. Since we consider Dirichlet boundary conditions,
the values of the solution are given at the boundary points (cf. (2.1b)).

In the LDC method one starts by discretizing the boundary value problem on the global coarse
grid Q#. This yields the basic discretization

Lyl = f7 - onQF, (2.12)

which describes a system of linear equations for the unknowns {uf (x) | x € ). The Dirichlet
boundary values from (2.1b) are incorporated in the grid function f#. The finite difference op-
erator L¥ is a linear mapping, L% : F(Q) — F(QH). If we prescribe an ordering of the grid
points x € © then the grid functions uf and f# can be represented by vectors and the finite

difference operator can be represented by a matrix. In this chapter we mainly use the notation of

grid functions and operators.

The grid function u{ is an approximation of the solution of the boundary value problem (2.1).
This grid function is used for discretizing the boundary value problem (2.1) on the local fine grid
Q" At each grid point x € QF the differential operator in (2.1) is approximated using the five-
point formula for the Laplace operator, now for the grid size A. Difference quotients at grid points
close to the boundary 9€2 involve points on the boundary. The values of the solution at the bound-
ary points are given (cf. (2.1b)). Difference quotients at grid points close to the interface involve
points on the interface. The values at these interface points are determined from the coarse grid
values ué’(x), x € QF NT, and the the boundary values ¢(y1, 0), ¢(0, 1), by interpolation. In
this way artificial Dirichlet boundary values are defined on the interface (see Figure 2.2). The
discrete problem on the local fine grid Q! is denoted by

Liulo = fuf)  onQf, .13)

which describes a system of linear equations for the unknowns {1}, (x) | x € ©}}. The Dirichlet
boundary values on 9€2; N 982 (cf. (2.1b)) and the artificial Dirichlet boundary values on the inter-
face T" are incorporated in the grid function f* € F(Q!). The dependence of £ on the approx-
imation uf is denoted explicitly in (2.13). The finite difference operator L} is a linear mapping,
L F@ — F@.
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The approx1matlons ul! from (2.12) and u, o from (2.13) are used to define a composite grid
approximation “0 " of the solution of the boundary value problem (2.1),

By ufo(x) x€Qy
’ ull (x) xe QEMQE

By solving the local fine grid problem (2.13) we aim at improving the approximation of the
solution of the boundary value problem in the subregion £2;. However, the Dirichlet boundary
values on the interface result from the basic discretization (2.12). Hence the accuracy of the ap-
proximation u? 1o 18 restricted by the accuracy of the apprommamon ull on the interface. In general,
local phenomena inside ; cause the approximations uf (x) to be relatively inaccurate both at grid
points which lie inside £2; and at grid points which lie outside £2;. Therefore the accuracy of the
approximation uZ* is usually not in agreement with the added resolution (see Subsection 2.2.2).

In the local defect correction method the local fine grid approximation u} o is used to correct
the basic discretization (2.12) in the followmg way. The global coarse grid approximation “o and
the local fine grid approximation u}, are combined to define the global coarse grid function w¥,

h H
Hoon . | o) x €8
W) ‘_H wl(x) xeQN\QF

Substituting this grid function in the basic discretization yields a residual grid function or defect,

af = [HyH — fH
The values of this defect at grid points inside £2; are used to update the right hand side f¥ of the
basic discretization,
_ FAE)+di(x) xeQf
A =1 "y L
) x € Q°\&
The updated coarse grid problem reads
Lhf = Gl ul) on Q. (2.14)
The dependence of FH on the approximations “?,o and ul! is denoted explicitly in (2.14).

Remark 2.6 Suppose that the subregion £2, coincides with the domain (i.e. §; = £2). Then the
values of uf! are equal to the values of the (global) fine grid approximation at all grid points of
the global coarse grid. Hence, given the fine grid approximation, we have defined in (2.14) an
optimal correction for the basic discretization (2.12). ]

Equation (2.14) yields an approximation u}’ of the solution of the boundary value problem
(2.1) on the global coarse grid Q¥. Like the approximation «{, the approximation #¥ is used to
define artificial Dirichlet boundary values on the interface. The related discrete problem on the
local fine grid Qf‘ reads (cf. (2.13)

Ly = fady  onQh. 2.15)
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The approx1mau0ns ul? from (2.14) and z;g ; from (2.15) are used to define a composite grid
approximation ul * of the solution of the boundary value problem (2.1),

Hk( )= uﬁl(x) X € SZ;‘
uf (x) xe QEMQ!

In the local defect correction method the steps described above are performed iteratively. First,
an initialization step is carried out by solving the basic discretization (2.12) and the related discrete
problem on the Iocal fine grid (2.13). Then, at each iteration step, an updated discrete problem on
the global coarse grid (cf. (2.14)) and a related discrete problem on the local fine grid (¢f. (2.15))
are solved.

LDC algorithm

Initialization:

Solve the basic discretization
Lyl = 1 on Qf, (2.16a)
Solve the local discrete problem

Lhuly = o) on QL. (2.16b)

Define the composite grid approximation

o ul olX) X € Qh
' = . 2.16
o () { ui(x) xeQfnQ (2-160)
Iteration, i =1,2,...:
Correct the right hand side of the basic discretization
A H
wi(x) = { gi,;f”] ) *e Q;, ,
u (%) x & 29\8; (2.16d)
() A+ Ll — () xeQff '
FR= x e QIM\QF
Solve the global discrete problem
LA = FHGl,_ufl)  on @ (2.16¢)

Solve the Iocal discrete problem

Liuf = f ) on Q. (2.166)
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Define the composite grid approximation

ulth(x) .= { uﬁi(x) xeQ

. 2.16
WH(x) xeQinQh (2.16¢)

In each step of the LDC iteration two systems of linear equations, one on the global coarse
grid Q¥ and one on the local fine grid Q%, are defined and solved. The system of linear equations
on the composite grid " which is actually solved by the LDC method is an implicit result of the
iterative process. In Section 3.2 we derive this system and we consider the convergence behaviour
of the LDC method.

We emphasize that in the LDC method boundary value problem discretizations are used on
uniform subgrids only. Discretizing on uniform grids is relatively easy compared to discretiz-
ing on non-uniform grids. The data structure for a uniform grid is much simpler than for a non-
uniform grid and on a uniform grid simple and accurate finite difference approximations can be
used. Furthermore, the systems of linear equations which have to be solved are defined on uniform
grids. For systems of linear equations on uniform grids, fast iterative solution methods exist.

2.2.2 Numerical Results

In this subsection we illustrate some features of the LDC method by numerical results. We con-
sider both one-dimensional and two-dimensional problems. For one-dimensional problems the
interface consists of one or two points, and no interpolation on the interface is needed.

First we consider the one-dimensional Poisson problem

X)) = f(x), O<x<],

217
u(0) = o, u(l) = ¢;.

The function f and the values @o and ¢; are such that the two-point boundary value problem has
the solution

w(x) = —;—(tanh(%(x —-033)+ 1.

Boundary value problem (2.17) contains a high activity region near x = 0.33. For solving this
boundary value problem we use a global grid with grid size H = 1/16 and a local grid, covering
the subregion £; = (3/16, 8/16), with grid size h = 1/64. The second derivative in (2.17) is
approximated using central differences. In Figure 2.3 several approximations resulting from the
LDC method are shown. We observe that the approximation g which results from solving the
basic discretization is not only inaccurate at grid points near the high activity region, but also at
grid points outside the subregion ;. Hence the artificial Dirichlet boundary values at the interface
grid points are inaccurate and solving the related local fine grid discretization does not yield a
significantly more accurate approximation ué‘”’ on the composite grid. However, inside €, the
grid function ug‘h approximates the behaviour of the continuous solution quite well. In the local
defect correction step this information about the problem inside €; is used to update the basic
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Figure2.3 Approximations of the continuous solution (solid line) of the one-dimensional
Poisson problem (2.17) resulting from the LDC method with H = 1/16, o = 4,
2 = (3/16,8/16). a) coarse grid approximation u{? ; b) composite grid approximation
uthk; ¢) coarse grid approximation uf’; d) composite grid approximation 3",
discretization. After solving the updated basic discretization a much more accurate approximation
ul! on the global coarse grid results. After solving the related local fine grid problem we obtain
an accurate approximation uf“‘ on the composite grid. It can be shown (see [19]) that in this case
performing more local defect correction steps does not change the composite grid approximation
anymore.

The second example is the two-dimensional Poisson problem (2.1) with right hand side func-
tions f and g such that the continuous solution is given by

w(x,y) = %(tanh(%(x-}- y— 0.125&} +13.

This boundary value problem contains a high activily region near the line segment x + y = é
The solution #* is shown in Figure 2.4. We take Q; = {0, %) x {0, i), H=1/16,h = 1/128
and we use piecewise guadratic interpolation for defining artificial Dirichlet boundary values on
the interface. In Figure 2.5 the continuous solution and two LDC approximations are shown. The
markers in the figures correspond to values of the approximations at the grid points lying on the
diagonal y = x. The solid line represents the continuous solution on this diagonal. In Figure
2.5.d we zoom 1in on the region (0.1, 0.25) x (0.1, 0.25). We cobserve that the approximation
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Figure 2.4 The solution of the two-dimensional Poisson problem.
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Figure 2.5 Approximations of the continuous solution (solid line) of the two-dimen-
sional Poisson problem resulting from the LDC method with H = 1/16, o = 8,
Q; = (0, 1/4) x (0, 1/4). a) coarse grid approximation u;;f ; b) composite grid approxima-
tion aé"’}’; ) composite grid approximation u{" ok d) composite grid approximations uf‘k
(x) and uf (1),
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i Hu*}QH,h —u"M
0 2.29 107+
1 1.39 10~?
2 1.35 103
3 1.35 1072

Table 2.1 Errors in the iterates of the local defect correction method for the two-
dimensional Poisson problem.

ué"”' is relatively inaccurate near the interface. Performing one LDC step yields a much better

approximation #f>*. This is also illustrated by the values in Table 2.1. These values represent
the errors Hu*, QHA ™ uf“’“ilm for several LDC approximations zgf”’. Here u*| Lk TEpIESents the

restriction of the continuous solution 1* to @*. For the solution of the basic discretization (2.12)
we have Hu*‘ of ullloo = 6.08 1072, If the boundary value problem (2.1} is discretized on the

uniform global fine grid £2* from (2.10), using central differences at all grid points x € QF, then
the approximation «" results. The approximation «* satisfies }sz*l Qr oo = 1.44 1072, Thus

the accuracy of the approximation uf”" which results after one 1.DC step is comparable with the
accuracy of the global fine grid approximation 1", Clearly the number of grid points involved in
the LDC approach (~ 1.2 10%) is much less than the number of grid points involved in the global
fine grid approach (~ 1.6 10%).

For the examples above, one LDC step suffices to obtain a composite grid approximation with
an accuracy which is comparable with the accuracy of the corresponding global fine grid approx-
imation. We have observed that in many other cases one or two LDC iterations are sufficient.

2.2.3 Generalizations

In Subsection 2.2.1 we have introduced the LDC method for the two-dimensional Poisson prob-
lem (2.1) and the model composite grid 2%, However, the LDC method is not restricted to this
model setting. The method can be used for approximating the solution of a general linear second
order elliptic boundary value problem on a ‘general” composite grid, composed of a global coarse
grid covering the domain of definition and a local fine grid covering a region of local refinement.
The region of local refinement is assumed to be an open and connected subregion of the domain,
which contains at least one point of the giobal coarse grid. Further it is assumed that the intersec-
tion of a coarse grid cell’ with the region of local refinement is either empty, or the whole coarse
grid cell, or the half of the coarse grid cell above or below a diagonal of the coarse grid cell. Ex-
amples of a global coarse grid and admissible regions of local refinement are shown in Figure 2.6.
Also the composite grid may be composed of a global coarse grid and two or more local fine grids,
covering disjoint subregions of the domain. If the composite grid is composed of a global coarse
grid and m > 1 local fine grids, then m local discrete problems have to be solved in each LDC
step. Since these local problems are independent of each other, they can be solved in parallel. In

"Here a coarse grid cell is the interior of a square of size H generated by four grid points of the global coarse grid.
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[T

Figure 2.6 Global coarse grid with admissible regions of local refinement.

each LDC step the global discrete problem has to be solved before the local discrete problems,
since the right hand sides of the local problems depend on the solution of the global discrete prob-
lem (cf. (2.16f)). The application of LDC to nonlinear boundary value problems is considered in
Chapter 5. Finally itis noted that the local defect correction iteration can be generalized for three
space dimensions in a straightforward way.

The generalizations above concern the boundary value problem and the composite grid. In
the remainder of this subsection we consider three important generalizations of the local defect
correction process (2.16) itself: local defect correction with overlap, local defect correction with
inexact solution of the systems of equations, and local defect correction for coupling global and
local discretizations of a boundary value problem.

First we discuss local defect correction with overlap. In the LDC method (2.16) the right hand
side of the basic discretization is updated at all grid points of the local coarse grid QF (cf. (2.16d)).
This LDC method is a special case of the local defect correction method introduced by Hackbusch
in [30]. There a second local region w; © £ is introduced. The right hand side of the basic dis-
cretization is updated only at grid points of the local coarse grid off = Q¥ N w;. Hence, this
method is given by (2.16) with (2.16d) replaced by

h H
o . u,’,’_l(x) x €Ly
wix) = { ull, (x) x e QN\QF
F(x) = { A+ (LA — () xeof ‘
) x € Q¥\off

The everlap parameter d is defined as the distance between the interfaces doy N Q2 and I' = 9 N
Q. Itis assumed thatd is a multiple of the coarse grid size H. fd =0, i.e. of = Q¥ (no overlap),
then this method is the same as the LDC method (2.16). If d > 0, then the method differs from
(2.16) and it is called local defect correction with overlap.

Remark 2.7 In [30] it is shown by Hackbusch that the local defect correction process with over-
lap converges with a contraction number of order H*, « > 0, provided that H is sufficiently small
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and that d > 0 independent of H holds. The constant « > 0 depends on the consistency order of
the global and local discretizations and on the order of the interpolation on the interface. We con-
sider the convergence behaviour of the local defect correction method without overlap in Section
3.2, 0

Remark 2.8 In [19] we have considered the difference between the continuous solution of a lin-
ear elliptic boundary value problem and the approximation resulting after only one iteration step
of the local defect correction method with overlap. There it is shown that for convection domi-
nated problems an overlap parameter d > 0 should be used. W]

In each iteration step of the LDC method (2.16) a system of linear equations associated with
the global coarse grid and a system of linear equations associated with the local fine grid have to
be solved. Since these linear systems result from discretizing a boundary value problem they are
sparse. These linear systems can be solved using a direct method. In order to exploit the sparsity
one has to adapt these methods (see e.g. [12],[27]). However, in many cases the use of iterative
methods for solving these sparse linear systems approximately will be more efficient. Using an
 iterative method, the sparsity of the system matrix can be better exploited.

Remark 2.9 The iterative methods for solving sparse lincar systems are usually divided in three
classes: the basic iterative methods (e.g., Jacobi, Gauss-Seidel, SOR, SSOR), the Krylov sub-
space methods (e.g., CG, GMRES, BiCG) and the mudtigrid methods. For an overview and a de-
tailed analysis of the basic iterative methods we refer to Varga [65], Young [69], and Hackbusch
[33]. For an overview of the Krylov subspace methods we refer to Freund et al. [26] and Sleijpen
and Van der Vorst [54]. For an introduction to multigrid methods we refer to Hackbusch [31],
Stiiben and Trottenberg [61] and Wesseling [67]. 0

In this thesis we will not discuss the problem of choosing a suitable iterative method for solving
the discrete problems on the uniform subgrids. We note that guidelines for this choice are given
in [3].

Remark 2.10 It is well-known that the rate of convergence of basic iterative methods and con-
jugate gradient methods for solving systems of linear equations decreases if the number of un-
knowns increases. The number of unknowns in the discrete problems on the uniform subgrids is
relatively small, since the global grid Q7 has a coarse grid size and the local grid €7, which has
a (much) smaller grid size, covers only a part of the domain. "

If an iterative method is used for approximately solving the discrete problems on the uniform
subgrids in the LDC method (2.16), then we obtain an outer iteration (the LDC iteration) and
two inner iterations (one related to the uniform global coarse grid Q¥ and one related to the uni-
form local fine grid Q). The LDC method with inexact solution of the subproblems is presented
schematically in Figure 2.7. In thei-th LDC step, i > 1, the approximations #7 ; and ﬁ;"H can be
used as initial approximations for the iterative methods for solving the global and the local discrete
problems, respectively. We note that for solving the global discrete problems and the local dis-
crete problems, different iterative solvers may be used. In the following example we consider the
dependence of the LDC results on the accuracy with which the discrete subproblems are solved.
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Figure 2.7 Schematic presentation of LDC with inexact solution of the subproblems.

Example 2.11 We consider the two-dimensional Poisson problem and its discretization as in Sub-
section 2.2.2. For solving the discrete problem on the uniform subgrids, a preconditioned conju-
gate gradient method with SSOR preconditioner is used (see e.g. [31). As a general notation for
the systems of linear equations appearing in the LDC method we use Ax = b, where the matrix-
vector notation is used. The iterative solver yields approximations {x*}» for the exact solution
x. As a stopping criterion we use

I Ax* — bl
— < 0,
bl —

where tol is a prescribed tolerance for a relative defect. By varying tol we can vary the accuracy
with which the discrete problem is solved. In Table 2.2 the errors i), s — | o, are shown
for H = 1/16, h = 1/128 and several values of tol. The composite grid approximations in the
LDC method with incxact solution of the subproblems are denoted by &ff"‘ and u* denotes the
continuous solution of the boundary value problem. We see that for fol = 1072 the results are
comparable with the results for the LDC method with exact solution of the subproblems. We note
that this tolerance is required both for solving the coarse grid problem and the fine grid problem in
each iteration step. If one of those problems is solved using a larger value of tol, then the results
are comparable with those obtained when both problems are solved using this larger value of tol.
In Table 2.3 we present for several values of H and o = H/h the (approximate) tolerances for
which the errors in the composite grid approximations do not significantly differ for LDC with}
exact and LDC with inexact solution of the subproblems. We observe that this tolerance depends
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tol=1 |tol =101 | tol = 1072 | tol = 1073 exact
3321071 188102 | 232102 ] 2291072 | 2.29 102
1731071 | 1.26107% | 1.47107% | 1.4010~* | 1.39 1073
1.56 1072 | 5.4810~% | 1.33103 | 1.3510°% | 1.351073
8421072 | 3441073 | 1371072 | 1.351073 || 1.351073
8491072 | 3491073 | 1.34107% | 1.3610°3 | 1.3510°3
4611072 | 2571072 | 1.36107 | 1.36 1073 | 1.351073
4911072 | 2271073 | 1.41107% | 1.3510°3 | 1.351073
2.681072| 1.86107% | 1351073 | 1.35107% | 1.351073
2.85107% | 1.54107% | 137107 | 1.35107% | 1.351073

o0 =3I AN WD = O

Table 2.2 The errors ||u*|Q Hh~— tll.H’hlloo for the LDC method with inexact and exact
solution of the subproblems in Example 2.11.

k=4 k=5 k=6 k=7|0=4 06=8 o0=16

107 5107 10 1073 | 1072 1072 107°

Table 2.3 Ciritical values for fol in the LDC method with inexact solution of the subprob-
lems in Example 2.11; H = 27¥,

on the parameters H and o only slightly. O

Remark 2.12 The values in Table 2.2 show that when the subproblems are solved with a low
accuracy (e.g. tol = 1), significantly more LDC steps are required in order to obtain a composite
grid approximation with a certain accuracy than when the subproblems are solved with a high
accuracy (e.g. tol = 107%). Clearly there is a trade-off between the work invested in solving the
subproblems and the number of outer LDC iterations. The study for the optimal investment of
work in each outer iteration step is not considered in this thesis. In Chapter 3 we shall analyse the
LDC method with exact solution of the subproblems. O

The local defect correction process (cf. (2.14),(2.15)) can be viewed as a process for cou-
pling a boundary value problem discretization on a global grid and a boundary value problem
discretization on a local grid (see [19],[30]). In the model setting of Section 2.1 the region of lo-
cal refinement fits properly to the global coarse grid and the coordinate systems of the global grid
and the local grid are the same. Also the discretization approach on the local grid is the same as the
discretization approach on the global grid (namely central differences for the Laplace operator).
The coupling of global and local discretizations via local defect correction can still be applied if
an arbitrary shaped region of local refinement is used, the coordinate systems of the global and
local grids differ and/or the discretization approach on the local grid is of a different type than the
discretization approach on the global grid (see [30]). In such a general situation the grid points of
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the global grid which lie inside the local region do not belong to the local grid and the interface I’
does not coincide with grid lines of the global grid. Then ‘more involved’ inter grid transfer op-
erators are needed in order to restrict grid functions on the local grid to grid points of the global
coarse grid and to define artificial Dirichlet boundary values on the interface. In Figure 2.8 two
grids composed of a global grid and a local grid with different coordinate systems are shown.

a) b)
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Figare 2.8 Grids composed of global and local grids with different coordinate systems.

Remark 2.13 The grid in Figure 2.8.b corresponds to an example from [30]. This example con-
siders an elliptic boundary value problem £ (a(x, y)%) + 53; (alx, y)%) = f ina rectangular do-
main £, with a coefficient ¢ which is smooth in the regions on the left and on the right of an
interface I, but discontinuous across this interface 1. The local co-ordinates are adapted to the
interface 7. 1

2.3 THE FAST ADAPTIVE COMPOSITE GRID (FAC)
METHOD

In the LDC method (2.16) the boundary value problem (2.1) is discretized on the uniform subgrids
§# and Q" only, not on the composite grid Q7. This is different for the fast adaptive compos-
ite grid (FAC) method. The FAC method is an iterative solution method for an a priori given
discretization of a boundary value problem on a composite grid ([46],[471,[48]). In the solution
process only uniform subgrids are used.

First we consider finite difference discretizations of the model boundary value problem (2.1)
on the model composite grid 2%*, including difference schemes for the grid points on the inter-
face. Then the FAC method for solving the composite grid discretizations is described.

The composite grid is a global non-uniform grid. The composite grid is called locally uniform
. at a grid point x, if the northern, southern, western and eastern neighbouring grid points all have
the same distance to the grid point x. Otherwise the composite grid is called locally non-uniform
at the grid point x. Near the boundary obvious modifications are used in these definitions. Since
the composite grid is composed of uniform subgrids, it is locally non-uniform only at the grid
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Figure 2.9 Locally uniform (e) and locally non-uniform (o) grid points and slave points

s H=1/6,0=2,y1 =y, =1/2.
points on the interface I and at some grid points close to the interface (see Figure 2.9). At the
locally uniform grid points the standard five-point formula for the Laplace operator (either with
respect to the coarse grid size H or the fine grid size h) can be used.

The locally non-uniform grid points inside £, can be treated as locally uniform grid points by
using the slave points x € (" NTH\(QZ NT) (see Figure 2.9). We use the standard five-point
formaula for the Laplace operator at the locally non-uniform grid points inside €2;. The difference
stencils at these points involve the slave points. The values at the slave points are defined from
the values at the composite grid points lying on the interface and the boundary data ¢(0, y») and
»(y1,0) by interpolation. For example, for (x, y) = (H -+ h, y, — h), H = 2k, and piccewise
linear interpolation, we use the approximation:

—Aulx,y) = H  du(x, y) —u(x —h, y) —ulx+h, y) —u(x,y —h)
—%u(x—fi,y+?@)—%u(x+h,y+k)].

The approach for defining values at the slave points is similar to the approach for defining the
artificial Dirichlet boundary values on the interface in the I.LDDC method in Section 2.2.1.

For the grid points on the interface two types of finite difference approximations are consid-
ered. One approach is to use non-uniform finite differences at the interface grid points (cf. [50,
Section 3.5]). For example, using nearest neighbouring grid points, for x = (2H, y,), we have:

—AuH, y2) = H2uQH, y2) — u(H, v2) —u(3H, y2)]

20 2o
) —
a+lu( Hy.+H) o+ 1

The coefficients involving the refinement factor o = H/ h are chosen so that the order of the ap-
proximation is as high as possible (i.e., first order accurate). The approach above, in which the
composite grid is considered as a truly non-uniform grid, is referred to as the non-uniform dis-
cretization approach. In the non-uniform discretization approach we do not use the fact that the
composite grid is composed of uniform subgrids. The alternative approach is to treat the grid
points on the interface as if they were grid points of the uniform global coarse grid Q¥ (see [21]).
Then the standard five-point formula for the Laplace operator can be used. For example, for
x = (2H, yr), we obtain:

2
+ H *[20u(2H, y,) —

w(2H, y — h)].

1
—~BuQH, yr) = g (u@H, yr) —u(H, yr) —u@H, yr) —u2H, yr + H) —u@H, yr — H)).
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This approach is referred to as the uniform discretization approach. Note that the uniform dis-
cretization approach is possible since we have H/h € IN and hence Q7 ¢ Q" The discrete
problems on the composite grid % resulting from the non-uniform discretization approach and
the uniform discretization approach for the Poisson model problem (2.1) are analysed in Chap-
ter 4.

Remark 2.14 In Section 3.2 we shall show that the discrete problem resulting from the uniform
discretization approach is just the composite grid problem which is actually solved by the LDC
method (2.16). O

We denote the composite grid discretization, either resulting from the uniform discretization
approach or from the non-uniform discretization approach, by

LHAyHR — (Hh on Q7 (2.18)

which describes a system of linear equations for the unknowns {u*(x) | x € Q*}. The Dirich-
let boundary values from (2.1b) are incorporated in the grid function f#*. In (2.18) the finite
difference operator L#* is a linear mapping, L#* : F(QE") — F(Q#H),
Now we describe a FAC step for solving (2.18). Let " be an approximation of #*. Insert-
ing #%* in the system LHmyHh — fH2 — () yields the composite grid defect,
ik .— [RhgHk _ fHh

The correction vi# := i — yHk gatisfies
LAy = gk, 2.19)

In the FAC method approximations of the correction v#* are computed on the uniform subgrids.
First, equation (2.19) is approximated on the uniform global coarse grid. The finite difference
operator L™* is approximated by the operator L¥ from (2.12). The composite grid defect is re-
stricted to the uniform global coarse grid via a linear surjection 7 : F(Q#") — F(QH), called a
restriction. Then the following system of equations results:

LEyH = pqHn on Qf,
with v¥ an approximation of v#*, Next an approximation of v** is computed on the uniform
local fine grid. The finite difference operator L#* inside €2, is approximated by the operator L}
from (2.13). The artificial Dirichlet boundary values on the interface are defined from the values
v(x), x € Q¥ NT by interpolation. When interpolating between an interface grid point and a

point of the boundary 052, a zero value at the boundary point is used. The system of linear equa-
tions which approximates the system (2.19) inside £2; is denoted by:

Lt = di (vH) on QF,
where the right hand side depends on the values v7(x), x € Q7 N T, and on the values d?"(x),

x € Q" The dependence on the global coarse grid approximation v¥ is denoted explicitly. The
corrections v/ and v are used to define a new approximation of u®*,

75k (x) uh(x) — vt (x) xe Q!
itk (x) = .
uh(x) —vH(x) x e QEMN\Q!
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In the fast adaptive composite grid method the steps described above are performed iteratively.

