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Abstract

In this paper we consider the problem of simlllt.aneolls (partial) feedback linearization
and input-output linearization for SISO nonlinear control systems. It is shown that the
problem of existence of a linear subsystem of a certain dimension may be reduced to a
well-known problem from real algebraic geometry.

1 Introduction and problem statement

In this paper we consider a smooth SISO nonlinear control system ~ of the form

~ {± = f(x) + g(x)ll
Y = h(x)

, x E Jnn, 1l E Dl
,y E Dl

(1)

Further, consider a linear SISO system f: of the form

f: {~ = ~~ +Bu
1] = C~

, ~ E Dlii., U E Dl
,1]EDl

(2)

where n ~ n. We will call f: a (linear) subsystem of ~ if for ~ there exist a regular static
state feedback Q8: u = a(x) + f3( x)v and new coordinates x(x) = (Xl (x), X2( x)) such that
in the new coordinates x(x) the system ~ 0 Qs takes the form

(3)

In this paper we answer the question whether, given n E {1,"', n}, the system ~ has a
controllable linear subsystem of dimension n. Note that if ~ has a linear subsystem, one
may partially feedback linearize the system by means of regular static state feedback and
coordinate transformation, while at the same time achieving a linear input-output behavior.

·Research was performed while the author was visiting the Laboratoire d'Automatique de Nantes, Ecole
Centrale de Nantes/Universite de Nantes, supported by a grant from the Region Pays de la Loire. This paper
is to appear in the proceedings of CONTROL096, Porto, Portugal.
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In this respect the problem considered in this paper may be seen as a combined (partial)
feedback linearization problem and input-output linearization problem. For an overview of
the literature on (partial) feedback linearization we refer to [9],[10],[1l] and the references
therein, while for an overview of the literature on input-output linearization we refer to [8]
and the references therein. Further, note that the question whether a system has a linear
subsystem of dimension n has been answered in [3].

The organization of the paper is as follows. In the next section we will introduce some nota­
tion, concepts and results that will be used in the rest of the paper. In Section 3 preliminary
necessary and sufficient conditions for the existence of a controllable linear subsystem of a
given dimension will be derived. Starting from these conditions, it will be shown in Section
4 that the problem under consideration may be reduced to a well known problem from real
algebraic geometry. In Section 5, we give an example, and in Section 6 some conclusions are
drawn.

2 Preliminaries

2.1 Relative degree of one-forms

In this subsection we give a differential-geometric treatment of the relative degree of one­
forms. The concept of relative degree of a one-form was introduced in [2] in an algebraic
framework. Define the manifold Mo := lRn with local coordinates x, and the manifolds
Mk:= Mk-l X lR with local coordinates (x,u, ... ,u(k-l)) (k = 1,· .. ,2n+ 1). Clearly, Mk
is an immersed submanifold of Me (k = 0"", 2n; £ = k + 1, ... , 2n + 1), with the natural
immersion ike: Mk -+ Me defined by

ikO(X u ... u(k-l)) - (x 1/ ... u(k-l) °... 0)
(. ", -,." '" (4)

Let 2k denote the codistribution span {dx} on lIh (k = 0, ... , 2n + 1). On M2n+b we define
the extended vector field

o 2n 0r := (J +gu)- +L u(i+I)_.
OJ; i=O ou(t)

For a one-form w on Mk (k = 0, ... , n + 1), we define w(e) on M2n+I by

w(e) := £}e«ik2n+t}*W)

(w E Mk; k = 0"", n + 1; £ = 0"", 2n + 1 - k)

Then w(e) may be interpreted as a one-form on on A1He, in the sense that

(ikH2n+t}*( ikH2n+l )*w(e) = w(e)

(5)

(6)

(7)
(w E Mk;k = 0", ·,n+ 1;£ = 0,···,2n+ 1- k)

Let w E =k (k = O,· .. ,n), and a.ssume that there exists an £ E {I," ·,n} such that w(l) ¢
=2n+I' Then the smallest such £ is called the relative degree of w, to be denoted by Tw• If
for all f E {1,···, n} we have that w(f) E =2n+l, we define rw := +00. For a function <p
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satisfying d<p E Sk, we define its relative degree by r</> := rd</>. Define the codistributions 1t~

