

Distributed real-time systems : a survey of applications and a
general design model
Citation for published version (APA):
Luit, E. J., Hammer, D. K., Aarts, E. H. L., & Gorp, van, P. C. N. (1997). Distributed real-time systems : a survey
of applications and a general design model. (Computing science reports; Vol. 9710). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d50aebd8-b4fd-4fb8-b11c-8a494fa3b14b

Eindhoven University of Technology
Department of Mathematics and Computing Science

Distributed real-time systems:
a survey of applications and a general design model

by

P.C.N. van Gorp, EJ. Luit, D.K. Hammer, E.H.L. Aarts

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. I.C.M. Baeten

Reports are available at:
http://www.win.tue.nllwinics

Computing Science Reports 9711 0
Eindhoven, June 1997

97110

Distributed real-time systems: a survey of applications and a general
design model

P.C.N. van GorpI, E.J. LuitI, O.K. Hammer!, E.H.L. Aarts!2

1 Department of Mathematics and Computing Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

2 Philips Research Laboratories, Eindhoven, The Netherlands

Abstract

Computer-controlled dependable systems playa crucial role in modern society. These
systems can be encountered in many application domains, from multimedia systems to
food processing machines.

The design of dependable real-time systems is very complex and calls for computer
aided support. Scheduling is one of the important stages in the design trajectory. The
input of the scheduler should describe all relevant features of the application.

The aims of this paper are twofold. Firstly, a survey is made of relevant timing
characteristics in applications from different domains. Secondly, a model is presented
which reflects all important concepts of dependable real-time systems (such as replication
and communication), The model incorporates all the timing characteristics which are
discussed in the survey. It is shown how different temporal behaviors can be expressed in
the model.

The model is used in the design of an off-line hard real-time scheduler for the DEDOS
system [8], which is being developed at the Eindhoven University of Technology.

1 Introduction

The DEpendable Distributed Operating System (OED OS) project [8J is concerned with de
pendable distributed real-time systems. The development of techniques and algorithms for
the design of these systems is the main purpose of the project. Nowadays, the use of de
pendable distributed real-time systems is growing fast, for example in the field of embedded
systems. An important aspect of dependable systems is timeliness; often tasks have to be
completed before a given deadline. Another important aspect of dependability is reliability;
safety critical applications require that the system continues operation despite hardware fail
ures. A nuclear plant and an air traffic control system are good examples where these issues
play an important role. Other aspects of dependability are safety, availability, security and
robustness. In general, it is very difficult to achieve all these conflicting goals simultaneously.
At the moment, DEDOS supports timeliness and reliability.

With respect to timeliness one can distinguish two areas of interest. In soft real-time
scheduling, tasks have to be completed before their deadlines as much as possible, but it is
not catastrophic for a task to finish after its deadline. In hard real-time scheduling this is not
allowed: each task has to finish before its deadline.

DEDOS supports applications with both hard real-time (HRT) and soft real-time (SRT)
tasks. The hard real-time part forms the backbone. Hard real-time tasks are scheduled first,
while soft-real time tasks are scheduled on idle resources in the remaining time. To guarantee
timeliness, hard real-time tasks are scheduled statically. So, it is necessary that all timing
aspects of these tasks are known beforehand. In some cases, worst case estimates have to
be made to this end, which goes at the cost of resource utilization. Static scheduling is
specifically suitable for applications which are characterized by periodicity.

1

Each application domain has its own thning characteristics. To be able to make an abstract
formalization of real-time systems, it is important. to identify the relevant timing behavior
of these systems. This paper contains a survey of the application domains of dependable
distributed real-time systems. Furthermore, a general model is presented, in which these
systems can be formalized.

In Section 2, some characteristic HRT constraints are discussed and some examples from
different application domains are given. In Section 3, it is shown how timing constraints can
be expressed by so-called timed precedence constraints (TPCs). A model which incorporates
the aspects of timeliness, reliability and hard real- time schednling is presented in Section 4.
Section 5 contains conclnsions and in Section 6 some issues with respect to future research
are discussed.

2 Survey of timing constrains

Hard real-time demands can be encountered in many types of applications. In this section
a brief overview is given of different application domains that establish (periodic) scheduling
problems. Special attention is paid to typical timing constraints for each domain.

2.1 Multimedia

Multimedia systems usually employ four components: speech, sound, graphics and video.
Each of these components has its own timing characteristics. In video and audio applica
tions, algorithms have to be performed on incoming data. Execution graphs represent the
algorithms [6][10]. The operations in the algorithms are the nodes in the execution graphs.
Operations are connected by data dependencies. These data dependencies define precedences,
because correct functionality requires that data is produced by an operation before it is con
sumed by a different operation.

The algorithms have a periodic behavior, because the input data arrives periodically. In
video applications and digital signal processing (DSP) in particular, the frequency of incoming
data is much higher than in audio applications. Moreover, the latency between the input of
data and the output is data is larger, because of the greater complexity of the video algorithms.
Therefore, periodicity constraints are much stricter in video and DSP applications. DSP
algorithms are used for applications such as picture in picture, Moire transformation and
contrast adjustment.

Periodicity can be encountered in many places in DSP applications. For example, televi
sion images are constructed by periodically projecting pixels, i.e. an operation is performed
for each pixel in a row and for each row in a frame at a certain (predefined) rate or period [15]
(for example, 64 ps per line and 74.1 ns between consecutive pixels in one line). This period
implicitly defines a deadline for each execution of the operation.

Another example of periodicity is the decoding of scrambled information used in the
D2MAC standard. Every 10 seconds a new decoding scheme is provided. This introduces a
periodic timing constraint for this task [17].

Other tinting constraints arise from the interactive part of multimedia systems. Although
the interactions between the system and the user typically have soft real-time characteristics,
also stricter timing constraints have to be met as well. For example, if the user switches to
a different channel on his or her television set, audio is muted first for 100 ms and a steady
picture of the chosen channel is not displayed for at least 300 ms. When a video recorder is

2

turned on, the screen must be blanked for at least 150 ms. Also, maximum response times
to remote control actions are usually prescribed for the design.

2.2 Flexible manufacturing

A flexible manufacturing system (FMS) is characterized by the production of small batches
of products. Products in different batches are similar, but not identical. Changes between
different batches require short configuration switch times (set-up times). This is in contrast
to the dedicated assembly lines used for mass production.

A FMS consists of a group of machines and a transportation mechanism to move the
objects between these machines. Each machine is capable of performing a number of different
operations. A robot is an example of such a flexible machine. Robotics is discussed in
Section 2.2.l.

The objects under consideration do not always have the same outlook or appearance, and
therefore require different (types of) operations. To this end, a FMS is usually provided with
a sensing mechanisms (cameras, pressure valves, thermometers etc.). Computer vision and
automated visual inspection are discussed in Section 2.2.2, while the control of sensors is the
su b ject of Section 2.2.3.

2.2.1 Robotics

One way to establish the control of a robot is to calculate the movements of the joints of the
robot. It is possible to partition this computation into a number of tasks (2]. Any statement
that would normally cause such a computation to block is known as a (re)scheduling point
and forms a task boundary. Depending on the partitioning, precedence relations exist on the
execution of different tasks. These tasks are the unit of scheduling; they should be assigned
to processors (in the controlling system) and the sequence of executions of tasks on the same
processor should be determined. Furthermore, the robot-motion controlling mechanism shows
a periodic behavior, and deadlines can be given for groups of tasks.

The problem of computing robot motions can be formulated as a multiprocessor scheduling
problem, to minimize the overall execution time, where the tasks with different execution times
have precedence relations and are allocated to a number of processors (9].

2.2.2 Computer vision

Computer vision deals with the recognition of structures or objects in a scene, within a
restricted amount of time. Examples include part and position recognition, weather analysis,
analysis of currents of fluids, and molecular dynamics. Typical input for these processes is
a continuous row of frames (for example, at a rate of 30 frames a second) with 1024 X 1024
pixels in each frame. In general, many operations have to be performed on each pixel. Because
output has to be produced within a reasonable amount of time, this could lead to 10" - 1013

operations per second. So, a high throughput has to be achieved using parallel processing.
One application of computer vision is automated visual inspection (AVI) (12]. Objects are

moved on a conveyor belt for inspection (figure 1). Depending on the result of the inspection,
some operation may be performed on the objects (for example the removal of cherry-stones
from cherries or the filleting of fish in food processing industries).