FAC algorithm
Initial approximation ugl’h given
Iteration, i =1,2,...:

Compute the composite grid defect
R R T LN (2.202)
Solve the global discrete problem
V LA = fd% on QF, (2.20b)
Solve the local discrete problem
L =diw?) on Q. (2.20¢)
Define the composite grid approximation

H,
ullf(x) —vf(x) xeQf

Bl () oo )
(%) ¢ ultx) — v (x) xeQfm\ay

(2.204d)

Like the LDC method, the FAC method is not restricted to the two-dimensional Poisson model
problem and the model composite grid {2%#, The method can be applied to composite grid dis-
cretizations of general second-order linear elliptic boundary value problems on a ‘gencral’ com-
posite grid as in Subsection 2.2.3. The discrete problems on the uniform grids may be solved
approximately using an iterative solution method. In [48] the FAC method (2.20) is used as a
starting point for deriving more general multilevel adaptive methods.

Remark 2.15 The fast adaptive composite grid method is an iterative method for solving discrete
problems resulting from discretizing a boundary value problem on a composite grid. In [46] and
[471 a convergence analysis of the fast adaptive composite grid method is presented in the setting
of variationally posed discretizations. The numerical results reported in [36],[371,[53],[63] show
that the rate of convergence of the method is very good and that the method is applicable to a
wide variety of problems not covered by the theory in [46] and [47]. In [48],[49] the theory for the
variational case is extended to the non-variational case of composite grid problems resulting from
finite volume element discretization. Here we have presented the fast adaptive composite grid
method for solving composite grid problems resulting from finite difference discretization. 1n [22]
we show that the convergence rate of the FAC method (2.20) depends strongly on the choice for
the restriction 7 : F(QE") — F(QH). Based on theoretical insights, (quasi-Yoptimal restrictions
7 for the FAC method are derived in [22]. 0



28 CHAPTER 2. INTRODUCTION OF ITERATIVE METHODS ON COMPOSITE GRIDS

24 THE MULTI-LEVEL ADAPTIVE TECHNIQUE
(MLAT)

Multigrid methods are very efficient methods for solving sparse linear systems resulting from dis-
cretizing boundary value problems. These methods iteratively solve a system of linear equations
on a given grid, by constant interaction with a hierarchy of coarser grids, taking advantage of the
relation between different discretizations of the same continuous problem (see e.g. [8],[311.[67)).
The basic principle is that high frequency components of the error can be reduced very efficiently
by basic iterative methods (the so-called smoothing of the error), while the lower frequencies can
be approximated on the coarser grids (the so-called coarse grid correction). The multigrid algo-
rithm in full approximation storage (FAS) form can be modified for approximating the solution
of a boundary value problem on a composite grid {7]. We describe this modified method for the
model problem from Section 2.1.

Let i#%* be a composite grid approximation of the solution of boundary value problem (2.1).
By interpolating between the values #"(x), x € Q¥* N T" and the boundary values ¢(y1, 0) and
(0, y2), artificial Dirichlet boundary values are defined on the interface. These values are used
to define the local fine grid problem (cf. (2.13)) :

Lhul = fr(ath) on QF, (2.21)

The right hand side in (2.21) depends on the composite grid approximation i#™*, A smoothing
process is performed with respect to this system of linear equations. Several steps of some basic
iterative method (see Remark 2.9) are carried out with a starting approximation derived from 7%,
This yields an approximation #f of . Inserting ! in the system LFu} = f} (™) yields the local
fine grid defect,
dl .= Lhit — frathy.

In the coarse grid correction step, the system of linear equations

LHgH — fH on Q¥, (2.22)

with L¥ from (2.12) is solved. Outside the local region, the grid function f¥ is equal to the right
hand side of the basic discretization (2.12),

FAxy = fix) xe@n\Ql
Inside the local region the values of the grid function f# are given by
FAE) = L) (x) - FRdhH ),  xeQf,
with _
Fihy(x) xeQf
ath(x) xeQN\Qf -

The linear surjection 7, : () — F(QF) is used to restrict local fine grid approximations of the
solution of the boundary value problem (2.1) to the local coarse grid 2. The linear surjection 7 :

w(x) == {
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F(QF) — F(QF) is used to restrict local fine grid defects to the local coarse grid Q. The global
coarse grid approximation % from (2.22) is used to correct the local fine grid approximation 2",

ohe— g4 syl
uy = u; + pv-,

with
a(x) — (P (x) xe QF
vHx) =1 i x)—a?tx) xeQfnT
0 x € QH\(QHU(QHmr))

The operator p : F(QH) — F(QF) is used to transfer global coarse grid corrections to the local
fine grid. The new composite grid approximation is defined by

~h h
Hhey.— | X)) xely
) "[ Al(x) xeQfnQl

In the multi-level adaptive technique (MLAT) the steps described above are performed iteratively.
MLAT algorithm
Initial approximation ug"* given.

Iteration,i =1,2,...:

Find an approximate solution ﬁf‘ . of the local problem

L), = i) on Q. (2.23a)
Compute the local fine grid defect
df == Lriif, — frulh). (2.23b)
Compute the global coarse grid right hand side
W (x) = (rlul D) X € QIZ o
) x € QI\Q]
(2.23¢)
) [ (LH Nx) - FdH(x) xeQf
X) = .
FEx) x € QI\Q#
Solve the global problem
LAy = fH on Q7. (2.23d)
Correct the local approximation
ull(x) — (flﬁf‘l)(x) xe Qff
Hixy = { uf(x)— H
v (xX) = ) u (x) xe”Nr , (2.23¢)
0 x e QI\(QFu(@InI))
=)+ poH.
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Define the composite grid approximation
h k
ok u (X)) xe 8
w " (x) = { g . (2.23
ufl(x) xeQHMQ)

Like for the LDC method (2.16), we do not use a discretization of the boundary value problem
(2.1) on the composite grid % in the MLAT method. Also, the MLAT method can be applied
to general second-order linear elliptic boundary value problems and ‘general’ composite grids as
in Subsection 2.2.3. The MLAT method (2.23) is a special case of the multi-level adaptive tech-
nigue introduced by Brandt {7},[9] for solving boundary value problems on (adaptively refined)
composite grids.

2.5 COMPARISON OF THE METHODS

It is clear that local defect correction, the fast adaptive composite grid method and the multi-level
adaptive technique are closely related. This is also noted in the literature (see e.g. [31, Section
15.2], 1461, [47]), but nowhere the differences and similarities are clearly explained. In [39] mult-
level versions of local defect correction and the fast adaptive composite grid method are compared
for two typical linear elliptic problems by means of numerical experiments. By presenting the
methods in one framework, resulting in LDC (2.16), FAC (2.20) and MLAT (2.23), we can give
a theoretical comparison of the methods. Below we use results which are derived in Chapter 3.

In the LDC method (2.16) approximations of the solution of the boundary value problem (2.1)
are computed by solving discretizations of the boundary value problem on the uniform subgrids
QH and QF. In Section 3.2 the discretization of the boundary value problem (2.1) on the composite
grid which is actually solved by the LDC method is derived. Characteristic for this composite grid
discretization related to the LDC method is that grid points on the interface I are treated as if they
were grid points of the global coarse grid 2¥. We note that this composite grid discretization is
an implicit result of the LDC method. The FAC method (2.20), on the other hand, is a method for
approximately solving an a priori given discretization of the boundary value problem (2.1) on the
composite grid %%, If the FAC method, with the initial approximation from (2.16a-c) and with
Fi F(QE") > F(QF) satisfying

(Fw)(x) = w(x), x e QN\QH,

is applied to the composite grid discretization which is related to the LDC method, then the FAC
method and the LDC method yield the same iterates. This relation between the FAC method and
the LDC method is shown in Section 3.4. The close connection between the FAC method and the
LDC method is valid for general linear elliptic boundary value problems and ‘general’ composite
grids as described in Subsection 2.2.3.

As stated above, the LDC iteration is related to a composite grid discretization. Since the FAC
method can be applied to any system of linear equations resulting from discretizing the bound-
ary value problem on the composite grid, the FAC method is a more general method than the
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LDC method for solving boundary value problems on composite grids. On the other hand, the
LDC method (2.16) is a special case of a process for coupling a global discretization and local
discretizations via local defect correction. In this process more general combinations of a global
grid and several local grids are allowed than those combinations which constitute a composite
grid. For exarmple, the regions of local refinement may be arbitrarily shaped and the coordinate
systems for the local grids may differ from the coordinate system for the global grid. The form
of the non-uniform grid composed of the global grid and the local grids is not essential for the
local defect correction method, since the boundary value problem is not discretized on this non-
uniform grid. We conclude that from this point of view the local defect correction approach is
more general than the fast adaptive composite grid approach.

Like for the LDC method (2.16), the composite grid discretization which is actually solved by
the ML AT method (2.23) is an implicit result of the iterative process. In Section 3.3 it is shown
that the composite grid discretization related to the MLAT method depends on 7 in (2.23), i.e. on
the way in which local fine grid approximations are restricted to the local coarse grid QF in the
MLAT algorithm. If 7 : F(QF) — F(QF) is defined by

fw = wlgzg, we FOQb,

then the composite grid discretization related to the MLAT method is the same as the composite
grid discretization related to the LDC method. The difference between MLAT (2.23) and LDC
(2.16) is that in the LDC method the discrete problems on QF are solved exactly, whereas in the
MLAT method the discrete problems on Q2 are solved approximately by one step of a two-grid
method (see Remark 3.16).

In the LDC method and in the FAC method large values of the refinement factor o = H/ h are
allowed. The MLAT method (2.23), however, is based on multigrid principles. The relaxation
sweeps on the local fine grid are intended to smooth the error, while solving the global coarse
grid problem is meant to reduce the smooth components of the error. Therefore, the refinement
factor o = H/ h in the MLAT method (2.23) should not be large (e.g., o = 2).
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ANALYSIS OF ITERATIVE
METHODS ON COMPOSITE
GRIDS

In this chapter we analyse the LDC method (2.16), the FAC method (2.20) and the MLAT method
(2.23) introduced in Chapter 2. In Section 3.1 we extend the notation for the model composite grid
Q" from Section 2.1 and we specify the right hand sides of the global and local discrete problems
which occur in the iterative methods. Both for the LDC method and the MLAT method the com-
posite grid discretization which is actually solved by the method is not a priori given, but it is an
implicit result of the iterative process. In Section 3.2 we derive the composite grid discretization
which is actually solved by the LDC method. Also we give an expression for the iteration matrix
of the LDC method. The fast convergence of the LDC method is illustrated by numerical results.
In Section 3.3 the composite grid discretization which is actually solved by the MLAT method is
derived and the differences between the composite grid discretizations related to LDC and MLAT
are discussed. In Section 3.4 we derive an expression for the iteration matrix of the FAC method
applied to the composite grid discretization related to the LDC method. It is shown that, under cer-
tain reasonable assumptions, the iterates in the fast adaptive composite grid method are the same
as the iterates in the local defect correction method. Parts of this chapter are also presented in [20].

3.1 PRELIMINARIES

In Chapter 2 the local defect correction method (LDC (2.16)), the fast adaptive composite grid
method (FAC (2.20)) and the multi-level adaptive technique (MLAT (2.23)) have been introduced
with a minimum of notation. For the mathematical analysis in this chapter a more detailed de-
scription of the methods is needed.

First we introduce notation for the model composite grid Q7" from Section 2.1. The coarse
interface grid T and the fine interface grid T" are defined by

M :=04nT, 3.
M= Q"N (3.2)
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a) b)

. Figure 3.1 a) Grid points of I'¥ (e) and slave points (o). b) Grid points of I'¥ (e).

& & & h &
g @ & g B

Figure 3.2 Decompositions of Q# and Q#*. a) Grid points of Qf () and Q¥ (o). b)
Grid points of Q¥ (e) and QF (o).

with Q# from (2.2), Q" from (2.10) and I" from (2.6). Note that T'# I and T'¥ ¢ QF*, The
points x € I"\I'# are called the slave points (see Figure 3.1.a).

The restriction of a grid function w : W — IR to the coarse interface grid ' C W is denoted
by W This notation will be used throughout this thesis instead of the notation w IrE in Defini-
tion 2.3.

The set of grid points of Q7 which lie at a distance H of I" is denoted by I"H (see Figure 3.1.b),

I :={x e Qf | min|x - yll, = H}, (3.3)
yel’

where ||.||, denotes the Euclidean norm.
The part of the global coarse grid Q which is complementary to the local coarse grid QF is
denoted by QZ,

Q¥ .= QM\QP. (3.4)
The global coarse grid Q¥ and the composite grid Q%* can be decomposed as,
QF = QHU QA
QEh = QFUQH,

see Figure 3.2.
Next we rewrite the right hand sides of the local fine grid problems in LDC, FAC and MLAT.
The local fine grid problems (2.16b),(2.16f) in LDC are rewritten as

Luj; = ff — Lipuf |, i20. 3.5)
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In (3.5) ul! r¥ (") represents the grid function u” € F(Q) restricted to the coarse interface

grid ¥, p: F(I'H)— F(T'")isalinear injection, called a prolongation,and Lt . F(I'™)— F(S24)
is a linear mapping. We recall that the local fine grid problems in the LDC method result from

discretizing the boundary value problem (2.1) on the local fine grid €2}, using artificial Dirichlet
boundary values on the interface. The artificial Dirichlet boundary values result from the values

{uf(x) | x e THY}, o(y1, 0) and (0, y2), by interpolation. The term Lfpu/? i in (3.5) represents

the incorporation of the artificial Dirichlet boundary values in the discrete problem. We define

the grid function f}! € F(2) and the prolongation p in such a way that the term L% pu/? |- does

not depend on the boundary values ¢ (4, 0) and ¢ (0, ).

Example 3.1 We consider the Poisson problem (2.1), the five-point formula for the Laplace op-
erator, o = 2 and piecewise linear interpolation on the interface. When interpolating between a
grid point x € " and a point on the boundary 9, zero values are used at the boundary point.
For example, at x = (h, y» — A} we obtain:

760 = £ 2= )+ 5H 7900, 32,
1

SH i ((H, 72)).

(—Lipufl i) (x) =

The boundary value ¢(0, y,) is incorporated in the term f7'. O

The local fine grid problems (2.23a) in MLAT and (2.20c) in FAC are rewritten as

Lbily = £ — Lhpul™ iz 1, 66
Lpv} = Rid™ — Lhpot| @D

respectively. The notation in (3.6) and (3.7) is the same as in (3.5). In (3.7) the trivial injection
R : F(QR") — F(QF) is defined by

Ruw = wmﬁ,, we Fahn, (3.8)

and d™* € F(QH*#) is the composite grid defect from (2.20a).

Now we rewrite the right hand sides of the global coarse grid problems in LDC and in MLAT.
We define the finite difference operators L7 : F(2f) — F(QFyand LE . F(I'?) — F(Qf) via
the relation

(Lf"wH]QF)(x)+(L§wH|I,)(X): (LTwfy(x), xeQf, w¥e F(QY). (3.9

The trivial injection ry : F(QF) — F(QF) is defined by

=g, we FQh. (3.10)
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The global coarse grid problems (2.16e) in the LDC method are rewritten as

Lirp? .+ LEul
LHu,-H:[i ”flyk L R S 3.11)
QC

The global coarse grid problems (2.23d) in MLAT are rewritten as

Hph o pH Hh = b
{ L7t + Lewy | — ndj :l i1

LAyH = H
Fgn

H

(3.12)

On the right hand side of (3.11) and (3.12) a block partitioning corresponding to the direct sum
F@Qf) = F@f) @ F(QF) isused.

The operators Lf" and LE represent L¥ inside the subregion £;. We introduce the operators
LY. 7@y - F(QH) and Ll{f : F(OHy - F(QF) which represent L¥ outside ;:

L o)) + (LEwf| rp) ) = Luf)(x), xe @, whe F@T.  (13)

The analysis in this chapter is not restricted to the two-dimensional Poisson model problem
from Section 2.1. In the remainder of this chapter we assume that the finite difference operators
LH LE LR, L, LY and L, L result from discretizing a linear second-order elliptic boundary
value problem

Lu=f inQ=(0,1)x 1), (3.14a)
u=¢  ondS. (3.14b)

on the uniform global coarse grid Q¥ and the uniform local fine grid . We assume that the dis-
cretization process on the uniform grids uses neighbouring grid points only, so the largest possible
difference formula involves nine grid points. The operators LY : F(Q7) — F(Qf),
LE: 7@y — F(QF) and Lt : F(QF) > F(QF) are assumed to be nonsingular. So any sys-
tem of linear equations corresponding to L, L¥ or L! has a unique solution.

The analysis and results in this chapter can be generalized in a straightforward way to “general’
composite grids with more than one region of local refinement as described in Subsection 2.2.3.
The model composite grid %7 is considered only for notational convenience.

3.2 LDC ASITERATIVE SOLUTION METHOD

In each step of the LDC method (2.16) approximations of the continuous solution of the boundary
value problem (3.14) are computed both on the global coarse grid Q¥ and on the local fine grid
QF. These approximations u/” and uf ; are used to define an approximation u/"* on the composite

grid Qh,
3
u?.
1,
HiH'h:_— l: MH 'H }s
aleY:
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where a block partitioning corresponding to F(Q#") = F(QF) & F(Q¥) is used. So two it-
erates, (uf, ul;) and u;"*, occur in each LDC step. Below we discuss the fixed points of the
LDC method. In the following lemma a block partitioning corresponding to F(QH) = F(@f) @
F(QFH)is used.

Lemma 3.2 (u?, ul) is a fixed point of the LDC method (2.16) if and only if (u®¥, u}) satisfies the
coupled system

LHph 4 [HyH @
LHH _ [ ALy “; e :l — l: fﬂlgy :l on QF (3.153)
Liuf + Lipu™| = ff on Q. (3.15b)
Proof. Tt follows from (3.5),(3.11) that the LDC iterates (u7, uﬁi), i=1,2,...,satisfy
Lﬂuﬂ = LlHrlu?,i—l + L!I?uaiil’r
i = H 1
f tQH
‘{‘?aii = f!}! - L?‘puxglr

Now the lemma follows immediately since L# and L} are nonsingular. ]

Lemma 3.3 If (u?, u) satisfies the coupled system (3.15), then
uH{Q{i:uﬁQzH (316)
holds.
Proof. From (3.15a) and (3.9) we obtain
(LHuHY (x) — (LErul) (x) — (L{-"u”lF)(x) =0, xeQf,
L ) = (L o) () — (L D) =0, x e Qf.
i
Thus
LlH(uHIQlH - r;uf’) = ().
Since LY is nonsingular and 7, is the trivial injection (3.10), this equation is equivalent with (3.16).
]

Below we show that the coupled system (3.15) is related to a system of linear equations resulting
from finite difference discretization of the boundary value problem (3.14) on the composite grid
Q" We use the trivial injections ri. : F(QF) — F(T') and rr 2 FQH) — FTH), defined
by

FRW = WiRy, W € 7(52?), (3.17a)

W = w) we FQF). (3.17b)

FH’
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Lemma 3.4 If (ufl, u?) satisfies the coupled system (3.15), then the composite grid function

h

u

uth =1 n !
fo3d

Lk HE — gHh

satisfies

with

H,. H
Lere L

Lk [ L' Liprr ]

h
Hh .
= inSZf .

Proof. Since (u¥, ul) satisfies (3.15), it follows from (3.15b) and (3.17b) that
Lk + L‘;‘«prru’f{gg = f
and from (3.13), (3.15a) and (3.17a) that
qungg,r -+ L‘[ffrfnu""mf = fH[Q:q

Now (3.18) follows by the definition of x*,

Lemma 3.5 If u®* satisfies the composite grid problem (3.18), then (u™, ut) defined by

ul

= “H‘hIQ”’
uf = u’“‘lg?,

satisfies the coupled system (3.15).
Proof. Since uf" satisfies L¥ yH* = fH4 we gbtain from (3.18)

Lﬁ‘u"’"“lg? + L’;prru}"”‘mf = fh,

Lt on + LEr™ o = 5|0
Using the definitions (3.17) and (3.19) we obtain

Dhif + ity = .
L |gu + L pm = | gn
L{’uﬁmiﬁ + Lﬁu”lr = L{‘u?]gfq + L,‘?u‘qll.,.

(3.18a)

(3.18b)

(3.18¢)

(3.19a)
(3.19b})
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Now it follows from (3.9) and (3.13) that (u¥, u?) satisfies (3.15). =

Due to Lemma 3.2 and Lemma 3.3 any fixed point (u”, &) of the LDC method has a unique
representation on the composite grid,

. ub
uhh = uH[_QH , (3.20)

which is called composite grid fixed point of the LDC method.

Theorem 3.6 The composite grid fixed points of the LDC method (2.16) are the solutions of the
composite grid problem (3.18).

Proof. Follows from a combination of the results of Lemma 3.2, Lemma 3.4 and Lemma 3.5. =

We note that
(LH’&w)mH == (Lﬁw‘szg}mg, we fF(QH’h), (3.21

(cf. (3.9),(3.18b)), and that I'¥ ¢ QF. So, in the discretization process related to (3.18), the in-
terface grid points x € T'H are treated as if they were grid points of the uniform global coarse grid
Q¥ For example, for the two-dimensional Poisson problem (2.1) the five-point formula for the
Laplace operator is used at the interface grid points x € ',

Corollary 3.7 If the finite difference operator L** in (3.18) is nonsingular, then the LDC itera-
tion (2.16) has a unique fixed point.

In the remainder of this chapter we assume that 7" in (3.18b) is nonsingular.

Remark 3.8 In certain cases the nonsingularity of L#* can be concluded from properties of L#
and L?. For example, suppose that for a certain ordering of the grid points in Q¥ and Q7 the ma-
trices L and LY, corresponding to L and L! have positive diagonal elements and non-positive
off-diagonal elements and that they are irreducibly diagonally dominant (see Section 4.2). Note
that this condition is often satisfied in a finite difference setting, for example for the Poisson model
problem from Chapter 2. If we use piecewise linear interpolation on the interface, then it is easy
to verify that the matrix L?* (for a certain ordering of the grid points in Q%*) has positive di-
agonal elements and non-positive off-diagonal elements and that L is irreducibly diagonally
dominant. Hence L#* and L¥* are nonsingular (see Section 4.2). In case of piecewise quadratic
interpolation things are more complicated. In Section 4.4 the nonsingularity of L% is proved
for the Poisson model problem. If both LF and L¥ are nonsingular then, in general, this does not
imply that L#* is nonsingular. A counter-example is given in ([30, Example 3.3.1]). l

Now that we have derived the system of linear equations on the composite grid for the fixed
points of the LDC method, we can consider the iterative behaviour of the method. We introduce
the extension operators RT : F(QF) — F(Q*) and R, : F(Q) — F(QHM), defined by

0 Qiz QH

(R"w)(x) ;:{ () iigfg\ L we Feh, (3.22)
o h

(R w) (%) ;:{ (’f(x) ’):gly L we F@. (3.23)
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The transpose of the extension operator R;” is the trivial injection R; in (3.8). The transpose
R: F(QHH) — F(QH) of the extension operator R7 is the trivial injection defined by

Rwi=w) o, we FQ5H). (3.24)
Below we use block partitioning corresponding to the direct sums F (2%) = F(Qf) @ F(QH)

and F(Q#*) = F(QF) @ F(QF) (see Figure 3.2). Then the trivial injections R and R; are of the
form :

. ¥ @
k= [ o1 }
R'=[1 8],
with r; the trivial injection from (3.10).

Theorem 3.9 The iterates aiH"‘ (i = 1) from the LDC method (2.16} satisfy

ult — yfh = M — uih), (3.250)
with
M:=(I-P)(I-P), (3.25b)
Py := RT(L¥)~'RLEN, (3.25¢)
Py = RO R L, (3.25d)

L, L} from (2.16) and LB u* from (3.18).

Proof. Recall that % is given by

with (¥, u¥) satisfying

H, . h H. H
Q8

Lhub = £ — L’r‘.puH}F.

The LDC iterates uf"’h, i = 1, are given by
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with (uf, z:ﬁt ;) satisfying

H, h H H
LHH L ’*f“z,f—i;-’ Loy
i f IQ!" ’
L?“?,i = ffk - L}fkpungF.
Hence we have
1 2 @

uf“”‘-—u”’h=[@]<uﬁt,~—u§*>+[@ ,](uﬁ—ufﬁ,
with
up,—uf = — (LD L@l o —u™| )

= -—(Lf')_lﬁriprp[ g I ] (uff —u™)

and

u' —u

Using (3.9) and (3.21) in (x3) we obtain

ufl —uH = (L1 [ é g } L”[ 1 :] (ufff — g HHy

[l = @ [ Loy = ) +@Lf~’<u,-"i;1r —uf’|) ] ‘
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(1)

{(x2)

(+3)

2
I
- g g v @
o (o S D e
2
I

= ([ f ‘? ]— (@ [ g :ILH*”) (bl — utih),

Since LE*(uftt — uft) is of the form [ f ] we obtain

ufl —ufl = (l: g ? ]" (L [ g ? iILH'h) (Pl — iy,

Combining (x1), (x2) and (x4) yields

Hh Hh

u" —uth =~[é](L§‘)“1L{iprr[{Z I](uf"—u’{)+[g i},](

=(-| 4 Jarmeste 0[5 7]+ 5 7]

g 0 [ 27,
[ 7 a5 5 e

(x4)
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](L?)”‘L"prr[ o 1] [ e }L‘“’) G2y — u)

B —(LHLEprr B @ B B | preraN-1prHb
g g g | e 1 |REDTRL

+
g —(L?);L?P?’r ]RT(LH)-lRLH,;a> (ulth 1y

+
[ —(L) -IL{Eprr ](1 Py — tihy.

re——
1

Since
0 —(Lp~Lppre | _ 'R (IH ' Lhprr
] I 2 ]
I -
—i- [ ! ](L;') Tz s ]
=1I— R (L} 'RLEF
=I- P27
we obtain (3.25). =

Remark 3.10 There is a certain freedom with respect to the choice for the restriction operator R
in (3.24). The result of Theorem 3.9 holds for any restriction operator R : F(Q&%) — F(QH)

which has the form ;g
_| N
=[5 7]

with 7y : F (Q Y- F (9;“' ) a linear surjection. This follows since (I — P,) is of the form
7 x
3 = |’
and thus (/ — P,)RT is independent of the choice of 71, and L4 (uf% — y"k) j5 of the form
g
< 1
and hence RLA* (uf# — yH:ky is independent of 7. 0

Remark 3.11 Incase of m > 1 regions of local refinement, the iteration matrix of the local defect
correction method would be of the form

M=U-P~P...~P,)I~ P,

with Py similar to Py in (3.25¢) and Py, Ps, ..., Ppyy similar to P in (3.25d). O
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Lemma 3.12 The operator P; from (3.25d) satisfies
(P =P,

Proof.
(P2 = R (L) RL* Ry (L) ™ Ry LA

h A
— R!T(L?)—l[ I ¢ ][ L{ L{‘prf‘ :l[ é ](L?}-JR!LHJI

120 0
I‘ [
= RI(IHT LTI R LI
= P,.
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(3.26)

For the approximation ug" *_ resulting from the starting procedure in the LDC method, we have

the following result.

Lemma 3.13 The initial approximation uf * in the LDC iteration (2.16) satisfies

ul® — uth = (I — Py (RT(LH)™ fH — iy,
with P, from (3.25d), RT from (3.22), LX, ¥ from (2.16) and u™" from (3.18).

Proof. As in the proof of Theorem 3.9 we can derive
I ]
upt — ufth = [ 7 ](“ﬁo"“?ﬂ* [ g1 :|(u51~££*q),
Wo—up=—(IH Lhpre[ 0 1]l —ul).

