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eory for Passive ode-Locking in 
Laser Structures Including the Effects of Se 

odulation, ispersion, and Pulse C 
Roger G. M. P. Koumans and Raymond van Roijen 

Abstract- We present a theory for passive mode-locking in 
semiconductor laser structures using a semiconductor laser am- 
plifier and absorber. The mode-locking system is described in 
terms of the different elements in the semiconductor laser struc- 
ture. We derive mode-locking conditions and show how other 
mode-locking parameters, like pulse width and pulse energy, are 
determined by the mode-locking system. System parameters, like 
bandwidth, dispersion, and self-phase modutation are shown to 
play an important role in mode-locking conditions and results. 
We also discuss the effects of pulse collisions and positions of 
the mode-locking elements inside the cavity on mode-locking 
stability and show that these effects can be easily included in the 
presented model. Finally, we give a number of design rules and 
recommendations for fabricating passively mode-locked lasers. 

I. INTRODUCTION 

EMICONDUCTOR lasers have become essential compo- 
nents of many opto-electronic and photonic systems. In 

some applications, such as fiber optic telecommunication or 
fiber optic data processing systems, they have formed the 
foundation upon which these domains have developed. The 
generation of short optical pulses with semiconductor laser 
structures is crucial for high bit-rate time-division multiplexed 
optical systems [l], [2] and ultra long distance soliton fiber 
transmissions systems [3]. In order to realize these optical 
systems, reliable optical pulse sources must be available. 

There are various methods of generating short optical pulses. 
Gain switching and mode-locking are the two most commonly 
used. Gain switching is achieved by switching a laser diode 
on and off. An advantage of gain switching is the flexibility 
to change the repetition rate of the generated pulses without 
modifying the cavity length and the ability to directly modulate 
a sequence of optical pulses. However, pulse width and pulse 
repetition time are restricted by the electrical characteristics of 
the laser diode and driving electronics. 

Mode-locking is another way of generating short optical 
pulses [4]. In mode-locking, an intracavity gain, loss, or 
phase element is used to lock the longitudinal modes in the 
semiconductor laser structure together in order to produce 
short optical pulses. In order to modulate these optical pulses, 
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an external modulator is required, in contrast to gain switching. 
There are three different ways in which a laser structure can 
be mode-locked. 

In active mode-locking, the optical amplifier of the semi- 
conductor laser structure is modulated with electrical pulses 
that have a repetition period equal to the round-trip time of 
an optical pulse in the laser cavity. Only during the peak 
of the electrical pulse, the optical gain of the amplifier is 
high enough to overcome the losses in the cavity. During this 
short period of positive net gain, an optical pulse is generated. 
Short optical pulses have been generated at various repetition 
rates by actively mode-locking semiconductor laser structures 

Passive mode-locking provides an alternative approach to 
generating ultra-short pulses that does not require any elec- 
trical modulation. Stable and reliable monolithic passively 
mode-locked pulse sources can be designed by studying the 
properties of the components of the mode-locking system. 
Passive mode-locking techniques are used in many laser 
systems to generate short optical pulses. The key element 
necessary for passive mode-locking is a saturable absorber, 
which locks the longitudinal cavity modes in phase, leading 
to a short optical pulse [SI, [12]-[16]. 

If we combine active and passive mode-locking in the same 
laser structure, we find the third method of mode-locking, 
called hybrid mode-locking. In a hybridly mode-locked laser, 
the optical pulses are generated in the same way as in a 
passively mode-locked laser, while the pulses are synchronized 
by an electrical signal like in an actively mode-locked one [9], 

In this paper, we give a theoretical description of the 
principle of passive mode-locking for semiconductor lasers. 
Effects of self-phase modulation in optical amplifiers have 
been studied earlier [18], [19]. In this paper, we describe how 
self-phase modulation in an amplifier can affect a semicon- 
ductor mode-locked laser. Effects of intracavity dispersion and 
pulse collisions have been studied in separate papers [20]-[24]. 
The model presented in this paper includes the effects of 
self-phase modulation, dispersion, and pulse collisions simul- 
taneously and shows that these effects do not necessarily have 
a negative impact on the mode-locking system. The model is 
also applicable to any configuration of ring or Fabry-PCrot 
laser structures. 

In Section 11, we consider, as a starting point, a mode- 

[51-[111. 

[131, [141, (171. 
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Unidirectional ring configuration for passive mode-locking. Fig. 1. 

in which a slow saturable amplifier and absorber are present. 
In our discussion, we make some suitable approximations in 
order to find a closed-form analytical solution to the mode- 
locking problem. The mode-locking system is described in 
terms of the bandwidth, self-phase modulation and dispersion 
of the system, the saturation energy of the saturable amplifier 
and absorber, and the ratio of the gain and absorber relaxation 
time to the pulse repetition time. The cavity elements that 
determine these parameters are described in Section II-A-II- 
D. In Section 111, we derive the mode-locking equation and 
in Section IV the solution to it. In Section V, the stability 
of the mode-locking system is analyzed, and the conditions 
under which steady-state mode-locking solutions are found 
are derived. In this section, we also graphically show how 
the energy and width of the generated pulses are influenced 
by the different system elements. In Section VI, the effects 
of dispersion and self-phase modulation of the system are 
discussed. Finally, in Section VII, we show that the theory 
presented in this paper can also be applied to bidirectional 
ring cavities and Fabry-PCrot cavities by taking into account 
the effects of pulse collisions that can occur in these laser 
structures and the position of the different system elements 
inside the cavity. 

11. MODE-LOCKING CONFIGURATION 
In this section, we derive the properties of a passively mode- 

locked unidirectional ring laser. The theory of passive mode- 
locking for (dye) lasers has been introduced and extended by 
Haus [20]-[22], [25]-[28]. The theory presented here follows 
the lines of a paper by Haus [20]. However, at several points, 
we have made modifications and extensions. Some of these 
extensions include the effects of self-phase modulation and 
pulse collisions on the system. 

We consider a unidirectional ring configuration with a 
semiconductor laser amplifier (L), a saturable absorber (A), 
a bandwidth limiting element (B) to take into account the 
bandwidth and cavity loss of the system, and a dispersive 
element (D) representing the dispersion of the system (see 
Fig. 1). 

Starting with our theoretical analysis, we make the following 
assumptions and approximations. 