Suppose, for the moment, that incorrect objects need to be taken off the belt. For this, a
camera captures images from the objects on the belt. These images are input to the decision

3

procedure, which determines if the scanned object should be removed. If so, the object will
be removed from the belt by some mechanism.

cameralJ

obje.::ts

... O O~~O~Q~' ... O"'''"'''o<bOh
direction of movement

Figure 1: Automated visual inspection.

It must be guaranteed that inspection keeps up with the speed of the conveyor belt. This
implies timing constraints for certain parts of the inspection mechanism. The time interval
between two consecutive object arrivals provides an upper bound for the processing time of
one image, if consecutive objects are handled by the same processor. The arrivals may be
strictly periodic or only bounded by a maximum rate.

The rejection mechanism may only be activated after a given amount of time has elapsed
once the corresponding image is processed. This introduces constraints on the delay between
different tasks.

2.2.3 Sensing

In industrial systems, data of the process under control is acquired by means of sensors [11].
These sensors are scanned, sampled and digitized at rates as fast as 10 times per second.
Even higher rates may occur in the sensing of certain physical or chemical processes, such as
those in nuclear power plants.

Periodic scanning is one way of performing measurements. This results in a periodic use
of the communication media that are used for the transport of the measured values to the
controlling processes. Effectively, this technique is equivalent to event handling in a polling
strategy. Often, it is sufficient to pass these measured values only if they are significantly
different (for example more than 5 percent) from the values measured previously. This results
in a reduction of the communication capacity requirements. To reduce the communication
requirements even more, it is possible to specify a minimal time delay between consecutive
communications of sensor measurements. This prevents measurements occuring at an unnec
essarily high rate.

The measured values are used by the controlling process to determine a control policy.
The actual control takes place in periodic loops.

2.3 Systems control

Apart from the control of flexible manufacturing systems, many timing constraints can be
encountered in more specific control systems. The control of a photocopier is the subject of
Section 2.3.1 and aircraft control is discussed in Section 2.3.2.

4

2.3.1 Photocopier Control

A particular high-volume photocopying machine operates as follows. Latent images are pro
duced on a photo-conductor belt. This belt is welded at one location and so no images may be
made across the weld. Therefore, the weld is marked by a master hole in the belt. The time at
which the master hole passes a particular point in each full revolution of the belt is recorded
by a sensor. The belt is subdivided into image planes which correspond to a single copy. The
belt is first electrically charged, after which exposure of the original document decharges the
white parts of the original. The image is then developed with toner that sticks to the charged
areas of the belt. This image is transferred at a high temperature and under high pressure
to a sheet of paper via a second belt. Blank sheets are stored in paper trays. When a sheet
is required, it is first separated from a tray. Then, it halts at a stopper. When this stopper
is lifted, the sheet is processed without halting. After an image has been transferred to the
sheet, it is transported to an output tray. Originals are automatically transported from a
tray to the glass plate and returned to the tray after exposure. For the exposure, a capacitor
must be charged which takes a long time.

Different types of timing relations exist in this copier. The strictest relations concern
synchronization of the different parts of the copier. An image of an original must be accurately
positioned on a sheet of paper. This means that the time of the exposure of the original, the
time at which the stopper is lifted and the arrival time of an image plane at the appropriate
position must be synchronized to within a few milliseconds.

A second type of timing relation stems from sensing the master hole. The master hole
sensor is polled during the period that it may pass the sensor. All the operations in the copier
control system are synchronized with the moment at which the sensor detects the master hole.
Since small variations may occur in the velocity of the photo-conductor belt, the operations
in the schedule must be synchronized with each passage of the master hole. This is done by
synchronizing the clock that controls the schedule to each passage of the master hole.

Precedence constraints are caused, for example, by the requirements that the flash capac
itor is loaded before exposure, that a sheet is separated before the stopper is lifted and that
an original is transported to the glass plate before exposure.

2.3.2 Aircraft control

An aircraft control system can be decomposed into a number of application processes. These
processes are executed in a periodic way: each application process is dispatched at a specific
point relative to the start of an overall system cycle or loop.

Start and completion of different processes and their associated I/O behaviors have to be
synchronized such that overruns in the system do not occur [3].

An aircraft control system also contains sensors and actuators. Output to the actuators
must be generated with specified frequency, i.e. the task (process) that controls an actuator
should be executed periodically. Transport delay - the delay between the reading of sensors
and the generation of output of the actuators based upon those readings - must be kept
below specified limits.

To fulfill these requirements, an iteration rate is specified for each task. The scheduling
strategy must guarantee that the processing of each iteration of the task will be completed
within a 'time frame' that is determined by the start time of the iteration and the start time
of the next iteration. It does not matter when the processing is performed, provided that it

5

is completed by the end of the frame. The iteration rates required by different tasks differ,
but they can be adjusted somewhat to simplify the scheduling. The time needed to execute
an iteration of a task is highly predictable, so it can be assumed that these are given [18].
Furthermore, precedence relations between tasks also occur.

3 Timing and Precedence Constraints

In this section, the different timing and precedence constraints are examined for a number
of the applications of the previous section. It is argued that Timed Precedence Constraints
(TPCs) can describe all precedence and timing constraints in an application. A TPC is a
generalization of a normal precedence relation. A TPC specifies a relation between the times

at which two operations or statements are executed. The TPC 0 1 ~ O2 specifies that
operation O2 must be executed between So and 10 time units after operation 0 1 ,

Normal precedence relations between operations are present in all applications mentioned.
These precedences represent, for example, sequential execution prescribed by a sequential
program or a producer-consumer relation between two operations. These precedence relations
can be represented by TPCs of the form 0 1 c~oo O2 where Cmax is the worst-case execution
time of operation 0 1 . However, if worst case execution times are used, then it is not possible
to express that the second operation immediately has to follow the first operation. Reason
is that the first operation can finish its execution before its (estimated) worst case execution
time.

In several of the applications mentioned, certain operations must follow a previous one
after a specified period of time. For example, in the TV control the sound is muted when a
new channel is selected and the sound is turned back on after 100 ms. This could be specified

by a TPC 0 1 1~1O O2 , where 10 has been chosen somewhat arbitrarily. In the copier control
system, many operations must be executed at a fixed time after some other operation within
narrow tolerances. This is naturally expressed by TPCs.

TPCs can also be used to express periodicity requirements. Periodicity arises both from
periodicity in the application and from the static scheduling approach. Tasks that handle
aperiodic events like interrupts must be translated into periodic tasks when static scheduling
is used. A schedule is calculated off-line for a certain interval [0, L], where L is the least
common multiple of the individual periods of all periodic tasks. This schedule is then executed
periodically.

In the existing literature on hard real'time scheduling, tasks are characterized by a period
p, a worst-case execution time c, an earliest start time e and a deadline d. Both e and dare
relative to the beginning of a period. Without loss of generality, the earliest start time can
be taken equal to 0 in the following discussion.

Interrupt-driven tasks must be incorporated in this schedule in such a way that the dead
line D on the reaction to the interrupt is always met, i.e. the time between the interrupt and
the completion of the result should be less than D. For this, a task is introduced which exe
cutes periodically with period p and deadline d. At each execution of this task, it is checked if
an interrupt has occurred. If this happens, the interrupt-related task is executed. Otherwise
the processor will be left idle.

If no TPCs are used, a period and deadline have to be specified statically. If one assumes
that an occurrence of an interrupt just after the scheduled start time of the task is not handled

6

until the next period, p and d must satisfy:

(1)

The choice of d determines the length of the period and the strictness of the constraint
on the start time.

If d is chosen equal to p, the scheduler can choose the start time within a period n
arbitrarily between 0 and p - c (figure 2(a)). Here, c is the worst-case execution time of
the interrupt-driven task. This choice allows maximal freedom to the scheduler. However,
according to expression (1), the period is now required to be (at most) DI2 and the load on
the processor due to the task (which is given by the execution time divided by the available
time in one period) equals 2cl D.

I, D ,I
d

1 1--'--- D -------1,1

h W W
(n-l)p np (n+l)p (n-l)p np

(a) (b)

Figure 2: Two possible assignment of periods for TPCs: (a) d = p,p = D/2; (b)
d = c,p = D - c.

On the other hand, the task can be made strictly periodic within [0, L] if d is set equal
to c (figure 2(b)). In this case, the scheduler has no freedom to choose a start time. The
period of the task can now be reduced to p = D - c, according to expression (1). The load on
the processor is now reduced to c/(D - c). However, this specification is unnecessarily strict
since there is no reason (other than efficiency) why a response should not be given earlier.