Since L¥ull = ¥ we have ull — uf = (L#)~' f# — yH Hence,

v é } I Lypre[ 81 1)~
+ g ? (LE)™ £H — uth)
=- g ] (L;')'lgﬁprr[ @ 1 JRI(LE)Y fH —ylthy
o D0 Ry g ity
_ [ gﬂ —(L?-)_IIL}FP)"F ] (RT(LH)™ fH _ by

Now (3.27) follows immediately since

0 - kpre T
[@ ! It r ]*U—Pz),

(3.27)
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as shown in the proof of Theorem 3.9. -

Combination of the results in Theorem 3.9, Lemma 3.12 and Lemma 3.13, yields the following
expression for the LDC iterates.

Corollary 3.14 The iterates u™" (i > 1) of the LDC method (2.16) satisfy
Uit —uth = (I — P)(I — P))(I — Pp))' (RT(LH)™? 7 — uth), (3.28)

From Theorem 3.6 and Corollary 3.14 we conclude that the LDC method in (2.16) is a linear
iterative method for solving the system of linear equations (3.18) and that the rate of convergence
of the LDC method is determined by the operator

M=(I-P)I-P)I-P). (3:29)

From the definition of the LDC method it is clear that this method can be viewed as a Schwarz
domain decomposition method (see e.g. {16]). In mathematical terms this is made precise by the
expression for the error propagation operator M in (3.25b). The LDC method (2.16) is a multi-
plicative Schwarz method based on two overlapping subregions.

Using the expression for the error propagation operator M, we can show a close relation be-
tween the LDC method and the FAC method. This relation will be discussed in Section 3.4,

Unfortunately, we have not been able to derive satisfactory bounds for the norm or spectral
radius of M. With respect to this we note that almost all convergence analyses of related methods
{e.g., FAC applied to a FVE discretization as in [48]) use a variational setting, whereas it is not
clear to us how the discrete operator LHA (and thus P; and P,») can be put in such a variational
setting. Another way to develop convergence theory for domain decomposition methods is based
on the maximum principle (e.g., [15]),[41]. However, since in the LDC method the global coarse
grid problem is updated in a local region, instead of on an interior boundary, it is not clear to
us how maximum principle arguments can be applied in this case. So a satisfactory convergence
analysis of the LDC method (2.16), i.e. local defect correction without overlap (see Section 2.2.3),
is still lacking, although we have been able to show that the rate of convergence is determined by
the operator M (i.e. we need bounds for the norm or spectral radius of M). In Example 3.15 we
illustrate the fast convergence of the LDC method numerically.

Example 3.15 Consider the boundary value problems:

Case 1. The Poisson problem

—Au=f inQ=1(0,1)x(0,1),
u=g ondfl.

We choose f, g such that the solution #* is the same as in Subsection 2.2.2 (cf, (2.4)). Note that
the choice of f and g has no influence on the convergence behaviour of the method.
Case 2. The elliptic problem with variable coefficients

@+ sin(’-g’f))uxx — ey + cos(%’f)ux +(1+x)eu,=f inQ,

u=g ondsl.
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Case 1 H=1/20 o=2
0=2 o=4 o0=8 |H=1/20 H=1/40 H=1/80
linear |2.210°% 291072 3.110°%| 221072 1.5 1072 11102
quadratic | 1.9107% 221072 2310°%| 1.91072 1010 071072
Casc 2 H=1/20 o=2
6=2 o0=4 o0=8 |H=1/20 H=1/40 H=1/80
lincar |2.3107% 3.1107% 3310°%| 23107 2710°2 2010
quadratic | 2.7 1072 3.8107%7 4.1107%| 2.710°2 291077 17102
Table 3.1  Average error reduction factors p.

We choose f, g such that the solution #* is the same as for Case 1.

We take € == (0, 1/4) x (0, 1/4). Both on the uniform global coarse grid and on the uniform
local fine grid we use a standard discretization. We take central difference approximations both
for the second order and for the first order derivatives. We consider both piecewise linear inter-
polation and piecewise quadratic interpolation on the interface. In Table 3.1 we give the average
error reduction per iteration in the first four iterations:

l
p= i3

et — u e

I:l'k H,k”

We see that, both for Case 1 and for Case 2, the rate of convergence is high and more or less
independent of the parameters H and o = H/ A. The error reduction factors for piecewise linear
and piecewise quadratic interpolation are comparable. So for these (and related) test problems we
observe a satisfactory convergence behaviour of the LDC method. ]

3.3 MLAT AS ITERATIVE SOLUTION METHOD

In this section we discuss the fixed points of the MLAT method (2.23). In the i-th MLAT step the
local problem

ul i f! L}}Epu,_.l ]r
is solved approximately. In this section we assume that the approximate solution &} ; resuits from
u};_, by applying v steps of a linear iterative method:

= =80l — ).
In the MLAT method coarse grid corrections are transferred to the local fine grid by the oper-
ator p: F(QH) — F(Q). We introduce the linear injection p; 1 F(QF) — F(QF), called a

prolongation, via the relation
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where a block partitioning corresponding to the direct sum F(Q¥) = F(QF) ® F(QF) is used.
We define
= (I - p(LIY'RLYSY, (3.30)

and we assume that the spectral radius p(M;) of M; satisfies p(M;) < 1

Remark 3.16 In muitigrid terminology M; is called a two-grid iteration matrix (see e.g. [31,
Section 2.4]). This matrix describes a two-grid method for approximately solving the local fine
grid problems in MLAT. Suitable choices of the smoothing process (S;"), the prolongation p; and
the restriction 7; yield a convergent two-grid method (see e.g. [311,[61]). Then p(M;) < 1 holds.

O

In each step of the MLAT method (2.23) approximations of the continuous solution of the bound-
ary value problem (3.14) are computed both on the global coarse grid Q¥ and on the local fine
grid Q7.

Lemma 3.17 (u, u}') is a fixed point of the MLAT iteration (2.23) if and only if (u¥ , u}!) satisfies
the coupled system

LH“H_ [: L 3’:“1 p r‘“ Ir ] [ fH|QH il on (3.31a)

Ll + L‘;ipuﬂlr, = fI on QF. (3.31b)
Proof. Let (u¥, uf) be a fixed point of the MLAT iteration. It follows from (2.23) and (3.12) that
LEfgl + LEu¥, | —F L@~ al)
LH,H — 1 r ;'F 1\ 1 (+1)
f Tol:d
ul =i+ py (“H]sz — Fiitt). (*2)
In (%1) @ is the solution of

R f;k _L?"pugll'" (+3)

and #/ is an approximation of #! resulting from v steps of a linear iterative method, with iteration
matrix §;, and initial appmmmauon u?'. Thus we have

- k= S (ul b, (x4)
Using (3.9) in (*1) we obtain
u”ml - Pl = — (LR L@k - ab).
Substituting this in (x2) yields

= @ = — (LY R G — ). (+5)
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Using (x4) and (x5) we obtain

h sk

— @t =l -+ -
= —p( L)ALy @ - a4 (i — i)
= -ﬁz(ﬁa)'lﬁL"Sz"(u, — )+ S () — ol
= (I — pi(LEY 'R LS (ult — )
= My(u} —a%).

U;

Note that I — M) is nonsingular due to p(M;) < 1. Thus i z:,; = ul, and by (x4) @t z.e; = uz = u, Then
(3.31) follows from (x1) and (x3).

Let (u¥, ul) satisfy (3.31). Suppose that #/Z; = ¥ and ul = u, in (2.23). We have to show
that&”-aHandu,,'—a‘;‘

Since u, satisfies L = f# — Li’-pu |I" we have if , = uf. Since &}, — i, = S}, — i} )
and u, = “z,i = “z , we have i “z, = ug Hence from (3.12) we obtain

LAfuh + LHuH
LEuf = ( : }H ; T ) (x6)
Ik

and thus uff = u¥.

From (3.9), (%6) and uf! = u¥ we obtain

H, H — JHp R
1

Since Lf' is nonsingular this is equivalent with uf?) Qi = . Now the correction v¥ in (2.23¢)
i

satisfies
v (x) = ufl(x) - (rr D) = uf (%) — (P} )(x) 0 xe@f
H(x)—uH(x)—u (x)—u”(x)—uH(x) xelH |
vH(x) = x e QF

Thus uf, = i}, = uf’. ]

The coupled system (3.31) is similar to the coupled system (3.15) which describes the fixed points
of the LDC iteration.

Corollary 3.18 I[f7,is the trivial injection from (3.10), then the LDC method (2.16) and the MLAT
method (2.23) have the same fixed points.

Lemma 3.19 If (u”, u})) satisfies the coupled system (3.31), then
H e (Pl '
u 152{" = (Fu} }Igfq (3.32)

holds.
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Proof. Similar to the proof of Lemma 3.3. ™

Below we show that the coupled system (3.31) is related to a system of linear equations resulting
from finite difference discretization of the boundary value problem (3.14) on the composite grid
QH*k, We use the restriction 7+ : F(Q}) — F(I'H), defined by

Frw)j = Frw)ipn,  w e FQ). (3.33)

Lemma 3.20 If (u¥, u}) satisfies the coupled system (3.31), then the composite grid function

A

]
wih = l: W :|

IQE

satisfies
Rl T (3.34)
with
h h
R = [ L:H‘!’A'f‘ L’Z;” ] , (3.34b)
and fH* from (3.18c¢).
Proof. Similar to the proof of Lemma 3.4 with ry replaced by ;.. [ ]

Lemma 3.21 Ifu'"* satisfies the composite grid problem (3.34), then (u®, ul) defined by

ufl = u‘q”‘mg,

ul .= “H’&lsz*}'
satisfies the coupled system (3.31).
Proof. Similar to the proof of Lemma 3.4 with ry replaced by #¢. =

We define the composite grid fixed points of MLAT by

Hh ul (3.35)
uth = H ‘ .
“lgH

where (¥, ul) is a fixed point of the MLAT method (2.23).

Theorem 3.22 The composite grid fixed points of the MLAT method (2.23) are the solutions of
the composite grid problem (3.34).

Proof. Follows from a combination of Lemma 3.17, Lemma 3.20 and Lemma 3.21, »
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Corollary 3.23 If the finite difference operator LE* from (3.34b) is nonsingular, then the MLAT
iteration (2.23) has a unique fixed point.

If 7, is the trivial injection from (3.10), then the composite grid problem (3.34) is the same as the
composite grid problem in Theorem 3.6. The discretization approach which yields this composite
grid problem is described in Section 3.2. The interface grid points are treated as if they were grid
points of the uniform global coarse grid Q. If 71 is a weighted restriction, then the interface grid
points are discretized in a different way. An example is given below.

Example 3.24 It suffices to consider the one-dimensional Poisson equation —u,, = f. We take
21 = (y, z) and o = 2, and we use central differences on the uniform subgrids. If 7 is the trivial
injection from (3.10), then we have

. 1
(LE ) (y) = 12 Qu) —uly — H) —uly + H)).

If 7, is the weighted restriction defined by

Fwh)(x) = %(w?(x — R+ 2wl () + wi(x+h)), xeQf,

{cf. ([31, Section 2.3]), then the difference approximation at y reads

5 1 1 1 1
(LAb) (3) 1= 55 Quy) = uly — H) = quCy + b) = 5uly 4+ H) = Zu(y +3h)).

]

Remark 3.25 In [7],[9] it is suggested that the converged solution of the multi-level adaptive
technique satisfies the composite grid discretization (3.18), independently of the choice of 7. As
we have seen in this section, the converged solution of the multi-level adaptive technique satisfies
the composite grid discretization (3.34), which depends on 7;. So even for linear problems the ap-
proximations in MLAT method depend on the choice for 7;. Contrary to this, the approximations
in the Full Approximation Scheme (FAS) for linear problems, which is used as starting point for
deriving MLAT, do not depend on the choice for the restriction operator used to transfer fine grid
approximations to the coarse grid {8, Section 8.1]. 0

In the MLAT method (2.23) the local fine grid problems are solved approximately by a two-
grid method (cf. Remark 3.16). If we consider MLAT with exact solution of the local fine grid
problems (2.23a), then the local fine grid defect in (2.23b) is equal to O at all grid points of the local
fine grid and the correction of the local approximation in (2.23e) can be omitted. Then the right
hand sides of the global and local problems are defined in the same way as in an LDC step, i.e.
by local defect correction and artificial Dirichlet values on the interface. If 7, = r; in the MLAT
step, then the only difference between an MLAT step and an LDC step is the order in which the
global coarse grid problem and the local fine grid problem are solved.
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3.4 COMPARISON OF LDC AND FAC

As we have seen in Section 2.3 the FAC method is an iterative solution method for an a priori given
composite grid discretization. In Section 3.2 we have derived the composite grid discretization
(3.18) which is actually solved by the L.DC method. In order to compare the LDC method and
the FAC method, we apply the FAC method to the composite grid discretization (3.18).

In the FAC method a restriction 7 : F{(Q%%) — F(Q#) is used. We assume that 7 has the

form g,
a__ ¥
F= [ I ] (3.36)

Here and in the remainder of this section block partitionings corresponding to F(Q#*) = F(Qh) &
F(QF) and F(QF) = F(QF) © F(QF) are used (see Figure 3.2). By (3.36) we have that out-
side the region ; composite grid defects d#* from (2.20a) are restricted to the global coarse grid
$ in a trivial way. Inside the region €, a linear surjection 7; : F () — F(QF) is used.

Theorem 3.26 The iterates ul"* (i > 1) from the FAC iteration (2.20) applied to the composite
grid problem (3.18) satisfy

ulth — b = (i — by, (3.372)
with
M:=U-P)I-P), (3.37b)
By = T (LAY LHR, (3.37c)
Py = RI(IHIR,LEA, (3.37d)

R, from (3.8), ¥ from (3.36), L¥,L¥ from (2.20) and L™ u™* from (3.18).

Proof, 1t follows from (2.20) and (3.7) that the FAC iterates aef"*;‘ satisfy

I g 9
u;*i.a Bk u;&:? b _ I: - of

# g 1
with
v = (L) Ip(LBmy ok fHRy
vp = (L) R L™t — FRy — (L) L po
Thus we obtain ‘
u;‘{,h — R — uf_{;‘ ik _ er(Lf')'le(LH'kqu;{’ _ fH,k)

I _ 0 o
+[@ ](L?) 1UH’"’HIF_[@ I ]”H
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= ulth g RT (LR L iy
- ([ g ? ]... [ p :I(Lﬁ’)"lL',iprr[ g I ]) (LEY (L0 pHRy
= (I = Py)(ufh — uhy — [ g —(Lf')_;L';iP"I‘ ];T(LH)—I;}LH,}:(“&? — ytthy

= (I — P)(ufth —utihy — (T — Py By (uith — iy
= (I = P)(I — Py (it — iy,

where we have used

¢~ Lepre ] _
[@ ;P = d =R,

as shown in the proof of Theorem 3.9. n

In Remark 3.10 we have seen that in the expression for the error propagation operator of the LDC
method there is a certain freedom with respect to the choice for the restriction operator R. By
combining the results of Theorem 3.9, Remark 3.10 and Lemma 3.13, we obtain for the LDC
iterates zc"f k.

ulh — y B = B — P (RT(LH)™ fH — oy, iz 1, (3.38)

with M from (3.37b).

Remark 3.27 In the expression for the iteration matrix of the FAC method there is no freedom
with respect to the choice for the rcsmctlon operator 7. This is due to the fact that for an arbitrarily
chosen initial approximation #" in the FAC method, the term L (uft" — 1#'#) is not of the form

Hi

For i > 2 the terms L¥"(uf'* — /7%y are of this form (see [22]). o

In the FAC method the initial approximation uy” Bh has to be specified. A possible choice for ugl s

the approximation resulting from the starting procedure in the LDC method (2.16a-c). With this
initial approximation, the FAC iterates satisfy

uili,h — gl — MI(I - P) {RT(LH)-lfH _ “if,};)s (3.39)
which is obtained by combining the results of Theorem 3.26 and Lemma 3.13. It follows from
(3.38) and (3.39) that the iterates generated by the LDC method are the same as the iterates gener-
ated by the FAC method described above. In this FAC method the initial approximation resulting
from the LDC starting procedure is used and composite grid defects are restricted to the global
coarse grid in a trivial way outside £2; (cf. (3.36)).
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Corollary 3.28 If the FAC method (2.20) with the initial approximation resulting from (2.16a-c)
and F as in (3.36), is applied to the composite grid discretization (3.18), then the FAC iterates on
the composite grid are identical to the composite grid iterates in the LDC method (2.16).

Remark 3.29 The difference between the FAC method for solving (3.18) and the LDC method
for solving (3.18) is, in multigrid terminology (see e.g. [8, Chapter 8)), the difference between a
correction scheme version and a full approximation scheme version of an iterative solution method
for (3.18). 0O

Remark 3.30 In [22] we have shown that if the FAC method is applied to the composite grid
discretization (3.18), itis optimal to use a restriction 7 of the form (3.36). The fast convergence of
the FAC method with an optimal restriction operator is illustrated by numerical results. If the FAC
method is applied to the discrete equations resulting from a non-uniform discretization approach
(see Section 2.3), it is not optimal to use a restriction operator of the form (3.36). In [22] quasi-
optimal restriction operators for the FAC method applied to non-uniform composite grid problems
are derived. )



FINITE DIFFERENCE
DISCRETIZATION METHODS ON
COMPOSITE GRIDS

In this chapter we discuss three finite difference approaches for the discretization of elliptic bound-

ary value problems on a composite grid. The three discretization approaches are identical at all
composite grid points which do not lie on the interface; they differ at the interface grid points.

The first approach is related to the LDC method. The composite grid problem resulting from
this approach is the discrete problem which is actually solved by the LDC method (cf. Section 3.2).
The composite grid problem which results from the second approach is the discrete problem which
is actually solved by the MLAT method, with a reasonable choice for the restriction operator 7y (cf.
Section 3.3). Both these approaches use the fact that interface grid points belong to a global uniform
grid underlying the composite grid. The third approach does not use this fact; non-uniform finite
differences are used at the interface grid points.

In Section 4.3 we consider a simple two-point boundary value problem. We discuss elemen-
tary properties of the discrete Green’s functions and the local discretization errors corresponding
to the three discretization approaches. Most of these properties, which play an important role in the
analysis of the global discretization efror, can be generalized to the two-dimensional case.

In Section 4.4 we derive a discretization error bound for the finite difference approach related to
the LDC method applied to the two-dimensional Poisson model problem of Section 2.1. We show
the sharpness of the bound via numerical results. The discretization error bound is derived for the
model composite grid % from Section 2.1. The bound is valid without restrictions on H, h and
H/h. We note that, as far as we know, this is the first result for discretization error estimation on
composite grids in which the grid sizes H and # are essentially independent.

Section 4.2 is of a preparatory nature. Some basic linear algebra concepts are introduced, such
as monotone matrices, M-matrices and the Schur complement.

Parts of this chapter are also presented in [21].
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4.1 INTRODUCTION

In Chapter 3 we have derived the systems of linear equations which are actually solved by the
LDC method and the MLAT method (cf. (3.18) and (3.34), respectively). These systems of lin-
ear equations result from finite difference discretization of the boundary value problem (3.14) on
the composite grid 27#. At the grid points of 2#* which do not lie on the interface T, standard
uniform finite differences are used. A prolongation p : F(T'¥) — F(I™) is used for eliminating
the values at the slave points (cf. the term L prr in (3.18b) and in (3.34b)). In this chapter we
consider only piecewise linear interpolation and piecewise quadratic interpolation on the inter-
face. In the discretization method related to the LDC method, standard uniform finite differences
are used at the interface grid points: the interface grid points are treated as if they were grid points
of the uniform global coarse grid 2. Note that this is possible since T# c Q¥ ¢ Q#*. The dif-
ference stencils at the interface grid points in the discretization method related to MLAT depend
on the restriction 7, : F (sz?) — F (Q{’ }in (2.23). These difference stencils are combinations of
standard uniform finite difference stencils and the restriction 7; (see Example 3.24).

Both in the discretization method related to LDC and in the discretization method related to
MLAT, one makes use of the fact that interface grid points belong to the uniform coarse grid
QF c Q¥+, Alternatively one can consider the composite grid as a truly non-uniform grid. Then
non-uniform finite differences are used at the interface grid points.

In Section 4.3 we consider the three finite difference discretization methods mentioned above
for the one-dimensional Poisson problem. We show some interesting properties of the finite
difference operators and we derive sharp bounds for the global discretization errors. The one-
dimensional case is of interest for several reasons. The analysis of finite difference discretiza-
tion methods on composite grids is much more transparent for the one-dimensional case than
for the two-dimensional case and the essential results can be generalized to the more interesting
two-dimensional case, which is considered in Section 4.4. Even for the one-dimensional Poisson
problem, the discretization error bound for the discretization approach related to MLAT with 7
not equal to the trivial injection, is significantly worse than the discretization error bound for the
discretization approach related to the LDC method.

In the previous chapters we mainly used grid functions and operators in our notation. In this
chapter it is more convenient to use the matrix-vector notation. We recall from Definition 2.5
that for a given ordering of the points in the grid V the vector representation of a grid function
v e F(V) is denoted by v. In a similar way, for given orderings of the points in the grids V and
W, alinear mapping L : F(V)} — F(W) can be represented by a masrix L € R™*", with m, n the
number of grid points in W,V respectively.

4.2 SOME BASIC NOTIONS

In this chapter we frequently use the notion of M-matrices. We recall some standard definitions
and properties here (see e.g. {23, Chapter 5], [32, Section 4.3]).
Let A be a matrix with index set I. The elements of the matrix are denoted by a5, £, j € I.
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We write
A>B ifa;zby; foralli, jel,

and define analogously A < B, A > B, A < B.

Definition 4.1 The matrix A is called monotone if A is nonsingular and Al >0,

The index i € I is said to be directly connected with j € Iif a;; # 0. We say thati € I is connected
with j € [ if there exists a chain of direct connections

i =g, 1,102, ...,0 = jwith @iy 14, £0 (1 =<k=xl).
Definition 4.2 The matrix A is called irreducible if every i € I is connected with every j ¢ I.
Definition 4.3 The matrix A is called diagonally dominant if

Zlafj! < laz| forall i e I.
J#

Definition 4.4 The matrix A is called irreducibly diagonally dominant if A is irreducible and

Zlazﬂ =< lag| forall ie [,
J#

with strict inequality for at least one { € I.

Definition 4.5 The matrix A is called an M-matrix if

a; >0 foralliel, a; <0 foralli#j {4.1a)
A nonsingular and A~ > 0. (4.1b)

Lemma 4.6 Assume that A satisfies (4.1a) and that one of the following properties holds:

i) A isdiagonally dominant.
iiy A isirreducibly diagonally dominant.

Then A is an M-matrix.
Proof. Criterion 4.3.101in [32]. n

Lemma 4.7 Assume that A satisfies a;; < 0 for all i # j and that there exists a vector v > 0 with
Av > 0. Then A is an M-matrix.

Proof. Theorem 5.1 in [23]. _ -
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In Section 4.4 we use the notion of the Schur complement. We recall some standard definitions
and properties here (see e.g. [23, Chapter 1]).

Let A be partitioned as :
Ay Ay
A= 4.2
[ An Ap ] “2)

with Ay nonsingular,
Definition 4.8 The Schur complement S (of the block Ay in A) is defined by

S:i= Ay — AyAGAp.

Lemma 4.9 Let A in (4.2) be square. Then A is nonsingular if and only if the Schur complement
S is nonsingular. In this case
1 1] 0
s7=[0T1]A [1]

holds.

Proof. Theorem 1.23 in [23]. ]

In Section 4.3 and Section 4.4 we consider systems of linear equations,
Au=f{, ‘ 4.3)

resulting from finite difference discretization of a boundary value problem on a composite grid
Q®% Here and in the remainder of this chapter the super scripts #* are omitted if this does not
lead to confusion.

By u* we denote the vector representation of u*| QHM where * is the continuous solution of
the boundary value problem. The local discretization error vector d is defined by

d:=f—Avu".
If A is nonsingular, then the global discretization error vector u — u* satisfies
u—u*=A"ld.
Let ex be the composite grid basis vector related to the grid point x € Q#* ie.

%@y={é§;§.

If A is nonsingular, then A e is called the discrete Green’s function corresponding to the grid
point X.
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4.3 ONE-DIMENSIONAL MODEL PROBLEM

The analysis of finite difference approaches for the discretization of linear elliptic boundary value
problems on composite grids is rather technical in the two-dimensional case. For the one-dimen-
sional case the analysis is much more transparent. Moreover, the results obtained for the one-
dimensional case can be generalized to the two-dimensional case. Therefore first we consider the
Poisson problem:

—~Uelx) = f(x), O<x<1,

#(0) = u(1) =0. 4.4)

We define the one-dimensional composite grid Q" by

Qik = QhUQF,
QF={ih|1<i<n}, withn:=y/h-1,
QF = {(y+iH|0<i<m—1}, withm:=(1—y)/H.
We assume that y/ H € IN and H/h € IN. The composite grid is locally non-uniform at the inter-
face grid point y (see Figure 4.1). We define o := H/h. We are particularly interested in values

o> 1. We use the lexicographical ordering of the grid points in Q%
We use the standard central difference approximations

— e () = B —u(x — R+ 2u(x) — ulx+ 1)1, atx € QF, (4.52)
—tt (X) = H [ —u(x — H) + 2u(x) —u(x+ H)), atxe QA\{y}. (4.5b)

For the approximation of —u,, at the interface grid point y we introduce the following three ap-
proaches:

(L) = H-uly ~ H) +2u(y) —uly + H), @.60)
o—1 .
(L) 7= Bty = H) + 37ty = H i)+ uty — H o+ k)
+2u(y) —uly + B, (4.6b)
5 -2 20? 20
(Lu)(y) = H™ [~ u(y — h) + 2ouy) - uly -+ H)l. (4.6¢)
o+1 o+1

The system of linear equations resulting from the finite difference approach (4.5), (4.6a) is
denoted by Lu = f. The right hand side of the differential equation in (4.4) is discretized as usual,
ie. f(x) ;= f(x) forall x € Q%" In this approach the interface grid point y is treated as a uniform
coarse grid point. We note that this approach is related to the LDC method (see Section 3.2). The
system of linear equations resulting from the finite difference approach (4.5}, (4.6b) is denoted

i

i
LI I A I I R B i d d i

0 y 1
Figure 4.1 One-dimensional composite grid Q¥ H = 1/6, h = 1/24,




58 CHAPTER 4. FINITE DIFFERENCE DISCRETIZATIONS ON COMPOSITE GRIDS

by Lii = f. This approach is related to the MLAT method (see Section 3.3), with the restriction
operator 7, : F(QF) — F(QF) defined by

g-1

(Frw)(x) = -w(x) +Y.75

=1

—ihy+wi+ik), xeQF, we FE@). @7

Here we use the notation QF := {iH |1 <i < N}, with N:= y/H — 1.

Remark 4.1¢0 The restriction operator 7; is a weighted restriction operator. This restriction op-
crator is closely related to the piecewise linear interpolation operator. If the piecewise linear
interpolation operator @ —> QF is denoted by p;, then we have #* = f, where 7" is the adjoint
with respect to the scalar products

(vwyg=H Z vnw(x), vwe FQF),
xeﬂf"

W wh=hY vWuwl), vuwe FEQ.
xeq

In amultigrid setting (like in MLAT) the piecewise linear interpolation operator p; and the weighted
restriction operator 7; are often used. o

The system of linear equations resulting from the finite difference approach (4.5), (4.6¢) is de-
noted by L = f. In this approach a non-uniform finite difference scheme using nearest neigh-
bouring grid points is applied at the interface grid point y.