1) Both the amplifier and absorber are assumed to be only 
time-dependent. Any spatial variations of the gain and 

absorption coefficient inside the amplifier and absorber, 
respectively, are neglected. This simplification allows 
us to obtain analytical solutions to the mode-locking 
problem. 
The dispersion of the system is determined by the 
wavelength and material dispersion introduced by the 
different system elements, like amplifier, absorber, and 
cavity. 
The bandwidth of the system is determined by the 
amplifier/absorber. If we want to obtain analytical so- 
lutions to the mode-locking problem, we can not assign 
this bandwidth limitation to the gaidabsorber medium. 
Therefore, we have introduced the bandwidth limiting 
element in Fig. 1, which not only takes into account the 
bandwidth limitation of the system, but also the cavity 
loss. 
The gain relaxation time is considered long compared to 
the pulse width. This is a valid assumption because, in 
practice, the gain recovery time is about 0.2-1 ns, while 
the pulses generated lie normally in the low picosecond 
range. 
In semiconductor lasers, the absorber relaxation time 
is in the order of 10-15 ps [29]; so if we consider 
generating pulses in the low picosecond range, the 
saturable absorber acts as a slow absorber. 

We assume that a pulse has formed in the semiconductor 
laser configuration of Fig. 1, so that on the mth pass around 
the ring, the electric field &(t) can be written as 

E,(x, t )  = a,(z, t )e jwot ,  (1) 

where a,(z, t )  is the envelope of the electric field at the mth 
pass, and WO is the optical carrier frequency of the electric 
field. We ignore the details of transverse field patterns and 
treat the electric field as a plane wave. Note that the Fourier 
transform of the envelope of the electric field a,(z, w )  and 
of the electric field itself E(z ,  w )  are related to each other by 

& ( z ,  w )  = a,(z, w - WO).  (2) 

In the following sections, we first describe the different 
elements of the cavity, using the aforementioned assumptions 
and approximations, after which we derive the passive mode- 
locking equation and the solution to it. 

A. Saturable AmpliJier 

First of all, we investigate how one single pulse is influenced 
by a saturable amplifier. Therefore, we consider a traveling- 
wave amplifier and assume that the active region dimensions 
of the amplifier are such that the amplifier supports a single 
lateral waveguide mode. We assume that the electric field 
inside the amplifier can be represented by (1). The evolution 
of the slowly varying amplitude a ( z ,  t )  of the electric field 
along the amplifier length is then described by 

- - da(z ,  t )  1 d a ( z ,  t )  +-- vg at a z  
(3) 1 

3 [(I - j a L ) g ( z ,  t )  - a,la(z, t ) ,  
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where the group-velocity vg = cO/ng and the group index 
ng = n,ff + w ( d n , f f / d w ) .  The term on the right-hand 
side of (3) takes into account the complex internal gain 
( 1 - j a L ) g ( z ,  t )  and internal loss Q, experienced by the guided 
mode. The linewidth enhancement factor a~ represents the 
self-phase modulation of the amplifier. 

In order to find the spatial- and time-dependent behavior 
of the gain of the saturable amplifier, we start from the well- 
known rate-equation for the carrier density inside the amplifier 

where I is the current injected into the active region, e the 
electron charge, the volume of the active region V = w d L  
with w, d ,  and L the width, thickness, and length of the 
active region, respectively, N the carrier density, TL the carrier 
life-time, and Z the intensity of the optical field given by 

(5) 

where C is a constant with dimension R-’. Practical values 
for the carrier life-time are TL = 0.2-1 ns. The carrier life-time 
is often referred to as the gain relaxation time. 

Above transparency, the gain can be linearly approximated 

(6) 

where I? is the confinement factor of the active region, AL is 
the differential gain, and N,, is the carrier density needed to 
obtain transparency in the amplifier. Typical values are I‘ = 
0.3, AL = 2-3 . cm2, N,, = 1-2 . l0ls ~ m - ~ ,  and 
CUL = 2-6. Using (5) and (6), we can rewrite (4) and obtain 
the spatial- and time-dependent behavior of the gain 

qz, t )  = Cla(z, t)I2, 

by 

g ( z ,  t )  = YAL[N(Z, t )  - &,I, 

The amplification for a pulse passing through the amplifier 
can then be represented by [18] 

a’ m (.) 1 a m ( r ) e ( l / 2 ) ( l - ~ ~ ~ ) ~ ( T ) ,  (12) 

where a,(r) and a;(.) are the input and output pulse, 
respectively, and the integrated gain h(r)  is given by 

h(r)  = iL g ( z ,  r ) d z .  (13) 

We use a simplified model for the saturable amplifier, in 
which the spatial variation of the gain is omitted. Recalling (7), 
we find for the time-dependent gain the following differential 
equation: 

where we have introduced a cavity-averaged value for the 
power of each point on the pulse, defined by 

As pointed out earlier, the gain relaxation time r~ of the 
amplifier is long compared to the pulse width. Equation (14) 
can then be replaced by 

with solution 

where 9% is the gain of the amplifier before arrival of the 
pulse, and Em(r) is defined by 

Em(r)  = OLC lum(r’)12 dr’ (18) with the small signal gain 90 = I’AL(IrL/eV - N,,), the 

i i  Dirac’s constant. The mode cross-section a~ is typically 
0.3-1 bm2, leading to EsatL = 10-20 pJ. 

The power P ( z ,  t )  of the electric field inside the active 

saturation energy of the amplifier EsatL = fiWOoL/I‘AL with 1: 

Et = CJLC 1, lum(r’)l2 dr’. 

i.e., the cumulative energy in the pulse. Note that the total 
pulse energy Et is given by 

region is given by 00 

(19) 
P ( z ,  t )  = aLZ(z, t ) .  (8) 

In order to simplify the former described spatial- and time- 
dependent behavior of the amplifier gain and electric field, we 
make the transformation to a reference frame moving with the 
pulse [30] 

If the gain fully relaxes between two succeeding pulse arrivals, 
we can rep1ace 9% in (17) by the 

If 
the bandwidth of the amplifier is much wider than the pulse 
bandwidth, we can write the gain G ( w )  in the frequency 

gain 90. 
The profile Of the gain is assumed to be 

z 
21” 

r = t - - .  (9) domain as 

We then find the following set of equations that describe the 
amplifier: 

da(z,  r )  = - I [(I - j a L ) g ( z ,  .) - a,]a(z,  .) where the amplifier has its peak gain at the frequency wp and 
d z  2 the-peak gain G ( w p )  is time-independent. The bandwidth of 

d g k ,  7 )  - 9(z, 7) -90 ‘(‘1 (11) the amplifier WL is typically 10-50 . 1OI2 rads. Expanding 
d r  7-L Esa tL  (20) to second order in frequency and introducing the change 

(10) 