When using TPCs, the timing constraints of interrupt-driven tasks can be specified with a

TPC c~c between subsequent activations instead. This allows both freedom for the scheduler
and a relatively low average processor utilization. The reason for this is that no (static) choice
for d has to be made, whereas the TPC allows a choice of any interval between different
activations that satisfies the deadline D.

For a comparison between periodicity induced by a static choice and periodicity induced by

TPCs, consider a static specification and a specification with a TPC, where both specifications
allow the scheduler intervals of equal length in which an activation must be started. The static
specification of the scheduling problem with deadline d allows an interval [0, d - c) for the
start time within the period. The utilization is given by c/(D - d), if the period is chosen
maximal according to expression (1), i.e. p = D - d.

The corresponding TPC is D-.'!!J,-c. This TPC also specifies an interval of length d - c for
the choice of the start time. When the assignments of start times are evenly spread over this
interval in the entire scheduling period [0, L], the average utilization due to this TPC equals
cl !(lo + so)) = c/(D - !c - !d). If c :s; d, then this average load is smaller than the load that
results from the static specification. Likewise, when the TPC is chosen such that the average
load equals the load that results from the static specification, the timing constraint due to
the TPC is less strict.

7

In general, very few applications seem to require strictly periodic tasks. Most tasks can
be naturally specified by TPCs with So # 10 instead. The exception to this are tasks that
involve synchronization. Examples of this are the task that awaits the master hole in the
copier of section 2.3.1 and the task that awaits the decoding information in the example
of the television. These tasks appear strictly periodic in the schedule. However, notice
that the clock that drives the schedule, must be reset at each activation of these tasks,
otherwise the synchronization between the tasks in the schedule, that are time related to
the synchronization point, and the synchronizing signal is lost. This also implies that a
static schedule is practically only possible if there is only one synchronizing signal. If more
synchronizing signals are present, they must define exactly the same external clock.

4 The DEDOS scheduling model

In this section a scheduling model for the DEDOS environment is presented, in which the
aspects of timeliness, reliability and hard real-time scheduling are incorporated. In principle,
this model can be extended for soft real-time scheduling. For this purpose, the notation can
be easily extended with value functions.

An earlier version of this model is presented in [16]. In contrast with that model, replica
tion is part of the current model, apart from other differences in the level of detail.

The model presented in this paper will be used in the development of scheduling algorithms
for the DEDOS design environment.

All the examples in Section 2 have a common characteristic: the applications consist of
both hardware and software components; the software is executed on the hardware. In general,
the hardware does not consist of a single processor. Instead, a distributed environment is used
with a number of possibly inhomogenous processing elements.

In correspondence to this observation, DEDOS applications can be split into two clearly
distinguishable parts. Section 4.1 describes a general hardware platform on which an applica
tion is executed. In Section 4.2 the description of the software of an application is specified.
The general scheduling problem is formulated in Section 4.3.

4.1 Hardware environment

The hardware used in the DEDOS development. environment is based on the Eindhoven
MultiProcessor System (EMPS)[13]. An EMPS system consists ofa number of interconnected
crates. A crate contains a number of processors, devices and memory modules which are
connected by a common bus. This structure is quite general and can be used for many other
systems, too.

In the following definition, PR, DV, MM and BUS are distinct collections of processors,
devices, memory modules and buses respectively. Processors contain local memories, in which
program code and small amounts of data can be stored.

Definition 4.1 (Crates) The crates are described by a 5-tuple
(CR, CRPR, CRDV, CRMM, CRBUS), where

• CR is a set of crates,

• CRPR(cr) E P(PR) is the set of processors in crate cr, cr E CR,

8

• CRDV(cr) E P(DV) is the set of devices in crate cr, cr E CR,

• CRMM(cr) E P(MM) is the set of memory modules in crate cr, cr E CR, and

• CRB USC cr) E B US is the common bus in crate cr, cr E CR.

o

For convenience, we introduce four auxiliary functions.

Definition 4.2 (Auxiliary functions)

• PRCR(pr) is the (unique) crate in which processor pr is situated, pr E PR,

• DVCR(dv) is the (unique) crate in which device dv is situated, dv E DV,

• MMCR(mm) is the (unique) crate in which memory module mm is situated, mm E MM,
and

• BUSCR(bus) is the (unique) crate in which bus bus is situated, bus E BUS.

o

To make this a valid definition, it is assumed that CRPR(crt)n CRPR(cr2) = 0, CRDV(crt)n
CRPR(cr2) = 0, CRMM(crl)nCRMM(cr2) = 0, and CRBUS(crt) i' CRBUS(cr2)forcrl, cr2 E
CR with crt i' cr2.

Some of the resources have a certain capacity. For example, if a piece of code, that consists
of i instructions, is executed on a processor with a capacity of m MIPS, it is finished after
i/m microseconds. If a piece of data of d bits is communicated via a bus with capacity c' bits
per second, then this communication is finished after d/ c' seconds. The capacity of a device
is defined likewise. The capacity of a memory module gives the number of bits a memory
module can contain.

Definition 4.3 (Capacity)

• PRCAp(pr) is the capacity of processor pr, pr E PR,

• DVCAP(dv) is the capacity of device dv, dv E DV,

• MMCAP(mm) is the capacity of memory module mm, mm E MM,

• B USCAP(bus) is the capacity of bus bus, bus E BUS.

o

Because devices are not uniform in general, we must distinguish different device types. Ex
amples of devices are sensors, actuators and large storage media such as disks.

Definition 4.4 (Device types) DVT(dv) E DVTSis the type of device dv. Here DVTSis
the collection of device types. 0

9

In general, the hardware used in the DEDOS environment consists of a network of intercon
nected crates. The crates are interconnected by dedicated interprocessor links. Links can also
connect two processors in the same crate. Like other resources, links also have a predefined
capacity.

Definition 4.5 (Links) LI is the set of dedicated interprocessor links. LICAP(li) is the
capacity of link Ii, Ii ELI. LIPR(li) is the set of (two) processors that are connected by link
Ii. 0

For convenience, we introduce the concept of communication media, which consist of buses
and dedicated links.

Definition 4.6 (Communication media) CM = BUSu L1 is the set of communication
media. Here, we assume BUSn LI = 0. Which resources are connected by a certain commu
nication medium is given by function CMCON: CM -; P(PR U DVU MM), which is defined
by

1

{pr E PR I PRCR(pr) = BUSCR(em)} U

CMCON(em) = {dv E DVI DVCR(dv) = BUSCR(em)} U
{mm E MMI MMCR(mm) = BUSCR(em)}
LIPR(em)

The capacity of a communication medium is given by

CMCAp(cm) = { BUSCAp(cm)
LICAp(cm)

if em E BUS
if em ELI

if em E BUS

if em ELI

o

With respect to the connectivity of the crate network, it is assumed that there exists a
communication path between each pair of processors, i.e.

In this definition, path: PR X PR -; lB is defined by

path(pri,pri)

path(pri,prj)

true

(3prk E PR, em E CM:: {pri,prd ~ CMCON(em) 1\ path(prk,prj))

Figure 3 reflects an example of a specific static structure. Two crates with processors,
devices, buses, memory modules and dedicated links are shown.

Processors, devices, memory modules, buses and links are all the resources in a DEDOS
system.

Definition 4.7 (Resources) The set of resources is given by RS = PRuDVUMMUBUSULI.
o

10

: crate , , ,
,

common merrwr,/

_ bu,

, ,

pr processors

--- ----------------------,
link

-----------------------------,

Figure 3: DEDOS static structure.

4.2 Dynamic structure

In the DEDOS environment, a real-time application is described in an object-oriented lan
guage, called DEAL (DEDOS Application Language) [8][14]. The object-oriented develop
ment paradigm is chosen for its reusability and extendibility. DEAL provides transparency to
the user from hardware aspects such as distribution across the network and communication.

DEAL is based on the C++ language because the language is widely used. The language
is extended with concurrency, atomicity, remote procedure calls and timing annotations.
The user can specify timing relations between different program entities by these timing
annotations.

There are two kinds of timing annotations. A time measurement expresses that a state
ment happens to be executed at a certain moment. The execution of other statements can be

related to this moment. For example, the time measurement SI [?tJ expresses that statement
SI supplies an execution moment denoted by t. This time variable t can be used to express
a timing relation with other statements. Therefore, timing requirements are introduced. An
example of this is S2[2>: t + 2, S; t + 4], which expresses that statement S2 should start its
execution between 2 and 4 time units after the time that is given by time variable t; in this
context, t represents the time at which statement SI is executed. The program domain and
the timing domain are independent, i.e. timing variables do not occur in the program code and
programming variables do not occur in timing annotations. Notice that a time measurement
and a timing requirement directly define a TPC.