Remark 4.11 The matrix L has band width 3. The matrices L and L have bar;\d widtho + 2. So
for o >» 1 the band width of L is much smaller than the band width of 1. and L. 0

The three discretization approaches differ only at the interface grid point y (cf. (4.6)) . Hence
the local discretization error vectors d, d and d, differ only in the component corresponding to
the grid point y. For u* € C*([0, 1]) we obtain:

1

d@y) = - HuP®), te (y—H y+ H), (4.8a)
d(y) = 112}-12 (&) — 1 "2 Lo@ 0 iy £ O, Ee(y—H, y+ H),(4.8b)
d) = 355 +1)H<;u*<3><e>—au*@(n)), fe(y—hy). nelny+H. (480

The results are obtained using suitable Taylor expansions. The constant in the O(.) term on the
right hand side of (4.8b) is independent of o. The finite difference approximation in (4.6a) is
second-order accurate in the coarse grid size H. The approximationin (4.6¢) is ﬁrst—order accurate
in H for o > 1. From (4.8b) we have that, for o fixed, limp,o d(y) = -3 -1 L@ (y). So the
finite difference approximation in (4.8b) is not consistent for o > 1.
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In the following we show some interesting properties of the discrete Green’s functions related
to the grid points y and y — . As we have seen in (4.8) the components of the local discretization
error vectors differ at the interface grid point y. For two-dimensional problems, interpolation at
the interface is required. As we shall see in Section 4.4 relatively large components of the local
discretization error vector occur at certain fine grid points at a distance h of the interface. Be-
low we show that the various discretizations for the one-dimensional case result in significantly
different discrete Green’s functions related to the grid point y — A.

First we consider the discretization Lu = f,

Theorem 4.12 The finite difference matrix L satisfies:

i) L ismonotone and ||L ™ |0 < 1/8,
i) L7l = y(1 = p)H,
i) IL"eyplloo = (¥ = W)(1 =y + H)g.
Proof. i) It follows easily from Lemma 4.6.4i that L is an M-matrix. Let g be the composite grid
vector related to the function g(x) == x(1 — x)/2. Itis easy to see that
Lg=(1,1,..., ).

Then we obtain

IL Moo = 1L L, o 1D oo < max x(1 -x)/2=1/8.

iy We introduce the function g, which is continuous on {0, 1], linear on the intervals (0, y — &),
{(y — h, ), (¥, 1) and has values

g0)=g(1) =0,
gly—h)=-hl-y)H,
gy)y=v(l~yH.

A simple computation yiclds that
Lg=e,,

with g the composite grid vector related to the function g. Now the result follows using that g is
positive and attains its maximum value at y.
iiiy Similar as for ii), but with the function g satisfying

g0) =g =0, i
gy-m=@-n-y+HY
) =y —-H(1-yk.

| |

We see that for H fixed the norm of the discrete Green’s function related to y — h decreases pro-
portional to A* for & | 0. This behaviour is similar to the case of a discrete Green’s function cor-
responding to a grid point next to the boundary in a global uniform grid with grid size A The
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situation is very different for the discrete Green’s function related to the interface point y. For

this Green’s function we have a damping proportional to H, i.e. similar to the case of a discrete

Green’s function corresponding to an interior point of a global uniform grid with grid size H.
For the discretization Ll = f the results are the same as in Theorem 4.12.

Theorem 4.13 The finite difference matrix L satisfies:
i) L is monotone and ||IAJ_1||°° <1/8,
i) L7l =y~ 1A,
iii) 1L ey hlloo = (v = W1 =y + B).

Proof. i) It follows easily from Lemma 4.6.ii that L is an M-matrix. For g the composite grid
vector related to g(x) := x(1 — x)/2 we obtain

o°—1

Lg=(1,1,....D)7+ 122 ey.

.1
Since ' > O and "2‘21 > 0 we obtain

A1 A-=1
IL oo =1L (1,1, ..., 1) [l < max x(1 —x)/2=1/8.
O<x<1

ii), iii) Similar to the proof of Theorem 4.12. [ ]

For the discretization Lii = f the norm of the discrete Green’s function related to y — h behaves
differently.

Theorem 4.14 The finite difference matrix L satisfies:
i) L is monotone and Ilfl—lllw <1/8,
i) 1L eylleo = Sy - NIA,
iif) 1L ey onlloo = (v = Y1 =y + ).

Proof. Similar to the proof of Theorem 4.12. In the proof of ii) and iii) the values of the function
g at y — h and y are given by

gy—h)=F-n0-y+hh and gy—n=%A-y)y-hH
W)= —-nA-yh gy =%y -y)H

respectively. [

’

The result for the discrete Green’s function related to y is very similar to the result in Theo-
rem 4.12. There is a significant difference between the results for the discrete Green’s functions
related to y — hin Theorem 4.14 and Theorem 4.12. For H fixed we have a discrete Green’s func-
tion of size O*?) for L (and L) whereas we have a discrete Green’s function of size O(h) for
L. In Section 4.4 we shall see that similar results hold for the two-dimensional case.
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Using standard techniques and the results in (4.8), Theorem 4.12, Theorem 4.13 and Theorem
4.14 we can derive sharp bounds for the global discretization errors:

u— e < CiR? + GH* 4+ G H?, (4.9a)
10— 0*)|oo < C1A* + CH? + C:H? + C3H + C3 H?h, (4.9b)
oo < CiH? + CH? + CiH. (4.9¢)

The constants C; and C, depend on max{|e*® (x)| | x € (0, )} and max{|w*® (O] 1xe (. )
respectively. The constant C; depends on max{[uw*® (x)| | x € (y — H, y + H)}, C; depends on
|uw*@ (y — H)|, C3 depends on max{|w*® (x)| | x € (¥ — 2H, )}, and C; depends on
max{[w*® ()| | x € (y — b,y + H)}.

The bound for the global discretization error in (4.9b) contains two additional terms compared
to the bound in (4.9a). One of these terms is an O(H) term. So the discretization approach in
(4.6b) is less favourable than the discretization approach in (4.6a).

Remark 4.15 We recall that the discretization approach in (4.6b) is related to the ML AT method
with the weighted restriction operator 7; from (4.7). If in the MLAT method the trivial injection
is used for 7, then the discrete problem resulting from MLAT is the same as the discrete problem
resulting from the LDC method (cf. Corollary 3.18). Then the discretization error estimate (4.9a)
holds for the discrete problem resulting from the MLAT method. Hence from a discretization
point of view, one should use the trivial injection for 7; in MLAT. |

The difference between L and L as discussed below Theorem 4.14 has only little influence on
the global discretization error. This is due to the fact that in the one-dimensional case no interpo-
lation on the interface is required. Hence the local discretization error at ¥ — h is O(h%). In the
two-dimensional case interpolation on the interface is required and relatively large components
of the local discretization error occur at certain fine grid points at a distance h of the interface.
Then a difference between the discrete Green'’s functions related to these grid points for L and L
results in a significant difference between the global discretization errors (see Example 4.25 and
Example 4.27).

Remark 4.16 Results similar to those in Theorem 4.12, Theorem 4.13 and Theorem 4.14 can be
obtained if a composite grid with two interface grid points or a composite grid with two or more
disjoint regions of local refinement is considered. o

44 THE TWO-DIMENSIONAL CASE

In Section 4.3 we have considered three approaches for the discretization of a one-dimensional
Poisson problem on a composite grid. We have seen that the discretization approach which is
related to the LDC method has some favourable properties. The difference stencils which are
used in this method are all very simple since the interface grid points are treated as if they were
grid points of the uniform coarse grid (cf. (4.6a)). The local discretization error at the interface
grid points is O (H?) (cf. (4.8a)) and possibly large (local discretization) error components related
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a1 b)
72
0 Vi 1
Figure 4.2 ) Composite grid @7, H = 1/8, h = 1/32. b) The interface I and grid
points of I (e),

to fine grid points near the interface are damped strongly by the inverse matrix L™ (¢f. Theorem
4.12.iii).

In this section we analyse the finite difference discretization approach which is related to the
LDC method for two-dimensional elliptic boundary value problems. We shall derive a sharp bound
for the global discretization error for a model problem and discuss some generalizations. In this
section we consider the model composite grid %" from Section 2.1. We are particularly inter-
ested in estimates expressing the dependence of the discretization error on both the coarse grid
size H and the fine grid size A.

4.4.1 Model Problem

We consider the two-dimensional Poisson problem on the unit square,

—Au=f  nQ:=(0,1)x(©1), @.10a)
u=10 on 352, (4.10b)

and the model composite grid %" from Section 2.1. This composite grid is composed of a uni-
form grid with grid size H covering £ and a uniform grid with grid size h covering the subregion
€; = (0, 1) x (0, y»). We only consider coarse grid sizes H suchthat 1/H € N, v,/H € N,
y»/ H € IN and fine grid sizes A such thath = H/o, o € IN. We recall the composite grid notation
from Section 2.1 and Section 3.1, and we introduce some more notation to be used in Subsection
44.2:

QF=((x,y)e R*|x/He N, yJHe N}, Q¥ :=Q7nQ,
Qf={(x,y) e R |x/he N, y/he N}, Q":=Q"ngQ,
Qf=0"na, @B =ofuql,

of = & n @\,

= 92\0%2,
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rf.=Qfnr, r=qQ"nr,

For = {(x, ) e R | x=y1,0 < y <1},
Thor ={x. ) e R* | y=1,0<x <y}
T = QUNT,,, Th =Q"NT,..

ver ver

M = QH N Dy, T8 = Q7N Ty,

hor hor

"= {xe Q| minlx —yl, = h).
yel”

At grid points x € QF and x € QJ\['* we use the five-point formula for the Laplace operator:

—Au(x) = H (du(x) — u(x+ (H,0)) — u(x — (H,0))
—u(x+ (0, H)) — u(x — (0, H))) (4.11a)

and

—Au(x) = b2 (du(x) —ux + (1,0)) — ux — (h,0))
—u(x+ (0, k) —ulx— (0, 1)), 4.11b)

respectively. So the interface grid points are treated as if they were grid points of the uniform
coarse grid Q¥. At grid points x € I we use the following discretization. We assume a given
interpolation operator p : F(I'#) — F(I'*). Now at x we discretize by applying the five-point
formula from (4.11b); values corresponding to slave points y € T"\I'" are eliminated using p.
Obvious modifications are used at grid points close to the boundary 9Q.

The discretization above is fully determined if p is given. We consider both a piecewise lin-
ear interpolation and a piecewise quadratic interpolation. The piccewise linear interpolation is
denoted by p. The piecewise quadratic interpolation is denoted by p'». In the remainder the
notation p refers to both p™ and p®. If w € F(I'™) is given, then at y € I"\I' we use an inter-
polated value (pw)(y) as shown in Figure 4.3. If x has distance H to the boundary 0€2, then we
use the Dirichlet boundary values in the interpolation. For example, fory = (i4, 1»),0 < i < o,
the linear interpolation is defined by

(V) () = (1= (O, 1)) + Sw((H, 1)) = Sw((H, ),

since we consider homogeneous Dirichlet boundary conditions.

We note that in case of guadratic interpolation there is some freedom: one may apply a shift
of the interpolation points by a factor H (in Figure 4.3: use x — (2H,0), x — (H,0), x as in-
terpolation points). To avoid technical complications in the proofs of Lemma 4.17 and Theorem
4.18, we assume that in case of quadratic interpolation on the line segment [(H, v,), 2H, y2)].
the points (H, y2), 2H, v,), (3H, v,) are used. In case of quadratic interpolation on the line seg-
ment [(yy, H), (31, 2H)] we assume that the points (1, H), (y1, 2H), (y1, 3H} are used. Then
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xely,, ye,\If,
o: w values
e pQuw

| ] 1 {

i ¥ _ :p(z)w
x—-{H0 vy x x-+ (H,0) ‘

Figure 4.3 Piecewise linear and piecewise quadratic interpolation on the interface.

both for piecewise linear and piecewise quadratic interpolation we have ( PV #)(X) < vix) for
x e I'*, if v is a positive constant function,

The system of linear equations resulting from the finite difference approach described above
is denoted by

Lu=f, 4.12)

for some given ordering of the grid points of Q#*, The right hand side of the differential equation
in (4.10) is discretized as usual, ie. f(x) := f(x) forall x € Q&k,

4.4.2 Global Discretization Error Bound

In this subsection we use block partitioning corresponding to F(Q™*) = F(QF) & F(QF). First
the grid points of Q! are ordered and then the grid points of Q. For the composite grid matrix
in (4.12) we write

Ly —Lyppre
L= . 4.1
[ =La  Ln :} “.13)

The matrix L, results from standard central difference discretization of the boundary value prob-
lem
—Au=f in = (0, 1) x 0, ),
u=0 ond,

on the uniform grid #. Hence Ly; is an M-matrix. The operator p : F(I'?) — F(I™) is defined
by piecewise linear (p™) or piecewise guadratic (p'®) interpolation and rr- is the trivial injection
from (3.17b). For ease of notation, the matrix corresponding to the operator prp : F(QF) — F (")
is denoted by prr too. The matrix [Ly; — Lyp] corresponds to the standard five-point stencil for
the Laplace operator on the local fine grid ¥ and [—Ly; L] corresponds to the standard five-

. point stencil for the Laplace operator on the coarse grid Q.

For a grid V C Q%" we denote by Ty the composite grid vector with the components related
to the grid points of V equal to 1 and the other components equal to 0. In this section both the grid
function representation and the vector representation of discrete approximations is used. Vectors
are printed in bold. In the proofs in this subsection we use the difference star notation {cf. e.g.

[32D.
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In the analysis in this subsection we use three main arguments: a stability result (cf. Theorem
4.19), a strong damping of errors on I (cf. Theorem 4.20) and local discretization error estimates

(cf. (4.16)). First we show the existence of a barrier function for L.

Lemma 4.17 Let w : IR* — IR be given by w(x, y) := x(1 — x)/2. Let w be the vector repre-
sentation of the grid function W o H Both for linear and quadratic interpolation, the matrix L

satisfies
Lw > Hﬂy’g.

Proof. For x € QH we obtain

OLw)x)>H?2| -1 4 —1 | w=1

Similarly, for x € M\ we obtain

Ew)x)=h? -1 4 —1 | w=1.
~1
X

Finally, we consider x € ™. We define the set of neighbouring grid points,
N(x) i={x+ "0, x— 4, 0),x+ 0, h),x~ O h)}
We introduce the grid function @ € ("), given by

(pw) ) () ify € P\DH
w(y) otherwise '

w(y) = {

Note that both for piecewise linear and for piecewise quadratic interpolation we have
0 < @(y) < w(y) for all y € Q" N Q. Using this, we obtain for x € [

-1
Cw)x)=h?| -1 4 —1 | o
-1 <
=hP @B - Yy B))
YENR ()
> h 7w~ Y wy)
yeN,(x)

-1
=kt -1 4 —1 w=1.

-1
X

4.14)
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§H H {a,b,cjcTH,
I + J eC fk
{ 1 ] T or o C Fh
h I a b c "
O & ¢ ®» O & & @& O
x
Figure 4.4 Example of x ¢ I'*,
This completes the proof. ]

In the following theorem we prove monotonicity of L. For the case with piecewise linear inter-
polation it is easy to show that IL is an M-matrix. The case with piecewise quadratic interpolation
is rather involved. This is due to the fact that then L is not an M-matrix. We shall show that L
can be written as the product of two M-matrices. The technique is based on ideas from [6],[42].

Theorem 4.18 Both for piecewise linear and piecewise quadratic interpolation, the matrix L is
monotone, i.e. L is nonsingular and L' > 0 holds.

Proof. First we consider the case with piecewise linear interpolation.
For every line segment [x — (H, 0), x] =: Ix on I'y,, (cf. Figure 4.3) the linear interpolation p
of a grid function u € F(T'#) on Ix results in

(PDu)(y) = oy (y)u(x — (H,0)) + (1 — a1 (y))u(x)

with0 < on(y) < lfory e lx NI

A similar result holds on I'y,,. Using this, it follows that L is an irreducibly diagonally dominant
matrix with coefficients (L); > 0 for all i and (L);; < 0fori  j. By Lemma 4.6.ii we find that
L is an M-matrix and thus L is monotone.

Next we consider the case with piecewise quadratic interpolation on the interface.

A special role is played by the difference stencils in which the quadratic interpolation is used. We
introduce the set '

D= {0, y) e | (x+h, y) ¢TH A (x, y+ h) ¢TH}.
As an example we take x € T as shown in Figure 4.4. The difference stencil at x is as follows:

[L] = h™>(4u(x) — u(x — (h,0)) — u(x+ (2, 0)) — u(x — (0, h))
— ozu(a) — opu(b) — aqu(c)), (1)

withay =380 — 1), a2 = (1 =81+ 8), 3 = 28(14+8),0 <8 < 1.
Note that 0 < § < 1 implies oy < 0,0 < a7 < 1,0 < 3. Also we have

(*2)

We decompose L as L = D + N + P such that:
D is a diagonal matrix and diag (D) = diag(L),
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diag(N) = 0 and the elements of N satisfy (N); < 0 for all i 5 j,
diag (P) = 0, and the elements of P satisty (P);; > O forall i # j.

Now introduce N1, N; with stencils [Ng]x {i =1, 2) defined as follows.

Forx ¢ (' UT*) we take [Ni], := [N, [Nl :=[0], . Alsoat the comer pointx = (1, y2)
we take {Nﬂx = [N]x’ [Nzlx = {O]X.
Forx € TH \{(»1, »)} we take

0 -1 0 0
N], = H?2 0 0 0 ;N = | =1
0 -1 0 0

coo

=
I

L 1

Similarly, for x € T'H \{(31, v2)} we take

0 0 0 0 -1 0
[NI]X::H“Z -1 0 -1 ,[1\1?_]}(::3-2 0 0 0.
0 0 0 0 -1 0

Obvious modifications are used if x is close to the boundary 952.
Finally we consider x € I'". As an example we take x as in Figure 4.4; then we define (cf. (x1)):

N e i= A2 (—u(x — (B, 0)) — u(x + (h, 0)) — ulx — (0, h)) — ctau(b)),
[N2], = [0], .

Note that [N z]x # [OJX only for x € I'"\{{y, y»)}. From the definitions of ID and IV, it immedi-

ately follows that (I + DN, is diagonally dominant and that (I + D"‘lNz)ij <Oforalli#j.
Thus (I +D™'N;) is an M-matrix (cf. Lemma 4.6.i).

It is easy to check that (D + INy) is an irreducibly diagonally dominant matrix (use 0 < o < 1)
with (D 4+ Ny > Oforall i and (D + Ny); < Oforalli s j. Thus (D 4 Ny) is an M-matrix
(cf. Lemma 4.6.17).

From the definitions of IN; and N3 it follows that

N < N;+ N, {(x3)

Next we consider the nonnegative matrix P. First note that [P]_ # [0]X only for points x € I,
Again, as a model situation, we take x ag in Figure 4.4, in whicﬁ case we have (cf. (x1)):

[P]xu = —h%oqu(c). (x4)
For this x we also have
1
4
Combination of the results in (%2), (x4), (x5) and using N;D™'N; > 0 yields the inequality

INiD™'Npl oo = —h*ea(u(@) + u(e)).  (+5)

P <N,DN,. (x6)
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From (%3), (x6) we obtain:
L=D+N+P<D+N; +N;+NiD'N; = D+ NI+ D'Ny).
Since both D + Ny and I+ D’INZ are M-matrices we conclude that for all i # j:
(D +N1) L)y < T+ D7'Ny); < 0.

By Lemma 4.17 we have that a vector v > 0 exists such that Lv > 0. Due to (D + Ny)~! >
0 this yields (D + N;)~!'Lv > 0. Then we obtain from Lemma 4.7 that (D 4 N;)™'L is an
M-matrix. Thus we see that L = (D + N {((ID 4 Ny)™L) is the product of two M-matrices and
consequently we have that L is nonsingular and that L™! > 0. N

Stability of the discretization follows from the resulis of Lemma 4.17 and Theorem 4.18.

Theorem 4.19 Both for linear and quadratic interpolation we have the following stability result:

1
lmﬁusg. (4.15)

Proof. Using L™ > 0 (cf. Theorem 4.18) and (4.14) we obtain
I oo = 1L Ty alloo < IWloo,

with w as in Lemma 4.17. Since maXo«y.; X{1 — x)/2 = 1/8 we get ||wlje < % ~ [

As in the one-dimensional case in Section 4.3, we consider a problem where the source term has
non-zero values only in I'™®. More precisely, we derive bounds for Lt e llooe

T
Theorem 4.20 The following inequality holds:
1 K
IL™ Iz lloo = (CpCr + H)?I_’ (4.16a)
with
Cr =2 Yy <2 (4.16b)
and

Cp = { 1 for linear interpolation, @.160)

% for quadratic interpolation,

Proof. We define v := L"lllﬁ. The partitioning in (4.13) is used to obtain

Lu —Lupr | vi|_Je
-L21 Lzz Vi 1o}
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where e is the vector representation of the grid function e € F(Q2F) defined by

1 xel*

¢@x) :={ 0 xeQhH

Using the block LLU-factorization of L,

L = I 0 Lii —Lgprr
T -LyLi 1 0 S '

with the Schur complement

S := Ly — Ly L'y prr, (xla)
we obtain

vi=Li'Lppreva+ Lije,  (x1b)

vy = ST Ly Lile. (x1¢)

Note that we can represent e as
e = hLpw, (%2)
with w the vector representation of the grid function w € # (T™) defined by:

1/2 forx=(y1—h, )
wx) =4 1/2 forx=(y,y2—h) .
1 otherwise

So for vy we have
Lyvi — Lia(preve + APw) = 0.

The discrete maximum principle yields |[v1]loe < || prrval|eo + A% For piecewise linear interpola-
tion we have {|pWrrvall < [IV2llo and for piecewise quadratic interpolation we have
1pPrevalie < i-livzlloo- This yields

Villeo < Cplivalloo + B2, (x3)

with Cp = 1if p= p® and Cp = § if p = p@.

It remains to obtain a bound for [|[v3 e = |S T Ly Ly PP

We introduce u := Ljj'e. From (x2) we obtain that Lj;u — Lz (h*w) = 0 holds. The discrete
maximum principle yields that 0 < u(x) < k* for all x € QF. For the vector i := Ly;u only
the components related to grid points on I'"\{(y1, y»)} are non-zero and we have 0 < fi(x) <
H™2h? = o % forall x e TE\{(y1, y2)}. We define e e F(QH) as the grid function with value 1
atall points of ' \{(y1, 2)} and value 0 at all other points of Q7; e/l denotes the corresponding

hor

vector. Similarly we define the vector e, (cf. Figure 4.5). Note that fi = LzlLﬁle and that the
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£

=0, x(;m1)
| Q; =y, 1) x 0, )
Yol—o ) 5
oe I \(n, )
ec AN\, 1)
Q xeTH={xeQf ly=nn<x<i}

0 Y1 1
Figure 4.5 Partitioning of QX

characteristic function in QZ corresponding to T¥\{(1, y»)} is given by el + ¢¥ . Hence we
have the following result

0<LuyLie<o (el +e). (x4)

DuetoS™'=[0 I]L™! [ (I) ] (cf. Lemma 4.9) and the monotonicity of L (cf. Theorem 4.18)

we have S~! > 0. Combination with the result in (x4) yields

Ivalleo = IS™ L Lifelleo < 072 (IS 7'/ lloo + 1S el 11 c0)- (%5)

ver

We now consider the term || S‘lefo,ii oo~ Weusenotation as explained in Figure 4.5. The piecewise
linear function g is defined as

1 .
1=y ifyzy
f— 1~y
8 y): {1 fy<py
The vector corresponding to the grid function 8lqn 15 denoted by g.
4

Now consider Sg = (L — Loy L Lizprr)g.
Forx e QEI\(TH UT'E UT#) we have

—1
Bg)x) =[Lxnl g > H?| -1 4 -1 | g=0. (+6a)
L -1
“x
For x € T we obtain
- i -
(Sg)x) =[Lnl g= H?* -1 4 -1 g
-1
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e _le o 1d
0=~ Haybla, " Hayble
1
_0+71—1wy2+020' (x6b)

With respect to the result on ' UTH \{(y, y2}) we first note the following.

Define z 1= Lfllle prrg. Due to the assumption we made concerning the quadratic interpolation
on the line segments [(H, y»), (2H, y2)] and [ (w1, H), (y1, 2H)] and because g = 1 on I" we have
prrg < 1. The discrete maximum principle then yields 0 < z(x) < 1 for all x € Q7. Thus we get

0 <LuL{Lizprrg < H (e, +ef).

Using this we obtain for x € ' \{(y1, y2)}:

-1
(Sg)(x) = (L2 — Ly L' Lp pr)g) (x) = H™* [ 0 4 -1 :‘ g—H?

& 19 1 1

T, T Halle T BT (x6c)

For x € TH \{(y1, v2)} we obtain:

—~1
(Sg)(x) = ((Ly — Ly Li} Lz prr)g) (x) > H? [ ~1 4 -1 } g—H™?
0

e, te 1 11 1
2l " HOlo B H T Hl—y

(x6d)
Combination of (x6a-d) yields

Sg > ET_l—nefwr’
and thus, using the monotonicity of S, we obtain

15~ eorlloo < H(1 = y2) lIglloc = H(1 = y2).
The term [|S”le A |l can be treated similarly. Using these results in (x5) we obtain
[ Valloo < 0 2H(H(I = y2) + H(L = ). (7)

Using (x7) in (x3) completes the proof of the theorem. [ ]

We note that the result in Theorem 4.20 is very similar to the result in Theorem 4.12 for the one-
dimensional case. Itis well-known (cf. e.g. [5],[14]) thatin case of a global uniform grid with grid
size h relatively large (e.g., O(1)) local discretization errors at grid points close to the boundary
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may still result in acceptable (e.g., @ (h?)) global discretization errors. In Theorem 4.20 we have
. avery similar effect with H fixed and & |, 0, but now with respect to the local discretization errors
at grid points of T (i.e. close to the interface). The result of Theorem 4.20 plays an important
role in the analysis of the global discretization error below.

The local discretization error aty € Q%" for the discrete problem Lu = f is denoted by d (y).
As usual in a finite difference setting we assume that the solution of the boundary value problem
satisfies u* € C*(). Since standard finite difference stencils (related to uniform grids) are used
aty € QN\I™ and aty € QF, we obtain

max_|d(y)| < Ci#?, (4.16a)
yeQh
max |[d(y)| < CH. (4.16b)
yeal
The constants Cy and C; are of the form
Cr = cymax{|w® )| | x € (0, y1 —h) x (0,2 —h)}, (4.17a)
G = cymax{[* @ x)| | x € Q\((0, 1 — H) x (0,7, — H))}, (4.17b)

with ¢1, ¢z independent of H, h, u*.
Due to the interpolation on the interface we obtain

m%MWH5QH+Q¥HH (4.16¢)
yel

with j = 1 for piecewise linear interpolation (p M) and j = 2 for piecewise quadratic interpolation
(p@®). The constants C; and C; are of the form :

G = exmax{[w*®(x)] | x € (O, y1 — 2h) x (0, y» — 2h))} (4.17¢c)
C; = cymax{{w**(x)| | x e T}, (4.17d)

with ¢3 independent of &, H, u*.

Remark 4.21 Aty € I** we obtain d(y) = O(1) for piecewise linear interpolation on the inter-
face. So the discretization for the Poisson problem (4.10) on the composite grid 2%* in case of
linear interpolation on the interface is not consistent if we take o fixed and H | 0. o

The bound in (4.16¢) is not sharp for the (less interesting) case ¢ = 1. A composite grid makes
sense only for problems in which the solution #* varies much more rapidly in £ than in £\§2,.
Thus we assume Cy > él + G, + G Clearly, then one would use a composite grid with 2 < H,
ie. o >> 1. In that case the local discretization error on I'* can be large compared to the local
discretization error on QEM\T™* (cf. (4.16)). A strong damping of these large local discretization
erTors is a necessity to obtain an acceptable global discretization error.

