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Abstract 

Computer-controlled dependable systems playa crucial role in modern society. These 
systems can be encountered in many application domains, from multimedia systems to 
food processing machines. 

The design of dependable real-time systems is very complex and calls for computer 
aided support. Scheduling is one of the important stages in the design trajectory. The 
input of the scheduler should describe all relevant features of the application. 

The aims of this paper are twofold. Firstly, a survey is made of relevant timing 
characteristics in applications from different domains. Secondly, a model is presented 
which reflects all important concepts of dependable real-time systems (such as replication 
and communication), The model incorporates all the timing characteristics which are 
discussed in the survey. It is shown how different temporal behaviors can be expressed in 
the model. 

The model is used in the design of an off-line hard real-time scheduler for the DEDOS 
system [8], which is being developed at the Eindhoven University of Technology. 

1 Introduction 

The DEpendable Distributed Operating System (OED OS) project [8J is concerned with de
pendable distributed real-time systems. The development of techniques and algorithms for 
the design of these systems is the main purpose of the project. Nowadays, the use of de
pendable distributed real-time systems is growing fast, for example in the field of embedded 
systems. An important aspect of dependable systems is timeliness; often tasks have to be 
completed before a given deadline. Another important aspect of dependability is reliability; 
safety critical applications require that the system continues operation despite hardware fail
ures. A nuclear plant and an air traffic control system are good examples where these issues 
play an important role. Other aspects of dependability are safety, availability, security and 
robustness. In general, it is very difficult to achieve all these conflicting goals simultaneously. 
At the moment, DEDOS supports timeliness and reliability. 

With respect to timeliness one can distinguish two areas of interest. In soft real-time 
scheduling, tasks have to be completed before their deadlines as much as possible, but it is 
not catastrophic for a task to finish after its deadline. In hard real-time scheduling this is not 
allowed: each task has to finish before its deadline. 

DEDOS supports applications with both hard real-time (HRT) and soft real-time (SRT) 
tasks. The hard real-time part forms the backbone. Hard real-time tasks are scheduled first, 
while soft-real time tasks are scheduled on idle resources in the remaining time. To guarantee 
timeliness, hard real-time tasks are scheduled statically. So, it is necessary that all timing 
aspects of these tasks are known beforehand. In some cases, worst case estimates have to 
be made to this end, which goes at the cost of resource utilization. Static scheduling is 
specifically suitable for applications which are characterized by periodicity. 
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Each application domain has its own thning characteristics. To be able to make an abstract 
formalization of real-time systems, it is important. to identify the relevant timing behavior 
of these systems. This paper contains a survey of the application domains of dependable 
distributed real-time systems. Furthermore, a general model is presented, in which these 
systems can be formalized. 

In Section 2, some characteristic HRT constraints are discussed and some examples from 
different application domains are given. In Section 3, it is shown how timing constraints can 
be expressed by so-called timed precedence constraints (TPCs). A model which incorporates 
the aspects of timeliness, reliability and hard real- time schednling is presented in Section 4. 
Section 5 contains conclnsions and in Section 6 some issues with respect to future research 
are discussed. 

2 Survey of timing constrains 

Hard real-time demands can be encountered in many types of applications. In this section 
a brief overview is given of different application domains that establish (periodic) scheduling 
problems. Special attention is paid to typical timing constraints for each domain. 

2.1 Multimedia 

Multimedia systems usually employ four components: speech, sound, graphics and video. 
Each of these components has its own timing characteristics. In video and audio applica
tions, algorithms have to be performed on incoming data. Execution graphs represent the 
algorithms [6][10]. The operations in the algorithms are the nodes in the execution graphs. 
Operations are connected by data dependencies. These data dependencies define precedences, 
because correct functionality requires that data is produced by an operation before it is con
sumed by a different operation. 

The algorithms have a periodic behavior, because the input data arrives periodically. In 
video applications and digital signal processing (DSP) in particular, the frequency of incoming 
data is much higher than in audio applications. Moreover, the latency between the input of 
data and the output is data is larger, because of the greater complexity of the video algorithms. 
Therefore, periodicity constraints are much stricter in video and DSP applications. DSP 
algorithms are used for applications such as picture in picture, Moire transformation and 
contrast adjustment. 

Periodicity can be encountered in many places in DSP applications. For example, televi
sion images are constructed by periodically projecting pixels, i.e. an operation is performed 
for each pixel in a row and for each row in a frame at a certain (predefined) rate or period [15] 
(for example, 64 ps per line and 74.1 ns between consecutive pixels in one line). This period 
implicitly defines a deadline for each execution of the operation. 

Another example of periodicity is the decoding of scrambled information used in the 
D2MAC standard. Every 10 seconds a new decoding scheme is provided. This introduces a 
periodic timing constraint for this task [17]. 

Other tinting constraints arise from the interactive part of multimedia systems. Although 
the interactions between the system and the user typically have soft real-time characteristics, 
also stricter timing constraints have to be met as well. For example, if the user switches to 
a different channel on his or her television set, audio is muted first for 100 ms and a steady 
picture of the chosen channel is not displayed for at least 300 ms. When a video recorder is 
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turned on, the screen must be blanked for at least 150 ms. Also, maximum response times 
to remote control actions are usually prescribed for the design. 

2.2 Flexible manufacturing 

A flexible manufacturing system (FMS) is characterized by the production of small batches 
of products. Products in different batches are similar, but not identical. Changes between 
different batches require short configuration switch times (set-up times). This is in contrast 
to the dedicated assembly lines used for mass production. 

A FMS consists of a group of machines and a transportation mechanism to move the 
objects between these machines. Each machine is capable of performing a number of different 
operations. A robot is an example of such a flexible machine. Robotics is discussed in 
Section 2.2.l. 

The objects under consideration do not always have the same outlook or appearance, and 
therefore require different (types of) operations. To this end, a FMS is usually provided with 
a sensing mechanisms (cameras, pressure valves, thermometers etc.). Computer vision and 
automated visual inspection are discussed in Section 2.2.2, while the control of sensors is the 
su b ject of Section 2.2.3. 

2.2.1 Robotics 

One way to establish the control of a robot is to calculate the movements of the joints of the 
robot. It is possible to partition this computation into a number of tasks (2]. Any statement 
that would normally cause such a computation to block is known as a (re)scheduling point 
and forms a task boundary. Depending on the partitioning, precedence relations exist on the 
execution of different tasks. These tasks are the unit of scheduling; they should be assigned 
to processors (in the controlling system) and the sequence of executions of tasks on the same 
processor should be determined. Furthermore, the robot-motion controlling mechanism shows 
a periodic behavior, and deadlines can be given for groups of tasks. 

The problem of computing robot motions can be formulated as a multiprocessor scheduling 
problem, to minimize the overall execution time, where the tasks with different execution times 
have precedence relations and are allocated to a number of processors (9]. 

2.2.2 Computer vision 

Computer vision deals with the recognition of structures or objects in a scene, within a 
restricted amount of time. Examples include part and position recognition, weather analysis, 
analysis of currents of fluids, and molecular dynamics. Typical input for these processes is 
a continuous row of frames (for example, at a rate of 30 frames a second) with 1024 X 1024 
pixels in each frame. In general, many operations have to be performed on each pixel. Because 
output has to be produced within a reasonable amount of time, this could lead to 10" - 1013 

operations per second. So, a high throughput has to be achieved using parallel processing. 
One application of computer vision is automated visual inspection (AVI) (12]. Objects are 

moved on a conveyor belt for inspection (figure 1). Depending on the result of the inspection, 
some operation may be performed on the objects (for example the removal of cherry-stones 
from cherries or the filleting of fish in food processing industries). 