- g(z ,  7 )  ~ 

~- - 
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in the carrier frequency from the frequency at peak gain as 
A w  = W O  - wp,  we have 

G ( w ) = G ( w , )  (I- ( $ ) 2 - j z -  A w  (1--2j$)  

(i 5) + ( j  yy]. 
Using (2) and Fourier analysis, we can make the following 
transformations from the frequency domain to the time domain 
for the field envelope: 

1 d2 
w i  d r 2  (i y)2 am(w) - - - um(r) .  (22) 

Taking the length of the amplifier l ~ ,  we find for the transfer 
of the field envelope through the amplifier 

a m  (TI, (23) a’ (.) == & / W - h ) b ( 4  
m 

where the transfer function hL ( r )  of the amplifier is defined by 

. A w  

A w  1 d 1 d2 
- (1-2j--)-- W L  d r  + - W: -1. d r 2  (24) 

Examining (24), we recognize the bandwidth limitation of the 
amplifier and see that the action of the amplifier upon the pulse 
causes a shift in time ( d l d r )  and a diffusion in time ( d 2 / d r 2 ) .  

In order to obtain analytical solutions to the mode-locking 
problem, we can not assign the bandwidth limitation to the 
gain element. Therefore, we have to introduce a bandwidth 
limiting element in the mode-locking configuration (see Fig. 1) 
that is described in Section 11-C. Omitting now the bandwidth 
limitation and using (17), we find for the transfer of the field 
envelope through the amplifier (23), now with h ~ ( 7 )  of the 
amplifier defined by 

where g ( r )  is defined according to (17). 
Next, we investigate what happens if succeeding pulses 

enter the saturable absorber. Therefore, we derive a relation 
between time-dependent gain g(r) and the small signal gain 
go. We assume that the gain at the arrival of a pulse equals gz 
and at the end of a pulse g f .  Between two pulse arrivals, the 
gain can only relax up to g$ 5 go. Then the next pulse comes 
along and saturates the gain to gf = gz exp ( -Et /EsatL) .  
After the pulse passage, the gain relaxes back to go according 
to 

~ 

481 

Eliminating gf and solving (26) for go gives at amval of the 
next pulse at T = Tp” 

Note that the time between two pulse arrivals T; for the 
unidirectional ring cavity displayed in Fig. 1 equals the cavity 
round-trip time TR . 

B. Saturable Absorber 

We can do the same calculations for the saturable absorber, 
as for the saturable amplifier. In analogy, we then find for the 
absorption 

q(r) = qi exp [-%I 
with Esata = hwOnA/I’AA where CA is the absorber mode 
cross-section and where AA is the differential absorption. The 
absorption of the absorber before arrival of the pulse equals 
4;. If the absorber fully relaxes between the pulse arrivals, we 
can replace q; by 40, defined by 

where NtA is the carrier density needed to obtain transparency 
in the absorber, and TA is the absorber relaxation time. Taking 
the length of the amplifier Z A ,  we find for the evolution of the 
field envelope passing through the absorber 

a’ m (.) = e ( l / 2 ) ( 1 - - j a ~ ) h ~ ( ~ )  am ( r )  > (30) 

where Q A  the linewidth enhancement factor of the absorber 
and where the transfer function h ~ ( r )  of the absorber is 
defined by 

where we have taken the bandwidth limitation of the absorber 
equal to the one of the amplifier. The bandwidth limitation 
has to be dropped again in order to find analytical solutions 
to the mode-locking problem. Using (28), we now find for the 
transfer of the field envelope (30), with the transfer function 
/LA(‘) of the absorber defined by 

d r )  = go - with q(r) defined according to (28). Typical values for the 
saturable absorber are TA = 10-15 ps, AA = 10-20 . 
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cm2, OA = 0.3-1 pm2, NtA = 0.5-1 lo1’ cm4, Esata = 
1-10 pJ, and O ~ A  =2-6. 

In the same way as we did for the saturable amplifier, we 

can derive the following relation between the small-signal D = ~ L ( $ ) ~ + ~ A ( $ ) ~ + ~ c ( $ )  (38) absorption qo and the absorption before arrival of the pulse 
Y 2  : 

with 1 ~ .  Z A ,  and Zc the length of the amplifier, absorber, and 
cavity, respectively. Note that we have omitted a term with 
linear dependence on frequency in the phase function ( ~ ( w ) ,  

system, given by 

where cpo is a constant phase shift, and D is a measure for the 
velocity dispersion in the system, defined by 

C 1) (33) because this term represents the round-trip delay TR in the 

where T: is the time between two succeeding pulse arrivals 
in the saturable absorber. Note that this time does not need C 

to equal the time between two pulse arrivals in the saturable 
amplifier but depends on the position of the amplifier and 
absorber in the cavity and the number of pulses inside the 
cavity. 

C. Bandwidth Limiting Element 

To include the bandwidth limitation of the gain and ab- 
sorber, we have introduced a bandwidth-limiting element in 
the mode-locking system. In this bandwidth-limiting element, 
the loss of the cavity is also included. As we have seen in 
(24), the bandwidth limitation of the amplifier causes a shift 
in time and a diffusion in time of the field envelope of the 
electric field. The transfer function of the bandwidth limiting 
element can be represented by 

A w  
W L  

where QC is the cavity loss of the system and IC  the cavity 
length and where we have used 

G ( w ) ~ L  = Q(w)ZA + aclc. (35) 

The pulse repetition time is thus determined by the time needed 
to travel through the cavity. 

Making the transformation back to the time domain for 
cp(w), we find for the transfer of the field envelope through 
the dispersive element 

where the transfer function h D ( 7 )  is defined by 

111. MODE-LOCKING EQUATION 
Knowing the influences of the cavity elements on the field 

envelope u,(T), we are able to derive the mode-locking 
equation for the system. For the pulse envelope am+l ( T )  after 
one cavity round-trip we find 

We assume that a pulse propagating through any of the 
elements of the mode-locking system, amplifier, saturable 
absorber, etc., is modified only slightly (say 20% gain or loss) 
on one round-trip. This assumption enables us to expand the 
exponential in (42) to first order in its argument, leading to 

The change of the field envelope by the bandwidth-limiting 
element is given by 

a’ m ( r )  = e(1/2)hB(T)  am > (36) 
am+l(T) 

1 - $ (1 - j a A ) q ( r ) Z A  + f (1 - j a L ) g ( r ) Z L  

- -crczc 1 

. 

[’+ (%)2 + j  g + (1 - 2 j  2) 2 

1 d  1 d 2  
W L  d r  w i  d r 2  

i where the transfer function ~ B ( T )  is defined by (34). 

