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Samenvatting 

Voor het simuleren van scheurpropagatie in brosse materialen wordt vaak de eindige elemen
ten methode toegepast. Deze methode gebruikt een opdeling van het materiaaldomein in 
zogenaamde elementen. Relevante grootheden in het domein, zoals verplaatsingen en span
ningen, worden benaderd per element. Een opdeling in elementen wordt gegeven door een 
verzameling van knooppunten die onderling verbonden zijn om de elementen te vormen. Om
dat scheurpropagatie de uitbreiding van scheuroppervlakken inhoudt, dient tijdens simulaties 
de elementenopdeling en dus de zogenaamde connectiviteit van knooppunten, voortdurend te 
worden aangepast. Dit aanpassen van de elementenopdeling staat bekend als "remeshen" en 
kan het simuleren van scheurpropagatie behoorlijk gecompliceerd en tijdrovend maken. 

De elementvrije Galerkin methode is een methode die ook knooppunten gebruikt, maar waarbij 
het gebruik van een connectiviteit afwezig is. Verplaatsingen en spanningen in het materiaaldo
mein worden benaderd met behulp van een techniek genaamd "moving least squares approxima
tion", die vrij is van een connectiviteit. Deze techniek vereist, naast de informatie betreffende 
de knooppunten, een verzameling van gewichtsfuncties en een verzameling van basisfuncties. 
Omdat de uitbreiding van scheuroppervlakken kan worden weergegeven zonder het wijzigen 
van een connectiviteit van knooppunten, is het mogelijk scheurpropagatie te simuleren zonder 
de noodzaak tot "remeshen". Het doel van het onderzoek gepresenteerd in dit proefschrift is 
de formulering van een numeriek model, gebaseerd op de elementvrije Galerkin methode, dat 
geschikt is voor het simuleren van scheurpropagatie in brosse materialen. 

Het numerieke model veronderstelt lineair elastisch materiaalgedrag en gebruikt criteria voor 
scheurgroei en de richting van scheurgroei in brosse materialen. Deze criteria komen voort uit 
de breukmechanica en worden uitgedrukt in spanningsintensiteitsfactoren. Met behulp van de 
elementvrije Galerkin methode worden benaderende waardes berekend voor de verplaatsingen 
en de spanningen in een materiaaldomein waarin een scheur aanwezig is. Daarvoor dienen 
de onbekende verplaatsingen van de knooppunten te worden verkregen. Hiervoor wordt een 
numeriek integratie schema gebruikt dat is gebaseerd op een onderliggende configuratie van in
tegratiecellen. Deze configuratie ka!l onafhankelijk van de knooppuntsverdeling gekozen worden 
en hoeft niet te worden aangepast tijdens simulaties van scheurpropagatie. Het schema houdt 
rekening met de dichtheid van de knooppuntsverdeling, met de spanningssingulariteiten en met 
de discontinuïteiten van grootheden over de scheur. Voor de benaderingstechniek gebaseerd op 
"moving least squares approximation" worden verschillende modellen voor de discontinuïteit 
in het materiaaldomein ten gevolge van de aanwezigheid van een scheur onderzocht. Dit resul
teert in een nieuw zogenaamd wig-model toegepast op de gewichtsfuncties en in het gebruik 
van speciale basisfuncties voor de representatie van spanningssingulariteiten. Uit de berekende 
verplaatsingen en spanningen in het materiaaldomein worden de spanningsintensiteitsfactoren 
bepaald, die vervolgens worden toegepast in de breukcriteria. 

Een nadeel van de elementvrije Galerkin methode is de benodigde rekeninspanning. Voor een 
reductie daarvan zijn drie combinaties van deze methode met de eindige elementen methode 
onderzocht, zodat het uitbreiden van scheuroppervlakken nog steeds kan worden weergegeven 
zonder de noodzaak tot "remeshen". De effectiviteit van de ontwikkelde numerieke modellen 
wordt gedemonstreerd aan de hand van enkele typische twee-dimensionale breukmechanische 



problemen. De resultaten voor statische problemen tonen aan dat de spanningsintensiteitsfac
toren nauwkeurig berekend kunnen worden. Voor het probleem van quasi-statische scheurpro
pagatie in een balk met een enkelzijdige snede belast onder afschuifcondities, zijn scheurpaden 
verkregen die goed overeenkomen met experimentele resultaten uit de literatuur. Dit toont, 
tesamen met andere numerieke resultaten, dat het simuleren van quasi-statische scheurpropa
gatie resulteert in betrouwbare scheurpaden. De verschillen tussen de resultaten verkregen met 
de elementvrije Galerkin methode en die verkregen met een combinatie van deze methode met 
de eindige elementen methode, zijn relatief klein. 