Theorem 4.22 For the global discretization error the following holds

1 — u*floo < -183 max{C;, €1} + éCzHZ +3CH, C(418)

with C; (i = 1,2,3) and Cy as in (4.17), j =1 for piecewise linear interpolation and j = 2 for
piecewise quadratic interpolation.
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Proocf. Using Theorems 4.18-4.22 and (4.16) we obtain

1
8

l 2 A h 2 2 1 2 ;
:§C1h‘TC1(CpCr;+h Jh +§C2H +CB(C1)CF+ HYH/,

] LN .
llu—u*stgClkz%- C2H2+(CPCF+H)/;_J'(C1h2+C3O‘2Hj~l)

with Cp and Cr as in (4.16). Now (4.18) follows using » < H < 1 Cp= % and Cr < 2, -

The bound in (4.18) nicely separates the discretization error terms related to the high activity re-
gion, the low activity region and the interpolation on the interface. As usual in finite difference
estimates, high (fourth order) derivatives are involved. We shall illustrate the sharpness of the
bounds via numerical results in Subsection 4.4.3. Note that the constants on the right hand side
of (4.18) do notdepend on o = H/ k. Hence, despite the fact that the local discretization error de-
pends strongly on o (cf. (4.16¢)), the discretization approach described in this section is suitable
for discretizing on composite grids with large refinement factors. We note that asymptotically for
H | 0 the bound in (4.18) for linear interpolation (j = 1) 1s worse than the bound for quadratic
interpolation. In practice (where we have a given desired accuracy) it may well happen that the
results for quadratic and for linear interpolation are comparable (see Example 4.26).

Remark 4.23 It follows from (4.18) that for linear interpolation the discretization is convergent
if we take o fixed and H | 0, although the discretization is not consistent (cf. Remark 4.21). O

Comparing our results with related results for composite grid discretizations in the literature,
we note the following. In [13] an analysis of a composite grid problem resulting from finite vol-
ume element discretization is given. In this analysis weaker assumptions concerning the regular-
ity of the solution are used than in our analysis. However, only the case with o = 2 is treated.
The finite volume type of method in [13] uses vertex centered approximations. A finite volume
method for composite grids using special cell centered approximations is analysed in [38]. This
analysis also uses weaker assumptions concerning the regularity of the solution. In the schemes
in [38] larger values of o are allowed. The error estimate in [38] is of the form

lu— )} < Ky H™ 4 Kb,

with ||| a discrete H-norm, m > 0 related to the regularity of the solution, and ‘constants’ K,
and K, which depend on the refinement factor o = H/ h. The constants on the right hand side of
(4.18) are independent of . In Section 4.4.3 we show the sharpness of the discretization error
estimate (4.18) via numerical results.

Remark 4.24 Results very similar to those in Theorem 4.20 and Theorem 4.22 can be obtained if
we consider a composite grid with £2; of the form (341, y12) X (321, Y22) with O < vy < yp < 1,
0<’y21<‘}/22<1. .

In the remainder of this subsection we comment on a generalization of our discretization error
analysis to more general elliptic boundary value problems. In the analysis above we used three



74 CHAPTER 4. FINITE DIFFERENCE DISCRETIZATIONS ON COMPOSITE GRIDS

main arguments: local discretization error estimates (as in (4.16)), a stability result (as in Theo-
rem 4.19) and a strong damping of local discretization errors on I'* (as in Theorem 4.20).

We consider an elliptic boundary value problem, on the unit square Q = (0, 1) x (0, 1), of the
form

—an{x, yue — an (X, Yy + a1(x, Yu, + a2(x, yYuy = f,  inQ, 4.19)

with homogeneous Dirichlet boundary conditions. The coefficient functions are smooth and sat-
isfy the usual requirements for an elliptic problem which is not convection dominated. We use
a standard finite difference discretization with central differences for the first order derivatives.
This results in a composite grid matrix L as in (4.13).

We first discuss the case with piecewise linear interpolation. The resulting local discretization
error estimates are as in (4.16), with j = 1. Under the following conditions:

H
aii(x,)’)>?|ai(x:)’)|, (xvy)EQ! i=l,2,

the matrix L is an M-matrix. We cannot apply the usual technique for proving the existence of a
barrier function (cf. [32], §5.1) because the composite grid discretization is not consistent. How-
ever, in this fairly concrete setting one can still derive concrete barrier functions. For example, in
the case with ¢(x, y) = d(x, y) = 0 we can take the same function as in Lemma 4.17, and for the
case with ¢(x, y) = constant > 0 we can use w(x, y) = x as a barrier function. If the existence
of a barrier function can be proved, we have a stability result as in Theorem 4.19 (with % replaced
by another constant). With respect to the result in Theorem 4.20 we note the following. We refer
to equations in the proof of Theorem 4.20. As in (*2), we can represent e as e = h*Lj,w, with
0 < ||Wlleo < c¢1- The constant c; depends on the coefficient functions a, b, ¢, d, butis independent
of H and h. For ( X; ) = L‘llllz,h we obtain (cf. (1) and (x3))

IVilleo < IV2lleo + €1h2,

V2lleo = P18 Ly Ly Lia W oo

So it remains to obtain a bound for || v2] . We sketch an approach, different from the one used in
the proof of Theorem 4.20, that could be applied to a more general problem as the one in (4.19).
Note that L2'21L21 >0and L1'11L12 prr > 0, so using the discrete maximum principle we obtain

1L Loa L Lz prrllos < L2 Lt loollLis Luzprelloo < L2z Latlloo = 122 Lo Tyl

We introduce u := L2'21L21 IIQ;,, so u satisfies Ly,u — Ly I[Qh = 0. This corresponds to the dis-
I 1

cretization, on a uniform grid with size H, of the differential equation on a subdomain  C Q
(see Figure 4.6). We use Dirichlet boundary conditions with values 0 on the part of 92 which
coincides with 92 and values 1 on the remaining part of Q.

Due to the maximum principle we have that ||u||., < 1 holds. Since we restrict ourselves to dif-
fusion problems it is reasonable to assume that even ||u|lc < 1 — ¢oH holds with ¢; > 0. If the
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~

w—H

n—H
Figure 4.6 Example of the subdomain  C Q.

latter inequality holds, we obtain
Valloo = A1 (1 — Ly Loy L Lo pre) 'Ly Ly L Lo w | o

o

<1y Ly I Ly L prollf L Ly L Liawlloe
k=0

(41 h:?’

X2
< hZZ(I — e He = g

k==

So we then have a result as in Theorem 4.20. From these observations we derive the claim that
for the case with piccewise linear interpolation the analysis presented in this subsection can be
extended to more general elliptic boundary value problems as in (4.19).

For the case with piecewise quadratic interpolation it is not clear (to us) how the analysis of
this subsection can be extended to a more general setting. It is not clear how we can prove mono-
tonicity of L (as in Theorem 4.18) if we have a problem as in (4.19) with variable coefficients.
In the next subsection we present numerical results for a problem as in (4.19). There we observe
that both for linear aud for quadratic interpolation we have a discretization error behaviour which
is very similar to the behaviour in case of the Poisson problem.

4.4.3 Numerical Results

In this subsection we show results of some numerical experiments. First, we present results re-
lated to the sharpness of the global discretization error bound proved in Theorem 4.22. Then we
discuss a two-dimensional non-uniform discretization method which can be seen as a generaliza-
tion of the one-dimensional method with stiffness matrix L of Section 4.3 (cf. (4.6a)). Finally,
we show composite grid discretization errors for a problem with variable coefficients (Example
4.28) and for a problem with a singular solution (Example 4.29).

In Example 4.25-4.27 we will illustrate certain phenomena using numerical results for the
following model problem:

—Au=f inf2=(0,1)x 0 1),

n=yg ondQd. (4.20)
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We consider two cases:
Case 1. f, g such that the solution u* is given by

w(x,y) = x*+ % @20

Case 2: f, g such that the solution #* is given by

u*(x, y) = %{tanh(%(x%— y-—- é)) + 1} 4.22)

_ Clearly in Case 1 we have a very smooth solution and we do not need a composite grid. This
example is used for theoretical considerations. The solution #* in Case 2 is shown in Figure 2.4
in Subsection 2.2.2. The solution varies very rapidly in a small part of the domain and is relatively
smooth in the remaining part of the domain. In both cases we take £2; = (0, 1/4) x (0, 1/4).

Example 4.25 In the upper bound for the global discretization error as proved in Theorem 4.22
we have a term C3 H if we use piecewise linear interpolation on the interface (j = 1). In this
example we show that the bound is sharp with respect to this Cy H term. We consider Case 1. Then
for Cy, €1, Cy in (4.18) we have C; = €; = C; = 0. In Table 4.1 we show values of the global
discretization error ||u — u*|| for several values of H and 0 = H/h. We clearly observe the
linear dependence on H. Further there is no significant dependence of the errors on the refinement
factor 0. O

Example 4.26 We consider Case 2 and use piecewise quadratic interpolation on the interface.
For this composite grid problem Theorem 4.22 yields a discretization error bound of the form
Dih* + D, H? with Dy > D,. Based on this bound we expect the following. If we take H fixed
then decreasing k (i.e. increasing o) should result in #* convergence until a certain threshold
value 0., is reached. This convergence behaviour can be observed in the rows of Table 4.2. For
H = 1/8 we see a threshold value o, ~ 16. Also note that in Table 4.2 there is only little vari-
ation in the values if we take # fixed and vary o. For example, along the diagonal from (H, o) =
(1/128,1) to (H, o) = (1/8,16) (i.e. h = 1/128) all values are about 1.4 1073, This means
that the global discretization error corresponding to the composite grid problem with H = 1/8,
h = 1/128 is approximately of the same size as the global discretization error corresponding to
the standard discrete problem on the global uniform grid with 2 = 1/128. Soin a sense the quality

=12
H=1/16 H=1/32 H=1/64 H=1/128
1.08 107 4.4710™* 2.01107* 9.60107°
H=1/16
g=2 g=4 o=28 o=16
1.08107% 1.26107% 1.3510°% 1.4210°°

Table 4.1 Global discretization errors; Case 1; piecewise linear interpolation.
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H 1 2 4 8 16 32 o
1/8 12551077 6.0210°%7 2.29107% 5391077 1.4910~ 1.541077
1/16 | 6.08107% 2.29107% 5.54107% 1.35107" 8.0310™*
1/32 12301072 561107 1.41107% 3.33107%
1/64 | 5.63107% 1431073 3.5110°*
1 1/128 | 1.44107% 3.551074
L 1/256 | 3.5710°°

Table 42 Global discretization errors; Case 2; piecewise quadratic interpolation.

of the discrete solutions of these two problems is the same. Note that in this particular example
the global uniform grid with = 1/128 contains about 1.6 10* grid points, whereas the composite
grid contains about 1.1 10° grid points.

When we repeat this experiment, but now with linear interpolation instead of quadratic inter-
polation on the interface, we obtain discretization errors which are very close to the discretization
errors shown ip Table 4.2 (differences less than a few percent). For the values of H and % consid-
ered in this example the error in the high activity region and the low activity region (corresponding
to the first and second term on the right hand side of (4.18)) dominate the linear interpolation error
on the interface (corresponding to the third term on the right hand side of (4.18)). 0

We now discuss an obvious two-dimensional generalization of the one-dimensional approach
in (4.6¢). We use the same finite difference approximations as in Subsection 4.4.1 at all grid points
of QM Again, we use piccewise linear (j = 1) or piecewise quadratic (j = 2) interpolation.

On ™' we do not use uniform finite differences as in (4.11a), but non-uniform finite differences
b1

of the same type as in (4.6¢). For example, at x € I'[}, we use:
20° 2
—Au = H UL ux — (b, 0)) + 20u(x) — —2—u(x + (H, 0)))
o+1 o+1
+ H 2 (—u(x — (0, H)) + 2u(x) — u(x + (0, H))). (4.23)

This results in a composite gnid problem denoted by Lit = f. The local discretization errors are
as in (4.16) but now with an O (H) error at points x &€ T'7 (¢f. (4.8¢)). In Section 4.3 we no-
ticed that in the one-dimensional case the local discretization error on I is reduced only by a
factor 4 (¢f. Theorem 4.14). Numerical results show that in the two-dimensional case we also
have lli_lﬂfaﬂm ~ ¢ h. So for the local discretization errors on I of size Cih% 4 Cyo2 H/™!
(cf. (4.16¢)) we have a damping factor ¢ h = cH/o, instead of the damping factor cH /o as in
Theorem 4.20. This then implies a global discretization error estimate of the form

[~ o < Kih* + %KQHZ + Kyco HY, (4.24)

with K; constants which are similar to the constants C; in (4.18). Clearly, due to the factor o the
bound in (4.24) is less favourable than the result in Theorem 4.22.
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o=2
H=1/16 H=1/32 H=1/64 H=1/128
1.48107% 6.8210™* 3.2510~* 1.6010™*
H=1/16
o=2 o=4 =238 o =16
1481072 2.5410°% 3.8410°° 530107°

Table 4.3 Global discretization errors; Case 1; linear interpolation; stiffness matrix L.

Example 4,27 This example is similar to Example 4.25 but now with the stiffness matrix L in-
stead of the stiffness matrix L. We use piecewise linear interpolation on the interface and we
consider Case 1. Then the bound in (4.24) is of the form Gsco H, 50 we expect an increasing dis-
cretization error if o is increased. A dependence of the global discretization error on o is observed
in Table 4.3, too. Apparently this dependence is not linear in . Probably this is due to the fact
that the local discretization errors on I, i.e. d(y) withy & T'*, show an oscillating behaviour
and approximating d(y) by max__q [d(x)| forall y € ™ (as is done to obtain {4.24)) is too pes-
simistic. O

The discretization error analysis in Subsection 4.4.2 applies to the Poisson equation with a so-
lution u* € C*(2). In the following experiments we apply the composite grid finite difference
method of Subsection 4.4.1 to other problems. In Example 4.28 we consider a problem in which
the differential operator has variable coefficients, and with data such that the solution u* is still in
C4(2). In Example 4.29 we consider a Poisson equation with a singular solution (u* ¢ C()).

Example 4.28 We consider an elliptic boundary value problem as in (4.19), i.e. with variable
coefficients. We consider the problem:

= (2 + sin(F )itz — e7uyy + cos(Fu, + (1 + x)e’uy = f in Q,
u=yg ondasl,

with £2 the unit square. We take the data f, g such that the solution u* is as in (4.22). We use a
standard discretization with central differences for the first order derivatives. The resulting dis-
cretization errors with H = 1/16 are shown in Table 4.4, Note that the results are very similar
to the results for the Poisson equation in Example 4.26. As in Table 4.2, we observe an O(4?)
behaviour until a certain threshold value 6, is reached. We also see that for linear and quadratic

o 1 2 4 8 16 32
linear | 6.6610~2 2.431072 587107 1.45107% 99110~ 1.0210°3

quadratic | 6.66 107 2.431072 5.87107* 1.4610™* 9.2510~% 9.5110™*

Table 4.4 Global discretization errors; H = 1/16; Example 4.28.
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) 1/16 1732 1764 17128 17256 /512
0 — e | 7.14 102 285102 9.7410~° 3.05 10— 9.08 10-* 2.63 10~

Table 4.5  Global discretization errors on uniform grids; Example 4.29.

o 1 2 4 8 16 32
linear | 7.14107% 2901072 1.0410°% 427107 4.01107* 3.9310°°
quadratic | 7.14 1072 2.86 1072 9.8010% 3.11107* 1.1510% 1.06 1073

Table 4.6 (Global discretization errors on composite grids; H = 1/16; Example 4.29.

interpolation we have approximately the same threshold value for . Apparently, for H = 1/16
the error in the low activity region (corresponding to the term ~ C, H* in (4.18)) dominates the
linear interpolation error on I' (corresponding to the term ~ C; H in (4.18)). |

Example 4.29 We consider a problem with a singular solution (as in [30], [39]):

—Au= [ in&=1(0,1) x (0, 1),
u=yg ondL,

with f, g such that the solution is given by u*(x, y} = log(y/x* + y?).

Due to the singularity at the origin it is not reasonable to compare discretization errors on certain
(aniform or composite) grids by using the maximum norm on different grids. We use a uniform
coarse grid on § with size H = 1/16, denoted by /6. On this grid and on finer grids we al-
ways measure discretization errors using the maximum norm over £2'/'6. When we use a global
uniform grid with size &, denoted by ©*, and the standard central difference discretization for the
Laplace operator, we obtain discretization errors as in Table 4.5. In Table 4.6 we show the values
[fu — u*|| o for the composite grid discretization of Subsection 4.4.1, with H = 1/16. From these
results we see that for piecewise linear (quadratic) interpolation we obtain fine grid accuracy until
the threshold value o = 8 (0 = 16) is reached. 3
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COMPOSITE GRID METHODS
FOR NONLINEAR BOUNDARY
VALUE PROBLEMS

In the previous chapters we have considered only linear boundary value problems. In this chap-
ter we consider the problem of solving nonlinear boundary value problems using composite grids.
Discretization of a nonlinear boundary value problem results in a system of nonlinear equations, In
Section 5.1 we briefly recall Newton’s method for solving such a system of nonlinear equations.

The coupling of global coarse grid and local fine grid discretizations of a boundary value prob-
lem as in Section 2.2, can be applied to nonlinear boundary value problems too. Then systems of
nonlinear equations on the uniform subgrids have to be solved. In the nonlinear LDC method an
outer local defect correction iteration is combined with inner Newton iterations for solving these
systems. The nonlinear LDC method is discussed in Section 5.2 for the model composite grid 7%
from Section 2.1, Sufficient conditions are given for the nonlinear LDC method to be well-defined,
By this we mean that all systems of nonlinear equations occurring in the method are locally uniquely
solvable. It is shown that the nonlinear LDC method is closely related to a system of nonlinear
equations resulting from discretizing the boundary value problem on the composite grid 272,

In Section 5.3 a combination of Newton’s method and the fast adaptive composite (FAC) grid
method from Section 2.3 for solving the composite grid discretization related to the nonlinear LDC
method is described. In this so-called Newton-FAC method an cuter Newton iteration on the com-
posite grid QF* is performed. In each step of the Newton method the linear Jacobian system on
the composite grid 27 is solved by the FAC method.

5.1 INTRODUCTION

In Chapter 2 and Chapter 3 we have discussed iterative methods for solving linear elliptic bound-
ary value problems on composite grids. In this chapter we shall consider the numerical solution
of nonlinear boundary value problems on composite grids. As in Chapter 2 and Chapter 3 we
use a model boundary value problem on the unit square. The nonlinear counterpart of the linear
second-order elliptic boundary value problem (3.14) is denoted by
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Nw=0  inQ=(0,1)x(0,1), (5.1a)
u=g  ondQ. (5.1b)

We use the model composite grid %" introduced in Section 2.1. The composite grid notation in
this chapter is the same as in chapters 2 and 3.

After discretization of a nonlinear boundary value problem a system of nonlinear algebraic
equations results. Usnally such a system of nonlinear equations is solved by Newton’s method
or one of its varianis (see e.g. [52, Section 7.1},[2, Chapter 8]). Here we briefly recall Newton’s
method; for a thorough discussion of this type of methods we refer to [52]. We consider the system
of nonlinear algebraic equations,

_fl(uls qu'°'Juﬂ) = 07
f2(u1= uz: Ters un)

il
A

(5.2)
fn(ule uZa -H:un) = 0,

with f;: R" — R,i=1, ..., n. We assume that the system (5.2) has at least one solution. The
system (5.2) is written in matrix-vector notation as f(u) = 0, withu € R", f : IR* — IR". Given
an initial guess uy, a sequence of approximations uy, uy, ..., Uy, . .., 10 a solution u* of (5.2} is
generated by

Wl 1= Wy + Vi : (5.3

with v, the solution of the system of linear equations

of
E(um)vm = —f (), (54)

In(5.4) % (uy,) is the Jacobian matrix of partial derivatives,

IR Ei%
. uy T Buy
% 71
duy Sy T duy
wy  Buy " G,

evaluated at u,,.

It is well-known that, in general, Newton’s method is locally quadratically convergent. So if
the initial guess is ‘sufficiently close’ to a solution u* of {5.2), then the Newton iterates converge
very fast to u*. In order to enlarge the domain of convergence the method may be modified. The
idea of damped Newton methods is to take only a fraction of the Newton update v,, in (5.3). So
rather than (5.3), we choose

W1 0= Uy + A Vs (5.5

with § < X, < 1. Methods for choosing the damping factors A, are discussed in e.g. [2, Section
8.11,[59, Section 8.4}). ‘
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5.2 LOCAL DEFECT CORRECTION FOR NONLINEAR
PROBLEMS

5.2.1 A Combination of Local Defect Correction and Newton’s Method

We start by discretizing the nonlinear boundary value problem (5.1) on the uniform global coarse
grid % from (2.2). This yields the basic discretization,

NIWEy=0  onQH, (5.6)

which describes a system of nonlinear equations for the unknowns {uf (x) | x € Q¥}. In (5.6)
N is a nonlincar mapping N7 : F(QF) — F(QH). The system of nonlinear equations (5.6) is
solved by a damped Newton method. If (5.6) has at least one solution and if the damped Newton
method converges, then an approximation # of a solution of (5.6) results.

The approximation &z’ and a prolongation p : F(I'¥) — F(I™) (e.g. piecewise linear or
piecewise quadratic interpolation on the interface) are used to define artificial Dirichlet boundary
values on the interface. These values are defined in the same way as in the local defect correc-
tion approach for linear boundary value problems (see Section 2.2 and Section 3.1). The artificial
Dirichlet boundary values are used for discretizing the boundary value problem (5.1) on the uni-
form local fine grid Q¥. This yields the system of nonlinear equations,

N}@o, pitf ) =0 on (57)

for the unknowns {u} o(x) | x € Q}}. In(5.7) N} is a nonlinear mapping N}' : F (2} )x F(I')— F(Q).
The system of equations (5.7) is the nonlinear counterpart of (2.13). A damped Newton method

is used for approximately solving (5.7). It (5.7) has at least one solution and if the damped New-

ton method converges, then an approximation ﬁ;f o of a solution of (5.7) results. The local fine grid
approximation ié‘? o 18 used to update the global coarse grid discretization (5.6) by local defect cor-
rection. We define

ihy(x) xeQf

afl(x) xeQh\Qf -

wHx) = {

with Qf the Jocal coarse grid from (2.9). We substitute this approximation in the system of non-
linear equations (5.6) and define the defect as

VH H QH
o= | U0 xegl

Then we solve the system of nonlinear equations
NE@y = gH on Q¥ : (5.8)

using a damped Newton method. If (5.8} has at least one solution and if the damped Newton
method converges, then an approximation #% of a solution of (5.8) results. The approximation
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Ny =0 |.oo. R e damped Newton ..... _‘_gjngsasl
~H B !
U
v’
N g; PSR = O [ damped Newton ----- ....‘gﬂ{gs‘;‘
i=1Ya,
NE@GH) = -
i@t b,y damped Newton  fooe e
K
=il .
Niul s piflip) =0 R i damped Newton , ..... _‘g’ggsasl
il

Figure 5.1 Schematic presentation of the nonlinear LDC method.,

i is used to define artificial Dirichlet boundary values on the interface. The related system of
nonlinear equations (cf. (5.7)),

N (uty, piall i) =0 on f, (5.9)

is solved by a damped Newton method, resulting in an approximation &;?, 1

By solving (5.8) and (5.9), one local defect correction step has been carmried out. By perform-
ing the local defect correction step iteratively, we obtain the nonlinear LDC method. We assume
that the systems of nonlinear equations occurring in this method all have at least one solution. The
nonlinear LDC method consists of an initialization step (5.6),(5.7), an outer local defect correc-
tion iteration and inner Newton iterations. In Figure 5.1 the method is presented schematically.
The choice of suitable initial guesses for the damped Newton methods will be discussed in Sub-
section 5.2.2.

As the LDC method for linear boundary value problems (2.16), the nonlinear LDC method isa
simple method which is relatively easy to implement. The linear Jacobian systems in the Newton
processes are defined on uniform grids and they are relatively small. Hence they can be solved
efficiently, for example using iterative solution methods.
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5.2.2 Mathematical Formulation of the Nonlinear LDC Method

It is not a priori clear that for the systems of nonlinear equations which are obtained in the nonlin-
ear 1.DC method a solution exists. In the description of the method in Subsection 5.2.1 it is sim-
ply assumed that each system of nonlinear equations occurring in the method has a solution. If a
system occurs for which no solution exists, then the nonlinear LDC method breaks down. In this
subsection we introduce cerfain reasonable conditions to assure that the nonlinear LDC method is
well-defined in a neighbourhood of the desired continuous solution. For Newton’s method such
conditions are well-known. For the nonlinear LDC method the situation is somewhat more in-
volved than for Newton’s method since we have to deal with systems of nonlinear equations on
two different grids and these systems result from the local defect correction process itself. In the
approach below we assume that a fixed point of the nonlinear LDC iteration exists. We start with
some preliminaries.

Asin Section 3.1 we assume that the discretization process on the uniform grid Q¥ uses neigh-
bouring grid points only. We introduce the operator N : F(2F) x F(T7y > F(QF) which
represents the operator N¥ from (5.6) inside the subregion £; (cf. (3.9)):

N{*’(w}{m{{, wH!F) = (Ng{wﬂ))mly, w® e F(QH). (5.10)

The system of nonlinear equations
NE@H, ulhy =0 on QF, (5.11)

with ufl € F(QF), ulfl € F(I?), results from discretizing the differential equation N (1) =0 on
the local coarse grid 27, using the Dirichlet boundary values u = ¢ on 9 N 9€2 and

u(x) = ufl (x) at x € ' Using (5.10) and with « | and u},_; given, a local defect correction
step is formulated by:

(5.12a)

NH(uhi_ ,ufi‘ )
find a solution u}? of N”(vg):[ PRt ,

]
find a solution uf, of ~ Nf (v}, puf'|) =0. (5.12b)
In (5.12a) a block partitioning corresponding to the direct sum F(QY) = F(QH) & F(QH) is

used. We assume that the nonlinear boundary value problem (5.1) has an isolated solution u*,
that is, there is a neighbourhood of u* which contains no other solution of (5.1).

Definition 5.1 For given operators N7, N}, N, p, and norms || lgu: ¥ (") — IR and
Ilign s F (QF) — R, the grid function u e F(QH) is called LDC coarse grid approximation
of u* if there exist balls

(a) By = {ve F(QH) | l|v—x*1ﬁgtigy<r1},

) By:={ve ¥ (@) | v~ Lt*m?ﬂg? <},
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with rq > 0, r; > 0, such that the following conditions are fulfilled:

(i)  The system of nonlinear equations
N}, putt|) =0
has a unique solution u? € B,.
(iiy  The system of nonlinear equations

Hoyoh "
NH(?)H) —_ Nl (u!}Q{J’u IF) s
9]
with ! from (i), has a unique solution w¥ € By, and w# = u¥.

We assume that an LDC coarse grid approximation #7 of u* exists. The corresponding local
fine grid approximation {cf. condition (i) in Definition 5.1) is denoted by :3? We introduce the
notation

B, &) :={ve FQF) | |lv—-a"|gn <&},
B(if, &) i={ve F@ | lv—iflgp <),

where the same norms on Q¥ and Q are used as in Definition 5.1. In the following theorem
we give sufficient conditions for the systems of nonlinear equations in the local defect correction
iteration to have a locally unique solution.