D. Dispersive Element 

In order to take into account the phase changes of the 
field envelope and dispersion of the system, we introduce 
a dispersive element. As mentioned before, we assume that 
the dispersion of the system is determined by the wavelength 
and material dispersion introduced by the different system 

in the frequency domain can be represented by 

- j ( p ~ - i , ~ ) ) a , ( r ) .  d r 2  

elements. The phase function ( ~ ( w )  of the dispersive element (43) 

Now U ~ + ~ ( T )  does not need to be equal to a,(r) because 
some of the pulse shaping may lead to delays or advances of d w )  = (Do + q w  - (37) 
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the pulse. For the round-trip condition, we then find 

am+l(r) = am(r  + AT),  (44) 

where AT represents the time shift of the pulse. By this 
definition, a positive value of AT represents a shift backward 
in time. If we now expand u,(r + AT) to first order in AT, 
we find 

(45) 

Substituting (17), (28) and (45) into (43) and omitting the 
subscript m, we find the passive mode-locking equation 

1 + (1 - j a ~ ) & i  exp  

- (1 - j a ~ ) G i  exp 

1 d  + E 2  + j (E  + $1 + (1 + 8 - 2 jE)  

where we have introduced normalized amplifier and absorber 
parameters 

Qk with ,k = 0, i, f 
aclc 

G k  with k = 0, i ,  f ,  (47) aclc 
and normalized system parameters 

Typical values are ac = 1-2 cm-', I C  = 0.1-1 cm, W L  = 
10-50 10l2 rads, and D = 1-10 . s2, leading to V = 
5-25. Note that 

is the net gain parameter. This parameter plays a very impor- 
tant role in the mode-locking problem. 

Iv. SOLUTION TO THE MODE-LOCKING EQUATION 
Equation (46) is a nonlinear differential equation that looks 

quite complicated. A simple solution of (46) is obtained if we 
expand the exponentials to second order in their argument. 

Because EsatL > E,,t,, as will become clear later on, we 
may break off the expansion of exp[E(r) /ESatL]  with the 
first-order term, so that we obtain 

1 + (1 - j a A ) Q ,  - (1 - j Q L ) 6 t  

where we have introduced the stability parameter 

(5  1) 
EsatL 
Esata 

s 1 PI 

The differential equation (50) can be solved analytically by 
introducing a guess [22] for the pulse envelope a(.) 

1+JP 

a(.) = a0 [sech( 31 , (52) 

where the amplitude a0 = JV,Esat,/20Cr0 with V, = 
Et/ESatA. The pulse shape denoted by (52) is a hyperbolic 
secant. As a result of (52), we have 

E ( T )  = ~ [1+ tanh (31 
7 0  - a(.) = -(I + j p )  tanh (L) U(.) 

(53) 

(54) 

2 
d 

d r  70 

-(2 + 3 j P  - p2) sech2 

Substituting the above equations into (50) and equating 
the coefficients of the terms u ( r ) ,  U(.) tanh(r/rO), and 
U(.) sech2 ( r / T o ) ,  yields three complex algebraic equations. 
The real and imaginary parts of these three complex equations 
are 
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1+Q,-8;+E2-- Q i - -  V,+-QiY2 1 
2 I (  7) 4 

These six equations have six unknowns: TO, V,, ,B, 6, [, and $. 
In principle, the system can be solved consistently for different 
Qi and Gi. 

V. MODE-LOCKING CONDITIONS 

In this section, we derive the boundaries for stable pulse 
mode-locking solutions. These boundaries are graphically 
shown in the GO-!& plane. We start with describing the 
conditions for stable mode-locking. 

The net gain as a function of the normalized energy U ( T )  = 
Et(r) /Esat ,  has the dependence 

8 T [ U ( T ) ]  =-(I  + Qz - 8,) 

In order to avoid that perturbations preceding the pulse can 
grow, the net gain preceding the pulse (U(.) = 0) must be 
negative, leading to 

Note that in order to start the mode-locking system, we must 
have 

40 > 1 + Qo. (64) 

It is important to note that if the amplifier relaxes fully 
between two incoming pulses, i.e. 4, = 60, we can not fulfill 
(63). As Q, 5 QO and 8, = GO, we have 6, > 1 + Qz, which 
is not in agreement with (63). So (63) together with (64) leads 
to the mode-locking condition T L / T ~  2 1, i.e., the amplifier 
should not recover completely between two succeeding pulse 
arrivals. In order to avoid that perturbations following the pulse 
can grow, we must satisfy the stability criterion that the net 
gain is negative after passage of the pulse ( U ( 7 )  = V,), leading 

threshold - _ -  ' ,, 
I. 

1 2 3 4 5 
Q o  -+ 

Fig 2. Stabihty boundaq (grey area between dashed lines), laser threshold 
(dash-dotted line), and equipulse energy lines (solid lines) as a function of 
normahzed small signal gain and absorption for rL/Tp = 5, rA/Tp = 0.1, 
s = 6 ,  V = 0,  CYA = 0, and LYL = 0 

(0 = 0), that no phase shift is present on one round-trip ($I = 
0). and that the carrier frequency coincides with the peak gain 
frequency ( E  = 0). 

In Fig. 2, we have drawn the stability boundaries as a 
function of the normalized small signal gain 80 and normalized 
small signal absorption QO. 

The area in which stable mode-locking is possible is given 
by the grey area between the two dashed lines. The laser 
threshold 80 = 1 + QO is given by the dash-dotted line. We 
have also plotted the normalized pulse energy V, in the Go-Qo 
plane. The solid lines are equipulse energy lines, i.e., they 
connect points in the Go-Qo plane that produce mode-locked 
pulses with the same energy. 

As we can see in Fig. 2, the energy of the pulse increases if 
the gain is raised. For each value of the normalized small signal 
absorption Qo, there is a minimum pulse energy required 
to obtain steady state mode-locking. This is understandable 
because pulses with low energy can only pull down the gain 
by small amounts. However, the gain must be pulled down 
below the loss at the wings of the pulse. Otherwise, the pulse 
is unstable to noise perturbations preceding and following 
the pulse. Consequently, stable pulse operation requires a 
minimum pulse energy, which can be derived from 8, = I+ Q, 
and from 

to 
1 

-(I + Q, - 4,) + V, - Qzv," < 0. (65) 
Go = 4, 

A last condition for the pulse is that the loss must be converted 
into gain with rising pulse energy, which means that the 
coefficient of ( Qz - Gz/s) in (62) must be positive, leading to 

(66) 8, < s a .  