Er wordt geconcludeerd dat de elementvrije Galerkin methode een doeltreffende numerieke me
thode is voor elastostatische problemen. Door het nieuw ontwikkelde wig-model is de methode 
ook toepasbaar op scheurproblemen. Combinaties van de methode met de eindige elemen
ten methode zijn mogelijk, zodat een reductie van rekentijd verkregen kan worden. Ondanks 
de rekeninspanning, blijken de geformuleerde numerieke modellen uitermate geschikt voor het 
simuleren van scheurpropagatie. 
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Summary 

For the simulation of crack propagation in brittle materials, the finite element method is often 
applied. This method uses a division of the material domain into so-called elements. Relevant 
quantities in the domain, such as displacements and stresses, are approximated per element. A 
division into elements is given by a set of nodal points which are mutually connected to form the 
elements. Since crack propagation concerns the growth of crack surfaces, the element division, 
and therefore the connectivity of nodal points, has to be adapted continuously during simula
tion. This adaptation of the element mesh is known as remeshing and can make simulation of 
crack propagation rather complicated and time-consuming. 

The element-free Galerkin method is a method which also uses nodal points, hut where the use 
of a connectivity is absent. Displacements and stresses in the material domain are approximated 
by means of a connectivity-free technique known as moving least squares approximation. This 
technique requires, besides the nodal data, a set of weight functions and a set of basis functions. 
Since the growth of crack surfaces can be reflected without changing a connectivity of nodes, it is 
possible to simulate crack propagation without remeshing. The aim of the research presented in 
this thesis is the formulation of a numerical model based on the element-free Galerkin method, 
which is convenient for the simulation of crack propagation in brittle materials. 

The numerical model assumes linear elastic material behaviour and uses criteria for crack 
and the direction of crack growth in brittle materials. These criteria arise from the field 

of fracture mechanics, and are expressed in terms of stress intensity factors. By means of the 
element-free Galerkin method, approximate values for the displacements and the stresses are 
calculated in a material domain containing a crack. To this end, the unknown displacements of 
the nodal points have to be obtained. Therefore, a numerical integration scheme is used, based 
on a background configuration of integration cells. This configuration can be chosen indepen
dently of the distribution of nodal points and does not have to be adapted during simulation 
of crack propagation. The scherne accounts for the density of the nodal distribution, for the 
stress singularities, and for the discontinuities of quantities over the crack. Concerning the 
moving least squares technique, several models are considered to account for the discontinuity 
in the material domain due to the presence of a crack. This results in a new so-called wedge 
model which is applied to the weight functions, and the use of special basis functions for the 
representation of stress singularities. From the calculated displacements and stresses in the 
material domain, the stress intensity factors are determined, which are subsequently applied in 
the fracture criteria. 

A drawback of the element-free Galerkin method is its computational effort. For a reduction 
of computing time, three combinations of this method with the finite element method are 
investigated such that the growth of crack surfaces can still be refiected without remeshing. 
The effectiveness of the developed nurnerical rnodels is demonstrated in several typical fracture 
mechanics problems in two dimensions. Results for statie problems reveal that accurate stress 
intensity factors are cornputed. For the problem of quasi-statie crack propagation in a single
edge notched beam loaded under shear conditions, crack paths are obtained which are in good 
agreement with experimental results reported in the literature. This shows, together with 
other numerical results, that simulation of quasi-statie crack propagation results in reliable 
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crack paths. The differences between the results obtained by the element-free Galerkin method 
and those obtained by a combination of this method with the finite element rnethod are only 
rmnor. 

lt is concluded that the element-free Galerkin method is an effective numerical method for 
elasto-static problems. Due to the new developed wedge model, the method is also applicable 
to problems involving cracks. Combinations of the method with the finite element method are 
possible, such that a reduction of computing time can be obtained. Despite the computational 
effort, the formulated numerical rnodels appear to be very useful for the simulation of crack 
propagation. 
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Chapter 1 

Introduction 

This thesis deals with the simulation of crack propagation in brittle materials. A widely used 
numerical method for solving such mechanica! problems is the finite element method. In the past 
decades, many applications of this method to crack propagation problems have been reported. 
The method is based on a division of the material into subdomains, so-called finite elements. 
Such a division is given by a set of nodal points which are connected in a certain way to form the 
elements. Since crack propagation concerns the growth of an internal free boundary, changing 
the element division for the material domain and, therefore, changing the connectivity of the 
nodes is necessary to simulate this crack propagation. The adaptation of the element mesh, 
which is also known as remeshing, can make the simulation of crack propagation by the finite 
element method rather complicated and time-consuming. 