Theorem 5.2 Assume that:
Al An LDC coarse grid approximation i¥ of u* exists. The corresponding local fine grid
approximation is denoted by #i".
Al.  3e, > Osuch that for all i € B(@¥, &1) the system of nonlinear equations
Nj}!(v‘?’ P&H]r‘} = 0;

has a unique solution w? € B, and the mapping " — w is continuous.

A2, 3¢y, €3 > 0 such that for all i € B!, &), i € B(47, &5) the system of nonlinear
equations
Hoh Sl
v Mo
)

has a unique solution w¥ € B.

For &4 > 0 small enough the assumptions Al,A2 induce a mapping B(ii*, e4) — By whichis given
by @ — wh — wH, with w! asin Al and w¥ as in A2 with i = wl.

Assume that:

A3. lw? — ") qu < &% —a¥|on.
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Then for all initial approximations ull € B(i¥, &y), with £y > O sufficiently small, the following
LDC iteration is well-defined:

find ulge By - Aﬂ‘*(u;fg,pugflr) =0, (5.13a)
fori>=1:

NH(u;tf_ s u’Ii )
find Wl e By : NUGH) = [ e ”ng’ = (5.13b)
find uf, € By © N}, pu{{lr) =0, (5.13¢)

and (8", &%) is a fixed point of this LDC iteration.

Proof. From Al we have that if ||#¥ — QH![QH < g, then
NP (uf, Pﬁgir) =0

has a unique solution w} € B, and

Ves038>0:|ad —-a¥ <& <g = |wt—-it <&
“ HQH 1 ” i gHQ?

Take 0 < 8y < &; such that ||i#¥ — ﬁHHQy < & implies f|w? — ﬁf‘llgh < &, with & from A2.
1

Define g := min{8g, &3, &4}, with &, from A2, g4 from A3.

For uf € B(it¥, &y) we have by Al that

N} (uf, puff) ) =0

1

has a unigue solution u? ; € By, and by A2 that

N s el ) }
9

has a unique solution u¥, € By with, by A3, ||uf{, — &HHQ;{ < |luff ~ &H[lgg < &

Soufl, € B(@H, &o). If ull € B(ii¥, &) then it follows by induction that the systems of nonlinear
equations in (5.13) have a (locally) unique solution and hence the LDC iteration (5.13) is well-
defined.
Since 4%

NH(uH) — [

is an LDC coarse grid approximation of u* the system of nonlinear equations
NI, pﬁ”lr) =0

has a unique solution ## € B (cf. Definition 5.1.J). By Definition 5.1.ii the system of nonlinear

equations
H ¢ rh ~H
NH(I)H) — Nl (lt: IQEH’ " !F)
@
has the unique solution 47 € By. Thus (4%, 4F) is a fixed point of (5.13). ]

In the remark below we comment on the assumptions A1,A2,A3 in Theorem 5.2.
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Remark 5.3 - Assumption Al follows from the implicit function theorem (see e.g. [52, Section
5.2]) if the partial derivative

ANt
a—uf, D F@N x F(I™ > LUFQD, F(Qh)
i

exists in a neighbourhood of (47, pi¥ ) and is continuous at (at, pu? ) and if
N
—a;i;(u; , pi ‘I‘)

is nonsingular. Here L(F(QF), F(QF)) denotes the space of linear mappings F(Q) — F(QF).
- Assumption A2 follows if N from (5.10) is continuous at (ﬁf’[ o it ) andif N H s alocal
i

homeomorphism at #¥. The latter follows from the inverse function theorem (see e.g. [52, Section

3.21) if the derivative .
I . gy — LF@H), FQH))

ot
exists in a neighbourhood of #¥ and is continuous at #¥ and if

INE
5

is nonsingular. Here L{ F (Q¥), F(QH)) denotes the space of linear mappings F(Q¥) - F(Q¥).

- Assumption A3 states that the mapping #? — w?, representing a well-defined nonlinear local
defect correction step, is non-expansive: by performing a nonlinear local defect cotrection step
one does not obtain a worse approximation of the coarse grid LDC approximation 27, O

In the nonlinear LDC method in Subsection 5.2.1 the initial approximation u results from
the basic discretization
NEG@Hy =0 on Q. (5.14)

Assume that (5.14) has a unique solution w¥ € B, and take uf! :== w¥. This yields a suitable
initial approximation for the local defect correction iteration (5.13) if / is sufficiently close to
aHie. if luf — ﬁ”"QH < &g, with g as in Theorem 5.2.

The systems of nonlinear equations in (5.13) are locally uniquely solvable. Quiside the ball
B; the local fine grid problems in (5.13a,¢) may have other solutions (see Example 5.4). If New-
ton’s method is used for solving these local fine grid problems then a suitable initial guess is re-
quired such that the Newton iteration converges to the solution inside the ball B;. For other initial
guesses Newton's method may diverge or converge to a solution outside the ball B,. This results
in a breakdown of the nonlinear local defect correction iteration (5.13). In a similar way a break-
down of the nonlinear local correction iteration (5.13) may occur when solving the global coarse
grid problems in (5.13b) by Newton’s method. So, sufficiently good initial guesses for Newton’s
method are required for all systems of nonlinear equations in (5.13). For the systems of nonlin-
ear equations (5.13b) and (5.13c¢), obvious initial guesses are provided by the LDC iteration itself,
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namely the previously computed approximations u | and u}, ;. Numerical results indicate that
in general these approximations are indeed sufficiently good initial guesses. For the system

Nt (. pudl|p) =0 on QF, (5.15)

an obvious initial guess is provided by interpolating the coarse grid approximation /! on the local
fine grid f. Often this interpolation approach yields a suitable initial guess. This approach shall
be used in the numerical experiments in Chapter 6, where the nonlinear LDC method is applied
to a concrete nonlinear problem resulting from combustion modelling. If the coarse grid approx-
imation uf is too inaccurate inside §; to provide a suitable initial guess, both for (5.14) and for
(5.15) initial guesses for Newton’s method have to be specified explicitly.

In the following example the dependence of the nonlinear LDC method on the choice for the
initial guess in Newton’s method for (5.15} is illustrated.

Example 5.4 Consider the nonlinear two-point boundary value problem (in e.g., [51, Section
3.1], [57, Section 10.6]1)
Sy = 1 — (), O<x<1,

(5.16)
u(0) =0, u(1) =1/2.

From [57] we have the result

. _ —x O=x<1/4,
lii%‘“(x’e)‘“[ x—1/2 1jd<x<l.

For ¢ <« 1 this problem has a unique solution with a high activity region near x = 1/4. We take
€= 0.01, Q; = (0.15,0.35), H = 1/20 and o = 8. Both the first and second order derivative in
(5.16) are discretized using central differences. The approximation u* resulting from discretizing
the boundary value problem (5.16) on a uniform global grid with grid size & = 1/160 is shown
in Figure 5.2.a by the solid line.

As initial guess in the damped Newton method for the coarse grid problem (5.14) we use an
approximation # of the solution of the boundary value problem (5.16) for ¢ = &, = 0.1. This
approximation is shown in Figure 5.2.a. The corresponding solution i of (5.14) is shown in
Figure 5.2.b.

We consider fwo initial guesses for the damped Newton method for the local fine grid prob-
lem (5.15). The first is the linear interpolant of the approximation #” inside €2;. In Figure 5.2.c
this initial guess and the corresponding solution of (5.15) are shown. The nonlinear LDC method
converges to the approximations shown in Figure 5.2.d.

The second initial guess is the linear interpolant of «! inside €;. At the interface grid points
x = 0.15 and x = 0.35 the values #% (0.15) and 7 (0.35) are prescribed. In Figure 5.2.¢ this initial
guess and the corresponding solution of (5.15) are shown. In this case the nonlinear LDC method
(5.13) converges to the approximations shown in Figure 5.2.f, which are completely different from
the approximations in Figure 5.2.d.

We observe that the local fine grid discretization (5.15) has at least two solutions. Only one
of these two solutions is ‘close’ to the desired continuous solution (namely the solution in Fig-
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Figure 5.2 Approximations of the solution of the boundary value problem in Exam-
ple 5.4; H = 1/20, o = 8, §; = (0.15,0.35). a) global fine grid approximation 1* and
Newton initial guess u/’; b) global coarse grid approximation &% ; c,e) Newton initial guess
for local fine grid problem and corresponding solution; d,f) approximations resulting from
nonlinear LDC method.

ure 5.2.¢) and results in a satisfactory LDC process. We note that for & < 0.008 the damped New-
ton method for (5.15) does not converge if the linear interpolant of #¥ inside £, is used as initial
guess. . O

In Chapter 6 the nonlinear LDC method is applied to a concrete nonlinear boundary value
problem resulting from combustion modelling. For this problem the nonlinear LDC method per-
forms well if the obvious initial guesses as described above are used.
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As in the linear case, the LDC process is closely related to a system of nonlinear equations on
the composite grid 2. We introduce the following system of nonlinear equations:

NF(uthh I pzc

Nh’(ulﬂe

Ir‘}

NERGHRY o
IQ;”" ult ]Tg)

=0 on QB (5.17

where a block partitioning corresponding to the direct sum ¥ (Q%%) = F(2}) @ F(QF) isused.
The operator N7 : F(QI) x F(TH) —» F(QF) represents the operator N¥ outside the subregion
Q (cf. (3.13)):

NE ) g w ) = (V@) gn. wh e F@M), (5.18)

with 2 from (3.4) and T'# from (3.3).

The composite grid problem (5.17) is the nonlinear counterpart of the composite grid problem
(3.18). The system of nonlinear equations (5.17) results from discretizing the boundary value
problem (5.1) on the composite grid 2## using uniform finite difference stencils at all grid points.
So, the composite grid points on the interface are treated as if they were grid points of the uniform
grid Q¥ The composite grid points which lie inside the subregion £, are discretized as uniform
fine grid points using the interpolation operator p : F(I') — F(I') to eliminate the values at
the slave points,

Theorem 5.5 The composite grid function

S H A iy ¢
W= g | (5.19)

where (i, ﬁf‘} is a fixed point of the nonlinear LDC iteration (5.13), is a solution of (5.17).
Proof. If (i, zif’) is a fixed point of (5.13) we obtain:

NpG@} pat L) =0,

H ¢ -h GH
N () = [ N g i) ]
g

From the latter equation we obtain
Nf(ﬁ”'mf, ezqu,;;) =10,

Now N4y = () follows immediately from the definition of #®* in (5.19). =
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5.3 A COMBINATION OF NEWTON’S METHOD AND
THE FAC METHOD

As we have seen in Theorem 5.5 the nonlinear LDC method is closely related to the composite
grid problem (5.17). In this section we assume that locally (5.17) has a unique solution. If one
of the systems of nonlinear equations which are implicitly defined in the nonlinear LDC method
does not have a solution, then the nonlinear LDC method breaks down and can not be used to
solve the nonlinear boundary value problem 5.1) on the composite grid %*, In this section we
describe a method for solving (5.1) on Q* which uses only one system of nonlinear equations,
namely the composite grid problem {5.17). The method is a combination of the damped Newton
method and the fast adaptive composite grid (FAC) method from Section 2.3.
In each Newton step a system of linear equations has to be solved:

3NH'h . _
P (“Hf’h)l’g’k = —NH#GTh), (5.20)
with #%* a composite grid function and
ANHE h Hh .
Wif(g ") = LF@QFY), FEQH). (5.21)

Here and in the remainder of this Bgiction we use the notation L(V, W) to denote the set of linear
mappings V — W. In (5.20) %(ﬁ””‘) denotes the Jacobian matrix evaluated at #%*, Below
we shall show that the Jacobian matrix in (5.20) has a typical composite grid structure which is
similar to the structure of L#* in (3.18). )

For the nonlinear operators N7 : F (1) x F(T™)— F(@F) and N7 . F(QH)yx F(T'H)y - F(QH)
m (5.17) we introduce the partial derivatives:

B
INC . (qty x F(T*) — LOF@Y), F@Q)),

duj
anp
ouk.
Nz H mH H "
- F7) x FI¥) — LIF&QD), FE)),

aNF H P FH H
ﬁ.,‘f(ﬂc)x FIH) — L(FTH), FQ)).

ug

D F(Q) x F(T*) - LCFT™H, F@h).
(5.22)

We introduce a short notation for the partial derivatives in (5.22), evaluated at a grid function
we FQHEF:

ON! aN!

T () = - (wig. PR, v=uf, uf,

o' o o (5.23)
_&}E-(w} = Jv (w|Q£h wlfﬂH)s V=1u; ,uf,.

In the following lemma we use a partitioning corresponding to F(Q5*) = F(QF) & F(QF).
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Lemma 5.6 Foru™ e F(QH") we have

c}]\f,( Hy GN,, (uHh) e

aNHA 8&53
u Hh( ufthy = aNH dN s (5.24)
(HH}:) - ¢ (uHh)
Su T i,

with rp and ry the trivial injections from (3.17).

Proof. N*" (27 can be written as

NEuh Imypfru |Qn)

Hbg, Hhy
N (u )— NH(MHhIQH rru

s

tQIr)

with rp, r as in (3.17).
By definition of the derivativesin (5.21) and (5.22), and using the notation from (5.23), we obtain

3N
- Wy My

/4
aHh{Hh)_ :

aNH( Hk)d(rf‘ué) ’)HEI (uHhy

Now (5.24) follows since p, ry, and ry are linear operators. ]

For the nonlinear operator N7 from (5.10) we introduce the partial derivatives:
3Nz H Hy H H

Q) x FTH) — LUF@), 7@,
v " (5.25)
3—%2 F@h) x g - LOFTH), F@h).

ur

We introduce a short notation for the partial derivatives of N/ and N¥, evaluated at a grid function

we FEQH:
AN}
() = T 1&2{1'w|r”)’ v=ufl,uf,
aNH INE o8 (20
(W) = T(wlﬂh'v Wipn)s vl Uup.
We define the trivial injection 7. : F(Qf'y — F(TH) by
Fpw 1= Wi, we FQF). 5.2D

In the following lemma we use a partitioning corresponding to F(Q") = F(Qf) & F(Q).
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Lemma 5.7 For uf € F(QT) we have
aNE . ONE
Eér(ﬂ ) “5;1;_;'(” )y

aNH .o ONH
3?/{? (laf )rl‘ 8&? (“ )

ant

Frases

, (5.28)
with the trivial injections rr from (3.17b) and ¥; from (5.27}.
Proof. From (5.10) and (5.18) we find
szH(uH|QHs r[‘uﬂigﬂ)
NEGH) = NH @t IH Ferrlf ;I) ,
W lQE T qf
with rp from (3.17b) and Fx from (5.27).

By definition of the partial derivatives in (5.22) and (5.25), and using the notation from (5.23} and
(5.26), we obtain

aNH 4 NE g darully
g (') EZ??(” L

H
BNH @) Haut o H H
ou aNc (“g)d(rful ) 8Nc (&H)
du duf? du
Now (5.28) follows since rr and 7 are linear operators. ]

Theorem 5.8 Given a composite grid function #™™™", the composite grid Jacobian matrix
Hh . .
LA = %—IZHI(HH’&) satisfies
LHR Ly Lprr
L;ff’f‘f Lf ’

H
and the global coarse grid Jacobian matrix LY := —E)a—]i;r(&g’km 1) satisfies

LH=[ LlH L#Pfr ]

L. I
with «;)N" -
= SEG@, L= SLE,
" aNY . " an? ~H.h
L :=%§;—(u ", Ly fzm'ir(u 3,

i
aNf INF
LIH = —érau! (uH’k[QH), L[P! = —%-aur (“H’k]QH)-
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Proof. This follows immediately {from Lemma 5.6 and Lemma 5.7. n

From Theorem 5.8 we find thatin each Newton step the fast adaptive composite grid (FAC) method
from Section 2.3 can be used for solving the composite grid Jacobian system (5.20) if L and L
are nonsingular.

FAC algorithm for solving (5.20)

s . . Hh  :
initial approximation vy glven

fori>1

deﬁne P LH’kvf_’;' - NH,h(ﬁH,h)

solve LEyH = d””‘IQH
solve Liwh = d‘q‘}‘)g? -~ L pwHII,

fo3d

?l)h
define vk =y l: w? ! :l .
Remark 5.9 In the FAC method for solving (5.20) the trivial injection is used for restricting the
composite grid defect d%* to the global coarse grid . In [22]itis shown that the trivial injection
on the interface is optimal in case of a composite grid problem resulting from a discretization pro-
cess in which interface grid points are treated as if they were grid points of the uniform grid Q.

Hh . .
From (5.24) and (5.28) it is clear that in the composite grid Jacobian %m;(u‘“‘) the interface
Al
grid points are ‘treated as if they were grid points of the uniform grid Q%°. 0

Remark 5.10 The composite grid problem (5.20) can also be solved using the LDC method from
Section 2.2, We recall from Section 3.4 that the LDC method is actually a special case of the FAC
method for solving a composite grid problem like (5.20). , o

The above described combination of the damped Newton method and the FAC method is called
the Newton-FAC method. Itconsists of an outer Newton iteration for the system of nonlinear equa-
tions (5.17) and inner FAC iterations for solving the linear Jacobian systems. In Figure 5.3 the
method is presented schematically, In practice it is not necessary to solve the Jacobian systems
exactly. Often, under the assumption of a reasonable initial approximation vé]”’, a small number
of FAC steps is sufficient (see Example 5.11). In Figure 5.3 the approximation of the solution of
the Jacobian system in a damped Newton step is denoted by 07#,

Contrary to the nonlinear LDC method, in the Newton-FAC method only one system of non-
linear equations (viz. (5.17)) is considered. For the damped Newton method to converge to the
desired solution u™* of this system, the initial guess u."" has to be sufficiently close to #®*. In
the following example we consider the performance of the Newton-FAC method for the nonlinear
boundary value problem from Example 5.4,
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NH.h(uH,h) =0
Y
L
_ 5
:grggsas] > damped Newton
T
| A (uflyo ™t = Nt | FAC
i=i+1f4¢  }F—-——————————————
- ulth o= yfh g pofh L —
N SH.h

Figure 5.3 Schematic presentation of the Newton-FAC method.

Example 5.11 We consider the nonlinear boundary value problem (5.16). We take a composite
grid composed of a uniform global grid with mesh size H = 1/20 and a local grid, covering £2; =
(0.15, 0.35), with mesh size & = 1/160. Both the first and second order derivative in (5.16) are
discretized using central differences. The interface grid points x = 0.15 and x = (.35 are treated
as if they were grid points of the uniform global grid (cf. (5.17)).

First we take £ = 0.01 and &; = 0.1 as in Example 5.4. The initial guess for the damped New-
ton method on the composite grid is obtained from the approximation «? from Example 5.4 by
linear interpolation inside ;. We recall that u¥ results from solving the boundary value prob-
lem (5.16) for & = &, on the global coarse grid Q¥. In Table 5.1 the number of Newton steps
required to obtain a composite grid function u/"* with || N¥*(u*)||, < 107 is presented as a
function of the number of FAC iterates used to solve the Jacobian systems. For the initial approx-
imation in the FAC algorithm the grid function which is equal to O at all composite grid points is
used. If 10 FAC steps are performed, the Jacobian systems are solved within machine precision.
We observe that if less FAC steps are petformed, the convergence rate of the outer Newton iter-
ation does not become significantly worse. If the number of FAC steps becomes too small, the
number of required Newton iterations does significantly increase, as expected.

In Example 5.4 we noticed that for £ < 0.008 both the ‘first initial guess’ and the ‘second
initial guess’ do not yield a satisfactory LDC process. The problem of obtaining a suitable initial
guess on the local fine grid does not occur in the Newton-FAC method. For example for & = 0.005,
the initial guess as described above and with 5 FAC steps per Newton step, 10 Newton steps are

required to obtain a composite grid approximation ﬁlH(,"' with | N H*"(ﬁﬁ';h Yoo < 1075, a
number of
FACsteps (10 5 4 3 2 1
number of
Newtonsteps [ 4 5 5 6 9 18

Table 5.1 Number of outer Newton steps required in the Newton-FAC method as a func-
tion of the number of inner FAC steps for £, = 0.1.



NUMERICAL SIMULATION OF
FLAT FLAMES ON COMPOSITE
GRIDS

An important problem which is always met when modelling combustion processes, is the large
difference between the size of the burner (typically ~ 10 cm) and the size of the chemically active
layer (typically ~ 1 mm), Most chemical reactions occur in the chemically active layer and thus
the field variables (e.g., the temperature) change rapidly inside this layer. Outside this layer the
variations in the field variables are much smaller. Hence the numerical simulation of combustion
processes requires the use of non-uniform grids in order to obtain accurate approximations and yet
keep the number of grid points within reasonable bounds. In this chapter we congsider the use of
composite grids for the simulation of premixed laminar flat flames.

This chapter is organized as follows, In Section 6.1 a brief introduction to the field of combus-
tion is given. InSection 6.2 we describe the governing equations for reacting gas flow and a one-step
reaction mechanism for modelling the chemical reactions in a methane-air flame. The governing
equations for the idealized, one-dimensional flame, which is one of the most studied topics in com-
bustion research, are described in Section 6.3. In that section also a two-point boundary value prob-
lem for the temperature is derived. The nonlinear LDC method from Chapter S is applied to this
combustion model problem. Composite grids with refinement factors 10-100 are used. In Section
6.4 characteristic properties of the nonlinear LDC method are illustrated by numerical results. For
example, the error in the approximations resulting after 0, 1 and 2 local defect correction steps is
considered. At the end of this chapter, in Section 6.5, a discussion of the results is presented.

6.1 INTRODUCTION

For many years, laminar gas-phase combustion processes have been the subject of both theoret-
ical and experimental rescarch. In this field, one distinguishes between combustion processes in
which the fuel and the oxidizer (usually air) are initially separated (so-called diffusion flames) and
the combustion of premixed gas mixtures (so-called premixed laminar flames). A Bunsen burner
with its air hole closed supports a diffusion flame between the gas supplied through the tube and
the surrounding oxygen-rich atmosphere. The structure of a diffusion flame is mainly determined
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by the speed at which the fuel and oxygen diffuse into the reaction zone. For premixed laminar
flames the reactants have already been mixed. A Bunsen burner with its air hole opened, so that a
mixture of (natural) gas and air is supplied through the tube, supports a premixed laminar flame.
The properties of this flame strongly depend on the composition of the gas mixture. This is due to
the fact that if the composition of the gas mixture is varied, other chemical reactions may occur,
and the properties of the premixed laminar flame mainly depend on the chemical reactions taking
place.

Premixed laminar flames are encountered in industrial and domestic burners. At the Eind-
hoven University of Technology, premixed laminar flames have been studied since 8 years. The
aim of this research is to investigate the influence of variations in the composition of natural gas
on the combustion process in domestic applications. Topics such as the flame stability and the
prediction the composition of exhaust gases are of main importance. In order to predict the ef-
fect of variations in the gas composition on these properties of the combustion process, numerical
tools for simulating premixed laminar flames have been developed [171,{401,[58].

The physical basis of a combustion process is completely determined by the interaction be-
tween fluid dynamics and chemical reactions. The nature of the governing equations, which is
nonlinear and strongly coupled, induces specific problems in the numerical simulation of pre-
mixed laminar flames. Two major problems originate from the differences in time scales and in
geometry scales. In a flame many, often complicated, chemical reactions occur. Each reaction has
its own typical time scale. When modelling flames using complex reaction mechanisms, many
different orders of magnitude in time scales are present in the mathematical model. Due to this
inherent stiffness, the computational costs for solving the governing combustion equations are
very high when a detailed chemical model is used. Ofien combustion processes are modelled us-
ing simple reaction mechanisms. The most simple reaction mechanism is the one-step overall
chemical model (see Subsection 6.2.4).

The differences in geometry scales occur both for simple and for complex reaction models,
since the size of the chemically active layer is small (typically ~ 1 mm) compared to the size of
the computational domain (typically ~ 10 cm). Almost all reactions take place in the chemically
active layer, and the combustion variables (e.g., the mass fractions of the species in the gas mix-
ture and the temperature) rapidly vary in a small part of the computational domain containing the
chemically active layer. In this part of the domain very large gradients in the variables occur. For
example for the temperature an increase of 10°-10* °C/mm may occur. In order to obtain an accu-
rate numerical solution of the goveming combustion equations, a very small grid size is required
in a neighbourhood of the chemically active layer. Away from the chemically active layer the
variations in the variables are much smaller. So, in the greater part of the computational domain
amuch larger grid size can be used. If a single uniform grid were used, the number of unknowns
would become excessive and the calculation would become inefficient. Therefore non-uniform
grids have to be used when modelling premixed laminar flames.

In this chapter we use composite grids and the composite grid methods from Chapter 5 for the

" numerical simulation of combustion processes. For more-dimensional premixed laminar flames
with detailed chemistry one has to deal with many different (numerical) problems. Here we re-
strict ourselves to the problem originating from the differences in the geometry scales and we
consider a one-dimensional combustion process, the so-called premixed laminar flat flame, with
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a one-step reaction mechanism. A composite grid composed of a global uniform coarse grid, cov-
ering the computational domain with a grid size H, and a local uniform fine grid, covering a small
part of the domain, including the chemically active layer, with a grid size 4, is used. Since the vari-
ations of the combustion variables are much larger inside the chemically active layer than outside
this layer, the grid size £ is taken much smaller than H.

First, in Section 6.2, we describe the governing equations for premixed laminar flames.

6.2 MODELLING OF PREMIXED LAMINAR FLAMES

6.2.1 The conservation equations for reacting gas flow

We consider a gas mixture consisting of N different chemical species, denotedby M; (i = 1,2, ...,
N),in which M chemical reactions take place. For reacting gas flows, chemical reactions between
the constituent species need to be modelled together with the fluid dynamics. Therefore, we con-
sider the conservation equations for reacting gas flow. These equations represent the conserva-
tion of mass, momentum and energy of the total mixture and the balance of mass for the various
species. The latter equations include source terms which describe the chemical reactions taking
place. Below we briefly describe the conservation equations for reactive gas flow. For a detailed
derivation of these conservations equations we refer to [60],[68].

Balance of mass for the various species requires
pY/ot+V - pYvi=w;, i=12,... N, 6.1

where p is the mass density of the mixture, v; the flow velocity of species ‘M;, Y; the mass fraction
of species M;, and w; the rate of production of species M; (mass per unit volume per unit time)
by the chemical reactions. The mass fractions Y; satisfy

Yi=1. 6.2)

N
i=1
Since overall mass is neither created nor destroyed by chemical reactions, we have

N

> wi=0. (6.3)
i=1
Summation of the mass balance equations over all species yields the overall continuity equation,

/ot + V- (pv) =0, 6.4)

where v = Zf;l Y;v; is the mass-weighted average velocity of the mixture. It is customary to
write the flow velocity v; of species M, as

vi=v+V, (6.5)
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with V; the diffusion velocity of species M. Substituting (6.5) in (6.1) yields
Y}/ + V- (pYv)+ V- (pY;Vi)=w;, i=12...,N. (6.6)

The diffusion velocities satisfy

N
S KV, =0. ©.7)

i=1

Conservation of momentum for the mixture is governed by the Navier-Stokes equations,
ov)/ot+ V- (povvl) = —Vp+ V-1 + pg, 6.8)

with p the hydrostatic pressure in the gas mixture, 7 the viscous stress tensor, and pg the gravity
force, assumed to be the only external force acting on the mixture.