(k=I,···,n; '-=k-l,···,2n+l-k)by

(8)

Using (7), it may then be shown that 1t~ may be identified with 1tZ-1
, in the sense that

(ik-ll)*( ik-ll)*1t1 = (ik-ll)*1tZ-1

(9)
(k = 1,···, n; '- = k - 1,···, 2n +1 - k)

We further define the codistribution 1t~ on Mn by

1t~ := {w E Sn I rw = +oo}

Next, define

1t ( . ) 1tk- 1 (k 1 )k:= Zk-12n+l * k' = , ... , n

We then have the following properties (for a proof, see (mutatis mutandis) [2]).

Lemma 2.1 (i) 1t1 ::> 'li2 ::> ••• ::> 'lin ::> 'lioo .

(ii) 1too is integrable.

(iii) ~ is strongly accessible if and only if1too ={O}.

(iv) 1tk = {w E 1tk-l I«ik-22n+d*w)(1) E 1td (k = 1,· .. ,n).

(v) 1too = {w E 'lin I «in-12n+l)*W)(1) E'lin}.

(vi) Define

Then

dim(1tk)=n+l-k (k=I,"',O")

and

1tk = 1t00 (k = O",· .. ,n)

(vii) Let>. E 1tu - 1 \11.00 ' Then we have for k E {I,.··, 0" - I}:

1tk = span{«in-22n+l)* >.)U') 1'- = 0,···,0" - 1- k} EEl 11.00
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2.2 Parametrized post compensated system

In the sequel, the notion of a parametrized post compensated system will be of key importance.
In this subsection we introduce this notion, and give some properties. Consider a smooth SISO
system :E of the form (1), and let d E IN be given. Let St,''', Sd be parameters that take
their values in IR. We then define a parametrized post compensated system :EP(SI,"', Sd} by

x = f(x) +g(x)u
i l Z2

:EP(st,"" Sd}
id-l

(17)
Zd

d
Zd hex) - I: SkZk

k=l

Similarly to what has been done in the previous subsection, one may define a sequence of
parametrized codistributions Hk(Sl,"', Sd} for :EP(Sl,"', Sd}. Define M := M2n+b where
M 2n+l has been defined in the previous subsection, and define MP := IRn X IRd X IR2(n+d)+l
with local coordinates (X,Z,1l,' .• ,u(2(n+d))). Define the immersion i: M - MP by

i(x, u,"', u(2n)) := (x, 0, u,"', u(2n), 0,"',0)

Further, let 2, 2 P denote the codistribution span{dx} on M and MP respectively. For
:EP(st,· .. , Sd}, we define the codistributions

Hie:= i*Hk (k = 1,···,n) (18)

H~ := i*Hoo (19)

It then follows from the form of EP(Sl" .. , Sd) tha.t

't;fsl"",SdER 't;fkE{l,ooo,n) HI, C H~(st, ... , Sd) (20)

(21)

(22)

(23)

We now show that the codistributions H~(Sl"",Sd) (k = 1,".,(7) may be parametrized in
a polynomial way. Let S denote the ring of smooth functions of (x, u, ... , u(2n»), and define
the polynomial ring R := S[Sb"" Sd].

Lemma 2.2 Consider the parametrized post compensated system :EP(st,·.·, Sd} and the se­
quence of parametrized codistributionsH~(sl""Sd} (k = 1,"',(7). Let A E Hn\Hoo satisfy

(in-l2n+l )*( in-12n+l)* >. = >.

Define r := rho Then

4
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and there exist 4>kt E n (k = 1" .. , d; f = 0, ... , (1 - r - d - 2 +k) such that

1t1(S1,"" Sd) = span{i*wk(Sl,' .. , Sd) - dZk I k = 1"", d} EEl 1t~
(26)

(k=I,"',(1)

where
q-r-d-2+k

Wk := L 4>kl>'(t)
t=o

(27)

Proof Equality (25) follows straightforwardly from Lemma 2.1 and (20),.· ,,(23). It then
follows from (21),(23),(25) that there exist parametrized one-forms Wk(S1,"', Sd) E 3P (k =
1, ... , d) such that

