

Video signal processor mapping

Citation for published version (APA):
de Kock, E. A. (1999). Video signal processor mapping. [Phd Thesis 2 (Research NOT TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR529864

DOI:
10.6100/IR529864

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 07. Jul. 2024

https://doi.org/10.6100/IR529864
https://doi.org/10.6100/IR529864
https://research.tue.nl/en/publications/8dd44b0e-8b4b-41c0-b275-670fad9787e4

Video Signal Processor Mapping

On the cover: a composition of photographs of the video signal processor system showing
the programming environment, a processor board, and the display of a result that has been
produced by executing a video algorithm in real-time. The programming environment
contains implementations of the techniques to map video algorithms onto processor boards
that are presented in this thesis.

Video Signal Processor Mapping

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. M. Rem, voor
een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

woensdag15 december1999 om16.00 uur

door

Erwin de Kock

geboren te Tilburg

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. E.H.L. Aarts
en
prof.dr. P.A.J. Hilbers

Copromotor:
dr.ir. J.H.M. Korst

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

de Kock, Erwin

Video Signal Processor Mapping /
Erwin de Kock. -
Eindhoven: Eindhoven University of Technology
Thesis Eindhoven. - With index, ref. - With summary in Dutch
ISBN 90-74445-48-9
Subject headings: mapping, scheduling, partitioning, lifetime minimization,
combinatorial optimization, code generation, video signal processing

 Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

Preface

The video signal processor project has been carried out at the Philips Research
Laboratories from1987 to 1997. I have been involved in this project on several
occasions both as a student and as an employee. This thesis completes my contri-
bution to the project. I would like to express my gratitude towards the many people
that made this work possible.

First of all, I would like to thank my promoters. I thank Emile Aarts for his
guidance during the seven years that we have been working together. In this period
he has taught me his way of doing research which is reflected in this thesis. I appre-
ciate our cooperation very much and look forward to it in the future. I thank Peter
Hilbers and Jan Korst for carefully reading drafts of this thesis. Peter’s extensive
knowledge of parallel systems has been of great help in generalizing this work.
Jan’s excellent mathematical skills have revealed many inconsistencies. Their ad-
vice has led to many improvements.

I am also grateful to my colleagues Gerben Essink, Peter van Gerwen, Wim
Smits, and Kees Vissers. Without their contribution this thesis would not have
existed. I thank them for their friendship and the sharing of their ideas. In particular
I want to thank Gerben for the discussions on mapping techniques and software
engineering, and Wim for evaluating the mapping tools and for disseminating the
results of the project.

Furthermore, I would like to thank the students that helped in tackling the
mapping problem. In chronological order they are Ren´e van Dongen, Babette de
Fluiter, Peter Vink, Roger Jansen, Mark Smeets, and Angelica Verstraten. With-
out their assistance we would not have been able to study the mapping problem as
thoroughly as we did.

Next, I thank the members of the ‘Algoritmen Club’ and many other colleagues
not already mentioned, for the pleasant atmosphere and the interesting discussions
on a variety of topics. I thank Eric van Utteren, Cees Niessen, and Rob Woudsma
for giving me the opportunity to carry out the research described in this thesis.

Finally, I give special thanks to my family and friends for their interest in my
work and to Patricia for sharing her enthusiastic attitude towards life with me.

Eindhoven, October1999 Erwin de Kock

v

Contents

1 Introduction 1
1.1 Video Signal Processing . 1
1.2 Programming Trajectory . 4
1.3 Mapping Trajectory . 6
1.4 Related Work . 7
1.5 Outline . 10

2 Problem Formulation 11
2.1 Processor Networks . 11
2.2 Signal Flow Graphs . 18
2.3 Mappings . 23
2.4 Constraints . 26
2.5 Mapping Problem . 31
2.6 Problem Instances . 31
2.7 Summary . 34

3 Complexity Analysis 35
3.1 Computational Complexity . 35
3.2 Type Constraints . 38
3.3 Array Constraints . 38
3.4 Storage Constraints . 38
3.5 Computation and Communication Constraints 40
3.6 Periodicity Constraints . 43
3.7 Precedence Constraints. 44
3.8 Connectivity Constraints . 48
3.9 Summary . 52

4 Problem Decomposition 53
4.1 Mapping Sets . 54
4.2 Constraint Relaxations . 55
4.3 Decomposition Strategy. 61
4.4 Delay Management Problem . 64

vii

viii Contents

4.5 Partitioning Problem. 65
4.6 Scheduling Problem . 66
4.7 Results . 67
4.8 Summary . 68

5 Delay Management 71
5.1 Problem Decomposition 71
5.2 Delay Minimization . 75
5.3 Delay Assignment . 81
5.4 Results . 87
5.5 Summary . 91

6 Partitioning 93
6.1 Problem Decomposition 93
6.2 Processor Assignment . 97
6.3 Type Assignment . 108
6.4 Results . 108
6.5 Summary . 113

7 Scheduling 115
7.1 Problem Decomposition 115
7.2 Time Assignment . 120
7.3 Processing Element Assignment 127
7.4 Channel Assignment . 130
7.5 Results . 132
7.6 Summary . 136

8 Conclusion 137

Bibliography 141

Symbol Index 148

Author Index 152

Subject Index 155

Samenvatting 158

Curriculum Vitae 160

1
Introduction

This thesis is concerned with the mapping of video algorithms onto parallel pro-
cessors. Mapping considers the scheduling over time of the execution of operations
onto processing elements, the storage of variables into memories, and the commu-
nication of variables between processing elements and memories. Our interest in
mapping onto parallel processors originates from the field of digital video signal
processing. More precisely, it originates from the problem of compiling a video
algorithm description into micro code that can be executed by a network of video
signal processors.

In this introductory chapter we discuss the following aspects. In Section 1.1
we give the necessary background information on the field of video signal pro-
cessing. In Section 1.2 we present the programming trajectory for a specific video
signal processor architecture. In Section 1.3 we present the mapping trajectory for
this specific architecture. In Section 1.4 we provide an overview of related work.
Finally, in Section 1.5 we present an outline of this thesis.

1.1 Video Signal Processing

Signal processing typically concerns the transformation of a stream of input sam-
ples into a stream of output samples. Examples of signal processing are corre-
lation techniques, spectrum analyses, and image and sound improvements [Pratt,

1

2 Introduction

1991]. Industrial application of signal processing are found in the field of geo-
physics, telecommunications, medical imaging, television studios, and process
control. Consumer applications are found mainly in the field of audio, video, and
mobile telephony.

Each application domain uses its own specific type of signals, but each signal
can usually be described in an abstracted form as a function of time. The function
value is generally known asamplitude. Signals can be eithercontinuousor dis-
cretein time and in amplitude. A signal that is continuous in time and in amplitude
is called ananalogsignal, whereas a signal that is discrete in time and in ampli-
tude is called adigital signal. Digitization of a continuous signal in time is called
sampling. Digitization of a continuous signal in amplitude is calledquantization.

The processing of digital signals has many advantages compared to the pro-
cessing of analog signals. One advantage is that one can decide on the compu-
tation precision by choosing the sampling frequency and the quantization preci-
sion. This makes the amplitude domain finite and allows a unique representation
of each amplitude value. A binary representation is a well-known example of such
a representation which is used in the implementation of digital signal processing
applications onintegrated circuits. Integrated circuits can be manufactured in large
numbers against low cost, they are small and reliable, and they can perform com-
plex computations. The advantage of a binary representation is that small electrical
deviations do not influence the amplitude values, as long as the bit values are cor-
rectly interpreted. For this reason, digital systems can be reproduced with identical
behavior and are less sensible to factors such as aging, noise, and temperature com-
pared to analog systems. Another important advantage is that one can apply error
detection and error correction on digital signals, for instance, by adding redundant
information to the representation of the amplitude values. Alternatively, one can
compress streams of digital signals by using relations between the samples, since
streams often have a more compact representation than the sum of their individ-
ual sample representations. An important disadvantage of digital signal processing
systems is that they cannot handle arbitrarily high frequencies. However, this is
becoming less of a limit due to the advanced integrated circuit technology. In the
last decade, this technology has opened the way to digital video signal processing.

In order to process digital video signals in real time with an acceptable resolu-
tion on television, one requires high sampling frequencies. Television sets contain
cathode ray tubes in which an electron beam impinges on light emitting particles
located at the inside of the tube. The particles emit red, green, or blue light. Each
picture element orpixel consists of one red, one green, and one blue light emitting
particle. The energies of the electrons that are fired on the particles determine the
resulting color of the pixel. While firing, the electron beam moves horizontally
from left to right. This results in the display of a sequence of pixels which is called

1.1 Video Signal Processing 3

a videoline. At the end of each line, the electron beam moves to the beginning
of the next line without firing electrons. The time between the last pixel of the
previous line and the beginning of the next line is called theline blanking. In this
way, the electron beam moves vertically from top to bottom. This results in the
display of a sequence of lines which is called a videoframe. The time between the
last line of the previous frame and the first line of the next frame is called theframe
blanking. The motion of the electron beam is calledscanning. Figure 1.1 visual-
izes the entire scanning process. The number of frames per second, the number of

1

Frame

Frame

Frame i

i+2

i+

Figure 1.1. The scanning process.

lines per frame, and the number of pixels per line depend on the video standard.
In the Phase Alternating Line (PAL) standard one uses25 frames per second,625
lines per frame, and864 pixels per line. This gives a typical sampling frequency of
13.5 megahertz.

An application that contains several hundreds of operations per sample on a
stream of13.5 mega samples per second requires a computation capacity of more
than5 giga operations per second. Typically the time that is required to process
one sample is much longer than the time between the arrival of two consecutive
samples such that the operations need to be executed in parallel. Consequently,
real-time processing of digital video signals requires parallelism to handle the high
data throughput. Moreover, two consecutive samples are horizontally adjacent. In
order to process two vertical adjacent samples, one has to store a complete video
line of 864 samples which typically takes24 bits per sample since each sample
is composed out of a red, a green, and a blue component whose amplitudes are
usually represented in8 bit values. So the storage of a video line takes more than
2 kilobyte and the storage of a video frame takes even more than1 megabyte. The
corresponding communication requirements to transport a single second of video is
more than25 megabyte per second. These amounts of computation, storage, and,
especially, communication capacities cannot be delivered by current state-of-the-
art general-purpose microprocessors at reasonable cost. Therefore, one uses more
specialized processors which are called video signal processors.

4 Introduction

Many video signal processors are designed to execute one specific algorithm
because that results in a more efficient implementation. The implementation is
often in silicon in the form of an application-specific integrated circuit. The design
and manufacturing of integrated circuits is time consuming, even with the aid of
high-level synthesis tools. This makes them of little use in the development stages
of video algorithms when the real-time behavior is to be evaluated.

Programmable video signal processors save time because it is possible to exe-
cute many different algorithms on the same hardware such that the fine-tuning of al-
gorithms requires no hardware modification. Another advantage of programmable
processors is that they reduce the time-to-market, which is of utmost importance
when the competition launches new popular features. Important disadvantages of
programmable processors are that their size and their power consumption exceeds
that of application-specific circuits.

The mapping of video algorithms onto video signal processors is a complex
task due to the high degree of parallelism that is involved. For instance, a proces-
sor with a clock frequency of50 megahertz must execute20 operations in parallel
in order to execute an application that requires1 giga operations per second in
real-time. In order to reduce the development cost and time-to-market of consumer
products containing embedded video signal processors, much effort is spent on de-
sign automation and code generation for these processors. As examples that have
been developed at the Philips Research Laboratories we mention the Phideo design
methodology [Van Meerbergen et al., 1995] which supports high-level synthesis of
video algorithms into application-specific circuits, and the VSP programming envi-
ronment [Vissers et al., 1995] which supports code generation of video algorithms
for programmable video signal processors. The latter contains implementations
of many of the mapping techniques presented in this thesis and has been used to
develop many industrially relevant video algorithms.

1.2 Programming Trajectory

The goal of the VSP programming environment is to map video algorithms onto
networks of programmable video signal processors. The programming environ-
ment is specifically targeted to one video signal processor architecture, calledthe
VSP architecture. The architecture contains a number of in parallel operating pro-
cessing elements with computation and storage capabilities that are fully inter-
connected by a switch matrix. Each processing element repeatedly executes one
sequence of instructions that is determined at compile time. There is no conditional
execution of instructions. This model of execution is calledcyclostaticexecution.
It limits the set of executable video algorithms, but it ensures the real-time exe-
cution of any video algorithm that can be mapped onto a network of video signal

1.2 Programming Trajectory 5

processors. The video algorithms are represented bysignal flow graphsin which
the nodes represent elementary operations from the instruction set and the arcs rep-
resent dependencies between the operations. Figure 1.2 graphically visualizes the
programming trajectory. Below, we discuss each of the programming steps in more
detail.

Generation

Code

Entry

Schematic

Data

Simulation

Simulation

Mapping

Assembly Code

Video Algorithm &

Signal Flow Graph &

Mapped Signal Flow Graph

VSP System

Processor Network

Functional

Simulation

Architectural

Figure 1.2. The VSP programming trajectory consisting of three steps. The first
step is the schematic entry of a video algorithm represented as a signal flow graph
and of an architecture instance represented as a processor network. The second
step is the mapping of the signal flow graph onto the processor network. The third
step is the generation of assembly code.

Schematic entry. In the first step the programmer must represent a video algo-
rithm in the form of a signal flow graph. Often one has specified a video algo-
rithm using asequentialprogramming language that can be executed on a general-
purpose microprocessor to do the initial development and check the functional re-
quirements. The sequential representation of the algorithm is now translated into
a signal flow graph representation at the level of processing element instructions
that explicitly contains the potentialparallelism. The programming environment
contains a functional simulator that can be used to verify the correctness of the
translation. In addition, the programmer must describe a system configuration in
the form of a video signal processor network. Often one has developed a network
for the prototyping of video algorithms. After prototyping one can decide to im-

6 Introduction

plement the algorithm on another network, for instance to minimize the number of
video signal processors.

Mapping. In the second step the given signal flow graph is mapped onto the
given processor network. The main tasks during mapping are to decide on which
processing elements the operations are executed, in which clock cycles the op-
erations are executed, how long the variables are stored, and along which routes
the variables are transported between the processing elements. To implement the
communication of variables between processors and the storage of variables in
processing elements, additional operations have to be inserted into the signal flow
graph. The goal is to find a mapping that satisfies all functional and architectural
constraints.

Code generation. In the third step assembly code is generated. This is a straight-
forward task once the mapping step has been completed successfully. The pro-
gramming environment contains an architectural simulator that can be used to ver-
ify the correctness of the mapping of the signal flow graph onto the processor net-
work. The results of the functional simulator and the architectural simulator can
be compared to verify consistency. Subsequently, the assembly code is translated
into binary code that can be downloaded into the physical video signal processor
system.

In this thesis we concentrate on mapping because this is the key issue in the
programming trajectory. The development of software that supports schematic en-
try and code generation is an engineering task rather than a research issue.

1.3 Mapping Trajectory

The objective of the mapping problem is to find a mapping of a given signal flow
graph onto a given network of video signal processors. We restrict ourselves to
processors with cyclostatic execution models that allow off-line nonpreemptive pe-
riodic scheduling. The partitioning of algorithms onto multiple processors and the
storage of variables into multiple memories are part of the mapping problem.

We develop a decomposition strategy to handle the mapping problem because
we believe that the problem is too complex to handle in its entirety. The problem
decomposition is based on the results of a complexity analysis using the theory of
NP-completeness in order to determine suitable techniques to handle the mapping
constraints. In the problem decomposition we distinguish between three subprob-
lems that are calledthe delay management problem, the partitioning problem, and
the scheduling problem. These subproblems can be handled by well-known combi-
natorial optimization techniques, although the subproblems are hard in the formal
sense.

1.4 Related Work 7

Delay management refers to the problem of determining for each variable how
long and in which type of memory it is to be stored. This has to be done in such
a way that the storage times do not contradict the data dependencies between the
operations and such that the storage capacities of the different memory types are
sufficient. To minimize the global storage requirements we applynetwork flow
techniques. Subsequently, we applybin packingtechniques to find a memory type
assignment and we insert additional code in the video algorithm to store the vari-
ables in the designated memory types. An additional objective is to balance the
utilization of the different memory types in order to simplify the subsequent parti-
tioning and scheduling steps.

Partitioning refers to the problem of determining for each operation on which
processor it is to be executed. This has to be done in such a way that the compu-
tation, storage, and communication capacities of the processors are sufficient. To
handle the communication of variables between nonadjacent processors we apply
a recursive bipartitioning approach. The bipartitioning algorithm is based onlo-
cal search. After each bipartitioning step we insert additional code in the video
algorithm to communicate the variables between the designated processors. An
additional objective is to balance the utilization of the different processors in order
to simplify the subsequent scheduling step.

Scheduling refers to the problem of determining for each operation on which
processing element and in which clock cycle it is to be executed. This has to be
done in such a way that operations on the same processing element and accesses to
the same memory do not overlap in time. To handle the assignment of operations to
clock cycles we apply aconstraint satisfactionapproach. To handle the assignment
of operations to processing elements and the assignment of accesses to memories
we applygraph coloringtechniques.

We refer to the literature for more details on the above-mentioned mapping tra-
jectory. De Kock et al. [1998] present a formal model of the mapping problem and
its decomposition in the delay management problem, the partitioning problem, and
the scheduling problem. For delay management we refer to Smeets et al. [1997].
For partitioning we refer to De Kock et al. [1995] and Aarts et al. [1996]. For
scheduling we refer to Essink et al. [1991a].

1.4 Related Work

The discrete nature of the mapping problem enables the use of a broad range of
solutions techniques originating from the field of combinatorial optimization. In-
troductions to this field are given by Papadimitriou and Steiglitz [1982], Schrijver
[1986], Nemhauser and Wolsey [1988], and Cook et al. [1997]. Furthermore, one
can investigate the computational complexity of the problem using the theory of

8 Introduction

NP-completeness. For an overview of this theory we refer to Garey and Johnson
[1979].

The problem of mapping algorithms onto programmable processors is gaining
interest in the literature due to the need for flexibility and short design times in
a growing number of electronic systems. Many of these systems [Kalouptsidis,
1997] contain embedded processors that are often specifically tuned towards the
application area in order to increase efficiency. The conventional compiler tech-
niques for general-purpose microprocessors are not applicable due to the highly
irregular architectures of many embedded processors. Consequently, code gener-
ation for embedded processors is an emerging research subject. In addition, one
aims to broaden the application of developed techniques by retargeting the code
generation trajectory to specific processor instances within a given class of archi-
tectures. For a survey into the field of retargetable code generation for embedded
processors we refer to Marwedel and Goossens [1995]. This survey describes
among others the retargetable code generation environments FlexWare [Paulin
et al., 1995] and Chess [Lanneer et al., 1995].

Signal processors are an important class of embedded processors that come in
a large variety of architectures. Well-known digital signal processor families are
the Texas Instruments TMS 320 family [Balmer et al., 1994], the Motorola DSP
56000 and 96000 families [Kloker, 1987; Sohie, 1989], and the Analog Devices
ADSP 2100 family [Cavigioli, 1987]. Digital signal processors are often equipped
with special features for signal processing such as multiply/accumulate instruc-
tions, heterogeneous register sets, alternative memory addressing modes, and mul-
tiple arithmetic and logic units, which make them more efficient but also more
difficult to program. The most important mapping techniques that are applied in
this area are list scheduling [Goossens et al., 1990], constraint satisfaction, [Tim-
mer and Jess, 1993] integer linear programming [Wilson et al., 1995], and genetic
algorithms [Grewal and Wilson, 1997]. Additional work in this area has been re-
ported recently among others by Mesman et al. [1998], Hwang and Hwang [1997],
Wess et al. [1995], and Desmet and Genin [1993]

The above-mentioned signal processors are not very well suited to handle high-
throughput applications such as video algorithms because they do not provide suf-
ficient parallelism. Because of the regular and repetitive nature of video signal
processing, we restrict ourselves to more regular and parallel architectures which
contain multiple computation and memory resources such as the VSP architecture.
Comparable architectures have been reported in the literature by Yeung and Rabaey
[1992], Bove and Watlington [1995], and Theis [1996]. These architectures typ-
ically support computation models that allow off-line nonpreemptive scheduling.
Pioneer work in this area has been performed by Lee and Bier [1990] and Buck
[1994]. Korst [1992] and Verhaegh [1995] have extensively studied the more spe-

1.4 Related Work 9

cific area of off-line nonpreemptive periodic scheduling. They assume that the
communication between the resources is unconstrained. Korst [1992] studies the
scheduling of video algorithms onto multiprocessors assuming that the communi-
cation can be implemented on a programmable interconnection network. Verhaegh
[1995] studies the scheduling of video algorithms in high-level synthesis assuming
that the communication is implemented on a dedicated interconnection network
which is generated after scheduling. For an introduction to scheduling we refer to
Coffman [1976], French [1982], and Pinedo [1995].

There are multiprocessor system in which partitioning is an important topic in
order to handle the communication constraints. The subject of partitioning digi-
tal signal processing algorithms onto multiprocessor systems is studied extensively
in the literature. Lengauer [1990] has given an extensive overview of partitioning
problems and corresponding solution techniques in integrated circuit layout. Sheu
and Chen [1995], Palenichka and Lutsyk [1996], and Gumuskaya et al. [1994] re-
port partitioning problems for fixed multiprocessor networks with linear, mesh, and
ring topologies, respectively. The large variety of processor architectures and asso-
ciated communication structures has led to many different partitioning strategies.
Bokhari [1988] and Ashraf and Bokhari [1995] present efficient algorithms for the
partitioning of chain-structured digital signal processing algorithms onto a linear
array of processors. Stewart [1988] presents mapping strategies of two dimen-
sional digital signal processing graphs onto a triangular systolic array of proces-
sors. Koch et al. [1993] study the mapping of digital signal processing algorithms
onto a small number of regularly interconnected signal processors. Saha and Kris-
namurthy [1994] describe a methodology that can be used to map digital signal
processing algorithms onto field programmable gate arrays. Chen et al. [1994]
map digital signal processing algorithms in the form of control data flow graphs
onto application-specific integrated circuits.

Finally, we mention work on memory optimization that can be classified into
code optimization and lifetime optimization. Code optimization refers to the prob-
lem of minimizing the amount of memory that is needed to store assembly or bi-
nary code. Lifetime optimization refers to the problem of minimizing the amount
of memory that is needed to store intermediate values which are generated dur-
ing the computation. Clearly, lifetime optimization plays a more dominant role in
video signal processing than code optimization because of the high data through-
put. From the recently reported code optimization techniques we mention Chang
et al. [1997] and Gebotys [1997]. Recent work on lifetime optimization is reported
by Depuydt et al. [1994], Denk and Parhi [1994], Araujo and Malik [1995], and
Cheng and Lin [1995] in the field of programmable digital signal processors, and
by Hu et al. [1994] in the field of pipelined integrated circuit design.

10 Introduction

1.5 Outline

The objective of this thesis is to study the problem of mapping video algorithms
onto networks of programmable video signal processors that have a cyclostatic
execution model, and to develop solution techniques to handle this problem. The
outline of this thesis is as follows.

In Chapter 2 we mathematically model the problem of mapping video algo-
rithms onto networks of video signal processors. This includes the representation
of architecture instances in the form of processor networks and the representation
of video algorithms in the form of signal flow graphs. Furthermore, we present
a benchmark set of industrially relevant video algorithms to indicate the nature of
the problem instances. We use this benchmark set throughout this thesis to evaluate
the results of the presented solution approach.

In Chapter 3 we analyze the computational complexity of the mapping prob-
lem. We study the complexity of the mapping problem in combination with differ-
ent subsets of the constraints in order to determine suitable solution techniques.

In Chapter 4 we present a decomposition strategy to handle the mapping prob-
lem. The problem decomposition is based on the results of the complexity analysis.
There we introduce the three subproblems, i.e., the delay management problem, the
partitioning problem, and the scheduling problem.

In Chapters 5, 6, and 7 we present solution approaches to handle the delay
management, partitioning, and scheduling problem, respectively. We evaluate the
results of the proposed approaches on the benchmark set.

Finally, in Chapter 8 we summarize the main results and provide suggestions
for further research.

2
Problem Formulation

In this chapter we formally state the problem of mapping signal flow graphs onto
networks of video signal processors. In Section 2.1 we describe the video signal
processor architecture and the formal representation of processor networks. In Sec-
tion 2.2 we describe the video algorithms and the formal representation of signal
flow graphs. In Section 2.3 we mathematically formulate a mapping of a signal
flow graph onto a processing element network. In Section 2.4 we present the map-
ping constraints. In Section 2.5 we formulate the mapping problem. In Section 2.6
we present a set of industrially relevant video algorithms to indicate the nature of
real-life problem instances. We use these instances in the subsequent chapters to
evaluate our solution techniques. Finally, in Section 2.7 we summarize the contents
of this chapter.

2.1 Processor Networks

We consider architectures that are represented as networks of video signal proces-
sors. They typically contain a number of interconnected video signal processors
that interact with surrounding systems. We abstract from these surrounding sys-
tems by assuming that input processors produce incoming sample streams and that
output processors consume outgoing sample streams. Examples of input and out-
put processors are analog-to-digital and digital-to-analog converters. The intercon-

11

12 Problem Formulation

nections between the processors are fixed and directed from processor outputs to
processor inputs. Each input is connected to at most one output.

Internally, the video signal processors contain processing elements that are con-
nected to a switch matrix. Both the processing elements and the switch matrix are
programmable. There are four types of processing elements, i.e., arithmetic and
logic elements (ALEs), memory elements (MEs), buffer elements (BEs), and output
elements (OEs); see Figure 2.1. The processing elements are pipelined in such a

P P PP

outputs

inputs

ALEs

silo

switch
matrix

program

BEs OEsMEs

ALE
core

ME
core

Figure 2.1. Video signal processor architecture.

way that they can start a new instruction in each clock cycle. The instructions are
stored in program memories. The computation results are transferred back to the
switch matrix or, in case of output elements, to the outputs. Between the outputs
of the switch matrix and the inputs of the processing elements, the computation
results are stored in programmable delay elements called silos.

The program memories are loaded with instructions via a serial download. The
instructions control the switch matrix, the silos, and the cores of the processing ele-
ments. After initialization, the programs are executed cyclostatically, which means
that they are repeated infinitely and that each instruction is executed uncondition-
ally. This guarantees real-time execution of any algorithm.

The silos consist of a random access memory and some address calculation
logic. The storage capacity of the random access memory is thirty-two words. The
write addresses are calculated by the address calculation logic in such a way that
data from the switch matrix is written cyclically in the random access memory in
each clock cycle. Hence, the lifetime of data in a silo is thirty-one clock cycles.
The read addresses are calculated by a modulo subtraction of the write address and
the required delay length. They are stored in the program memories.

2.1 Processor Networks 13

constant

program

shift

to switch matrix

switch matrix
control

silo

12

mux

12

BE

18

load

from
 switch matrix

program

ME core

60

switch matrix
control

silos

RAM

data in

constant

12 12

11

12

read
address

ra

11

address
write

2048
words

wa

12

to switch matrix

ME
load

from switch matrix

program to output

switch matrix
control

silo

12

12

OE

10

load

from
switch matrix

constant

program

shift shift

mux mux

ALU

shift

P Q R

to switch matrix

ALE core

I

A B C

12

60

8

3

switch matrix
control

silos

121212

mux

ALE
load

from switch matrix

Figure 2.2. Processing element architectures.

Beside these common resources, the various processing element types contain
distinct resources which are shown in Figure 2.2. Arithmetic and logic elements
contain an arithmetic and logic unit which has a data-dependent instruction set.
This instruction set consists of additions, subtractions, logical operations, compar-
isons, and multiplications. The data-dependent part of the instruction words enters
the arithmetic and logic unit via its condition input. For each instruction there
exists a symmetrical variant such that it is always possible to maintain the func-
tionality if the contents of the two data inputs are swapped. The arithmetic and
logic elements also contain programmable shifters and multiplexers. The shifters
are used to execute arithmetical and logical shifts and the multiplexers are used to
select operands from either the switch matrix or the program memories. Buffer
elements also contain these shifters and multiplexers. Memory elements contain a
random access memory with two data ports and either one or two address ports;
Figure 2.2 only shows a dual address ported memory element. Single address
ported memory elements (ME1s) can start at most one read or write instruction per
clock cycle, while dual address ported memory elements (ME2s) can start both a
read and a write instruction per clock cycle. Memory elements also contain adders
which are positioned in front of the address ports to add offsets that are stored in
the program memory to the addresses that arrive from the switch matrix. Dual ad-
dress ported memory elements furthermore contain additional address calculation
logic that supports the implementation of multiple first-in-first-out buffers. This
feature is called compact silo. In compact silos the write address is incremented

14 Problem Formulation

each instruction cycle whereas in silos the write address is incremented in each
clock cycle. The storage requirement needed by a compact silo equals 2d2log(1+n)e

words from the random access memory, where the integern represents the total
number of samples that must be stored. For more information about the compact
silo feature the reader is referred to Dijkstra et al. [1989].

Table 2.1. Number of pipeline stages.

Input nr. ALE ME1 ME2 BE OE

0 4 4 4 3 1
1 4 3 6
2 5 3

The number of pipeline stages varies for the types of processing elements and
the types of input terminals; see Table 2.1 in which the inputs are consecutively
numbered starting from zero in relation to Figure 2.2. Each pipeline stage takes
one clock cycle to complete. For dual ported memory elements that can execute
read and write instructions in parallel holds that the read instruction accesses the
random access memory before the write instruction but that both accesses occur in
the single clock cycle of the last pipeline stage.

Table 2.2.VSP1 andVSP2 characteristics.
Characteristic VSP1 VSP2

Circuit Technology 1.2µ CMOS 0.8µ CMOS
Transistors 206,000 1,150,000
Max. Clock Frequency 27 MHz 54 MHz
Inputs 5� 12 bit 6� 12 bit
Outputs 5� 12 bit 6� 12 bit
Program memory size 16� 60 bit 32� 60 bit
Silo memory size 32� 12 bit 32� 12 bit
ME memory size 512� 12 bit 2048� 12 bit
ME memory style single port dual port
ALEs 3 12
MEs 2 4
BEs - 6
OEs 5 6

The above-mentioned video signal processor architecture has been imple-
mented in two integrated circuit versions that are calledVSP1 andVSP2. The char-
acteristics of both instances are listed in Table 2.2. In theVSP1 architecture each
processing element has a program memory and a program counter, but in theVSP2

architecture buffer elements and output element share program memories and pro-

2.1 Processor Networks 15

gram counters in order to save circuit area. The instruction width of arithmetic and
logic elements and memory elements equals sixty bits while the instruction width
of buffer elements and output elements equals eighteen and ten bits, respectively;
see Figure 2.2. So three buffer elements share one program memory of sixty bits
width. In the same way six output elements share one program memory of sixty
bits width. This saves nine program counters in total, but as a consequence the pro-
grams of the processing elements that share a program memory must have the same
length. For more information about theVSP1 andVSP2 architectures the reader is
referred to Van Roermund et al. [1989] and Veendrick et al. [1994], respectively.

In the remainder of this section we present a formal architecture model that
is based the above-mentioned video signal processor architecture. We do this ac-
cording to increasing granularity of the architecture components, i.e., terminals,
processing elements, processors, and processor networks.

Terminals are the smallest components we consider in our architecture model.
They constitute the interfaces of the processing elements and the operations that are
executed on the processing elements. We model them to formulate type constraints
for the mapping of these interfaces. The processing elements of the video signal
processor architecture contain six different types of terminals. There are data inputs
(DI) and data outputs (DO). Furthermore, the memory elements have address inputs
that are dedicated for read addresses (RI), write addresses (WI), or that can handle
both (AI). Finally, the arithmetic and logic elements have a condition input (CI) that
is dedicated for the data-dependent part of the instruction words.

Definition 2.1 (Terminal Types). The setTt = fAI ;CI;DI;DO;RI;WIg defines the
set ofterminal types. 2

Processing elements are the operators in our architecture model. The video
signal processor architecture contains five different types of processing elements,
i.e., arithmetic and logic elements (ALE), single ported memory elements (ME1),
dual ported memory elements (ME2), buffer elements (BE), and output elements
(OE). We introduce two additional processing element types (IN andOUT) that are
located on input and output processors to model the surrounding system of a pro-
cessor network. Each processing element type has a set of terminals that each
have their own type. The processing element types are graphically depicted in Fig-
ure 2.3. With each processing element type and each terminal type we associate a
computation delay that indicates when input is required and when output is avail-
able at a terminal. Since our processing element types have at most one output
terminal we express the computation delay in the pipeline depth, i.e., the compu-
tation delay for the output terminals is equal to zero and the computation delay for
the input terminals is equal to the number of pipeline stages between the input ter-
minals and the output terminal. They are listed in Table 2.1 where the consecutive

16 Problem Formulation

IN

DO

DI

OUT

DI DI CI

ALE

DO

AI DI

ME1

DO

RI WI DI

ME2

DO

DI

BE

DO

DI

OE

DO

Figure 2.3. Graphical representation of the processing element types. The double
squares denote the processing elements, the closed circles above denote the input
terminals, and the closed circles below denote the output terminals. The texts
denote the types of the processing elements and terminals.

numbering of the input terminals corresponds with the position of the terminals
in Figure 2.3 from left to right. Finally, we associate a size with each processing
element type that indicates the size of the corresponding random access memory.
Only the memory elements have nonzero sizes which are listed in Table 2.2.

Definition 2.2 (Processing Element Type Set).The 6-tuple (Tp; Ip;Op; tp;dp;sp)

defines aprocessing element type set, where

� Tp = fIN;OUT;ALE;ME1;ME2;BE;OEg denotes the set ofprocessing element
types,

� Ip(t) denotes a finite set ofinput terminalsfor all t 2 Tp,

� Op(t) denotes a finite set ofoutput terminalsfor all t 2 Tp,

� tp(t;n) 2 Tt denotes theterminal typefor all t 2 Tp andn2 Ip(t)[Op(t),

� dp(t;n) 2 denotes thecomputation delayfor all t 2 Tp and n 2 Ip(t)[
Op(t), and

� sp(t) 2 IN denotes thememory sizefor all t 2 Tp. 2

Processors have a cyclostatic execution model. We distinguish between two
video signal processor types, namelyVSP1 andVSP2, and two additional processor
types, namelyINPUT andOUTPUT, to model the surrounding system of a processor
network. Each processor type has a set of input ports and a set of output ports
through which a processor communicates with other processors. Furthermore, a
processor type has a set of program memories to store the instructions for its set
of processing elements. All the program memories of a processor have the same
size. Each processing element has its own type and fetches its instructions from
one designated program memory. The number and type of processing elements
of the video signal processor types are listed in Table 2.2. The input and output
processors contain only one processing element of typeIN andOUT, respectively.
A set of directed intraprocessor connections indicates which processing elements
and ports have point-to-point communication possibilities within a processor. The
connections in the video signal processor architecture are graphically depicted in

2.1 Processor Networks 17

Figure 2.1. The switch matrix defines a fully connected subgraph. All intrapro-
cessor connections have the same communication delay. All memories of the silos
that are located between the outputs of the switch matrix and the inputs terminals
of the processing elements have the same size.

Definition 2.3 (Processor Type Set).The 11-tuple (Tv; Iv;Ov;Mv; pv;Pv; tv;mv;

Cv;dv;nv) defines aprocessor type set, where

� Tv = fINPUT;OUTPUT;VSP1;VSP2g denotes the set ofprocessor types,

� Iv(t) denotes a finite set ofinput portsfor all t 2 Tv,

� Ov(t) denotes a finite set ofoutput portsfor all t 2 Tv,

� Mv(t) denotes a finite set ofprogram memoriesfor all t 2 Tv,

� pv(t) 2 IN denotes theprogram memory sizefor all t 2 Tv,

� Pv(t) denotes a finite set ofprocessing elementsfor all t 2 Tv,

� tv(t;e) 2 Tp denotes theprocessing element typefor all t 2 Tv ande2 Pv(t),

� mv(t;e) 2Mv(t) denotes theprogram memoryfor all t 2 Tv ande2 Pv(t),

� Cv(t) � (Iv(t)[Y)� (X[Ov(t)) denotes a finite set ofintraprocessor con-
nectionsfor all t 2Tv, whereY= f(e;n) j e2Pv(t)^n2Op(tv(t;e))g denotes
a set of output terminals andX = f(e;n) j e2Pv(t)^n2 Ip(tv(t;e))g denotes
a set of input terminals,

� dv(t) 2 IN denotes thecommunication delayfor all t 2 Tv, and

� nv(t) 2 IN denotes thesilo sizefor all t 2 Tv. 2

Processor networks contain processors that communicate via directed connec-
tions between their ports. Each processor has its own type. The input ports are
connected to at most one output port. With each pair of interconnected processors
we associate a communication delay. For simplicity we assume that all proces-
sors and connections operate on the same clock frequency. However, this is not a
fundamental restriction in our architecture model.

Definition 2.4 (Processor Network).The 4-tuple(Pn; tn;Cn;dn) defines aproces-
sor network, where

� Pn denotes a finite set ofprocessors,

� tn(v) 2 Tv denotes theprocessor typefor all v2 Pn,

� Cn � Y�X denotes a finite set ofinterprocessor connections, whereY =

f(v;m) j v 2 Pn^m2 Ov(tn(v))g denotes the set of output ports andX =

f(v;m) j v2 Pn^m2 Iv(tn(v))g denotes the set of input ports, such that for
all (y1;x1);(y2;x2) 2 I it holds that ifx1 = x2 theny1 = y2, and

� dn(v1;v2) 2 IN denotes thecommunication delayfor all v1;v2 2Pn for which
there exists a connection((v1;m1);(v2;m2)) 2Cn. 2

18 Problem Formulation

For notational convenience we represent architecture instances asprocessing
element networks. This allows us to explicitly denote the processing elements and
the connections between them, without considering the input and output ports of
the processors. In addition, we introduce short-hand notation for often used prop-
erties of a processing element network.

Definition 2.5 (Processing Element Network).Let (Pn; tn;Cn;dn) be a processor
network. Then the 9-tuple(M; pa;P;ma;na; ta;sa;C;da) defines aprocessing ele-
ment network, where

� M = f(v; i) j v2 Pn^ i 2Mv(tn(v))g denotes the set ofprogram memories,

� pa(m) = pv(tn(v)) denotes theprogram memory sizefor all m= (v; i) 2M,

� P= f(v;e) j v2 Pn^e2 Pv(tn(v))g denotes the set ofprocessing elements,

� ma(p) = (v;mv(tn(v);e)) denotes theprogram memoryfor all p= (v;e) 2 P,

� na(p) = nv(tn(v)) denotes thesilo sizefor all p= (v;e) 2 P,

� ta(p) = tv(tn(v);e) denotes theprocessing element typefor all p= (v;e) 2P,

� sa(p) = sp(ta(p)) denotes thememory sizefor all p= (v;e) 2 P,

� C=Y[X denotes the set ofcommunication channels, whereY = f(((v;e1);

n1);((v;e2);n2)) j (v;e1);(v;e2)2P^((e1;n1);(e2;n2))2Cv(tn(v))g denotes
the set of intraprocessor channels andX = f(((v1;e1);n1);((v2;e2);n2)) j

(v1;e1);(v2;e2) 2 P^ ((e1;n1);((v1;m1);(v2;m2));(n2;e2)) 2 Cv(tn(v1))�

I �Cv(tn(v2))g denotes the set of interprocessor channels, and

� da(c) denotes thecommunication delayfor all c = (((v1;e1);n1);

((v2;e2);n2)) 2C such that eitherda(c) = dv(tn(v1)) = dv(tn(v2)) if c is an
intraprocessor channel, orda(c) = dv(tn(v1))+dn(v1;v2)+dv(tn(v2)) if c is
an interprocessor channel.

For notational convenience we abbreviate a processing element network to(P;C)

and we omit the subscripts of the functionspa, ma, na, ta, sa, andda. 2

This definition completes our architecture model. In the remainder of this the-
sis we represent an architecture instance as a processing element network under the
assumption that there exists an associated processor network.

2.2 Signal Flow Graphs

We consider video algorithms that are represented as signal flow graphs. They con-
tainoperationsthat communicate throughprecedencesandarrays. The operations
represent the basic functionality that is provided by the processing elements. They
either transform input values into output values, or access arrays to read or write
values. There are two types of precedences namelydataprecedences andno-value

2.2 Signal Flow Graphs 19

precedences. Data precedences modelcommunicationbetween two operations.
No-value precedences modelsynchronizationbetween two operations.

IO

DO

DI

OO CO

DO

DI

SO

DO

DIDI CI

ALO

DO

AI

RO

DO

AI DI

WO

DI

PO

DO

Figure 2.4. Graphical representation of the operation types. The double circles
denote the operations, the closed circles above them denote the input terminals,
and the closed circles below them denote the output terminals. The texts denote
the types of the operations and the terminals.

We distinguish between several operation types in order to formulate type con-
straints for the mapping of operations onto processing elements. They are graphi-
cally depicted in Figure 2.4. To model the input and output of signal flow graphs,
we introduce input operations (IO) that produce input values and output operations
(OO) that consume output values. Furthermore, we have operations that transform
input values into output values. To this category belong constant operations (CO)
that produce constant values and shift operations (SO) that produce arithmetically
and logically shifted values of the consumed input value. These operations can
be executed on arithmetic and logic elements as well as buffer elements. In addi-
tion, this category contains arithmetic and logic operations (ALO) that model the
instruction set of the arithmetic and logic elements. Next, we have operations that
access arrays to read or write values. Here, we distinguish between read operations
(RO) and write operations (WO). Read operations require an array index as input
and produce a retrieved array value as output. Write operations require an array
index and a value as input and store this value in the designated location of the
array; they produce no output. Finally, we introduce pass operations (PO) that do
not contribute to the functionality of a signal flow graph, but that are used during
the mapping process for the communication and storage of values. Note that sig-
nal flow graphs do not contain operations that control switch matrices and silos.
Formally, an operation type set is defined as follows.