First, we consider the mode-locking system when dispersion 
and self-phase modulation are absent. 

If dispersion and self-phase modulation are absent ( D  = 0, 
a~ = 0, and QA = 0), we find that the pulse is not chirped 

These equations lead to a minimum pulse energy 

= - ln  { exp (z) - A [exp (z) - I]}, 
E s a t ~  

(68) 
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I 
1 2 3 4 5 1; ” 

Qo + 
Fig. 3. Stability boundary (grey area between dashed lines), laser threshold 
(dash-dotted line) and equipulse width lines (solid lines) as a function of 
normalized small signal gain and absorption for T L / T ~  = 5,  r*/TP = 0.1, 
s = 6, V = 0, = 0, and a~ = 0. 

where &; is given by 

r 1 

Of course there is also a maximum value of the pulse energy 
if we want to obtain stable mode-locking. If the energy is 
raised above this value, then there is a positive net gain & for 
perturbations preceding the pulse. This means that the system 
will eventually work under continuous wave (the net gain 6~ 
is always positive). 

Furthermore, we can draw a very important conclusion from 
the analysis. The stability regime has an intersection point 
with the threshold line. This intersection point is given by 
Qo = l / ( s  - 1) and 60 = s / ( s  - 1). We see that for values 
of s > 1, this point moves toward the origin. For values of 
s approaching 1, the intersection point moves toward infinity. 
Values of s < 1 are not allowed because these do not fulfill 
(66). If we thus want to obtain a stability area that is not to far 
from the origin, we have to make sure that s > 1. Physically, 
this means that the amplifier must be harder to saturate than 
the absorber. Another important advantage of a larger value 
for s is that the stable mode-locking area becomes larger and 
that the area moves toward the threshold line. So in order to 
have a mode-locking system that has a wide range of stable 
operation and a low threshold, we need a value of s as large 
as possible. In Fig. 3, we have drawn, in the same way as we 
did in Fig. 2, equipulse width lines in the Go-Qo plane. 

The pulse width ro is mainly determined by the bandwidth 
of the system. From the normalized pulse width ~ / W L T O ,  we 
find that possible pulse widths in the order of 50-100 fs can 
be obtained. 

Finally, we note that we have to check if the system is self- 
starting and stable against self-pulsations. For this analysis, we 
refer to a paper by Haus [26]. 

t 
G O  

1 2 3 4 5 1; ” 

QO -b 

Fig. 4. Stability boundary (grey area between dashed lines), laser threshold 
(dash-dotted line) and equipulse energy lines (solid lines) as a function of 
normalized small signal gain and absorption for T L / T ~  = 5 ,  r*/Tp = 0.1, 
s = 6 ,  V = 10, a* = 0, and CUL = 0. 

---- boundary 
threshold 1 

‘0 1 2 3 4 5 
Q o  + 

Fig. 5. Stability boundary (grey area between dashed lines), laser threshold 
(dash-dotted line) and equipulse width lines (solid lines) as a function of 
normalized small signal gain and absorption for T L / T ~  = 5, r*/TP = 0.1, 
s = 6 ,  2, = 10, CY* = 0, and a~ = 0. 

VI. EFFECTS OF DISPERSION AND SELF-PHASE MODULATION 

A. Dispersion 

We now investigate the influence of dispersion on the mode- 
locking system. If dispersion is not neglected (’23 # 0), we 
find that the pulse is chirped (p  # 0) and that a phase shift 
is present on one round-trip ($ # 0). The carrier frequency 
of the electric field does also not coincide with the frequency 
at peak gain (5 # 0). In Figs. 4 and 5, we give the equipulse 
energy lines and equipulse width lines in the Go-Qo plane for 
s = 6, 2) = 10, TL/T, = 5 and rA/T, = 0.1. 

In order to find out more exactly what the effect of disper- 
sion on the different system parameters is, we have drawn the 
normalized pulse energy, pulse width, and chirp parameter as 
a function of dispersion in Fig. 6. 

As we can see in Fig. 6, the pulse is broadened if dispersion 
is present in the mode-locking system. Dispersion not only 
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Fig. 6.  Normalized pulse energy Vt, pulse width l /wLrO and chirp param- 
eter /3 as a function of dispersion for QZ = 2, 9, = 2.8, s = 6 ,  T L / T ~  = 
5, T A / T ~  = 0.1, CUA = 0, and CYL = 0. 

causes the pulse width to increase but simultaneously poses 
a chirp on the pulse. Since we have assumed that self-phase 
modulation in the amplifier and absorber are absent (QL = 0 
and QA = O), the chirp caused by dispersion can neither be 
compensated by the amplifier nor by the absorber. The pulse 
width is minimum and unchirped only if dispersion is absent. 
As can be seen from Fig. 6, a normalized dispersion 2) = 
10 reduces the achievable pulse width with a factor of about 
4. Typical values for pulse widths that can be achieved are 
200-500 fs. 

B. Self-phase Modulation 
We now introduce self-phase modulation in the system, 

by setting QA # 0 and Q L  # 0. We have drawn again the 
normalized pulse energy, pulse width, and the chirp parameter 
as a function of the dispersion in Fig. 7 for QIA = Q L  = 2 
and OIA = Q L  = 6. 

From Fig. 7, we see that the self-phase modulation of the 
amplifier and the absorber causes a serious chirp on the pulse if 
the dispersion is positive. This chirp increases with increasing 
self-phase modulation of the amplifier and absorber. Due to 
the fact that for positive dispersion, the pulse exhibits a large 
chirp, the bandwidth of the system is used less efficiently. This 
leads to a larger value for pulse width for positive dispersion, 
as can be seen in Fig. 7. 

For negative dispersion, almost no chirp is imposed on 
the pulse, because the chirp that is introduced by negative 
dispersion is compensated by the chirp caused by the amplifier 
and absorber. Thus, the presence of both dispersion and self- 
phase modulation do not necessarily have a negative impact 
on the mode-locking system. 

Finally, it is to be noted that for the chosen parameters 
(Q = 2 and G, = 2.8) no mode-locking solutions are found 
for specific ranges of the dispersion. These areas are indicated 
by the grey areas in Fig. 7. 