Suppose, for the moment, that incorrect objects need to be taken off the belt. For this, a 
camera captures images from the objects on the belt. These images are input to the decision 
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procedure, which determines if the scanned object should be removed. If so, the object will 
be removed from the belt by some mechanism. 

cameralJ 

obje.::ts 

... O .... O~~O~Q~' ... O"'''"'''o<bOh 
direction of movement 

Figure 1: Automated visual inspection. 

It must be guaranteed that inspection keeps up with the speed of the conveyor belt. This 
implies timing constraints for certain parts of the inspection mechanism. The time interval 
between two consecutive object arrivals provides an upper bound for the processing time of 
one image, if consecutive objects are handled by the same processor. The arrivals may be 
strictly periodic or only bounded by a maximum rate. 

The rejection mechanism may only be activated after a given amount of time has elapsed 
once the corresponding image is processed. This introduces constraints on the delay between 
different tasks. 

2.2.3 Sensing 

In industrial systems, data of the process under control is acquired by means of sensors [11]. 
These sensors are scanned, sampled and digitized at rates as fast as 10 times per second. 
Even higher rates may occur in the sensing of certain physical or chemical processes, such as 
those in nuclear power plants. 

Periodic scanning is one way of performing measurements. This results in a periodic use 
of the communication media that are used for the transport of the measured values to the 
controlling processes. Effectively, this technique is equivalent to event handling in a polling 
strategy. Often, it is sufficient to pass these measured values only if they are significantly 
different (for example more than 5 percent) from the values measured previously. This results 
in a reduction of the communication capacity requirements. To reduce the communication 
requirements even more, it is possible to specify a minimal time delay between consecutive 
communications of sensor measurements. This prevents measurements occuring at an unnec
essarily high rate. 

The measured values are used by the controlling process to determine a control policy. 
The actual control takes place in periodic loops. 

2.3 Systems control 

Apart from the control of flexible manufacturing systems, many timing constraints can be 
encountered in more specific control systems. The control of a photocopier is the subject of 
Section 2.3.1 and aircraft control is discussed in Section 2.3.2. 
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2.3.1 Photocopier Control 

A particular high-volume photocopying machine operates as follows. Latent images are pro
duced on a photo-conductor belt. This belt is welded at one location and so no images may be 
made across the weld. Therefore, the weld is marked by a master hole in the belt. The time at 
which the master hole passes a particular point in each full revolution of the belt is recorded 
by a sensor. The belt is subdivided into image planes which correspond to a single copy. The 
belt is first electrically charged, after which exposure of the original document decharges the 
white parts of the original. The image is then developed with toner that sticks to the charged 
areas of the belt. This image is transferred at a high temperature and under high pressure 
to a sheet of paper via a second belt. Blank sheets are stored in paper trays. When a sheet 
is required, it is first separated from a tray. Then, it halts at a stopper. When this stopper 
is lifted, the sheet is processed without halting. After an image has been transferred to the 
sheet, it is transported to an output tray. Originals are automatically transported from a 
tray to the glass plate and returned to the tray after exposure. For the exposure, a capacitor 
must be charged which takes a long time. 

Different types of timing relations exist in this copier. The strictest relations concern 
synchronization of the different parts of the copier. An image of an original must be accurately 
positioned on a sheet of paper. This means that the time of the exposure of the original, the 
time at which the stopper is lifted and the arrival time of an image plane at the appropriate 
position must be synchronized to within a few milliseconds. 

A second type of timing relation stems from sensing the master hole. The master hole 
sensor is polled during the period that it may pass the sensor. All the operations in the copier 
control system are synchronized with the moment at which the sensor detects the master hole. 
Since small variations may occur in the velocity of the photo-conductor belt, the operations 
in the schedule must be synchronized with each passage of the master hole. This is done by 
synchronizing the clock that controls the schedule to each passage of the master hole. 

Precedence constraints are caused, for example, by the requirements that the flash capac
itor is loaded before exposure, that a sheet is separated before the stopper is lifted and that 
an original is transported to the glass plate before exposure. 

2.3.2 Aircraft control 

An aircraft control system can be decomposed into a number of application processes. These 
processes are executed in a periodic way: each application process is dispatched at a specific 
point relative to the start of an overall system cycle or loop. 

Start and completion of different processes and their associated I/O behaviors have to be 
synchronized such that overruns in the system do not occur [3]. 

An aircraft control system also contains sensors and actuators. Output to the actuators 
must be generated with specified frequency, i.e. the task (process) that controls an actuator 
should be executed periodically. Transport delay - the delay between the reading of sensors 
and the generation of output of the actuators based upon those readings - must be kept 
below specified limits. 

To fulfill these requirements, an iteration rate is specified for each task. The scheduling 
strategy must guarantee that the processing of each iteration of the task will be completed 
within a 'time frame' that is determined by the start time of the iteration and the start time 
of the next iteration. It does not matter when the processing is performed, provided that it 
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is completed by the end of the frame. The iteration rates required by different tasks differ, 
but they can be adjusted somewhat to simplify the scheduling. The time needed to execute 
an iteration of a task is highly predictable, so it can be assumed that these are given [18]. 
Furthermore, precedence relations between tasks also occur. 

3 Timing and Precedence Constraints 

In this section, the different timing and precedence constraints are examined for a number 
of the applications of the previous section. It is argued that Timed Precedence Constraints 
(TPCs) can describe all precedence and timing constraints in an application. A TPC is a 
generalization of a normal precedence relation. A TPC specifies a relation between the times 

at which two operations or statements are executed. The TPC 0 1 ~ O2 specifies that 
operation O2 must be executed between So and 10 time units after operation 0 1 , 

Normal precedence relations between operations are present in all applications mentioned. 
These precedences represent, for example, sequential execution prescribed by a sequential 
program or a producer-consumer relation between two operations. These precedence relations 
can be represented by TPCs of the form 0 1 c~oo O2 where Cmax is the worst-case execution 
time of operation 0 1 . However, if worst case execution times are used, then it is not possible 
to express that the second operation immediately has to follow the first operation. Reason 
is that the first operation can finish its execution before its (estimated) worst case execution 
time. 

In several of the applications mentioned, certain operations must follow a previous one 
after a specified period of time. For example, in the TV control the sound is muted when a 
new channel is selected and the sound is turned back on after 100 ms. This could be specified 

by a TPC 0 1 1~1O O2 , where 10 has been chosen somewhat arbitrarily. In the copier control 
system, many operations must be executed at a fixed time after some other operation within 
narrow tolerances. This is naturally expressed by TPCs. 

TPCs can also be used to express periodicity requirements. Periodicity arises both from 
periodicity in the application and from the static scheduling approach. Tasks that handle 
aperiodic events like interrupts must be translated into periodic tasks when static scheduling 
is used. A schedule is calculated off-line for a certain interval [0, L], where L is the least 
common multiple of the individual periods of all periodic tasks. This schedule is then executed 
periodically. 

In the existing literature on hard real'time scheduling, tasks are characterized by a period 
p, a worst-case execution time c, an earliest start time e and a deadline d. Both e and dare 
relative to the beginning of a period. Without loss of generality, the earliest start time can 
be taken equal to 0 in the following discussion. 

Interrupt-driven tasks must be incorporated in this schedule in such a way that the dead
line D on the reaction to the interrupt is always met, i.e. the time between the interrupt and 
the completion of the result should be less than D. For this, a task is introduced which exe
cutes periodically with period p and deadline d. At each execution of this task, it is checked if 
an interrupt has occurred. If this happens, the interrupt-related task is executed. Otherwise 
the processor will be left idle. 

If no TPCs are used, a period and deadline have to be specified statically. If one assumes 
that an occurrence of an interrupt just after the scheduled start time of the task is not handled 

6 



until the next period, p and d must satisfy: 

(1) 

The choice of d determines the length of the period and the strictness of the constraint 
on the start time. 