Definition 2.6 (Operation Type Set). The tuple(To; Io;Oo; to) defines aoperation
type set, where

� To = fIO;OO;ALO;CO;SO;PO;RO;WOg denotes the set ofoperation types,

� Io(t) denotes a finite set ofinput terminalsfor all t 2 To,

� Oo(t) denotes a finite set ofoutput terminalsfor all t 2 To, and

� to(t;n) 2 Tt denotes theterminal typefor all t 2 To andn2 Io(t)[Oo(t). 2

20 Problem Formulation

Due to the repetitive nature of video signal processing, signal flow graph are
typically repeated on successive input values. For this reason, the operations are
periodic which means that they are invocated repeatedly at regular intervals in time.
We adopt the periodic model of Korst [1992] who assumes that the operations have
one dimension of repetition, rather than Verhaegh [1995] who has developed a
multi-dimensional periodic model. The reason for this is that the mapping of mul-
tiple dimensions of invocation repetition onto one dimension of cyclostatic execu-
tion usually results in large programs. Since the program memories of our archi-
tecture can only contain one cycle of thirty-two instructions, the multi-dimensional
periodic model does not offer significant advantages. We do allow that signal flow
graphs are multi-rate which means that the operations can have different periods so
that the number of invocations is different for various parts of a signal flow graph.
We now formally define the notion of signal flow graph. See the text below for
further explanation.

Definition 2.7 (Signal Flow Graph). The 8-tuple(A;sf ;O; tf;af ; pf ;R;S) defines a
signal flow graph, where

� A denotes a finite set ofarrays,

� sf(a) 2 + denotes thearray sizefor all a2 A,

� O denotes a finite set ofoperations,

� tf(o) 2 To denotes theoperation typefor all o2O,

� af(o) 2 A denotes anarray for all o2O for which tf(o) 2 fRO;WOg,

� pf(o) 2 + denotes theperiod for all o2O,

� R�Y�X� (+� �) denotes a finite set ofdata precedences, where
Y = f(o;n) j o2O^n2 Oo(tf(o))g denotes the set of output terminals and
X = f(o;n) j o2 O^n2 Io(tf(o))g denotes the set of input terminals, such
that for all((o;n);(o0 ;n0);(p;b;b0)) 2R it holds thatp(o)jp andp(o0)jp, and
such that for allr1; r2 2 R wherer1 6= r2, r1 = ((o1;n1);(o0;n0);(p1;b1;b01)),
andr2 = ((o2;n2);(o0;n0);(p2;b2;b02)) it holds that

b01 6� b02 (mod gcd(
p1

p(o0)
;

p2

p(o0)
)); and

� S� O�O� (+� �) denotes a finite set ofno-value precedences,
such that for all(o;o0;(p;b;b0)) 2 S it holds thatp(o)jp andp(o0)jp.

For notational convenience we abbreviate a signal flow graph to(O;R) and we omit
the subscripts of the functionssf , tf , af , andpf . 2

The arrays of a signal flow graph have a finite positive size and an implicitly
associated address space that is consecutively numbered starting from zero. The
array indices are generated at run-time as specified in the signal flow graph. Hence,

2.2 Signal Flow Graphs 21

they may depend on run-time data. Arrays can have an initial filling that is specified
at compile-time. Programmers often use this to implement look-up tables.

The operations of a signal flow graph are typed which among others deter-
mines the set of input and output terminals. The read and write operations access
the arrays. Each read operation and each write operation operates on one desig-
nated array. In addition, the operations are periodic which indicates their average
frequency. The period of an operation is given relatively compared to the clock
period of the processors. Consequently, an operationo with period p(o) occu-
pies a fraction of a processing element that is equal to 1=p(o). We denote thekth
invocation of an operationo aso[k], for all integersk. Similarly, we denote the
kth invocation of terminaln of operationo as(o;n)[k], again for all integersk. Fig-
ure 2.5 shows a graphical representation of a periodic operation and its invocations.

o

[0] [1] [2] [3] [4] [5]

p(o) = 2
-�

-�

time
Figure 2.5. Graphical representation of a periodic operation. The double circles
denote a periodic operation and the single circles denote its first six invocations.
The average period between two successive operation invocations equals two.

The precedences of a signal flow graph relate invocations of a source operation
o to invocations of a destination operationo0. The precedences contain triples
(p;b;b0) which are calledlabels. Here, the positive integerp denotes theperiod
of the precedence which indicates the average frequency of the invocations. The
periods of the precedences are also given relatively compared to the clock period
of the processors. Hence, the invocations of a precedence with periodp and a
source operation with periodp(o) coincide with a period ofp=p(o). Similarly, the
invocations of a precedence with periodp and a destination operation with period
p(o0) coincide with a period ofp=p(o0). A necessary condition is that the periods
of the operations divide the period of the precedence. The non-negative integers
b andb0 denote theoffsetsof the precedence that relate the first invocation of the
precedence to thebth invocation of the source operationo and theb0th invocation
of the destination operationo0. For notational convenience we denote the label of a
precedencer sometimes by(p(r);b(r);b0(r)). Similarly, we denote the input and
output terminals of a data precedence sometimes by(o(r);n(r)) and(o0(r);n0(r)),
respectively. Figure 2.6 shows a graphical representation of a periodic precedence
and its invocations.

22 Problem Formulation

o

o0

?
?

p(o) = 2

(6;0;1)

p(o0) = 3

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3]

? ?

-�

time
Figure 2.6. Graphical representation of a periodic precedence. The arcs with dou-
ble arrows denotes a periodic precedence and the arcs with single arrows denote
its first two invocations. The average period between two successive precedence
invocations equals six.

Offsets are not unique in the sense that different offsets can denote the same
precedence relation. For instance, if we increase the value of offsetb with a multi-
ple of p=p(o) and the value of offsetb0 with the same multiple ofp=p(o0), then we
obtain the same precedence relation. To avoid the introduction of a canonical form
we define the following equivalence relation.

Definition 2.8 (Precedence Equivalence).Let r1 andr2 be two precedences from
source operationo to destination operationo0, wherer1 = (y;x;(p;b1;b01)) and
r2 = (y;x;(p;b2;b02)). Thenr1 andr2 are said to beequivalentif and only if

b1 � b2(mod
p

p(o)
) ^ b01 � b02(mod

p
p(o0)

)

and

(b1�b2)p(o) = (b01�b02)p(o
0):

This is denoted byr1 = r2. The precedencer1 = (y;x;(p1;b1;b01)) is said tobe
includedby the precedencer2 = (y;x;(p2;b2;b02)) if and only if p = kp1 = p2,
for some positive integerk, rather thanp= p1 = p2, in addition to the conditions
mentioned above. This is denoted byr1 � r2. 2

The first condition for equivalence is that at least one of the invocations of each of
the precedences coincides at the source operation and at the destination operation.
The second condition for equivalence is that the precedences periodically relate the
same invocations of the source operation to the same invocations of the destination
operation. The third condition for equivalence is that the precedences have the
same period such that all invocations coincide. If the periods of the precedences are
divisible, then only part of the invocations coincide which reduces the equivalence

2.3 Mappings 23

relation to an inclusion relation.
A data precedence((o;n);(o0 ;n0);(p;b;b0)) indicates that the output of the

(kp=p(o)+b)th invocation of terminal(o;n) is input of the(kp=p(o0)+b0)th invo-
cation of terminal(o0;n0), for all integersk. It specifies a periodic sample stream
in which the samples are ordered according to the invocations of the data prece-
dence. The ordering is the same during the production of outputs and the consump-
tion of inputs. Hence, data precedences represent first-in-first-out communication
schemes. Other communication schemes such as last-in-first-out must be imple-
mented with arrays. An additional necessary condition for the set of data prece-
dences is that two different data precedences that denote different output values
cannot be input at the same input terminal invocation.

A no-value precedence(o;o0;(p;b;b0)) indicates that the(kp=p(o) +b)th in-
vocation of operationo is completed before the(kp=p(o0) + b0)th invocation of
operationo0 is completed, again for all integersk. One often uses no-value prece-
dences to synchronize the accesses on arrays. Because the array indices are com-
puted at run-time as specified in the signal flow graph, it is the responsibility of
the programmer of the signal flow graph to order the invocations of the accesses
with no-value precedences in order to ensure that the array indices are valid. As
an example we mention that write and read operations that periodically access the
same location require synchronization, since a write access must precede a corre-
sponding read access and, reversely, this read access must precede the next write
access that overwrites the old array value.

Finally, we mention that the period of an entire signal flow graph is equal to
the least common multiple of the periods of the operations and the periods of the
precedences. If we divide that period by the period of an operation then we obtain
the number of invocations of that operation during one period of the signal flow
graph. Similarly, if we divide that period by the period of a precedence then we
obtain the number of invocations of that precedence during one period of the signal
flow graph. Note that signal flow graphs by definition satisfy thebalance equations
which state that during one period of a signal flow graph the number of productions
must equal the number of consumptions for each precedence. The balance equa-
tions were introduced by Lee [1991] on a model of computation called data flow
process networks. The model of signal flow graphs is comparable to the model of
cyclostatic data flow; see Bilsen et al. [1994] and Parks et al. [1996].

2.3 Mappings

To simplify the formulation of a mapping of a signal flow graph onto a processing
element network, we introduce two transformations which transform a given signal
flow graph into a functionally equivalent signal flow graph. The purpose of these

24 Problem Formulation

transformations is to add pass operations to a signal flow graph which are subse-
quently mapped onto various types of processing elements in order to enable the
communication and storage of values.

The purpose of the first transformation is to add pass operations to a signal flow
graph in order to make the values that are communicated in specific production
and consumption relations explicitly visible in the set of operations. We call the
addition of pass operations to a signal flow graphexpansionand the removal of
pass operation from a signal flow graphreduction. Figure 2.7 shows an example of
the transformation.

Definition 2.9 (Expansion/Reduction).Let k be a positive integer, letr be a
precedence from operationo to operationo0, let ri be precedences from op-
eration o0 to operationsoi , and let r 0i be precedences from operationo to op-
erationsoi , for all i 2 INk, where t(o0) = PO, r = ((o;n);(o0 ;0);(p(o0);b;0)),
ri = ((o0;0);(oi ;ni);(p(o0);0;b0i)), and r 0i = ((o;n);(oi ;ni);(p(o0);b;b0i)). Then
the set of precedencesfr; r0; : : : ; rk�1g is said toexpandthe set of precedences
fr 00; : : : ; r

0
k�1g, and the set of precedencesfr 00; : : : ; r

0
k�1g is said toreducethe set of

precedencesfr; r0; : : : ; rk�1g. 2

o

o0 o1

N
N

o

o0

o0 o1

?
?

		 RR

Figure 2.7. Example of expansion and reduction. The periods of the operations
and precedences are equal to one. The precedences on the right expand the prece-
dences on the left. The precedences on the left reduce the precedences on the
right.

The purpose of the second transformation is to make the period of specific pro-
duction and consumption patterns explicitly visible in the set of data precedences
in such a way that all data precedences that denote a specific output value have the
same period. The reason for this is to prevent the expansion of signal flow graphs
with multiple pass operations that operate on the same value. Following the ter-
minology used in signal processing theory, we call the increase of the period of
precedencesdecimationand the decrease of the period of precedencesinterpola-
tion. To formulate this transformation we use the precedence inclusion relation.
Figure 2.8 shows an example of the transformation.

2.3 Mappings 25

Definition 2.10 (Decimation/Interpolation). Let k be a positive integer, letr be a
precedence from operationo to operationo0, and letri � r be precedences for all
i 2 INk, wherer = (y;x;(p;b;b0)) andri = (y;x;(kp;b+ ip=p(o);b0 + ip=p(o0))).
Then the set of precedencesfr0; : : : ; rk�1g is said todecimatethe precedencer, and
the precedencer is said tointerpolatethe set of precedencesfr0; : : : ; rk�1g. 2

o

o0

?
?

(6;0;1)

o

o0
R
R
	
	

(12;0;1) (12;3;3)

Figure 2.8. Example of decimation and interpolation. Operationo has period
p(o) = 2 and operationo0 has periodp(o0) = 3. The two precedences on the
right decimate the precedence on the left. The precedence on the left interpolates
the two precedences on the right.

The above-mentioned transformations change the structure of a signal flow
graph, but they do not change its function. A programmer specifies a function
without adding pass operations to a signal flow graph. During mapping we apply
the transformations to change the structure which allows us to simplify the repre-
sentation of a mapping of a signal flow graph onto a processing element network.
The size of the representation of the signal flow graph increases if we apply dec-
imation and expansion. It decreases if we apply interpolation and reduction. We
now have the following inclusion relation on signal flow graphs.

Definition 2.11 (Signal Flow Graph Inclusion). Let (O;R) and (O0;R0) be two
signal flow graphs. Then(O;R) is said tobe includedby (O0;R0) if and only if
(O;R) can be transformed into(O0;R0) via decimation and expansion. This is de-
noted as(O;R) � (O0;R0). Note that if(O;R) is included by(O0;R0) then(O0;R0)

can be transformed into(O;R) via interpolation and reduction. 2

Next, we formalize the mapping of a signal flow graph onto a processing ele-
ment network. See the text below for an explanation of the symbols.

Definition 2.12 (Mapping). Let (O;R) be a signal flow graph and let(P;C) be a
processing element network. Then the tuple(δ;σ;α;λ) defines amapping, where

� δ : O! IN denotes adelay assignment,

� σ : O! denotes atime assignment,

� α : O! P denotes aprocessing element assignment, and

� λ : R!C denotes achannel assignment. 2

26 Problem Formulation

A channel assignment maps each data precedence onto a communication chan-
nel. We assume that all the invocations of a data precedence are communicated
along the same channel. Note that the channel assignment also specifies the pro-
cessing element terminals through which the values are communicated.

A processing element assignment maps each operation onto a processing ele-
ment. We assume that all the invocations of an operation are executed on the same
processing element. Note that a processing element assignment does not specify
a mapping of operation terminals onto processing element terminals. This is done
by a channel assignment which allows different mappings of operation terminals
onto processing element terminals for different invocations of an operation.

A time assignment maps each operation onto a time slot in which the first in-
vocation of the operation is scheduled for execution. We assume strictly periodic
execution of the operations, i.e., invocationk of operationo is scheduled for execu-
tion at timeσ(o)+kp(o). If the first invocation of operationo is scheduled at time
σ(o) for execution at processing elementα(o), then the corresponding input of ter-
minal n is required at timeσ(o)�dp(t(α(o));m), wherem denotes the processing
element terminal onto which operation terminaln is mapped.

A delay assignment maps each operation onto a time interval during which
the outputs of the operation are stored in a compact silo before they arrive at an
output terminal. More precisely, if the first invocation of operationo is scheduled
at timeσ(o) for execution at processing elementα(o) with a delay ofδ(o), then
the corresponding output of terminaln is available at timeσ(o)�dp(t(α(o));m)+

δ(o)p(o), wherem denotes the processing element terminal onto which operation
terminaln is mapped.

Note that we could have modeled the delay assignment as a mapping from data
precedences, rather than operations, onto time intervals. In that case, the outgoing
data precedences of an operation can have different delays. However, our archi-
tecture does not support the mapping of multiple data precedences with different
delays onto a single instruction. Hence, each delay requires one instruction. We
choose to make these instructions explicit by modeling them as operations in order
to simplify the formulation of the constraints.

2.4 Constraints

The type constraints state that the certain types of operations and operation ter-
minals must be mapped onto certain types of processing elements and processing
element terminals. Furthermore the type constraints state that the delay of an op-
eration is positive if and only if it is a pass operation that is mapped onto a dual
ported memory element. The reason for this is twofold. First the other processing
element types do not have instructions to implement positive delays. Second the

2.4 Constraints 27

dual ported memory elements implement positive delays by means of an offset be-
tween the read and write address when a pass operation is translated into a pair of
read and write operations. If this offset is zero, then the read and write operations
access the same location but the old value is read before the new value is written.
Hence, they cannot implement a zero delay on pass operations.

Definition 2.13 (Type Constraints). Let (O;R) be a signal flow graph, let(P;C)

be a processing element network, and let(δ;σ;α;λ) be a mapping. Then thepro-
cessing element type constraintsspecify that for allo2O it holds that

t(α(o)) 2

8>>>>>>>><
>>>>>>>>:

fALEg if t(o) 2 fALOg

fALE;BEg if t(o) 2 fCO;SOg

fALE;BE;OEg if t(o) 2 fPOg^δ(o) = 0
fME2g if t(o) 2 fPOg^δ(o)> 0
fME1;ME2g if t(o) 2 fRO;WOg

fINg if t(o) 2 fIOg

fOUTg if t(o) 2 fOOg;

and theterminal type constraintsspecify that for allr = ((o;n);(o0 ;n0);(p;b;b0))2
Rwith λ(r) = ((α(o);m);(α(o0);m0)) it holds thattp(t(α(o));m) = to(t(o);n) and

tp(t(α(o0));m0) 2

8>><
>>:

fCIg if to(t(o0);n0) 2 fCIg

fDIg if to(t(o0);n0) 2 fDIg

fRI;AIg if to(t(o0);n0) 2 fRIg

fWI;AIg if to(t(o0);n0) 2 fWIg:

2

Arithmetic and logic elements, buffer elements, and output elements can execute
pass operations because their instruction sets contain an instruction that transfers
the value of an input terminal to an output terminal without modification. Dual
ported memory elements can execute pass operations because during code gener-
ation they are translated into pairs of read and write operations that execute si-
multaneously. It is not necessary to generate addresses for these read and write
operations in the signal flow graph, because this is handled by the compact silo
feature of the dual ported memory elements; see page 13. Since this hardware
support is not available on single ported memory elements, we do not allow the
mapping of pass operations on single ported memory elements.

The array constraints state that read and write operations that access the same
array must be mapped onto the same processing element. This array is mapped
onto the corresponding random access memory of the processing element.

Definition 2.14 (Array Constraints). Let (O;R) be a signal flow graph, let(P;C)

be a processing element network, and let(δ;σ;α;λ) be a mapping. Then thearray

28 Problem Formulation

constraintsspecify that for allo;o0 2O it holds that ifa(o) = a(o0) then

α(o) = α(o0): 2

The storage constraints state that the storage requirements for arrays and de-
lays that are mapped onto a processing element cannot exceed the size of the cor-
responding random access memory. For notational convenience we introduce ab-
breviations for the subsetOP = fo 2 O j α(o) 2 Pg of operations and the subset
AP = fa(o) 2 A j o 2 OPg of arrays that are mapped onto a setP of processing
elements as specified by a given processing element assignmentα.

Definition 2.15 (Storage Constraints).Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping. Then
thestorage constraintsspecify that for allp2 P it holds that

∑
a2Afpg

s(a)+N(∑
o2Ofpg

δ(o))� s(p);

where the functionN, which is defined by

N(x) =

�
0 if x= 0
2d

2log(1+x)e if x 6= 0;

denotes the number of memory locations that are required for the delays.2

The periodicity constraints state that the length of a program cannot exceed
the size of the designated program memory. The length of a program is equal to
the least common multiple of the periods of the operations and data precedences
that are controlled by the program. This length determines the period between the
successive executions of a program.

Definition 2.16 (Periodicity Constraints). Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping. Then the
periodicity constraintsspecify that for allm2M it holds that

lcmfpO(m); pR(m)g � p(m):

where pO(m) = lcmfp(o) j o 2 O^m(α(o)) = mg and pR(m) = lcmfp(r) j r =

((o;n);(o0;n0);(p;b;b0)) 2 R^m(α(o0)) = mg. 2

The connectivity constraints state that operations that are related by a data
precedence must be mapped onto processing elements that are connected by a
channel. Furthermore, the data precedence must be mapped onto one of the chan-
nels that connect the processing elements.

Definition 2.17 (Connectivity Constraints). Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping. Then the
connectivity constraintsspecify that for allr = ((o;n);(o0 ;n0);(p;b;b0)) 2 R there

2.4 Constraints 29

exist an output terminalm2 Op(t(α(o))) and an input terminalm0 2 Ip(t(α(o0)))
such that it holds that

λ(r) = ((α(o);m);(α(o0);m0)): 2

The precedence constraints state that the producer and consumer relations must
be valid, i.e., production must take place before consumption and consumption
must take place before the next production in the same location. The producer and
consumer relations through arrays may depend on run-time data. For this reason, it
is the responsibility of the programmer of the signal flow graph to constrain the set
of possible time assignments with no-value precedences in order to ensure that the
array indices are valid. Note that dual ported memory elements can execute read
and write accesses on the same location simultaneously, but that the old value is
read before the new value is written. The producer and consumer relations specified
by data precedences do not depend on run-time data. These values are stored in
silos or compact silos which have specific addressing schemes that allow us to
formulate additional data precedence constraints.

In order to formalize the precedence constraints we introduce some additional
notation. With each data precedencer = ((o;n);(o0;n0);(p;b;b0)) we associate a
storage time in a siloχ(r)�ψ(r) that is equal to the time of departure from the
silo, denoted as

χ(r) = σ(o0)+b0p(o0)�dp(t(α(o0));m0);

minus the time of arrival at the silo, denoted as

ψ(r) = σ(o)+(b+δ(o))p(o)�dp(t(α(o));m)+da(λ(r));

whereλ(r) = ((α(o);m);(α(o0);m0)). If there is no silo, then the storage time must
equal zero. Otherwise the storage time must be in the time interval(0; : : : ;n(α(o0)))
not including the boundaries because one cannot access a location of a silo for read-
ing and writing at the same time. We introduce similar notation for the no-value
precedences. With each no-value precedences= (o;o0;(p;b;b0)) we associate a
storage time in an arrayχ(s)�ψ(s), that is equal to the departure time from the
array, denoted as

χ(s) = σ(o0)+b0p(o0);

minus an arrival time at the array, denoted as

ψ(s) = σ(o)+bp(o):

The departure and arrival times are given for the precedence invocations with num-
ber zero.

Definition 2.18 (Precedence Constraints).Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping. Then the

30 Problem Formulation

data precedence constraintsspecify that for allr = ((o;n);(o0;n0);(p;b;b0)) 2 R
with t(α(o0)) = OUT it holds that

ψ(r) = χ(r);

and for all otherr = ((o;n);(o0 ;n0);(p;b;b0)) 2R it holds that

0< χ(r)�ψ(r)< n(α(o0));

and theno-value precedence constraintsspecify that for alls= (o;o0;(p;b;b0))2S
with t(o) = RO, t(o0) = WO, andt(α(o)) = t(α(o0)) = ME2 it holds that

ψ(s) � χ(s);

and for all others= (o;o0;(p;b;b0)) 2 S it holds that

ψ(s)< χ(s): 2

We rewrite the precedence constraint as linear constraints in the time assign-
ment. To this end we introduce some additional notation. With each predecencea,
which can be either a data precedencea = ((o;n);(o0 ;n0);(p;b;b0)) or a no-value
precedencea= (o;o0;(p;b;b0)), we associate an arrival delayω(a) = ψ(a)�σ(o)
and a departure delayω0(a) = σ(o0)�χ(a). Furthermore, we represent the inter-
val of potential storage times between data arrival and data departure as a set. For
each data precedencesa= ((o;n);(o0;n0);(p;b;b0)) satisfyingt(α(o0)) = OUT and
for each no-value precedencea= (o;o0;(p;b;b0)) satisfyingt(o) = RO, t(o0) = WO,
andt(α(o)) = t(α(o0)) = ME2 this set is equal toW(a) = f0g. For all other prece-
dencesa this set is equal toW(a) = f1;n(α(o0))� 1g. With these notions we
define lower and upper bounds between the completion times of two successive
operations as follows. For any precedencea the lower bound equals

ω(a) = ω(a)+ω0(a)+minW(a);

and the upper bound equals

ω(a) = ω(a)+ω0(a)+maxW(a):

We now reformulate the precedence constraints as follows.

Definition 2.19 (Precedence Constraints Reformulated).Let (O;R) be a sig-
nal flow graph, let(P;C) be a processing element network, and let(δ;σ;α;λ)
be a mapping. Then thedata precedence constraintsspecify that for allr =

((o;n);(o0;n0);(p;b;b0)) 2 R it holds that

ω(r)� σ(o0)�σ(o)� ω(r);

and theno-value precedence constraintsspecify that for alls= (o;o0;(p;b;b0))2S
it holds that

ω(s)� σ(o0)�σ(o): 2

2.5 Mapping Problem 31

The computation constraints state that two different operations cannot occupy
the same processing element at the same time, unless it involves a read and write
operation that occupy a dual ported memory element.

Definition 2.20 (Computation Constraints). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping. Then
the computation constraintsspecify that for allo;o0 2 O with o 6= o0 andα(o) =
α(o0) it holds that

σ(o) 6� σ(o0) (mod gcd(p(o); p(o0)));

unlesst(o) = RO, t(o0) = WO, andt(α(o)) = t(α(o0)) = ME2. 2

The communication constraints state that two different data values cannot oc-
cupy the same silo location at the same time. For this reason, two different data
values that are stored in the same silo cannot have the same arrival time.

Definition 2.21 (Communication Constraints). Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, and let(δ;σ;α;λ) be a mapping.
Then thecommunication constraintsspecify that for all data precedencesr1; r2 2R
wherer1 = ((o1;n1);(o01;n

0
1);(p1;b1;b01)) and r2 = ((o2;n2);(o02;n

0
2);(p2;b2;b02))

with λ(r1) = ((α(o1);m1);(α(o01);m0
1)) andλ(r2) = ((α(o2);m2);(α(o02);m0

2)) it
holds that if(α(o1);m1) 6= (α(o2);m2) and(α(o01);m0

1) = (α(o02);m0
2) then

ψ(r1) 6� ψ(r2) (mod gcd(p1; p2)): 2

A mapping is calledfeasibleif it satisfies the type, array, storage, periodicity,
connectivity, precedence, computation, and communication constraints.

2.5 Mapping Problem

We can now formally state the mapping problem as follows.

Definition 2.22 (Mapping Problem). Let (O;R) be a signal flow graph and let
(P;C) be a processing element network. Find a signal flow graph(O0;R0) such that
(O;R) � (O0;R0) and find a feasible mapping(δ;σ;α;λ) of (O0;R0) onto (P;C),
i.e., one that satisfies the type, array, storage, periodicity, connectivity, precedence,
computation, and communication constraints, if they exist. 2

2.6 Problem Instances

In this section we present a set of industrially relevant problem instances. The set of
processor networks contains networks of first and second generation video signal
processors that have been designed especially for the development and prototyp-
ing of video applications. The first processor network calledVSP1FLEX [Tregnago

32 Problem Formulation

(a) TheVSP1FLEX processor network.

(b) TheVSP2FLEX processor network.

Figure 2.9. Graphical representation of theVSP1FLEX and VSP2FLEXprocessor
networks in the VSP programming environment. Squares represent video signal
processors with inputs on the left and outputs on the right, pentagons represent
input and output processors, and lines represent interconnections.

et al., 1992] is shown in Figure 2.9a. It contains eight first generation video sig-
nal processors. The second processor network calledVSP2FLEX [Riddersma et al.,
1996] is shown in Figure 2.9b. It contain six second generation video signal pro-
cessors. The last processor network calledVSP2TEST [La Hei et al., 1996] consists
of a socket for a single second generation video signal processor. This processor
network has been developed to test new processors after manufacturing.

The signal flow graphs are consumer applications for camera and television
systems and professional applications for medical systems. The signal flow graph
listed in Table 2.3 have been developed on theVSP1FLEX processor network. They
implement television functionality such as color space conversion, contour en-
hancement, gamma correction, histogram modification, and aspect ratio conver-
sion. We map these signal flow graph also on theVSP2TEST processor network
because a single second generation processor has the same processing capacity
compared to eight first generation processors. The signal flow graph listed in
Table 2.4 have been developed on theVSP2FLEX processor network. They imple-

2.6 Problem Instances 33

Table 2.3. Signal flow graphs that are to be mapped onto theVSP1FLEX and
VSP2TEST processor networks. From left to right the columns indicate the in-
stance name, the number of arrays, the number of operations, the number of data
precedences, the number of no-value precedences, and the period of the signal
flow graph for both processor networks.

SFG jAj jOj jRj jSj Period
YUVTORGB 0 37 76 0 2 (4)
HORCOMPR 4 66 185 0 16 (32)
IJNTEMA1 5 140 307 32 16 (32)
CORMACK2 6 127 265 0 16 (32)
CONTOUR1 7 63 171 7 16 (32)
MONZA2 8 69 156 10 16 (32)
VDP 9 129 360 16 16 (32)
GAMMA 10 212 405 39 16 (32)
HISTMOD2 11 177 355 39 16 (32)
PANORAMA 12 86 239 8 16 (32)
VIDIWALL 13 141 398 20 16 (32)
IJNTEMA2 14 249 529 18 16 (32)
CORMACK1 15 186 444 78 48 (96)
MONZA1 34 236 512 68 16 (32)
MWTV 48 376 680 40 16 (32)

Table 2.4. Signal flow graphs that are to be mapped onto theVSP2FLEX processor
network. From left to right the columns indicate the instance name, the number of
arrays, the number of operations, the number of data precedences, the number of
no-value precedences, and the period of the signal flow graph.

SFG jAj jOj jRj jSj Period
CONTRAST 3 277 501 0 32
FDXD1 3 136 414 2 32
FDXD2 5 134 424 0 32
MAT30UP 8 139 300 8 24
HSRC 11 312 762 144 32
VSRC 12 285 926 28 32

ment functionality for camera, medical, and television systems such as contrast
enhancement, x-ray image improvement, camera image improvement, and hori-
zontal and vertical sample rate conversion. During the mapping of the signal flow
graphs onto the processor networks the number of operations and the number of
data precedences changes as a result of the signal flow graph transformations. The
other characteristics do not change during mapping.

34 Problem Formulation

2.7 Summary

In this chapter we have presented a model to describe instances of the mapping
problem. To this end we have formalized the notions of processor network and sig-
nal flow graph. Subsequently, we have formalized the decisions that are required
to map a signal flow graph onto a processor network. Finally, we have formalized
the constraints that indicate which combinations of decisions are feasible. To illus-
trate the nature of typical problem instances we have presented a set of industrially
relevant processor networks and signal flow graphs.

3
Complexity Analysis

Due to the discrete nature of the mapping problem one can formulate it as acom-
binatorial decisionor combinatorial optimizationproblem which allows the inves-
tigation of its computational complexity using the theory of NP-completeness. In
Section 3.1 we present a short introduction to this theory. In Section 3.2 up to 3.8
we investigate the computational complexity of several relaxations of the mapping
problem in order to determine which constraints are easy and which constraints
are hard to satisfy. We use the results of these investigations in the next chap-
ter to decompose the mapping problem such that we can handle the subproblems
more effectively than the complete mapping problem. Finally, in Section 3.9 we
summarize the contents of this chapter.

3.1 Computational Complexity

The theory of NP-completeness considers the difference between easy and hard
problems. Cook [1971], Karp [1972], and Levin [1973] have been the first to
formalize the theory, which is based on a computing model that is known as the
Turing machine; see Aho et al. [1974]. For an overview of the theory we refer to
Garey and Johnson [1979]. For uniformity, the theory is designed to be applied to
decision problems.

35

36 Complexity Analysis

A combinatorial decision problem consists of a set of problem instances and
a decision function that assigns ‘yes’ or ‘no’ to each instance. If the answer to a
given instance is ‘yes’, then the instance is called a ‘yes’ instance. Similarly, if the
answer to a given instance is ‘no’, then the instance is called a ‘no’ instance. The
problem is to determine whether a given problem instance is a ‘yes’ instance.

Usually, an instance of a combinatorial decision problem is given in terms of a
set of variables, a set of domains that specifies the values that may be assigned to
the variables, and a set of constraints that specifies which combinations of domain
values are feasible. The problem is to find a solution, i.e., an assignment to the
variables that satisfies the constraints.

An instance of a combinatorial optimization problem consists of a finite or
countably infinite set of solutions and a cost function that assigns a cost to each
solution. The problem is to find an optimum solution, which can be either a so-
lution with minimum cost in case of a minimization problem, or a solution with
maximum cost in case of a maximization problem.

In order to reason about the computational complexity of combinatorial prob-
lems and algorithms we introduce the notions ofinstance sizeandtime complexity
function. The size of a combinatorial decision or optimization problem instance is
defined as the number of symbols required to represent the instance in a compact
way. The time complexity function of a given algorithm defines for each possible
instance size the maximum amount of time needed for solving instances of that
size.

An algorithm is calledpolynomial-timeif and only if there exists a polynomial
function that bounds the time complexity function of the algorithm. Otherwise,
the algorithm is called asuperpolynomial-timeor exponential. A problem is called
solvable in polynomial time if and only if there exists a polynomial algorithm for
the problem. Informally, problems that are solvable in polynomial time are called
easy, whereas problems that are not solvable in polynomial time are called hard.

The classP is the set of decision problems that are solvable in polynomial time.
The classNP is the set of decision problems for which each ‘yes’ instance has a
concise certificate, which is an amount of data that is polynomial in the instance
size such that it is possible to verify in polynomial time that an instance is a ‘yes’
or ‘no’ instance. In addition there exists the classNPC of NP-complete problems
which are the hardest ones inNP. To relate the computational complexity of two
decision problems we use the concept ofreducibility.

Definition 3.1 (Polynomial-Time Reduction). A problem π 2 NP is polynomi-
ally reducibleto another problemπ0 2NP if and only if there exists a polynomial-
time algorithm that maps instancesi of problemπ onto instancesi0 of problemπ0,
such thati is a ‘yes’ instance forπ if and only if i0 is a ‘yes’ instance forπ0. 2

3.1 Computational Complexity 37

A problem is inNPC if and only if it is inNP and each problem inNP is polyno-
mially reducible to it. To prove that a problem is NP-complete, it suffices to show
that it is inNP and that some NP-complete problem is polynomially reducible to
it.

Note that if one NP-complete problem can be solved in polynomial time, then
all NP-complete problems can be solved in polynomial time, which means that
P = NP. However, it is generally believed thatP 6= NP because nobody has
succeeded in finding a polynomial-time algorithm for an NP-complete problem,
despite many efforts since the development of the theory.

If a problem is NP-complete, then it cannot be solved in polynomial time,
unlessP =NP. However, it is possible that the problem can be solved inpseudo-
polynomial timeby an algorithm with a time complexity function that is bounded
by the size of the instance and the magnitude of the largest integer that occurs in
the compact representation of the instance. Problems are callednumber problems
if this magnitude is not bounded by a polynomial in the instance size. So if an
NP-complete problem is not a number problem, then it cannot be solved in pseudo-
polynomial time, unlessP =NP. An NP-complete problem is calledNP-complete
in the strong senseif it has an NP-complete subproblem that contains the instances
for which the magnitude of the largest integer is bounded by a polynomial in the
instance size. Otherwise, it is calledNP-complete in the ordinary sense.

The computational complexity of combinatorial decision problems and their
optimization variants are often closely related. This is for instance the case if
the optimization variant can be formulated as a sequence of decision variants and
the length of the sequence is bounded by a polynomial in the size of the instance
and the size of the largest integer that occurs in the compact representation of
the instance. In addition to decision and optimization variants we also consider a
feasibility variant of a combinatorial problem in which the problem is to construct
a feasible solution if the instance is a ‘yes’ instance. If a combinatorial decision
problem is NP-complete, then the feasibility and the optimization variant are called
NP-hard.

In order to illustrate the differences between decision, feasibility, and opti-
mization variants we formulate different variants of the mapping problem. In the
decision variant the question is whether there exists a feasible mapping for a given
signal flow graph and a given processing element network. In the feasibility variant
the question is to construct a feasible mapping for a given signal flow graph and
a given processing element network, if such a mapping exists. Depending on the
optimization criterion, the question in an optimization variant might be to deter-
mine the minimum number of processing elements that is required to map a given
signal flow graph. In this thesis we consider the feasibility variant of the mapping
problem; see Definition 2.22.

38 Complexity Analysis

3.2 Type Constraints

To satisfy the type constraints of the mapping problem we must assign the oper-
ations to processing elements and delays in such a way that the function of each
operation is supported by the processing element on which it is executed. In addi-
tion we must assign each data precedence to a communication channel in such a
way that the terminal types of the operations and processing elements match. We
show that the problem of constructing a delay, processing element, and channel
assignment that satisfy the type constraints is solvable in polynomial time.

Theorem 3.1. The problem of constructing a delay, processing element, and chan-
nel assignment that satisfy the type constraints is solvable in polynomial time.
Proof. To construct a processing element assignmentα we check for each oper-
ation whether there exists a processing element with a feasible type. This can be
done in at mostjOj � jPj steps. To construct a channel assignmentλ we check for
each data precedence whether there exists a channel with feasible terminal types.
This can be done in at mostjRj � jCj steps. If there is an operation for which such
a processing element does not exist or if there is a data precedence for which such
a channel does not exist, then the instance is infeasible. To construct a delay as-
signmentδ either we defineδ(o) = 1 if t(o) = PO andt(α(o)) = ME2, or we define
δ(o) = 0 otherwise. Hence, the assignments can be constructed in polynomial time,
if they exist. 2

3.3 Array Constraints

To satisfy the array constraints we must assign the operations to processing ele-
ments in such a way that two operations that operate on the same array are as-
signed to the same processing element. We show that the problem of constructing
a processing element assignment that satisfies the array constraints is solvable in
polynomial time.

Theorem 3.2. The problem of constructing a processing element assignment that
satisfies the array constraints is solvable in polynomial time.
Proof. To construct a processing element assignmentα that satisfies the array
constraints we assign all operations to the same processing element. If the set of
processing elements is empty, then the instance is infeasible. Hence, the processing
element assignment can be constructed in polynomial time, if it exists. 2

3.4 Storage Constraints

To satisfy the storage constraints we must assign the arrays and delays to memories
in such a way that the storage requirements do not exceed the storage capacities.

3.4 Storage Constraints 39

We show that the problem of constructing a mapping that satisfies the storage con-
straints is NP-hard using a polynomial-time reduction from bin packing.

Definition 3.2 (Bin Packing). Let U be a set of items, lets(u) 2 + denote the
size of eachu2U , letV be a set of bins, and letB denote the size of the bins. Find
a packing f : U !V such that for allv2V it holds that∑u2U; f (u)=vs(u) � B, if
one exists. 2

Theorem 3.3. The problem of constructing a processing element assignment that
satisfies the storage constraints is NP-hard in the strong sense.
Proof. For a given instance and a given solution we can verify in polynomial time
whether the storage constraints are satisfied. Hence, the problem is inNP. To
prove that the problem is NP-hard we use a reduction from bin packing which is
known to be NP-hard in the strong sense [Garey and Johnson, 1979].

Given an arbitrary instance of bin packing as formulated in Definition 3.2, we
construct a corresponding instance of the mapping problem as follows. For each
item u 2 U we define an arrayau 2 A with size s(au) = s(u) that contains one
operationou 2 O. In addition we define for each binv 2 V a memory element
pv 2 P with sizes(pv) = B. There are no precedences.

Suppose we have a solutionf to the given instance of the bin packing problem.
Then we assign each operationou to processing elementpv, i.e., we construct a
processing element assignmentα by definingα(ou) = pv if and only if f (u) = v.
The constructed processing element assignment satisfies the storage constraints
becausef satisfies the bin packing constraints and the sizes of the arrays equal the
sizes of the items.

Suppose we have a solutionα to the constructed instance of the mapping prob-
lem. Then we assign each itemu to binv, i.e., we construct a packingf by defining
f (u) = v if and only if α(ou) = pv. The constructed packingf satisfies the bin
packing constraints becauseα satisfies the storage constraints and the sizes of the
items equal the sizes of the arrays. 2

Bin packing with a fixed bin size is solvable in polynomial time by exhaustive
search [Garey and Johnson, 1979]. The proof of Theorem 3.3 implies that the prob-
lem of finding a processing element assignment that satisfies the array and storage
constraints can be transformed into a bin packing problem if the memory size is
fixed. Hence the problem of finding a processing element assignment that satisfies
the array and storage constraints is solvable in polynomial time for fixed memory
sizes by exhaustive search. However this is only practical for small memory sizes.

Corollary 3.1. The problem of constructing a processing element assignment that
satisfies the array and storage constraints is solvable in polynomial time for fixed
memory sizes. 2

40 Complexity Analysis

3.5 Computation and Communication Constraints

To satisfy the computation and communication constraints we must schedule
strictly periodic invocations of operations and precedences over time on a set of
processing elements and communication channels. Korst [1992] has studied this
area of periodic scheduling extensively. He considers two cases in which either the
resource assignment or the time assignment is given. These cases are called strictly
periodic constrained time assignment and strictly periodic constrained resource as-
signment, respectively.

3.5.1 Strictly Periodic Constrained Time Assignment.

First we formulate the problem of finding a time assignment satisfying the com-
putation constraints under the assumption that we are given a processing element
assignment.