A preprocessor transforms a DEAL application in pure C++ code by translating DEAL
specific constructs into C++ constructs. During the preprocessing also timing information
is produced, which is deduced from the timing annotations. The resulting timed precedence

11

constraints are input to the scheduling stage.

4.2.1 Objects

An object is a piece of data, together with methods and activities to inspect or modify this
data. The data can only be accessed through its corresponding methods and activities.

Definition 4.8 (Objects) The collection of objects is given by set DB. o

A method consists of program code, which describes how the data is manipulated. Within
the code of a method, a call to a method of the same or a different object is allowed.

An activity is a special kind of method. It is executed upon creation of the corresponding
object. While ordinary methods are executed once per call, an activity is executed period
ically. In general, the execution of an activity results in a series of method calls. Such a
sequence of method calls is termed a thread. The calls in a thread are not restricted to one
object: a thread may cross object boundaries. In t.he scheduling stage, a start time has to be
determined for each activity.

4.2.2 Beads

It is clear that the code of methods and activities has to be executed on processors. In general,
an entire method or activity is too large to be executed as one whole. Therefore preemption
is allowed, i.e. the execution of a piece of code may be interrupted and resumed at a later
time. In the meantime, another piece of code may be executed on the same processor. In this
way a higher processor utilization is acb.ieved.

Each time the processor switches to the execution of a different piece of code, a context
switch is made. If full preemption is allowed, i.e. if the execution can be interrupted at any
moment, then this could lead to too many context switches. No preemption would lead to too
much inflexibility for the scheduling stage. Therefore semi-preemptability is allowed: code in
execution can be interrupted at given predefined Inoments, the so-called preemption points.

The preemption points are placed in logical places. These are for example places where
a continuation of execution is not immediately possible, due to device accesses or method
calls, which cannot be dealt with in a negligible amount of time. Other preemption points
are introduced as a result of timing annotation in the source code, and at places where the
execution of program code starts or ends.

Definition 4.9 (Preemption points) A preemption point indicates at which moment the
execution of a piece of code may be started, ended, interrupted or resumed, i.e. when a context
switch is allowed. 0

It is assumed that the creation of preemption points is dealt with in the preprocessing stage;
the preemption points are therefore considered given.

Pieces of code between consecutive preemption points should be executed atomically; for
example, no communication takes place within such a piece of code. Therefore, the concept
of beads is introduced. A bead is the unit of non-preemption and scheduling. It is assumed
that the collection of beads is given.

12

Definition 4.10 (Beads) A bead is the non-preempt able part between a preemption point
and all its successor preemption points. A preemption point PP2 is a successor of a preemption
point PPI iff an execution exists in which there are no other preemption points between PPI
and PP2, and PPI and PP2 are located in the same method or activity. Set B is the collection
of all beads in the given application. Function BOB: B --+ OB expresses to which object a
bead belongs. 0

The execution of the entire system consists of the execution of beads on processors. So, it
has to be determined which bead is executed on which processor.

Definition 4.11 (Bead assignment) BA(b) E PR is the processor on which bead b E B is
executed. o

To reduce the amount of communication, object bead constraints are introduced, which ex
press that beads, belonging to the same object, should be executed on the same processor.

Definition 4.12 (Object bead constraints) The object bead constraints are given by

o

As a result of the object bead constraints, each object is assigned to a single processor, which
is reflected in the following definition.

Definition 4.13 (Object assignment) OBA(ob) E PR is the (unique) processor to which
beads of object ob E OB are assigned, i.e.

OBA(ob) = BA(b)

for all ob E OB and some b E B with BOB(b) = ob. o

In the preprocessing stage, timing information is extracted from the given application. Part of
this information is the identification of beads and an estimate of their processing requirements.
For example, if bead b involves i instructions, and if it is executed on processor pr with
capacity m = PRCAP(pr) MIPS, then the execution of bead b on processor pr would take
i/m microseconds. Only a worst case estimate of the processor requirement is calculated.

In the scheduling stage, it has to be determined for each bead at which time it should
start its execution. Given the start time and the processing requirement of a bead and given
its corresponding bead assignment, it is possible to derive the time at which the execution of
that bead is finished.

Definition 4.14 (Bead timing) BPR(b) is the processor requirement of bead b E B. BS(b)
is the start time of bead b E B. The end time of bead b E B is denoted by BE(b) and is
defined by BE(b) = BS(b) + rIc, where r = BPR(b) is the processing requirement of b, and
c = PRCAP(BA(b» is the capacity of the processor on which b is executed. 0

Note that in the scheduling stage, function BS has to be determined, and that the value of
function BE depends on the chosen bead assignment (and start times).

13

4.2.3 Bead timing relations

In Section 3, it is shown in general terms how timing relations can be expressed by TPCs.
This section focusses on the determination of TPCs in terms of beads. It is assumed that the
set of TPCs is determined in the preprocessing stage: based on the collection of beads and
the program code with the corresponding timing information, it is possible to derive timing
relations between different beads. This is illustrated by means of an example, which is given
in figure 4. For reasons of clarity, the example is not coded in DEAL, but in an imaginary
object-oriented language.

OBJECT read~ensors
METHOD read(in nr: Int; out v: Real}

BEGIN
[>'

IF nr = 1

THEN <]2 sensor!. read(v) {>3

ELSE

IF nr = 2

THEN <:]4 sensor2.readCv) t>5

ELSE <]6 error.writeO [>7

<1' END

OBJECT sensor!

DATA temperature: Real

METHOD read(out t: Real)

BEGIN
t>9 t := temperature <]10

END

OBJECT sensor2
DATA dJ·stance: Real

METHOD read(out d: Real}

BEGIN
[>11 d := distance <]12

END

OBJECT error

METHOD writeO

BEGIN
[>13 ." <]14

END

Figure 4: Example program.

In this example, object read_sensors provides services to the environment to read two
sensors, one for reading a temperature (object sensorl) and one for reading a distance (object
sensor2). The numbered [> and <J symbols denote the preemption points. The [> symbols
correspond to points were (parameter) data is possibly received, whereas <J symbols denote
the possible transmission of data.

According to the definition, five beads can be identified (see figure 5). The first, bead b
"

is

14

bounded by preemption points 1, 2, 4 and 6; this bead corresponds to the check which sensor
has to be read. The second bead (b 2) is bounded by preemption points 9 and 10 and models
the actual reading of the thermometer. The third bead (b3), bounded by preemption points
11 and 12, corresponds to the reading of the distance sensor. The fourth bead (b4) between
preemption points 13 and 14 represents the call to the error handling object. Finally, the fifth
bead (bs) is added to represent the correct ending of the read-method in object read...sensors.

1/ - \ \ calling method
L ___ _

'''I9 ···I11 ····I1~
b2 .' ••

10 • • 12 • • 14

8

'---I
\ _ '" I calling method

Figure 5: Beads in the example program.

It is clear, that if the input specifies that a temperature has to be read, the actual reading
of the thermometer has to follow the validation of this input. Therefore, bead b2 should be
preceeded by bead b" i.e. the execution of bj should be finished before the execution of bead
b2 is started (BE(b j) :':: BS(b2)). The same goes for beads b3 and bj : bj should precede b3 ,

because bead b3 corresponds to the execution of the method, that is called at the end of
bead bj . Bead b4 should succeed bead b" due to the same reason. Finally, bead bs should
succeed beads h, b3 and b4 , because this bead corresponds to the end of the method. These
timing relations are termed precedence constraints, and should be taken into account in the
scheduling stage. Figure 6 gives a visual representation of the precedence constraints between
the beads.

Precedence constraints are just one type of timing constraints. In general, more complex

15

Figure 6: Beads and precedence constraints from the example program.

timing relations can be expressed by TPCs. It is assumed that all timing relations between
beads are expressed by these TPCs (see also Section 3).

Definition 4.15 (Timed precedence constraints) The timed precedence constraints are
given by

BS(b,) + s ::; BS(b2) ::; BS(b,) + 1

for all (b" s, I, b2) E TPC, where TPC is a given set of timed precedence constraints. D

A timing relation induced by a timed precedence constraint is not symmetrical (i.e. (b l , S, I, b2) oj
(b2 , s, I, bl)). It is assumed that between each pair of beads, at most one timed precedence
constraint can be present. It is easy to see that more than one timed precedence constraint
on the same two beads can be transformed into a single constraint (at least: if the constraints
are not inconsistent). For example, TPCs (b l ,2,6,b2) and (b l ,4,8,b2) have the same effect
on the schedule as the single TPC (b l ,4,6,b2).