If d is chosen equal to p, the scheduler can choose the start time within a period n 
arbitrarily between 0 and p - c (figure 2( a)). Here, c is the worst-case execution time of 
the interrupt-driven task. This choice allows maximal freedom to the scheduler. However, 
according to expression (1), the period is now required to be (at most) DI2 and the load on 
the processor due to the task (which is given by the execution time divided by the available 
time in one period) equals 2cl D. 

I, D ,I 
d 

1 1--'--- D -------1,1 

h W W 
(n-l)p np (n+l)p (n-l)p np 

(a) (b) 

Figure 2: Two possible assignment of periods for TPCs: (a) d = p,p = D/2; (b) 
d = c,p = D - c. 

On the other hand, the task can be made strictly periodic within [0, L] if d is set equal 
to c (figure 2(b) ). In this case, the scheduler has no freedom to choose a start time. The 
period of the task can now be reduced to p = D - c, according to expression (1). The load on 
the processor is now reduced to c/(D - c). However, this specification is unnecessarily strict 
since there is no reason (other than efficiency) why a response should not be given earlier. 

When using TPCs, the timing constraints of interrupt-driven tasks can be specified with a 

TPC c~c between subsequent activations instead. This allows both freedom for the scheduler 
and a relatively low average processor utilization. The reason for this is that no (static) choice 
for d has to be made, whereas the TPC allows a choice of any interval between different 
activations that satisfies the deadline D. 

For a comparison between periodicity induced by a static choice and periodicity induced by 

TPCs, consider a static specification and a specification with a TPC, where both specifications 
allow the scheduler intervals of equal length in which an activation must be started. The static 
specification of the scheduling problem with deadline d allows an interval [0, d - c) for the 
start time within the period. The utilization is given by c/( D - d), if the period is chosen 
maximal according to expression (1), i.e. p = D - d. 

The corresponding TPC is D-.'!!J,-c. This TPC also specifies an interval of length d - c for 
the choice of the start time. When the assignments of start times are evenly spread over this 
interval in the entire scheduling period [0, L], the average utilization due to this TPC equals 
cl !(lo + so)) = c/( D - !c - !d). If c :s; d, then this average load is smaller than the load that 
results from the static specification. Likewise, when the TPC is chosen such that the average 
load equals the load that results from the static specification, the timing constraint due to 
the TPC is less strict. 
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In general, very few applications seem to require strictly periodic tasks. Most tasks can 
be naturally specified by TPCs with So # 10 instead. The exception to this are tasks that 
involve synchronization. Examples of this are the task that awaits the master hole in the 
copier of section 2.3.1 and the task that awaits the decoding information in the example 
of the television. These tasks appear strictly periodic in the schedule. However, notice 
that the clock that drives the schedule, must be reset at each activation of these tasks, 
otherwise the synchronization between the tasks in the schedule, that are time related to 
the synchronization point, and the synchronizing signal is lost. This also implies that a 
static schedule is practically only possible if there is only one synchronizing signal. If more 
synchronizing signals are present, they must define exactly the same external clock. 

4 The DEDOS scheduling model 

In this section a scheduling model for the DEDOS environment is presented, in which the 
aspects of timeliness, reliability and hard real-time scheduling are incorporated. In principle, 
this model can be extended for soft real-time scheduling. For this purpose, the notation can 
be easily extended with value functions. 

An earlier version of this model is presented in [16]. In contrast with that model, replica
tion is part of the current model, apart from other differences in the level of detail. 

The model presented in this paper will be used in the development of scheduling algorithms 
for the DEDOS design environment. 

All the examples in Section 2 have a common characteristic: the applications consist of 
both hardware and software components; the software is executed on the hardware. In general, 
the hardware does not consist of a single processor. Instead, a distributed environment is used 
with a number of possibly inhomogenous processing elements. 

In correspondence to this observation, DEDOS applications can be split into two clearly 
distinguishable parts. Section 4.1 describes a general hardware platform on which an applica
tion is executed. In Section 4.2 the description of the software of an application is specified. 
The general scheduling problem is formulated in Section 4.3. 

4.1 Hardware environment 

The hardware used in the DEDOS development. environment is based on the Eindhoven 
MultiProcessor System (EMPS)[13]. An EMPS system consists ofa number of interconnected 
crates. A crate contains a number of processors, devices and memory modules which are 
connected by a common bus. This structure is quite general and can be used for many other 
systems, too. 

In the following definition, PR, DV, MM and BUS are distinct collections of processors, 
devices, memory modules and buses respectively. Processors contain local memories, in which 
program code and small amounts of data can be stored. 

Definition 4.1 (Crates) The crates are described by a 5-tuple 
(CR, CRPR, CRDV, CRMM, CRBUS), where 

• CR is a set of crates, 

• CRPR(cr) E P(PR) is the set of processors in crate cr, cr E CR, 
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• CRDV(cr) E P(DV) is the set of devices in crate cr, cr E CR, 

• CRMM(cr) E P(MM) is the set of memory modules in crate cr, cr E CR, and 

• CRB USC cr) E B US is the common bus in crate cr, cr E CR. 

o 

For convenience, we introduce four auxiliary functions. 

Definition 4.2 (Auxiliary functions) 

• PRCR(pr) is the (unique) crate in which processor pr is situated, pr E PR, 

• DVCR(dv) is the (unique) crate in which device dv is situated, dv E DV, 

• MMCR(mm) is the (unique) crate in which memory module mm is situated, mm E MM, 
and 

• BUSCR(bus) is the (unique) crate in which bus bus is situated, bus E BUS. 

o 

To make this a valid definition, it is assumed that CRPR(crt)n CRPR(cr2) = 0, CRDV(crt)n 
CRPR(cr2) = 0, CRMM(crl)nCRMM(cr2) = 0, and CRBUS(crt) i' CRBUS(cr2)forcrl, cr2 E 
CR with crt i' cr2. 

Some of the resources have a certain capacity. For example, if a piece of code, that consists 
of i instructions, is executed on a processor with a capacity of m MIPS, it is finished after 
i/m microseconds. If a piece of data of d bits is communicated via a bus with capacity c' bits 
per second, then this communication is finished after d/ c' seconds. The capacity of a device 
is defined likewise. The capacity of a memory module gives the number of bits a memory 
module can contain. 

Definition 4.3 (Capacity) 

• PRCAp(pr) is the capacity of processor pr, pr E PR, 

• DVCAP(dv) is the capacity of device dv, dv E DV, 

• MMCAP( mm) is the capacity of memory module mm, mm E MM, 

• B USCAP( bus) is the capacity of bus bus, bus E BUS. 

o 

Because devices are not uniform in general, we must distinguish different device types. Ex
amples of devices are sensors, actuators and large storage media such as disks. 

Definition 4.4 (Device types) DVT(dv) E DVTSis the type of device dv. Here DVTSis 
the collection of device types. 0 
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In general, the hardware used in the DEDOS environment consists of a network of intercon
nected crates. The crates are interconnected by dedicated interprocessor links. Links can also 
connect two processors in the same crate. Like other resources, links also have a predefined 
capacity. 

Definition 4.5 (Links) LI is the set of dedicated interprocessor links. LICAP(li) is the 
capacity of link Ii, Ii ELI. LIPR(li) is the set of (two) processors that are connected by link 
Ii. 0 

For convenience, we introduce the concept of communication media, which consist of buses 
and dedicated links. 