Definition 3.3 (Strictly Periodic Constrained Time Assignment). Let O be a
set of strictly periodic operations, let each operationo2 O have a periodp(o) 2

+, let P be a set of processing elements, and letα : O! P be a processing ele-
ment assignment. Find a time assignmentσ : O! such that for allo;o0 2O it
holds that ifo 6= o0 andα(o) = α(o0) thenσ(o) 6� σ(o0) (mod gcd(p(o); p(o0))),
if one exists. 2

Korst [1992] has shown that the strictly periodic constrained time assignment prob-
lem is NP-hard in the strong sense if the operations can occupy the processing
elements for arbitrary times. Definition 3.3 captures the instances resulting from
the mapping problem in which the occupation times are always equal to one. For
this reason, the above-mentioned result on the complexity of the problem does not
apply. However, Korst [1992] has also shown that the special cases in which the
periods and the occupation times are divisible sequences are solvable in polyno-
mial time. These results are based on bin packing with divisible item sizes which
is known to be solvable in polynomial time [Coffman et al., 1987].

Theorem 3.4. The problem of constructing a time assignment that satisfies the
computation constraints if the periods form a divisible sequence is solvable in poly-
nomial time.
Proof. See Korst [1992], Theorem 4.7, page 82-85. 2

Similarly we have the problem of finding a time assignment satisfying the com-
munication constraints under the assumption that we are given a channel assign-
ment. This problem is also easy if the periods form a divisible sequence.

Definition 3.4 (Strictly Periodic Channel Constrained Time Assignment). Let
Rbe a set of strictly periodic data precedences, let each data precedencer 2Rhave

3.5 Computation and Communication Constraints 41

a periodp(r) 2 +, let C be a set of communication channels, and letλ : R!C
be a channel assignment. Find a data arrival time assignmentψ : R! such that
for all data precedencesr1; r2 2 R with λ(r1) = ((p1;m1);(p01;m

0
1)) andλ(r2) =

((p2;m2);(p02;m
0
2)) it holds that if(p1;m1) 6= (p2;m2) and(p01;m

0
1) = (p02;m

0
2) then

ψ(r1) 6� ψ(r2) (mod gcd(p(r1); p(r2))), if one exists. 2

Theorem 3.5. The problem of constructing a time assignment that satisfies the
communication constraints if the periods form a divisible sequence is solvable in
polynomial time.
Proof. Similar to the proof of Theorem 3.4. 2

These results have two corollaries which formulate necessary and sufficient
conditions for the existence of time assignments that satisfy the computation and
the communication constraints. We use these corollaries to reduce the search space
of the mapping problem. The first corollary concerning the computation constraints
bounds the number of operations that can be executed on the same processing el-
ement. The second corollary concerning the communication constraints bounds
the number of samples that can be consumed by an input terminal of a process-
ing element. In this corollary the numberq(o) represents the smallest number of
invocations of operationo that is required to repeat the communication behavior
between operationo and its consumers. The number is zero if operationo has no
consumers.

Corollary 3.2. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(δ;σ;α;λ) be a mapping. Then there exists a time assignment that
satisfies the computation constraints only if for all p2 P it holds that

maxf ∑
o2O;α(o)=p

ft(o);t(p)g6=fRO;ME2g

1
p(o)

; ∑
o2O;α(o)=p

ft(o);t(p)g6=fWO;ME2g

1
p(o)

g � 1:

If the periods form a divisible sequence then these conditions are sufficient.2

Corollary 3.3. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(δ;σ;α;λ) be a mapping. Then there exists a time assignment that
satisfies the communication constraints only if for all((p;m);(p0;m0)) 2C it holds
that

∑
r=((o;n);(o0;n0);(p;b;b0))2R

λ(r)=((p00;m00);(p0;m0))

jfi 2 INq(o) j b� i (mod p
p(o))g

p(o)q(o)
� 1;

where q(o) = lcmf p
p(o) j ((o;n);(o

0;n0);(p;b;b0)) 2Rg. If the periods form a divis-
ible sequence then these conditions are sufficient. 2

42 Complexity Analysis

3.5.2 Strictly Periodic Constrained Resource Assignment.

Next we formulate the problem of finding a processing element assignment sat-
isfying the the computation constraints under the assumption that we are given a
time assignment. Korst [1992] calls this problem the strictly periodic constrained
processor assignment problem. Similarly we have the problem of finding a channel
assignment satisfying the communication constraints under the assumption that we
are given a time assignment.

Definition 3.5 (Strictly Periodic Constrained Processor Assignment).Let O
be a set of strictly periodic operations, let each operationo 2 O have a period
p(o) 2 +, let σ : O! be a time assignment, and letP be a set of processing
elements. Find a processing element assignmentα : O ! P such that for all
o;o0 2 O it holds that if o 6= o0 and σ(o) � σ(o0) (mod gcd(p(o); p(o0))) then
α(o) 6= α(o0). 2

Definition 3.6 (Strictly Periodic Constrained Channel Assignment).Let R be
a set of strictly periodic data precedences, let each data precedencer 2 R have
a periodp(r) 2 +, let ψ : R! be a data arrival time assignment, and let
C be a set of communication channels. Find a channel assignmentλ : R! C
such that for all data precedencesr1; r2 2 R with λ(r1) = ((p1;m1);(p01;m

0
1)) and

λ(r2) = ((p2;m2);(p02;m
0
2)) it holds that if(p1;m1) 6= (p2;m2) andψ(r1) � ψ(r2)

(mod gcd(p(r1); p(r2))) thenλ(r1) 6= λ(r2). 2

Korst [1992] shows that the strictly periodic constrained processor assignment
problem is NP-hard in the strong sense using a reduction from graph coloring.
The same result applies to the strictly periodic constrained channel assignment
problem.

Theorem 3.6. For a given time assignment the problem of constructing a process-
ing element assignment that satisfies the computation constraints is NP-hard in the
strong sense.
Proof. See Korst [1992], Theorem 3.10, page 66-67. 2

Theorem 3.7. For a given data arrival time assignment the problem of construct-
ing a channel assignment that satisfies the communication constraints is NP-hard
in the strong sense.
Proof. Similar to the proof of Theorem 3.6. 2

The special cases in which the periods of the operations and the precedences form
a divisible sequence are solvable in polynomial time. In these cases the required
number of processing elements is equal to the largest number of operation invo-
cations that must be completed simultaneously. Similarly, the required number

3.6 Periodicity Constraints 43

of input ports is equal to the largest number of samples that must be consumed
simultaneously.

We summarize these results in two corollaries which define necessary and suf-
ficient conditions for the existence of a processing element assignment that satisfies
the computation constraints and for the existence of a channel assignment that sat-
isfies the communication constraints. We use these corollaries to reduce the search
space of the mapping problem. The first corollary bounds the number of operations
that can be completed simultaneously by a given set of processing elements. The
second corollary bounds the number of samples that can be consumed simultane-
ously by a given set of input terminals.

Corollary 3.4. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(δ;σ;α;λ) be a mapping. Then there exists a processing element
assignment that satisfies the computation constraints only if for all i2 it holds
that

jfo2O j σ(o)� i (modp(o))^ft(o); t(α(o))g 6= fRO;ME2ggj � jPj;

and

jfo2O j σ(o)� i (modp(o))^ft(o); t(α(o))g 6= fWO;ME2ggj � jPj:

If the periods form a divisible sequence then these conditions are sufficient.2

Corollary 3.5. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(δ;σ;α;λ) be a mapping. Then there exists a channel assignment
that satisfies the communication constraints only if for all i2 it holds that

jf(o(r);n(r)) j r 2R^ψ(r)� i (mod p(r))gj � jf(p0;m0) j ((p;m);(p0;m0))2Cgj:

If the periods form a divisible sequence then these conditions are sufficient.2

3.6 Periodicity Constraints

The reduction from graph coloring to strictly periodic constrained processor as-
signment [Korst, 1992] does not consider the periodicity constraints. Instead the
period of a program follows by construction from the resulting processing element
assignment. Korst [1992] has shown that, under the assumption that different in-
vocations of one operation may be assigned to different processing elements, the
problem of constructing a strictly periodic constrained processor assignment with
a given periodp can be modeled as the problem of coloring circular arcs that are
positioned on a circle withp segments such that overlapping arcs receive different
colors. Hence, in that case the problem of finding a processing element assignment
with period p that satisfies the computation constraints can be formulated as the
problem of coloring a circular-arc graph.

44 Complexity Analysis

Definition 3.7 (Circular-Arc Graph). A graph(V;E) is said to be acircular-arc
graphif and only if it can be associated with a circle that is divided intop segments
that are numbered clockwise as 1;:::; p, in such a way that each vertexv 2V can
be associated with a circular arca = [l ; r] on the circle that stretches clockwise
from segmentl up to and including segmentr, wherel ; r 2 f1; : : : ; pg, such that
fv;v0g 2 E if and only if the corresponding arcs[l ; r] and[l 0; r 0] overlap. 2

In order to construct a circular-arc graph for a given signal flow graph, we associate
each of the invocations of one operation within one periodp with one vertex in
the circular-arc graph. Since the number of invocations per operation is at most
p, the number of vertices in the circular-arc graph is bounded bypjOj. Garey
et al. [1980] have shown that coloring circular-arcs graphs with a minimum number
of colors is NP-hard. Furthermore, they have shown that coloring circular-arcs
graphs with a given numberk of colors can be solved inO(nk!k logk) time, where
n� 2jVj � 2pjOj. Thus, for fixedk the problem is solvable in polynomial time.
However, this is only practical for small numbersk. For a video signal processor
with twelve arithmetic and logic elements we have thatk!k logk� 6�109.

3.7 Precedence Constraints

To analyze the precedence constraints we again resort to the work of Korst [1992]
who has shown that the problem of scheduling strictly periodic operations under
precedence constraints is solvable in polynomial time. The result is based on the
observation that all precedence constraints can be represented as linear constraints
on the time assignment, i.e., for allr = ((o;n);(o0;n0);(p;b;b0)) we have

ω(r)� σ(o0)�σ(o)� ω(r);

and for alls= (o;o0;(p;b;b0)) we have

ω(s)� σ(o0)�σ(o):

These equations are closely related to the so-called Bellman equations; see Lawler
[1976]. Based on this analogy we formulate the problem of finding a mapping that
satisfies the precedence constraints as a longest path problem.

Theorem 3.8. The problem of constructing a time assignment that satisfies the
precedence constraints is solvable in polynomial time.
Proof. Let for an arbitrary pair of operationsoi andoj the longest path fromoi

to oj be given by the sequence of precedencesa1; : : : ;ax provided that such a path
exists. Then this path contains at mostjOj�1 precedences. For each operationok

on this path, the longest path fromoi to ok is necessarily a subsequence of the path
a1; : : : ;ax.

3.7 Precedence Constraints 45

Under the assumption that all completion times initially equal zero, we now
replace for all precedencesa the value of the completion time of the producing
operationo0 by maxfσ(o0);σ(o)+ω(a)g. As a result, we find the minimum com-
pletion time that satisfies the lower bound for the next operation on each path. In
addition, we replace for all data precedencesa the value of the completion time
of the consuming operationo by maxfσ(o);σ(o0)�ω(a)g. As a result, we find
the minimum completion time that satisfies the upper bound for the previous op-
eration on each path. AfterjOj�1 of these iterations, operationoj has obtained a
minimum completion time provided that such a completion time exists.

If such a completion time does not exist, then there is no longest path from op-
erationoi to operationoj butoj can be reached fromoi . In that case the precedence
constraints are infeasible, i.e., there does not exist a time assignment that satisfies
the precedence constraints. This can have two reasons. The first reason is that
there is a cycle in the signal flow graph for which the sum of the weightsω(a) is
positive and there exists some precedencea for which holdsσ(o0) < σ(o)+ω(a)
afterjOj�1 iterations. The second reason is that there is a cycle via the data prece-
dences in the signal flow graph for which the sum of the weightsω(a) is negative
and there exists some data precedencea for which holdsσ(o)< σ(o0)�ω(a) after
jOj�1 iterations. 2

We now obtain the following corollary that defines necessary and sufficient condi-
tions for the existence of a time assignment that satisfies the precedence constraints.

Corollary 3.6. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(δ;σ;α;λ) be a mapping. Then there exists a time assignment that
satisfies the precedence constraints if and only if for all cycles L� R[S it holds
that

∑
a2L

ω(a)� 0;

and for all cycles L� R it holds that

∑
a2L

ω(a) � 0: 2

If no time assignment exists that satisfies the precedence constraints, we must
either decrease the sum of the lower bounds, or increase the sum of the upper
bounds for the cycles that are of concern. A possible way to achieve this is to
reduce or expand the signal flow graph by removing or adding pass operations in
these cycles. However, the problem of determining where to remove or add these
pass operations in such a way that the computation, connectivity, and precedence
constraints are satisfied is NP-complete in the strong sense, even if the periods form
a divisible sequence. We demonstrate this using a polynomial-time reduction from
three-satisfiability.

46 Complexity Analysis

Definition 3.8 (Three-Satisfiability). LetU be a set of variables and letC be a set
of clauses such that each clausec 2C is a disjunction of three literals which can
be positive, i.e., of the formu, or negative, i.e., of the formu, whereu2U . Find a
function f : U ! IB that satisfies each clausec2C, if one exists. 2

Theorem 3.9. The problem of expanding a signal flow graph and constructing a
processing element, channel, and time assignment that satisfy the computation,
connectivity, and precedence constraints is NP-hard in the strong sense, even if the
periods form a divisible sequence.
Proof. For a given instance and a given solution we can verify in polynomial
time whether the computation, connectivity, and precedence constraints are satis-
fied. Hence, the problem is inNP. To prove that the problem is NP-hard we use
the following polynomial time reduction from three-satisfiability as formulated in
Definition 3.8 which is known to be NP-hard in the strong sense [Cook, 1971].

Given an arbitrary instance of three-satisfiability, we construct a corresponding
instance of the problem as follows. First we define a set of clause operationsOC

as follows. For each clausec 2C we define two arithmetic and logic operations
oc;o0c 2OC with period one. In order to constrain each time assignmentσ such that
σ(oc) = σ(o0c), we define for each clausec2C two clause no-value precedences
sc;s0c 2 SC. Precedencesc is directed fromoc to o0c and precedences0c is directed
from o0c to oc. Both precedences have period one and offsets zero. Furthermore,
we define for each clausec 2 C two clause data precedencesrc; r 0c 2 RC. Again
precedencerc is directed fromoc to o0c and precedencer 0c is directed fromo0c to oc.
Both precedences have period two, first offset zero, and second offset one plus the
size of a silo. We have chosen the offsets such that these data precedences violate
the precedence constraints. Therefore we have to expand the signal flow graph
with pass operations. Next we define a set of literal operationsOL as follows. For
each literall 2 c we define an arithmetic and logic operationocl 2OL with period
one. Furthermore, we define for each literall in each clausec2C two literal data
precedencesrcl ; r

0
cl
2RL. Again both precedences have period two, first offset zero,

and second offset one plus the size of a silo. Ifl = u for some variableu2U then
rcl is directed fromoc to ocl and r 0cl

is directed fromocl to o0c. Otherwise,rcl is
directed fromocl to oc andr 0cl

is directed fromo0c to ocl . Once again note that the
corresponding data precedence constraints cannot be satisfied without expanding
the signal flow graph with pass operations. The entire construction is graphically
represented in Figure 3.1.

Subsequently, we index the clausesC = fc0;:::;cm�1g. In order to constrain
each time assignmentσ such thatσ(oci) = σ(ocj) for all ci ;cj 2C, we definem
no-value precedencessi 2 Swith period one and offsets zero. The precedences are
directed fromoi to o(i+1)modm for all 0� i < m.

3.7 Precedence Constraints 47

rcu rcu ’-

rcu ’ rcu -

rc rc ’ sc sc ’

oc

oc ’

cu cu -o o

Figure 3.1. Transformation from clause into signal flow graph.

Finally, we split the set of literal operationsOL into jU j setsOu
L = focl 2OL j

l = u 2 U _ l = u 2 Ug. We index the operations in these sets such thatOu
L =

fou0;:::;ou(nu�1)g. In order to constrain each time assignmentσ such thatσ(o) =
σ(o0) for all o;o0 2Ou

L, we definenu no-value precedencessui 2 Swith period one
and offsets zero. The precedences are directed fromoui to ou((i+1)modnu) for all
1� i < nu.

We complete the instance with definitions for the set of arrays and the process-
ing element graph. We define the set of arraysA= /0 and we define the processing
element graph via the corresponding processor graph(V; I). With eachci 2C we
associate avi 2V such thattv(vi) = VSP1. For each processorvi we introduce four
interconnections((vi ; j);(vi ; j)) 2 I for all 1� j � 4 with a communication delay
of zero. Note that each video signal processorvi 2V contains three arithmetic and
logic elements and four output elements that connect four processor outputs with
four processor inputs. Hence, the computation and connectivity constraints allow
four pass operations to be added in each clause.

Suppose the functionf is a satisfying truth assignment. Then we can construct
a signal flow graph expansion and a mapping that satisfy the computation, connec-
tivity, and precedence constraints as follows. We define for each clausec2C the
operation setOc = focl j l 2 cg[foc;o0cg and the precedence setRc = frcu j u2
c^ f (u)g[frcu j u2 c^: f (u)g[frc; r 0cg. Note thatjRcj � jOcj= 5. Then we split
the precedence setRc into R1

c; : : : ;R
5
c by definingRi

c = f((o;n);(o0 ;n0);(p;b;b0)) 2
Rc j o = oig for all o1; : : : ;o5 2 Oc. Note that the setRi

c is empty if and only if
oi = ocl for some satisfied literal operation, i.e.,f satisfiesl . Because the function
f is a satisfying truth assignment at least one of the setsRi

c is empty. For each non-
empty setsRi

c we introduce a pass operationo0cl
with period two and we expand

48 Complexity Analysis

the signal flow graph accordingly. As a result, each operationocl has either a new
predecessoro0cl

if the truth assignmentf satisfies the literall , or a new successoro0cl

if the truth assignmentf does not satisfy the literall . Next we define the mapping.
To this end we map all operations and precedences in clauseci on the resources
of processorvi which satisfies the computation and connectivity constraints. This
defines the delay, processing element, and channel assignment. For all clause oper-
ationsoc;o0c 2OC we chooseσ(oc) = σ(o0c) = 0. For all literal operationsocl 2OL

we chooseσ(ocl) equal to one plus the silo size if the truth assignmentf does not
satisfy literall , and we chooseσ(ocl) twice as large if the truth assignmentf sat-
isfies literall . For each pass operationo resulting from setRi

c we chooseσ(o) and
σ(oi) equal to one plus the silo size. It is straightforwardly checked that this time
assignment satisfies all precedence constraints.

Suppose we have a signal flow graph expansion and a mapping that satisfy the
computation and connectivity constraints. Then we can construct a satisfying truth
assignmentf as follows. Since the precedence constraints for the precedencesrc,
r 0c, sc, s0c, rcl , andr 0cl

are satisfied, each operationocl must have at least one corre-
sponding pass operationo0cl

. We construct a truth assignmentf :U ! IB as follows.
If operationo0cl

is a predecessor of operationocl then we definef (u) = TRUE, oth-
erwise we definef (u) = FALSE. The satisfaction of the precedence constraints for
no-value precedencessu0;:::;su(nu�1) for all u 2 U ensures that the functionf is
well-defined. The computation and connectivity constraints ensure that we intro-
duce at most four pass operations in each clause, which guarantees that each clause
has a satisfying literal.

The magnitude of the largest integer in the constructed instance of the problem
is polynomial in the size of the instance, which means that problem is NP-complete
in the strong sense. 2

3.8 Connectivity Constraints

To satisfy the connectivity constraints we must assign the operations that are related
by a data precedence to processing elements that are related by a channel. In order
to implement the communication from one processor to another processor, we must
expand a signal flow graph with pass operations and assign these operations to out-
put elements. The problem of expanding a signal flow graph and constructing a
processing element and time assignment that satisfy the connectivity, computation,
and communication constraints is NP-hard in the strong sense, even if the periods
form a divisible sequence. We demonstrate this using a polynomial-time reduc-
tion from three-satisfiability in a way that is similar to the proof of Karp [1975]
who shows that disjoint connecting paths is NP-complete. We owe the proof to
De Fluiter [1993].

3.8 Connectivity Constraints 49

Theorem 3.10. The problem of expanding a signal flow graph and constructing
a time, processing element, and channel assignment that satisfy the connectivity,
computation, and communication constraints is NP-hard in the strong sense, even
if the periods form a divisible sequence.
Proof. For a given instance and a given solution we can verify in polynomial
time whether the connectivity, computation, and communication constraints are
satisfied. Hence, the problem is inNP. To prove that problem is NP-hard we use
the following polynomial time reduction from three-satisfiability which is known
to be NP-hard [Cook, 1971].

Given an instance of three-satisfiability as formulated in Definition 3.8, we
construct an instance of the mapping problem as follows. For each clausec 2C
we construct a processorvc and a processorv0c, both of typeVSP1, a processorsc

of type INPUT, and processorstc andt 0c of type OUTPUT. Furthermore, we construct
four connections between the processors, i.e., fromsc to vc, from vc to t 0c, from v0c
to tc, and fromv0c to vc. For each literall , we denote the set of clauses that contain

u13u11 vcu1 - vcu1 ’-

vcu3 ’ vcu2 ’ vcu1 ’

u32u22u12vcu2 - vcu2 ’-

vcu3 vcu2 vcu1

u12

tcu2 -

tcu1 -

tcu1 -

tcu2 -

tcu1 tcu2 tcu3

tcu1 ’ tcu2 ’ tcu3’

scu1 scu2 scu3

scu1 -

scu2 -

Figure 3.2. An example of the processor subnetworkNu with nu = 3 andnu = 2.

l by Cl = fcl1;:::;clnl g. Note that different setsCl do not have to be disjoint. For
eachu2U , for each 1� i � nu, and for each 1� j � nu, we construct a processor

50 Complexity Analysis

ui j of typeVSP1 and we construct six connections, i.e., fromvcui to ui1, from vcu j to
u1 j , from uinu to v0cui

, from unu j to v0cu j
, from ui j to ui(j+1), and fromui j to u(i+1) j , in

such a way that each input port has at most one incoming connection. The number
of input ports is sufficient, since each processorvc has at most three incoming
connections, and the processorstc and t 0c have exactly one incoming connection.
In Figure 3.2 a part of the processor network, calledNu, is drawn. In this part, all
processors and interconnections that have to do withu are drawn. Note that the
processorsui j are only used inNu, but all other processors are present in two other
subnetworksNu0 andNu00 .

We now construct signal flow graph(O;R). It consists ofjCj subparts(Oi;Ri).
For each 1� i � jCj, we construct an operationsi 2Oi of type IO, two operations
ti ; t 0i 2 Oi of type OO, and four operationsvi1;vi2;vi3;vi4 2 Oi of type ALO. All
operations have period one. Furthermore for each 1� i � jCj we construct seven
data precedences with periods of one and offsets of zero in the setRi, i.e., fromsi

to vi1, from vi1 to t 0i , from vi1 to vi2, from vi2 to vi3, from vi3 to vi4, from vi4 to vi1,
and fromvi4 to ti . An example of a part(Oi;Ri) is given in the left-hand side of
Figure 3.3. The set of no-value precedences and the set of arrays are empty.

si

vi1

vi2

vi3

vi4

ti

ti ’

si

vi1

vi2

vi3

vi4

ti

ti ’

oi1

oi2

oi3

oi4

Figure 3.3. The picture of the left shows part(Oi ;Ri) of the constructed signal flow
graph. The picture on the right shows the part(O0

i ;R
0

i) of the constructed signal
flow graph after transformation.

Since all precedences have period one, the paths that must be constructed have
to be disjoint. Note that the number of input processors is equal to the number
of input operations and each input operation has period one, so each input opera-
tion must be assigned to an individual input processor. The same holds for output
operations. Furthermore note that for eachi, the operationsvi1, vi2, vi3, andvi4 can-
not all be assigned to the same processor since each processor contains only three

3.8 Connectivity Constraints 51

arithmetic and logic elements. This means that if we have a processing element
assignmentα that maps operationsi onto processorsc for somec 2C, then it is
not possible that allvi j are assigned tovc. This means that the output element of
this processor must be used for one of the following data streams: fromsi to vi1,
from vi1 to vi2 andt 0i , from vi2 to vi3, or fromvi3 to vi4. Since some output operation
must be assigned totc, the only possibility is that the data stream fromvi1 to vi2

andt 0i uses the output element ofvc. So operationvi j is assigned to processorvc,
the operationsvi j for j = 2;3;4 are assigned to other processors, and operationt 0i
is assigned to processort 0c. Since we have a data precedence fromvi4 to vi1 there
must be a path from the processor of operationvi4 to vc. Such a path can only
exist viav0c, which means that operationti is assigned to processortc sincev0c has
only one output element that can be used. Hence, to satisfy the connectivity con-
straints it must hold that if operationsi is assigned to processorsc, then operation
ti is assigned to processortc and operationt 0i is assigned to processort 0c.

Suppose we have a satisfying truth assignmentf then we construct a signal
flow graph expansion, a processing element assignment, and a channel assignment
as follows. Assign eachsi to ansc such that there is one input operation assigned
to each input processor. Furthermore, ifsi is assigned tosc thenti is assigned totc,
t 0i is assigned tot 0c, vi1 is assigned tovc, andvi2, vi3, andvi4 are assigned tov0c. For
eachc2C, choose one literal inc that is true. If this literal is a variableu2U then
construct the ‘vertical’ path from thatsi to ti in Nu such thatsi is assigned tosc, i.e.,
create pass operationsoi1; : : : ;oi(nu+2) 2O0

i and map them onto the output elements
of the processors as follows. Operationoi1 goes tovc = vck for somek, operation
oi(nu+2) goes tov0c, and the other pass operations go touk(l�1) for all 2� l � nu+1.
Furthermore we construct a setR0

i of data precedences with periods of one and
offsets of zero fromoik to oi(k+1) for all 1� k� nu, from si to vi1, from vi1 to oi1,
from oi1 to t 0i , fromoi(nu+1) to vi2, fromvi2 to vi3, from vi3 to vi4, fromvi4 to oi(nu+2),
from oi(nu+2) to ti ;0, and fromoi(nu+2) to vi1. If the literal is the complement of a
variableu, then construct the ‘horizontal’ path from thatsi to ti in Nu such thatsi is
assigned tosc, in a similar way. An example of(O0

i;R
0
i) is given in the right-hand

side of Figure 3.3. The paths can always be constructed in this way, since iff (u)
holds foru2U , then there are only ‘vertical’ paths inNu constructed, and iff (u)
not holds, then there are only ‘horizontal’ paths constructed inNu. Hence we have
constructed a signal flow graph expansion, a processing element assignment, and a
channel assignment that satisfy the connectivity constraints and, by Corollaries 3.2
and 3.3, for which there exists a time assignment that satisfies the computation and
communication constraints.

Suppose there are a signal flow graph expansion(O0;R0), a time assignmentσ,
a processing element assignmentα, and a channel assignmentλ, then we construct
a satisfying truth assignmentf as follows. For eachu2U , if there is ac2C with

52 Complexity Analysis

u 2 c such that operationsi is mapped onto processorsc, operationti is mapped
onto processortc, and there is a path fromsi to ti via operations that are mapped to
processors inNu, then f (u) holds. If there is ac2C with u2 c such that operation
si is mapped onto processorsc, operationti is mapped onto processortc, and there
is a path fromsi to ti via operations that are mapped to processors inNu, then f (u)
does not hold. Otherwise,f (u) can be chosen arbitrarily. In each partNu, with
u2U , of the processor network there can either be a ‘vertical’ path fromsi to ti
for somec2Cu, or there can be a ‘horizontal’ path fromsi to ti for somec0 2Cu,
which means thatf is defined properly. Furthermore, there must be a path from
eachsi to ti which means that there must be one literal that is true in each clause.
This means that we have constructed a feasible truth assignment.

We have proved that the problem of finding a time, processing element, and
channel assignment that satisfy the connectivity, computation, and communication
constraints is NP-complete if the periods of the operations and precedences are
equal to one. Since these periods are the only integer constants the problem is
NP-complete in the strong sense. 2

3.9 Summary

The type, array, connectivity, and precedence constraints are solvable in polyno-
mial time. The computation, communication, storage, and periodicity constraints
are not solvable in polynomial time. The computation and communication con-
straints are solvable in polynomial time if the periods form a divisible sequence
using bin packing techniques with divisible item sizes. For fixed size memories
the storage constraints are solvable in polynomial time using exhaustive search,
but this is only practical for small memory sizes. Similarly for fixed size programs
the periodicity constraints are solvable in polynomial time using circular-arc graph
coloring, but again this is only practical for small program sizes. The combina-
tion of the computation and communication constraints with divisible periods and
the connectivity constraints is not solvable in polynomial time. The combination
of the computation constraints with divisible periods, the connectivity constraints,
and the precedence constraints is also not solvable in polynomial time.

4
Problem Decomposition

In the previous chapter we have proved that the mapping problem is NP-hard
which means that no algorithm solves the problem in polynomial time unlessP =

NP. We propose a decomposition of the mapping problem into three subproblems,
which we call the delay management problem, the partitioning problem, and the
scheduling problem, because we believe that the mapping problem is too complex
to handle in its entirety. The goal of this approach is to introduce a separation of
concerns in the mapping process in such a way that we can handle the combination
of the subproblems more effectively than the complete mapping problem.

To present the decomposition strategy we generalize the model presented in
Chapter 2 by considering a set of mappings rather than a single mapping. The pur-
pose of the generalization is to formalize the decomposition strategy which step-
wisely reduces the set of mappings by removing mappings that are inconsistent
with the decisions made so far. The generalization enables us to describe the cur-
rent search state as a set of mappings. Furthermore, the generalization enables us
to formulate necessary conditions to determine whether a mapping is inconsistent.
These conditions are relaxations of the mapping constraints such that they do not
remove feasible solutions from the search space. Finally, the generalization pro-
vides a means to determine in which order the mapping decisions have to be taken
resulting in the decomposition of the mapping problem into three subproblems.

53

54 Problem Decomposition

The outline of this chapter is as follows. In Section 4.1 we generalize a single
mapping to a set of mappings in order to reason on the problem decomposition. In
Section 4.2 we introduce relaxations of the mapping constraints, thereby introduc-
ing necessary conditions for feasibility that reduce the search space. In Section 4.3
we present the decomposition strategy. In Sections 4.4, 4.5, and 4.6 we formulate
the delay management problem, the partitioning problem, and the scheduling prob-
lem, respectively. In Section 4.7 we present the results of the constraint relaxations
on the set of industrially relevant problem instances. Finally, in Section 4.8 we
summarize the contents of this chapter.

4.1 Mapping Sets

In order to formulate necessary conditions for feasibility which reduce the search
space, we generalize a single mapping to a set of mappings. We formally define
such a set, which contains different mappings of a signal flow graph onto a pro-
cessing element network, as follows.

Definition 4.1 (Mapping Set). Let (O;R) be a signal flow graph and let(P;C) be
a processing element network. Then the tuple(∆;Σ;A;Λ) defines amapping set,
where

� ∆�O! IN denotes adelay assignment set,

� Σ�O! denotes atime assignment set,

� A �O! P denotes aprocessing element assignment set, and

� Λ� R!C denotes achannel assignment set. 2

The notation for a set of delay assignments∆ �O! IN is a generalization of the
notation for a single delay assignmentδ 2 O! IN. The latter is an alternative
notation forδ : O ! IN in which a delay assignment is represented as a set of
pairsf(o;δ(o)) j o2 O^ δ(o) 2 INg. For each operationo we denote the domain
values of the delay assignment, i.e., the set of candidate delays, by∆(o) = fδ(o) j
δ 2 ∆g, which is a compact representation of the delay assignment set. We adopt
the same notation for the candidate time, processing element, and channel sets.
For each set of operationsO we denote the set of candidate delay sets by∆(O) =

f∆(o) j o2 Og. Again we adopt the same notation for the sets of candidate time,
processing element, and channel sets. The largest mapping set for a given instance
of the mapping problem is the mapping set(∆;Σ;A;Λ) with ∆(o) = IN, Σ(o) = ,
A(o) = P, andΛ(r) = C for all o 2 O and for all r 2 R. An important issue in
the solution strategy is the reduction of the search space by removing mappings
from the mapping set that are inconsistent with the decisions made so far. This
is illustrated in Figure 4.1 that shows how a reduction of the time assignment set

4.2 Constraint Relaxations 55

∆,Α,Λ

Σ

(δ,σ,α,λ)
(δ,α,λ)

σ

feasibility

infeasibility

Figure 4.1. Reduction of the mapping set by removing inconsistent mappings.

can reduce the mapping set from the light-shaded area to the dark-shaded area. In
the next section we introduce relaxations of the mapping constraints to prevent the
need for exhaustive checking of the original mapping constraints for each mapping
in the mapping set. These relaxations can be checked more efficiently, although
they do not exclude all infeasible solutions from the search space.

4.2 Constraint Relaxations

The purpose of formulating relaxations of the mapping constraint is to define con-
ditions that are necessary to satisfy the mapping constraints. Mappings that do not
satisfy the relaxations can be eliminated from the search space without affecting the
solution space. The constraint relaxations are the result of the complexity analysis
of the previous chapter. This analysis has identified easy problems or easy special
cases of hard problems which have lead to the necessary conditions formulated in
Corollaries 3.2 up to 3.6. These corollaries are the motivation for the relaxations
of the precedence, computation, and communication constraints.

4.2.1 Precedence Constraints

The relaxation of the precedence constraints is motivated by Corollary 3.6 which
defines necessary conditions for the bounds that constrain the completion times
of two adjacent operations. We generalize these bounds for a single mapping to
bounds for a mapping set in order to constrain the set of completion times of two
adjacent operations. To this end we introduce a set of candidate silo departure
times X(r) = fχ(r) j σ 2 Σ^α 2 A ^λ 2 Λg; and a set of candidate silo arrival
timesΨ(r) = fψ(r) j δ2 ∆^σ2Σ^α2A^λ2Λg; for a given data precedencer.
For a given no-value precedences we introduce a set of candidate array departure
times X(s) = fχ(s) j σ 2 Σg; and a set of candidate array arrival timesΨ(s) =

56 Problem Decomposition

fψ(s) j σ 2 Σg: Next we generalize the arrival delayω(a) to a set of arrival delays
Ω(a) = fω(a) j δ 2 ∆^α 2 A ^λ 2 Λg; and the departure delayω0(a) into a set
of departure delaysΩ0(a) = fω0(a) j α 2 A ^ λ 2 Λg; for all data precedences
a= ((o;n);(o0;n0);(p;b;b0)) and no-value precedencesa= (o;o0;(p;b;b0)). Note
that the arrival and departure delays are independent of the time assignments. From
the set of arrival and departure delays we derive a lower bound minΩ(a) and an
upper bound minΩ(a) by using minimum arrival and departure delays, i.e.,

minΩ(a) = minΩ(a)+minΩ0(a)+minW(a) and

minΩ(a) = minΩ(a)+minΩ0(a)+maxW(a):

Similarly we derive a lower bound maxΩ(a) and an upper bound maxΩ(a) by
using maximum arrival and departure delays, i.e.,

maxΩ(a) = maxΩ(a)+maxΩ0(a)+minW(a) and

maxΩ(a) = maxΩ(a)+maxΩ0(a)+maxW(a):

To satisfy the precedence constraints it must hold that the difference between the
minimum completion times of two adjacent operations is larger than or equal to
the smallest lower bound and that it is smaller than or equal to the smallest upper
bound. In addition it must hold that the difference between the maximum comple-
tion times of two adjacent operations is larger than or equal to the largest lower
bound and that it is smaller than or equal to the largest upper bound.

Definition 4.2 (Precedence Constraint Relaxation).Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a map-
ping set. Then thedata precedence constraint relaxationspecifies that for all
r = ((o;n);(o0 ;n0);(p;b;b0)) 2 R it holds that

minΩ(r)�minΣ(o0)�minΣ(o)�minΩ(r) and

maxΩ(r)�maxΣ(o0)�maxΣ(o)�maxΩ(r);

and the no-value precedence constraint relaxationspecifies that for alls =

(o;o0;(p;b;b0)) 2 S it holds that

minΩ(s)�minΣ(o0)�minΣ(o) and

maxΩ(s)�maxΣ(o0)�maxΣ(o): 2

The relaxation lies in the fact that the lower and upper bounds may result from
the individual assignments of different mappings whereas the original precedence
constraints apply to a single mapping. The relaxation is an exact approximation
if the setsΩ(a) andΩ0(a) of arrival and departure delays are singleton sets. To
formulate the generalization of Corollary 3.6 we defineΩ(a) = maxΩ(a) as the
largest lower bound andΩ(a) = minΩ(a) as the smallest upper bound.

4.2 Constraint Relaxations 57

Corollary 4.1. Let(O;R) be a signal flow graph, let(P;C) be a processing element
network, and let(∆;Σ;A;Λ) be a mapping set. Then there exists a time assignment
set that satisfies the precedence constraint relaxation if and only if for all cycles
L� R[S it holds that

∑
a2L

Ω(a)� 0;

and for all cycles L� R it holds that

∑
a2L

Ω(a)� 0: 2

4.2.2 Computation Constraints

We derive the relaxation of the computation constraints from Corollaries 3.2 and
3.4 which define necessary conditions to satisfy the computation constraints. The
relaxation bounds the sum of the frequencies of a set of periodic operations by
the capacity of the processing elements on which the operations are executed. The
relaxation is an exact approximation if the periods of the operations form a divisible
sequence.

Definition 4.3 (Computation Constraint Relaxation). Let (O;R) be a signal
flow graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be
a mapping set. Then thecomputation constraint relaxationspecifies that for all
A(o);A(o0) 2 A(O) it holds that

A(o)\A(o0) 6= /0) (A(o)� A(o0)_A(o0)� A(o));

and that for all A(o) 2 A(O) it holds that

RA(OA(o))�CA(A(o)):

The left-hand sideRA(OA(o)) defines theaverage computation requirement

RA(OA(o)) = maxf ∑
o02OA(o)

ft(o0);T(A(o))g6=fRO;fME2gg

1
p(o0)

; ∑
o02OA(o)

ft(o0);T(A(o))g6=fWO;fME2gg

1
p(o0)

g

of operation setOA(o) = fo0 2O jA(o0)�A(o)g which contains the operations that
are mapped onto the processing element set A(o). The setT(A(o)) = ft(α(o)) j
α 2 Ag denotes the set of processing element types in A(o). The right-hand side
CA(A(o)) defines thecomputation capacity

CA(A(o)) = jA(o)j

of processing element set A(o). 2

58 Problem Decomposition

4.2.3 Communication Constraints

Similarly we derive the relaxation of the communication constraints from Corol-
laries 3.3 and 3.5 which define necessary conditions to satisfy the communication
constraints. The relaxation bounds the number of samples that can be consumed
by the input terminals of the processing elements on which the consuming opera-
tions are executed. The relaxation is an exact approximation if the periods of the
precedences form a divisible sequence.

Definition 4.4 (Communication Constraint Relaxation). Let (O;R) be a signal
flow graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a
mapping set. Then thecommunication constraint relaxationspecifies that for all
Λ(r);Λ(r 0) 2 Λ(R) it holds that

I(Λ(r))\ I(Λ(r 0)) 6= /0) (I(Λ(r)) � I(Λ(r 0))_ I(Λ(r 0))� I(Λ(r)));

and that for allΛ(r) 2 Λ(R) it holds that

RΛ(RΛ(r))�CΛ(Λ(r)):

The left-hand sideRΛ(RΛ(r)) defines theaverage communication requirement

RΛ(RΛ(r)) = ∑
((o;n);(o0;n0);(p;b;b0))2RΛ(r)

jfi 2 INq(o) j b� i (mod p
p(o))g

p(o)q(o)

of data precedence setRΛ(r) = fr
0 2Rj I(Λ(r 0))� I(Λ(r))g which contains the data

precedences that are mapped onto the setI(Λ(r)) = f(p0;m0) j ((p;m);(p0;m0)) 2

Λ(r)g of input terminals. The right-hand sideCΛ(Λ(r)) defines thecommunication
capacity

CΛ(Λ(r)) = jI(Λ(r))j:

of channel setΛ(r). 2

4.2.4 Storage Constraints

Next we formulate a necessary condition to satisfy the storage constraints. To
this end we approximate the number of memory locations that are required for the
delay assignment values with a lower bound because the exact number of required
locations depends on the assignment of the individual operations to the individual
processing elements.

Definition 4.5 (Storage Constraint Relaxation).Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping
set. Then thestorage constraint relaxationspecifies that for all A(o);A(o0)2A(O)

it holds that

A(o)\A(o0) 6= /0) (A(o)� A(o0)_A(o0)� A(o));

4.2 Constraint Relaxations 59

and that for all A(o) 2 A(O) it holds that

R∆(OA(o))�C∆(A(o)):

The left-hand sideR∆(OA(o)) defines thestorage requirement

R∆(OA(o)) = ∑
a2AA(o)

s(a)+ ∑
o02OA(o)

min∆(o0)

of operation setOA(o) = fo0 2O jA(o0)�A(o)g which contains the operations that
are mapped onto the processing element set A(o). The right-hand sideC∆(A(o))
defines thestorage capacity

C∆(A(o)) = ∑
p2A(o)

s(p)

of the processing element set A(o). 2

4.2.5 Periodicity Constraints

Subsequently we formulate a necessary condition to satisfy the periodicity con-
straints. To this end we approximate the period that is required to execute a set of
strictly periodic operations and precedences by the maximum period in the given
set. Note that this approximation is exact if the periods of the operations and prece-
dences form a divisible sequence. The maximum period may not exceed the maxi-
mum program capacity that is available in the set of processing elements on which
the operations are executed. Formally the relaxation of the periodicity constraints
is defined as follows.