1 t 
1 

0.5 

0 

D+ 

D+ 
Fig. 7. Normalized pulse energy Vt, pulse width ~ / W L T O ,  and chirp param- 
eter 3 as a funcuon of dispersion for Q, = 2, 6, = 2.8, s = 6 ,  T L / T ~  = 5, 
Q / T ~  = 0.1. The grey areas give the dispersion region in which no stable 
mode-lockmg solutions are found for the given parameters 

VH. EFFECTS OF PULSE COLLISIONS 
Colliding-pulse mode-locking is an improvement in mode- 

locked lasers. The new feature of colliding pulse mode-locking 
is two counter-propagating pulses that are synchronized to 
precisely overlap in the saturable absorber. These overlapping 
pulses create a transient standing wave pattern in the optical 
field and, consequently, a transient grating in the absorption of 
the absorber that shortens the optical pulses in a very effective 
manner. In this section, we describe the colliding-pulse mode- 
locking principle, and we show that it is very easy to make use 
of this principle in ring cavity lasers and Fabry-P6rot cavity 
lasers. We prove that a ring configuration of the mode-locking 
system leads to a higher stability parameter than a conventional 
Fabry-Pkrot cavity and thus, to a better performance of the 
mode-locking system. 

A. Colliding-Pulse Configurations 

We start from a basic noncolliding pulse cavity configura- 
tion, which occurs if we have a unidirectional laser cavity. 
This unidirectional mode-locking (UM) configuration is dis- 
played in Fig. 8, where the dispersion and bandwidth-limiting 
element have been omitted for convenience. The unidirectional 
behavior can, of course, only occur in ring cavities. 

In the UM configuration of Fig. 8, no pulse collisions can 
occur inside the saturable absorber because only one pulse 
is circulating inside the cavity. This single pulse saturates 
the absorber and the amplifier section. If we change the UM 
ring configuration of Fig. 8 into a conventional Fabry-PCrot 
configuration with one high reflectivity coated facet, we get 
the so-called self-colliding pulse mode-locking (SCPM) con- 
figuration, shown in Fig. 9. 

In this configuration, one single pulse circulates again inside 
the cavity. This single pulse collides with itself in the saturable 
absorber. As we will show later on, this SCPM configuration 
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A- 
Fig. S. Unidirectional mode-locking configuration in a ring cavity. 
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A- 
Fig. 9. SCPM configuration in a Fabry-PCrot cavity. 

A- 
-JL 

Fig. 10. CPM configuration in a ring cavity. 

has advantages compared to the UM configuration, due to the 
grating that is formed inside the absorber. 

A final and even better improvement can be obtained if we 
use a bidirectional ring configuration in which two counter- 
propagating pulses collide in the saturable absorber. This 
so-called colliding pulse mode-locking (CPM) configuration 
is shown in Fig. 10. The two counter-propagating pulses in 
this ring laser configuration always meet in the saturable 
absorber because the intracavity loss is sharply reduced for 
that condition. This sharp reduction in intracavity loss occurs 
because the absorber is saturated by two pulses at the same 
time. 

Colliding pulse mode-locking can also be realized in con- 
ventional Fabry-PCrot cavities. In such cavities, the saturable 
absorber must be placed at a submultiple m 2 2 of the cavity 
length, and the amplifier gain must be adjusted to support 
m pulses. Under these conditions, two counter-propagating 
pulses always simultaneously saturate the absorber. In Fig. 11, 
we have shown the configurations for two, three, and four 
intracavity pulses. The special case where m = 1 gives again 
the SCPM configuration shown in Fig. 9. 

In the next sections, we examine the effects of pulse 
collision on the pulse shaping performed by the absorber. 

L - 
c I 

MIRROR MIRROR 

A- 
-A 

(a) 

MIRROR MIRROR 

A- -A 
-A. 

(b) 
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C ' 4  
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A- A- 
-A -A 

(c) 

Fig. 11. CPM configuration in Fabry-PCrot cavity. (a) CPM with two 
intracavity pulses. (b) CPM with three intracavity pulses. (c) CPM with four 
intracavity pulses. 

B. Pulse Shaping by an Absorption Grating 

The effects of pulse collisions in saturable absorbers 
have been studied in dye lasers [23] ,  [24]. If two counter- 
propagating pulses collide in a saturable absorber (SCPM 
or CPM configuration), they form a standing wave in the 
absorber. At the peaks of the standing wave, the power of the 
electrical field is maximum, and the absorption is saturated to 
a high extent. The net remaining absorption therefore has a 
minimum at the peaks of the standing wave. At the minima 
of the standing wave, the absorption is not as much saturated 
as at the peaks, and thus, the remaining absorption is higher 
at those points. This leads to an absorption grating inside the 
saturable absorber. Since the absorption does not have to be 
lowered to transparency everywhere in the saturable absorber 
in order to obtain a low loss state, it is very likely that the 
saturable absorber bleaches at a lower pulse energy than would 
be necessary if the standing wave did not exist. 

In our analysis of pulse collisions, we assume that the 
electro-magnetic field inside the amplifier can be represented 
by two harmonic plane waves, one traveling in the positive 
x-direction and one traveling in the negative x-direction, both 
with an optical carrier frequency WO and with a slow varying 
envelope U R ( Z ,  t )  and UL(Z, t ) ,  where the subscript R and 
L refer to the wave traveling in the positive and negative 
z-direction, respectively. 

Generally, the saturable absorbers used in semiconductor 
lasers are slow absorbers, so we may use 
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We now spatially expand the absorption q(z ,  t )  in Fourier 
elements to second order 

By substituting (7 1) into (70) and neglecting fourth-order 
terms, we find the following equations: 

The change of the electric field within the absorber is 
described by Maxwell’s equations. Using the rotating wave 
approximation [23], we find for the amplitudes of the harmonic 
waves traveling in the positive and negative z-direction 

The amplitude of the pulse is diminished by absorption and 
by scattering into the opposite direction and is supplemented 
by scattering from the counter-propagating pulse. 

The pulse propagation of two counter-propagating pulses 
colliding with each other in a saturable absorber is numerically 
calculated. Both pulses and the loss q ( z ,  t )  of the absorber are 
shown in Fig. 12 at different moments in time. In this figure, 
we have chosen the length of the absorber comparable to the 
physical length of the pulse. If the length of the absorber 
is short compared to the physical length of the pulse, the 
nonuniform effects of the grating at the edges of the absorber 
disappear, and the grating is almost uniformly spread along 
the absorber. 

As we can see in Fig. 12, an absorption grating is set up 
where the two pulses overlap. With increasing saturation, the 
average loss in the absorber and the amplitude of the grating 
eventually diminishes. The absorption drops below the zero 
axis in the last pictures of Fig. 12 because we have expanded 
the absorption q ( z ,  t )  only to second order in space and 
neglected the fourth-order terms in our calculations. 