Definition 4.6 (Communication media) CM = BUSu L1 is the set of communication 
media. Here, we assume BUSn LI = 0. Which resources are connected by a certain commu
nication medium is given by function CMCON: CM -; P( PR U DVU MM), which is defined 
by 

1 

{pr E PR I PRCR(pr) = BUSCR(em)} U 

CMCON(em) = {dv E DVI DVCR(dv) = BUSCR(em)} U 
{mm E MMI MMCR(mm) = BUSCR(em)} 
LIPR(em) 

The capacity of a communication medium is given by 

CMCAp(cm) = { BUSCAp(cm) 
LICAp(cm) 

if em E BUS 
if em ELI 

if em E BUS 

if em ELI 

o 

With respect to the connectivity of the crate network, it is assumed that there exists a 
communication path between each pair of processors, i.e. 

In this definition, path: PR X PR -; lB is defined by 

path(pri,pri) 

path(pri,prj) 

true 

(3prk E PR, em E CM:: {pri,prd ~ CMCON(em) 1\ path(prk,prj)) 

Figure 3 reflects an example of a specific static structure. Two crates with processors, 
devices, buses, memory modules and dedicated links are shown. 

Processors, devices, memory modules, buses and links are all the resources in a DEDOS 
system. 

Definition 4.7 (Resources) The set of resources is given by RS = PRuDVUMMUBUSULI. 
o 
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Figure 3: DEDOS static structure. 

4.2 Dynamic structure 

In the DEDOS environment, a real-time application is described in an object-oriented lan
guage, called DEAL (DEDOS Application Language) [8][14]. The object-oriented develop
ment paradigm is chosen for its reusability and extendibility. DEAL provides transparency to 
the user from hardware aspects such as distribution across the network and communication. 

DEAL is based on the C++ language because the language is widely used. The language 
is extended with concurrency, atomicity, remote procedure calls and timing annotations. 
The user can specify timing relations between different program entities by these timing 
annotations. 

There are two kinds of timing annotations. A time measurement expresses that a state
ment happens to be executed at a certain moment. The execution of other statements can be 

related to this moment. For example, the time measurement SI [?tJ expresses that statement 
SI supplies an execution moment denoted by t. This time variable t can be used to express 
a timing relation with other statements. Therefore, timing requirements are introduced. An 
example of this is S2[2>: t + 2, S; t + 4], which expresses that statement S2 should start its 
execution between 2 and 4 time units after the time that is given by time variable t; in this 
context, t represents the time at which statement SI is executed. The program domain and 
the timing domain are independent, i.e. timing variables do not occur in the program code and 
programming variables do not occur in timing annotations. Notice that a time measurement 
and a timing requirement directly define a TPC. 

A preprocessor transforms a DEAL application in pure C++ code by translating DEAL 
specific constructs into C++ constructs. During the preprocessing also timing information 
is produced, which is deduced from the timing annotations. The resulting timed precedence 
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constraints are input to the scheduling stage. 

4.2.1 Objects 

An object is a piece of data, together with methods and activities to inspect or modify this 
data. The data can only be accessed through its corresponding methods and activities. 

Definition 4.8 (Objects) The collection of objects is given by set DB. o 

A method consists of program code, which describes how the data is manipulated. Within 
the code of a method, a call to a method of the same or a different object is allowed. 

An activity is a special kind of method. It is executed upon creation of the corresponding 
object. While ordinary methods are executed once per call, an activity is executed period
ically. In general, the execution of an activity results in a series of method calls. Such a 
sequence of method calls is termed a thread. The calls in a thread are not restricted to one 
object: a thread may cross object boundaries. In t.he scheduling stage, a start time has to be 
determined for each activity. 

4.2.2 Beads 

It is clear that the code of methods and activities has to be executed on processors. In general, 
an entire method or activity is too large to be executed as one whole. Therefore preemption 
is allowed, i.e. the execution of a piece of code may be interrupted and resumed at a later 
time. In the meantime, another piece of code may be executed on the same processor. In this 
way a higher processor utilization is acb.ieved. 

Each time the processor switches to the execution of a different piece of code, a context 
switch is made. If full preemption is allowed, i.e. if the execution can be interrupted at any 
moment, then this could lead to too many context switches. No preemption would lead to too 
much inflexibility for the scheduling stage. Therefore semi-preemptability is allowed: code in 
execution can be interrupted at given predefined Inoments, the so-called preemption points. 

The preemption points are placed in logical places. These are for example places where 
a continuation of execution is not immediately possible, due to device accesses or method 
calls, which cannot be dealt with in a negligible amount of time. Other preemption points 
are introduced as a result of timing annotation in the source code, and at places where the 
execution of program code starts or ends. 

Definition 4.9 (Preemption points) A preemption point indicates at which moment the 
execution of a piece of code may be started, ended, interrupted or resumed, i.e. when a context 
switch is allowed. 0 

It is assumed that the creation of preemption points is dealt with in the preprocessing stage; 
the preemption points are therefore considered given. 

Pieces of code between consecutive preemption points should be executed atomically; for 
example, no communication takes place within such a piece of code. Therefore, the concept 
of beads is introduced. A bead is the unit of non-preemption and scheduling. It is assumed 
that the collection of beads is given. 
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Definition 4.10 (Beads) A bead is the non-preempt able part between a preemption point 
and all its successor preemption points. A preemption point PP2 is a successor of a preemption 
point PPI iff an execution exists in which there are no other preemption points between PPI 
and PP2, and PPI and PP2 are located in the same method or activity. Set B is the collection 
of all beads in the given application. Function BOB: B --+ OB expresses to which object a 
bead belongs. 0 

The execution of the entire system consists of the execution of beads on processors. So, it 
has to be determined which bead is executed on which processor. 

Definition 4.11 (Bead assignment) BA(b) E PR is the processor on which bead b E B is 
executed. o 

To reduce the amount of communication, object bead constraints are introduced, which ex
press that beads, belonging to the same object, should be executed on the same processor. 

Definition 4.12 (Object bead constraints) The object bead constraints are given by 

o 

As a result of the object bead constraints, each object is assigned to a single processor, which 
is reflected in the following definition. 

Definition 4.13 (Object assignment) OBA(ob) E PR is the (unique) processor to which 
beads of object ob E OB are assigned, i.e. 

OBA(ob) = BA(b) 

for all ob E OB and some b E B with BOB(b) = ob. o 

In the preprocessing stage, timing information is extracted from the given application. Part of 
this information is the identification of beads and an estimate of their processing requirements. 
For example, if bead b involves i instructions, and if it is executed on processor pr with 
capacity m = PRCAP(pr) MIPS, then the execution of bead b on processor pr would take 
i/m microseconds. Only a worst case estimate of the processor requirement is calculated. 

In the scheduling stage, it has to be determined for each bead at which time it should 
start its execution. Given the start time and the processing requirement of a bead and given 
its corresponding bead assignment, it is possible to derive the time at which the execution of 
that bead is finished. 

Definition 4.14 (Bead timing) BPR(b) is the processor requirement of bead b E B. BS(b) 
is the start time of bead b E B. The end time of bead b E B is denoted by BE(b) and is 
defined by BE(b) = BS(b) + rIc, where r = BPR(b) is the processing requirement of b, and 
c = PRCAP(BA(b» is the capacity of the processor on which b is executed. 0 

Note that in the scheduling stage, function BS has to be determined, and that the value of 
function BE depends on the chosen bead assignment (and start times). 
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4.2.3 Bead timing relations 

In Section 3, it is shown in general terms how timing relations can be expressed by TPCs. 
This section focusses on the determination of TPCs in terms of beads. It is assumed that the 
set of TPCs is determined in the preprocessing stage: based on the collection of beads and 
the program code with the corresponding timing information, it is possible to derive timing 
relations between different beads. This is illustrated by means of an example, which is given 
in figure 4. For reasons of clarity, the example is not coded in DEAL, but in an imaginary 
object-oriented language. 