Definition 4.6 (Periodicity Constraint Relaxation). Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping.
Then theperiodicity constraint relaxationspecifies that for all A(o);A(o0) 2 A(O)

it holds that

A(o)\A(o0) 6= /0) (A(o)� A(o0)_A(o0)� A(o));

and that for all A(o) 2 A(O) it holds that

RA;Λ(OA(o))�CA;Λ(A(o)):

The left-hand sideRA;Λ(OA(o)) defines theperiodicity requirement

RA;Λ(OA(o)) = maxfmaxfp(o0) j o0 2OA(o)g;maxfp(r) j r 2 R^α(o0) 2 A(o)gg

of operation setOA(o) = fo0 2O jA(o0)�A(o)g which contains the operations that
are mapped onto the processing element set A(o). The right-hand sideCA;Λ(A(o))
defines theperiodicity capacity

CA;Λ(A(o)) = maxfp(m(α(o))) j α 2 Ag

of processing element element set A(o). 2

60 Problem Decomposition

4.2.6 Array Constraints

A necessary condition to satisfy the array constraints is that two sets of candidate
processing elements that correspond with two operations of the same array are not
disjoint, because in that case none of the candidate processing element assignments
maps both operations to the same processing element. For this reason we introduce
the following relaxation of the array constraints.

Definition 4.7 (Array Constraint Relaxation). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set.
Then thearray constraint relaxationspecifies that for allo;o0 2 O it holds that if
a(o) = a(o0) then

A(o)\A(o0) 6= /0: 2

4.2.7 Connectivity Constraints

A necessary condition to apply the precedence constraint relaxation is that the set
of candidate silo arrival timesΨ(r) is not empty. To this end there has to be at least
one channel assignmentλ 2 Λ for which it holds thatλ(r) 2C for all data prece-
dencesr. For this reason we introduce the following relaxation of the connectivity
constraints.

Definition 4.8 (Connectivity Constraint Relaxation). Let (O;R) be a signal flow
graph, let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a
mapping set. Then theconnectivity constraint relaxationspecifies that for all
r = ((o;n);(o0 ;n0);(p;b;b0)) 2 R there exists a set of output terminalsM �S

α(o)2A(o)Op(t(α(o))) such that it holds that

O(Λ(r)) = (A(o)�M);

or a set of input terminalsM0 �
S

α(o0)2A(o0) Ip(t(α(o0))) such that it holds that

I(Λ(r)) = (A(o0)�M0);

whereO(Λ(r)) = f(p;m) j ((p;m);(p0;m0)) 2 Λ(r)g is a set of output terminals
andI(Λ(r)) = f(p0;m0) j ((p;m);(p0;m0)) 2 Λ(r)g is a set of input terminals. 2

4.2.8 Type Constraints

Furthermore we have to decide which operations are executed on dual ported mem-
ory elements to determine which computation constraint applies to which opera-
tions. To formalize this requirement we introduce the following relaxation of the
type constraints.

Definition 4.9 (Type Constraint Relaxation). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set.

4.3 Decomposition Strategy 61

Then theprocessing element type constraint relaxationspecifies that for allo2O
it holds that

T(A(o)) 2

8>>>>>>>><
>>>>>>>>:

P(fALEg) if t(o) 2 fALOg

P(fALE;BEg) if t(o) 2 fCO;SOg

P(fME1g)[P(fME2g) if t(o) 2 fRO;WOg

P(fALE;BE;OEg) if t(o) 2 fPOg^max∆(o) = 0
P(fME2g) if t(o) 2 fPOg^min∆(o)> 0
P(fINg) if t(o) 2 fIOg

P(fOUTg) if t(o) 2 fOOg;

and the terminal type constraint relaxationspecifies that for all r =

((o;n);(o0;n0);(p;b;b0)) 2 R with Λ(r) = (A(o)�M)� (A(o0)�M0) it holds that
T 0(T(A(o));M) = fto(t(o);n)g and

T 0(T(A(o0));M0) 2

8>><
>>:

P(fCIg) if to(t(o0);n0) 2 fCIg

P(fDIg) if to(t(o0);n0) 2 fDIg

P(fRI;AIg) if to(t(o0);n0) 2 fRIg

P(fWI;AIg) if to(t(o0);n0) 2 fWIg;

whereT 0(T(A(o));M) = ftp(t;m) j t 2 T(A(o))^m2Mg. 2

4.3 Decomposition Strategy

The largest mapping set for a given instance of the mapping problem is the mapping
set(∆;Σ;A;Λ) with ∆(o) = IN, Σ(o) = , A(o) = P, andΛ(r) =C for all o2O
and for allr 2R. We reduce this mapping set by removing the delays from∆(o), the
processing elements from A(o), and the communication channels fromΛ(r) that
violate the relaxation of the type constraints. If the resulting mapping set contains
an empty assignment set then the given instance of the mapping problem is clearly
infeasible. Otherwise it satisfies not only the relaxation of the type constraints but
also the relaxations of the array and connectivity constraints. Furthermore, it holds
that the given instance of the mapping problem is infeasible if the given signal
flow graph cannot be reduced and the mapping set violates the relaxations of the
computation, communication, storage, or periodicity constraints. It also holds that
the given instance of the mapping problem is infeasible if the given signal flow
graph cannot be reduced and the mapping set violates a lower bound of one of the
relaxations of the precedence constraints, i.e., for some cycleL � R[S it holds
that ∑a2L maxΩ(a) > 0. In order to check whether some maximum lower bound
violates this condition, the maximum completion times maxΣ(o) can be computed
with the longest path algorithm that has been described in the proof of Theorem 3.8.
To this end we substitute the lower bound maxΩ(a) and the upper bound maxΩ(a)
for the lower boundω(a) and the upper boundω(a), respectively.

62 Problem Decomposition

The same algorithm computes minimum completion times minΣ(o) if we sub-
stitute the lower bound minΩ(a) and the upper bound minΩ(a) for the lower
boundω(a) and the upper boundω(a), respectively. If the mapping set violates
an upper bound of one of the relaxations of the precedence constraints, i.e., for
some cycleL � R it holds that∑a2L minΩ(a) < 0, then we have to increase the
sum of the upper bounds in the cycle. This might be done by expanding the signal
flow graph with pass operations in order to increase the number of precedences
in the cycle, and hence, the number of terms in the sum. Alternatively, we might
increase the upper bounds minΩ(r) and maxΩ(r) for one or more precedences in
the cycle. The minimum upper bound is equal to the maximum silo storage time
plus minfω(r) j δ 2 ∆^α 2 A ^λ 2 Λg plus minfω0(r) j α 2 A ^λ 2 Λg, where
the arrival delayω(r) = ψ(r)�σ(o) is equal to

ω(r) = (b+δ(o))p(o)�dp(t(α(o));m)+da(λ(r));

and the departure delayω0(r) = σ(o0)�χ(r) is equal to

ω0(r) = dp(t(α(o0));m0)�b0p(o0);

whereλ(r) = ((α(o);m);(α(o0);m0)). In order to increase the minimum upper
bound we have to increase the delay assignment valueδ(o), because the process-
ing element assignment and the channel assignment have little effect on the com-
putation delaysdp(t(α(o));m) anddp(t(α(o0));m0), and the communication delay
da(λ(r)), respectively. The same holds for the maximum upper bound.

Once the mapping set satisfies the relaxations of the mapping constraints, we
strengthen the relaxations of the mapping constraints until they are exact approx-
imations of the original mapping constraints. For the precedence constraints this
means that we reduce the setsΩ(r) andΩ0(r) of arrival and departure delays to
singleton setsfω(r)g andfω0(r)g, respectively. The arrival delayω(r) is fixed if
the delay assignment valueδ(o), the processing element typet(α(o)), and the com-
munication delayda(λ(r)) are fixed. The departure delayω0(r) is fixed if the pro-
cessing element typet(α(o0)) is fixed. The channel assignment does not affect the
computation delay provided that the relaxation of the type constraints is satisfied
because the computation delay only depends on the terminal type rather than on the
terminal instance. Hence, to approximate the precedence constraints exactly, we
have to fix the delay assignment such thatj∆j= 1, we have to fix the assignment of
operations to processing element types such that the type constraints are satisfied,
and we have to fix the communication delays of the data precedences. In order to
determine the latter it suffices to assign the operations to processors in such a way
that the connectivity constraints are satisfied, because the intraprocessor commu-
nication between processing elements is implemented by switch matrices which
ensure full connectivity and constant communication delays. In general it is not

4.3 Decomposition Strategy 63

possible to assign the operations to processors in such a way that the connectivity
constraints and the relaxations of the computation and storage constraints are satis-
fied without expanding the signal flow graph with pass operations that implement
the interprocessor communication. The reason for this is that the computation and
storage resources, i.e., arithmetic and logic elements, memory elements, and buffer
elements, of different processors are interconnected indirectly via communication
resources, i.e., output elements, rather than that they are interconnected directly.
The additional pass operations have to be mapped onto output elements in order to
implement the interprocessor communication.

Once the mapping set satisfies the type, connectivity, and precedence con-
straints, we have to find a mapping in the mapping set that satisfies the compu-
tation, communication, storage, periodicity, and array constraints. This means that
we have to find an appropriate time assignmentσ 2 Σ, processing element as-
signmentα 2 A, and channel assignmentλ 2 Λ. Note that the signal flow graph
expansions that are required to satisfy the connectivity and the precedence con-
straints increase the computation, communication, and storage requirements, and
thus make it more difficult to satisfy the corresponding constraints.

Based on the above-mentioned argumentation, we propose a decomposition of
the mapping problem into three subproblems that are called the delay management
problem, the partitioning problem, and the scheduling problem. The primary goal
of delay management is to handle the precedence constraints. More precisely, for a
given signal flow graph, processing element network, and mapping set the problem
is to find an expansion of the signal flow graph and a mapping set that satisfies
the relaxation of the precedence constraints, and the relaxations of the type, peri-
odicity, array, storage, computation, and communication constraints. The primary
goal of partitioning is to handle the connectivity constraints. More precisely, for a
given signal flow graph, processing element network, and mapping set the problem
is to find an expansion of the signal flow graph and a mapping set that satisfies the
relaxation of the connectivity constraints, and the relaxations of the type, periodic-
ity, array, storage, computation, and communication constraints. The primary goal
of scheduling is to handle the computation and communication constraints. More
precisely, for a given signal flow graph, processing element network, and mapping
set that satisfy the relaxation of the mapping constraints the problem is to find a
mapping in the mapping set that satisfies the mapping constraints.

We handle the mapping problem by consecutively handling the delay manage-
ment problem, the partitioning problem, and the scheduling problem. The motiva-
tion for this order is as follows. The signal flow graph expansion during delay man-
agement increases the computation, communication, and storage requirements in
order to satisfy the precedence constraints. Delay management precedes partition-
ing because partitioning partitions the resource requirements over the processors,

64 Problem Decomposition

thereby taking the additional resource requirements into account. A disadvantage
of this decision is that we have to approximate the computation and the communi-
cation delays because these are only known after partitioning. However, in practice
these delays are limited to a few clock cycles. The signal flow graph expansion
during partitioning increases the computation and communication requirements
in order to satisfy the connectivity constraints. Partitioning precedes scheduling
because scheduling schedules the resource requirements onto the processing ele-
ments, thereby taking the additional resource requirements for the output elements
into account. In practice it may be required to repeat delay management between
partitioning and scheduling, because partitioning may expand the signal flow graph
in such a way that the resulting computation and communication delays violate the
precedence constraints. We expect that in most of these cases the additionally re-
quired storage delay is small such that it can be implemented on the processor on
which it is required, thereby preventing the partitioning of the delay over multiple
processors.

4.4 Delay Management Problem

The input of delay management is a signal flow graph, a processing element net-
work, and a mapping set that satisfies the relaxations of the type, array, connectiv-
ity, computation, communication, periodicity, and storage constraints. The output
of delay management is an expanded signal flow graph and a mapping set that
satisfies the relaxation of the precedence constraints as well as the relaxations of
the type, array, connectivity, computation, communication, periodicity, and storage
constraints.

The most important decision variable in the delay management problem is the
delay assignment, because its value can be used to control the arrival delaysω(r)
of the data precedences. In order to approximate the precedence constraints ex-
actly, the setΩ(r) has to be a singleton setfω(r)g. For this reason we impose the
additional constraint in the delay management problem that a delay assignment set
is a singleton set, i.e.,j∆j= 1.

Furthermore we have to approximate the communication delays because we do
not have a channel assignment yet. We assume that the unknown communication
delays equal zero because in practice they are limited to a few clock cycles. This
assumption guarantees that the approximation of the lower boundω(r) is indeed a
lower bound ofω(r). As a result the lower bound approximation does not remove
feasible solutions to the mapping problem from the search space. However, the ap-
proximation of the upper boundω(r) is not necessarily an upper bound ofω(r). As
a result the upper bound approximation may lead to an underestimation of the sum
of the upper bounds in a cycle. This may remove feasible solutions from the search

4.5 Partitioning Problem 65

space because the value of the delay assignment or the expansion of the signal flow
graph, and thus the computation, communication, and storage requirements, may
become larger than necessary. The approximation of the upper bound is acceptable
because of the fact that the resource utilization is very high if the search space does
not contain other solutions. In that case it is unlikely that we can solve the given
instance of the mapping problem anyway.

Definition 4.10 (Delay Management Problem).Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a map-
ping set of(O;R) onto (P;C) that satisfies the relaxations of the type, array, con-
nectivity, computation, communication, periodicity, and storage constraints. Find
a signal flow graph(O0;R0) such that(O;R) � (O0;R0) and find a mapping set
(∆0;Σ0;A0;Λ0) of (O0;R0) onto (P;C) such thatj∆0j = 1 and the relaxations of the
mapping constraints are satisfied, if they exist. 2

Theorem 4.1. The delay management problem is NP-complete in the strong sense.
Proof. The proof immediately follows from Theorem 3.9 because the problem of
expanding a signal flow graph and constructing a processing element, channel,
and time assignment that satisfy the computation, connectivity, and precedence
constraints is a special case of the delay management problem if the periods form
a divisible sequence. 2

4.5 Partitioning Problem

The input of partitioning is a signal flow graph, a processing element network,
and a mapping set that satisfies the relaxations of the type, array, connectivity,
computation, communication, periodicity, and storage constraints. The output of
partitioning is an expanded signal flow graph and a mapping set that satisfies the
connectivity constraints and the relaxations of the type, array, computation, com-
munication, periodicity, and storage constraints. We do not consider precedence
constraints during partitioning because they are the subject of delay management.

The most important decision variable in the partitioning problem is the pro-
cessing element assignment, because its value can be used to satisfy the connec-
tivity constraints. We are interested in the interprocessor connectivity only, be-
cause the intraprocessor connectivity is not constrained as a result of the switch
matrices of the processors. For this reason we impose the additional constraint
in the partitioning problem that a processing element assignment set assigns op-
erations to processing elements of the same processor, i.e.,jV(A(o))j = 1, where
V(P) = fv j (v;e) 2 Pg for all processing element setsP. In order to approximate
the precedence constraints exactly, the setsΩ(r) andΩ0(r) have to be singleton
sets. For this reason we impose the additional constraint in the partitioning problem

66 Problem Decomposition

that a processing element assignment set assigns operations to processing elements
of the same type, i.e.,jT(A(o))j= 1, whereT(P) = ft(p) j p2 Pg for all process-
ing element setsP. As a result of these additional constraints the computation and
communication delays are known after partitioning.

Definition 4.11 (Partitioning Problem). Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set of
(O;R) onto(P;C) that satisfies the relaxations of the type, array, connectivity, com-
putation, communication, periodicity, and storage constraints. Find a signal flow
graph (O0;R0) such that(O;R) � (O0;R0) and find a mapping set(∆0;Σ0;A0;Λ0)

of (O0;R0) onto (P;C) such thatjV(A0(o))j = jT(A0(o))j = 1, for all o 2 O0, the
connectivity constraints, and the relaxations of the type, array, computation, com-
munication, periodicity, and storage constraints are satisfied, if they exist.2

Theorem 4.2. The partitioning problem is NP-complete in the strong sense.
Proof. The proof immediately follows from Theorem 3.10 because the problem
of expanding a signal flow graph and constructing a time, processing element, and
channel assignment that satisfy the connectivity, computation, and communication
constraints is a special case of the partitioning problem if the periods form a divis-
ible sequence. 2

4.6 Scheduling Problem

The input of scheduling is a signal flow graph, a processing element network, and
a mapping set for which it holds thatj∆j = jV(A(o))j = jT(A(o))j = 1, for all
operationso, and that satisfies the connectivity constraints and the relaxations of
the mapping constraints. The output of scheduling is a mapping that satisfies the
mapping constraints.

Definition 4.12 (Scheduling Problem).Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set
such thatj∆j = jV(A(o))j = jT(A(o))j = 1, for all o 2 O, the connectivity con-
straints, and the relaxation of the mapping constraints are satisfied. Find a mapping
(δ;σ;α;λ) 2 (∆;Σ;A;Λ) that satisfies the mapping constraints, if one exists.2

Theorem 4.3. The scheduling problem is NP-complete in the strong sense.
Proof. The proof immediately follows from Theorem 3.6 since the problem of con-
structing a processing element assignment satisfying the computation constraints
for a given time assignment is a special case of the scheduling problem. 2

4.7 Results 67

4.7 Results

In this section we present the results of the constraint relaxations on the set of
problem instances presented in Chapter 2. The results include the resource re-
quirements of the signal flow graphs and the resource capacities of the processor
networks from which we obtain the degree of utilization of the resources. The
resource constraints that we consider are the relaxations of the computation and
storage constraints presented in Definitions 4.3 and 4.5.

Table 4.1. Processor networks and their characteristics. From left to right the
columns list the computation capacityCA per processing element type and the
storage capacityC∆.

Processor CA C∆
Network ALE ME1 ME2 BE OE IN OUT

VSP1FLEX 24 16 0 0 40 6 6 8192
VSP2TEST 12 0 4 6 6 6 6 8192
VSP2FLEX 72 0 24 36 36 8 8 49152

Table 4.1 lists the computation and storage capacities of the three processor
networks that occur in the problem instances. Note that the clock frequency of the
second generation processors is twice as high as the clock frequency of the first
generation processors. For this reason, the twelve arithmetic and logic elements of
the single second generation processors in theVSP2TESTprocessor network provide
the same computation capacity as the twenty-four arithmetic and logic elements
of the eight first generation processors in theVSP1FLEX processor network. The
dual ported memory elements of the second generation processor do not entirely
provide this factor of eight over the single ported memory elements because the
address port has been split into a read address port and a write address port. This
means that theVSP2TEST processor network can execute eight read operations and
eight write operations whereas theVSP1FLEX processor network can execute any
combination of sixteen read or write operations in same amount of time.

Table 4.2 lists the computation and storage requirements of the signal flow
graphs that are to be mapped onto theVSP1FLEX processor network. The com-
putation requirements are listed according to the combinations of the processing
element types that have been specified in the relaxation of the type constraints.
During the mapping of signal flow graphs onto first generation processors only
the computation requirement of the arithmetic and logic elements and the output
elements changes because of the signal flow graph transformations.

Table 4.3 lists the computation and storage requirements of the signal flow
graphs that are to be mapped onto theVSP2TEST processor network. The period
of the operations when mapping onto second generation processors is twice as

68 Problem Decomposition

Table 4.2. Signal flow graphs that are to be mapped onto theVSP1FLEX processor
network. From left to right the columns list the computation requirementRA per
combination of processing element types and the storage requirementR∆.

Signal RA R∆
Flow ALE ALE ME 1 IN OUT

Graph OE

YUVTORGB 17:00 17:00 0:00 1:00 0:50 0
HORCOMPR 5:00 5:00 2:00 3:00 3:00 2048
IJNTEMA1 11:19 11:19 3:00 2:56 5:00 1580
CORMACK2 8:81 8:81 1:44 3:00 4:00 2564
CONTOUR1 17:44 17:44 3:13 2:00 2:00 3024
MONZA2 19:63 19:63 4:00 3:00 3:00 3440
VDP 16:25 16:25 4:88 3:00 3:50 3568
GAMMA 12:06 12:06 3:50 2:00 3:00 1264
HISTMOD2 9:00 9:00 3:44 1:50 3:00 957
PANORAMA 12:06 12:06 8:00 1:00 2:00 6144
VIDIWALL 18:69 18:69 5:56 3:50 6:00 4696
IJNTEMA2 20:56 20:56 3:13 3:00 3:00 2076
CORMACK1 21:81 21:81 11:50 3:00 4:00 6432
MONZA1 17:69 17:69 5:00 0:31 3:00 4411
MWTV 17:94 17:94 4:75 0:06 3:00 3424

large compared to mapping onto first generation processors in order to compen-
sate for the double clock frequency. Note that the instance that maps signal flow
graphCORMACK1 onto processor networkVSP2TEST is infeasible because the com-
putation capacity of the dual ported memory elements is insufficient. During the
mapping of signal flow graphs onto second generation processors the computation
requirement of the arithmetic and logic elements, the buffer elements, the output
elements, and the dual ported memory elements as well as the storage requirement
changes because of the signal flow graph transformations.

Table 4.4 lists the computation and storage requirements of the signal flow
graphs that are to be mapped onto theVSP2FLEX processor network.

4.8 Summary

In this chapter we have decomposed the mapping problem into the delay manage-
ment problem, the partitioning problem, and the scheduling problem. The objec-
tive of the delay management problem is to add operations to a signal flow graph
that store the operands in memories thereby taking the combination of precedence,
computation, and connectivity constraints into account. The objective of partition-
ing is to add operations to a signal flow graph that communicate operands along the

4.8 Summary 69

Table 4.3. Signal flow graphs that are to be mapped onto theVSP2TESTprocessor
network. From left to right the columns list the computation requirementRA per
combination of processing element types and the storage requirementR∆.

Signal RA R∆
Flow ALE ALE ALE ME 2 IN OUT

Graph BE BE;OE

YUVTORGB 8:50 8:50 8:50 0:00 0:50 0:25 0
HORCOMPR 2:50 2:50 2:50 0:50 1:50 1:50 2048
IJNTEMA1 5:53 5:59 5:59 0:91 1:28 2:50 1580
CORMACK2 4:41 4:41 4:41 0:72 1:50 2:00 2564
CONTOUR1 8:72 8:72 8:72 0:78 1:00 1:00 3024
MONZA2 9:81 9:81 9:81 1:38 1:50 1:50 3440
VDP 8:13 8:13 8:13 1:44 1:50 1:75 3568
GAMMA 6:03 6:03 6:03 1:00 1:00 1:50 1264
HISTMOD2 4:50 4:50 4:50 0:94 0:75 1:50 957
PANORAMA 6:03 6:03 6:03 2:25 0:50 1:00 6144
VIDIWALL 9:34 9:34 9:34 1:47 1:75 3:00 4696
IJNTEMA2 10:28 10:28 10:28 1:09 1:50 1:50 2076
CORMACK1 10:91 10:91 10:91 4:25 1:50 2:00 6432
MONZA1 8:84 8:84 8:84 1:25 0:16 1:50 4411
MWTV 8:97 8:97 8:97 1:75 0:03 1:50 3424

Table 4.4. Signal flow graphs that are to be mapped onto theVSP2FLEX processor
network. From left to right the columns list the computation requirementRA per
combination of processing element types and the storage requirementR∆.

Signal RA R∆
Flow ALE ALE ALE ME 2 IN OUT

Graph BE BE;OE

CONTRAST 40:06 42:56 42:56 3:00 1:13 1:00 12768
FDXD1 26:09 26:22 26:22 1:12 4:00 7:00 549
FDXD2 30:75 30:75 30:75 5:16 2:56 3:50 8796
MAT30UP 30:63 30:63 30:63 1:38 0:50 1:50 2773
HSRC 34:90 38:19 38:91 6:06 3:00 2:00 13694
VSRC 32:56 34:53 34:53 5:25 5:00 6:00 9937

communication channels thereby taking the combination of computation, commu-
nication, and connectivity constraints into account. The objective of the scheduling
problem is to schedule the operations of a signal flow graph on the processing el-
ements thereby taking the mapping constraints into account. In order to formally
define these problems we have generalized the notion of mapping to the notion of

70 Problem Decomposition

mapping set and we have relaxed the mapping constraints. These relaxations pro-
vide necessary conditions for feasibility such that mappings that are inconsistent
with the decisions made so far can be removed from the mapping set.

5
Delay Management

In this chapter we present a solution strategy for the delay management prob-
lem. The solution strategy is based on a decomposition of the delay management
problem into a delay minimization problem and a delay assignment problem. The
objective of the delay minimization problem is to minimize the additional memory
requirements that are needed to satisfy the precedence constraints. The objective
of the delay assignment problem is to partition these memory requirements into
computation requirements and storage requirements.

The outline of the chapter is as follows. In Section 5.1 we decompose the delay
management problem into the delay minimization problem and the delay assign-
ment problem. In Sections 5.2 and 5.3 we present solution approaches to handle
these subproblems. In Section 5.4 we present the results of the delay management
approach on the set of problem instances. Finally, in Section 5.5 we summarize the
contents of this chapter.

5.1 Problem Decomposition

In Chapter 4 we have formulated the delay management problem as follows.

Definition 5.1 (Delay Management Problem).Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set of

71

72 Delay Management

(O;R) onto(P;C) that satisfies the relaxations of the type, array, connectivity, com-
putation, communication, periodicity, and storage constraints. Find a signal flow
graph(O0;R0) such that(O;R) � (O0;R0) and find a mapping set(∆0;Σ0;A0;Λ0) of
(O0;R0) onto(P;C) such thatj∆0j= 1 and the relaxations of the mapping constraints
are satisfied, if they exist. 2

The objective of the delay management problem is to satisfy the relaxation of the
precedence constraints, i.e., for all data precedencesr = ((o;n);(o0;n0);(p;b;b0))
it must hold that

minΩ(r)�minΣ(o0)�minΣ(o)�minΩ(r) and

maxΩ(r)�maxΣ(o0)�maxΣ(o)�maxΩ(r);

and for all no-value precedencess= (o;o0;(p;b;b0)) it must hold that

minΩ(s)�minΣ(o0)�minΣ(o) and

maxΩ(s)�maxΣ(o0)�maxΣ(o):
To satisfy the relaxation of the precedence constraints it suffices to find lower
boundsΩ(a) = maxΩ(a) and upper boundsΩ(a) = minΩ(a) for all precedences
a that satisfy Corollary 4.1, i.e., for all cyclesL� R[S it must hold that

∑
a2L

Ω(a);

and for all cyclesL� R it must hold that

∑
a2L

Ω(a):

The corresponding completion times can be computed with a longest path algo-
rithm as we have outlined in the proof of Theorem 3.8.

To compute the lower and upper bounds we decompose the delay management
problem into a delay minimization problem and a delay assignment problem. The
objective of the delay minimization problem is to compute a time assignment that
satisfies the lower bounds and minimizes the memory requirements to satisfy the
upper bounds. We estimate the memory requirements by the number of memory
locations that is needed to store the samples thereby assuming that duplication of
samples is avoided as much as possible. The objective of the delay assignment
problem is to determine whether these samples are stored in silos or in random
access memories of dual ported memory elements.

5.1.1 Delay Minimization problem

To formulate the delay minimization problem we express the number of memory
locations that is needed to satisfy the the relaxation of the precedence constraints
as a cost function of the time assignment. If a time assignment violates the upper

5.1 Problem Decomposition 73

boundΩ(r) of a data precedencer then we require an additional storage time of
σ(o0)�σ(o)�Ω(r) clock cycles. We divide this number by the period of the prece-
dence to estimate the number of memory locations. We do not store duplicates of
samples. Therefore we consider only the maximum storage time for each produced
sample, i.e., if a production has multiple consumptions then we consider only the
latest consumption. In the subsequent delay assignment step we ensure that ear-
lier consumptions have access to the sample. Formally the delay minimization is
defined as follows.

Definition 5.2 (Delay Minimization Problem). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set
of (O;R) onto (P;C) that satisfies the relaxations of the type, array, connectivity,
computation, communication, periodicity, and storage constraints. Find a time
assignmentσ 2 Σ such that for all precedencesa2 R[S it holds that

Ω(r)� σ(o0)�σ(o);

and such that

f (σ) = ∑
o2O

q(o)�1

∑
i=0

maxf
maxf0;σ(o0)�σ(o)�Ω(r)g

p(o)q(o)
j r 2 R((o;n)[i])g

is minimal, where the numberq(o) is defined for allo2O by

q(o) = lcmf
p

p(o)
j ((o;n);(o0;n0);(p;b;b0)) 2 Rg;

and the setR((o;n)[i]) is defined for allo2O and for alli 2 by

R((o;n)[i]) = f((o;n);(o0 ;n0);(p;b;b0)) 2 R j b� i (mod
p

p(o)
)g;

if one exists. 2

The numberq(o) is the smallest number of invocations of operationo that is re-
quired to repeat the communication behavior between operationo and its con-
sumers. It is defined to be zero if the domain of the least common multiple is
empty. The setR((o;n)[i]) is the set of data precedences that consume the value of
the ith invocation of output terminal(o;n). A data precedence contributes to the
value of the cost function if and only if it violates its upper bound. The contribution
is equal to the difference of the difference of the completion times and the upper
bound divided by the period of production. We count only the largest contribution
whenever different data precedences consume the same production to avoid dupli-
cation of the same sample. We have defined the cost function in such a way that its
value equals zero if and only if the solution to the delay minimization problem is a
solution to the delay management problem.

74 Delay Management

Theorem 5.1. An instance of the delay minimization problem has a solution with
zero cost if and only if it contains a solution to the delay management problem.
Proof. Let (∆;Σ;A;Λ) be an instance of the delay minimization problem and let
σ 2 Σ be a solution to the instance. Then for all precedencesa it holds thatΩ(r)�
σ(o0)�σ(o). The solution has zero cost if and only if it holds thatσ(o0)�σ(o)�
Ω(r) for all operationso2O, for all integersi 2 , and for all data precedencesr 2
R((o;n)[i]). In other words, the solution has zero cost if and only if(∆;fσg;A;Λ)

is a solution to the delay management problem. 2

5.1.2 Delay Assignment Problem

If an instance of the delay minimization problem does not have a solution with zero
cost, then there exists some infeasible upper bound. To solve the delay manage-
ment problem we have to change the set of upper bounds by expanding the signal
flow graph or increasing the delay assignment value.

Theorem 5.2. Let (∆;Σ;A;Λ) be an instance of the delay minimization problem
and letσ 2 Σ be an optimal solution with nonzero cost. Then there exist an ex-
panded mapping set(∆0;Σ0;A0;Λ0) and a solutionσ0 2 Σ0 such that f(σ0)< f (σ).
Proof. Let (∆;Σ;A;Λ) be an instance of the delay minimization problem and
let σ 2 Σ be an optimal solution with nonzero cost. Then there exist an operation
o2O, an integer 0� i < q(o), and data precedencesr = ((o;n);(o0;n0);(p;b;b0))2
R((o;n)[i]) satisfyingσ(o0)�σ(o)> Ω(r).

Now we expand the signal flow graph as follows. We decimate these
data precedences such that their period becomes equal top(o)q(o) by replac-
ing each data precedencer with k = p(o)q(o)=p new data precedencesri0 =

((o;n);(o0;n0);(p(o)q(o);b+ i0p=p(o);b0 + i0p=p(o0))) where 0� i0 < k. This
transformation does not violate the constraints and does not change the value of
the cost function. Sincep(o)jp and thusk� q(o), it holds that only the data prece-
dencesr0 consume the given invocationi, i.e., r0 2 R((o;n)[i]). We expand the
signal flow graph by adding a pass operationoi with period p(oi) = p(o)q(o)
and replacing the set of data precedences containing allr0’s with data prece-
dencesr 00 = ((oi ;0);(o0;n0);(p(o)q(o);0;b0)) and one additional data precedence
r 0 = ((o;n);(oi ;0);(p(o)q(o);b;0)).

Finally, we adapt the mapping set to the new pass operationoi . To satisfy
the lower bound of the precedence constraints,σ(oi) must satisfyσ(o)+Ω(r 0) �
σ(oi) � σ(o0)�Ω(r 00) for all r 00 2 R((oi ;0)[0]), which is feasible if and only if
δ(oi) is chosen such thatΩ(r 0)+Ω(r 00)� σ(o0)�σ(o). Since we have thatσ(o0)�
σ(o)> Ω(r), it suffices to satisfy the constraintΩ(r 0)+Ω(r 00)< Ω(r) by choosing
δ(oi) = 0. Using thatΩ(r) < Ω(r 0)+Ω(r 00) we have thatσ(o0)�σ(o)�Ω(r) >
σ(o0)�σ(oi)�Ω(r 00)+σ(oi)�σ(o)�Ω(r 0), which completes the proof. 2

5.2 Delay Minimization 75

A potential problem of the above-mentioned expansion is that the expansion
can violate the relaxation of other constraints than the precedence constraints. The
objective of the delay assignment problem is to expand an instance of the delay
minimization problem in such a way that the expansion does not violate the con-
straint relaxations.

Definition 5.3 (Delay Assignment Problem).Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set
of (O;R) onto (P;C) that satisfies the relaxations of the type, array, connectivity,
computation, communication, periodicity, and storage constraints, and letσ2 Σ be
a time assignment such that for all precedencesa2R[S it holds that

Ω(a)� σ(o0)�σ(o):

Find a signal flow graph(O0;R0) such that(O;R)� (O0;R0) and find a mapping set
(∆0;Σ0;A0;Λ0) of (O0;R0) onto (P;C) such thatj∆j = 1 and the relaxations of the
precedence, type, array, connectivity, computation, communication, periodicity,
and storage are satisfied, if they exist. 2

5.2 Delay Minimization

In this section we present an approach to solve the delay minimization problem.
We show that the delay minimization problem is a special case of the dual of the
minimum cost flow problem. From the literature we know that the primal of the
minimum cost flow problem is a special case of integer linear programming which
is solvable in polynomial time. We furthermore know that primal/dual linear pro-
gramming pairs have equal cost at optimality. Consequently, we can solve the
delay minimization problem in polynomial time.

5.2.1 Minimum Cost Flow

Linear programming problems are usually denoted in three forms called general,
canonical, and standard form. In general form we are given anm�n matrixA with
rows ai , a set of row indicesM corresponding to equality constraints, and a set
of row indicesM̄ corresponding to inequality constraints. Furthermore we have a
vectorx 2 IRn, a set of column indicesN corresponding to constrained variables,
and a set of column indices̄N corresponding to unconstrained variables. Finally
we have a vectorb2 IRm and a vectorc2 IRn. An instance of a linear programming

76 Delay Management

problem in general form is then defined in matrix notation as

minimize cTx

subject to ai
Tx = bi for all i 2M

ai
Tx� bi for all i 2 M̄

xj � 0 for all j 2 N

xj 6= 0 for all j 2 N̄:

In canonical form we eliminate all equality constraints and unconstrained variables
from the general form. The equality constraintsai

Tx = bi are replaced by two
inequality constraintsai

Tx � bi and�ai
Tx ��bi . The unconstrained variablesxj

are replaced by two constrained variablesx+j andx�j such thatxj = x+j �x�j , x+j � 0,
andx�j � 0. An instance of a linear programming problem in canonical form is then
defined in matrix notation as

minimize cTx

subject to Ax� b

x� 0:

In standard form we eliminate all inequality constraints and unconstrained vari-
ables from the general form. The inequality constraintsai

Tx � bi are replaced by
equality constraintsai

Tx�si = bi . The unconstrained variables are replaced in the
same way as before. An instance of a linear programming problem in standard
form is then defined in matrix notation as

minimize cTx

subject to Ax = b

x� 0:

If we restrict the solution space to integer solutions, then we speak of integer linear
programming problems.

Network flow problems are special linear programming problems. Here we
adopt the network flow model presented by Ahuja et al. [1989]. They represent a
network by a directed graph. The flow in the network is running along the arcs.
Each node has a supply or demand. The incoming flow minus the outgoing flow
of each node must meet this supply or demand. Each arc has a lower and upper
bound. The amount of flow along each arc must be between this lower and upper
bound. Furthermore, each arc has a cost per unit of flow. We are interested in the
minimum cost flow problem in which the objective is to minimize the total flow
cost. We may assume without loss of generality that the lower bounds on the arc
flows equal zero and the arc costs per unit of flow are nonnegative. This results in

5.2 Delay Minimization 77

the following definition of the minimum cost flow problem.

Definition 5.4 (Minimum Cost Flow Problem). Let G = (N;A) be a directed
graph. With each arc(i; j) 2 A we associate a costci j 2 IR and an upper bound
ui j 2 IR satisfyingci j � 0 andui j > 0. With each nodei 2 N we associate an inte-
gerbi 2 representing its supply or demand. Nodei is asupplynode ifbi > 0,
nodei is a demandnode if bi < 0, and nodei is a transshipmentnode if bi = 0.
Find aflow xi j 2 for each arc(i; j) 2 A such that themass balance constraints
are satisfied, i.e., for alli 2N it holds that

∑
(i; j)2A

xi j � ∑
(j;i)2A

xji = bi ;

theflow bound constraintsare satisfied, i.e., for all(i; j) 2 A it holds that

0� xi j � ui j ;

and the flow cost

∑
(i; j)2A

ci j xi j

is minimal. 2

Here the minimum cost flow problem is formulated as an integer linear program-
ming problem in general form. If we represent the set of arcsA as incidence matrix
A, then we can transform this to an integer linear programming problem in standard
form according to

minimize cTx

subject to

�
A 0
I I

��
x
s

�
=

�
b
u

�
�

x
s

�
� 0:

Note that the matrixA is totally unimodular, i.e., all of its square submatrices have
determinants equal to�1, 0 , or 1. Consequently, the minimum cost flow problem
is solvable in polynomial time which is a well-known result.

In order to find the dual of the minimum cost flow problem we write the integer
linear programming formulation in matrix/vector notation as�

cT 0
�

�
A 0
I I

� �
b
u

�
:

Transposition of the matrix/vector notation yields the dual of the minimum cost
flow problem in which the equalities have been replaced by inequalities and the

78 Delay Management

cost function has been negated, i.e.,�
c
0

� �
AT I
0 I

�
�

bT uT
�

With the equality constraintsAx = b we associate a dual vectorπππ 2 m and with
the equality constraintsx+ s= u we associate a vectorδδδ 2 n. The resulting
integer linear programming formulation is

Maximize bTπππ+uTδδδ
subject to c� ATπππ+δδδ

0� δδδ:

If we negate the vectorδδδ and use the fact that the matrixA is an incidence matrix
we obtain the dual of the minimum cost flow problem as formulated by Ahuja et al.
[1989].

Definition 5.5 (Dual of the Minimum Cost Flow Problem). Let G= (N;A) be a
directed graph. With each arc(i; j) 2 A we associate a costci j and an upper bound
ui j satisfyingci j � 0 andui j > 0. With each nodei 2 N we associate an integer
bi 2 representing its supply or demand. Find a dual variableπi for the mass
balance constraint of each nodei 2 N and a dual variableδi j for the flow bound
constraint of each arc(i; j) 2 A such that for all(i; j) 2 A it holds that

πi �π j �δi j � ci j ;

δi j � 0;

and

∑
i2N

biπi � ∑
(i; j)2A

ui j δi j ;

is maximal. 2

From the literature we know that if a linear programming problem has an optimal
solution then its dual also has an optimal solution and that their optimal costs are
equal [Papadimitriou and Steiglitz, 1982]. Hence, the dual of the minimum cost
flow problem is solvable in polynomial time

5.2.2 Delay Minimization Reformulated

To formulate the delay minimization problem as an instance of the dual of the min-
imum cost flow problem we remove the nonlinearity in the cost function. To this
end we introduce additional decision variables, denoted byσ(o; i), for all opera-
tionso2O and for all integers 0� i < q(o).

5.2 Delay Minimization 79

Definition 5.6 (Network Flow Variant of the Delay Minimization Problem).
Let (∆;Σ;A;Λ) be a mapping set of signal flow graph(O;R) onto processing
element network(P;C). Find a time assignmentσ 2 Σ and additional decision
variablesσ(o; i) for all operationso2O and for all integers 0� i < q(o) such that
for all precedencesa2 R[S it holds that

Ω(a)� σ(o0)�σ(o);

and for all output terminals(o;n), for all integers 0� i < q(o), and for all prece-
dencesr 2R((o;n)[i]) it holds that

σ(o)� σ(o; i) ^ σ(o0)�σ(o; i)�Ω(r);

and

∑
o2O

q(o)�1

∑
i=0

σ(o; i)�σ(o)
p(o)q(o)

is minimal, if they exist. 2

Theorem 5.3. An instance of the delay minimization problem has a solution if and
only if its network flow variant has a solution and their optimal costs are equal.
Proof. Suppose we have given an optimal solution to an instance of the delay
minimization problem. Then we define additional decision variables

σ(o; i) = σ(o)+maxfmaxf0;σ(o0)�σ(o)�Ω(r)g j r 2R((o;n)[i])g;

which satisfies the constraints

σ(o)� σ(o; i) ^ σ(o0)�σ(o; i)�Ω(r):

The values of the decision variables are minimal because any smaller values would
violate the constraintσ(o0)�σ(o; i)�Ω(r).