1t~(S1,"" Sd) =span{wk(sl,"" Sd) - dZk I k =1"", d} EEl 1t~

From Lemma 2.1. (i) and (20),(22),(28) it then follows that

1t~(S1," ., Sd) = span{wk(sl"'" Sd) - dZk I k = 1"," d} EEl 1t~

(£=1,"',(1)

(28)

(29)

What remains to be shown is that Wk = i*Wk (k = 1"", d), where the Wk are of the form
(27). We give the proof for d = 2. The proof for d > 2 is analogous. Since rh = r, there exist
ao, ... , aq-1-r E S such that O'q-1-r ;J. 0, and

q-1-r
dh = L O'l>.(t)

t=o

From Lemma 2.1. (iv) and (29) it follows that

~1 - dZ1 =~1 - W2 + (W2 - dz2) E 1t~_1 (Sl, 82)

and

(30)

(31)

(32)
81(W1 - dzI) - 82(W2 - dz2) E 1t~_1 (81, 82)

Let SP denote the ring of smooth functions of (x, z, u,···, u(2(n+d»). With Lemma 2.1. (vii) it
follows from (31 ),(32) that there exist parametrized functions 131 (81, 82), 132(81, 82) satisfying
131(81, 82),132(81,82) ESP, (\'S1,82 E JR) and parametrized one-forms 1I"1(81,S2),1I"2(81,82)
satisfying 11"1(81,82),11"2(81,82) E 1t~, (\'Sl,S2 E JR) such that

~1 = W2 +131(i*>.) + 11"1

~2 = dh - 81W1 - 82W2 +132(i*>') + 11"2

(33)

(34)

From (33),(34) it follows in particular that 1'Wl = r + 2, r W2 = r + 1, and hence there exist
parametrized functions ¢kt(81, 82) (k = 1,2; f = 0"", (1 - 4 - r + k) and parametrized
one-forms 1]1(81,82),1]2(81,82) such that

(35)
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n-4-r+k
Wk= L J;kl(i .. ,\)U')+7Jk (k=1,2)

t=o

Comparing (30),(33),(34),(37) we then obtain:

J;1O - J;20 = /31

J;u + J;U-I - J;u = 0 (f = 1"",0' - 3 - r)

J;2n-2-r = Un-I-r

From (40),(44) it follows that

J;In-3-r = J;2n-2-r = Un-I-I" ESC R

Equalities (43),(45) then give

Using an induction argument, it then follows from (39),(42),(45),(46) that

J;kt E R (k = 1,2;£ = 1", ',0' - 4 - l' + k)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

•
It further follows from (38),(41) that 4>10, 4>20 are arbitrary. Together with (47), this estab­
lishes our claim.

3 Necessary and sufficient conditions

In this section we derive necessary and sufficient conditions for the existence of a linear
subsystem of dimension n E {1,·· ., n} for a strongly accessible SISO system l;. We start with
some (rather trivial) observations.

Lemma 3.1 Consider a SISO system l; of the form (1), and define r := rho Let n E
{l, ... , n} be given. Then l; has a linear subsystem of dimension n only if n ~ r.

Proof Follows immediately from (3) and the fact that the relative degree of h is invariant
under regular static state feed ba.ck a.nd coordinate transformations. •
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Lemma 3.2 Consider a SISO system ~ of the form (1), and define r := rho Then ~ has a
linear controllable subsystem of dimension r.

Proof As is well known (see e.g. [9]'[11]), the differentials dy(k) (k = 0" .. , r - 1) are linearly
independent, and y(r) = a(x) + b(x )11., where b(x) ::f:. O. The result then follows by defining
Xlk = y(k-l) (k = 1, .. ·,r) and v:= a(x)+ b(x)u. •

Our main result is as follows.