OBJECT read~ensors 
METHOD read(in nr: Int; out v: Real} 

BEGIN 
[>' 

IF nr = 1 

THEN <]2 sensor!. read(v) {>3 

ELSE 

IF nr = 2 

THEN <:]4 sensor2.readCv) t>5 

ELSE <]6 error.writeO [>7 

<1' END 

OBJECT sensor! 

DATA temperature: Real 

METHOD read(out t: Real) 

BEGIN 
t>9 t := temperature <]10 

END 

OBJECT sensor2 
DATA dJ·stance: Real 

METHOD read(out d: Real} 

BEGIN 
[>11 d := distance <]12 

END 

OBJECT error 

METHOD writeO 

BEGIN 
[>13 ." <]14 

END 

Figure 4: Example program. 

In this example, object read_sensors provides services to the environment to read two 
sensors, one for reading a temperature (object sensorl) and one for reading a distance (object 
sensor2). The numbered [> and <J symbols denote the preemption points. The [> symbols 
correspond to points were (parameter) data is possibly received, whereas <J symbols denote 
the possible transmission of data. 

According to the definition, five beads can be identified (see figure 5). The first, bead b
" 

is 

14 



bounded by preemption points 1, 2, 4 and 6; this bead corresponds to the check which sensor 
has to be read. The second bead (b 2 ) is bounded by preemption points 9 and 10 and models 
the actual reading of the thermometer. The third bead (b3 ), bounded by preemption points 
11 and 12, corresponds to the reading of the distance sensor. The fourth bead (b4 ) between 
preemption points 13 and 14 represents the call to the error handling object. Finally, the fifth 
bead (bs) is added to represent the correct ending of the read-method in object read...sensors. 

1/ - .... \ \ calling method 
L ___ _ 

'''I9 ···I11 ····I1~ 
b2 .' •• 

10 • • 12 • • 14 

8 

'---I 
\ .... _ '" I calling method 

Figure 5: Beads in the example program. 

It is clear, that if the input specifies that a temperature has to be read, the actual reading 
of the thermometer has to follow the validation of this input. Therefore, bead b2 should be 
preceeded by bead b" i.e. the execution of bj should be finished before the execution of bead 
b2 is started (BE(b j ) :':: BS(b2)). The same goes for beads b3 and bj : bj should precede b3 , 

because bead b3 corresponds to the execution of the method, that is called at the end of 
bead bj . Bead b4 should succeed bead b" due to the same reason. Finally, bead bs should 
succeed beads h, b3 and b4 , because this bead corresponds to the end of the method. These 
timing relations are termed precedence constraints, and should be taken into account in the 
scheduling stage. Figure 6 gives a visual representation of the precedence constraints between 
the beads. 

Precedence constraints are just one type of timing constraints. In general, more complex 
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Figure 6: Beads and precedence constraints from the example program. 

timing relations can be expressed by TPCs. It is assumed that all timing relations between 
beads are expressed by these TPCs (see also Section 3). 

Definition 4.15 (Timed precedence constraints) The timed precedence constraints are 
given by 

BS(b,) + s ::; BS(b2 ) ::; BS(b,) + 1 

for all (b" s, I, b2) E TPC, where TPC is a given set of timed precedence constraints. D 

A timing relation induced by a timed precedence constraint is not symmetrical (i.e. (b l , S, I, b2 ) oj 
(b2 , s, I, bl)). It is assumed that between each pair of beads, at most one timed precedence 
constraint can be present. It is easy to see that more than one timed precedence constraint 
on the same two beads can be transformed into a single constraint (at least: if the constraints 
are not inconsistent). For example, TPCs (b l ,2,6,b2 ) and (b l ,4,8,b2) have the same effect 
on the schedule as the single TPC (b l ,4,6,b2). 

A (normal) precedence constraint is easily expressed by a timed precedence constraints. 
For example, suppose there is a precedence constraint between beads bt and b2 , i.e. BE(bt ) :::; 

BS(b2 ) should be met. This is achieved by adding tuple (b l ,r/s,oo,b2 ) to the set of timed 
precedence constraints TPC, where r = BPR(btl is the processor requirement of bead bl , and 
s = PRCAP(BA(b l )) is the capacity of the processor on which bead bl is executed. 

4.2.4 Bead communication 

Sometimes data is sent from one bead to a different bead. For example, if in a bead a method 
is called in a different object, then in general parameter data should be transferred at the 
method call. The results should be transferred back to the calling bead at the end of the 
execution of the method. 

Definition 4.16 (Communicating beads) Function BCM: B X B -+ ill expresses which 
beads communicate data. BDS(bl , b2) is the amount of data that is exchanged between beads 
bl and b2 • If beads bl and b2 do not .communicate data (i.e. ,BCM(bl ,b2 ) holds), then 
BDS(b"b2 ) is not defined. D 

Note that function BCM is not symmetrical in general (i.e. BCM(bl , b2 ) does not necessarily 
equal BCM(b2 , bl))' since communication is characterized by a direction: data is communi
cated from one bead to an other bead. 
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It is assumed that both functions BCM and BDS are determined in the preprocessing 
stage before scheduling. From the definition of preemption points it follows that there is at 
most one communication between each pair of beads. 

4.2.5 Device management 

Devices are used or managed by objects. Each device is managed by one object, i.e. all 
accesses of a device occur via the managing object. Therefore, there is a relation between 
devices and objects. In general, this relation is prescribed by the application. For example, a 
sensor and an object that controls this sensor are clearly related. So, it is assumed that this 
relation is predefined, i.e. the relation is known before the scheduling stage. 

Definition 4.17 (Device assignment) 
device by which object it is managed. 

Function DVOB : DV --7 OB expresses for each 
o 

Note that this definition allows that multiple devices are managed by one object. However, 
a device can only be managed by a single object. 

Because a device can only be accessed through its managing object, this device and this 
object should be located in the same crate. This is expressed by the device constraints. 

Definition 4.18 (Device constraints) The device constraints are given by 

PRCR(OBA(ob)) = DVCR(dv) 

for all objects ob E OB and devices dv E DV with DVOB( dv) = ob. o 

Device accesses resemble method calis, because in both cases data is sent from one resource (a 
processor) to a different resource (a processor or device). The receiving resource is occupied 
for some time, after which data is returned to the first resource. 

Therefore, device accesses are treated in a similar way as method calls. A method call is 
represented by a series of beads: first a bead of the calling object, followed by one or more 
beads of the called method, followed by again a bead of the calling object. A device access 
is modeled by a bead of the object, which accesses the device, followed by a bead, which 
represents the time that the device needs for the actual access, followed again by a bead of 
the accessing object. The bead that corresponds to the actual device access is termed a device 
bead and is part of the scheduling problem. 

It is assumed that the set of beads B also contains these device beads. To distinguish 
device beads from processor beads, a function is introduced which gives the bead type. 

Definition 4.19 (Bead types) Function BT: B --7 {p, d} gives the type of a bead. BT(b) = 

p iff bead b E B is a processor bead; BT(b) = d iff bead b is a device bead. 0 

To realize the communication between objects and devices, functions BCM and BDS are 
also defined on device beads. For example, if a bead b, ends with a device access, which 
corresponds to the execution of a device bead b2 , then BCM(b" b2 ) holds, and the data that 
is sent from b, to b2 has size BDS(b" b2 ). If the data resulting from this device access is 
returned to bead b3, then also BCM(b2 , b3) holds and this data has size BDS(b2 , b3). 
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Furthermore, bead timing functions BS (bead start time) and BE (bead end time) are 
defined on device beads, too. The device capacity needed by a device bead is given by function 
BPR (bead processing requirement). 

For device beads, the range of bead assignment function BA is extended in order to express 
to which device a device bead belongs, i.e. function BA has range PRu DV. In the scheduling 
stage, constraints with respect to bead types have to be met. 