A (normal) precedence constraint is easily expressed by a timed precedence constraints.
For example, suppose there is a precedence constraint between beads bt and b2 , i.e. BE(bt) :::;

BS(b2) should be met. This is achieved by adding tuple (b l ,r/s,oo,b2) to the set of timed
precedence constraints TPC, where r = BPR(btl is the processor requirement of bead bl , and
s = PRCAP(BA(b l)) is the capacity of the processor on which bead bl is executed.

4.2.4 Bead communication

Sometimes data is sent from one bead to a different bead. For example, if in a bead a method
is called in a different object, then in general parameter data should be transferred at the
method call. The results should be transferred back to the calling bead at the end of the
execution of the method.

Definition 4.16 (Communicating beads) Function BCM: B X B -+ ill expresses which
beads communicate data. BDS(bl , b2) is the amount of data that is exchanged between beads
bl and b2 • If beads bl and b2 do not .communicate data (i.e. ,BCM(bl ,b2) holds), then
BDS(b"b2) is not defined. D

Note that function BCM is not symmetrical in general (i.e. BCM(bl , b2) does not necessarily
equal BCM(b2 , bl))' since communication is characterized by a direction: data is communi
cated from one bead to an other bead.

16

It is assumed that both functions BCM and BDS are determined in the preprocessing
stage before scheduling. From the definition of preemption points it follows that there is at
most one communication between each pair of beads.

4.2.5 Device management

Devices are used or managed by objects. Each device is managed by one object, i.e. all
accesses of a device occur via the managing object. Therefore, there is a relation between
devices and objects. In general, this relation is prescribed by the application. For example, a
sensor and an object that controls this sensor are clearly related. So, it is assumed that this
relation is predefined, i.e. the relation is known before the scheduling stage.

Definition 4.17 (Device assignment)
device by which object it is managed.

Function DVOB : DV --7 OB expresses for each
o

Note that this definition allows that multiple devices are managed by one object. However,
a device can only be managed by a single object.

Because a device can only be accessed through its managing object, this device and this
object should be located in the same crate. This is expressed by the device constraints.

Definition 4.18 (Device constraints) The device constraints are given by

PRCR(OBA(ob)) = DVCR(dv)

for all objects ob E OB and devices dv E DV with DVOB(dv) = ob. o

Device accesses resemble method calis, because in both cases data is sent from one resource (a
processor) to a different resource (a processor or device). The receiving resource is occupied
for some time, after which data is returned to the first resource.

Therefore, device accesses are treated in a similar way as method calls. A method call is
represented by a series of beads: first a bead of the calling object, followed by one or more
beads of the called method, followed by again a bead of the calling object. A device access
is modeled by a bead of the object, which accesses the device, followed by a bead, which
represents the time that the device needs for the actual access, followed again by a bead of
the accessing object. The bead that corresponds to the actual device access is termed a device
bead and is part of the scheduling problem.

It is assumed that the set of beads B also contains these device beads. To distinguish
device beads from processor beads, a function is introduced which gives the bead type.

Definition 4.19 (Bead types) Function BT: B --7 {p, d} gives the type of a bead. BT(b) =

p iff bead b E B is a processor bead; BT(b) = d iff bead b is a device bead. 0

To realize the communication between objects and devices, functions BCM and BDS are
also defined on device beads. For example, if a bead b, ends with a device access, which
corresponds to the execution of a device bead b2 , then BCM(b" b2) holds, and the data that
is sent from b, to b2 has size BDS(b" b2). If the data resulting from this device access is
returned to bead b3, then also BCM(b2 , b3) holds and this data has size BDS(b2 , b3).

17

Furthermore, bead timing functions BS (bead start time) and BE (bead end time) are
defined on device beads, too. The device capacity needed by a device bead is given by function
BPR (bead processing requirement).

For device beads, the range of bead assignment function BA is extended in order to express
to which device a device bead belongs, i.e. function BA has range PRu DV. In the scheduling
stage, constraints with respect to bead types have to be met.

Definition 4.20 (Bead type constraints) The bead type constraints are given by

BA(b) E PR ¢} BT(b) = p

for all beads b E B, and
BA(b) E DV ¢} BT(b) = d

for all beads b E B. o

4.2.6 Execution graph

Given the collection of beads and the time and communication dependencies between beads,
it is possible to model software applications by means of an execution graph. The nodes in
this directed graph correspond to beads, while the arcs represent both communications and
timed precedence constraints. The execution graph is the input for the scheduling algorithm;
it has to be mapped to the given hardware architecture (after some transformations, which
are discussed in the next sections), and start times have to be provided for the beads.

Definition 4.21 (Execution graph) The execution graph is given by a directed graph G =
(V, A), where

• V = B, and

• A = A TPC U A CM .

Here, ATPC is the set of arcs induced by the timed precedence constraints, i.e. ATPC =

{(bI, b2)13s, I E IN :: (bI, s, I, b2) E TPC}, and ACM is the set of arcs induced by the commu
nication behavior, i.e. ACM = {(b1 , b2)IBCM(bI, b2)}. 0

In fact, this graph can be considered a labeled graph. A distinction is made between arcs that
correspond to timed precedence constraints and arcs that correspond to communications.

Definition 4.22 (Label function) The label of arc (b1 , b2) E A of graph G = (V, A) is
given by

o

The case that beads both communicate and have a TPC is discussed in Sections 4.2.8
and 4.2.9. Effectivily, a communication between beads is replaced by a number of new beads
and TPCs.

18

4.2.7 Replication

For the HRT part of DEDOS applications, reliability is achieved by the introduction of repli
cation. For example, if a processor is malfunctioning, the program code it is executing is
not valid anymore. To guarantee the correct continuation of the execution of the system,
a copy of the program code is also executed on one or more other processors. In case of a
malfunctioning processor, control is given to the processor(s) on which the replicated code is
executing.

The unit of code replication is the object. Depending on the fault hypothesis, a number
of replicated objects are introduced for each original object. The number of replicas is deter
mined in a preprocessing stage. For the moment, it is assumed that the result of this stage is
known.

Definition 4.23 (Number of replicas) The number of replicas is given by function NR;
NR(ob) E IN is the number of replicas of object ob E OB. 0

The introduction of replicated objects results in an extension of the set of objects with
replicas. A function is introduced which expresses if objects are replicas.

Definition 4.24 (Replicated objects) The collection of objects including replicas is given
by set OB'. Function RPOB : OB' X OB' ---+ IB expresses which objects are replicas.
RPOB(obl , ob2) holds iff obl and ob2 are replicas. 0

It is clear that the addition of replicated objects results in additional beads. Each bead of the
original object is present in each replicated object. Therefore, the set of beads is extended;
the result of this extension is bead set B'.

Not only additional beads, but also extra TPCs are introduced. For example, if there is

a TPC between beads bl and b2 with parameters s and I, and if both beads are replicated,
then there is a TPC from each replica of bead bl to each replica of bead b2 with values sand
l. The extended set of TPCs is denoted by TPC'.

The way in which the communication behavior is influenced by the introduction of repli
cated beads and objects depends on the communication protocol used. A reliable communi
cation mechanism based on replicated mailboxes is discussed in [19]. Because a discussion of
such communication protocols is not the subject of this paper, it is assumed that it is known
how the communication between replicated beads is established, i.e. functions BCM and BDS
are suitably extended into functions BCM' and BDS' respectively.

The replication of beads and timed precedence constraints and the adapted communication
structure result in an extension of the execution graph.

Definition 4.25 (Execution graph extension for replication) The extended execution
graph for replication is given by the directed graph G' = (V', A'), where

• V' = B', and

• A' = Arpc U AcM'
Here, Arpc is the set of arcs induced by the timed precedence constraints, i.e. Arpc =
{(bl , b2)13s, 1 E IN :: (bb s, I, b2) E TPC'}, and ACM is the set of arcs induced by the commu
nication behavior, i.e. ACM = {(bl , b2)IBCM'(bb b2)}. 0

19

The label function is extended likewise.

Definition 4.26 (Extended label function) The label of arc (b l , b2) E A' of the extended
graph G' = (V', A') is given by

L'((b b» = { (s, l)with (b}, s, I, b2) E TPC'
I, 2 BDS'(b b) I, 2

if (b l , b2) E Arpc
if (bl , b2) E ACM'

o

All other functions and constraints defined on beads and objects, are suitably extended to
the domains B' and OB' respectively. These extended functions are denoted by the addition
of primes.