Theorem 3.3 Consider a strongly accessible SISO system ~ of the form (1), and define
r := rho Let 11, E {r + 1, .. ·,n} be given, and define d := 11, - r. Consider the parametrized
post compensated system ~P(SI"'" Sd), and the sequence of parametrized codistributions
1tt(s}, ... , Sd). Then ~ has a linear controllable subsystem of dimension 11, if and only if
there exist aI, ... , ad E JR such that

(48)

Proof (necessity) Assume that ~ has a linear controllable subsystem f; of dimension n. Since
f; is controllable, one may assume without loss of generality that the matrices ..4, iJ in (2) are
in Brunovsky canonical form. Let Ci (i = 1,···,11,) denote the entries of C in (2). Since the
relative degree is invariant under state space transformations and regular static state feedback,
we then have that Cd+! ::f:. 0 and Cd+2 = ... = cn = O. Consider the post compensated system
~P (c-CI , ••• , _Cd ), and define new coordinates (x, 0 for this system, with ~i := Zi - Cd+! Xli

d+l cd+l

(i = 1", ., d). In these new coordinates we have

~i = Zi+! - Cd+IXli+! = ~i+l (i = 1", ·,d - 1)

and

d+! d - d -

i "'- - '" Ck - - '" Ck c<"d = L.-J CkXlk - L.-J -_-Zk - Cd+IXid+1 = - L.-J -_-<"k
k=l k=l Cd+l k=1 Cd+l

From (49),(50) it follows that

(49)

(50)

(51)
Cl Cd

1t~(-_-, ... ,-_-) = spa.n{d6,···,d~d}
Cd+! Cd+l

From Lemma 2.2 and the fad that 1tfx, (_ CI , ••• , _Cd ) C 1tn+1 (_ CI , ••• , _Cd ) it then follows
Cd+l Cd+l Cd+l Cd+l

that there exist al,' .. , ad E JR such that (48) holds.

(sufficiency) Assume that there exist a}, .. ·, ad E JR such that (48) holds. It then follows
from Lemma 2.2 that there exist one-forms WI, ••• , Wd E span{dx} such that

and

dWi E span{1r 1\ p 11r,p E span{da:,du,·· .,du(2n)}}

7
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From (52) and the form of EP(al,· .. , ad) it follows that

Wj=Wj+l (i=l,···,d)

and

d

dh = Wd +L akWk
k=1

(54)

(55)

(56)

Combining (54) and (55), we obtain

d
dh = w~d) + L akw~d-l)

k=1

We next show that WI is exact. The fact that 1tfx, (SI' ... , Sd) is integrable implies that we
have

(57)

Together with (53) this gives that dWl = 0, and hence WI is (locally) exact. Let xn be such
that WI = dXn. It follows from Lemma 2.2 that 1·Xl1 = 1· + d. Defining Xlk := £1-1xn (k =
2, .. " r +d), this then gives that the differentials (l.7:n,· .. , dXlr+d are linearly independent,
and that Xlr+d = a(x) + b(X)ll, where b(x) f:: o. Further, it follows from (56) that y =
L:t=1 akxlk + Xld+l. Defining v := a(x) + b( x)1/., it is then established that E has a linear
subsystem of dimension r +d = n. •

Remark 3.4 Let d E IN be given. Checking the proof of Theorem 3.3, one sees that E has
a linear subsystem of dimension 1· +([ if and only if there exist a function 4> : JRn -+ JR and
aI, ... ,ad E Dl such that

r¢ = r +d

and

d

h = £14> +L ak£1-14>
k=1

Rewriting (58) as

£r4> = 0 ('.IT E 1t;+d)

(58)

(59)

(60)

one obtains a set of nonlinear PDE's for 4>. The integrability conditions for this set of PDE's
are given by (48). Further, note that it follows from the sufficiency-part of the proof of
Theorem 3.3 that the zeros of the linear subsystem are given by the zeros of the polynomial
pes) := sd + L:i=1 aksk-1.

8



(61)

4 Reduction to an algebro-geometric problem

In this section we show that the question whether there exists a linear subsystem of dimension
n > r is equivalent to a well-known problem from real algebraic geometry. For reasons of
clarity of exposition and space limitations, we first restrict to the case n = r +1. At the end
of the section we make some remarks about the case n > r +1. Assume that ~ is strongly
accessible. Let oX E 1tn - {O} be such that (16),(24) hold. Define r := rho Then there exist
ao, ... , a n - r E S such that a n - r -:f:. 0 and

n-r
dh = L aioX(i)

i=O

Consider the parametrized post compensated system EP(s). It then follows from Lemma 2.2
that there exist <Pi E n (f = 0, ... , n - r - 1) such that

n-r-l
1t~+1 (s) = span{ L <pe(s)oX(e) - (Iz}

e=o

Define .,po, ... , .,pn-r E n by

.,po := 4>0 + s<po - 0'0

.,pi := 4>e +<Pi-l + s<pe - ae (f = 1"", n - r - 1)

.,pn-r := <Pn-r-l - an- r

Let Os denote the zero-function. \Ve now have the following result.