Definition 4.20 (Bead type constraints) The bead type constraints are given by 

BA(b) E PR ¢} BT(b) = p 

for all beads b E B, and 
BA(b) E DV ¢} BT(b) = d 

for all beads b E B. o 

4.2.6 Execution graph 

Given the collection of beads and the time and communication dependencies between beads, 
it is possible to model software applications by means of an execution graph. The nodes in 
this directed graph correspond to beads, while the arcs represent both communications and 
timed precedence constraints. The execution graph is the input for the scheduling algorithm; 
it has to be mapped to the given hardware architecture (after some transformations, which 
are discussed in the next sections), and start times have to be provided for the beads. 

Definition 4.21 (Execution graph) The execution graph is given by a directed graph G = 
(V, A), where 

• V = B, and 

• A = A TPC U A CM . 

Here, ATPC is the set of arcs induced by the timed precedence constraints, i.e. ATPC = 

{(bI, b2 )13s, I E IN :: (bI, s, I, b2) E TPC}, and ACM is the set of arcs induced by the commu
nication behavior, i.e. ACM = {(b1 , b2 )IBCM(bI, b2 )}. 0 

In fact, this graph can be considered a labeled graph. A distinction is made between arcs that 
correspond to timed precedence constraints and arcs that correspond to communications. 

Definition 4.22 (Label function) The label of arc (b1 , b2 ) E A of graph G = (V, A) is 
given by 

o 

The case that beads both communicate and have a TPC is discussed in Sections 4.2.8 
and 4.2.9. Effectivily, a communication between beads is replaced by a number of new beads 
and TPCs. 
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4.2.7 Replication 

For the HRT part of DEDOS applications, reliability is achieved by the introduction of repli
cation. For example, if a processor is malfunctioning, the program code it is executing is 
not valid anymore. To guarantee the correct continuation of the execution of the system, 
a copy of the program code is also executed on one or more other processors. In case of a 
malfunctioning processor, control is given to the processor( s) on which the replicated code is 
executing. 

The unit of code replication is the object. Depending on the fault hypothesis, a number 
of replicated objects are introduced for each original object. The number of replicas is deter
mined in a preprocessing stage. For the moment, it is assumed that the result of this stage is 
known. 

Definition 4.23 (Number of replicas) The number of replicas is given by function NR; 
NR( ob) E IN is the number of replicas of object ob E OB. 0 

The introduction of replicated objects results in an extension of the set of objects with 
replicas. A function is introduced which expresses if objects are replicas. 

Definition 4.24 (Replicated objects) The collection of objects including replicas is given 
by set OB'. Function RPOB : OB' X OB' ---+ IB expresses which objects are replicas. 
RPOB(obl , ob2 ) holds iff obl and ob2 are replicas. 0 

It is clear that the addition of replicated objects results in additional beads. Each bead of the 
original object is present in each replicated object. Therefore, the set of beads is extended; 
the result of this extension is bead set B'. 

Not only additional beads, but also extra TPCs are introduced. For example, if there is 

a TPC between beads bl and b2 with parameters s and I, and if both beads are replicated, 
then there is a TPC from each replica of bead bl to each replica of bead b2 with values sand 
l. The extended set of TPCs is denoted by TPC'. 

The way in which the communication behavior is influenced by the introduction of repli
cated beads and objects depends on the communication protocol used. A reliable communi
cation mechanism based on replicated mailboxes is discussed in [19]. Because a discussion of 
such communication protocols is not the subject of this paper, it is assumed that it is known 
how the communication between replicated beads is established, i.e. functions BCM and BDS 
are suitably extended into functions BCM' and BDS' respectively. 

The replication of beads and timed precedence constraints and the adapted communication 
structure result in an extension of the execution graph. 

Definition 4.25 (Execution graph extension for replication) The extended execution 
graph for replication is given by the directed graph G' = (V', A'), where 

• V' = B', and 

• A' = Arpc U AcM' 
Here, Arpc is the set of arcs induced by the timed precedence constraints, i.e. Arpc = 
{(bl , b2 )13s, 1 E IN :: (bb s, I, b2 ) E TPC'}, and ACM is the set of arcs induced by the commu
nication behavior, i.e. ACM = {(bl , b2)IBCM'(bb b2)}. 0 
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The label function is extended likewise. 

Definition 4.26 (Extended label function) The label of arc (b l , b2 ) E A' of the extended 
graph G' = (V', A') is given by 

L'((b b» = { (s, l)with (b}, s, I, b2 ) E TPC' 
I, 2 BDS'(b b) I, 2 

if (b l , b2 ) E Arpc 
if (bl , b2 ) E ACM' 

o 

All other functions and constraints defined on beads and objects, are suitably extended to 
the domains B' and OB' respectively. These extended functions are denoted by the addition 
of primes. 

It is clear that the replicatiou of objects introduces constraints on the assignment of 
beads to processors, i.e. two beads that belong to two replicated objects, should be assigned 
to different processors. 

Definition 4.27 (Bead replication constraints) The bead replication constraints are given 
by 

BA'(bl ) i- BA'(b2 ) 

for all bl , b2 E B' with RPOB(BOB'(btl, BOFf(b2 )) 

4.2.8 Communication beads 

o 

If two communicating beads are assigned to different processors, it is possible that these 
processors are not connected directly. During scheduling, means have to be provided to make 
this communication possible, i.e. a route of resources has to be chosen along which the data is 
transported and time should be reserved during which actual communication can take place. 

Program code has to be provided for each intermediate processor. This additional code 
supports the receipt and transmission of this data along the communication route. 

For example, if in the example of figure 7 route < pr},busI,pr3,link2,pr7 > is used for the 
communication of data between a bead on prj and a bead on pr7, then code has to be provided 
for processor pr3 which takes data from bus busl and sends it to link link2. The execution 
time of this code depends on the size of the data and the capacities of the communication 
media and processor under consideration . 

• .,. ___ .,. ___ .. _ bus! 

sending bead 
~ 

linkl link2 

receiving bead 
___ ... _____ • bus2 

Figure 7: Communicating beads. 
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It is clear that these additional pieces of code can be considered to be another kind of 
beads: time has to be reserved on processors for the execution of this extra code. 

Not only must extra time be reserved on processors, but also communication resources 
(links, buses) are occupied in a certain interval of time during a communication (bus, and 
link2 in the example of figure 7). This occupation is modeled by additionial beads. The timing 
information of these beads expresses the usage and timing ofthe corresponding communication 
resources. The type of the extra beads is defined to be c, Le. BT(b) = c. Therefore, the range 
of bead type function BT is extended to {p, d, c}, and the range of bead assignment function 
BA is extended with set CM, i.e. BA : B --> PR U DVu CM. 

In effect, the addition of these two types of beads corresponds to a transformation of the 
execution graph: each arc reflecting a communication between two beads has to be replaced 
by a series of beads. These additional beads are used to model the use of resources to achieve 
the desired communication. The resulting execution graph solely contains arcs corresponding 
to timed precedence constraints. If suitable timing constraints are added for the additional 
beads, then it can be guaranteed that actual communication can be established. So, the 
scheduling algorithm has to find a route of resources for each pair of communicating beads. 
These beads have to be assigned to the appropriate resources and start times have to be 
determined for these beads. 

The way in which communication beads have to be inserted is illustrated by a continuation 
of the example of figure 7. Suppose that route < pr"bus"pr3,link2,pr7 > is used for the 
communication of data between a bead bon pr, and a bead b' on pr7 (Le. BCM(b, b') holds), 
then the following beads have to be added: 

• a bead b, that corresponds to the program code (on processor pr,) that puts the data 
provided by b into bus, (this code also puts the data in the right format; for example, 
it provides message headers and compresses the data), 

• a bead b2 that corresponds to the occupation time of bus" 

• a bead b3 that corresponds to the program code for the receipt of the data on processor 
pr3, 

• a bead b4 that corresponds to the program code on processor pr3 that sends the data 
to link2' 

• a bead bs that corresponds to the occupation of link2' and 

• a bead b6 on processor pr7 that corresponds to the program code that receives the data 
and passes it onto bead b'. 