C. Pulse Shaping Ejfects 
In this section, we compare the pulse shaping effects of non- 

colliding and colliding pulse saturable absorbers, see Fig. 13. 
A pulse of secant hyperbolic shape (solid line in Fig. 13) 

is sent through a saturable absorber in three configurations. 
In each case Qo = 0.3, E,,,, = 1 and Et = 0.5. Here, the 
unsaturated absorber loss QO is defined in analogy with the un- 
saturated amplifier gain Go, yielding QO = exp (q&) where L 
is now the length of the absorber. In the UM configuration, the 
pulse emerging from the absorber is represented by the dotted 

I - I  

Fig. 12. Two pulses (solid lines with arrows) entering a saturable absorber, 
colliding in it and forming a standing wave pattem, leading to an absorption 
grating (solid lines with dashed envelopes). 

Fig. 13 Companson of SCPM, CPM, and UM pulse shaping while QO = 
0 3, E,,&, = 1, and Et = 0 5 for the UM and SCPM configuration and 
Et = 0 25 for the CPM configuration The normalized input pulse shape P%, 
is given by the solid line 

line in Fig. 13. In the SCPM configuration, the pulse collides 
with itself in the absorber, and the resulting outgoing pulse is 
given by the dash-dotted line. In the CPM configuration, we 
have two pulses with energy Et = 0.25, entering the absorber 
in opposite direction. The result is given by the dashed line, 
where the two outgoing pulses have been added. 

As we can see, the interaction of the SCkM and CPM 
configuration cleans up the front of the pulse just as effec- 
tively as the UM configuration while the peak intensity after 
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Fig. 14. Similar pulse shaping for the UM and SCPM configuration by 
changing the saturation energy of the absorber while Et = 0.5 for the UM 
and the SCPM configuration. 
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Fig. 15. Similar pulse shaping for the UM and CPM configuration by 
changing the saturation energy of the absorber while Et = 0.5 for the UM 
and Et = 0.25 for the CPM configuration. 

transmission is higher for colliding pulses with the SCPM 
configuration having the highest intensity. For the precise 
influence of the grating in the SCPM and CPM configuration 
compared to the same configurations without the grating ( q ~  = 
0 in (71)-(75)), we refer to papers by Helkey and Derickson 
[29], [31] and a to paper by Jones et al. 

Further examining Fig. 13, we see that the pulse shaping by 
colliding pulses still exhibits a basic saturation characteristic 
(pulse compression and timing shift). We may expect that 
similar pulse shaping can be obtained for a single pulse by 
adjusting the saturation energy of the absorber. We have done 
this in Fig. 14 for the SCPM configuration and in Fig. 15 for 
the CPM configuration. 

In both figures, the solid lines represent the normalized 
transmitted shape of each pulse for the SCPM and CPM 
configuration, respectively. The dotted lines represent the 
transmitted shape for the UM configuration, while the (dashed) 
lines, representing the transmitted shape for the UM configu- 
ration with an adjusted absorber saturation energy, completely 
coincide with the solid lines. This means that the pulse shaping 

TABLE I 
CHANGES IN THE SYSTEM PARAMETERS FOR 

DIFFERENT MODE-LOCKING CONFIGURATIONS 

Configuration T,” T,” EsatL Esatn s 
Fig. 8 1.0 1.0 1.00 1.00 1.0 
Fig. 16(a) 1.0 1.0 0.69 0.67 1 .0  
Fig. 16(b) 0.5 1.0 2.00 0.67 3.0 
Fig. 16(c) 0.5 1.0 1.00 0.51 2.0 
Fig. 16(d) 0.5 0.5 1.18 0.67 1.8 

by the SCPM and CPM is almost identical to the pulse shaping 
by a UM absorber with a saturation energy that is 51 and 
67%, respectively, of the saturation energy of the SCPM and 
CPM absorber. In other words, identical absorbers give higher 
pulse powers in colliding pulse configurations than in the UM 
configuration. 

We can, of course, perform the same analysis for pulses that 
collide in the saturable amplifier. We then find that the pulse 
shaping by the SCPM and CPM amplifier is almost exactly the 
same as the pulse shaping by a UM amplifier with a saturation 
energy that is 59 and 69%, respectively, of the saturation 
energy of the SCPM and CPM amplifier, respectively. The 
effective gain of an amplifier with a low saturation energy is 
less than the gain of one with a higher saturation energy. In 
other words, identical amplifiers give higher pulse powers if 
pulse collisions in the amplifier are avoided. 

D. Enhanced Mode-Locking Stability 

In this section, we compare the stability of a number of 
configurations for colliding pulse mode-locking. In Fig. 16(a), 
we have displayed the simplest CPM configuration in a ring 
cavity. As we have discussed in the preceding section, we 
only want to have pulse collisions in the saturable absorber 
and not in the saturable amplifier. For the ring-cavity, this 
means that the amplifier must not be opposite to the absorber 
(as displayed in Fig. 16(a)). 

By separation of the absorber and amplifier by one quarter 
of the cavity, the pulses never collide inside the amplifier 
while the interval between the pulse arrival time is made large 
and equal for both pulses. In Fig. 16(b), we have shown this 
configuration. 

For Fabry-PCrot cavities, we examine the SCPM configura- 
tion where the absorber is at one mirror while the amplifier is 
in the middle of the cavity in order to avoid pulse collisions 
inside the amplifier (see Fig. 16(c)). The CPM configuration 
can be established by putting the absorber in the middle of 
the cavity and the laser at one mirror end (in order to reach 
maximum pulse arrival time). For this configuration, however, 
we can not avoid that the pulses collide with themselves inside 
the amplifier. This configuration is displayed in Fig. 16(d). 

In Table I, we have shown the changes in saturation energies 
and pulse arrival times for the absorber ( T t )  and amplifier 
(Tk). All values are normalized to the values of the UM 
configuration of Fig. 8. Also the resulting change in the 
stability parameter s is calculated. 

Evaluating Table I, we see that the configuration of 
Fig. 16(a) behaves almost exactly as the UM configuration 
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Fig. 17. Stability boundary (area between drawn lines of the same kind) 
as a function of normahzed small signal gain and absorption, for different 
mode-locking configurabons, while rA/TR = 0 1, rL/TR = 5, 'D = 10, 
CYA = 0, and CUL = 0. For the other system parameters, see Table I. 
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Fig 16 Colliding pulse mode-lockmg configuratlons in nng and 
Fabry-PCrot cavities (a) Pulses collide with each other in the saturable 
amplifier and in the saturable absorber (b) Pulses only collide with each 
other in the saturable absorber (c) Pulse only collides with itself in the 
saturable absorber (d) Pulses collide with each other in the saturable absorber 
and with themselves in the amplifier 

of Fig. 8. For the other configurations, we have shown the 
new stability boundaries in Fig. 17 and Fig. 18. In order 
to calculate these figures, we have again solved the mode- 
locking equations (56)-(61) with the different values for the 
parameters Tk, T t  , E,,tL, Esata, and s according to Table I. 