Now suppose we have given an optimal solution to an instance of the network
flow variant of the delay minimization problem. Then the satisfied constraints

σ(o)� σ(o; i) ^ σ(o0)�σ(o; i)�Ω(r)

can be written as

σ(o; i)�σ(o) �maxf0;σ(o0)�σ(o)�Ω(r)g;

for all data precedencesr 2 R((o;n)[i]). The assumption

σ(o; i)�σ(o)> maxfmaxf0;σ(o0)�σ(o)�Ω(r)g j r 2 R((o;n)[i])g

implies that

σ(o)� (σ(o; i)�1) ^ σ(o0)� (σ(o; i)�1)�Ω(r):

Subsequently we can lower the values of the decision variablesσ(o; i) without
violating the constraints. This is however in contradiction with the fact that we

80 Delay Management

have given an optimal solution. Hence, our assumption is invalid such that it must
hold that

σ(o; i)�σ(o) = maxfmaxf0;σ(o0)�σ(o)�Ω(r)g j r 2R((o;n)[i])g;

which completes the proof. 2

Theorem 5.4. The delay minimization problem is a special case of the dual of the
minimum cost flow problem.
Proof. We rewrite a given instance of the delay minimization problem to its
network flow variant. Subsequently we rewrite the cost function of instance of the
network flow variant to

∑
o2O

σ(o)
p(o)

� ∑
o2O

q(o)�1

∑
i=0

σ(o; i)
p(o)q(o)

;

thereby negating the cost function which transforms the minimization problem into
a maximization problem. This allows us to map the instance to an instance of the
dual of the minimum cost flow problem with cost function

∑
i2N

biπi � ∑
(i; j)2A

ui j δi j

as follows. For the supply or demandbo of each nodeo 2 O and bo;i of each
additional node(o; i), where 0� i < q(o), we define

bo =
lcmfp(o0)q(o0) j o0 2Og

p(o)
^ bo;i =�

lcmfp(o0)q(o0) j o0 2Og
p(o)q(o)

:

For the dual variables of the mass balance constraintsπo of each nodeo2 O and
πo;i of each additional node(o; i), where 0� i < q(o), we define

πo = σ(o) ^ πo;i = σ(o; i):

Furthermore, we defineδδδ = 0 for the dual variables of the flow bound constraints.
Finally, we define arcs with costca for all precedencesa2 R[Sasca = �Ω(a),
for the constraintsσ(o) � σ(o; i) we defineca = 0, and for the constraintsσ(o0)�
σ(o; i) �Ω(r) we defineca = Ω(r), which completes the proof. 2

Corollary 5.1. The delay minimization problem is solvable in polynomial time.2

5.2.3 Successive Shortest Path

Ahuja et al. [1989] present a polynomial-time algorithm to solve the dual of the
minimum cost flow problem calledright-hand-side scalingthat is based on suc-
cessive shortest paths. To present the algorithm we adopt some terminology con-
cerning residual networks. The residual networkG(x) corresponding to a flowx
is defined as follows. For each arca2 A we define an additional arca2 A. With
these arcs we associate costsca andca =�ca, and residual capacitiesra = ua�xa

5.3 Delay Assignment 81

andra = xa. For each nodei 2 N we define the excessei as

ei = bi + ∑
a=(j;i)2A

xa� ∑
a=(i; j)2A

xa;

and for each arca= (i; j) 2 A we define nonnegative reduced costca as

ca = ca�πi +π j :

The right-hand-side scaling algorithm successively computes shortest paths in
the residual network with respect to the reduced cost. For this purpose we have
adopted Dijkstra’s algorithm. Dijkstra’s algorithm can be appliedn= jNj times to
compute shortest path between all pairs of nodes in order to implement an all pair
shortest path algorithm.

The right-hand-side scaling algorithm maintains a flowx that satisfies the non-
negativity and the capacity constraints but violates the supply and demand con-
straints of the nodes. At each iteration, the algorithm selects a nodek with a suffi-
ciently large supply and a nodel with a sufficiently large demand and augments the
flow from k to l along a directed shortest path in the residual network. The algo-
rithm terminates when the supply and demand constraints are met. The algorithm
computes a shortest path maximallynlogU times whereU is an upper bound for
the maximum supply of a node. By substituting the delay minimization variables
for the network flow variables we obtain an algorithm to solve the delay minimiza-
tion problem, whereU = lcmfp(o)q(o) j o 2 Og. With some clever techniques,
see Ahuja et al. [1989], the right-hand-side scaling algorithm solves the minimum
cost flow problem inO(mlogn(m+mlogn)) time withm= jAj, which is currently
the best known strongly polynomial-time algorithm.

5.3 Delay Assignment

The objective of the delay assignment is to expand the signal flow graph or to
increase the delay assignment value such that the upper bounds in the relaxation
of the precedences constraints are met. To minimize the resource requirements we
expand the signal flow graph with delay lines.

5.3.1 Delay Lines

The purpose of a delay line is to implement the storage of a sample between its time
of production and the time of its latest consumption with a minimum of resources.
For each intermediate consumption we have to duplicate the sample. The duplicate
of the sample is needed as input for the intermediate consumer. The sample itself
is needed as input for subsequent consumers. We schedule the duplication of the
sample as late as possible to store the duplicate as short as possible in order to
minimize its memory requirement.

82 Delay Management

o

o’

o

o’

oi1 oi2 oi3

ri1 ri2 ri3

Figure 5.1. Example of a delay line that has been created by three consecutive
expansions to implement the storage of samples in a way that allows intermediate
consumptions. The periods of the operations and precedences are all equal.

Each data precedence relates a periodic production to a periodic consump-
tion. The minimum storage time between production and consumption is equal
to δ(r) = maxf0;σ(o0)�σ(o)�Ω(r)g for each data precedencer 2 R. We in-
dex the data precedencesR((o;n)[i]) = fri1; : : : ; rimig that periodically consume
the production(o;n)[i] in such a way thatδ(ri(j�1)) � δ(ri j) for all 1 < j � mi.
The maximum storage time that has been computed during delay minimization is
equal toδ(rimi). We partition the maximum storage time into a sequence of storage
times δ1((o;n)[i]); : : : ;δmi ((o;n)[i]) with δ1((o;n)[i]) = δ(r1) and δ j((o;n)[i]) =
δ(r j)� δ(r j�1) for all 1 < j � mi. The sample(o;n)[i] has to be duplicated for
consumption by precedenceri j when it has been stored forδ j((o;n)[i]) clock
cycles. For notational convenience we denote the maximum storage time by
δ((o;n)[i]) = ∑mi

j=1δ j((o;n)[i]) = δ(rimi). We implement these storage times by
inserting adelay linewhich is a sequence of pass operationsoi1;:::;oimi as illus-
trated in Figure 5.1 formi = 3. Each operationoi j has one incoming precedence
r 0i(j�1) from its predecessoroi(j�1) and one outgoing precedencer 0i j to its successor
oi(j+1).

5.3.2 Resource Constraints

Each operationoi j in a delay line increases the computation requirement because it
needs to be executed everyp(oi j) clock cycles. Furthermore it increases the storage
requirement because its associated delayδ(oi j) needs to be stored in a dual ported
memory element. The operations of a delay line also increase the communication
requirement. This increase is equal to the increase of the computation requirement
because the number and period of the added precedences is equal to the number
and period of the added operations. If we assume that each output terminal of
each processing element is connected to at least one communication channel, then
the communication workload is feasible if the computation workload is feasible.
This is due to the fact that the communication requirement between two operation
sets is equal to the number of consumed productions rather than the number of
consumptions, i.e., different consumptions of the same production contribute only
once.

5.3 Delay Assignment 83

To satisfy the relaxation of the connectivity constraints we have to assign the
operations of a delay line to processing elements that we can reach from the pro-
ducing processing element and from which we can reach the consuming processing
element. Therefore we assign the operations of a delay line to processing element
sets on the paths from producer to consumer, i.e., to processing element sets of the
set A((o;n)[i]) that is defined by

A((o;n)[i]) = fV \
\

r2R((o;n)[i])
σ(o0)�σ(o)>Ω(r)

[

(p1;:::;pk)2C(A(o);A(o0))
1< j�k

fpjg jV 2 A(O)g;

thereby taking the relaxation of the connectivity constraints into account. Here
C(A(o);A(o0)) is the set of all processing element disjoint paths from A(o) to
A(o0), i.e.,

C(A(o);A(o0)) = f(p1; : : : ; pk) 2 A(o)�P��A(o0) j ((p1;n1); : : : ;(pk;nk)) 2 Ĉg;

andĈ is the set of all processing element disjoint paths given by

Ĉ= f((p1;n1); : : : ;(pk;nk)) j 81�i<k((pi ;ni);(pi+1;ni+1)) 2C^81�i< j�kpi 6= pjg:

Note that if we assign the operations of a delay line to suitable processing
element sets of the set A((o;n)[i]) and the substitute data precedences obeyed the
relaxation of the connectivity constraints, then the substituted data precedences
also obey the relaxation of the connectivity constraints. This is due to the fact
that the switch matrices create a processing element network in which it is always
possible to take an indirect route from producer to consumer. More precisely, if it
holds that((p;m);(p0;m0)) 2C then there exists a(p00;m00) such that it holds that
((p;m);(p00;m00)) 2C and((p00;m00);(p0;m0)) 2C. This property holds under the
assumption that no input processor is directly connected to an output processor. As
a result of this property the operationsoi j of a delay line can be assigned to the
processing element set A(oi j) for which it holds thatp00 2 A(oi j) without violating
the relaxation of the connectivity constraints.

5.3.3 Precedence Constraints

We rewrite the relaxation of the precedence constraints concerning an incoming
precedencer 0i(j�1) and an outgoing precedencer 0i j of a delay line operationoi j into

σ(oi(j�1))+Ω(r 0i(j�1))� σ(oi j)� σ(oi(j+1))�Ω(r 0i j);

in combination with

σ(oi(j�1))+Ω(r 0i(j�1))� σ(oi j)� σ(oi(j+1))�Ω(r 0i j):

Now a necessary and sufficient condition for the existence ofσ(oi j) is

Ω(r 0i(j�1))+Ω(r 0i j)� σ(oi(j+1))�σ(oi(j�1))�Ω(r 0i(j�1))+Ω(r 0i j):

84 Delay Management

This means that a delay line satisfies the relaxation of the precedence constraints if
and only if for allrim = ((o;n);(o0;n0);(p;b;b0)) 2 R((o;n)[i]) it holds that

m

∑
j=0

Ω(r 0i j)� σ(o0)�σ(o)�
m

∑
j=0

Ω(r 0i j):

To satisfy these precedence constraints the decision variablesδ, α, andλ can be
chosen such that it holds that∑m

j=0 Ω(r 0i j) = ∑m
j=1δ j((o;n)[i]) = δ(rim) for all rim 2

R((o;n)[i]).
To decouple the precedence constraints from the computation and storage con-

straints we approximate the differencesΩ(r 0i j) andΩ(r 0i j) between the completion
times of two successive operations byΩ((o;n)[i])+δ(oi j)p(oi j) andΩ((o;n)[i])+
δ(oi j)p(oi j), respectively, where

Ω((o;n)[i]) = minfΩ(ri j) j ri j 2 R((o;n)[i])g�δ(o)p(o) and

Ω((o;n)[i]) = maxfΩ(ri j) j ri j 2 R((o;n)[i])g�δ(o)p(o):
We now have that

m

∑
j=0

Ω(r 0i j)� (m+1)Ω((o;n)[i])+
m

∑
j=0

δ(oi j)p(oi j) and

m

∑
j=0

Ω(r 0i j)� (m+1)Ω((o;n)[i])+
m

∑
j=0

δ(oi j)p(oi j):

Furthermore, we have that

σ(o0)�σ(o)� δ(rim)+Ω((o;n)[i])+δ(o)p(o):

Substitution of these approximations into the relaxation of the precedence con-
straints gives

(m+1)Ω((o;n)[i])�Ω((o;n)[i]) � δ(rim)�
m

∑
j=1

δ(oi j)p(oi j)�mΩ((o;n)[i]);

which we can strengthen to

mΩ((o;n)[i]) � δ(rim)�
m

∑
j=1

δ(oi j)p(oi j)�mΩ((o;n)[i]);

because it holds thatΩ((o;n)[i]) � Ω((o;n)[i]). To obtain minimal resource re-
quirements we choose the smallest feasible values for the delay assignmentδ(oi j)

such that it holds that∑m
j=1δ(oi j)p(oi j) = δ(rim)�mΩ((o;n)[i]). The resulting de-

lay assignment values areδ(oi j) =maxf0;d(δ(ri j)� jΩ((o;n)[i]))=p(oi j)eg for all
ri j 2 R((o;n)[i]).

5.3 Delay Assignment 85

5.3.4 Processing Element Assignment

We formulate the problem of assigning operations to processing element sets for
a given delay line and a given delay assignment in such a way that the computa-
tion and storage requirements are met as a bin packing problem. Each operation
oi j of a given delay line corresponds to an item that has two sizes 1=p(oi j) and
δ(oi j). Each processing element set A(oi j) 2 A((o;n)[i]) corresponds to a bin that
has two capacitiesCA(A(oi j)) andC∆(A(oi j)). The processing elements already
have an initial workload which corresponds with initial bin fillingsRA(A(oi j)) and
R∆(A(oi j)) of the two capacities. The initial bin filling can be seen as the result of
a partial assignment of items to bins. The problem is to assign each operationoi j

to a processing element set A(oi j) such that for allV 2 A((o;n)[i]) the relaxations
of the computation and storage constraints are satisfied.

There are many heuristics known from the literature to handle bin packing
problem such as those for instance proposed by Coffman et al. [1997]. Here we
adopt thefirst fit decreasingalgorithm which is known to be optimal if the item
sizes form a divisible sequence. The first step of the algorithm is to sort the items
in decreasing order. We do this in decreasing order of the delay assignment values
δ(oi j) because all operations of a delay line have the same period. The second step
is to assign the sorted operations iteratively to the first processing element set in
which they fit and which satisfies the relaxation of the connectivity constraints.

5.3.5 Delay Line Refinement

A potential problem of the delay lines is that they may impose large computation
or storage requirements on the dual ported memory elements because the delay
assignment values are often nonzero. To avoid this potential problem we allow
the possibility to implement each storage timeδ j((o;n)[i]) with a sequence of pass
operationsoi j1; : : : ;oi jmi j . This enables us to decrease the value of the delay assign-
ment at the expense of more pass operations thereby shifting the workload from
dual ported memory elements to other processing elements. We reformulate the
precedence constraint approximation now as

mi j Ω((o;n)[i]) � δ j((o;n)[i])�
mi j

∑
k=1

δ(oi jk)p(oi jk)�mi j Ω((o;n)[i])

for all 0� i < q(o) and for all 1� j � m. The variablesmi j andδ(oi jk) are the
unknowns in these constraints. The variablemi j determines the number of pass
operations that is used to implement storage timeδ j((o;n)[i]). The variablesδ(oi jk)

determine the delays of these pass operations.
To obtain minimal resource requirements we again choose the smallest feasi-

ble values for the delay assignment satisfying the equation∑
mi j

k=1 δ(oi jk)p(oi jk) =

δ j((o;n)[i])�mi j Ω((o;n)[i]). Furthermore we know that each additional opera-

86 Delay Management

tion oi jk increases the computation requirement withp(oi jk)
�1=CA(A(oi jk)) and

the storage requirement withδ(oi jk)=C∆(A(oi jk)). We adopt the heuristic to as-
sign the total delay to a single pass operation rather than to partition the total de-
lay over a number of pass operations because the latter increases the computation
workload and does not decrease the storage workload. So we chooseδ(oi j1) =

maxf0;d(δ j ((o;n)[i])�mi j Ω((o;n)[i]))=(p(o)q(o))eg andδ(oi jk) = 0 for all 1<
j � mi j . We bound the value of the integermi j by dδ j((o;n)[i])=Ω((o;n)[i])e be-
cause larger values increase the computation workload but do not decrease the stor-
age workload. It is easily shown that the values in this range satisfy the precedence
constraint approximation.

We now compute a set of potential delay lines for each storage timeδ j((o;n)[i])
by computing delay assignment values for all integersmi j in the range from 1 up
to dδ((o;n)[i])=Ω((o;n)[i])e. From this set of solutions we select a delay line
oi j1; : : : ;oi jmi j such that the maximum workload of the processing element sets
A(oi j1); : : : ;A(oi jmi j) is minimal. The first fit decreasing algorithm that we pro-
posed to handle the processing element assignment is no longer suited because it
does not strive to meet this objective. The algorithm is designed to minimize the
number of bins by filling the bins as much as possible. Our objective is to minimize
the maximum filling of the available bins. To meet this objective we propose to use
another well-known heuristic bin packing algorithm calledworst fit decreasing.
Again the first step is to sort the items according to decreasing size. The second
step is to assign the sorted items iteratively to the emptiest bin. We define emptiest
as having the lowest workload, i.e., we assign each operationoi jk to a bin A(oi jk)

in such a way that the resulting workload

max

�
RA(OA(oi jk))

CA(A(oi jk))
;
R∆(OA(oi jk))

C∆(A(oi jk))

�

is minimal. The resource constraints are infeasible if this workload exceeds one.

5.3.6 Successive Delay Minimization

An important issue in the decomposition of the delay management problem is the
fact that the delay assignment step is performed under the assumption that the time
assignment is optimal with respect to the cost function of the delay minimization
step. The following theorem shows that this assumption can be violated by an
expansion of a signal flow graph with a delay line.

Theorem 5.5. Let (∆;Σ;A;Λ) be an instance of the delay minimization problem,
let σ 2 Σ be an optimal solution with nonzero cost, let o2 O be an operation, let
0� i < q(o) be an integer, and let ri j 2 R((o;n)[i]) be a data precedence such
that δ j((o;n)[i]) > 0. Furthermore, let(∆0;Σ0;A0;Λ0) be the mapping set of signal
flow graph expansion(O0;R0) onto processing element network(P;C) after de-

5.4 Results 87

lay line expansion onδ j((o;n)[i]), and letσ0 2 Σ0 be a time assignment such that
f (σ0)< f (σ) andσ0(o) = σ(o) for all o 2O. Thenσ0 may be a nonoptimal solu-
tion to the corresponding instance of the delay minimization problem.
Proof. Suppose we have a mapping set(A;Λ;∆;Σ) of signal flow graph
(O;R) onto processing element graph(P;C) with O = fo;o0;o00g and R =

fr; r 0; r 00g, where r = ((o;0);(o0;0);(1;b;0)), r 0 = ((o0;0);(o00;0);(1;0;b0)) and
r 00 = (o00;0);(o;0);(1;c;c0)). Furthermore, suppose we have an optimal solution
σ 2 Σ to the corresponding instance of the delay minimization problem such that
δ1((o;0)[0]) > 0, δ1((o0;0)[0]) > 0, andδ1((o00;0)[0]) = 0. Then the cost of the
time assignmentσ is equal tof (σ) = δ1((o;0)[0])+ δ1((o0;0)[0]). Delay line ex-
pansion on precedencer has two results. First the resulting time assignmentσ0

has costf (σ0) = δ1((o0;0)[0]) because of the fact thatσ0(o) = σ(o) for all o2O.
Second the signal flow graph expansion contains data precedencesr01k satisfying
∑m01

k=1Ω(r01k)� σ(o0)�σ(o)�∑m01
k=1 Ω(r01k). We now have that it is possible to in-

crease the value ofσ(o0) and to decrease the value off (σ0) = δ1((o0;0)[0]) unless
σ(o0)�σ(o) is equal to the upper bound∑m01

k=1 Ω(r01k), 2

The violation of the above-mentioned assumption increases the resource require-
ments more than necessary. To prevent this we perform an additional delay min-
imization step after a delay line expansion. Each delay line expansion stores the
output of an invocationi of terminal(o;n), with o2 O and 0� i < q(o), as input
for the consumers of the data precedences R((o;n)[i]). To avoid fragmentation of
the total storage requirements into many small delays we handle the invocations
according to decreasing storage requirements.

5.4 Results

In this section we illustrate the operation of the proposed approach. Next we
present the results of the approach on the set of industrially relevant problem in-
stances presented in Chapter 2. Finally we discuss these results.

Figure 5.2 shows the operation of the proposed delay management approach.
The value of the cost function that is minimized in the delay minimization step
indeed decreases after each delay assignment step. However, the number of prece-
dence constraint violations may increase in order to minimize the value of the cost
function. For the instances shown in Figure 5.2 it holds that the number of iter-
ations is larger than the initial number of precedence constraint violations. This
shows that distribution of the total delay requirements over the signal flow graph
can change after each delay assignment step.

Table 5.1 shows the results of the presented delay management approach on the
signal flow graphs that are mapped onto theVSP1FLEX processor network. Note that
the positive value of the cost function shows that the relaxation of the precedence

88 Delay Management

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14
iteration number

cost function

(a) CONTRAST.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14
iteration number

#precedence constraint violations

(b) CONTRAST.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25
iteration number

cost function

(c) HSRC.

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25
iteration number

#precedence constraint violations

(d) HSRC.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80
iteration number

cost function

(e) VSRC.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80
iteration number

#precedence constraint violations

(f) VSRC.

Figure 5.2. Delay management results for the signal flow graphsCONTRAST,
HSRC, andVSRC that are mapped onto theVSP2FLEX processor network. The
cost functionf (σ) and the number of precedence constraint violations are shown
as a function of the number of iterations.

5.4 Results 89

Table 5.1. Delay management results of the signal flow graphs that are mapped
onto theVSP1FLEX processor network. From left to right the columns list the
number of operations and data precedences, the computation requirementRA and
utilization RA=CA � 100% per processing element type set, the storage require-
mentR∆ and utilizationR∆=C∆ �100%, the value of the cost functionf (σ), and
the number of precedence constraint violations #.

SFG jOj jRj RA R∆ f (σ) #
ALE ALE ;OE

YUVTORGB 41 80 17:00 71 19:00 30 0 0 24:00 3
HORCOMPR 86 205 5:00 21 8:00 13 2048 25 1:94 17
IJNTEMA1 176 343 11:19 47 16:19 25 1580 19 3:69 31
CORMACK2 159 297 8:81 37 11:81 18 2564 31 2:63 28
CONTOUR1 83 191 17:44 73 19:44 30 3024 37 25:44 17
MONZA2 83 170 19:63 82 24:63 38 3440 42 31:00 7
VDP 165 396 16:25 68 18:44 29 3568 44 6:50 31
GAMMA 261 454 12:06 50 16:00 25 1264 15 74:25 15
HISTMOD2 198 376 9:00 38 12:06 19 957 12 3:00 19
PANORAMA 92 251 12:06 50 16:19 25 6144 75 5:94 2
VIDIWALL 167 424 18:69 78 24:25 38 4696 57 4:00 21
IJNTEMA2 277 557 20:56 86 24:31 38 2076 25 38:19 15
CORMACK1 202 460 21:81 91 22:81 36 6432 79 0:94 15
MONZA1 248 524 17:69 74 19:94 31 4411 54 2:13 9
MWTV 399 712 17:94 75 19:94 31 3424 42 9:56 33

constraints is violated initially in all problem instances. This indicates the need
for delay management. Table 5.2 shows the results of the presented delay man-
agement approach on the signal flow graphs that are mapped onto theVSP2TEST

processor network. Again the positive value of the cost function shows that the re-
laxation of the precedence constraints is violated initially in all problem instances.
Furthermore, the values of the cost function in Tables 5.1 and 5.2 differ because
the periods of the operations in the signal flow graph differ. Table 5.3 shows the
results of the presented delay management approach on the signal flow graphs that
are mapped onto theVSP2FLEX processor network. Once again the relaxation of
the precedence constraints is violated initially in all problem instances.

Table 5.3 shows that the first delay minimization step of signal flow graph
CONTRAST indicates that at least321 memory locations are required to satisfy the
precedence constraints. From the increase of3.69 in computation requirements re-
sulting in118 silo locations and the increase of278 in storage requirements com-
pared to Table 4.4 we conclude that the delay management step has allocated a
total of396 memory locations to satisfy the precedence constraints. To this end14

90 Delay Management

Table 5.2. Delay management results of the signal flow graphs that are mapped
onto theVSP2TEST processor network. From left to right the columns list the
number of operations and data precedences, the computation requirementRA and
utilization RA=CA � 100% per processing element type set, the storage require-
mentR∆ and utilizationR∆=C∆ �100%, the value of the cost functionf (σ), and
the number of precedence constraint violations #.

SFG jOj jRj RA R∆ f (σ) #
ALE ALE ME 2

BE;OE

YUVTORGB 41 80 8:50 71 9:50 40 0:00 0 0 0 11:50 3
HORCOMPR 86 205 2:50 21 3:56 15 0:50 13 2048 25 2:13 20
IJNTEMA1 184 358 5:53 46 7:84 33 0:91 23 1580 19 4:06 37
CORMACK2 163 301 4:41 37 5:97 25 0:72 18 2564 31 3:09 36
CONTOUR1 82 191 8:72 73 9:69 40 0:78 20 3024 37 14:41 18
MONZA2 79 166 9:81 82 11:56 48 1:38 34 3440 42 16:19 8
VDP 191 422 8:13 68 9:22 38 1:44 36 3568 44 4:78 33
GAMMA 243 436 6:03 50 7:13 30 1:09 27 1334 16 83:56 24
HISTMOD2 211 389 4:50 38 6:00 25 0:94 23 957 12 10:53 30
PANORAMA 97 256 6:03 50 8:25 34 2:25 56 6144 75 3:75 8
VIDIWALL 168 425 9:34 78 11:28 47 1:47 37 4696 57 4:41 27
IJNTEMA2 291 580 10:28 86 12:13 51 1:16 29 2084 25 30:06 27
MONZA1 261 537 8:84 74 10:19 42 1:25 31 4411 54 8:25 23
MWTV 399 712 8:97 75 9:97 42 1:75 44 3424 42 5:66 36

Table 5.3. Delay management results of the signal flow graphs that are mapped
onto theVSP2FLEX processor network. From left to right the columns list the
number of operations and data precedences, the computation requirementRA and
utilization RA=CA � 100% per processing element type set, the storage require-
mentR∆ and utilizationR∆=C∆ �100%, the value of the cost functionf (σ), and
the number of precedence constraint violations #.

SFG jOj jRj RA R∆ f (σ) #
ALE ALE ME 2

BE;OE

CONTRAST 291 515 40:06 56 43:75 31 4:25 18 13046 27 321:00 8
FDXD1 181 532 26:09 36 29:34 20 2:28 10 608 1 116:81 22
FDXD2 158 448 30:75 43 35:19 24 5:22 22 8800 18 114:78 15
MAT30UP 148 309 30:63 43 31:88 22 2:38 10 2795 6 15:54 5
HSRC 343 793 34:91 48 41:47 29 6:06 25 13694 28 19:50 19
VSRC 416 1057 32:56 45 43:09 30 7:03 29 10047 20 113:22 61

5.5 Summary 91

pass operations have been added to the signal flow graph; see Table 2.3. The same
comparison for signal flow graphHSRC gives a delay minimization estimate of20
locations versus a delay management allocation of210 locations thereby extending
the signal flow graph with31 pass operations. For signal flow graphVSRCthe delay
minimization estimate is113 locations and the delay management allocation is450

locations using131 additional pass operations. From these numbers we conclude
that we are not able to minimize the number of memory locations. The main reason
for this is the specific addressing scheme for writing data into a silo that cyclically
writes all available locations.

Further inspection of the delay management results shows that the utilization
of the different resources is well balanced. The difference between the average uti-
lization of the arithmetic and logic element, buffer elements, and output elements,
the average utilization of the memory elements, and the average utilization of the
storage capacity decreases in many problem instances. From this we conclude that
the delay assignment strategy effectively balances the workload over the resources.

5.5 Summary

In this chapter we have presented an approach to handle the delay management
problem. The approach decomposes the delay management problem into the delay
minimization problem and the delay assignment problem. The objective of the
delay minimization problem is to compute a time assignment that minimizes the
lifetimes of the operands. The objective of the delay assignment problem is to
allocate room for each operand in one or more memories. We have shown that the
delay minimization problem is a special case of the dual of the minimum cost flow
problem which can be solved in polynomial time by network flow techniques. We
have proposed a bin packing technique to handle the delay assignment problem.
The results indicate that the presented approach effectively handles our instances
of the delay management problem and that it effectively balances the workload
over the resources.

6
Partitioning

In this chapter we present a solution strategy to handle the partitioning problem.
Lengauer [1990] has given an overview of techniques that can be applied to par-
titioning problems. The solution strategy is based on hierarchical bipartitioning
which decomposes the single multi-way partitioning problem into multiple two-
way partitioning problems. Such an approach reduces the set of feasible solutions
but it effectively handles the problem of routing the flow of data through the pro-
cessor network.

The outline of this chapter is as follows. In Section 6.1 we decompose the
partitioning problem into a processor assignment problem and a type assignment
problem, thereby formulating the processor assignment problem as a sequence of
two-way partitioning problems. In Sections 6.2 and 6.3 we present solution ap-
proaches to handle these subproblems. In Section 6.4 we present the results of the
partitioning approach on the set of problem instances. Finally, in Section 6.5 we
summarize the contents of this chapter.

6.1 Problem Decomposition

The goal of the partitioning problem is to find a signal flow graph expansion and a
processing element assignment set that maps each pair of operations that is related
by a data precedence onto a pair of processing elements that is interconnected

93

94 Partitioning

by a communication channel in such a way that the computation, storage, and
communication constraints are satisfied.

Definition 6.1 (Partitioning Problem). Let (O;R) be a signal flow graph, let
(P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set of
(O;R) onto(P;C) that satisfies the relaxations of the type, array, computation, com-
munication, periodicity, and storage constraints. Find a signal flow graph(O0;R0)

such that(O;R) � (O0;R0) and find a mapping set(∆0;Σ0;A0;Λ0) of (O0;R0) onto
(P;C) such thatjV(A0(o))j = jT(A0(o))j = 1, for all o2O0, the connectivity con-
straints, and the relaxations of the type, array, computation, communication, peri-
odicity, and storage constraints are satisfied, if they exist. 2

We decompose this multi-way partitioning problem into multiple two-way parti-
tioning problems because in a two-way partition, unlike in a multi-way partition,
the processing element assignment also specifies the channel assignment. This is
due to the fact that the communication between the two subsets of a two-way par-
tition can have only one route, whereas the communication between two subsets of
a multi-way partition can have multiple routes via a third set of the partition.

Figure 6.1 shows an example of a processing element assignment set which
maps a signal flow graph onto a network of three processors. We assume that oper-
ationo is mapped onto processorv1 and that operationo0 is mapped onto processor
v2. Without an expansion of the signal flow graph, data precedencer1 has to be
mapped onto interconnectioni1. With an expansion of the signal flow graph, data
precedencer1 can be replaced by two data precedencesr2 andr3. Such an expan-
sion introduces an additional pass operationo00 between operationso ando0 which
can be mapped onto processorv2. The data precedencesr2 and r3 can then be
mapped onto the interconnectionsi2 andi3, respectively.

To route the flow of data we propose a solution strategy that tries to find a solu-
tion to the partitioning problem by constructing a sequence of two-way partitions
of both the processor network and the signal flow graph. Each two-way partition in
the processor network defines a cut of the interconnections and thus a connectivity
constraint. The sequence of two-way partitions is chosen such that each intercon-
nection is cut exactly once. Therefore, it represents the entire set of connectivity
constraints. Formally, we represent a sequence of two-way partitions as a sequence
of multi-way partitions as follows.

Definition 6.2 (Two-Way Partitioning Scheme). Let (P;C) be a processing ele-
ment network. Then a sequenceP1; : : : ;Pn is called atwo-way partitioning scheme
if and only if Pi is a partition ofP into i subsets for all 1� i � n, jPi nPi+1j = 1
andjPi+1nPi j= 2 for all 1� i < n, andPn = ff(v;e) 2 P j v= v0g j (v0;e0) 2 Pg.

2

6.1 Problem Decomposition 95

v1 v3

v2

o ’ o

i1

i2 i3

r1

Figure 6.1. Example of a processing element assignment set that maps operationo
onto processorv1 and operationo0 onto processorv3. The communication between
operationso ando0 specified by data precedencer1 can be routed via interconnec-
tion i1 or via interconnectionsi2 andi3.

Each consecutive pair(Pi ;Pi+1) in a two-way partitioning scheme encodes a two-
way partitionPi+1 nPi of the processing element setPi nPi+1. A potential two-
way partitioning scheme in the example of Figure 6.1 is the sequencefPfv1;v2;v3gg,
fPfv1g;Pfv2;v3gg, fPfv1g;Pfv2g;Pfv3gg, wherePV = f(v;e) 2 P j v 2 Vg. Each two-
way partition in the signal flow graph partitions the operations that are executed
on the processing elements in the setPi n Pi+1 over the subsets in the two-way
partitionPi+1nPi .

In order to model the stepwise refinement of the connectivity constraints we
introduce an abstraction of processing element networks which extends the set of
communication channels for a given partition of the processing elements.

Definition 6.3 (Processing Element Network Abstraction).Let (P;C) be a pro-
cessing element network and letP be a partition ofP. Then the pair(P;C) is called
aprocessing element network abstractionwhere

C = f(p; p0) 2 P2 j ((p;m);(p0;m0)) 2C_9P̂2P (p; p
0) 2 P̂2g: 2

A two-way partitioning scheme has an associated sequence of processing element
network abstractions(P1;C1); : : : ;(Pn;Cn). The last setCn of communication chan-
nels contains only real communication channels that are in the setC. The other
setsCi, 1� i < n, of communication channels contains also fictive communication
channels that are not in the setC. Our partitioning approach handles the com-
munication and connectivity constraints by stepwisely removing the fictive com-
munication channels. A mapping set(∆;Σ;A;Λ) of signal flow graph(O;R) onto
processing element network(P;C) is called apartition of (O;R) onto a process-
ing element network abstraction(P;C) if the processing element assignment set A

96 Partitioning

partitions the processing elements according to the partitionP and obeys the com-
putation and storage constraints as well as the communication constraints imposed
by the communication channels of the setC. Formally we define a partition as
follows.

Definition 6.4 (Partition). Let (∆;Σ;A;Λ) be a mapping set of signal flow graph
(O;R) onto processing element network(P;C) and let(P;C) be a processing ele-
ment network abstraction of(P;C). Then the mapping set(A;Λ;∆;Σ) is called a
partition of (O;R) onto(P;C) if and only if for all o2O there exists âP2 P such
that it holds that

A(o)� P̂:

A partition (A;Λ;∆;Σ) is called feasible if and only if it satisfies the relax-
ations of the type, array, computation, and storage constraints, and for allr =

((o;n);(o0;n0);(p;b;b0)) 2 R it holds that

A(o)�A(o0)� C;

and for allP̂; P̂0 2 P it holds that

RΛ((OP̂;OP̂0))�CΛ((P̂; P̂
0));

where (OP̂;OP̂0) = fr 2 R j A(o) � P̂ ^ A(o0) � P̂0g represents the set of
data precedences from operations inOP̂ to operations inOP̂0, and (P̂; P̂0) =

f((p;m);(p0;m0))2C j p2 P̂^p0 2 P̂0g represents the set of communications chan-
nels from processing elements inP̂ to processing elements in̂P0. 2

We decompose the partitioning problem into a processor assignment problem
and a type assignment problem. The processor assignment problem decomposes
the multi-way partitioning problem into a sequence of two-way partitioning prob-
lems. The resulting processing element assignment set ensures thatjV(A(o))j = 1
for all o 2 O because of the definition of(Pn;Cn). The goal of the subsequent
type assignment problem is to further partition the operations onto the different
processing element types in order to ensure thatjT(A(o))j = 1 for all o2O.

Definition 6.5 (Processor Assignment Problem).Let (∆;Σ;A;Λ) be a mapping
set of signal flow graph(O;R) onto processing element network(P;C). Find a
two-way partitioning schemeP1; : : : ;Pn and feasible partitions(∆i ;Σi;A i ;Λi) of
signal flow graph expansions(Oi;Ri) onto processing element network abstractions
(Pi ;Ci) for all 1� i � n, if they exist. 2

Definition 6.6 (Type Assignment Problem).Let (∆;Σ;A;Λ) be a partition of a
signal flow graph(O;R) onto a processing element network abstraction(P;C) such
that jV(A(o))j = 1 for all o 2 O. Find a partition(∆0;Σ0;A0;Λ0) of (O;R) onto
(P;C) such thatjV(A0(o))j = jT(A0(o))j = 1 for all o2O, if one exists. 2

6.2 Processor Assignment 97

6.2 Processor Assignment

An important issue in our partitioning approach is the construction of a two-way
partitioning scheme, since this scheme determines the order in which the commu-
nication and connectivity constraints are handled.

6.2.1 Two-Way Partitioning Schemes

In each partitioning step we consider the communication and connectivity con-
straints due to one cut in the processor network under the assumption that the
remaining communication and connectivity constraints can be handled in a sub-
sequent step. If we arrive at the individual processors, then all communication and
connectivity constraints are feasible because the processing elements of a single
processor are fully interconnected by a switch matrix. Our goal is to implement as
much of the communication as possible on these switch matrices because of their
large communication bandwidth. Furthermore, we aim at two-way partitioning
schemes in which the communication bandwidth between the sets of the two-way
partitions increases with the consecutive partitioning steps in order to avoid com-
munication bottlenecks in subsequent steps. We adopt the heuristic proposed by
Jansen [1994] to meet these objectives.

We iteratively construct the two-way partitioning scheme in a bottom-up way
as follows. Initially, we have the individual processors of the processor network
which form partitionPn. For each pair of processors, we define a ratio between the
communication capacities and the computation capacities as follows.

Definition 6.7 (Capacity Ratio). Let (P;C) be a processing element graph and let
P be a partition ofP. Then the functionK : P �P !Q defines thecapacity ratio
for all P̂; P̂0 2 P by

K(P̂; P̂0) =
(CΛ(P̂; P̂0)+1)(CΛ(P̂0; P̂)+1)

CA(P̂)+CA(P̂0)
. 2

Subsequently, we group a pair of processors having the highest capacity ratio. This
pair defines a two-way partition. Next, we consider this group to be a single node
in the processor network from which we derive partitionPn�1, and we repeat the
above-mentioned procedure until the whole processor network is one node which
represents partitionP1.

6.2.2 Two-Way Partitioning Problem

We extend each two-way partitionPi+1 n Pi encoded by a two-way partitioning
scheme with adjacent producing processing elements to model the communication
constraints of each partitioning step. The resulting two-way partition is called a
bipartite processing element set.

98 Partitioning

Definition 6.8 (Bipartite Processing Element Set).Let (P;C) be a processing el-
ement network, letP1; : : : ;Pn be a two-way partitioning scheme, and leti be an
integer such that 1� i < n. Then a pair(P0; P̄0) with P0 = fp2 P j 9p02Pi (p; p

0) 2

Ci+1g, P̄0 = fp2 P j 9p02P̄i
(p; p0) 2 Ci+1g, andfPi ; P̄ig = Pi+1 nPi , is called abi-

partite processing element set. 2

A two-way partition of the operations that are executed on the processing el-
ements of a bipartite processing element set is called a bipartite operation set. A
bipartite operation set must satisfy a number of constraints in order to obtain a fea-
sible partition. The problem of finding such a bipartite operation set is called the
two-way partitioning problem. Once we have a feasible bipartite operation set, we
update the processing element assignment set and, if necessary, insert additional
pass operations to satisfy the connectivity constraint A(o)�A(o0)� Ci+1.

Definition 6.9 (Bipartite Operation Set). Let (P;C) be a processing element net-
work, let P1; : : : ;Pn be a two-way partitioning scheme, and let(∆;Σ;A;Λ) be a
partition of a signal flow graph(O;R) onto a processing element network abstrac-
tion (Pi ;Ci) with 1� i < n, and let(P0; P̄0) be a bipartite processing element set.
Then a pair(O0;Ō0) with O0;Ō0 �O such thatO0[Ō0 = fo2O j A(o) � P0[P̄0g

and O0 \ Ō0 = /0 is called abipartite operation setif and only if both (Ô; P̂) 2
f(O0;P0);(Ō0; P̄0)g satisfy the array constraints, i.e., for allo;o0 2 O satisfying
a(o) = a(o0) it holds thato2 Ô if and only if o0 2 Ô, the storage constraints, i.e., it
holds that

R∆(Ô)�C∆(P̂);

the computation constraints, i.e., it holds that

RA(Ô)�CA(P̂);

and the communication constraints, i.e., for allV 2 Pi \Pi+1 it holds that

RΛ((OV ;Ô))�CΛ((V; P̂)) ^ RΛ((Ô;OV))�CΛ((P̂;V)):

A bipartite operation set is calledfeasibleif and only if

RΛ((O0;Ō0))�CΛ((P0; P̄0))^RΛ((Ō0;O0))�CΛ((P̄0;P0)): 2

To illustrate the concept of bipartite operation sets we resort to the example of
Figure 6.1. Assuming that we are given the partitioning schemefPfv1;v2;v3gg,
fPfv1g;Pfv2;v3gg, fPfv1g;Pfv2g;Pfv3gg we define two bipartite operation sets. We de-
fine the first bipartite operation set as(fog;fo0g) which assigns operationo to
processorv1 and operationo0 to processorsv2 andv3. We assume that operationo
cannot be executed on an output element. In that case we have to expand the signal
flow graph with a pass operationo1 that can be executed on the first output element
p1 or fifth output elementp5 of processorv1. These output elements are included

6.2 Processor Assignment 99

in the second bipartite processing element set(Pfv2g[fp5g;Pfv3g[fp1g), i.e., the
first output element is added toPfv3g and the fifth output element is added toPfv2g.
If operationo0 is executed on processorv2, then the second bipartite operation set
has to be defined as(fo1;o0g; /0) in which case operationo1 is executed on out-
put elementp5. Alternatively, if operationo0 is executed on processorv3, then the
second bipartite operation set can be defined either as(/0;fo1;o0g) in which case
operationo1 is executed on output elementp1, or as(fo1g;fo0g) in which case
operationo1 is executed on output elementp5. In the latter case we have to expand
the signal flow graph with a second pass operationo2 that is executed on the first
output element of processorv2.