Conservation of energy for the mixture requires
APE)/3t+V  (pEV)=-V-q—-V - (pv)+ V- (V) + oV g, 6.9)
where E is the specific total energy and q is the heat flux vector. The specific total energy E is

related to the specific internal energy e by the relation

E=e+%v-v. (6.10)

The term %v - vin (6.10) represents the specific kinetic energy of the gas mixture. Conservation
of energy is often formulated in terms of the specific internal energy e. Taking the inner product
of the momentum equation (6.8) with the flow velocity v, and subtracting the resulting equation
from (6.9) yields,

dpe)jot+ V. (pev)=-V-q—pV-v+V-{Tv)—(V.-7T) v, 6.11)

6.2.2 Constitutive relations

The set of conservation equations for reacting gas flow has to be completed with constitutive re-
lations for the diffusion velocities 'V, the viscous stress tensor 7, the heat-flux vector ¢, and the
reaction rates w;. In [68] very extensive models are presented. Here we shall use quite simple
ones as is often done for laminar flames (see e.g. [11],[381,[62]).

For the diffusion velocities Fick’s law (see e.g. [68]) is used,
YV, =-DVY, i=12,...,N. (6.12)

In Fick’s law it is assumed that the mass diffusion caused by pressure and thermal gradients (known
as the Soret effect) is negligible and that all binary diffusion coefficients D;; areequal,ie. Dyy=D
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for1 <i,j<N.

If we assume that the mixture behaves like a Newtonian fluid for which the bulk viscosity can
be neglected, then we obtain for the viscous stress tensor,

2
T = pu[(Vv) + (V)] - VWL (6.13)
where p is the viscosity coefficient of the gas mixture and I denotes the unit tensor.

For the heat flux vector ¢ of the gas mixture we take

N
q=—AVT+pY YV, (6.14)

i=1

where T is the (absolute) temperature of the gas mixture, h; the specific enthalpy of species M;
and A the thermal conductivity of the gas mixture. In (6.14) it is assumed that heat transfer caused
by radiation and heat transfer caused by concentration gradients (known as the Dufour effect} are
negligible. The specific enthalpy &, is defined by the caloric equation of state

T
hi=h) + /ﬂ cpi(E)dE. 6.15)

The parameter A is the standard heat of formation per unit mass at a reference temperature 7°
for species M; and cp,; = ¢,,;(T) is the specific heat at constant pressure for species M. The co-
efficients D, u, and X 1n (6.12), (6.13), and (6.14) depend on the temperature and on the mixture
composition.

A model for the reaction rates w; can be obtained from chemical kinetics (see [68]). We
consider only one reaction:

VI + M+ VM, M M L VM, (6.16)

where v, — v/ represents the number of molecules of species M; converted in the reaction. The
phenomenological law of mass action states that the reaction rates w; are proportional to the prod-
ucts of the molar concentrations of the reactants {[68, Appendix BJ):

N
Y,
wim(“’ﬁ"‘}?}kll('—%/l)v’, i=1.2.....N, 6.17)
=1 1

with & the so-called specific reaction rate constant for reaction (6.16) and W; the molecular weight
of species M. We assume that k satisfies Arrhenius law

k = Be~Fal (BT, (6.18)
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The coefficients B and E, in (6.18) are the frequency factor and the activation energy, respec-
tively, and R is the universal gas constant. For the general situation of M reactions taking place
in the mixture, we have to sum the reaction rates over all M reactions to obtain the total rate of
production of each species M.

The conservation equations (6.4), (6.6), (6.8), (6.11) in combination with the constitutive re-
lations (6.12), (6.13), (6.14), (6.17) lead to a set of N + 5 equations for three-dimensional flow
problems. However, only N + 4 of these are independent because the overall continuity equation
(6.4) is the sum of the mass balance equations (6.6) for the individual species. The independent
variablesare: p, v, Y, (i=1,2,...,N—1), p, e,and T. So we have N + 6 unknowns for three-
dimensional flow problems, and therefore two extra equations are required. We assume that the
gas mixture behaves like an ideal gas. Then the two exira equations are the equation of state

p=pRT/W, 6.19

with W= (2?;1 Y;/ W;)™1, the average molecular mass of the mixture, and the thermodynamic
identity

N
> Yhi=e+p/p. (6.20)

i:l

with b := Zf;l Yih; the specific enthalpy of the mixture.

6.2.3 Reformulation of the energy equation

In this subsection the energy equation (6.11) is written in terms of the absolute temperature ex-
plicitly. As is usually done in combustion modelling the contribution of the stress tensor to the
energy equation, V- (rv) — (V- 7). v, is neglected. Substituting ¢ = h — p/p (cf. (6.20)) into
(6.11) then yields,

3(ph) /0t + V- (phv) = —V-q+ dp/dt+ Vp-v. (6.21)
Since h = YN Yib; and by = b + [}, ¢,,:(§)dE, we obtain:
N
(ph) [t =Y hid(pY:) /0t + pc,dT/dt, (6.22a)
i=1

N
V. (phv) =Y mV- (oY) + pepv - VT, (6.22b)

i=1

where the mixture heat capacity is introduced as

N
cpi= Y Yicp;. (6.23)
i=1
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Using the expression for the heat flux vector q in (6.14) we obtain:

N N
~V.q=V-(VD) =3 WV (pYiV)) =Y p¥ic, V- VT. (6.22¢)

[E31 =1

Substitution of (6.22a)-(6.22¢) into (6.21) yields,

N
peyp (8Tt +v - VT) = V- (AVT) = dp/ot+Vp-v — D p¥icy Vi VT
=1

N
- Zhi(a(pYi)/at + V- (pYv) + V- (oY Vi) (6.24)

=1

If multiplied with the specific enthalpies, the sum of the mass balances (6.6) over all species
yields,

N N
D h@EYD /3t + V- (pYv) + V- (1)) = ) haw.
=] i=1

Using this cquality to replace the last term on the right hand side of (6.24), we obtain

N
pep(0T/dt+v - VT) = V- (\VT) = dp/dt+Vp v — ) haw;

il

N
~ > oYicp Vi VT. (6.25)

i=1

6.2.4 A one-step overall Arrhenius model

The reactions which occur in a flame are often numerous and complicated. For example even a
simple hydrocarbon flame may involve about one hundred chemical species and several hundreds
of reactions in the combustion process. The fuel species are transformed step by step into the final
product species via humerous chain reactions [68, Appendix B]. However, the global chemical
behaviour of a mixture can often be modelled quite adequately by a single one-step irreversible
reaction:

fuel + oxidizer — products.

In this chapter we consider methane-air mixtures. The one-step reaction mechanism of an
arbitrarily composed methane-air mixture is given by (see e.g. [40]):

CHy+ a0y — CO+2H, 0+ (a—2)0,, (6.264a)
and

CHi4+ a0y — (14 2a—4)C0,+ (4 —-2a)CO+2H,0, (6.26b)
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fora = 2 and % < a < 2, respectively. The methane-air mixture is called stoichiometric when
CHy and Oy are fully transformed into CO; and H 0, ie. for a = 2. In the remainder of this
chapter the mass fractions of methane, oxygen and product species are denoted by ¥, Yx and
Yy, respectively. These mass fractions and the mass fraction of the inert species sum up to 1. We
note that (6.26) implies

Yo =0, Y% =21 if a>2,

[£2.9

¥5,=0, Y5, =0 if $<ax2, ©27)

where the super script ® indicates the unburnt mixture and the super script ? indicates the burnt
mixture. We shall use (6.27) in Subsection 6.3.2.

It is useful to introduce 5.4 as the mass of oxygen consumed per unit mass of fuel:

W, /Wi ifa>2
Sox -={ /We 1 (6.28)

aWor/Woo ifi<ax2’
“with W, and Wy, the molecular weights of oxygen and methane, respectively. It follows from
(6.26) that the rate of consumption of oxygen, w., is related to the rate of consumption of methane,
W,
Wox = Sox Wry- (6.29a)
Since overall mass is neither created nor destroyed by chemical reactions, we have

Wy = — (1 + sox )iy, (6.29b)

‘We assume that wyg, has the same form as (6.17), (6.18):
Wi (T, Yo, Yox) = —Ap™ (Y)* (Yox )’ exp(— Ea/ (RT)), (6.30)
with (o + B) the overall reaction order (seee.g. [111,[40]). The overall reaction 6.26 must include

the effect of all possible reactions in the combustion process. Therefore non-integer values for the
orders « and B are allowed in (6.30) (see e.g. [10]).

Remark 6.1 The ‘constant’ A has the unit [kgm—>31'-*~%s~1, where o + # may be a non-integer
value. O

The chemical rate parameters 4, «, § and E, in (6.30) have to be determined from experi--
mental results. In [40],[45] theoretical relations, derived using the expression in (6.30), are fitted
to experimental data to determine the values of the parameters 4, «, B, and E, for atmospheric
CHj/air combustion.
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6.3 BURNER STABILIZED FLAT FLAMES

For a first application of the composite grid methods from Chapter 5 to the field of combustion, we
want to use a test case for which the governing equations become as simple as possible. Therefore
we consider premixed laminar flat flames. The construction of a flat flame burner is such that
it may be assumed that in a region near the burner axis all variables are constant in each plane
parallel to the burner surface. In mathematical terms this means that any variable V obeys

v v av o av ,
‘gg(x, va)|<< &a(xsyrz)l’ Ia_z(xs)?z) <<f'a";<x9}?’2)i«

for all {x, y, z) near the center of the burner, where (y, z) are the co-ordinates along the burner
surface and x is the co-ordinate perpendicular to the burner surface. For premixed laminar flat
flames the reacting flow equations are considered to be one-dimensional.

Experimentally the flat flames are stabilized near the cold bumner surface at a fixed position
in space. In the laboratory frame of reference this flame is in a steady state. For these stabilized
laminar flat flames the reacting flow equations become one-dimensional and stationary.

6.3.1 Modelling of stabilized premixed laminar flat flames

The governing equations for stabilized premixed laminar flat flames result from the combustion
equations from Section 6.2 when all terms involving 8/3¢ are put equal to zero and when only one
spatial direction is considered. In order to obtain a manageable form of the governing equations,
the following simplifying assumptions are made:

Al 'The pressure is considered to be constant in the energy equation and in the equation of state,
but not in the momentum equation. This is the so-called combustion approximation or iso-
baric approximation {sce e.g. [11]). We write

plx) = P+ dp(x),
with P, a constant pressure.

A2 The average molecular mass of the mixture, W, is constant.

A3 All chemical species have constant and equal specific heats at constant pressure:

Cpi=cCp, I=12,...,N.

Ad  The Lewis number is equal to unity,

re
Le = LB =1,
e oD
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For a stabilized flat flame the overall continuity equation (6.4) reduces to
ou=n, ' (6.31)
with u the velocity along the x-axis and m the given constant mass flux. The Navier-Stokes equa-
tions (6.8) reduce to a single equation,
du _ _ddp + 4 d (4 du
d.x dx dx'3 d

with g the component of the gravity in the x-direction. In the combustion approximation the en-
ergy equation (6.25) reduces to

N
m,,‘;T Ly dT Za wi— Y pcy, ,YU (6.33)

i=1

)+ p (6.32)

with U; the diffusion velocity of species M; along the X axis. Under assumption A3 the second
term on the right hand side of (6.33) vanishes since Z Y,U; = 0 (cf. (6.7)). The first term on
the right hand side of (6.33) reduces to YN, k0w since k =W +c,(T—T% and 37 w; =0
(cf. (6.3)). Now the cnergy equation reads

mcpj—-: £ ,4T, Zh"w, (6.34)

The thermal conductivity of the mixture (1) is supposed to be ruled by the properties of the abun-
dant nitrogen part in hydrocarbon-air mixtures [40]:

A= dee (T/ Toet) 7. (6.35)
Using Fick’s law (6.12), the mass balance equations (6.6) reduce to
Y, d dY;
mfi————( -—-——)—w,, i=1,2,...,N. (6.36)
dx
In the combustion approximation the equation of state becomes
Py == pRT/W. (6.37)

Under assumption A2 the mass density p is a function of the temperature only, since P, R and
W are constants.

We specify the right hand sides of the energy equation (6.34) and the mass balance equations
{6.36) for a stoichiometric methane-air flame with the one-step reaction mechanism from Subsec-
tion 6.2.2. For the right hand side of the energy equation {6.34) we obtain

N
— Zh?w;

i==]

i

— (R ey + B Wox + h )

= _(h?u + Soxhgx — {1+ Sox)hgt)wfu
=! —AH wg, (6.38)
with AH the so-called heat of combustion.
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Remark 6.2 Consider an infinitely long tube with a fresh stoichiometric methane-air mixture.
Some time after the mixture is ignited at x = —o¢ the flame will propagate towards x = oo with
a constant velocity (a so-called freely propagating flame). Variables on the unburnt side of the
mixture are denoted by a super script*; variables on the burnt side are denoted by a super script ®.
Integrating (6.34) over (—oo, 00} yields,

o0
ﬁch(f" - T% = —AH/ wey (x)dx.
—o
Integrating the mass balance for the fuel (cf. (6.36)) over (—o0, 0c) yields,
—t¥y = / wey (x)dx,
—o

where we have used Y? = 0. Now we obtain

AH = (T° — T“)cp’
Y
which gives the relation between the adiabatic end temperature T and the heat of combustion
AH. |

Since the mass fractions of fuel, oxygen, products and inert species sum up to 1 and the mass
fraction of the inert species is constant, we only have to consider the mass balances for fuel and
oxygen. Summarizing we have the following system of equations for a burner stabilized flar
methane-air flame with a one-step reaction mechanism:

pU = m, (6.39a)
m% = -—%-’- + -j—x(%ﬂb%) + pg, (6.390)
m% — %(k[cpi-g) = ——AC—?-wfu, (6.39¢) |
m‘%‘- _ %(w%’;ﬁ) = wp, (6.39d)
Y (6.39)
_ %TK, (6.39)
iy = — AP () (o) exp (). (6:399)

The system of equations (6.39) for the unknowns p, u, 8p, T, Y, Yo is not fully conpled. Since
p = p(T), the equations {6.39¢). (6.39d), (6.39¢) involve only the combustion variables 7', ¥, and
Yox. So these equations decouple from the remaining (fluid dynamics) equations. After solving
the combustion equations (6.39c¢), (6.39d), (6.39¢) for T, Yy, and Yy, the mass density p follows
from (6.39). Then the velocity u follows from (6.39a). Finally one can solve (6.39b) for the
variation in the pressure 8p. In the remainder of this chapter we only consider the combustion
equations (6.39¢), (6.39d), (6.39¢).
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6.3.2 Boundary conditions

The system of equations (6.39¢),(6.39d),(6.39¢) for the combustion variables T, Yz, Yox 18 not com-
plete yet. We still have to specify the boundary conditions. We locate the burner surface at x = 0.
The inside of the burner is identified with the interval (—o¢, 0). The outside of the bumner is iden-
tified with the interval (0, 00). We assume that inside the burner no chemical reactions take place
and the temperature of the mixture is constant:

wg =0 inside the burner,
Te=T" inside the bumer.

If the temperature inside the burner is sufficiently low, so that the mixture is chemically inert,
then wy, = 0is a good approximation. The assumption 7 = T* inside the burner implies an ideal
cooling of the burner.

Since the temperature is constant inside the burner, we obtain from (6.39f) that the mass den-
sity is constant inside the burner, say o = p%, and from (6.39a) that the velocity of the mixture
is constant inside the burner, say u = u®. Since A = A(T) {cf. (6.35)) and the Lewis number is
unity, the binary diffusion coefficient D does not depend on the mass fractions ¥, and Yy, Thus
D is constant inside the burner, say D = D"

At x = —o00 the mass fractions of fuel and oxygen are given by:

hm Yu(x) =Yy,  lim Yu() = Y. (6.40)
At x = oo the mixture is in chemical equilibrium:
lim —-—-—-(x) 1‘ d fu (x) 0, lim dYor (x) =0. (6.41)
x—>00 dx = x-00 dx
Now the burner stabilized flame pmblem is given by:
deu " udeu
mz‘:— - —( D T —) =0, -0 < X < 0, (6.42a)
dYox d yad¥a,
dx I 0 E) = {}, oo < x <0, (6.42b)
=T, -0 < x <0, (6.42c)
Y Y;
,;l‘;x ___( d_ﬁ’)..wﬁ‘, 0<x<oo, (6.42d)
)£ Yox
mdd;" - ——( d ) = SoxWa, 0<x<o0, (6.42¢)
.dT AH
P ( /e ,,—) Y, Y 0<x <00, (6.42)

with the boundary conditions (6.40) and (6.41).
If we prescribe the mass fractions of fuel and oxygen at the burner surface,

Y1u(0) = Y2, Yex(0) = Y2, (6.43)
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then the burner stabilized flame problem can be split into two parts: inside the burner and outside
the burner.

Inside the burner analytical solutions of the governing equations, (6.42a) and (6.42b), exist.
The mass fractions of fuel and oxygen inside the burner satisfy:

13
Yilxy =Y+ ()’}0 -¥H exp(-;—ux}, —00 < x <0, i ="fu", "ox". (6.44)

Qutside the burner the equations for the mass fractions (6.424d),(6.42¢e) and the equation for
the temperature (6.42f) have the same form. Since the Lewis number is unity, the differential
operators on the left hand side of (6.42d), (6.42¢) and (6.42f) are identical. The mass fractions
¥y, and Y, arc dimensionless, while the temperature T is not. Here we define a dimensionless
temperature,

T
= . 4
=y 7% (6.45)
The equation for the dimensionless temperature 7 reads,
dr d dr
— — — =) = —wp. 4
Mix x()v/dex) o (6.46)

Simple relations between the mass fractions Yy and Y, and the dimensionless temperature T can
be derived. We introduce so-called Shvab-Zeldovich variables,

Jo =Y+, (6.472)
1

Jox 1= —Yo + 1. (6.47b)
Fox

By (6.42d),(6.42¢),(6.46) and with Le = 1 the Shvab-Zeldovich variables satisfy
SO S (B0, 0<x<oo, i =", 0x". (6.48)
The general solution of (6.48) is
T e
Ji(x) =Ciq + Ci,gexp(/ _A£d§}’ 0<x<oo, i="fu","0x", (6.49)
0

with C;1, Ci constants. The only bounded solutions of (6.48) are constant functions. Thus we
obtain

Ya(x) = Yo + 7" — 7(x), x>0, (6.50)
Yor (8) = Yo + sox (T —T(x)), x>0, (6.50b)

where T 1= T"¢,/AH. Using (6.27) it follows from (6.50) that the mass fractions of fuel and
oxygen at the bumer surface are related:

Y = Sofo% + Y

0K Ox

6.51)
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with Y, as in (6.27). Equation (6.51) gives a condition on the prescribed mass fractions ¥ and
Y?.. Note that (6.50) and (6.51) imply:

You (0) = Yo, + Sox Y (), x20. (6.52)

Equation (6.50a) and (6.52) are substituted into (6.39g) to eliminate the mass fractions on the right
hand side of the differential equation (6.46) for . Then we obtain a scalar equation for 7 outside
the burner,

dt d, A dt

E-—-a(;ﬁc—pgi)—-:g(t), 0 <x< o0, (6533)

. dr
7{0) = 1*, lim —~— =0, (6.53b)

X0 dx

with
(p“t“)a+'8 1 ot g u o yb 0 u B

8() = AT—— ()l + 7 = O (Y o+ s (Vi + 7 = 1) exp(=2a/7). (6.530)

In (6.53c) the dimensionless activation temperature 7, is defined by 7, := E,c,/(RAH). After
solving (6.53) for t, the mass fractions Yy, and Yo, outside the burner follow from (6.50).

Summarizing, for a prescribed value of ¥y, (0) the mass fractions ¥, Yox and the dimension-
less temperature 7 inside the bumer follow from (6.51), (6.44), (6.42¢), while these combustion
variables outside the burner follow from (6.53), (6.50a}, (6.52). It is obvious that the resulting
functions for the mass fractions and the temperature are continuous at x = . For an arbitrary
choice of Y2 the first derivatives of these functions are discontinuous at x = 0. Such a disconti-
nuity is to be expected for the temperature function because of the instantaneous cooling of the
burner. However, in the burner stabilized flame problem (6.42) the first derivatives of the mass
fractions are continuous at x = 0. If the burner stabilized flame problem (6.42) has a unique so-
lution, then a unique value of ¥ exists for which the mass fraction functions inside and outside
the burner connect properly at the burner surface.

6.4 NUMERICAL RESULTS

In this section the nonlinear LDC method from Chapter 5 is used to solve the scalar combustion
equation (6.53) and the burner stabilized flame problem (6.42). First we consider (6.53). For
numerically solving this two-point boundary value problem we introduce a computational domain
extending from x = 0 (the burner surface) to a point x = L downstream of the flame. Atx = La
homogeneous Neumann boundary condition is imposed,

dt
E (L) =0.

This implies that the length of the computational domain has to be ‘large enough’ (see e.g. [55],[58)).
We take L = 5 cm, which is large compared to the size of the chemical active layer in a flame {typ-
ically ~ 1 mum). The length L is used to introduce the dimensionless space variable

E:=x/L.
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o 28 AH 50107 Jkg [he 0.092 ¥(mKs)
LB 1.2 cp, 1.410° J(kgK) | T, 1510° K
A 26108 (kgm™HefgU Lo p¢ 124 kg/m? y 077

\E, 1410° Jmol w037 kg/(mPs) | T* 293 K

Table 6.1 Values for the physical and chemical parameters in (6.54).

With the thermal conductivity A as in (6.35) and for a stoichiometric methane-air mixture, we
obtain the two-point boundary value problem,

de_d oot

e dg(a(f)de’;) =8(r), O<é&<l, (6.54a)
. dr, o
7(0) = 7%, ;1-5(1} =0, (6.54b)
with
a(t) - )\,ref(AL[{/ Treff?p)yty, (654@)
mcp
1,0\ u
S = ALY Im) sgx(yf?* : L 1) exp(~1,/7). (6.54d)

Typical values of the physical and chemical parameters! in (6.54) are given in Table 6.1. We take
the mass fraction of fuel at the burner surface equal to the mass fraction of fuel in the fresh stoi-
chiometric methane-air mixture:

Yy = Y3 =0.0548.

In this section we use a composite grid £27#, which is composed of the uniform grids 7
and Qﬁ‘. The grid % is a uniform grid with grid size H, covering the computational domain
€ := (0, 1]. We assume that 1/H € IN. Then & = 1 is a grid point of ¥, The grid Q/ is a
uniform grid with grid size & < H, covering the subregion £, := (0, [} < €. We assume that
o:=H/he INand [/H € IN. These assumptions imply that the grid points of Q¥ inside €,
belong to §7 and that the interface point £ = [ is a grid point of Q. Examples of the grids Q7,
Q! and 2% are shown in Figure 6.1. By ©" we denote the uniform grid with grid size h, covering
the domain Q.

For discretizing the boundary value problem (6.54) on the uniform grids Q7 and 2, finite
difference methods are used. In particular, following Smooke [551,[56], the diffusion term is ap-
proximated using central differences and the convective term is approximated using upwind dif-
ferences. For the grid points y € QF we use, -

I"The values for the physical and chemical parameters in this section have been supplied by the combustion re-
search group at the Eindhoven University of Technology.
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g<a< 7) 5)@) Hz(a(%r<y+ H)+ 1) @y + H) — () —
a(%rm +1t(y— H) (z(y) — 1y — H))}, (6.55a)

pr (y) = —{r(y) - 1(y— H)}. (6.55b)

The Dirichlet boundary condition at § = 0 yields 7(0) = 7. For the homogeneous Neumann
boundary condition at the grid point & = 1, we use the approximation

1
ﬁ{r(l +Hy—1(1-H))=0. (6.55¢)

For the grid points y € Q¥ we use,

e Z @ dg@) hz{a(%r(y +h) 370 GO +R) — () ~
a(%r(y) + 3t(y — 1)) (z(y) —T(y — 1))}, (6.562)
(y) = -{t(y) —t(y —m}. (6.56b)

d&

The Dirichlet boundary condition at § = 0 yields 7(0) = #*. At £ = [ the Dirichlet boundary
condition t{l) = t* is used, with 7* an artificial Dirichlet boundary value.

We use the nonlinear LDC method from Section 5.2 for solving the nonlinear boundary value
problem (6.54) on the composite grid Q#*. We briefly recall the essential steps in the nonlinear
LDC method. Starting point of the method is the system of nonlinear equations resulting from
discretizing the boundary value problem (6.54) on the uniform global coarse grid 2. As in Sub-
section 5.2.1 we refer to this system as the basic discretization. Discretizations of (6.54) on QF
and on §27 are coupled in the following way. After solving a discretization of (6.54) on Q¥, where
the solution is denoted by T, the boundary value problem (6.54) is discretized on the uniform lo-
cal fine grid 2. In this discretization the Dirichlet boundary condition 7(/) = t#({) is used at the
interface grid point £ = 1. After solving a discretization of (6.54) on %, where the solution is de-
noted by 7, the local defect of =¥ with respect to the basic discretization is computed. This local
defect is added to the right hand side of the basic discretization to define an updated discretization
of the boundary value problem (6.54) on Q.

(AU AN EERN RN i ] ] I 1, i | i i {
QH';; ;Illl|lllllllllil 1

Figure 6.1 The grids Q7, Q¥ and Q%" for H = 1/16,1 =4/16,0 = 4.
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For solving the systems of nonlinear equations in the nonlinear LDC method a damped New-
ton iteration is used. In each iteration step the damping factor (cf. (5.5)) is determined by a trial
and error method. Starting with full Newton, i.e. the damping factor equal to 1.0, the damping
factor is multiplied by % until the condition

17 oo < allr]l 6.57)

is satisfied. Here 7/ and r/*! denote the residual of the current and the updated Newton iterate.
Note that these residuals are grid functions on a uniform grid. We shall use a = 2 in (6.57). The
Newton iteration is stopped if the convergence criterion, §|7/]| < 107%, is reached. The Jacobian
matrices are evaluated analytically. The Jacobian systems are solved exactly using a tridiagonal
solver.

In the examples below we present characteristic properties of the approximations of the di-
mensionless temperature T in (6.54), resulting from the nonlinear LDC method. We note that in
the figures in this section the dimensional variables are plotted. The absolute temperature T is
shown as a function of the distance 1o the burner surface x in cm. We recall that T = AHt/c,
and x = L &. Only the first 0.5 cm of the computational domain (of length 5 cm) is plotted in the
figures.

The grid function 7 is a solution of the basic discretization and the grid function rg gisa
solution of the local fine grid discretization with the artificial Dirichlet boundary value T (l} at
the interface grid point & = [. For solving the basic discretization, a piecewise linear tempera-
ture profile is used as initial guess in the damped Newton method. For solving the local fine grid
discretization related to tf, the linear interpolant of tf inside €, is used as initial guess in the
damped Newton method. The grid function ¥ with i > 1 results after i local defect correction
steps and the grid function 7, is a solution of the local fine grid discretization with the artificial
Dirichlet boundary value 7/ (/) at the interface grid point £ = £. For solvmg the systems of nonlin-
ear equations on 27 and Q" in the i-th LDC step, the approximations t, and t},_,, respectively,
are used as initial guess in the damped Newton method. '

Remark 6.3 A major problem for solving stationary combustion equations is the choice of a suit-
able initial guess for Newton’s method, For the combustion equation considered here, it is rela-
tively easy to obtain a suitable imitial guess on the global coarse grid by using the non-adiabatic
end temperature resulting from (6.50a). a

The errors in the approximations resulting from the nonlinear LDC method are computed us-
ing a reference solution T of (6.54). This reference solution is obtained on a global uniform grid
with a grid size which is much smaller than the grid size h of the local fine grid £27. The reference
solution is shown in Figure 6.2, The (relative) errors are defined by

|7 () — 2(x))

1T(x)|

efl(x;) = . x;jeQf i>0,

T () — T

2 , x; e >0,
[z(x ;)] re

ef”i(xj} ==
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2200
1800
€
‘g 1400 +
§ 1000
600
200

Q 01 92 03 84 a3
Distance (cm)
Figure 6.2 The reference solution for boundary value problem (6.54). Only the first
0.5 cm of the computational domain is plotted.