(62)

(63)

(64)

(65)

Theorem 4.1 Consider a st7'Ongly accessible 5150 system E of the form (1), and define
r := rho Let .,po,···,.,pn-r be defined by (63),(64),(65). Then E has a linear subsystem of
dimension r + 1 if and only if .,po, ... , .,pn-r have a com.mon real ze7'O, i.e.,

3aE R V'eE{o,. ..,n-r} .,pe(a) = Os (66)

Proof From Theorem 3.3 it follows that E has a linear subsystem of dimension r +1 if and
only if there exists an a E IR such that H n+1 (a) = 1too (a). It is straightforwardly shown that
this is equivalent to the existence of a.n a E IR such that

d n-r-l n-r-l
d/ L <pe(a)oX(e)) +a( L <pe(a).x(e)) = dh

i=O e=o

It then easily follows that this is equivalent to (66).

(67)

•
We next indicate how (66) may be checked by reducing the question to the question whether
a set of polynomials in IR[s] has a common real zero. Define ~ := col(x, u,···, u(2n)) E lR3n+l,

and let v denote the maximal degree in s of the polynomials .,po,···, .,pn-r' Then there exist
functions .,pff E S such that

11

.,pi(S)(O= L.,p;(Osk (f=O, .. ·,n-r)
k=O

9
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Define the (n - r + 1, v + I)-matrix P(O with entries Pij(O := 1/Jl(~) (i = 0"", n - rj j =
O,···,v). Further, define for s E JR the vector Vs := col(l,s,···,sll). Then the question
to be considered is whether there exists a real solution to the equation P(~)vs == O. Ob­
viously, there exists a real solution to this equation only if there exists a v E JRII+! satis­
fying the equation P(~)v == O. Note that this equation may be extended by the equations
({)/ {)~i(P(~)))v == 0 (i = 1,,,,, 2n) and equations obtained by taking higher-order partial
derivatives. One may now come up with an algorithm that performs this extension in a con­
trolled way ([13]). The algorithm is reminiscent of the Structure Algorithm ([9],[11]). The
final result of the algorithm will be a constant right-invertible (q, v + 1)-matrix P (for some
q E IN with the property that {v E JRII+! I P(Ov == O} = KerP. It then follows that a E JR
satisfies (66) if and only if PVa = 0, i.e, if and only if a is a common zero of the polyno­
mials pieS) := Lj;!;i PijSj-I (i = 1,· .. ,q). Let (P},"',Pq) denote the polynomial ideal in
JR[s] spanned by PI," ·,Pq. Since mrs] is a principal ideal domain, there exists a polynomial
PE JR[s] with the property that (PI,"', pq) = (11). Hence a E JR satisfies (66) if and only
if pea) = O. Thus, we have reduced our problem to the problem whether a monovariable
polynomial has a real root. This is a well-known problem from real algebraic geometry, that
has received attention since the time of Newton and Descartes. Obviously, there exists a real
root when the polynomial p is of odd degree. When 11 is of even degree, one can check whether
p has a real zero (in fact one can even determine the number of real zeros) using the so called
Newton sums and Hankel forms associated with the polynomial. We refer to [6] for details
on this topic.