Definition 6.10 (Two-Way Partitioning Problem). Let (P;C) be a processing el-
ement network, letP1; : : : ;Pn be a two-way partitioning scheme, leti be an integer
such that 1� i < n, let (P0; P̄0) be a bipartite processing element set, let(O;R) be a
signal flow graph, and let(∆;Σ;A;Λ) be a partition of(O;R) onto(Pi ;Ci). Find a
feasible bipartite operation set(O0;Ō0), if one exists. 2

Theorem 6.1. The two-way partitioning problem is NP-hard in the strong sense.
Proof. For a given instance of the bipartitioning problem we can verify in poly-
nomial time whether the bipartite operation set(O0;Ō0) is feasible. Hence the
two-way partitioning problem is inNP.

To prove that the two-way partitioning problem is NP-hard we use the follow-
ing reduction from the minimum cut into bounded sets problem which is proved to
be NP-hard in the strong sense by Garey et al. [1976]. Minimum cut into bounded
sets can be defined as follows. Given are a graph(V;E), verticess; t 2V, positive
integerB� jVj, and positive integerK. Find a partition ofV into disjoint subsets
V1 andV2 such thats2V1, t 2V2, jV1j � B, jV2j � B, and the number of edges with
endpoints inV1 andV2 is no more thanK.

Given an arbitrary instance of minimum cut into bounded sets as defined above,
we construct a corresponding instance of the two-way partitioning problem such
that a cut exists if and only if a bipartite operation set exists. To this end we
define an operationov for all v 2 V and two precedencesr(v;v0) and r(v0;v) for all
edgesfv;v0g 2 E. The periods of the operations and precedences equal one. The
operationos has typeIO, the operationot has typeOO, and the other operations
have typeALO. Furthermore, we define a processing elementpv for all v2V, and a
bipartite processing element set(P0; P̄0) with jP0j = jP̄0j= B, such thatt(ps) = IN,
t(pt) = OUT, and the other processing elements have typeALE. The setsP0 andP̄0

are chosen such thatps 2 P0 and pt 2 P̄0. There areK connections fromP to P̄0,
andK connections vice versa.

SupposeV1 andV2 define a feasible minimum cut. ThenV1 andV2 define a
bipartite operation set in which the operations ofV1 are executed on processing

100 Partitioning

elements ofP0, and the operations ofV2 are executed on processing elements ofP̄0.
The computation constraints are feasible because operationos is inV1, operationot

is in V2, andjP0j = jP̄0j= B. The communication constraints are feasible, because
the communication requirement fromP0 to P̄0, or vice versa, is no more thanK.

Suppose(O0;Ō0) is a feasible bipartite operation set. ThenV1 = O0 andV2 = Ō0

define a minimum cut. We haves2 V1, t 2 V2, jV1j � B, and jV2j � B because
the computation constraints are feasible. Furthermore, the number of edges with
endpoints inV1 andV2 is no more thanK because the communication constraints
are feasible. 2

6.2.3 Local Search

We cannot expect to find a polynomial-time algorithm that solves the two-way par-
titioning problem, because it is NP-hard. The proof of this result shows the relation
with graph partitioning problems for which Kernighan and Lin [1970] have devel-
oped an approximation algorithm that is calledvariable-depth search. Variable-
depth search is a local search algorithm with a sophisticated neighborhood struc-
ture.

Local search algorithms are general approximation algorithms that are based
on stepwise improvement of the value of a cost function by exploring neighbor-
hoods. They start of with a given initial solution, which is often randomly chosen.
Subsequently, they search the neighborhood for a better solution, i.e., a solution
with lower cost. If such a solution is found, it becomes the current solution. Local
search algorithms terminate if the neighborhood of the current solution does not
contain better solutions. The main advantage of local search algorithms is that they
are generally applicable and flexible since the specification of a search space, a
cost function, and a neighborhood suffices, and a combinatorial optimization prob-
lem by definition inhibits the concepts of search space and cost function. For an
overview of local search, the reader is referred to Aarts and Lenstra [1997]. For-
mally, a local search problem is defined as follows.

Definition 6.11 (Local Search Problem).A local search problemis a 3-tuple
(S; f ;N), where thesearch spaceS denotes the set of candidate solutions, the
cost function fis a mapping defined asf : S ! IR, and theneighborhood structure
N is a mapping defined asN : S ! P(S), which defines for each solutioni 2 S
a setN (i) � S. The setN (i) is called theneighborhoodof solution i, and each
j 2N (i) is called aneighborof i. The problem is to find a start solutions2 S and
a sequence of neighborsN 0(s);N 1(s);N 2(s); : : : ;N n(s), whereN 0(s) = s and
N n(s) = i�, that leads to agloballyoptimum solutioni� 2 S such thatf (i�)� f (i),
for all i 2 S. A solution ı̂ 2 S is said to be alocally optimum solution with respect
toN if f (ı̂)� f (i), for all i 2N (ı̂). 2

6.2 Processor Assignment 101

Generally speaking, the search spaceS is not given explicitly. Usually, one re-
sorts to the use of a compact representation from which each element inS can be
computed using a polynomial-time algorithm.

Local search algorithms terminate in a local minimum unless the neighborhood
is exact, i.e., each local optimum ˆı 2 S is also a global optimum. However, exact
neighborhoods are usually impractical since they lead to a complete enumeration
of the search space. Therefore, one resorts to non-exact neighborhoods resulting
in locally optimum solutions. There is generally no guarantee to the quality of a
local optimum which often depends on the initial solution. A well-known neigh-
borhood structure is the exchange neighborhood that performs very well for graph
partitioning in combination with the technique called variable-depth search.

Definition 6.12 (Exchange).Let (A;B) be a bipartite set, and letX�A andY�B
be two subsets. Then, theexchangeof X andY results in the bipartite set(A;B)(X;Y)

which is defined by(A;B)(X;Y) = ((AnX)[Y;(BnY)[X). 2

To limit the computation time one often uses a two-exchange neighborhood
which bounds the cardinality of each of the exchanged subsets by one. The
variable-depth search technique replaces a single two-exchange by a well-chosen
sequence of two-exchanges using the gain of an exchange to guide the search.
The length of such sequences may vary. The basic idea behind the variable-depth
search exchange is to allow unfavorable two-exchanges in the sequence to even-
tually obtain a favorablek-exchange without exhaustive search of thek-exchange
neighborhood.

The variable-depth search algorithm proceeds as follows. Each iteration starts
with a given initial solution as current solution. The neighborhood of the current
solution is searched for the best neighbor. This neighbor is accepted as current
solution. When a neighbor is accepted, the exchanged operations are marked and
cannot be exchanged again within the same iteration. Consequently, the length of
the iterations is bounded since the size of the subsets of the bipartite set is bounded.
After an iteration has been completed, a bipartite set with minimum cost is selected
from the generated sequence of solutions. The algorithm terminates when the cost
of the initial solution of the iteration has not improved. Otherwise, a new iteration
is started using the best solution from the previous iteration as initial solution.

To analyze the complexity of local search problems, Johnson et al. [1988] have
introduced the classPLS of polynomial-time local search problems which defines
the class of local search algorithms for which local optimality can be verified in
polynomial time. A combinatorial local search problem is inPLS if and only if
for each instance there exist polynomial-time algorithms to determine a start solu-
tion, to determine the value of the cost function, and to determine local optimality
or a neighbor with better cost. Furthermore, there exists the classPLSC of PLS-

102 Partitioning

complete problems which are the hardest ones inPLS. The assumption is that
for these problems instances exist that require superpolynomial time to find a lo-
cally optimal solution. In order to prove that a problem is PLS-complete one must
show that it is inPLS and that there exists a PLS-reduction from a known PLS-
complete problem. The notion of PLS-reducibility is defined in such a way that a
PLS-reduction does not only map instances of one problem onto those of another
problem, as is the case with reductions within the classical NP-completeness com-
plexity classNPC, but also maps the neighborhood structure of one problem onto
that of another problem such that the topology of both structures with respect to
local optimality is the same.

Definition 6.13 (Polynomial-Time Local Search Reduction).A problem π 2

PLS is PLS-reducibleto another problemπ0 2 PLS if and only if there exists a
polynomial-time algorithm that maps solutionsi of instancesx of π onto solutions
i0 of instancesx0 of π0 such thati is a local optimum forx if and only if i0 is a local
optimum forx0. 2

6.2.4 Two-Way Partitioning

To handle the two-way partitioning problem, it is transformed into an optimiza-
tion problem in which computation and storage constraints are treated as ‘hard’
constraints that must be satisfied by all solutions in the search space, whereas the
communication constraints are treated as ‘soft’ constraints by taking them into
account as a cost measure. This choice is based on the fact that it is easy to cal-
culate solutions that satisfy the computation and storage constraints, but it is hard
to take the communication constraints into account. The reason for this is that
the computation requirements of an operation are fixed, while the communication
requirements of an operation depend on the processing element assignment of its
neighboring operations. The cost function is chosen such that low-cost solutions
have a high probability of being feasible with respect to the communication con-
straints.

More specifically, for a given instance of the two-way partitioning problem we
define the search space as the set of all bipartite operation sets. To explore this
space we adopt a two-exchange neighborhood, which means that, except for ar-
rays, we do not consider exchanges of sets containing more than one operation.
We define the value of the cost function with a given bipartite operation set as a
weighted sum of the external communication requirements between the two sub-
sets and the internal communication requirements of both subsets to communicate
the results of pass operations with zero delay. The reason to include the external
communication requirements is to increase the probability that low-cost solutions
are feasible. The reason to include the internal communication requirements is

6.2 Processor Assignment 103

to increase the probability that pass operations with zero delay that have been in-
serted during delay management are executed on output elements. Formally, the
local search variant of the two-way partitioning problem is defined as follows.

Definition 6.14 (Local Search Variant of the Two-Way Partitioning Problem).
Let (P;C) be a processing element network, letP1; : : : ;Pn be a two-way partition-
ing scheme, and let(∆;Σ;A;Λ) be a partition of a signal flow graph(O;R) onto
a processing element network abstraction(Pi ;Ci) with 1� i < n, and let(P0; P̄0)

be a bipartite processing element set. Then, alocal search variant of the two-way
partitioning problemis a 3-tuple(S; f ;N), where the search spaceS represents
the set of bipartite operation sets, i.e.,

S = f(O0
;Ō0) j (O0

;Ō0) is a bipartite operation setg;

the cost functionf : S !Q is defined byf = fe+ fi , wherefe : S !Q is an external
communication cost function defined by

fe((O
0
;Ō0)) = αeRΛ((O

0
;Ō0))+βeRΛ((Ō

0
;O0));

and fi : S !Q is an internal communication cost function defined by

fi((O
0
;Ō0)) = αiRΛ((O

0
PO;O

0))+βiRΛ((Ō
0
PO;Ō

0));

whereOPO = fo2O j t(o) = PO^δ(o) = 0g, and the neighborhood structureN :
S !P(S) is defined by

N (O0
;Ō0) =

�
(O0

;Ō0)(X;Y) 2 S
X �O0^ (jXj � 1_ jA(X)j= 1)^
Y� Ō0^ (jYj � 1_ jA(Y)j= 1)^X[Y 6= /0

�
;

with A(X) = fa(o) 2 A j o2 X^ t(o) 2 fRO;WOgg denoting the set of arrays that
are accessed by operations inX. The weights of the cost functions are equal to the
inverses of the corresponding external and internal communication capacities, i.e.,

αe =
1

CΛ((P0; P̄0))
^βe=

1
CΛ((P̄0;P0))

^αi =
1

CΛ((P0
PO;P0))

^βe=
1

CΛ((P̄PO; P̄0))
;

wherePPO = fp 2 P j t(p) 2 fALE;BE;OEgg. The weights are equal to∞ if the
capacities equal zero. 2

We use a reduction from the uniform graph partitioning problem to show that
the local search variant of the two-way partitioning problem with the variable-depth
search neighborhood is PLS-complete. The uniform graph partitioning problem
can be defined as follows.

Definition 6.15 (Uniform Graph Partitioning). Let (V;E) be an undirected
graph withjVj = 2n vertices and costc(e) for all edgese2 E. Find a partition
V = A[B with jAj = jBj such that∑fa;bg2E;a2A;b2B c(fa;bg) is minimal, if one
exists. 2

104 Partitioning

Theorem 6.2. The local search variant of the two-way partitioning problem is
PLS-complete.
Proof. In order to prove that the local search variant of the two-way partitioning
problem is inPLS, we have to show the existence of three polynomially com-
putable functions. First, we have to compute an initial bipartite operation set. To
this end, we formulate the problem as a bin packing problem with two bins rep-
resenting two processing element sets which we solve by exhaustive search. The
items and the bins have multi-dimensional sizes. Each dimensioni corresponds to
a resource type for which we have a capacityci . The vector(c1; : : : ;cn) represents
the multi-dimensional bin capacity. For each non-read and non-write operation
and for each array we define an item vector consisting of zeros, except in the di-
mensions that correspond to the frequency, the delay, and the array size. Since
the period and delay of the operations, and the size of the arrays are bounded, the
number of different vectors is bounded and the problem is solvable in polynomial
time. Second, the value of the cost function is clearly polynomially computable.
Third, the number of neighboring solutions is bounded byjOj2+ jOj, whereO de-
notes the set of operations. Since the value of the cost function is polynomially
computable in each neighbor, either a neighbor with better cost can be determined
or local optimality can be detected in polynomial time. Hence, we conclude that
the local search version of the two-way partitioning problem is inPLS.

Furthermore, we prove that uniform graph partitioning with the variable-depth
search neighborhood, which is known to be PLS-complete; see Johnson et al.
[1988] or Schäffer and Yannakakis [1991], is a special case of the local search
variant of the two-way partitioning problem. For simplicity we assume that both
mechanisms to select one neighbor out of a set of neighbors which have equal
cost are equivalent and deterministic. Let(V;E) be an undirected graph with 2n
vertices,n 2 IN, and letc : E ! IN define the cost on each edge. The cost of a
partition is computed by adding the cost of the edges of the cut. We define

m= maxf ∑
v02V;v0 6=v

c(fv;v0g) j v2Vg;

and we construct an undirected graph(V;E0) by replacing each edgee2 E with
c(e) new edges. From this graph we construct a signal flow graph(O;R), where
O = V, t(o) = ALO, and p(o) = 1 for all o 2 O. The set of data precedences
is constructed by replacing each edgee2 E0 with two data precedences which
have opposite directions and periodm. The numbersb andb0 have to be chosen
such that the signal flow graph is well-defined, and for allr1; r2 2 R, wherer1 =

((o;n);(o01;n
0
1);(p1;b1;b01)) andr2 = ((o;n);(o02;n

0
2);(p2;b2;b02)), it holds that

b1 � b2 (mod gcd(
p1

p(o)
;

p2

p(o)
))) r1 = r2;

6.2 Processor Assignment 105

which is always possible because of the definition ofm. We assume that signal flow
graph(O;R) has to be partitioned onto an equally sized partition of a processor net-
work consisting of 2n processors. Each processor contains precisely one arithmetic
and logic element. For the weights of the cost function we chooseαe = βe= 1 and
αi = βi = 0. Clearly the solution spaces of the instances of uniform graph parti-
tioning and the local search instance of the two-way partitioning problem are iso-
morphic and both cost functions are linearly related by factor 2m, which completes
the proof. 2

An important issue in local search is the incremental update of the value of the
cost function in order to evaluate the cost function for neighboring solutions. We
demonstrate that our cost function can be computed incrementally by analyzing the
effect of an exchange of one operation between the elements of a bipartite opera-
tion set on the value of the cost function. To this end we distinguish between four
types of communication, namely external output, external input, internal output,
and internal input; see Figure 6.2. With these types we associate four communica-

o

external
output

external
input

internal
output

internal
input

Figure 6.2. Classification of communication into external output, external input,
internal output, and internal input.

tion costs. The cost of output is described by the communication requirements of
Definition 4.4. To describe the cost of input we introduce a similar definition.

Definition 6.16 (Communication Requirements).Let R be a set of data prece-
dences. Then theoutput requirement RΛ(R) is defined by

RΛ(R) = ∑
((o;n);(o0;n0);(p;b;b0))2R

jfi 2 INq(o) j b� i (mod p
p(o))g

p(o)q(o)
;

and theinput requirement R0Λ(R) is defined by

R0
Λ(R) = ∑

((o;n);(o0;n0);(p;b;b0))2R

jfi 2 INq(o0) j b0 � i (mod p
p(o0))g

p(o0)q(o0)
: 2

Using these communication requirements we incrementally update the cost after
the move of an operation as shown in the following theorem.

106 Partitioning

Theorem 6.3. Let (O0;Ō0) be a bipartite operation set. Then the change of the
cost due to a move of an operation o2O0 is given by f((O0;Ō0)(fog; /0))� f (O0;Ō0)

and equals

αe(R
0
Λ((fog;O

0))�RΛ((fog;Ō
0)))+βe(RΛ((fog;O

0))�R0
Λ((fog;Ō

0)))�

αi(RΛ((fogPO;O
0))+R0

Λ((fog;O
0
PO)))+βi(R

0
Λ((fog;Ō

0
PO))+RΛ((fogPO;Ō

0))):

The change of the cost due to a move of an operation o2 Ō0 is given by
f ((O0;Ō0)(/0;fog))� f (O0;Ō0) and equals

βe(R
0
Λ((O

0
;fog))�RΛ((Ō

0
;fog)))+αe(RΛ((O

0
;fog))�R0

Λ((Ō
0
;fog)))�

βi(RΛ((O
0
;fogPO))+R0

Λ((O
0
PO;fog)))+αi(R

0
Λ((Ō

0
PO;fog))+RΛ((Ō

0
;fogPO))):

Proof. Suppose we move an operationo 2 O0. Then the internal data flow be-
comes external which increases the cost withαeR0

Λ((fog;O
0))+βeRΛ((fog;O0))

and decreases the cost withαi(RΛ((fogPO;O0)) + R0
Λ((fog;O

0
PO))). At the

same time, the external data flow becomes internal which decreases the
cost with αeRΛ((fog;Ō0)) + βeR0

Λ((fog;Ō
0)) and increases the cost with

βi(R0
Λ((fog;Ō

0
PO))+RΛ((fogPO;Ō0))). The proof of a move of an operationo2 Ō0

is similar. 2

An arbitraryk-exchange can be written as a sequence of moves, so the total change
of the communication cost of ak-exchange can be computed via the cost changes
that correspond to these moves.

6.2.5 Load Balancing

A potential drawback of the proposed partitioning approach is that partitions with
minimum cost may be infeasible. We illustrate this in the following theorem.

Theorem 6.4. Bipartite operation sets with minimum cost may be infeasible.
Proof. Consider the processor network and the signal flow graph of Figure 6.3.
Each processor has three arithmetic and logic elements and all operations and data
precedences have period one. Hence, the weights of the external communication
cost function areαe =

1
2 andβe = 1. The weights of the internal communication

cost function are irrelevant since there are no pass operations. The solution that is
indicated by the matching of the fill patterns of the operations and processors has
cost 2αe+βe = 2 and is feasible. The solution that is indicated by the dashed line
has cost 3αe = 11

2. The latter solution is infeasible, although it has minimum cost,
because the communication capacity from the video signal processor on the left to
the video signal processor on the right is exceeded. 2

In addition there may be an imbalance between the workloads of both subsets in
the resulting two-way partition which makes the subsequent two-way partition-

6.2 Processor Assignment 107

Figure 6.3. Two two-way partitions of a signal flow graph and a two-way partition
of a processor network. The feasible solution indicated by the matching of the
fill patterns of the operations and processors has higher cost than the infeasible
solution indicated by the dashed line.

ing steps more difficult. To handle these potential problems we use the fact that
local search algorithms usually generate many feasible solutions during the opti-
mization process. From this set of feasible solutions we may select any suitable
solution rather than the locally optimum solution. A potential selection criterion is
to minimize the maximum utilization of any resource type as we did during delay
management in order to balance the workload, i.e., to select the bipartite operation
set(O0;Ō0) mapped onto bipartite processing element set(P0; P̄0) such that

g((O0
;Ō0)) = ∑

V2A(O)

max

�
RΛ(OV ;O0)

CΛ(V;P0)
;
RΛ(OV ;Ō0)

CΛ(V; P̄0)

�
+

∑
V2A(O)

max

�
RΛ(O0;OV)

CΛ(P0;V)
;
RΛ(Ō0;OV)

CΛ(P̄0;V)

�
+

∑
T2T(A(O))

max

�
RA(O0

T)

CA(P0
T)

;
RA(Ō0

T)

CA(P̄0
T)

�
+max

�
R∆(O0)

C∆(P0)
;
R∆(Ō0)

C∆(P̄0)

�

is minimal. Note that these balance cost are not part of the cost function used in the
local search algorithm because they do not guide the search to feasible solutions.
Furthermore, an exchange may have a large effect on the balance cost because of
the normalization of the requirements with the capacities. The disadvantage of the
above-mentioned selection criterion is that it does not consider the communication
workload between the two subsets. For this reason we propose to use a weighted
sum of both the communication cost function and the balance cost function, i.e., to
select the bipartite operation set(O0;Ō0) such that

h((O0
;Ō0)) = ε f ((O0

;Ō0))+(1� ε)g((O0
;Ō0))

108 Partitioning

is minimal, where the value ofε is chosen such that 0� ε � 1. We use a default
ε value of 0:5, but the value can be changed in order to balance the computation
workload at the expense of higher communication workloads and vice versa.

6.3 Type Assignment

The relaxed type constraints allow the mapping of operations onto multiple pro-
cessing element types. The goal of the type assignment problem is to assign each
operation to one processing element type thereby obeying the type constraints. The
motivation for this goal is to fix the time shapes of the operations such that the ac-
cess times of the operation terminals are known if the completion times of the
operations are known. In the processor assignment step the signal flow graph has
been expanded with pass operations which are to be executed on output elements
in order to satisfy the communication constraints. To handle the type assignment
problem for the other processing element types we again resort to bin packing.

Each of the candidate processing element types corresponds to a bin. The bin
capacity corresponds to the number of available processing elements of that type.
Each operation can be assigned to at least one but possibly more bins. For instance,
operations that can be executed on buffer elements can also be executed on arith-
metic and logic elements. The order in which the operations are assigned depends
on the number of candidate processing element types, i.e., operations are assigned
later if the number of candidate processing element types is larger. To minimize the
maximum workload of the processing element types we apply the worst-fit heuris-
tic which assigns each operation to the currently emptiest bin. The combination of
the ordering and the heuristic ensures that the arithmetic and logic operations are
assigned to arithmetic and logic elements. Subsequently the constant, shift, and
remaining pass operations with zero delay are assigned to buffer elements until
their workload equals that of the arithmetic and logic elements. Thereafter they are
equally distributed among both processing element types.

6.4 Results

In this section we illustrate the operation of the proposed approach. Next we
present the results of the approach on the set of industrially relevant problem in-
stances presented in Chapter 2. Finally we discuss these results.

Figure 6.4 shows the behavior of the variable-depth search algorithm during
the first two-way partitioning of the signal flow graphsCONTRAST, HSRC, andVSRC.
The figure shows that the value of the cost function and the feasibility of the gener-
ated solutions are strongly related which indicates the effectiveness of the partition-
ing strategy. It also shows that many feasible solutions are generated from which
a balanced solution can be selected. Figure 6.4b shows that the balance cost are

6.4 Results 109

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600
iteration number

cost function
feasible two-way partition

(a) CONTRAST.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 100 200 300 400 500 600
iteration number

balance function
feasible two-way partition

(b) CONTRAST.

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700
iteration number

cost function
feasible two-way partition

(c) HSRC.

3

3.5

4

4.5

5

5.5

6

6.5

0 100 200 300 400 500 600 700
iteration number

balance function
feasible two-way partition

(d) HSRC.

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000 1200 1400
iteration number

cost function
feasible two-way partition

(e) VSRC.

4

4.5

5

5.5

6

6.5

7

7.5

8

0 200 400 600 800 1000 1200 1400
iteration number

balance function
feasible two-way partition

(f) VSRC.

Figure 6.4. Two-way partitioning results for the signal flow graphsCONTRAST,
HSRC, andVSRC that are mapped onto theVSP2FLEX processor network. The
cost function and the balance function are shown as a function of the number of
iterations.

110 Partitioning

Table 6.1. Partitioning results of signal flow graphs that are mapped onto the
VSP1FLEX processor network. From left to right the columns list the number of
operations and data precedences, the computation requirementRA and utilization
RA=CA �100% per processing element type set, and the storage requirementR∆
and utilizationR∆=C∆�100%.

SFG jOj jRj RA R∆
ALE ALE ;OE

YUVTORGB 73 112 17:00 71 35:00 55 0 0
HORCOMPR 154 273 5:00 21 12:88 20 2048 25
IJNTEMA1 257 426 11:19 47 26:19 41 1580 19
CORMACK2 230 368 8:81 37 19:00 30 2564 31
CONTOUR1 131 240 17:44 73 33:31 52 3024 37
MONZA2 131 224 19:63 82 39:13 61 3440 42
VDP 282 516 16:25 68 37:13 58 3568 44
GAMMA 364 557 12:06 50 30:23 47 1264 15
HISTMOD2 328 506 9:00 38 24:69 39 957 12
PANORAMA 160 319 12:06 50 34:38 54 6144 75
VIDIWALL 270 548 18:69 78 43:56 68 4696 57
IJNTEMA2 485 795 20:56 86 41:81 65 2076 25
CORMACK1 334 601 21:81 91 47:15 74 6432 79
MONZA1 380 656 17:69 74 33:31 52 4411 54
MWTV 600 913 17:94 75 32:50 51 3424 42

not suited to guide the search to feasible solutions since there are many infeasible
solutions that have lower balance cost than many feasible solutions.

Table 6.1 lists the results of partitioning of the signal flow graphs onto the
VSP1FLEX processor network. The relative large increase of computation require-
ments shows that this processor network has a large communication overhead
which is to be expected since each processor contains only three arithmetic and
logic units. For signal flow graphPANORAMA the computation requirement of the
arithmetic and logic element, the buffer element, and the output elements has in-
creased from16.19, see Table 5.1, to34.38. From these number we conclude that
45% of the capacity of the output elements is required. To this end63 pass op-
erations have been added to the signal flow graph. Table 6.2 lists the results of
partitioning of the signal flow graphs onto theVSP2TEST processor network. The
communication overhead in this processor network is much smaller than that of
the VSP1FLEX processor network. For signal flow graphPANORAMA the computa-
tion requirement of the arithmetic and logic element, the buffer element, and the
output elements has increased from8.25, see Table 5.3, to8.75 using only1 pass
operation. Table 6.3 lists the results of partitioning of the signal flow graphs onto

6.4 Results 111

Table 6.2. Partitioning results of signal flow graphs that are mapped onto the
VSP2TEST processor network. From left to right the columns list the number of
operations and data precedences, the computation requirementRA and utilization
RA=CA �100% per processing element type set, and the storage requirementR∆
and utilizationR∆=C∆�100%.

SFG jOj jRj RA R∆
ALE ALE ME 2

BE;OE

YUVTORGB 42 81 8:50 71 9:75 41 0:00 0 0 0
HORCOMPR 89 208 2:50 21 4:09 17 0:50 13 2048 25
IJNTEMA1 189 363 5:53 46 8:50 35 0:91 23 1580 19
CORMACK2 168 306 4:41 37 6:72 28 0:72 18 2564 31
CONTOUR1 86 194 8:72 73 10:22 43 0:78 20 3024 37
MONZA2 85 175 9:81 82 12:81 53 1:38 35 3440 42
VDP 195 426 8:13 68 10:06 42 1:44 36 3568 44
GAMMA 253 446 6:03 50 8:19 20 1:09 27 1333 16
HISTMOD2 214 392 4:50 38 6:56 27 0:94 24 957 12
PANORAMA 98 257 6:03 50 8:75 36 2:25 56 6144 75
VIDIWALL 175 432 9:34 78 12:81 54 1:47 37 4696 57
IJNTEMA2 309 598 10:28 86 13:19 55 1:16 29 2084 25
MONZA1 265 541 8:84 74 11:09 46 1:25 31 4411 54
MWTV 418 731 8:97 75 10:81 45 1:75 44 3424 42

Table 6.3. Partitioning results of signal flow graphs that are mapped onto the
VSP2FLEX processor network. From left to right the columns list the number of
operations and data precedences, the computation requirementRA and utilization
RA=CA �100% per processing element type set, and the storage requirementR∆
and utilizationR∆=C∆�100%.

SFG jOj jRj RA R∆
ALE ALE ME 2

BE;OE

CONTRAST 355 583 40:06 56 55:28 38 4:25 18 13046 27
FDXD1 230 581 26:09 36 43:63 30 2:28 10 608 1
FDXD2 264 572 30:75 43 49:41 34 5:22 22 8800 18
MAT30UP 258 454 30:63 43 43:08 30 2:38 10 2795 6
HSRC 398 848 34:90 48 52:16 36 6:06 25 13694 28
VSRC 558 1202 32:56 45 59:19 41 7:03 29 10047 20

the VSP2FLEX processor network. For signal flow graphCONTRAST the computa-
tion requirement of the arithmetic and logic element, the buffer elements, and the
output elements the computation requirement increases from43.75 to 55.28. From
this we conclude that33% of the capacity of the output elements is required.

112 Partitioning

Table 6.4. Partitioning results of signal flow graphs that are mapped onto the
VSP2FLEX processor network. From left to right the columns list the minimum,
average, and maximum computation and storage utilization of the processors.

(a) Two-way partition selection withε = 0:5.

SFG RA=CA �100% R∆=C∆�100%
ALE OE ME2

min avg max min avg max min avg maxmin avg max
CONTRAST 4 57 92 21 33 44 13 18 25 3 33 56
FDXD1 0 37 79 27 45 69 0 10 30 0 1 6
FDXD2 15 45 75 27 43 59 13 22 27 0 18 50
MAT30UP 11 43 83 10 32 51 0 10 23 0 6 16
HSRC 0 50 100 0 35 63 0 25 63 0 28 85
VSRC 29 50 67 40 57 81 1 29 76 0 21 63

(b) Two-way partition selection withε = 0.

SFG RA=CA �100% R∆=C∆�100%
ALE OE ME2

min avg max min avg max min avg maxmin avg max
CONTRAST 13 57 100 23 37 56 0 18 44 0 41 119
FDXD1 2 37 96 29 44 60 0 10 26 0 1 6
FDXD2 0 45 98 0 31 52 0 22 75 0 19 50
MAT30UP 0 43 94 13 23 39 0 10 25 0 6 19
HSRC 0 50 100 0 40 67 0 25 81 0 28 82
VSRC 6 50 94 27 39 50 0 29 97 0 21 74

(c) Two-way partition selection withε = 1.

SFG RA=CA �100% R∆=C∆�100%
ALE OE ME2

min avg max min avg max min avg maxmin avg max
CONTRAST 47 57 66 25 40 62 13 18 25 2 33 56
FDXD1 9 37 83 43 64 90 0 10 30 0 1 6
FDXD2 19 45 75 50 65 86 13 22 39 2 18 52
MAT30UP 33 44 50 14 44 65 0 10 17 0 6 14
HSRC 29 53 98 58 69 91 0 25 63 0 28 85
VSRC 34 51 71 56 70 91 2 29 78 0 21 63

Table 6.4 lists the minimum, average, and maximum resource utilization of the
processors after partitioning of the signal flow graphs onto theVSP2FLEX processor
network with different values of the two-way partition selection parameterε. This
parameter controls the selection of a two-way partition after termination of the local
search algorithm. Low values correspond to minimizing the communication along

6.5 Summary 113

the channels in the processor network. High values correspond to balancing the
computation over the processors in the network. The table shows that the parameter
can indeed be used to make this tradeoff in the partitioning step.

6.5 Summary

In this chapter we have presented an approach to handle the partitioning problem.
This approach decomposes the single multi-way partitioning problem into a se-
quence of two-way partitioning problems. The advantage of this approach is that
it stepwisely refines the assignment of operations to processors and the routing of
the flow of data through the processor network. We have developed a local search
heuristic to handle the two-way partitioning problem. The results indicate that the
presented approach is able to produce balanced partitions in which the degree of
utilization of the resources is evenly distributed among the processors in the net-
work.

7
Scheduling

In this chapter we present a solution approach to handle the scheduling problem.
The approach is based on a decomposition of the scheduling problem into a time
assignment problem, a processing element assignment problem, and a channel as-
signment problem. The objective of the time assignment problem is to determine
when the operations are executed. The objective of the processing element prob-
lem is to determine on which processing elements the operations are executed. The
objective of the channel assignment problem is to determine along which channels
the samples are communicated.

The outline of this chapter is as follows. In Section 7.1 we decompose the
scheduling problem into the time assignment problem, processing element assign-
ment problem, and channel assignment problem. In Sections 7.2, 7.3, and 7.4 we
present solution approaches to handle these subproblems. In Section 7.5 we present
the results of the scheduling approach on the set of problem instances. Finally, in
Section 7.6 we summarize the contents of this chapter.

7.1 Problem Decomposition

In Chapter 4 we have formulated the scheduling problem as follows.

Definition 7.1 (Scheduling). Let (O;R) be a signal flow graph, let(P;C) be a pro-
cessing element network, and let(∆;Σ;A;Λ) be a mapping set such thatj∆j =

115

116 Scheduling

jV(A(o))j = jT(A(o))j = 1 for all o2 O and the relaxation of the mapping con-
straints is satisfied. Find a mapping(δ;σ;α;λ)2 (∆;Σ;A;Λ) such that the mapping
constraints are satisfied, if one exists. 2

The objective of the scheduling problem is to construct feasible time, processing
element, and channel assignments assuming that a feasible delay assignment has
already been constructed in the delay management step.

We propose a decomposition strategy that first constructs a time assignment,
then constructs a processing element assignment, and finally constructs a chan-
nel assignment. This decomposition is motivated by the fact that the problem of
constructing a processing element assignment for a given time assignment can be
modeled as a graph coloring problem.

Definition 7.2 (Graph Coloring Problem). Given are a graph(V;E) and a posi-
tive integerK. Find a functionf :V ! INK such thatf (v) 6= f (v0) for all fv;v0g 2E,
if one exists.

Each operation corresponds to a vertex and each computation constraint concern-
ing two operations corresponds to an edge between the two corresponding ver-
tices. Furthermore, each processing element corresponds to a color. There ex-
ists a feasible processing element assignment if and only if there exists a feasible
graph coloring. Also the problem of constructing a channel element assignment
for given time and processing element assignments can be modeled as a graph col-
oring problem. Graph coloring is a well-known problem in the literature. We refer
to Gibbons [1989] for an overview on the subject. Karp [1972] has shown that the
problem is NP-complete in the strong sense for three or more colors. The literature
presents many heuristics to handle graph coloring problems. These heuristics are
often tuned to the characteristics of the graph instances. For video signal processor
scheduling Essink et al. [1991a], Essink et al. [1991b], and Van Dongen [1991]
have reported good results with a recoloring technique based on thekempe-chain
argument[Kempe, 1879] [Gibbons, 1989]. Korst [1992] reports good results for
circular-arc graph coloring withsequential coloringtechniques [Welsh and Powell,
1967].

Another motivation for the above-mentioned decomposition is that in the
scheduling problem the computation and communication constraints depend on
the time assignment as well as on the processing element assignment and the chan-
nel assignment. The precedence constraints on the contrary only depend on the
time assignment and not on the processing element assignment and the channel as-
signment. Hence, an approach which constructs a time assignment for a given pro-
cessing element assignment, as is suggested in Theorem 3.4, is more difficult than
an approach which constructs a processing element assignment for a given time

7.1 Problem Decomposition 117

assignment as is suggested in Theorem 3.6. This is due to the fact that in the for-
mer approach the computation, communication, and precedence constraints need
to be considered at the same time, whereas in the latter approach the computation
and communication constraints can be considered under the assumption that the
precedence constraints have already been satisfied. In the former approach this as-
sumption is not realistic because the computation, communication, and precedence
constraints depend on the time assignment. For these reasons, we decompose the
scheduling problem into three subproblem which are called the time assignment
problem, the processing element assignment problem, and the channel assignment
problem. These subproblems are formally defined as follows.

Definition 7.3 (Time Assignment Problem). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping set
such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all o 2 O, the connectivity con-
straints, and the relaxation of the mapping constraints are satisfied. Find a time
assignmentσ 2 Σ such that the precedence constraints are satisfied, if one exists.

2

Definition 7.4 (Processing Element Assignment Problem).Let (O;R) be a sig-
nal flow graph, let(P;C) be a processing element network, let(∆;Σ;A;Λ) be a
mapping set such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all o 2 O, the con-
nectivity constraints, and the relaxation of the mapping constraints are satisfied,
and letσ 2 Σ be a time assignment such that the precedence constraints are sat-
isfied. Find a processing element assignmentα 2 A, if one exists, such that the
computation constraints are satisfied, i.e., for allo;o0 2O it holds that ifo 6= o0 and
σ(o)� σ(o0)(modgcd(p(o); p(o0))) thenα(o) 6= α(o0), the periodicity constraints
are satisfied, and the storage constraints are satisfied. 2

Definition 7.5 (Channel Assignment Problem).Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, let(∆;Σ;A;Λ) be a mapping
set such thatj∆j= jV(A(o))j = jT(A(o))j = 1 for all o2O, the connectivity con-
straints, and the relaxation of the mapping constraints are satisfied, letσ 2 Σ be a
time assignment such that the precedence constraints are satisfied, and letα2A be
processing element assignment such that the periodicity, storage constraints, and
computation constraints are satisfied. Find a channel assignmentλ 2 Λ, if one
exists, such that the communication constraints are satisfied, i.e., for all data prece-
dencesr; r 0 2 R it holds that ifr 6= r 0 andψ(r) � ψ(r 0)(modgcd(p(r); p(r 0))) then
λ(r) 6= λ(r 0). 2

A possible approach to the scheduling problem is to handle these subproblems
consecutively. The problem of this approach is that the time assignment has to be

118 Scheduling

chosen such that there exists a feasible processing element assignment. Further-
more, the processing element assignment has to be chosen such that there exists
a feasible channel assignment. A more fine-grained approach which overcomes
this problem is to iteratively consider one additional operation or precedence while
handling the subproblems consecutively. In this fine-grained approach we assign a
completion time to one operation. Subsequently we try to find processing element
and channel assignments given this partial time assignment. If this succeeds then
we assign a completion time to the next operation, otherwise we assign another
completion time to the current operation. We formally describe this approach by a
general technique that is known as constraint satisfaction. To this end we adopt the
formal description of Nuijten [1994].

7.1.1 Constraint Satisfaction

An instance of a constraint satisfaction problem [Montanari, 1974] involves a set
of variables, a domain for each variable specifying the values that may be assigned
to that variable, and a set of constraints on the variables. The constraints define
which combinations of domain values are allowed. The problem is to assign values
to variables such that all constraints are simultaneously satisfied. An instance of a
constraint satisfaction problem is formalized as follows.

Definition 7.6 (Constraint Satisfaction Problem). An instance of aconstraint
satisfaction problemis a triple(X ;D;C), whereX = fx1;:::;xpg denotes a set of
variables, D = fD(x1); : : : ;D(xp)g denotes a set ofdomains, such thatD(xi) gives
the domain of each variablexi , andC = fc1;:::;cqg denotes a set ofconstraintson
D such thatci : D(x1)�:::�D(xp)! IB for all 1 � i � q gives a set of feasible
domain values. The problem is to find an assignmentx 2 D(x1)�:::�D(xp) that
satisfiesci(x) for all 1� i � q. Such an assignment is called asolution. The set of
all assignments is denoted byAX ;D. 2

To formulate the scheduling problem as a constraint satisfaction problem we define
the set of variables, domains, and constraints as follows. The setX of variables
contains the decision variables that we have defined in the scheduling problem,
i.e., the elements of the setsfδ(o) j o2 Og, fσ(o) j o2 Og, fα(o) j o2 Og, and
fλ(r) j r 2 Rg. The setD of domains contains the possible values for the set of
variables, i.e., variableδ(o) has domain∆(o) = fδ(o) j δ 2 ∆g, variableσ(o) has
domainΣ(o) = fσ(o) j σ 2 Σg, variableα(o) has domain A(o) = fα(o) j α 2 Ag,
and variableλ(r) has domainΛ(r) = fλ(r) j λ 2 Λg. The setC of constraints
contains the mapping constraints.

Often search trees are used in approaches to handle constraint satisfaction prob-
lems. Search treesare trees withsearch statesas nodes. Going from one node to
another is done by taking adecisionand modifying the current domains. Decisions

7.1 Problem Decomposition 119

are modeled by adding constraints. Search states record the decisions that have
been taken and the current domain of each variable that contains the values of each
variable that are still under consideration. Formally, a search state is defined as
follows.