It is clear that the replicatiou of objects introduces constraints on the assignment of
beads to processors, i.e. two beads that belong to two replicated objects, should be assigned
to different processors.

Definition 4.27 (Bead replication constraints) The bead replication constraints are given
by

BA'(bl) i- BA'(b2)

for all bl , b2 E B' with RPOB(BOB'(btl, BOFf(b2))

4.2.8 Communication beads

o

If two communicating beads are assigned to different processors, it is possible that these
processors are not connected directly. During scheduling, means have to be provided to make
this communication possible, i.e. a route of resources has to be chosen along which the data is
transported and time should be reserved during which actual communication can take place.

Program code has to be provided for each intermediate processor. This additional code
supports the receipt and transmission of this data along the communication route.

For example, if in the example of figure 7 route < pr},busI,pr3,link2,pr7 > is used for the
communication of data between a bead on prj and a bead on pr7, then code has to be provided
for processor pr3 which takes data from bus busl and sends it to link link2. The execution
time of this code depends on the size of the data and the capacities of the communication
media and processor under consideration .

• .,. ___ .,. ___ .. _ bus!

sending bead
~

linkl link2

receiving bead
___ ... _____ • bus2

Figure 7: Communicating beads.

20

It is clear that these additional pieces of code can be considered to be another kind of
beads: time has to be reserved on processors for the execution of this extra code.

Not only must extra time be reserved on processors, but also communication resources
(links, buses) are occupied in a certain interval of time during a communication (bus, and
link2 in the example of figure 7). This occupation is modeled by additionial beads. The timing
information of these beads expresses the usage and timing ofthe corresponding communication
resources. The type of the extra beads is defined to be c, Le. BT(b) = c. Therefore, the range
of bead type function BT is extended to {p, d, c}, and the range of bead assignment function
BA is extended with set CM, i.e. BA : B --> PR U DVu CM.

In effect, the addition of these two types of beads corresponds to a transformation of the
execution graph: each arc reflecting a communication between two beads has to be replaced
by a series of beads. These additional beads are used to model the use of resources to achieve
the desired communication. The resulting execution graph solely contains arcs corresponding
to timed precedence constraints. If suitable timing constraints are added for the additional
beads, then it can be guaranteed that actual communication can be established. So, the
scheduling algorithm has to find a route of resources for each pair of communicating beads.
These beads have to be assigned to the appropriate resources and start times have to be
determined for these beads.

The way in which communication beads have to be inserted is illustrated by a continuation
of the example of figure 7. Suppose that route < pr"bus"pr3,link2,pr7 > is used for the
communication of data between a bead bon pr, and a bead b' on pr7 (Le. BCM(b, b') holds),
then the following beads have to be added:

• a bead b, that corresponds to the program code (on processor pr,) that puts the data
provided by b into bus, (this code also puts the data in the right format; for example,
it provides message headers and compresses the data),

• a bead b2 that corresponds to the occupation time of bus"

• a bead b3 that corresponds to the program code for the receipt of the data on processor
pr3,

• a bead b4 that corresponds to the program code on processor pr3 that sends the data
to link2'

• a bead bs that corresponds to the occupation of link2' and

• a bead b6 on processor pr7 that corresponds to the program code that receives the data
and passes it onto bead b'.

The introduction of these beads leads to the following additional timing constraints:

• b should be finished before b, starts, Le. TPC (b, P1:d:'(~r,j' 00, b,) should be met,

• b" b2 and b3 should be executed during the same time interval, which corresponds to
TPCs (b" 0, 0, b2) and (b2, 0, 0, b3) ,

• b3 should preceed b4 (TPC (b3 , p::;:;~~~,), 00, b4)),

• b4 , bs and b6 should be executed at the same time (TPCs (b4 , 0, 0, bs) and (bs, 0, 0, b6)),

and

21

• b6 should preceed b' (TPC (b6, P:t:;~~~,j' 00, b'll·

If communication takes place between two beads that are assigned to the same processor, it
is not necessary to introduce additional communication beads together with the corresponding
timing relations; the data can be exchanged between the beads directly.

Definition 4.28 (Local and remote procedure calls) A local procedure call is a method
call to a method of an object on the same processor. A remote procedure call is a method
call to a method of an object on a different processor. 0

In case of a local procedure call, no additional communication beads have to be provided. The
addition of communication beads clearly depends on the assignment of beads to processors.

4.2.9 Execution graph transformation

From the previous section it is clear that the realisation of communication effectively comes
down to replacing arcs in the execution graph between communicating beads by a series of
beads and arcs corresponding to additional beads and timed precedence constraints. This
process results in a transformed execution graph.

Definition 4.29 (Transformed execution graph) The transformed execution graph IS

giv~n by the directed graph G" = (V", A"), where

• V" = B", and

A" A" • = TPC'

Here, B" is the set of beads extended with the communication beads, TPC" is the set oftimed
precedence constraints extended with the TPCs concerning communication beads, and A~pc
is the set of arcs induced by the timed precedence constraints, i.e. A~pc = {(bl, b2)138, I E
IN :: (b

"
s, I, b2) E TPC"}. D

The label function is transformed likewise.

Definition 4.30 (Transformed label function) The label of arc (b 1 , b2) E A" of the trans
formed execution graph G" = (V", A") is given by

o

All functions concerning beads and objects are suitably extended for the additional com
munication beads. They are denoted by two primes; for example, BPR"(b) is the resource
requirement of bead bE B".

22

4.2.10 Blocks

The execution graphs, resulting from the graph extension for replication and tranformation
for communication are possibly very large. With respect to the determination of the timing,
the total problem instance may be too large to be solved directly. To reduce the problem
size, the scheduling algorithm may cluster beads into blocks. First, the timing behaviour of
blocks is determined, followed by the timing behaviour of beads within a block.

Beads with very strict timing constraints are logical candidates to be grouped into one
block. For example, if a bead should start its execution directly after an other bead is finished,
then these two beads can be regarded as one block. Another example are beads in case of
a remote procedure call: three beads corresponding to a communication along a bus or link
should be executed at the same time. Therefore it suffices to treat these three beads as one
block. The timing behaviour of this block directly defines the timing behaviour of its beads.

Definition 4.31 The blocks are given by a triple (BL, BLRS, BLB), where

• BL is a set of blocks,

• BLRS(bl) E P(RS) is the collection ofresources used by beads in block bl, bl E BL, and

• BLB(bl) E P(B") is the collection of beads corresponding to block bl, bl E BL.

D

During the scheduling stage, a time interval is determined for each block. During this interval,
all resources of that block are reserved for the execution of the beads of that block.

A worst case estimate of the time required for this block is needed. This estimate depends
on the object assignment and the capacities of the resources corresponding to that block. A
time interval is represented by a start time and a time requirement.

Definition 4.32 (Block timing) BLS(bl) is the start time of the interval in which the com
munication of block bl E BL is scheduled. The length of this interval is given by time require
ment BLTR(bl). The time interval ends at time BLE(bl) = BLS(bl) + BLTR(bl). D

All the resources of a block are considered occupied during the entire interval, which is
determined for that block; these resources cannot be used for other purposes during this
time interval. The exact start times of beads are chosen after the determination of the time
intervals of blocks.

Improving efficiency by using blocks can also be achieved in other ways. For example, in
the execution ofthe reliable message protocol [1], many short messages are exchanged between
a number of processors. There is a small chance that these messages collide. Therefore it
is not considered worthwhile to schedule all these communications in detail. This can be
modelled by introducing a block that corresponds to all processors and communication media
involved in the execution of the protocol. All communications should take place in the time
interval that is determined for the corresponding block.

Apart from efficiency, there is another motivation for the use of blocks. If atomicity of
blocks is assured, then it is possible to realize consistency of a device. Suppose for example
that several activities use the same file on a disk. If the execution of the beads in the different
activities are interleaved, consistency of the file may be violated. If in each activity the beads

23

that correspond to file handling are grouped into a block, and if these blocks are executed
under mutual exclusion, then the consistency of the file is guaranteed. This view on the use of
blocks corresponds to the use of transactions in [7]. To assure mutual exclusion, corresponding
constraints are needed.

Definition 4.33 (Mutual exclusion for blocks) The mutual exclusion constraints for blocks
are given by

BLE(bl,) < BLS(bI2) V BLE(bI2) < BLS(bl,)

for all bl" bl2 E blme, where blme E P(BL) is a given set of blocks that should be executed
under mutual exclusion. 0

Blocks can also be used to provide the possibility of hierarchical application design. If only
the timing and communication behaviour of a piece of code is known, and the exact program
code is not yet known, then it is possible to reserve or schedule resources and time for the
execution of this code by introducing a block which involves the needed resources.