In Example 6. 3 the global and local approximations ¢ and z; o are compared with the approx-
imations 7{f and 7, resultmg after 1 local defect correction step. It is shown that ¢ is signifi-
cantly more accurate than ¥ both inside and outside the local region €, while rﬁ‘l is significantly
more accurate than 1:; o hear the interface grid point § = 1.

Example 6.4 In this example we take H = 1/100, [ = 5H and o = 10. In Figure 6.3.a the ap-
proximations 72 and r" are shown. In Figure 6.3.b the relative errors in the approximations z’H
and 'c?g are plotted. The dashed line in this figure represents the error in the approximation t”,
which results when the boundary value problem (6.54) is discretized on the global uniform fine
grid Q*. We observe that tf, resulting from solving the basic discretization, approximates the
reference solution % fairly well outside the local region £2;. Inside £; the error in ¢ is large, but
this error decays fastly when the distance increases. In a large part of the local region Q, the error
in 7}, is comparable with the error in 7*. Near the interface grid point the error in r, o becomes
much larger. This is due to the fact that at the interface grid point £ = [ the value 1 (l ) is used
to define an artificial Dirichlet boundary value. The behaviour of "?,e close to the interface grid
point is shown in the insert in Figure 6.3.a.

In Figure 6.3.c the approximations 7/ and T?,zv resulting after 1 local defect correction step,
are shown. The global coarse grid approximation ¥ is accurate both inside and outside the local
region sz, Consequently, the error in r‘;‘, near the interface grid point is much smaller than the
error in 7}, near the interface grid pomt This i 1s shown in Figure 6.3.d where the relative errors
in tf and z"g and the relative errors in 7f and 7}, are plotted. Both near the interface grid point
and outside £2;, the errors in the approximations resulting after the local defect correction step are
significantly smaller than the errors in the approximations before the local defect correction step.

For other values of the parameters H, o and /, a similar improvement in accuracy for the global
and local approximations is obtained after a local defect correction step. In Figure 6.4 the errors in
the approximations 7 and 7}', and in the approximations {’ and 7}, are plotted for H = 1/100,
o =20, = 5H (Figure 6.4.a) and for H = 1/100, o = 40, l = 3H (Figure 6.4.b). In this figure
- we use the same markers as in Figure 6.3.d. The error for the approximation 7", resulting when
the boundary value problem (6.54) is discretized on the global uniform fine grid Q*, is indicated
by the dotted line. O



6.4. NUMERICAL RESULTS 115
a) 2200 T b) !
TH
0 811
1800 [ x 0
g 1400 ”
g 5 001 LI
g 5 b b
3 H €
& L 3 1.0
i 1000 & g0 | <
600 038 0.0001
200 . . . .
0 0.1 02 03 0.4 05 le-05 - - -
0.1 02 0.3 04 0.5
Distance (cm) Distance (cm)
c) 2200 T it - dy !
1
1800 | 0.1} x
g * H
T 1400 | 5 0O01f < fo
g : el x
& z _ ,
2 1000 0.001 F =
& N x ox
. ¥ * H
600 033 0.0001 \j n €
€
200 . . . . 1e-05 . : .
0 0.1 02 03 0.4 0.5 0 0.1 02 0.3 0.4 0.5
Distance (cm) Distance (cm)

Figure 6.3 Temperature profiles and errors before a local defect correction step in a),b)
and after a local defect correction step in c),d) in Example 6.4; H = 0.05 cm, [ = 5H and
o = 10. The region [0.15, 0.35] is enlarged in the insert in a) and c).

In Example 6.4 only 1 local defect correction step is performed. In Example 6.5 and Example
6.6 we study the convergence behaviour of the nonlinear LDC method. Therefore we introduce

the composite grid iterates
h
T},
tf"" = A ! .
i |QH
[

In Section 5.2 we have shown that the nonlinear LDC method is related to a system of nonlinear
equations on a composite grid (cf. Theorem 5.5). Here we consider the following discretization
of the boundary value problem (6.54) on the composite grid Q%* (cf. (5.17)): At all grid points
of Q¥* which lie inside §; the finite difference approximations (6.56) are used. At all grid points
of Q" which lie outside &2, the finite difference approximations (6.55) are used. The interface
grid point £ = [ is treated as if it was a grid point of the uniform grid Q#. In the remainder of this
section we refer to the discretization above as the composite grid discretization of (6.54). The
solution of this composite grid discretization is denoted by t#*,
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Figure 6.4 Relative errors before and after 1 local defect correction step in Example 6.4
for H=0.05cm,[=5H, c=20@and for H=0.05cm, ! = 3H, o =40 (b).

; et by, - average
e oo error reduction
0] 135102 5 0.082
1] 1.491073 10 0.10
21 1.5710 20 0.11
31 1.66107° 40 0.11
41 1.76 10~ 80 0.11

Table6.2 Convergence behaviour of the nonlinear LDC method in Example 6.6. Relative
errors for o = 20 and average error reduction factors for several values of o,

Example 6.5 In this example we take H = 1/100 and ] = 5H. The iterates 'ci""" in the nonlinear
LDC method are compared with the solution t* of the composite grid discretization of (6.54).
In Table 6.2 the relative errors
e — g
75| oo

are presented for o = 20. We observe a fast convergence of the iterates rfi"‘ to the grid function
8% The error reduction factors in the nonlinear LDC method are approximately 0.11 in this case.
For other refinement factors a similar fast convergence of the LDC iterates to the grid function
7i# is obtained. In Table 6.2 the average error reduction factors in the nonlinear LDC method

for o =5, 10, 20, 40, 80 are shown. The convergence rate is independent of the refinement factor
. [

In Example 6.5 we have seen that the composite grid iterates in the nonlinear LDC method
converge fastly to the grid function t#*. In Example 6.6 the grid function t#* and the approxi-
mations z/%* and t/**, resulting after 1, respectively 2 local defect correction steps, are compared
with the reference solution  for several values of the refinement factor o and for several values
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Figure 6.5 The errors in the grid functions t#% (2), tf* (), and «#* () for
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of the interface grid point £ = . The errorsin ¢ and ‘L’f’k are defined by

[HA(x;) — 2 (x))]

Hbgo s .
e P

R X & QH’h,

[t x) — 2x)) .
e;g’;‘(xj) == W, X;e QH‘h, = l, 2.

Example 6.6 We take H = 1/100. In Figure 6.5.a the error in the grid function 7" is shown
for/ =5H and o = 1, 5, 10, 20, 40, 80. For o = 1 the grid Q%" is a uniform grid with grid size
H. The error for o = 1 is indicated by an asterix (x). When o increases, the error in /% inside
the local region €; decreases since the grid size of the composite grid 2" inside Q; becomes
smaller. Outside the local region £; the error in 7k hecomes constant for increasing o, since
the grid size of the composite grid %" outside the local region §; remains constant. For o large
enough, the size of the error outside €2; is in agreement with the grid size H and the variations
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of the solution of (6.54) outside £2;. Note that this does not hold for the approximation t';;’”’. In
Figure 6.5.b the relative error in the grid function 7/"*, which results after 1 local defect correction
step, is shown for the same set of refinement factors as in Figure 6.5.a. The relative error in rf ok
displays a non-smooth behaviour in a neighbourhood of the interface grid point, but this error is
nowhere significantly larger than the relative error in t®*. In Figure 6.5.c the relative error in
the grid function 7%, resulting after 2 local defect correction steps, is shown for the same set of
refinement factors as in Figure 6.5.a,b. The error in 73" is comparable to the error in T, which
is obtained in the limit by the nonlinear LDC method.

In Figure 6.5.d the relative error in ;—2}' is shown for ¢ = 20 and for | = 3H,4H, 5H, 6H.
When { decreases, the relative error in 7,”" outside £2; becomes larger. This is due to the fact that
for decreasing [ the region $2\§2;, where a coarse grid size H is used, is extended in the direction
of the burner surface and closer to the burner surface the variations in the solution 7 are larger. U

In the previous examples we have shown some typical properties of the nonlinear LDC method
for the boundary value problem (6.54). Due to the fact that a discretization of the boundary value
problem on the global coarse grid ¥ is used, the approximation ¢’ and u}', in the initialization
step of the nonlinear LDC method are relatively inaccurate near the interface grid point. Signifi-
cantly more accurate approximations uf and uﬁ , are obtained after only 1 local defect correction
step. Performing more local defect correction steps yields significantly better approximations of
the solution of a composite grid discretization of boundary value problem (6.54), but not of the
solution of the boundary value problem itself. Since our goal is to approximately solve the bound-
ary value problem (6.54) on the composite grid, one local defect correction step is sufficient. This
holds for various (reasonable) values of o and /.

In the next example we consider the amount of work required by the nonlinear LDC method.
We compare the number of Newton iterations in this method with the number of Newton iterations
in the Newton-FAC method from Section 5.3 applied to the composite grid discretization of (6.54)
as defined above Example 6.5.

Example 6.7 We take H = 1/100, I = 5H, ¢ = 20. The Newton-FAC method consists of an
outer Newton iteration on %* and inner FAC iterations for solving the Jacobian systems. For
the outer iteration we use the same damped Newton method as in the nonlinear LDC method. The
initial guess is obtained from the solution ¥ of the basic discretization by linear interpolation in-
side §2;. Only one FAC step (cf. (2.20)), with the initial approximation equal to 0 at all composite
grid points, is applied. Both for the nonlinear LDC method and for the Newton-FAC method we
count the number of systems of linear equations which are solved on Q¥ and on Q.

In Table 6.3 the number of Newton iterations in the nonlinear LDC method are shown. Each
Newton step requires the solution of a system of linear equations on 2 or on Q. In the local
defect correction steps (i = 1, 2, 3, 4, 5) a small number of Newton iterations is sufficient since
good initial guesses for the damped Newton method are available. In the Newton-FAC method
10 Newton steps are performed. If we take into account the cost for computing the initial guess,
16 systems of linear equations on £ and 10 systems of linear equations on §2¥ have been solved.
So in this case the amount of work required by the Newton-FAC method is comparable with the
amount of work required for two steps in the nonlinear LDC method. O
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Table 6.3 Number of Newton iterations on 2% and Qf’ required by the nonlinear LDC
method in Example 6.7.
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Figure 6.6 Errors before and after a local defect correction step in Example 6.8;
H=005cm,!=3H,0=20,

For approximating the solution of the boundary value problem (6.54) by the nonlinear LDC
method, discretization processes on the uniform global coarse grid £ and on the uniform local
fine grid 2 have to be specified. In the examples above, both for discretizing (6.54) on 2 and on
Q¥ central differences are used for the diffusion term and upwind differences for the convective
term. However, the discretization processes on # and Qf in the nonlinear LDC method may very
well be different. In the Example 6.8 below we present results for the nonlinear L.LDC method for
boundary value problem (6.54), where on the global grid the convective term is approximated
using upwind differences and on the local grid the convective term is approximated using central
differences,

LA ) ko )
g’ T 2 :

with y € Q¥ On both grids the diffusion term in (6.54) is approximated using central differences.

Example 6.8 We take H = 1/100, [ = 3H and o = 20. In Figure 6.6 the relative errors in the
approximations =¥/, ], and ¥, z}'; are plotted. Clearly, by using central differences instead of
upwind differences for the convective term on the local grid, the quality of the discretization is
improved (compare Figure 6.6 with Figure 6.5.d). Like in Example 6.4 we sce that the error in
rffo is large near the interface grid point. Here the error at the interface grid point is larger than the
maximum error inside £2;. After alocal defect correction step a significant reduction of the relative
error near the interface grid point results. We note that, like in Example 6.6, performing more local
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defect correction steps does not significantly change the size of the errors in the approximations
for t. O

In Example 6.9 the burner stabilized flame problem (6.42) is solved on the composite grid
QH2 We make use of the fact that fine grid approximations before a local defect correction step
are accurate near the burner surface.

Example 6.9 For solving the burner stabilized flame problem (6.42) we use the scalar combus-
tion equation (6.54) and the fact that ‘f—j’g is continuous at £ = 0. With ¥, (0) = Y, given, the
solution of the boundary value problem (6.54) is approximated on the composite grid Q%*, The
composite grid approximation is denoted by t*. By (6.50a) the approximation % yields an
approximation of ¥y, on Q%*, The first derivative % at £ = 0 is approximated by

D, .= Tt T =T - Yulh)

2h
where Yy, (—h) follows from (6.44). From (6.44) we find
N deu . 0 u“ .
lgg_dg_(f)'— (Y — Yf?l)"b"l; =:D..

While | D, — D_| > tol, the value of Y2 is adapted:
Du
Yo :=Ya+ —(Dc+D)/2.

Aslongas |D. — D..| > tol, the solution of (6.54) is approximated by solving the basic discretiza-
tion on Q¥ and the related local fine grid discretization on £F. No local defect correction steps -
are carried out, since the local fine grid approximation is sufficiently accurate near the burner sur-
face. For the accepted value of Y2 alocal defect correction step is carried out in order to improve
the accuracy of the approximation outside the local region £2;. -

In Figure 6.7 the results of this iterative process are shown for H = 1/100, 0 = 40, | == 3H,
tol = 1072, The dashed lines in Figure 6.7.a represent the approximations of the dimensionless
temperature 7 and the mass fraction ¥, for the initial guess Y = Yg, while the solid lines repre-
sent the approximations of 7 and ¥, for the accepted value of Y2, obtained after 7 iteration steps.
These approximations of 7 and Yy, are still inaccurate near the interface grid point £ = I. By per-
forming 1 local defect correction step the kink at x = /in the approximations is removed. This is
shown in Figure 6.7.b where the approximations of 7 and Yy, after 1 local defect correction step
are plotted. o

6.5 DISCUSSION

In Section 6.4 we have presented results of the simulation of a one-dimensional premixed laminar
flame on composite grids which are locally strongly refined. The use of locally strongly refined
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Figure 6.7 Approximations of = and ¥y, for the burner stabilized flame problem in Exam-
ple 6.9. a) The approximations for the initial value of YX, (dashed line) and for the accepted
value of Yfg (solid line). b) The approximations for the accepted value of Yg after 1 local
defect correction step.

grids is inevitable when numerically simulating combustion processes because of the large differ-
ence between the size of the burner and the size of the chemically active layer. Ratios of the largest
distance between two neighbouring grid points to the smallest distance between two grid points
of 10-100 are not unusual in combustion modelling. As we have seen, the local defect correction
method is an attractive approach for solving the model combustion problem on such strongly re-
fined composite grids. The boundary value problem is discretized on the uniform subgrids only.
Also systems of algebraic equations need to be solved on the uniform subgrids only. Using very
large refinement factors, accurate approximations of the solution result after only one local defect
correction step.

Clearly the number of grid points in the composite grids in Section 6.4 is not minimal to ob-
tain an approximation of boundary value problem (6.54) with a certain accuracy. For simulating
one-dimensional flames, truly non-uniform locally refined grids, which need a smaller number of
grid points to obtain approximations with a certain accuracy, can be used (e.g., [40],[551,[58]).
Often the one-dimensional adaptive gridding techniques cannot be applied for two-dimensional
problems. The concept of composite grids and the local defect correction method can easily be
generalized for two space dimensions (and even for three space dimensions). For higher dimen-
sional problems, this approach offers some clear advantages: locally strongly refined grids and
yet simple data structures; also the fact that one can use uniform grids facilitates both the dis-
cretization process and the solution of the resulting algebraic equations considerably.

We realize that we only considered a fairly simple combustion problem. The latter was taken
to demonstrate the versatility of our approach for real life problems. Of course, more research on
the use of composite grids and local defect correction for more complex combustion problems is
needed.
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CONCLUSIONS

We have studied iterative methods for solving elliptic boundary value problems on composite
grids which are locally strongly refined. This local refinement is obtained by using a small number
of uniform grids with different grid sizes, covering different parts of the domain. For notational
convenience a two-dimensional model composite grid composed of a uniform global coarse grid
and only one uniform local fine grid has been used. The composite grids considered in this the-
sis have several attractive properties: data structures are simple and hence these grids arc very
manageable in a practical implementation; locally the grid can be refined to any scale required
by the variations of the solution; since the composite grids are composed of uniform subgrids,
discretization of the boundary value problem is standard in the greater part of the domain. These
advantages are even more pronounced for three space dimensions. We have used finite difference
methods for discretizing the boundary value problems on the composite grids.

In Chapter 2 and Chapter 3 we have given a presentation and analysis of three basic itera-
tive methods for solving boundary value problems on composite grids: local defect correction
(LDC, introduced by Hackbusch), the fast adaptive composite grid method (FAC, introduced by
McCormick) and the multi-level adaptive technique (MLAT, introduced by Brandt). These meth-
ods have in common that in the iterative process only systems of algebraic equations on the uni-
form subgrids are solved. Often such systems can be solved very efficiently. By presenting the
three methods in one framework, we have been able to discuss the similarities and the differences
between these methods. We have shown that the composite grid discretizations which are actu-
ally solved by the LDC method and by the MLAT method are the same if the restriction, used in
MLAT for restricting approximations on the local fine grid to grid points of the global coarse grid,
is the trivial injection. Also we have shown that if the FAC method is applied to the composite
grid discretization related to the LDC method, and if the restriction used in the FAC method is
equal to the trivial injection on the interface, then the LDC method and the FAC method have the
same iteration matrix. Unfortunately, we have not been able to derive satisfactory bounds for the
norm or spectral radtus of this iteration matrix. So a satisfactory convergence analysis of the LDC
method and the FAC method in a finite difference setting is still lacking. Hence this topic is still
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left for future research.

In Chapter 4 we have studied in detail the composite grid discretization related to the LDC
method for the Poisson problem. For the one-dimensional Poisson problem this composite grid
discretization is compared with two other reasonable finite difference discretizations on the com-
posite grid. It is shown that already for this simple problem, the composite grid discretization
related to the LDC method has important advantages compared to the other two discretization
methods. For the two-dimensional Poisson problem we have derived a sharp global discretiza-
tion error bound, which is valid without restrictions on the coarse grid size H, the fine grid size
h and the refinement factor o = H/h. This bound nicely separates the discretization error terms
related to the high activity region, the low activity region and the interpolation on the interface.
This is an important result, since up to now no results were known concerning finite difference
discretization errors on composite grids.

Numerical results, both in this thesis and in the literature, show very fast convergence of the
local defect correction iteration for several problems. Ofien accurate approximations of the so-
lution of the boundary value problem are obtained after only one local defect correction step. In
our opinion it would be worthwhile to analyse the solution method given by the LDC initializa-
tion step (consisting of a basic global coarse grid discretization and a corresponding local fine
grid discretization) and one local defect correction step. Some first results in this direction are
presented in [19].

In Chapter S we have shown how the LDC method and the FAC method can be applied to
nonlinear boundary value problems. In Chapter 6 we have used the nonlinear LDC method for
solving a concrete nonlinear boundary value problem, resulting from combustion modelling, on
a composite grid. The numerical results for this (fairly simple) combustion problem indicate that
for large refinement factors and after only one local defect correction step, accurate approxima-
tions of the solution of the boundary value problem can be obtained. These results and the attrac-
tive properties of composite grids as described in Section 1.2 make further research on the use of
composite grids and local defect correction for more complex combustion problems worthwhile.
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SAMENVATTING

Veel fysische processen kunnen wiskundig gemodelleerd worden als een elliptisch randwaardepro-
bleem. Om een numericke benadering van de oplossing van het randwaardeprobleem te krijgen,

wordt het randwaardeprobleem benaderd (gediscretiseerd) op een verzameling discrete punten

(het rooster), en wordt het resulterende stelsel algebraische vergelijkingen opgelost. Indien de

oplossing van hetrandwaardeprobleem sterk varieert is een fijn rooster nodig om een nauwkeurige

numerieke benadering te krijgen. Veelal is de variatie van de oplossing niet over het hele domein,

maar alleen lokaal groot. Om in dergelijke gevallen de oplossing van het randwaardeprobleem

nauwkeurig en efficiént te benaderen is een lokaal verfijnd rooster nodig.

In dit proefschrift worden iteratieve methoden voor het oplossen van elliptische randwaardepro-
blemen op zogenaamde samengestelde roosters bestudeerd. Samengestelde roosters zijn lokaal
verfijnde roosters die zijn samengesteld uit een aantal uniforme roosters. Eén van de uniforme
roosters overdekt het hele domein en heeft een grove maaswijdte. De overige uniforme roosters
overdekken ieder slechts een deel van het domein en hebben een (veel) fijnere maaswijdie, Als
modelrooster wordt een samengesteld rooster gebruikt dat is samengesteld uit een globaal uni-
form grof rooster en één lokaal uniform fijn rooster. De maaswijdte van het lokale rooster zal
vaak veel fijner zijn dan de maaswijdte van het globale rooster. Om de randwaardeproblemen te
discretiseren worden eindige differenties gebruikt.

In de hoofdstukken 2 en 3 worden een drietal vit de Hteratuur bekende methoden voor het
oplossen van lineaire randwaardeproblemen op samengestelde roosters gepresenteerd en geana-
lyseerd. Bij de LDC methode (“local defect correction™) en de MLAT methode (“multi-level
adaptive technique”) wordt het randwaardeprobleem niet a priori gediscretiseerd op het samenge-
stelde rooster. In iedere iteratiestap worden stelsels algebraische vergelijkingen op de uniforme
deelroosters gedefinieerd en opgelost. Voor de LDC methode en de MLAT methode wordt het
discrete probleem op het samengestelde rooster, dat uiteindelijk wordt opgelost, afgeleid. De
verschillen tussen het discrete probleem gerelateerd aan de LDC methode en het discrete prob-
leem gerelateerd aan de MLAT methode worden besproken. Voor de LDC methode wordt een uit-
drukking voor deiteratiematrix afgeleid. De FAC methode (“fast adaptive composite grid method”)
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is een iteratieve methode voor het oplossen van a priori gegeven discrete problemen op het samen-
gestelde rooster. De FAC methode wordt toegepast op het aan de LDC methode gerelateerde
discrete probleem op het samengestelde rooster en de benaderingen in de FAC iteratie worden
vergeleken met de benaderingen in de LDC iteratie.

In hoofdstuk 4 wordt het aan de LDC methode gerelateerde discrete probleem op het samenge-
stelde rooster nader bestudeerd. Voor de één-dimensionale Poisson vergelijking wordt dit dis-
crete probleem vergeleken met twee andere, aan de MLAT methode en de FAC methode gerela-
teerde, discrete problemen op het samengestelde rooster. De lokale en globale discretisatiefouten
en eigenschappen van de differentiematrices worden vergeleken. Het blijkt dathet aan LDC gere-
lateerde discrete probleem een aantal gunstige eigenschappen heeft. Voor dit discrete probleem
worden ook in geval van de twee-dimensionale Poisson vergelijking de lokale discretisatiefouten
geanalyseerd en gunstige eigenschappen van de differentiematrix afgeleid. Uiteindelijk wordteen
scherpe bovengrens voor de globale discretisatiefout afgeleid, die geldig is zonder beperking op
de grove maaswijdte, de fijne maaswijdte en de verhouding tussen deze twee maaswijdten.

In de hoofdstukken 2, 3 en 4 worden lineaire randwaardeproblemen beschouwd. In hoofdstuk
5 wordt beschreven hoe de LDC methode kan worden gecombineerd met de Newton methode voor
het oplossen van niet-lineaire randwaardeproblemen op een samengesteld rooster. Voor de niet-
lineaire LDC methode wordt het discrete probleem op het samengestelde rooster, dat uiteindelijk
wordt opgelost, afgeleid. Voor het oplossen van dit discrete probleem wordt ook een combinatie
van de Newton methode en de FAC methode beschreven.

De niet-lineaire LDC methode wordt toegepast op een concreet niet-lineair probleem afgeleid
uit de modellering van verbrandingsprocessen. Bij de numerieke simulatie van verbrandingspro-
cessen is het gebruik van lokaal sterk verfijnde roosters noodzakelijk omdat de afmeting van de
brander in het algemeen een aantal ordes groter is dan de afmeting van de zone waarin de chemische
reacties plaatsvinden. In hoofdstuk 6 worden de beschrijvende vergelijkingen voor reagerende
gasmengsels in het algemeen, en voor één-dimensionale vlakke vlammen in het bijzonder, gegeven.
Verder worden numerieke resultaten, verkregen met de niet-lineaire LDC methode, gepresenteerd
en besproken.
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Stellingen
behorende bij het proefschrift

SOLVING
BOUNDARY VALUE PROBLEMS
ON COMPOSITE GRIDS
WITH AN APPLICATION TO COMBUSTION

door

P.1J. Ferket

. Bijde LDC methode (“local defect correction”) toegepast op een randwaardeprobleem hoort
een discretisatie op een samengesteld rooster waarbij roosterpunten op de interfaces tussen
grove en fijne roosters dienen te worden beschouwd als roosterpunten van het uniforme
grove rooster.

. De FAC methode (“fast adaptive composite grid”) toegepast op de discretisatie horend bij
de LDC methode, levert bij geschikte keuze voor de restrictie en de startbenadering in de
FAC methode, dezelfde benaderingen als de LDC methode.

. Voor eindige differentiemethoden op uniforme roosters is bekend dat in veel gevallen lokale
discretisatiefouten in de buurt van de rand van het domein een wezenlijk kleinere invloed
hebben op de globale discretisatiefout dan lokale discretisatiefouten in het inwendige. Een-
zelfde verschijnsel treedt op bij de aan de LDC methode gerelateerde eindige differentie-
methode op samengestelde roosters, maar nu met betrekking tot lokale discretisatiefouten
in de buurt van de interfaces tussen grove en fijne roosters.

. De convergenticsnelheid van de FAC methode hangt sterk af van de keuze voor de restrictic
op de interfaces tussen grove en fijne roosters.

. Zij X eencomplexe Banachruimteen T : X — X een lineaire afbeelding waarvoor A € (0, 1)
bestaat zo dat

HTx — xlt < ACxl + 17xID
voor alle x € X. Dan is T begrensd inverteerbaar.
Dit resultaat is een uitbreiding van een stelling van Hilding [Hi] voor Hilbertruimtes.

[Hi] S. Hilding, Note on completeness theorems of Paley-Wiener type, Ann. of Math., 49
(1948), pp. 953-955.
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Voor elke cardinal spline functie s € C*D(IR) van willekeurige graad k > 1 geldt dat de
som -
3 (=D stx—n) (xe R)
n=—00

een scalair veelvoud is van de cardinal Euler-spline £;(x) van de graad &, aangenomen dat
de reeks voor alle x € IR convergeert.
Ditimpliceert dat voor wavelet-decomposities van anti-periodieke functies f waarvoor geldt:

fG+D=—-fx (x € R),
de Euler-spline Ej(x) ecen belangrijke schaalfunctie is.

Een klassicke taal in het VWO-eindexamenpakket vormt een uitstekende voorbereiding op
wetenschappelijk onderwijs aan een technische universiteit.

. De opleiding tot wiskundig ingenieur moet zich bij VWO-leerlingen actiever profileren als

een brede opleiding die goede perspectieven biedt op een interessante baan in het bedrijfs-
leven.

. Afstudeerders die promotieonderzock willen verrichten moeten gestimuleerd worden om

na hun afstuderen over te stappen naar een andere universiteit.

Niet de plaats maar de aard van een overtreding zou bepalend moeten zijn voor het geven
van een strafschop.

Bij belangrijke voetbalwedstrijden moet de scheidsrechter de mogelijkheid hebben om bij
cruciale beslissingen televisiebeelden te raadplegen.

De elektronische snelweg brengt de smoes “ik stond in de file” voor velen binnen hand-
bereik.