Definition 7.7 (Search State).A search stateof an instance(X ;D;C) of a con-
straint satisfaction problem is a pair(Γ;E), whereΓ � C is a set ofadded con-
straintsand E(x)�D(x) gives thecurrent domainof x for eachx2 X . 2

Initially, i.e., in the root of a search tree, the search state is(/0;D), representing that
no constraints are added and the current domains are equal toD(x) for all variables
x2X . In a tree search algorithm, each decision corresponds to the selection of one
value for a certain variable. Selecting a valuev2 E(x) for a variablex can be seen
as adding the constraintx= v. At any node in the search tree a limited number of
decisions can be made, defining the edges of the tree. This number equals the total
number of elements in the current domains of the variables for which no value is
selected yet. Each search state represents a set of solutions that satisfy both the
constraints inC and the added constraints, and that satisfy that each variablex2 X
has a value from E(x). The solution set of a search state is defined implicitly as
follows.

Definition 7.8 (Solution Set). Let (X ;D;C) be an instance of the constraint satis-
faction problem, and letΘ = (Γ;E) be a search state of(X ;D;C). Thesolution set
of Θ is the setS(Θ) = fx 2AX ;D j 8c2Cc(x)^8c2Γc(x)g: 2

Each time a constraint is added, some values of variables may becomeinconsistent.
Let Θ = (Γ;E) be a search state. A valuev2 E(x) for a variablex is called incon-
sistent if no solution inS(Θ) exists that includes the assignment ofv to x. Then
this value can be removed from the current domain ofx without losing any solu-
tions. This process of removing inconsistent values is usually calledconsistency
checking. The resulting search stateΘ0 = (Γ;E0) is calledsolution equivalentto
Θ. So, consistency checking transforms one search state into a solution equivalent
one. The following definition defines this property formally.

Definition 7.9 (Solution Equivalence).Let (X ;D;C) be an instance of the con-
straint satisfaction problem. Asearch stateΘ = (Γ;E) of (X ;D;C) is calledsolu-
tion equivalentto a search stateΘ0 = (Γ;E0) if and only if S(Θ) = S(Θ0). 2

If a leaf of the search tree is reached, i.e.,jE(x)j = 1 for all x 2 X , a solution is
found and the instance is solved. If a search state is reached where the current
domain of any variable is empty, i.e., there exists anx2 X such that E(x) = /0, we
say that adead endoccurs.

120 Scheduling

Definition 7.10 (Dead End). Let (X ;D;C) be an instance of the constraint satis-
faction problem. A search state(Γ;E) is called adead endif there exists anx2 X
such that E(x) = /0. 2

If a dead end is reached it is proved that no solution exists that satisfies all the orig-
inal constraints together with the added constraints. Then the tree search algorithm
has tobacktrack, i.e., undo certain decisions and try alternatives for them. The
search stops if the bottom of the tree is reached, i.e., a solution is found, or if all
alternative decisions in the root of the tree have been tried without success. In the
latter case, the instance is said to beinfeasible. A general tree search approach it-
eratively selects a variable and assigns a value in its current domain. Subsequently,
consistency checking is used to eliminate values that are inconsistent with the as-
signments made so far. Both variable and value selection strategies try to prevent
the search from getting stuck in a dead end. If, however, the search does get stuck
in a dead end, backtracking is needed to escape from it.

We apply this general approach to the scheduling problem in the following way.
For the instances of the scheduling problem, the delay assignment has already has
been determined, i.e., it initially holds thatj∆(o)j = 1 for all o 2 O. Hence, the
value of the variableδ(o) is given for allo2O. Subsequently, we select a variable
of the formσ(o) for some operationo 2 O, and we assign this variable to some
valuev in its domainΣ(o). This results in the additional constraintσ(o) = v. Next,
we select the variable of the formα(o) for the same operationo2O, and we assign
this variable to some valuev in its domain A(o). Finally, we select the variables
λ(r) for all data precedencesr of the form((o0;n0);(o;n);(p;b;b0)) which are con-
nected to an input terminal of the same operationo, and we assign them to some
values in their domainsΛ(r). This is followed by a consistency checking step. In
the following sections we elaborate in more detail on the above-mentioned variable
selection, value selection, consistency checking, and backtracking techniques for
each of the subproblems in the scheduling problem.

7.2 Time Assignment

The objective of the time assignment problem is to find a time assignment that sat-
isfies the precedence constraints. In addition, this time assignment has to be chosen
such that there exists feasible processing element and channel assignments. To ini-
tialize the time assignment set we use the algorithm based on the Bellman equations
as outlined in the proof of Theorem 3.8. This algorithm is based on the fact that we
can write the precedence constraints as linear constraints as follows. For all data
precedencesr =((o;n);(o0 ;n0);(p;b;b0)) we haveω(r)�σ(o0)�σ(o)�ω(r); and
for all no-value precedencess= (o;o0;(p;b;b0)) we haveω(s) � σ(o0)�σ(o): A
necessary condition to satisfy these constraints is that for all data precedencesr it

7.2 Time Assignment 121

holds that

ω(r)�minΣ(o0)�minΣ(o)� ω(r) ^ ω(r)�maxΣ(o0)�maxΣ(o)� ω(r);

and that for all no-value precedencess it holds that

ω(s)�minΣ(o0)�minΣ(o) ^ ω(s)�maxΣ(o0)�maxΣ(o):

In the scheduling problem we assume that the lower boundsω and the upper bounds
ω on the difference between the completion times of two adjacent operations are
known. These bounds have been computed in the delay management and partition-
ing steps.

The computation of the minimum completion times is done as follows. Let
for an arbitrary pair of operationsoi and oj the longest path fromoi to oj be
given by the precedencesa1; : : : ;ax provided that such a path exists. Then this
path contains at mostjOj�1 arcs. For each operationok on this path, the longest
path fromoi to ok is necessarily a subsequence of the patha1; : : : ;ax. So by up-
dating minΣ(o) to maxfminΣ(o);minΣ(o0)�ω(a)g and by updating minΣ(o0) to
maxfminΣ(o0);minΣ(o) +ω(a)g in each iteration, we find a minimum comple-
tion time for the next operation on this path. AfterjOj�1 iterations operationoj

has obtained a minimum completion time. If no longest path exists from opera-
tion oi to operationoj but oj can be reached fromoi , then the precedence con-
straints are infeasible. In that case there are two possibilities. The first possibility
is that there is a cycle via the data precedences in the signal flow graph for which
the sum of the weightsω(a) is negative and there exists some data precedencea
for which holds minΣ(o) < minΣ(o0)�ω(a) after jOj�1 iterations. The second
possibility is that there is a cycle in the signal flow graph for which the sum of
the weightsω(a) is positive and there exists some precedencea for which holds
minΣ(o0)< minΣ(o)+ω(a) after jOj�1 iterations.

In a similar way we find maximum completion times. Each iteration we find
a maximum completion time for the next operation on the patha1; : : : ;ax by up-
dating maxΣ(o0) to minfmaxΣ(o0);maxΣ(o) +ω(a)g and by updating maxΣ(o)
to minfmaxΣ(o);maxΣ(o0)�ω(a)g. After jOj � 1 iterations operationoj has
obtained a maximum completion time. If the precedence constraints are infea-
sible then there are again two possibilities. The first possibility is that there is
a cycle via the data precedences of the signal flow graph for which the sum of
the weightsω(a) is negative and there exists some data precedencea for which
holds maxΣ(o0) > maxΣ(o) + ω(a) after jOj � 1 iterations. The second possi-
bility is that there is a cycle in the signal flow graph for which the sum of the
weights ω(a) is positive and there exists some precedencea for which holds
maxΣ(o)> maxΣ(o0)�ω(a) after jOj�1 iterations.

Due to the no-value precedences it may be that the maximum completion time

122 Scheduling

of an operation is not bounded by the precedence constraints. In that case the max-
imum completion times of the successors of the operation may also be unbounded.
For such operations we choose the maximum completion time equal to their mini-
mum completion time plus the maximum program length minus one such that the
operations can be placed anywhere in a program. We repeat the above-mentioned
procedure until the maximum completion times of all operations are bounded.

7.2.1 Operation Selection

The operation selection strategy is based on the heuristic that variables that have
smaller current domains are given priority over variables that have larger current
domains in order to prevent that their current domains become empty. Therefore,
our variable selection strategy chooses operationso that result in the selection of
the decision variablesσ(o), α(o), andλ(r) with r = ((o0;n0);(o;n);(p;b;b0)) based
on information about the time assignment setΣ(o).

A first operation selection criterion is the cardinality of the time assignment
setΣ(o). The final completion timeσ(o) of an operationo must be a member of
the setΣ(o). In the extreme case, the time assignment set is a singleton set and
it completely fixes the completion time. In general, operations with small time
assignment sets are given a high priority.

A second operation selection criterion is the period of an operation. Operations
with small periods have high computation requirements and more chance of over-
lap in time with other operations. In the extreme case, an operation has period one
and it overlaps with all other operations. As a result, it fully occupies one process-
ing element. In general, operation with small periods are given a high priority. This
selection criterion is also applied inrate-monotonic scheduling[Liu and Layland,
1973].

We combine both criteria by observing that two operations overlap in time if
and only if they have overlapping phases. The phaseφ(o) of an operationo is de-
fined as its time modulo its period, i.e.,φ(o) = σ(o)modp(o). Two operationso
ando0 have overlapping phases if and only ifφ(o) � φ(o0)(modgcd(p(o); p(o0))).
Such two operations must be executed on different processing elements. For each
operationo we define a set of phasesΦ(o) = fσ(o)modp(o) j σ(o) 2 Σ(o)g. The
removal of inconsistent values from the time assignment set may also remove in-
consistent values from the phase set. The number of consistent phases is a measure
for the ability to avoid overlap with other operations. The number is never larger
than the period of an operation.

We give the phase set priority over the time assignment set because the number
of consistent phases never exceeds the number of consistent completion times. So
if an operation has less consistent phases than another operation, then the latter
cannot have less consistent completion times than the former. If two operations

7.2 Time Assignment 123

have the same number of consistent phases then we give priority to the operation
that has the smallest number of consistent completion times. This defines a partial
lexicographical order of the operations.

Definition 7.11 (Operation Order). Let (O;R) be a signal flow graph, let(P;C)

be a processing element network, and let(∆;Σ;A;Λ) be a mapping. Then the
partial order� is defined for allo;o0 2 O in such a way thato� o0 if and only if
eitherjΦ(o)j < jΦ(o0)j, or jΦ(o)j = jΦ(o0)j andjΣ(o)j � jΣ(o0)j. 2

The order of the operations can change at run-time because the consistency check-
ing step cam remove inconsistent completion times from the time assignment set.

7.2.2 Time Selection

The time selection criterion is based on the heuristic that values that result in
smaller domain reductions are given priority over values that result in larger do-
main reductions in order to prevent that the current domains become empty. There-
fore our time selection strategy aims to choose a completion time such that the
phase setΦ(o) and time assignment setΣ(o) remain as large as possible for all
o2O.

A first time selection criterion is based on thethickness functionintroduced by
Korst [1992]. This function represents the computation requirements at a particular
time i 2 based on the overlap of the operations that have already been given a
completion time. Corollary 3.4 states a necessary condition for feasibility based on
these computation requirements.

Definition 7.12 (Computation Requirements).Let (∆;Σ;A;Λ) be a mapping set
of signal flow graph(O;R) onto processing element network(P;C). Then thecom-
putation requirementof a setOV of operations withV 2 A(O) at time i 2 is
denoted by

Ri
A(OV) = maxfjfo2OV j σ(o)� i (modp(o))^ft(o);T(V)g 6= fWO;fME2gggj;

jfo2OV j σ(o)� i (modp(o))^ft(o);T(V)g 6= fRO;fME2gggjg:

Thecomputation capacityof a setV 2 A(O) of processing elements is denoted by

CA(V) = jVj:

The fractionRi
A(OV)=CA(V) denotes thecomputation workloadof processing ele-

ment setV due to operation setOV at time i. 2

We adopt the heuristic to select completion timesσ(o) such thatRσ(o)
A (OA(o)) is

minimal thereby aiming to minimize the maximum computation workload over
time. This criterion is also applied inforce-directed scheduling[Paulin and Knight,
1989]. By doing this we aim to avoid the elimination of phases from the phase set
in the consistency checking step.

124 Scheduling

To avoid the elimination of completion times from the time assignment set we
introduce a second time selection criterion. If there are different completion times
that minimize the maximum computation requirement then we select the comple-
tion time that is nearest to the median of the time assignment setΣ(o). The reason
for this is that the median generally results in a smaller reduction of the time assign-
ment set of neighboring operations than the minimum or maximum value. This is
illustrated in Figure 7.1 which shows the typical time assignment sets of two oper-
ationso ando0 that are related by a data precedence((o;n);(o0;n0);(p;b;b0)). The

Σ(o)

Σ(o’)

σ(o)

σ(o’)

o’

o

Figure 7.1. Time assignment set reduction due to precedence constraints. The
picture on the left shows the impact of setting the completion time of a producer
on a consumer. The picture on the right shows the impact of setting the completion
time of a consumer on a producer.

selection of a completion time for producing operationo may reduce the time as-
signment set of consuming operationo0 via the precedence constraints. Similarly,
the selection of a completion time for consuming operationo0 may reduce the time
assignment set of producing operationo. The number of candidate consistent com-
pletion times decreases if we select completion times near the extreme values of
the time assignment set, because the overlap between the time interval defined by
the precedence constraints and the time assignment set of the adjacent operation
decreases.

We give the computation constraints priority over the precedence constraints
in order to guide the search towards a feasible processing element assignment.
If different completion times result in the same computation workload we give
priority to the completion time that is nearest to the median. This defines a partial
lexicographical order of the completion times of operations.

Definition 7.13 (Completion Time Order). Let (O;R) be a signal flow graph,
let (P;C) be a processing element network, and let(∆;Σ;A;Λ) be a mapping.
Then the partial order�σ is defined for allσ(o);σ0(o) 2 Σ(o) in such a way that

σ(o)�σ σ0(o) if and only if eitherRσ(o)
A (OA(o))< Rσ0(o)

A (OA(o)), or Rσ(o)
A (OA(o)) =

Rσ0(o)
A (OA(o)) andjmedΣ(o)�σ(o)j � jmedΣ(o)�σ0(o)j. 2

7.2 Time Assignment 125

The order of the completion times can change at run-time because the operations
are given a completion time one by one.

7.2.3 Consistency Checking and Domain Reduction

After we have selected a value for the completion timeσ(o) of operationo, we
remove values from the current domains that are inconsistent on account of the
computation, communication, and precedence constraints.

To eliminate inconsistent values based on the computation constraints we
observe that the computation requirement is not allowed to exceed the compu-
tation capacity. If we assign a completion timeσ(o) to an operationo, then

the computation requirementRσ(o)
A (OA(o)) increases. Since it must hold that

Rσ(o)
A (OA(o)) � CA(A(o)) we eliminate all completion timesσ(o0) of operations

o0 2 OA(o) that have not been scheduled yet and that overlap withσ(o), if

Rσ(o)
A (OA(o)) =CA(A(o)).

Furthermore, we know that two operations of the same array must be executed
on the same processing element. So, if we assign a completion time to an operation
of an array, then we can safely remove the overlapping completion times from the
time assignment sets of other operations of the array that cannot overlap with the
first operation on the same processing element.

Similar to the computation constraints, Corollary 3.5 states that the communi-
cation requirement is not allowed to exceed the communication capacity at time
ψ(r). The communication requirement and capacity at a specific moment in time
are defined as follows.

Definition 7.14 (Communication Requirements).Let (∆;Σ;A;Λ) be a mapping
set of signal flow graph(O;R) onto processing element network(P;C). Then the
communication requirementof a setRI of data precedences withI 2 Λ(R) at time
i 2 is denoted by

Ri
Λ(RI) = jf(o;n) j r = ((o;n);(o0;n0);(p;b;b0)) 2 RI ^ψ(r)� i (mod p(r))gj:

Thecommunication capacityof a setI 2 Λ(R) of channels is denoted by

CΛ(I) = jf(p0;m0) j ((p;m);(p0;m0)) 2 Igj:

The fractionRi
Λ(RI)=CΛ(I) denotes thecommunication workloadof the channel

setI due to data precedence setRI at time i. 2

If we assign a completion timeσ(o) to an operationo, then for all data precedences

r 2 R the communication requirementRψ(r)
Λ (RΛ(r)) at timeψ(r) increases. Since

it must hold thatRψ(r)
Λ (RΛ(r))�CΛ(Λ(r)) we eliminate all completion timesσ(o0)

of operationso0 that have not been scheduled yet and that result in arrival times

126 Scheduling

ψ(r 0) for data precedencesr 0 for which I(Λ(r 0)) = I(Λ(r)) that overlap withψ(r),

if Rψ(r)
Λ (RΛ(r)) =CΛ(Λ(r)).
In addition we know that two different data values are not allowed to arrive at

the same processing element input at the same time. So, if two data precedences
are connected to two operation inputs that are mapped onto the same processing
element input, then the producing operations must be scheduled such that the cor-
responding data arrival times do not overlap. Consequently, if we assign a com-
pletion time to an operation that results into a specific data arrival time of an array
operation, then we can safely remove the completion times of other operations that
lead to overlapping data arrival times of other operations in the same array.

Finally we eliminate inconsistent completion times based on the precedence
constraints as follows. If we assign a completion timeσ(o) to an operationo,
then we reduce the time domainΣ(o) to a singleton setfσ(o)g. Subsequently,
we recompute the minimum and maximum values for the completion times of
operations using the longest path algorithm as outlined in the proof of Theo-
rem 3.8. In each iteration we update the minimum completion time minΣ(o) of
a producing operation by minfσ(o) 2 Σ(o) j σ(o) � maxfminΣ(o);minΣ(o0)�
ω(a)gg and the minimum completion time minΣ(o0) of a consuming operation by
minfσ(o0) 2 Σ(o0) j σ(o0) � maxfminΣ(o0);minΣ(o)+ω(a)gg. In each iteration
we also update the maximum completion time maxΣ(o) of a producing operation
by maxfσ(o) 2 Σ(o) j σ(o) � minfmaxΣ(o);maxΣ(o0)�ω(a)gg and the maxi-
mum completion time of a consuming operation maxΣ(o0) by maxfσ(o0) 2 Σ(o0) j
σ(o0)�minfmaxΣ(o0);maxΣ(o)+ω(a)gg.

7.2.4 Backtracking

The search can get stuck in a dead end because we cannot satisfy the periodicity,
storage, computation, or communication constraints while constructing the pro-
cessing element or channel assignment for the selected completion time. Alterna-
tively, the search can get stuck in a dead end because the time assignment set of
some, yet unscheduled, operation becomes empty. In both cases we backtrack on
the time selection, i.e., we select a different completion time by taking the next
completion time designated by the partial order of Definition 7.13 after having re-
moved the current infeasible completion time from the time assignment set. If the
time assignment set of the current operation becomes empty, we have to backtrack
on the decisions that were made for some, already scheduled, operations. One po-
tential solution is to undo the scheduling of previous operations and to schedule the
operation with the empty time assignment set earlier. The drawback of this solution
is that it involves a significant amount of state saving to administrate which parts of
the search space have been explored. To avoid this state saving we adopt a random
restart strategy in which we restart the scheduling algorithm and we randomize the

7.3 Processing Element Assignment 127

operation selection by choosing randomly an operation out of multiple operations
with the same priority in the partial ordering of Definition 7.11.

7.3 Processing Element Assignment

Next, we focus on the problem of finding a feasible processing element assignment.
Formally, this problem is defined as follows.

Definition 7.15 (Processing Element Assignment Problem).Let (O;R) be a sig-
nal flow graph, let(P;C) be a processing element network, let(∆;Σ;A;Λ) be a
mapping set such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all o 2 O, the con-
nectivity constraints, and the relaxation of the mapping constraints are satisfied,
and letσ 2 Σ be a time assignment such that the precedence constraints are sat-
isfied. Find a processing element assignmentα 2 A, if one exists, such that the
computation constraints are satisfied, i.e., for allo;o0 2O it holds that ifo 6= o0 and
σ(o)� σ(o0)(modgcd(p(o); p(o0))) thenα(o) 6= α(o0), the periodicity constraints
are satisfied, and the storage constraints are satisfied. 2

We reformulate the processing element assignment problem as a graph coloring
problem. To this end we formulate an instance of the processing element assign-
ment problem as a conflict graph. The operations of the signal graph correspond to
vertices of the conflict graph except for the read and write operations because the
operations of the same array have to be executed on the same processing element.
For this reason, the arrays of the signal flow graph correspond to hypervertices of
the conflict graph in such a way that each hypervertex contains all operations of the
corresponding array. The vertices of the conflict graph are connected if and only if
they contain overlapping operations that are executed on the same set of processing
elements.

Definition 7.16 (Processing Element Assignment Problem Reformulated).
Let (O;R) be a signal flow graph, let(P;C) be a processing element network, let
(∆;Σ;A;Λ) be a mapping set such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all
o2 O, the connectivity constraints, and the relaxation of the mapping constraints
are satisfied, and letσ 2 Σ be a time assignment such that the precedence
constraints are satisfied. Then the graph(VA ;EA) is called aprocessing element
conflict graphwhere the set of verticesVA is defined by

VA =ffog 2 P(O) j t(o) =2 fRO;WOgg[

ffo2O j t(o) 2 fRO;WOg^a(o) = ag j a2 Ag;

and the subset of edgesEA contains an edgefV;V 0gwith V 6=V 0 if and only if there
exists operationso2V ando0 2V 0 satisfying A(o) = A(o0) for which it holds that

σ(o)� σ(o0) (mod gcd(p(o); p(o0)))

128 Scheduling

or

T(A((o)) = T(A((o0)) = fME2g^ft(o); t(o0)g= fRO;WOg:

The problem is to find a functionf : VA ! P, if one exists, such that for allV 2VA

it holds that

f (V) 2
[

o2V

A(o);

for all fV;V 0g 2 EA it holds that

f (V) 6= f (V 0);

and the processing element assignmentα 2 A, that is defined for allV 2VA and
for all o2V by α(o) = f (V), satisfies the periodicity and storage constraints.2

In general a processing element conflict graph is not a connected graph. During
scheduling the processing element assignment set is such that for each pair of op-
erationso;o0 2O it holds that either A(o) = A(o0) or A(o)\A(o0) = /0. Hence, the
set of processing element sets A(O) partitions the conflict graph injA(O)j differ-
ent components. In order to satisfy the computation constraints each vertexV 2VA

of each componentVA �VA has to be assigned to a processing element from the
set
S

o2V A(o) 2 A(O) in such a way that two adjacent vertices are assigned to
different processing elements.

7.3.1 Operation Selection

The complete edge set of the conflict graph can only be determined if the complete
time assignment is known. However, a partial time assignment already defines
a subset of the final edge set namely the edges of which both ends contain an
operation that has been given a completion time. Once an operationo has been
assigned to a timeσ(o) and has to be assigned to a processing elementα(o), we
extend the edge set. At any time we have that the edge setEA contains the edge
fV;V 0g if and only if there exists operationso2V ando0 2V 0 satisfying A(o) =
A(o0) for which it holds thatjΣ(o)j= jΣ(o0)j= 1. So the selection of variableα(o)
extends the edge set with zero or more edges which are incident to the vertexV
that corresponds to operationo. As a result the coloring of the conflict graph may
become infeasible.

7.3.2 Processing Element Selection

If the coloring of the conflict graph becomes infeasible we have to recolor the
graph. The Kempe-chain argument [Kempe, 1879] [Gibbons, 1989] concerns the
recoloring of vertices in a properly colored graph to obtain a different proper color-
ing of the graph. Consider a vertexV which is coloredf (V) = a. Then this vertex
plus all other vertices which are reachable from this vertex via paths along vertices

7.3 Processing Element Assignment 129

that are coloreda or b for some colorb 6= a, define a subgraphH(a;b). The Kempe-
chain argument states that in a proper coloring of the graph the vertices of such a
subgraphH(a;b) which are coloreda can be coloredb, and those that are colored
b can be coloreda, in order to obtain a new proper coloring of the graph. We apply
this argument whenever we add an edgefV;V 0g to the conflict graph between two
verticesV andV 0 with the same colorf (V) = f (V 0) = a. In such a situation we try
to find a subgraphH(a;b) starting from vertexV that does not contain vertexV 0. If
such a subgraph exists then we can recolor the subgraph and add the edgefV;V 0g.
Note that the choice to start from vertexV 0 does not affect the existence of such a
subgraph. However, it does affect the resulting coloring of the conflict graph. The
order in which the edges are added to the conflict graph does affect the existence
of such a subgraph as is illustrated in the following example.

A B C

D E
2

1

0

2

0
F

1

Figure 7.2. Graph coloring based on the Kempe-chain argument.

Given is the graph in Figure 7.2 in which the set of allowed colors for each
vertex equalsf0;1;2g. All edges except the dashed ones are in the graph. The
current color of each vertex has been depicted next to the vertex. In the initial
graph there were no edges and each vertex had color 0. The coloring of Figure 7.2
has been obtained by adding the edges to this initial graph, each time recoloring
with Kempe-chains, in the following order: AB, CD, AE, BE, CE, BF, CF, DF. We
now try to add edge EF to this graph. Vertices E and F have the same color, so
we have to recolor either vertex E or vertex F. If we try to recolor vertex E with
color 1, we find the subgraph with vertices E, A, C, and F. Because vertex F is also
in this subgraph, vertex E cannot be recolored with color 1. The same reasoning
holds if we try to color vertex F with color 1. We now try color 2. Then we find the
subgraph with vertices E, B, and F. Both vertices E and F are again in the subgraph,
so neither of them can be recolored with color 2. Because there are no other colors
available, edge EF cannot be added to this graph with Kempe-chains recoloring.
Now we try to add edge AC to this graph. Vertices A and C have the same color, so
we have to recolor either vertex A or vertex C. This cannot be done with color 0,
because we then find the subgraph with vertices A, E, C, and F, which contains both

130 Scheduling

vertices A and C. If we try to color vertex A with color 2, we find the subgraph
with vertices A and B. Because vertex C is not in this subgraph, we can recolor
vertex A with 2 and vertex B with 1. Then the edge AC can be added to this graph.
However, now it is possible to add edge EF to this graph which failed earlier when
edge AC was not yet in the graph. We can now recolor vertex E with color 2. This
leads to the subgraph with vertices E and A which does not contain vertex F. We
can then recolor vertex E with 2 and vertex A with 0. This example shows that
the success of the recoloring with Kempe-chains depends on the order in which the
edges are added to the graph.

The recoloring algorithm based on the Kempe-chain argument does not con-
sider the periodicity and storage constraints. In order to model the storage con-
straints, we require acapacitatedgraph coloring problem. In the capacitated graph
coloring problem the coloring of a vertex requires a certain amount of color and
there is only a certain amount of each color available. To model the periodicity
constraints, we even require that the coloring of a set of vertices requires a dif-
ferent amount of color than the sum of the amounts of the individual vertices. If
the current coloring violates the periodicity or the storage constraints or if the re-
coloring procedure based on the Kempe-chain argument fails to construct a proper
coloring, then we resort to a modified version of sequential coloring [Welsh and
Powell, 1967] to handle the capacitated graph coloring problem. Sequential col-
oring usually sorts the vertices according to degree and, subsequently, colors them
sequentially in order of descending degree. In our version of sequential coloring,
we define a lexicographical order of the vertices in which the storage requirement
of the vertices has priority over the degree of the vertices. Subsequently, we color
the vertices using a first fit heuristic, i.e., we choose the first color such that the re-
sulting periodicity and storage requirements do not exceed the available capacities.

7.3.3 Backtracking

If for some operationo we cannot find a feasible processing element assignment,
then we assume that it does not exist. Subsequently we backtrack on the time
assignment of operationo. The selected completion timeσ(o) always gives an
infeasible solution so we remove it from the current time assignment setΣ(o).
We also remove the completion timesσ(o)+kp(o) for all integersk because they
result in the same conflict graph. On the resulting time assignment set we reapply
the time selection algorithm as outlined in Section 7.2.2.

7.4 Channel Assignment

Finally, we focus on the channel assignment problem. Formally, the problem is
defined as follows.

7.4 Channel Assignment 131

Definition 7.17 (Channel Assignment Problem).Let (O;R) be a signal flow
graph, let(P;C) be a processing element network, let(∆;Σ;A;Λ) be a mapping
set such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all o 2 O, the connectivity
constraints, and the relaxation of the mapping constraints are satisfied, letσ 2 Σ
be a time assignment such that the precedence constraints are satisfied, and let
α 2 A be a processing element assignment such that the computation constraints,
the periodicity constraints, and the storage constraints are satisfied. Find a chan-
nel assignmentλ 2 Λ, if one exists, such that the communication constraints
are satisfied, i.e., for all data precedencesr; r 0 2 R it holds that if r 6= r 0 and
ψ(r) � ψ(r 0)(modgcd(p(r); p(r 0))) thenλ(r) 6= λ(r 0). 2

We also reformulate the channel assignment problem as a graph coloring prob-
lem. To this end we formulate an instance of the channel assignment problem as
a conflict graph. Each data precedence in the signal flow graph corresponds to a
vertex in the conflict graph. The vertices in the conflict graph are connected if
and only if the corresponding data precedences have overlapping arrival times for
different data on the same set of input terminals of the same processing element.

Definition 7.18 (Channel Assignment Problem Reformulated).Let (O;R) be a
signal flow graph, let(P;C) be a processing element network, let(∆;Σ;A;Λ) be
a mapping set such thatj∆j = jV(A(o))j = jT(A(o))j = 1 for all o2 O, the con-
nectivity constraints, and the relaxation of the mapping constraints are satisfied, let
σ 2 Σ be a time assignment such that the precedence constraints are satisfied, and
let α 2A be processing element assignment such that the computation constraints,
the periodicity constraints, and the storage constraints are satisfied. Then the graph
(VΛ;EΛ) is called achannel conflict graphwhere the set of verticesVΛ is defined
by

VΛ = R;

and the set of edgesEΛ contains the edgefr1; r2g, where r1 = ((o1;n1);

(o01;n
0
1);(p1;b1;b01)) and r2 = ((o2;n2);(o02;n

0
2);(p2;b2;b02)) 2 R if and only if

(o1;n1) 6= (o2;n2), (α(o01); Ip(t(α(o01)))) = (α(o02); Ip(t(α(o02)))), and

ψ(r1)� ψ(r2) (mod gcd(p1; p2)):

The problem is to find a channel assignmentλ : R!C, if one exists, such that for
all r 2 R it holds that

λ(r) 2 f((α(o);m);(α(o0);m0
)) 2 Λ(r) jm2Op(t(α(o)))^m0 2 Ip(t(α(o0)))g;

and for allfr1; r2g 2 EΛ it holds that

λ(r1) 6= λ(r2): 2

132 Scheduling

The complete edge set of the conflict graph can only be determined if the com-
plete time and processing element assignments are known. However, a partial time
and processing element assignment already define a subset of the final edge set
namely the edges of which both ends contain an operation that has been given a
completion time and a processing element. Once an operationo has been assigned
to a timeσ(o) and to a processing elementα(o), we extend the edge set. At any
time we have that the edge setEΛ contains the edgefr1; r2g if and only if there ex-
ist verticesV andV 0 in the processing element conflict graph for which it holds that
o01 2V, o02 2V 0, and f (V) = f (V 0) and if it holds thatjΣ(o1)j = jΣ(o2)j = 1. The
resulting graph coloring instances are solvable in polynomial time because they
have to be colored with at most two colors [Garey et al., 1976]. This is due to the
fact that the channel assignment setΛ(r) contains at most two channel assignments
that obey the type constraints for the given processing element assignmentα. To
handle the channel assignment problem we reuse the heuristic for coloring pro-
cessing element conflict graphs that is based on the Kempe-chain argument. This
heuristics optimally solves the coloring of graphs with two colors.

7.4.1 Backtracking

If for some precedencer1 we cannot find a feasible channel assignment, then it
must be in conflict with some other precedencer2. In that case there is an odd-
length cycle in the channel conflict graph such that it cannot be colored with two
colors. The removal of one edgefr1; r2g in the cycle, by adding the correspond-
ing edgefV;V 0g with o01 2V ando02 2V 0 in the processing element conflict graph,
suffices to solve that particular channel conflict. The choice of which edge is to be
removed, determines which edge is added to the processing element graph. Prefer-
ably, we prevent a recoloring of the processing element conflict graph by adding an
edge between two vertices that already have different colors. If that is not possible,
we adopt the heuristic to add an edge between the vertices of which the maximum
degree is minimal in order to simplify the recoloring of the processing element con-
flict graph. If the new processing element conflict graph cannot be recolored then
we resort to the old conflict graph and we change the time assignment of the current
operation to obtain different processing element and channel conflict graphs.

7.5 Results

In this section we present the results of the proposed mapping approach on the
set of industrially relevant problem instances. We applied the proposed scheduling
approach on the instances that have been generated by the preceding delay man-
agement and partitioning steps. If we were not able to solve these instances, then
we backtracked on the delay management and partitioning steps.

7.5 Results 133

Table 7.1. Mapping results of signal flow graphs that are mapped onto the
VSP1FLEX processor network. From left to right the columns list the number of
operation and data precedences, the average computation and storage utilization
of the processors in percentages, and whether we succeeded to map the instance
with presented approach.

SFG jOj jRj RA=CA R∆=C∆ solved
ALE OE ME1

YUVTORGB 73 112 71 45 0 0 yes
HORCOMPR 154 273 21 20 13 25 yes
IJNTEMA1 257 426 47 38 19 19 yes
CORMACK2 232 370 37 25 9 31 yes
CONTOUR1 131 240 73 40 20 37 yes
MONZA2 123 224 82 45 25 42 yes
VDP 282 516 68 48 30 44 yes
GAMMA 366 559 59 41 22 15 yes
HISTMOD2 328 506 38 33 21 12 yes
PANORAMA 164 323 55 54 50 75 yes
VIDIWALL 284 568 82 52 35 57 yes
IJNTEMA2 485 795 86 53 20 25 no
CORMACK1 334 601 91 63 72 79 no
MONZA1 380 656 74 39 31 54 yes
MWTV 600 953 75 36 30 42 no

Table 7.1 lists the mapping results of the signal flow graphs that are mapped
onto theVSP1FLEX processor network. The signal flow graphsCORMACK2, GAMMA ,
PANORAMA, andVIDIWALL violate an upper bound of a precedence constraint after
delay management and partitioning. For this reason we have reapplied delay man-
agement on these instances which has been successful except forVIDIWALL where
a relaxation of the computation constraints was violated after delay management.
To solve this problem we have generated a different partition usingε = 0:3, after
which the subsequent delay management step was successful. Furthermore, the
signal flow graphsHISTMOD2, VDP, IJNTEMA2, andMWTV violate a lower bound
of a precedence constraints after delay management and partitioning. In case of
HISTMOD2 we have generated a different partition usingε = 0:25. As a result,
the partitioning step inserts less pass operation in the cycle that violated the lower
bound. In case ofVDP this strategy does not work. Instead we have performed the
initial delay management before partitioning with a smaller upper bound for the
precedence constraints assuming that the silo size is22 rather than32. We were
not able to satisfy the precedence constraints for the signal flow graphsIJNTEMA2

andMWTV with the presented solution approaches for delay management and par-
titioning.

134 Scheduling

Once the preconditions for scheduling are satisfied, the subsequent schedul-
ing step is not able to find feasible solutions for the signal flow graphsMONZA2,
PANORAMA, and CORMACK1. Signal flow graphMONZA2 can be scheduled with
a different partition usingε = 0. Signal flow graphPANORAMA can be scheduled
with a different partition usingε = 0:35 and a subsequent delay management step
using silo size31. The scheduling algorithm cannot satisfy all computation and
communication constraints in signal flow graphCORMACK1 despite trying different
partitions. The reason for this is that the partitioning step produces infeasible in-
stances of the scheduling problem. This is caused by the fact the signal flow graph
contains operations with periods1, 2, 4, 12, and16 which do not form a divisible
sequence. The average computation requirement of many combinations of these
operations does not correctly reflect the actual number of required processing ele-
ments. For instance, a combination of4 operations with period2, 7 operations with
period12, and1 operation with period16 has an average computation requirement
of 2.64, but this combination cannot be mapped onto3 processing elements that
have a program length of16. Due to the bound on the program length the opera-
tions with period12 and16 cannot be mapped onto the same processing element,
which makes the combination infeasible. However, these periodicity constraints
are not considered during partitioning.

Table 7.2 lists the mapping results for the signal flow graphs that are mapped
onto theVSP2TESTprocessor network. The signal flow graphsCORMACK2, GAMMA ,
MONZA2, PANORAMA, andVIDIWALL violate an upper bound of a precedence con-
straints after delay management and partitioning. We have successfully reapplied
delay management to satisfy the precedence constraints after partitioning. The re-
sulting problem instances can be scheduled successfully

Table 7.3 lists the mapping results for the signal flow graphs that are mapped
onto theVSP2FLEX processor network. The signal flow graphsCONTRAST, FDXD2,
HSRC, and VSRC violate an upper bound of a precedence constraints after delay
management and partitioning. We have successfully reapplied delay management
to satisfy the precedence constraints after partitioning. However, the instanceVSRC

cannot be scheduled under the resulting precedence constraints. Furthermore, our
scheduling algorithm cannot find a solution for the resulting instanceFDXD2. For
this reason, we have again reapplied delay management on these two signal flow
graphs under the assumption the silos have a size of28 and31, respectively. This
slightly changes the precedence constraints, after which our scheduling algorithm
is able to find solutions.

The instances of the mapping problem that are listed in Table 7.3 have a degree
of utilization of the arithmetic and logic elements of approximately50%. In order
to evaluate the presented mapping techniques at higher degrees of utilization we
map the signal flow graphs onto smaller processor networks. To this end we reduce

7.5 Results 135

Table 7.2. Mapping results of signal flow graphs that are mapped onto the
VSP2TEST processor network. From left to right the columns list the number of
operation and data precedences, the average computation and storage utilization
of the processors in percentages, and whether we succeeded to map the instance
with presented approach.

SFG jOj jRj RA=CA R∆=C∆ solved
ALE BE OE ME1

YUVTORGB 42 81 71 17 4 0 0 yes
HORCOMPR 89 208 22 0 50 13 25 yes
IJNTEMA1 189 363 48 4 42 23 19 yes
CORMACK2 169 307 39 1 33 18 31 yes
CONTOUR1 86 201 73 8 17 20 37 yes
MONZA2 89 179 82 25 25 34 42 yes
VDP 195 426 68 17 29 36 44 yes
GAMMA 254 447 50 10 25 27 17 yes
HISTMOD2 214 392 42 0 25 23 12 yes
PANORAMA 99 258 53 23 17 56 75 yes
VIDIWALL 178 438 78 12 50 37 57 yes
IJNTEMA2 309 598 86 23 25 29 26 yes
MONZA1 265 541 74 12 25 31 54 yes
MWTV 418 731 75 2 25 44 42 yes

Table 7.3. Mapping results of signal flow graphs that are mapped onto the
VSP2FLEX processor network. From left to right the columns list the number of
operation and data precedences, the average computation and storage utilization
of the processors in percentages, and whether we succeeded to map the instance
with presented approach.

SFG jOj jRj RA=CA R∆=C∆ solved
ALE BE OE ME2

CONTRAST 356 584 57 7 33 18 33 yes
FDXD1 230 581 37 1 45 10 1 yes
FDXD2 281 589 45 6 43 22 18 yes
MAT30UP 258 462 43 2 32 10 6 yes
HSRC 402 996 50 11 35 25 28 yes
VSRC 598 1270 50 15 57 29 21 yes

theVSP2FLEX processor network to a network of three processors and to a network
of four processors. We map the signal flow graphsFDXD1, FDXD2, andMAT30UP

onto the reduced network of three processors because these signal flow graphs have
a utilization of less than50%. We map the signal flow graphsCONTRAST, HSRC,
VSRC that have a utilization of50% or more onto the reduced network of four pro-
cessors. The results are listed in Table 7.4. These results show that the presented

136 Scheduling

Table 7.4. Mapping results of signal flow graphs that are mapped onto two fictive
processor networks. From left to right the columns list the number of opera-
tion and data precedences, the average computation and storage utilization of the
processors in percentages, and whether we succeeded to map the instance with
presented approach.

SFG jOj jRj RA=CA R∆=C∆ solved
ALE BE OE ME2

CONTRAST 340 576 84 13 38 27 46 yes
FDXD1 217 587 72 7 62 19 3 yes
FDXD2 231 551 85 38 54 44 36 yes
MAT30UP 159 328 85 3 24 20 11 yes
HSRC 527 990 74 35 51 38 42 yes
VSRC 456 1125 69 15 52 33 30 yes

mapping techniques are effective up to resource utilizations of75%. Furthermore,
the presented mapping techniques significantly improve efficiency since each map-
ping presented in this thesis has been produced within several minutes. To illustrate
the improvement in efficiency we mention that an experienced person requires sev-
eral hours to manually map the signal flow graphCONTRAST onto theVSP2FLEX

processor network.

7.6 Summary

In this chapter we have presented an approach to handle the scheduling prob-
lem. The approach decomposes the scheduling problem into the time assignment
problem, the processing element assignment problem, and the channel assignment
problem. The objective of the time assignment problem is to compute completion
times for operations in such a way that the computation requirements are evenly
distributed among the clock cycles. The objective of the processing element as-
signment problem is to assign the operations of which the executions overlap in
time to different processing elements. The objective of the channel assignment
problem is to assign data precedences that overlap in time to different communi-
cation channels. We have developed a constraint satisfaction heuristic to handle
scheduling problem in which a partial time assignment, a partial processing ele-
ment assignment, and a partial channel assignment are iteratively extended to total
assignments. The results indicate that the scheduling approach can produce feasi-
ble solutions even at high degrees of resource utilization.