The introduction of these beads leads to the following additional timing constraints: 

• b should be finished before b, starts, Le. TPC (b, P1:d:'(~r,j' 00, b,) should be met, 

• b" b2 and b3 should be executed during the same time interval, which corresponds to 
TPCs (b" 0, 0, b2) and (b2, 0, 0, b3) , 

• b3 should preceed b4 (TPC (b3 , p::;:;~~~,), 00, b4)), 

• b4 , bs and b6 should be executed at the same time (TPCs (b4 , 0, 0, bs) and (bs, 0, 0, b6 )), 

and 
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• b6 should preceed b' (TPC (b6, P:t:;~~~,j' 00, b'll· 

If communication takes place between two beads that are assigned to the same processor, it 
is not necessary to introduce additional communication beads together with the corresponding 
timing relations; the data can be exchanged between the beads directly. 

Definition 4.28 (Local and remote procedure calls) A local procedure call is a method 
call to a method of an object on the same processor. A remote procedure call is a method 
call to a method of an object on a different processor. 0 

In case of a local procedure call, no additional communication beads have to be provided. The 
addition of communication beads clearly depends on the assignment of beads to processors. 

4.2.9 Execution graph transformation 

From the previous section it is clear that the realisation of communication effectively comes 
down to replacing arcs in the execution graph between communicating beads by a series of 
beads and arcs corresponding to additional beads and timed precedence constraints. This 
process results in a transformed execution graph. 

Definition 4.29 (Transformed execution graph) The transformed execution graph IS 

giv~n by the directed graph G" = (V", A"), where 

• V" = B", and 

A" A" • = TPC' 

Here, B" is the set of beads extended with the communication beads, TPC" is the set oftimed 
precedence constraints extended with the TPCs concerning communication beads, and A~pc 
is the set of arcs induced by the timed precedence constraints, i.e. A~pc = {(bl, b2 )138, I E 
IN :: (b

" 
s, I, b2 ) E TPC"}. D 

The label function is transformed likewise. 

Definition 4.30 (Transformed label function) The label of arc (b 1 , b2 ) E A" of the trans
formed execution graph G" = (V", A") is given by 

o 

All functions concerning beads and objects are suitably extended for the additional com
munication beads. They are denoted by two primes; for example, BPR"(b) is the resource 
requirement of bead bE B". 
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4.2.10 Blocks 

The execution graphs, resulting from the graph extension for replication and tranformation 
for communication are possibly very large. With respect to the determination of the timing, 
the total problem instance may be too large to be solved directly. To reduce the problem 
size, the scheduling algorithm may cluster beads into blocks. First, the timing behaviour of 
blocks is determined, followed by the timing behaviour of beads within a block. 

Beads with very strict timing constraints are logical candidates to be grouped into one 
block. For example, if a bead should start its execution directly after an other bead is finished, 
then these two beads can be regarded as one block. Another example are beads in case of 
a remote procedure call: three beads corresponding to a communication along a bus or link 
should be executed at the same time. Therefore it suffices to treat these three beads as one 
block. The timing behaviour of this block directly defines the timing behaviour of its beads. 

Definition 4.31 The blocks are given by a triple (BL, BLRS, BLB), where 

• BL is a set of blocks, 

• BLRS(bl) E P(RS) is the collection ofresources used by beads in block bl, bl E BL, and 

• BLB( bl) E P( B") is the collection of beads corresponding to block bl, bl E BL. 

D 

During the scheduling stage, a time interval is determined for each block. During this interval, 
all resources of that block are reserved for the execution of the beads of that block. 

A worst case estimate of the time required for this block is needed. This estimate depends 
on the object assignment and the capacities of the resources corresponding to that block. A 
time interval is represented by a start time and a time requirement. 

Definition 4.32 (Block timing) BLS(bl) is the start time of the interval in which the com
munication of block bl E BL is scheduled. The length of this interval is given by time require
ment BLTR(bl). The time interval ends at time BLE(bl) = BLS(bl) + BLTR(bl). D 

All the resources of a block are considered occupied during the entire interval, which is 
determined for that block; these resources cannot be used for other purposes during this 
time interval. The exact start times of beads are chosen after the determination of the time 
intervals of blocks. 

Improving efficiency by using blocks can also be achieved in other ways. For example, in 
the execution ofthe reliable message protocol [1], many short messages are exchanged between 
a number of processors. There is a small chance that these messages collide. Therefore it 
is not considered worthwhile to schedule all these communications in detail. This can be 
modelled by introducing a block that corresponds to all processors and communication media 
involved in the execution of the protocol. All communications should take place in the time 
interval that is determined for the corresponding block. 

Apart from efficiency, there is another motivation for the use of blocks. If atomicity of 
blocks is assured, then it is possible to realize consistency of a device. Suppose for example 
that several activities use the same file on a disk. If the execution of the beads in the different 
activities are interleaved, consistency of the file may be violated. If in each activity the beads 
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that correspond to file handling are grouped into a block, and if these blocks are executed 
under mutual exclusion, then the consistency of the file is guaranteed. This view on the use of 
blocks corresponds to the use of transactions in [7]. To assure mutual exclusion, corresponding 
constraints are needed. 

Definition 4.33 (Mutual exclusion for blocks) The mutual exclusion constraints for blocks 
are given by 

BLE(bl,) < BLS(bI2 ) V BLE(bI2 ) < BLS(bl,) 

for all bl" bl2 E blme, where blme E P(BL) is a given set of blocks that should be executed 
under mutual exclusion. 0 

Blocks can also be used to provide the possibility of hierarchical application design. If only 
the timing and communication behaviour of a piece of code is known, and the exact program 
code is not yet known, then it is possible to reserve or schedule resources and time for the 
execution of this code by introducing a block which involves the needed resources. 

4.2.11 Implementation constraints 

Processors and devices are considered single purpose resources, i.e. only one processor, commu
nication or device bead can be executed at any time on the corresponding resource. Therefore, 
the result of the scheduling stage should meet certain no-overlap constraints. 

Definition 4.34 (No-overlap constraints) The no-overlap constraints are given by 

BEI/(b,) < BSI/(b2 ) V BEI/(b2 ) < BSI/(b,) 

for all b" b2 E BI/ with BAI/(b,) = BAI/(b2 l o 

Note that the no-overlap constraints implement the non-preemptiveness of beads. 
With respect to the assignment of objects to processors, it has to be guaranteed that 

the number of devices used does not exceed the number of available devices. To this end, 
an auxiliary function is defined which gives for ea.ch crate cr and each device type dvt the 
number of available devices of type dvt in crate cr. 

Definition 4.35 (Number of available devices) NADV(cr, dvt) is the number of avail
able devices of type dvt E DVTS in crate cr E CR, i.e. NADV(cr,dvt) = (#dv E DV : 
DVCR(dv) = cr : DVT(dv) = dvt). 0 

Another auxiliary function is defined, which expresses the number of used devices of a certain 
type in a crate, given the object assignment. 

Definition 4.36 (Number of used devices) Given an object assignment OBA, 
NUDV( cr, dvt) is the number of used devices of type dvt E DVTS in crate cr E CR, i.e. 
NUDV(cr,dvt) = (#ob E OB,dv E DV : PRCR(OBA(bob)) = cr A DVOB(dv) = ob : 
DVT(dv) = dvt). 0 

Now, it is straightforward to define the constraints that specify that the number of used 
devices of a certain type may not exceed the number of available devices of that type. 