In case one is trying to answer the question whether E has a real subsystem of dimension
n > r + 1, one can proceed roughly in the same way as above. In this case, it may be
shown that there exists a. linear subsystem of dimension 11. if and only if a set of polynomials
1/Jo,''','l/J-y E S[SI,"',Sd], where d:= n - r, has a common real zero. Applying the same
kind of algorithm as indicated above, the problem may then reduced to the problem whether
a set of polynomials PI,' .. , Pq E JR[81, ... , Sd] has a common real zero. This problem has
first been solved by Tarski ([12]). Later on, the problem has been considered by Collins ([4],
see also [1],[5]) by using the concept of Cylindrical Algebraic Decomposition (CAD) of JRn.
Further, with the method of CAD one can also tackle problems in which polynomial equalities
as well as polynomial inequalities playa role. By using polynomial inequalities obtained from
the Routh-Hurwitz test, this also a.Ilows to check whether there exist linear subsystems with
stable zero dynamics. By now, MAPLE-implementations of the algorithm for Cylindrical
Algebraic Decomposition are available. A drawback, however, is that the complexity of the
algorithm is doubly exponential.

5 Example

Consider on {x E JR3 I X2 ~ O} the nonlinear SISO system E given by

X~X2 + Xl1/.

". 1 X"'2 - 2' 1

-x2 + x3 - Xl :Z:2X3 - .7:31£

XI X 2

(69)

We have r := 1'h = 1, and hence E has a linear subsystem of dimension 1. We next check
whether E has a linear subsystem of dimension 2. To this end, we consider the post compen-
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sated system ~P(s). Define the one-forms Wt,W2,W3 by

Wt .- dx~

W2 := d(XlX3)
W3 := d(Xt X2)

The one-forms WI and W2 satisfy

Wt = 2Wt -W3
W2 W2 -W3

For ~P(s) we find

1{~(s) = span{(s + l)Wl - (s + 2)W2 - dz}

(70)

(71)

(72)

From (70),(71),(72) it follows that a E IR satisfies 1{~(o.) = 1{~(o.) if and only if it satisfies
0.2 + 30. +2 = 0, and hence a = -1 or a = -2. \Ve have

1{~(-2) = span{wl - dz} (73)

Defining new coordinates Xl := X~, X2 := ft(x~) = 2a;~ - XtX2, X3 := X3, and choosing u in
an appropriate way, we then obtain the form (3) for ~. We further have

(74)

If we now define new coordinates Xl := XlX3, X2 := ft(XlX3) = -XlX2 +XtX3, X3 := X2, and
choose u in an appropriate way, we also obtain the form (3) for ~.

We next check whether ~ has a. linear subsystem of dimension 3. Considering the post
compensated system ~P(Sl,S2), we obtain

1{~(St,S2) = span{w2 - WI - dZll (S2 - 2)(W2 - wt}- Wt - dzd

It then follows from (70),(71 ),(75) that 1{~ (a), 0.2) = 1{~ (0.1,0.2) if and only if

(75)

0.2

o.~ + 0.2 +at - 2
a~ - 0.2 - 2

3
o
o

(76)

Clearly, the first and last equation in (76) are contradictory. Hence ~ does not have a linear
subsystem of dimension 3. Note, however, that by choosing new coordinates Xt := x~ - XtX2,
X2 := 2x~ - XtX3, X3 := 4x~ - XlX3 - XlX2, and by choosing u in an appropriate way, we may
feedback linearize the state equations of ~.

6 Conelusions

In this paper we have characterized the linear subsystems of a nonlinear SISO system. Further,
it has been shown that the existence of a linear subsystem of a given dimension can be checked
by reducing the problem to a well known problem from real algebraic geometry, that can be
tackled by means of the so called Cylindrical Algebraic Decomposition (CAD). A drawback of
using CAD is that the complexity of existing algorit.hms is doubly exponential. This brings up
the question whether the use of CAD could be circumvented. One way to do this might be to
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investigate whether or not the polynomial equations obtained have some special (preferably
triangular) structure that can be employed. This remains a topic for future research. A more
practically oriented way is to come up with an "educated guess" of the possible zeros of a
linear subsystem by using the linearization of the system around an equilibrium point. This
will be the topic of a forthcoming paper ([7]). In this paper, we have restricted ourselves on
the one hand to SISO systems, and on the other hand to regular static state feedback. We
expect that an extension of the results in the paper to MIMO systems (using regular static
state feedback) is possible. Also an extension to the regular dynamic feedback case (at least
for square systems having an invertible decoupling matrix) seems possible. This last extension
would be useful in the solution of the model matching problem by means of minimal order
dynamic state feedback. These remain topics for future research.
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