8
Conclusion

We have considered the problem of mapping signal flow graphs onto networks
of programmable video signal processors. In this mapping problem we have to
schedule the executions of periodic operations on processing elements, the sam-
ples of periodic data precedences on communication channels, and the lifetimes of
periodic operands in memories subject to resource and time constraints. We have
presented an approach to handle the mapping problem that finds feasible solutions
even at high degrees of resource utilization.

In Chapter 2 we have presented a mathematical formulation of the mapping
problem. The formulation consists of four decision variables which are called delay
assignment, time assignment, processing element assignment, and channel assign-
ment. The combination of these assignment is subject to eight constraints which are
called type constraints, array constraints, connectivity constraints, precedence con-
straints, computation constraints, communication constraints, storage constraints,
and periodicity constraints. We have introduced two transformations on signal flow
graphs in order to be able to efficiently implement the communication and storage
of operands.

In Chapter 3 we have shown that the mapping problem is hard in the formal
sense. This caused by several combinations of constraints. The storage and pe-
riodicity constraints are hard, but they can be solved in polynomial time by ex-
haustive search if the data memory and program memory, respectively, have fixed

137

138 Scheduling

sizes. The computation and communication constraints are hard, but they can be
solved in polynomial time if the periods of the operations and precedences, re-
spectively, form a divisible sequence. The type, array, connectivity, and prece-
dence constraints are easy. Signal flow graph transformation in combination with
the precedence, computation, and connectivity constraints is hard even when the
periods form a divisible sequence, because the computation and connectivity con-
straints bound the number of operations that can be added to satisfy the precedence
constraints. Signal flow graph transformation in combination with the computa-
tion, communication, and connectivity constraints is hard even when the periods
form a divisible sequence, because the computation and communication constraints
bound the number of operations and precedences that can be added to satisfy the
connectivity constraints.

In Chapter 4 we have decomposed the mapping problem into the delay man-
agement problem, the partitioning problem, and the scheduling problem. The ob-
jective of the delay management problem is to add operations to a signal flow
graph that store the operands in memories subject to the combination of prece-
dence, computation, and connectivity constraints. The objective of partitioning is
to add operations to a signal flow graph that communicate operands along the com-
munication channels subject to the combination of computation, communication,
and connectivity constraints. The objective of the scheduling problem is to sched-
ule the operations of a signal flow graph on the processing elements subject to the
mapping constraints.

In Chapter 5 we have presented an approach to handle the delay management
problem. The approach is based on a decomposition of the delay management
problem into the delay minimization problem and the delay assignment problem.
The objective of the delay minimization problem is to minimize the lifetimes of
the operands. The objective of the delay assignment problem is to allocate room
for each operand in one or more memories. We have shown that the delay mini-
mization problem can be solved in polynomial time with network flow techniques
because it is a special case of the dual of the minimum cost flow problem. We have
developed a bin packing heuristic to handle the delay assignment problem. The
results indicate that the delay management approach produces balanced solutions
in which the degree of utilization is evenly distributed among the different memory
types.

In Chapter 6 we have presented an approach to handle the partitioning prob-
lem. The approach is based on a decomposition of the single multi-way partition-
ing problem into multiple two-way partitioning problems. The advantage of this
approach is that it effectively reduces the search space for the routing of commu-
nication through a processor network. The decomposition produces a binary tree
of a processor network in which the root represents the entire processor network

Conclusion 139

and each node represents a subgraph of the processor network. The two children
of each node split the subgraph into two disjoint subgraphs. The leafs of the tree
represent the individual processors of the network. The objective of the resulting
two-way partitioning problem is to recursively split a signal flow graph into two
pieces such that each piece fits on the corresponding subgraph of the processor
network. We have developed a local search heuristic to handle the two-way par-
titioning problem. The results indicate that the partitioning approach is able to
produce balanced solutions in which the degree of utilization of the resources is
evenly distributed among the processors in the network.

In Chapter 7 we have presented an approach to handle the scheduling problem.
The approach is based on a decomposition of the scheduling problem into the time
assignment problem, the processing element assignment problem, and the channel
assignment problem. The objective of the time assignment problem is to determine
completion times for operations in such a way that the computation requirements
are evenly distributed among the clock cycles. The objective of the processing
element assignment problem is to assign the operations of which the executions
overlap in time to different processing elements. The objective of the channel
assignment problem is to assign data precedences that overlap in time to different
communication channels. We have developed a constraint satisfaction heuristic
to handle the scheduling problem in which a partial time assignment, a partial
processing element assignment, and a partial channel assignment are iteratively
extended to total assignments. The results indicate that the scheduling approach
can produce feasible solutions even at high degrees of resource utilization.

We have applied the developed mapping techniques on a set of industrially rel-
evant video applications and processor networks. These experiments have shown
that these techniques can automatically map applications containing hundreds of
operations onto processor networks containing tens of processing elements. The
automatic mapping techniques are effective up to resource utilizations of75 per-
cent. Furthermore, they increase efficiency compared to manual mapping because
they reduce the time that is required to map an application onto a processor network
from hours to minutes.

The added value of the research presented in this thesis is the formal model of
the complete mapping problem and the use of this model in order to reason on the
decomposition of the mapping problem and the definition of the subproblems. The
model provides an entry point for combinatorial optimization techniques in order
to handle the subproblems. Furthermore, the model can serve as a template for the
modeling of other mapping problems. Finally, we mention that current research di-
rections are moving from off-line mapping to on-line mapping techniques because
video applications tend to become more dynamic which means that their execution
depends on the size and the value of run-time data.

Bibliography

AARTS, E.H.L., G. ESSINK, AND E.A. DE KOCK [1996], Recursive bipartition-
ing of signal flow graphs for programmable video signal processors,Pro-
ceedings European Design & Test Conference 1996, 460–466.

AARTS, E.H.L., AND J.K. LENSTRA [1997], Local search in combinatorial op-
timization, Wiley, Chichester.

AHO, A.V., J.E. HOPCROFT, AND J.D. ULLMAN [1974],The design and analysis
of computer algorithms, Addison-Wesley, Reading.

AHUJA, R.K., T.L. MAGNANTI , AND J.B. ORLIN [1989], Network flows, in:
G.L. Nemhauser, A.H.G. Rinnooy Kan, and M.J. Todd (eds.),Handbooks
in operations research and management science; Volume 1: Optimization,
North Holland, Amsterdam, 211–369.

ARAUJO, G., AND S. MALIK [1995], Optimal code generation for embedded
memory non-homogeneous register architectures,Proceedings of the 8th
International Symposium on System Synthesis, 36–41.

ASHRAF, M., AND S.H. BOKHARI [1995], Efficient algorithms for a class of
partitioning problems,IEEE Transactions on Parallel and Distributed Sys-
tems6, 170–175.

BALMER, K., N. SIMMONS, P. MOYSE, I. ROBERTSON, J. KEAY, M. HAMMES,
E. OAKLAND , R. SIMPSON, G. BARR, AND D. ROSKELL [1994], A single
chip multimedia video processor,Proceedings of IEEE Custom Integrated
Circuits Conference - CICC 1994, 91–94.

BILSEN, G., M. ENGELS, R. LAUWEREINS, AND J. PEPERSTRAETE[1994],
Static scheduling of multi-rate cyclo-static DSP applications,Proceedings
Workshop on VLSI Signal Processing, 137–146.

BOKHARI, S.H. [1988], Partitioning problems in parallel, pipelined, and dis-
tributed computing,IEEE Transactions on Computers37, 48–57.

BOVE, V.M., AND J.A. WATLINGTON [1995], Cheops: a reconfigurable data-flow
system for video processing,IEEE Transaction on Circuits and Systems for
Video Technology5, 140–149.

BUCK, J.T. [1994], Static scheduling and code generation from dynamic dataflow
graphs with integer-valued control streams,Proceedings of the 1994 28th
Asilomar Conference on Signals, Systems, and Computers, 508–513.

141

142 Bibliography

CAVIGIOLI , C.D. [1987], Architecture of the ADSP-2100 digital signal processor,
Midcon 1987 Conference Record, 412–416.

CHANG, P., D.Y CHEN, Y.F. LEE, Y. WU, AND U. BANERJEE [1997], Bidi-
rectional scheduling: a new global code scheduling approach,Proceedings
of the 9th International Workshop on Languages and Compilers for Parallel
Computing, 220–230.

CHEN, Y., Y. HSU, AND C. KING [1994], MULTIPAR, behavioural partition for
synthesising multiprocessor architectures,IEEE Transactions in Very Large
Scale Integration Systems2, 140–149.

CHENG, W.K., AND Y.L. L IN [1995], A transformation-based approach for stor-
age optimization,Proceedings of the 32nd Design Automation Conference,
158–163.

COFFMAN, E.G. JR. [1976], Computer and job-shop scheduling theory, Wiley,
New York.

COFFMAN, E.G. JR., M.R. GAREY, AND D.S. JOHNSON [1987], Bin packing
with divisible item sizes,Journal of Complexity3, 406–428.

COFFMAN, E.G. JR., M.R. GAREY, AND D.S. JOHNSON[1997], Approximation
algorithms for bin packing: a survey, in: D.S. Hochbaum (ed.),Approxima-
tion algorithms for NP-hard problems, PWS Publishing, 49–93.

COOK, S.A. [1971], The complexity of theorem-proving procedures,Proceedings
3rd Annual ACM Symposium on Theory of Computing, 151–158.

COOK, W.J., W.H. CUNNINGHAM , W.R. PULLEYBLANK , AND A. SCHRIJVER

[1997], Combinatorial Optimization, Wiley, New York.
DENK, T.C., AND K. PARHI [1994], Calculation of minimum number of registers

in 2-D discrete wavelet transforms using lapped block processing,Proceed-
ings 1994 International Symposium on Circuits and Systems, 77–80.

DEPUYDT, F., G. GOOSSENS, AND H. DE MAN [1994], Scheduling with register
constraints for DSP architectures,Integration The VLSI Journal18, 95–120.

DESMET, D., AND G. GENIN [1993], ASSYNT: efficient assymbly code genera-
tion for digital signal processors starting from a data flowgraph,Proceedings
of ICASSP 1993, 45–48.

DIJKSTRA, H., H. HOLLMANN , K. HUIZER, AND R. SLUYTER [1989], New
programmable delay element,Electronic Letters25, 1019–1021.

DONGEN, R.C.A. VAN [1991], Mapping for digital video signal processors: mod-
els and algorithms, Master’s thesis, Department of Mathematics and Com-
puting Science, Eindhoven University of Technology.

ESSINK, G., E. AARTS, R. VAN DONGEN, P. VAN GERWEN, J. KORST, AND

K. V ISSERS[1991b], Architecture and programming of a VLIW style video
signal processor,Micro-24, 181–188.

ESSINK, G., E. AARTS, R. VAN DONGEN, P. VAN GERWEN, J. KORST, AND

Bibliography 143

K. V ISSERS[1991a], Scheduling in programmable video signal processors,
Proceedings of the IEEE International Conference on Computer-Aided De-
sign, 284–287.

FLUITER, B.L.E. DE [1993], A complexity catalogue of high-level synthesis prob-
lems, Master’s thesis, Department of Mathematics and Computing Science,
Eindhoven University of Technology.

FRENCH, S. [1982], Sequencing and scheduling: an introduction to the mathe-
matics of the job shop, Ellis Horwood, Chichester.

GAREY, M.R., AND D.S. JOHNSON [1979], Computers and intractability: a
guide to the theory of NP-completeness, W.H. Freeman and Company, New
York.

GAREY, M.R., D.S. JOHNSON, G.L. MILLER, AND C.H. PAPADIMITRIOU

[1980], The complexity of coloring circular arcs and chords,SIAM Journal
on Algebraic and Discrete Methods1, 216–227.

GAREY, M.R., D.S. JOHNSON, AND L. STOCKMEYER [1976], Some simplified
NP-complete graph problems,Theoretical Computing Science1, 237–267.

GEBOTYS, C.H. [1997], An efficient model for DSP code generation: perfor-
mance, code size, estimated energy,Proceedings of the 10th International
Symposium System Synthesis, 41–47.

GIBBONS, A. [1989], Algorithmic graph theory, Cambridge University Press.
GOOSSENS, G., J. RABAEY, J. VANDEWALLE , AND H. DE MAN [1990], An

efficient microcode compiler for application-specific DSP-processors,IEEE
Transactions on Computer-Aided Design9, 925–937.

GREWAL, G.W., AND T.C. WILSON [1997], Shake and bake: a method of map-
ping code to irregular DSPs,Proceedings of the 10th International Confer-
ence on VLSI Design, 506–508.

GUMUSKAYA , H., B. ORENCIK, T. KURUGOLLA, AND T. PALAZ [1994], Au-
tomatic scheduling of real-time digital filtering algorithms onto processors,
Proceedings of the 5th International Conference on Signal Processing Ap-
plications and Technology, 606–611.

HEI, G.D. LA , E. RIDDERSMA, AND A.K. RIEMENS [1996], A VSP2 chip test
board, Technical report, Philips Research NL-TN 032/96.

HU, X., S.C. BASS, AND R.G. HARBER [1994], Minimizing the number of delay
buffers in the synchronization of pipelined systems,IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems13, 1441–1449.

HWANG, Y.T., AND J.S. HWANG [1997], Efficient code generation for digital sig-
nal processors with parallel and pipelined instructions,1997 IEEE Workshop
on Signal Processing Systems, 243–252.

JANSEN, R.E.J. [1994], Partitioning of signal flow graphs for programmable
video signal processors, Master’s thesis, Department of Mathematics and

144 Bibliography

Computing Science, Eindhoven University of Technology.
JOHNSON, D.S., C.H. PAPADIMITRIOU , AND M. YANNAKAKIS [1988], How

easy is local search?,Journal of Computer and System Science37, 79–100.
KALOUPTSIDIS, N. [1997], Signal processing systems: theory and design, Wiley,

New York.
KARP, R.M. [1972], Reducibility among combinatorial problems, in: R.E. Miller

and J.W. Thatcher (eds.),Complexity of computer computations, Plenum
Press, New York, 85–103.

KARP, R.M. [1975], On the computational complexity of combinatorial problems,
Networks5, 45–68.

KEMPE, A.B. [1879], On the geographical problems of the four colours,American
Journal of Mathematics2, 193–200.

KERNIGHAN, B.W., AND S. LIN [1970], An efficient heuristic procedure for
partitioning graphs,Bell System Technical Journal49, 291–307.

KLOKER, K.L. [1987], The architecture and applications of the Motorola
DSP56000 digital signal processor family,Proceedings of the 1987 Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 523–526.

KOCH, P., K.K. BAGCHI, AND K. HERMANSEN [1993], Implementation stud-
ies of efficient and realistic multi-signal processor solutions for DSP appli-
cations, DSP - The enabling technology for communications. Conference
Proceedings (ERA 93-0008), 7.3/1–10.

KOCK, E.A. DE, E.H.L. AARTS, AND G. ESSINK [1998], Real-time scheduling
in video systems,Parallel and Distributed Computing Practices1, 85–98.

KOCK, E.A. DE, E.H.L. AARTS, G. ESSINK, R.E.J. JANSEN, AND J.H.M. KO-
RST [1995], A variable-depth search algorithm for the recursive bipartition-
ing of signal flow graphs,OR Spektrum17, 159–172.

KORST, J.H.M. [1992], Periodic Multiprocessor Scheduling, Ph.D. thesis, Eind-
hoven University of Technology.

LANNEER, D., J.VAN PRAET, A. KIFLI , K. SCHOOFS, W. GEURTS, F. THOEN,
AND G. GOOSSENS[1995], Chess: Retargetable code generation for em-
bedded DSP processors, in: P. Marwedel and G. Goossens (eds.),Code
generation for embedded processors, Kluwer Academic Publishers.

LAWLER, E.L. [1976],Combinatorial optimization: networks and matroids, Holt,
Rinehart and Winston, New York.

LEE, E.A. [1991], Consistency in dataflow graphs,IEEE Transactions on Parallel
and Distributed Systems2, 223–235.

LEE, E.A.,AND J.C. BIER [1990], Architectures for statically scheduled dataflow,
Journal of Parallel and Distributed Computing10, 333–348.

LENGAUER, T. [1990], Combinatorial algorithms for integrated circuit layout,
Wiley, Chichester.

Bibliography 145

LEVIN, L.A. [1973], Universal sorting problems,Problems of information trans-
mission9, 265–266.

LIU, C.L., AND J.W. LAYLAND [1973], Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,Journal of the Association for Com-
puting Machinery20, 46–61.

MARWEDEL, P.,AND G. GOOSSENS[1995], Code generation for embedded pro-
cessors, Kluwer Academic Publishers.

MEERBERGEN, J.L. VAN , P.E.R. LIPPENS, W.F.J. VERHAEGH, AND

A. VAN DER WERF [1995], Phideo: high-level synthesis for high
throughput applications,Journal of VLSI Processing9, 89–104.

MESMAN, B., M. STRIK, A.H. TIMMER, J.L. VAN MEERBERGEN, AND J.A.G.
JESS [1998], A constraint driven approach to loop pipelining and register
binding, Proceedings 1998 European Design Automation and Test Confer-
ence, 377–383.

MONTANARI, U. [1974], Networks of constraints: fundamental properties and
applications to picture processing,Information Sciences7, 95–132.

NEMHAUSER, G.L., AND L.A. WOLSEY [1988], Integer and combinatorial op-
timization, Wiley, New York.

NUIJTEN, W.P.M. [1994], Time and resource constrained scheduling: a con-
straint satisfaction approach, Ph.D. thesis, Eindhoven University of Tech-
nology.

PALENICHKA , R.M., AND A.Y. L UTSYK [1996], Parallel image processing by
using homogeneous computing structures,Proceedings of the 3rd Interna-
tional Conference of the ACPC Parallel Databases and Parallel I/O, 233–
234.

PAPADIMITRIOU , C.H., AND K. STEIGLITZ [1982], Combinatiorial optimiza-
tion: algorithms and complexity, Prentice-Hall, New Jersey.

PARKS, T.M., J.L. PINO, AND E.A. LEE [1996], A comparison of synchronous
and cyclo-static dataflow,Proceedings of the 29th Asimolar Conference on
Signal, Systems and Computers, 204–210.

PAULIN , P.G.,AND J.P. KNIGHT [1989], Force-directed scheduling for the behav-
ioral synthesis of ASICs,IEEE Transactions on Computer-Aided Design8,
661–679.

PAULIN , P.G., C. LIEM, T.C. MAY, AND S. SUTARWALA [1995], FlexWare:
A flexible firmware development environment for embedded systems, in:
P. Marwedel and G. Goossens (eds.),Code generation for embedded pro-
cessors, Kluwer Academic Publishers.

PINEDO, M. [1995], Scheduling: theory, algorithms, and systems, Prentice-Hall,
Englewood Cliffs.

PRATT, W.K. [1991], Digital image processing 2nd edition, Wiley, New York.

146 Bibliography

RIDDERSMA, E., G.D. LA HEI, AND A.K. RIEMENS [1996], The VSP2flex
board, Technical report, Philips Research NL-TN 024/96.

ROERMUND, A.H.M. VAN , P.J. SNIJDER, H. DIJKSTRA, C.G. HEMERYCK,
C.M. HUIZER, J.M.P. SCHMITZ, AND R.J. SLUYTER [1989], A general-
purpose programmable video processor,IEEE Transactions on Consumer
Electronics35, 249–258.

SAHA , A., AND R. KRISNAMURTHY [1994], Some design issues in multi-chip
FPGA implementation of DSP algorithms,Proceedings 5th International
Workshop on Rapid System Prototyping.

SCHÄFFER, A.A., AND M. YANNAKAKIS [1991], Simple local search problems
that are hard to solve,SIAM Journal on Computing20, 56–87.

SCHRIJVER, A. [1986], Linear and integer programming, Wiley, Chichester.
SHEU, J.P.,AND T.S. CHEN [1995], Partitioning and mapping of nested loops for

linear array multicomputers,Journal of Supercomputing9, 183–202.
SMEETS, M.L.G., E.H.L. AARTS, G. ESSINK, AND E.A. DE KOCK [1997], De-

lay management for programmable video signal processors,Proceedings
European Design & Test Conference 1997, 126–133.

SOHIE, G.R.L. [1989], The Motorola DSP96002 IEEE floating-point digital sig-
nal processor,22nd Asilomar Conference on Signals, Systems and Comput-
ers, 909–913.

STEWART, R.W. [1988], Mapping signal processing algorithms to fixed archi-
tectures, 1988 International Conference on Acoustics, Speech and Signal
Processing, 2037–2040.

THEIS, J.P. [1996],Parallel processor architectures for image processing, Ph.D.
thesis, University of Saarland.

TIMMER, A.H., AND J.A.G. JESS [1993], Execution interval analysis under re-
source constraints,Proceedings of the International Conference on Com-
puter Aided Design, 454–459.

TREGNAGO, R., A.H.M. VAN ROERMUND, AND A.A.J. DE LANGE [1992], A
general-purpose VSP-based digital video processing board, Technical re-
port, Philips Research NL-TN 039/92.

VEENDRICK, H.J.M., O. POPP, G. POSTUMA, AND M. L ECOUTERE[1994], A
1.5 GIPS video signal processor (VSP),Proceedings CICC 6.2, 95–98.

VERHAEGH, W.F.J. [1995],Multidimensional periodic scheduling, Ph.D. thesis,
Eindhoven University of Technology.

VISSERS, K.A., G. ESSINK, P.H.J.VAN GERWEN, P.J.M. JANSSEN, O. POPP,
E. RIDDERSMA, W.J.M. SMITS, AND H.J.M. VEENDRICK [1995], Archi-
tecture and programming of two generations video signal processors,Mi-
croprocessing and Microprogramming41, 373–390.

WELSH, D.J.A., AND M.B. POWELL [1967], An upper bound on the chromatic

Bibliography 147

number of a graph and its application to timetabling problems,The Com-
puter Journal10, 85–87.

WESS, B., W. KREUZER, AND M. GOTSCHLICH[1995], Automatic generation of
optimized DSP assembly code,Proceedings of the 21st Annual Conference
on IEEE Industrial Electronics2, 979–984.

WILSON, T., G. GREWAL, S. HENSHALL, AND D. BANERJI [1995], An ILP-
based approach to code generation, in: P. Marwedel and G. Goossens (eds.),
Code generation for embedded processors, Kluwer Academic Publishers.

YEUNG, A., AND J. RABAEY [1992], A data-driven architecture of rapid proto-
typing of high throughput DSP algorithms,Proceedings VLSI Signal Pro-
cessing, 225–234.

Symbol Index

The numbers refer to the pages of first occurrence.

General Symbols

IB set of booleans 46
set of integers 16

+ set of positive integers 20
IN set of non-negative integers 16
INk set ofk smallest non-negative integers 25

Terminal Symbols

Tt set of terminal types 15

Processing Element Type Symbols

Tp set of processing element types 16
Ip(t) set of input terminals of processing element typet 16
Op(t) set of output terminals of processing element typet 16
tp(t;n) type of terminaln of processing element typet 16
dp(t;n) computation delay of terminaln of processing element typet 16
sp(t) size of random access memory of processing element typet 16

Processor Type Symbols

Tv set of processor types 17
Iv(t) set of input ports of processor typet 17
Ov(t) set of output ports of processor typet 17
Mv(t) set of program memories of processor typet 17
pv(t) size of program memories of processor typet 17
Pv(t) set of processing elements of processor typet 17
tv(t;e) type of processing elementeof processor typet 17
mv(t;e) program memory of processing elementeof processor typet 17
Cv(t) set of intraprocessor connections of processor typet 17

148

Symbol Index 149

dv(t) communication delay of processor typet 17
nv(t) silo size of processor typet 17

Processor Network Symbols

Pn set of processors 17
tn(v) type of processorv 17
Cn set of interprocessor connections 17
dn(v1;v2) communication delay between processorsv1 andv2 17

Processing Element Network Symbols

M set of program memories 18
pa(m) (= p(m)) size of program memorym 18
P set of processing elements 18
ma(p) (= m(p)) program memory of processing elementp 18
na(p) (= n(p)) silo size of processing elementp 18
ta(p) (= t(p)) type of processing elementp 18
sa(p) (= s(p)) memory size of processing elementp 18
C set of processing element connections 18
da(c) (= d(c)) communication delay of processing element connectionc 18

Operation Type Symbols

To set of operation types 19
Io(t) set of input terminal of operation typet 19
Oo(t) set of output terminal of operation typet 19
to(t;n) type of terminaln of operation typet 19

Signal Flow Graph Symbols

A set of arrays 20
sf(a) (= s(a)) size of arraya 20
O set of operations 20
tf(o) (= t(o)) type of operationo 20
af(o) (= a(o)) array of operationo 20
pf(o) (= p(o)) period of operationo 20
R set of data precedences 20
S set of no-value precedences 20

150 Symbol Index

Mapping Symbols

δ : O! IN delay assignment 25
σ : O! time assignment 25
α : O! P processing element assignment 25
λ : R!C channel assignment 25

χ : R[S! data departure time 29
ψ : R[S! data arrival time 29
ω : R[S! minimum completion time difference 30
ω : R[S! maximum completion time difference 30

Mapping Set Symbols

∆�O! IN set of delay assignments 54
Σ�O! set of time assignments 54
A �O! P set of processing element assignments 54
Λ�R!C set of channel assignments 54

∆(o)� IN set of delay assignment values of operationo 54
Σ(o)� set of time assignment values of operationo 54
A(o)� P set of processing element assignment values of operationo 54
Λ(r) �C set of channel assignment values of data precedencer 54

∆(O)�P(IN) set of delay assignment value sets 54
Σ(O)�P() set of time assignment value sets 54
A(O)�P(P) set of processing element assignment value sets 54
Λ(R)�P(C) set of channel assignment value sets 54

X � R[S! set of data departure times 55
Ψ� R[S! set of data arrival times 55
Ω� R[S! estimated minimum completion time difference 56
Ω� R[S! estimated maximum completion time difference 56

R∆(O) storage requirement of operation setO 59
RA(O) computation requirement of operation setO 57
RΛ(R) communication requirement of data precedence setR 58
RA;Λ(O) periodicity requirement of operation setO 59

C∆(P) storage capacity of processing element setP 59

Symbol Index 151

CA(P) computation capacity of processing element setP 57
CΛ(C) communication capacity of channel setC 58
CA;Λ(P) periodicity capacity of processing element setP 59

Author Index

A
Aarts, E.H.L., 7, 100, 116
Aho, A.V., 35
Ahuja, R.K., 76, 78, 80, 81
Araujo, G., 9
Ashraf, M., 9

B
Bagchi, K.K., 9
Balmer, K., 8
Banerjee, U., 9
Banerji, D., 8
Barr, G., 8
Bass, S.C., 9
Bier, J.C., 8
Bilsen, G., 23
Bokhari, S.H., 9
Bove, V.M., 8
Buck, J.T., 8

C
Cavigioli, C.D., 8
Chang, P., 9
Chen, D.Y., 9
Chen, T.S., 9
Chen, Y., 9
Cheng, W.K., 9
Coffman, E.G. Jr., 9, 40, 85
Cook, S.A., 35, 46, 49
Cook, W.J., 7
Cunningham. W.H., 7

D
Denk, T.C., 9

Depuydt, F., 9
Desmet, D., 8
Dijkstra, H., 14, 15
Dongen, R.C.A. van, 7, 116

E
Engels, M., 23
Essink, G., 4, 7, 116

F
Fluiter, B.L.E. de, 48
French, S., 9

G
Garey, M.R., 8, 35, 39, 40, 44, 85, 99
Gebotys, C.H., 9
Genin, G., 8
Gerwen, P.H.J. van, 4, 7, 116
Geurts, W., 8
Gibbons, A., 116, 128
Goossens, G., 8, 9
Gotschlich, M., 8
Grewal, G.W., 8
Gumuskaya, H., 9

H
Hammes, M., 8
Harber, R.G., 9
Hei, G.D. La, 32
Hemeryck, C.G., 15
Henshall, S., 8
Hermansen, K., 9
Hollmann, H., 14
Hopcroft, J.E., 35

152

Author Index 153

Hsu, Y., 9
Hu, X., 9
Huizer, C.M., 14, 15
Hwang, J.S., 8
Hwang, Y.T., 8

J
Jansen, R.E.J., 7, 97
Janssen, P.J.M., 4
Jess, J.A.G., 8
Johnson, D.S., 8, 35, 39, 40, 44, 85,

99, 101, 104

K
Kalouptsidis, N., 8
Karp, R.M., 35, 48, 116
Keay, J., 8
Kempe, A.B., 116, 128
Kernighan, B.W., 100
Kifli, A., 8
King, C., 9
Kloker, K.L., 8
Knight, J.P., 123
Koch, P., 9
Kock, E.A. de, 7
Korst, J.H.M., 7–9, 20, 40, 42–44,

116, 123
Kreuzer, W., 8
Krisnamurthy, R., 9
Kurugolla, T., 9

L
Lange, A.A.J. de, 31
Lanneer, D., 8
Lauwereins, R., 23
Lawler, E.L., 44
Layland, J.W., 122
Lecoutere, M., 15
Lee, E.A., 8, 23
Lee, Y.F., 9
Lengauer, T., 9, 93

Lenstra, J.K., 100
Levin, L.A., 35
Liem, C., 8
Lin, S., 100
Lin, Y.L., 9
Lippens, P.E.R., 4
Liu, C.L., 122
Lutsyk, A.Y., 9

M
Magnanti, T.L., 76, 78, 80, 81
Malik, S., 9
Man, H. de, 8, 9
Marwedel, P., 8
May, T.C., 8
Meerbergen, J.L. van, 4, 8
Mesman, B., 8
Miller, G.L., 44
Montanari, U., 118
Moyse, P., 8

N
Nemhauser, G.L., 7
Nuijten, W.P.M., 118

O
Oakland, E., 8
Orencik, B., 9
Orlin, J.B., 76, 78, 80, 81

P
Palaz, T., 9
Palenichka, R.M., 9
Papadimitriou, C.H., 7, 44, 78, 101,

104
Parhi, K., 9
Parks, T.M., 23
Paulin, P.G., 8, 123
Peperstraete, J., 23
Pinedo, M., 9
Pino, J.L., 23

154 Author Index

Popp, O., 4, 15
Postuma, G., 15
Powell, M.B., 116, 130
Praet, J. van, 8
Pratt, W.K., 1
Pulleyblank, W.R., 7

R
Rabaey, J., 8
Riddersma, E., 4, 32
Riemens, A.K., 32
Robertson, I., 8
Roermund, A.H.M. van, 15, 31
Roskell, D., 8

S
Saha, A., 9
Schäffer, A.A., 104
Schmitz, J.M.P., 15
Schoofs, K., 8
Schrijver, A., 7
Sheu, J.P., 9
Simmons, N., 8
Simpson, R., 8
Sluyter, R.J., 14, 15
Smeets, M.L.G., 7
Smits, W.J.M., 4
Snijder, P.J., 15
Sohie, G.R.L., 8
Steiglitz, K., 7, 78
Stewart, R.W., 9
Stockmeyer, L., 99
Strik, M., 8
Sutarwala, S., 8

T
Theis, J.P., 8
Thoen, F., 8
Timmer, A.H., 8
Tregnago, R., 31

U
Ullman, J.D., 35

V
Vandewalle, J., 8
Veendrick, H.J.M, 4, 15
Verhaegh, W.F.J., 4, 8, 9, 20
Vissers, K.A., 4, 7, 116

W
Watlington, J.A., 8
Welsh, D.J.A., 116, 130
Werf, A. van der, 4
Wess, B., 8
Wilson, T.C., 8
Wolsey, L.A., 7
Wu, Y., 9

Y
Yannakakis, M., 101, 104
Yeung, A., 8

Subject Index

A
amplitude, 2
array, 18
array constraints, 27

relaxation, 60

B
bin packing, 7, 39
bipartite operation set, 98
bipartite processing element set, 97

C
capacity ratio, 97
channel assignment, 25
channel assignment problem, 117,

130
circular-arc graph, 43
combinatorial decision problem, 36
combinatorial optimization problem,

36
communication constraints, 31

relaxation, 58
communication requirement, 105,

125
compact silo, 13, 26, 27
completion time order, 124
computation constraints, 31

relaxation, 57
computation requirement, 123
concise certificate, 36
conflict graph

channel, 131
processing element, 127

connectivity constraints, 28
relaxation, 60

consistency checking, 119
constraint satisfaction, 7, 8, 118
constraint satisfaction problem, 118
constraints

array, 27, 60
communication, 31, 58
computation, 31, 57
connectivity, 28, 60
periodicity, 28, 59
precedence, 29, 30, 56
storage, 28, 58
type, 27, 60

cyclostatic, 4, 6, 10

D
dead end, 119
decimation, 24
delay assignment, 25
delay assignment problem, 75
delay line, 82
delay management problem, 65, 71
delay minimization problem, 73
dual of minimum cost flow problem,

78

E
exchange, 101
expansion, 24

F
feasibility problem, 37

155

156 Subject Index

first fit decreasing, 85, 86
force-directed scheduling, 123
frame, 3
frame blanking, 3

G
genetic algorithms, 8
graph coloring, 7, 116

I
instance size, 36
integer linear programming, 8, 76
integrated circuit, 2

application-specific, 4
interpolation, 24

K
kempe-chain argument, 116, 128,

132

L
line, 3
line blanking, 3
list scheduling, 8
local search, 7
local search problem, 100
local search reduction, 102

M
mapping, 25
mapping problem, 31
mapping set, 54
minimum cost flow problem, 77

N
network

processing element, 18
processor, 17

network flow, 7
NP-complete, 37
NP-hard, 37

O
operation, 18

arithmetic, 19
constant, 19
input, 19
logic, 19
output, 19
pass, 19
read, 19
shift, 19
type, 19
write, 19

operation order, 123

P
partition, 96
partitioning problem, 66, 94
periodicity constraints, 28

relaxation, 59
pixel, 2
polynomial-time algorithm, 36
precedence, 18

data, 18
equivalence, 22
inclusion, 22
label, 21
no-value, 18
offset, 21
period, 21

precedence constraints, 29, 30
relaxation, 56

processing element, 15
type, 16

processing element assignment, 25
processing element assignment prob-

lem, 117, 127
processing element network

abstraction, 95
processor, 16

general-purpose, 3

Subject Index 157

micro, 3
signal, 3
type, 17
video, 3

processor assignment problem, 96

Q
quantization, 2

R
rate-monotonic scheduling, 122
reduction, 24, 36, 102
right-hand-side scaling, 80

S
sampling, 2
scanning, 3
scheduling problem, 66, 115
search state, 119
search tree, 118
sequential coloring, 116
signal

analog, 2
continuous, 2
digital, 2
discrete, 2
processing, 1
processor, 3
video, 2

signal flow graph, 5, 20
inclusion, 25

solution equivalence, 119
solution set, 119
storage constraints, 28

relaxation, 58
successive shortest path, 80

T
terminal, 15
terminal type, 15
thickness function, 123

three-satisfiability, 45
time assignment, 25
time assignment problem, 117
time complexity function, 36
two-way partitioning problem, 99,

103
two-way partitioning scheme, 94
type assignment problem, 96
type constraints, 27

relaxation, 60

U
uniform graph partioning, 103

V
variable-depth search, 101

Samenvatting

Dit proefschift handelt over het afbeelden van video-applicaties op programmeer-
bare videosignaalprocessoren. Het afbeeldingsprobleem vormt de kern van het
programmeringsprobleem om een netwerk van processoren een gewenste video-
applicatie te laten uitvoeren. Kenmerkend voor de processornetwerken is de
hoge mate van parallellisme die nodig is vanwege de aard van het applicatie-
gebied. Om dit te bereiken zijn speciale processorarchitecturen noodzakelijk waar-
door de complexiteit van de afbeeldingsproblematiek toeneemt. We behandelen
het afbeeldingsprobleem voor een specifieke architectuur die toegesneden is op
stroomgeori¨enteerde berekeningen.

Het afbeeldingsprobleem laat zich modelleren als een combinatorisch
beslissingsprobleem waarvan de oplossingsruimte bestaat uit alle afbeeldingen
die voldoen aan beperkingen die voortkomen uit de processorarchitectuur en
de tijdseisen van het applicatiegebied. We hebben aangetoond dat de verschil-
lende combinaties van beperkingen tot gevolg hebben dat het afbeeldingsprobleem
formeel lastig is. Om met de beperking om te kunnen gaan, decomponeren we
het afbeeldingsprobleem in drie deelproblemen genaamd het bufferprobleem, het
routeringsprobleem en het planningsprobleem zodanig dat de oplossingsruimte zo
weinig mogelijk wordt aangetast. Hoewel deze deelproblemen ook formeel lastig
zijn, worden er in de bestaande literatuur technieken beschreven die goed toepas-
baar zijn op deze deelproblemen.

De decompositie is gebaseerd op een eigenschap van de processorarchitectuur
die kenmerkend is voor stroomgeori¨enteerde berekeningen. Deze eigenschap houdt
in dat informatie slechts korte tijd bij een operator aanwezig is, om zodoende
geheugen te besparen. Dit heeft twee consequenties. Ten eerste is het tijdsinterval
waarin operaties uitgevoerd kunnen worden klein. Ten tweede zijn opeenvolgende
operaties sterk in de tijd aan elkaar gerelateerd. Dit heeft tot gevolg dat het routeren
van de informatiestromen tussen de operatoren een sterke invloed heeft op de abso-
lute positie van de tijdsintervallen. Bovendien vraagt de synchronisatie van recon-
vergente informatiestromen om buffers hetgeen sterk van invloed is op het routeren.

Het bufferprobleem handelt over het synchroniseren van reconvergente
informatiestromen. Daarbij zijn de tijdstippen van synchronisatie en de op-
slag van informatie tussen deze tijdstippen van belang. Dit geeft aanleiding tot

158

Samenvatting 159

een decompositie van het bufferprobleem in een bufferminimaliseringsprobleem
en een buffertoekenningsprobleem. In het minimaliseringsprobleem bepalen we
tijdstippen van synchronisatie zodanig dat de totale geheugenbehoefte minimaal
is. Dit probleem laat zich modelleren als een ‘network flow’ probleem, dat
in polynomiale tijd oplosbaar is. In het toekenningsprobleem bepalen we hoe
iedere informatiestroom in de beschikbare geheugentypes wordt opgeslagen. Dit
probleem laat zich modelleren als een ‘bin packing’ probleem, waarvoor goede
benaderingsalgoritmen in de literatuur bekend zijn.

Het routeringsprobleem handelt over het routeren van de informatiestromen
tussen de processoren in een netwerk. Daarbij zijn de toekenning van operaties
aan processoren en het transport van informatie tussen de processoren van belang.
Dit geeft aanleiding tot een decompositie van het routeringsprobleem in een se-
quentie van tweedelingsproblemen. De sequentie is zodanig dat iedere verbinding
in het processornetwerk eenmaal doorsneden wordt. Voor iedere tweedeling in
het processornetwerk bepalen we een corresponderende tweedeling in de video-
applicatie met behulp van een ‘local search’ methode. In deze aanpak garandeert
de keuze van zoekruimte dat er met de capaciteit van de processoren rekening
wordt gehouden. De kostenfunctie representeert de communicatiebehoefte tussen
de beide elementen van een tweedeling.

Het planningsprobleem handelt over het toekennen van operaties aan opera-
toren en aan tijdstippen zodanig dat operaties die overlappen in tijd op verschil-
lende operatoren uitgevoerd worden. Het toekenningsprobleem van operaties aan
operatoren laat zich voor een gegeven tijdstoekenning modelleren als een graaf-
kleuringsprobleem, waarvoor heuristieken in de literatuur bekend zijn. Dit geeft
aanleiding tot een ‘constraint satisfaction’ aanpak waarin de tijdsintervallen van
de operaties, die het resultaat zijn van het bufferen en het routeren, gereduceerd
worden op grond van de tijdsrelaties tussen de operaties en het resultaat van de
graafkleuring.

De ontwikkelde afbeeldingsmethode is toegepast op een twintigtal indus-
trieel relevante video-applicaties. De resultaten laten zien dat men applicaties
die enkele honderden operaties bevatten in enkele minuten automatisch af kan
beelden op processornetwerken die tientallen operatoren bevatten, waarbij men
hoge bezettingsgraden haalt. Het handmatig afbeelden van deze applicaties
neemt vaak enkele tot tientallen uren in beslag. In combinatie met een interac-
tieve programmeeromgeving is de ontwikkelde methode een effectief afbeeldings-
gereedschap.

Curriculum Vitae

Erwin de Kock was born on May12, 1970, in Tilburg, the Netherlands. From1988
to 1993 he studied Computing Science at the Eindhoven University of Technology.
He graduated on the subject of partitioning of signal flow graphs for networks of
video signal processors. Subsequently he participated in a two-year’s post-master’s
program on software technology at the Eindhoven University of Technology from
which he graduated on the design of a programming environment for video sig-
nal processors. Since October1995 he has been affiliated to the Philips Research
Laboratories, where he has been working on methods and tools for the design and
programming of digital signal processing systems. He combines this work with his
interests in combinatorial optimization and software engineering.

160

	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography
	Symbol index
	Author index
	Subject index
	Samenvatting
	Curriculum vitae