4.2.11 Implementation constraints

Processors and devices are considered single purpose resources, i.e. only one processor, commu
nication or device bead can be executed at any time on the corresponding resource. Therefore,
the result of the scheduling stage should meet certain no-overlap constraints.

Definition 4.34 (No-overlap constraints) The no-overlap constraints are given by

BEI/(b,) < BSI/(b2) V BEI/(b2) < BSI/(b,)

for all b" b2 E BI/ with BAI/(b,) = BAI/(b2 l o

Note that the no-overlap constraints implement the non-preemptiveness of beads.
With respect to the assignment of objects to processors, it has to be guaranteed that

the number of devices used does not exceed the number of available devices. To this end,
an auxiliary function is defined which gives for ea.ch crate cr and each device type dvt the
number of available devices of type dvt in crate cr.

Definition 4.35 (Number of available devices) NADV(cr, dvt) is the number of avail
able devices of type dvt E DVTS in crate cr E CR, i.e. NADV(cr,dvt) = (#dv E DV :
DVCR(dv) = cr : DVT(dv) = dvt). 0

Another auxiliary function is defined, which expresses the number of used devices of a certain
type in a crate, given the object assignment.

Definition 4.36 (Number of used devices) Given an object assignment OBA,
NUDV(cr, dvt) is the number of used devices of type dvt E DVTS in crate cr E CR, i.e.
NUDV(cr,dvt) = (#ob E OB,dv E DV : PRCR(OBA(bob)) = cr A DVOB(dv) = ob :
DVT(dv) = dvt). 0

Now, it is straightforward to define the constraints that specify that the number of used
devices of a certain type may not exceed the number of available devices of that type.

Definition 4.37 (Device type constraints) The device type constraints are given by

NUDV(cr,dvt):s; NADV(cr,dvt)

for all crates cr E CR and device types dvt E DVTS. o

24

4.3 Scheduling problem

Based on the model introduced in sections 4.1 and 4.2, the entire scheduling problem is defined
as follows.

Definition 4.38 (Scheduling problem)
Given

• the hardware part of a DEDOS application (i.e. the collections of crates, processors,
devices, memory modules, buses, links, the interconnection structure and the capacities
of these resources),

• the software part of a DEDOS application (in the form of an execution graph G'
(V', A'), which is extended for replication),

determine

• a suitable tranformation of the execution graph Gil = (V", A") for the realization of
bead communication,

• the bead assignment BAli: OB" -+ PR,

• block start times BLS(bl), for all blocks bl E BL

• bead start times BS"(b), for all beads b E If',

subject to

• the object bead constraints, i.e.

BA"(b1) = BA"(b2)

for all bJ, b2 E If' with BOIf'(b1) = BOB"(b2),

• the timed precedence constraints, i.e.

BS"(b1) + S :c: BS"(b2) :c: BS"(b1) + I
for all (b1 , s, I ,b2) E T PC",

• the device constraints, i.e.

PRCR(OBA(ob)) = DVCR(dv)

for all objects ob E OB and devices dv E DVwith DVOB(dv) = ob,

• the bead type constraints, i.e.

for all beads b E If',

BAff(b) E PR ¢} BTff(b) = p/\

BAff(b) E DV ¢} BTff(b) = d/\

BAff(b) E CM ¢} BTff(b) = c

25

• the bead replication constraints, i.e.

for all b1 , b2 E B" with RPOB"(BOB"(b1), BOB"(b2)),

• the mutual exclusion constraints for blocks, i.e.

BLE(bh) < BLS(bI2) V BLE(bI2) < BLS(bh)

for all blb bl2 E blme, where blme E P(BL) is a given set of blocks that should be
executed under mutual exclusion

• the no-overlap constraints, i.e.

for all b1 , b2 E B" with BA"(b1) = BA"(b2), and

• the device type constraints, i.e.

NUDV(cr, dvt) :S NADV(cr, dvt)

for all crates cr E CR and device types dvt E DVT5.

o

5 Conclusions

In this paper a brief survey is made of several hard real-time application domains, and im
portant timing characteristics of the applications are inventarised (Section 2). It is discussed
how these timing characteristics are translated into TP Cs (Section 3).

Furthermore, a model is given, in which the hardware (Section 4.1), software (Section 4.2),
and timing behaviour (Definition 4.15) of real-time systems can be specified. Based on this
model, a general scheduling model for real-time systems is formulated (Section 4.3). In short,
one has to find an assignment of a software specification onto a hardware architecture. The
software description specifies a number of objects, which consist of non-preemptable beads
(Definition 4.10). Beads together with TPCs constitute an execution graph (Definition 4.21).
This graph should be extended such that communication is possible (Section 4.2.9). A sched
ule determines a location and a start time for each bead in an execution graph.

A schedule has to meet a number of constraints: the object bead constraints (Defini
tion 4.12), the timed precedence constraints (Definition 4.15), the device constraints (Def
inition 4.18), the bead type constraints (Definition 4.20), the bead replication constraints
(Definition 4.27), the no-overlap constraints (Definition 4.34), and the device type constraints
(Definition 4.37).

26

6 Future research

The entire scheduling problem can be considered to consist of three main parts. First, the
distribution of software across the hardware has to be determined, i.e. an assignment of ob
jects to processors has to be given. Second, communication should be established. Third,
start times have to be determined for all scheduling units. The entire problem is too complex
to be solved in one step. Therefore, the problem has to be decomposed. To this end, there
are several possibilities. It is the subject of further research to design effective decomposi
tions and to solve the resulting subproblems. One solution strategy for the distribution and
communication subproblems is treated in [5].

Apart from this, there are some other interesting open problems. One is the influence
of data dependency on the scheduling problem. For example, an if-statement in a DEAL
program is translated into a branch in the execution graph. Only one of the branches will
correspond to the actual execution of the DEAL program at a given point in time. Since it is
not known in advance which branch will be chosen, the scheduling algorithm has to allow both
possibilities. One possibility to deal with this is to schedule both branches independently. As
a result, the resources allocated to the 'unused' branch will remain idle for the duration of
the execution of the other branch. A more efficient solution may be possible, if part of both
branches could overlap during allocation and scheduling. For example, it may be possible to
create a block that contains beads of both branches. If the block is assigned to one processor,
the amount of idle time may be less than in the case of an assignment, in which the beads
of both branches are executed on different processors. This is because one branch will be
inactive in reality, which results in idle time on the corresponding processor.

27

A Appendix: list of symbols

I symbol I meaning definition

A set of arcs in execution graph 4.21
A' set of arcs in extended execution graph G' 4.25
A" set of arcs in transformed execution graph Gil 4.29

ACM set of arcs in execution graph induced by 4.21
communication

ACM set of arcs in extended execution graph G' 4.25
induced by communication

ATPC set of arcs in execution graph induced by 4.21
timed precedence constraints

A~PC set of arcs in extended execution graph G' 4.25
induced by timed precedence constraints

A" TPC set of arcs in transformed execution graph Gil 4.29
induced by timed precedence constraints

B set of beads 4.10
13' set of replicated beads 4.24
BA bead assignment 4.11
BCM communicating beads 4.16
BDS amount of communicated data 4.16
BE bead end time 4.14
BL set of block 4.31
BLB beads of a block 4.31
BLE bead end time 4.32
BLRS resources of a block 4.31
BLS block start time 4.32
BLTR block time requirement 4.32
BOB object of bead 4.10
BPR bead processor requirement 4.14
BS bead start time 4.14
BT bead type 4.19
BUSCAP bus capacity 4.3
BUSCR crate location of bus 4.2
CM set of communication media 4.6
CMCON connected resources 4.6
CMCAP communication medium capacity 4.6
CR set of crates 4.1
CRBUS bus in crate 4.1
CRDV set of devices in crate 4.1
CRMM set of memory modules in crate 4.1
CRPR set of processors in crate 4.1
DVCAP device capacity 4.3
DVCR crate location of device 4.2
DVOB object managing device 4.17

28

symbol I meaning definition

DVT device type 4.4
DVTS set of device types 4.4
G execution graph 4.21
G' extended execution graph for replication 4.25
G" transformed execution graph 4.29
L label function 4.22
L' extended label function 4.26
L" transformed label function 4.30
LI set of links 4.5
LICAP link capacity 4.5
LIPR processors connected to link 4.5
MMCAP memory module capacity 4.3
MMCR crate location of memory module 4.2
NADV number of available devices of a type 4.35
NR number of replicas 4.23
NUDV number of used devices 4.36
OB set of objects 4.8
OB' set of replicated objects 4.24
OBA object assignment 4.13
PRCAP processor capacity 4.3
PRCR crate location of processor 4.2
RPOB replicated objects 4.24
RS set of resources 4.7
TPC set of timed precedence constraints 4.15
V set of nodes in execution graph 4.21
V' set of nodes in extended execution graph G' 4.25

29

References

[lJ D. Alstein and P.D.V. van der Stok. Hard real-time reliable multicast in the DEDOS
system. Lincoln, New Hampshire, September 1993. Third International Workshop on
Responsive Systems, Lincoln, New Hampshire, September 1993.