Definition 4.37 (Device type constraints) The device type constraints are given by 

NUDV(cr,dvt):s; NADV(cr,dvt) 

for all crates cr E CR and device types dvt E DVTS. o 
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4.3 Scheduling problem 

Based on the model introduced in sections 4.1 and 4.2, the entire scheduling problem is defined 
as follows. 

Definition 4.38 (Scheduling problem) 
Given 

• the hardware part of a DEDOS application (i.e. the collections of crates, processors, 
devices, memory modules, buses, links, the interconnection structure and the capacities 
of these resources), 

• the software part of a DEDOS application (in the form of an execution graph G' 
(V', A'), which is extended for replication), 

determine 

• a suitable tranformation of the execution graph Gil = (V", A") for the realization of 
bead communication, 

• the bead assignment BAli: OB" -+ PR, 

• block start times BLS(bl), for all blocks bl E BL 

• bead start times BS"(b), for all beads b E If', 

subject to 

• the object bead constraints, i.e. 

BA"(b1) = BA"(b2) 

for all bJ, b2 E If' with BOIf'(b1 ) = BOB"(b2 ), 

• the timed precedence constraints, i.e. 

BS"(b1 ) + S :c: BS"(b2 ) :c: BS"(b1 ) + I 
for all (b1 , s, I ,b2) E T PC", 

• the device constraints, i.e. 

PRCR(OBA(ob)) = DVCR(dv) 

for all objects ob E OB and devices dv E DVwith DVOB(dv) = ob, 

• the bead type constraints, i.e. 

for all beads b E If', 

BAff(b) E PR ¢} BTff(b) = p/\ 

BAff(b) E DV ¢} BTff(b) = d/\ 

BAff(b) E CM ¢} BTff(b) = c 
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• the bead replication constraints, i.e. 

for all b1 , b2 E B" with RPOB"(BOB"(b1 ), BOB"(b2 )), 

• the mutual exclusion constraints for blocks, i.e. 

BLE(bh) < BLS(bI2) V BLE(bI2 ) < BLS(bh) 

for all blb bl2 E blme, where blme E P(BL) is a given set of blocks that should be 
executed under mutual exclusion 

• the no-overlap constraints, i.e. 

for all b1 , b2 E B" with BA"(b1 ) = BA"(b2 ), and 

• the device type constraints, i.e. 

NUDV(cr, dvt) :S NADV( cr, dvt) 

for all crates cr E CR and device types dvt E DVT5. 

o 

5 Conclusions 

In this paper a brief survey is made of several hard real-time application domains, and im
portant timing characteristics of the applications are inventarised (Section 2). It is discussed 
how these timing characteristics are translated into TP Cs (Section 3). 

Furthermore, a model is given, in which the hardware (Section 4.1), software (Section 4.2), 
and timing behaviour (Definition 4.15) of real-time systems can be specified. Based on this 
model, a general scheduling model for real-time systems is formulated (Section 4.3). In short, 
one has to find an assignment of a software specification onto a hardware architecture. The 
software description specifies a number of objects, which consist of non-preemptable beads 
(Definition 4.10). Beads together with TPCs constitute an execution graph (Definition 4.21). 
This graph should be extended such that communication is possible (Section 4.2.9). A sched
ule determines a location and a start time for each bead in an execution graph. 

A schedule has to meet a number of constraints: the object bead constraints (Defini
tion 4.12), the timed precedence constraints (Definition 4.15), the device constraints (Def
inition 4.18), the bead type constraints (Definition 4.20), the bead replication constraints 
(Definition 4.27), the no-overlap constraints (Definition 4.34), and the device type constraints 
(Definition 4.37). 
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6 Future research 

The entire scheduling problem can be considered to consist of three main parts. First, the 
distribution of software across the hardware has to be determined, i.e. an assignment of ob
jects to processors has to be given. Second, communication should be established. Third, 
start times have to be determined for all scheduling units. The entire problem is too complex 
to be solved in one step. Therefore, the problem has to be decomposed. To this end, there 
are several possibilities. It is the subject of further research to design effective decomposi
tions and to solve the resulting subproblems. One solution strategy for the distribution and 
communication subproblems is treated in [5]. 

Apart from this, there are some other interesting open problems. One is the influence 
of data dependency on the scheduling problem. For example, an if-statement in a DEAL 
program is translated into a branch in the execution graph. Only one of the branches will 
correspond to the actual execution of the DEAL program at a given point in time. Since it is 
not known in advance which branch will be chosen, the scheduling algorithm has to allow both 
possibilities. One possibility to deal with this is to schedule both branches independently. As 
a result, the resources allocated to the 'unused' branch will remain idle for the duration of 
the execution of the other branch. A more efficient solution may be possible, if part of both 
branches could overlap during allocation and scheduling. For example, it may be possible to 
create a block that contains beads of both branches. If the block is assigned to one processor, 
the amount of idle time may be less than in the case of an assignment, in which the beads 
of both branches are executed on different processors. This is because one branch will be 
inactive in reality, which results in idle time on the corresponding processor. 
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A Appendix: list of symbols 

I symbol I meaning definition 

A set of arcs in execution graph 4.21 
A' set of arcs in extended execution graph G' 4.25 
A" set of arcs in transformed execution graph Gil 4.29 

ACM set of arcs in execution graph induced by 4.21 
communication 

ACM set of arcs in extended execution graph G' 4.25 
induced by communication 

ATPC set of arcs in execution graph induced by 4.21 
timed precedence constraints 

A~PC set of arcs in extended execution graph G' 4.25 
induced by timed precedence constraints 

A" TPC set of arcs in transformed execution graph Gil 4.29 
induced by timed precedence constraints 

B set of beads 4.10 
13' set of replicated beads 4.24 
BA bead assignment 4.11 
BCM communicating beads 4.16 
BDS amount of communicated data 4.16 
BE bead end time 4.14 
BL set of block 4.31 
BLB beads of a block 4.31 
BLE bead end time 4.32 
BLRS resources of a block 4.31 
BLS block start time 4.32 
BLTR block time requirement 4.32 
BOB object of bead 4.10 
BPR bead processor requirement 4.14 
BS bead start time 4.14 
BT bead type 4.19 
BUSCAP bus capacity 4.3 
BUSCR crate location of bus 4.2 
CM set of communication media 4.6 
CMCON connected resources 4.6 
CMCAP communication medium capacity 4.6 
CR set of crates 4.1 
CRBUS bus in crate 4.1 
CRDV set of devices in crate 4.1 
CRMM set of memory modules in crate 4.1 
CRPR set of processors in crate 4.1 
DVCAP device capacity 4.3 
DVCR crate location of device 4.2 
DVOB object managing device 4.17 
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symbol I meaning definition 

DVT device type 4.4 
DVTS set of device types 4.4 
G execution graph 4.21 
G' extended execution graph for replication 4.25 
G" transformed execution graph 4.29 
L label function 4.22 
L' extended label function 4.26 
L" transformed label function 4.30 
LI set of links 4.5 
LICAP link capacity 4.5 
LIPR processors connected to link 4.5 
MMCAP memory module capacity 4.3 
MMCR crate location of memory module 4.2 
NADV number of available devices of a type 4.35 
NR number of replicas 4.23 
NUDV number of used devices 4.36 
OB set of objects 4.8 
OB' set of replicated objects 4.24 
OBA object assignment 4.13 
PRCAP processor capacity 4.3 
PRCR crate location of processor 4.2 
RPOB replicated objects 4.24 
RS set of resources 4.7 
TPC set of timed precedence constraints 4.15 
V set of nodes in execution graph 4.21 
V' set of nodes in extended execution graph G' 4.25 
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