As we can see, the stability boundaries are improved for 
the CPM configurations of Fig. 16(b). The new boundaries for 
the SCPM configuration (Fig. 16(c) and (d)), however, are not 
improved compared to the UM configuration. This is due to the 
fact that for the CPM configurations, only one pulse with half 
the energy of the pulse of the SCPM configuration saturates 

Fig. 18 Stability boundary (area between drawn lines of the same kmd) 
as a function of normalized small signal gam and absorption, for different 
mode-loclung configurations, while TA/TR = 0 1, rL/TR = 5, Z) = 10, 
a~ = 0, and CYL = 0. For the other system parameters, see Table I 

the amplifier. This leads to an effective saturation energy of 
the amplifier that is twice as high as the saturation energy of 
the amplifier of the SCPM configuration. Finally, we want to 
note that we have assumed that the Fabry-P6rot cavities have 
perfectly reflecting mirrors. If the absorber is at the end mirror 
(see Fig. 16(c)), the reflectivity of that mirror should be as high 
as possible because this lowers the effective saturation energy 
of the absorber and thus increases the stability parameter s. 
In practice, this can be achieved by using an high reflection 
coating for this mirror. In contrast to this, if the amplifier 
is near an end mirror (see Fig. 16(d)), no high reflection 
coating should be applied to the mirror because this lowers 
the effective saturation energy of the amplifier and thus the 
stability parameter s. In practice, the reflectivity of the mirror 
at the amplifier end (see Fig. 16(d) is about 30%. This leads to 
a somewhat higher value of the stability parameter s compared 
to the configuration of Fig. 16(c). So, in practical Fabry-P6ot 
laser structures, the CPM mode-locking configuration behaves 
somewhat better than the SCPM configuration. 
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VIII. CONCLUSION 
In this paper, we have proposed an analytical model for 

passively mode-locked semiconductor laser structures. The 
pulse shape generated by the passively mode-locked laser 
structure is a chirped hyperbolic secant with a width and 
energy that is determined by other system parameters. In the 
absence of dispersion and if absorber length is not the pulse 
width limiting factor, the width of the pulse is determined by 
the system bandwidth and depends thus on the active layer 
material used. Dispersion causes the pulse width to increase, 
while self-phase modulation imposes a chirp on the pulse. 
Under certain conditions, this chirp can be compensated by 
the interaction of the dispersion and the self-phase modulation 
of the amplifier and absorber. 

We have also considered the conditions under which mode- 
locking occurs. The most important rule for mode-locking, as 
described in the papers of Haus [20]-[22], [26], is that the 
amplifier saturation energy must be higher than the absorber 
saturation energy. Furthermore, the saturable amplifier must 
not fully recover between two pulses, while the saturable 
absorber must recover completely or at least more than the 
amplifier between two pulses. 

The effects of pulse collisions have also been investi- 
gated. Pulses, colliding in either a saturable amplifier or 
absorber, cause a grating due to the interaction of two counter- 
propagating electric fields. As a consequence of this grating, 
the saturable amplifier and absorber are more easily saturated 
compared to the situation where no grating is present. We 
can profit from colliding pulses, by designing a mode-locked 
system in such a way that pulse collisions only occur in 
the saturable absorber, while pulse collisions in the saturable 
amplifier remain absent. 

We have also shown that various cavity configurations 
can be covered by the present model through adjusting the 
saturation energies of the saturable amplifier and absorber. 
Regarding the performance of the mode-locked system, a 
bidirectional ring cavity with a saturable amplifier and ab- 
sorber separated by one quarter of the cavity length performs 
better than Fabry-PBrot cavities. A second inexpediency with 
Fabry-PCrot cavities is that the pulse repetition time, deter- 
mined by the cavity length, depends on the cleaving position 
of the end facets of the laser. This can be a rather inaccurate 
process. In contrast to this, the pulse repetition time for a 
ring laser, embedded in the production mask, can not be 
influenced by cleaving the output facets. Another disadvan- 
tage of Fabry-PBrot cavities is that for good performance of 
the CPM configuration, the absorber has to be exactly at a 
submultiple of the cavity length, which is not easily achieved. 
For a ring cavity, this problem does not occur. If one chose 
for a Fabry-P&ot cavity, one may use the CPM or SCPM 
configuration. If cleaving of the end facets can not be done 
accurately enough, it is recommended to choose for the SCPM 
configuration. Otherwise, the CPM configuration should be 
choosen as, in practical lasers, this configuration performs 
somewhat better than the SCPM configuration. 

We can now formulate a number of design rules and 
recommendations for passively mode-locked lasers. First of 

all, a ring configuration gives the largest range of stable mode- 
locking operation. The system must be designed in such a 
way that pulse collisions occur in the saturable absorber and 
not in the saturable amplifier. In a ring cavity, this can be 
done by separating the amplifier and absorber by one fourth 
of the cavity. This increases the stability parameter s by a 
factor of three. The stability parameter s is also determined 
by the ratio C T L / ~ A .  Stability can be increased by changing 
this ratio to a higher value. In practice, this can be achieved 
by designing a larger cross-section for the amplifier than for 
the absorber. Stability is also influenced by the ratio AL/AA. 
The value of this ratio depends on the material used in the 
mode-locked laser. In order to increase stability, the value of 
the ratio ALIA.* must be minimized. As this ratio is somewhat 
lower for quantum-well active layers compared to bulk active 
layers [ 3 3 ] ,  passively mode-locked lasers constructed from 
quantum-well active layers might perform better than lasers 
made of bulk material. Further, we note that the bandwidth 
of the system must be maximized in order to achieve pulse 
widths as short as possible, while cavity dispersion must be 
minimized. Both parameters depend on the material used in 
the laser. Influencing these parameters, the pulse width and the 
effect of self-phase modulation of amplifier and absorber can 
be minimized, so that ultra-short unchirped pulses are obtained 
from the mode-locking system. A final advise in designing 
mode-locked lasers is to remember that the total absorption per 
unit length of an absorber can be about 10-20 times higher as 
the gain per unit length of an amplifier. In order to compensate 
all the losses in the mode-locking system and to set the laser 
above threshold, the length of an amplifier section must be 
chosen 10-20 times larger as the length of the absorber. 
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