[2J C. Bickford, M.S. Teo, G. Wallace, J.A. Stankovic, and K. Ramamritham. A robotic
assembly application on the spring real-time system. Umass Computer Science Technical
Report 96-06, University of Massachusetts, January 1996.

[3] G.D. Carlow. Architecture of the space shuttle primary avionics software system. Com
munications of the ACM, 27(9):926-936, September 1984.

[4] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: from simple message
diffusion to byzantine agreement. Technical Report RJ5244, IBM Research Lab, San
Jose, CA, December 1989. An earlier version was published as RJ4540.

[5J A.F.W. Gouder de Beauregard. Object assignment in real-time systems; a case study in
DEDOS. Master's thesis, Eindhoven University of Technology, August 1996.

[6J G. Essink, E. Aarts, R. van Dongen, P. van Gerwen, J. Korst, and K. Vissers. Scheduling
in programmable Video Signal Processors. In Proceedings of the IEEE International
Conference on Computer-Aided Design, pages 284-287, 1991.

[7J D .K. Hammer. Process-oriented development of embedded systems; modeling behavior
and dependability. To be published, 1997.

[8] D.K. Hammer, P. Lemmens, E. Luit, O.S. van Roosmalen, P. van der Stok, and J. Ver
hoose!. DEDOS: A distributed environment for object-oriented real-time systems. Dallas,
Texas, USA, October 1994. 1st Workshop on Concurrent Object-Based Systems (COBS)
at the 6th IEEE Symposium on Parallel and Distributed Processing (SPDP), Dallas,
Texas, USA, October 1994.

[9] H. Kasahara and S. N arita. Parallel processing of robot-arm control computation on a
multimicroprocessor system. IEEE Journal of Robotics and Automation, 1(2):104-113,
June 1985.

[IOJ P.E.R Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. Sweeney,
J .0. Huisken, and O.P. McArdle. PHIDEO: A silicon compiler for high speed algorithms.
In Proceedings of the European Conference on Design Automation, pages 436-441, 1991.

[11] J.D. Schoeffler. Distributed computer systems for industrial process contro!' IEEE
Computer, 17(2):11-18, February 1984.

[12] A.D.H. Thomas, M.G. Rodd, J.D. Holt, and C.J. Neill. Real-time industrial visual
inspection: A review. Real-Time Imaging, (1):139-158,1995.

[13] G.J.W. van Dijk. The Design of the EMP.') Multiprocessor Executive for Distributed
Computing. PhD thesis, Eindhoven University of Technology, 1993.

30

[14] O.S. van Roosmalen. DEAL: an object-oriented language for distributed real-time sys
tems. Dana Point, CA, USA, October 1994. Int. Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), Dana Point, CA, USA, October 1994.

[15] W.F.J. Verhaegh. Multidimensional periodic scheduling. PhD thesis, Eindhoven Univer
sity of Technology, December 1995.

[16] J.P.C. Verhoosel. Pre-Run-Time Scheduling of Distributed Real-Time Systems. PhD
thesis, Eindhoven University of Technology, 1995.

[17] B.J.J. Verhulst. Specification oftime constraints for SPRINT. Master's thesis, Eindhoven
University of Technology, April 1993.

[18] J .R. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith,
R.E. Shostak, and C.B. Weinstock. SIFT: Design and analysis of a fault-tolerant com
puter for aircraft control. Proceedings of the IEEE, 66(11):1240-1255, October 1978.

[19] H.H.R. Wevers. Reliable RRT intra-node multipoint RPC in DEDOS. Master's thesis,
Eindhoven University of Technology, October 1995.

31

Computing Science Reports Department of Mathematics and Computing Science
Eindhoven University of Technology

In this series appeared:

96/01

96/02

96/03

96/04

96/05

96/06

96/07

96/08

96/09

96/l0

96/l1

96112

96/13

96/l4

96/l5

96/17

96/l8

96/l9

96/20

96121

96/22

96/23

96124

96125

97/01

97/02

97/03

97/04

97/05

M. Voorhoeve and T. Basten Process Algebra with Autonomous Actions, p. 12.

P. de Bra and A. Aerts Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

W.M.P. van dec Aalst Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

S. Mauw Example specifications in phi-SDL.

T. Basten and W.M.P. v.rl. Aalst A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

W.M.P. van dec Aalst and T. Basten Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

M. Voorhoeve Structural Petri Net Equivalence, p. 16.

A.T.M. Aerts, P.M.E. De Bra, 0008 Support for WWW Applications: Disclosing the internal structure of
1.T. de Munk Hyperdocuments. p. 14.

F. Dignum, H. Weigand, E. Verharen A Fonnal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

R. Bloo, H. Geuvers Explicit Substitution: on the Edge of Strong Normalisation, p. 13.

T. Laan AUTOMATH and Pure Type Systems, p. 30.

F. Kamareddine and T. Laan A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

T. Borghuis Priorean Tense Logics in Modal Pure Type Systems, p. 61

S.H.l. Bos and M.A. Reniers The {2 C-bus in Discrete-Time Process Algebra, p. 25.

M.A. Reniers and 1.1. Vereijken Completeness in Discrete-Time Process Algebra, p. 139.

E. Boiten and P. Hoogendijk Nested collections and polytypism, p. 11.

P.D.V. van der Stok Real-Time Distributed Concurrency Control Algorithms with mixed time con
straints, p. 71.

M.A. Reniers Static Semantics of Message Sequence Charts, p. 71

L. Peijs Algebraic Specification and Simulation of Lazy Functional Programs in a concur
rent Environment, p. 27.

L. Bijlsma and R. Nederpelt Predicate calculus: concepts and misconceptions, p. 26.

M.C.A. van de Graaf and G.1. Houben Designing Effective Workflow Management Processes, p. 22.

W.M.P. van der Aalst Structural Characterizations of sound workflow nets, p. 22.

M. Voorhoeve and W. van der Aalst Conservative Adaption of Workflow, p.22

M. Vaccari and R.C. Backhouse Deriving a systolic regular language recognizer, p. 28

B. Knaack and R. Gerth A Discretisation Method for Asynchronous Timed Systems.

1. Hooman and O. v. Roosmalen A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

1. Blanco and A. v. Deursen Basic Conditional Process Algebra, p. 20.

J.C.M. Baeten and 1.A. Bergstra Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric
Time, p. 26.

1.C.M. Baeten and 1.1. Vereijken Discrete-Time Process Algebra with Empty Process, p. 5l.

97/06

97/07

97/08

97/09

M. Franssen Tools for the Construction of Correct Programs: an Overview, p. 33.

I.eM. Baeten and I.A. Bergstra Bounded Stacks, Bags and Queues, p. 15.

P. Hoogendijk and R.C. Backhouse When do datatypes commute? p. 35.

Proceedings of the Second International Conununication Modeling- The Language/Action Perspective, p. 147.

Workshop on Conununication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

	Abstract
	1. Introduction
	2. Survey of timing constrains
	2.1 Multimedia
	2.2 Flexible manufacturing
	2.2.1 Robotics
	2.2.2 Computer vision
	2.2.3 Sensing
	2.3 Systems control
	2.3.1 Photocopier Control
	2.3.2 Aircraft control
	3. Timing and Precedence Constraints
	4. The DEDOS scheduling model
	4.1 Hardware environment
	4.2 Dynamic structure
	4.2.1 Objects
	4.2.2 Beads
	4.2.3 Bead timing relations
	4.2.4 Bead communication
	4.2.5 Device management
	4.2.6 Execution grapgh
	4.2.7 Replication
	4.2.8 Communication beads
	4.2.9 Execution graph transformation
	4.2.10 Blocks
	4.2.11 Implementation constraints
	4.3 Scheduling problem
	5. Conclusions
	6. Future research
	A: Appendix: list of symbols
	References