A few years ago, a numerical method known as the element-free Galerkin method has been 
introduced, which has many similarities with the finite element method. The element-free 
Galerkin rnethod, however, is free from any connectivity of nodal points and it is because of 
this feature that the terminology "element-free" is used. Hence, the method is attractive for 
the simulation of crack propagation, since the forrnation of new crack surfaces can be reflected 
without changing any connectivity of nodes. Up to now, several applications of the method to 
crack propagation problems have been reported. However, some problems are still unsolved. 
Therefore, in this thesis a study of the method and its application to the simulation of quasi
static crack propagation in brittle materials is presented. 

1.1 N umerical analysis of failure 

Two different methodologies for failure of materials can be distinguished, namely, fracture 
mechanics and continuum damage mechanics. In fracture mechanics, a crack is assumed to be 
present in the materiaL Such a crack introduces a discontinuity in the material and, in the 
case of linearly elastic material behaviour, the stresses become infinite at the crack tip. This 
singularity in the stresses is proportional to the inverse square root of the distance to the crack 
tip. This relationship is illustrated in Figure 1.1 and can be expressed in the simplified form 

K 
(}'-- v'21êT' (1.1) 
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Figure 1.1: Singularity in stresses. 

where (J represents the stress, r is the distance to the crack tip, and K is a normalizing factor 
known as the stress intensity factor. This factor is related to the geometry of the material, the 
applied forces, and the boundary conditions. 

Equation (1.1) shows that the yield stress will be exceeded at positions sufficiently close to the 
crack tip, resulting in plastic deformation of the material. For brittle fracture there is only a 
small zone of plastic deformation near the crack tip (small-scale yielding, see Rice [60]). In 
this case, plasticity in the vicinity of the crack tip is neglected and equation (1.1) is assumed 
to be valid in a close neighbourhood of the crack tip. For ductile fracture this plastic material 
behaviour is essential and cannot be neglected. 

In order to predict the behaviour of cracked material, criteria for crack growth and for the 
direction of crack growth have to be postulated, see Broek [13], Cherepanov [17] or Kanninen 
and Popelar [37]. A common criterion for brittle materials states that crack growth occurs 
when the stress intensity factor reaches a critical value. This value is a material constant and 
is known as the fracture toughness. When K is below the critical value, the crack remains 
stationary. The field of fracture mechanics is considered in more detail in the next chapter. 

Continuum damage mechanics does not assume a discontinuity in the material. Defects such 
as microcracks and the growth of these defects are accounted for in a continuous, smeared 
way by means of so-called damage variables. These variables can be seen as internal variables 
representing the state of the material. A part of the material containing defects is therefore 
represented by a small zone with high values for the damage variables, resulting in a degradation 
of the material properties, see Figure 1.2. Such an approach generally works well for materials 
where the damage is smeared out over larger areas, such as in the case of ductile material 
behaviour. It is believed, however, that one can also obtain reliable results for brittle material 
behaviour. Reduction of the material stiffness is often characterized by a constitutive stress
strain relation of the form 

(1.2) 



1.1. NUMERICAL ANALYSIS OF FAILURE 3 

(a) (b) 

Figure 1.2: ( a) Microcracks modelled by (b) degradation of material properties in the dark-shaded 
areas. 

where a and E are the stress and the strain, respectively, and Ed = (1 - V)E, with E the 
Young's modulus of the original undamaged materiaL The parameter Visa damage variable. 

In continuum damage mechanics, no criteria for the direction of crack growth have to be 
postulated as is the case in fracture mechanics. However, a criterion is necessary to specify the 
evolution of the damage variable V. An increase of Vis mostly given by a so-called evolution 
law in terms of the stresses, the strains, and the actual damage. For example, one can take the 
equation for creep damage 

(1.3) 

as suggested by Chaboche [15]. The constants 'f/, 'f/i and 'f/2 in (1.3) are material dependent and 
have to be determined experimentally. 

The constitutive relation (1.2) can be generalized to two and three dimensions. For materials 
exhibiting anisotropic damage behaviour it is necessary to introduce additional damage vari
ables, which means that Vis extended toa damage vector, e.g. see Murakami [55]. With the 
equations (1.2) and (1.3) the mathematical formulation of a problern in continuum damage 
mechanics is complete. However, the interpretation and the choice of the damage variables V, 
the constitutive equations, and the evolution of V may change with the type of problem. For a 
complete description of the field of continuum damage mechanics, we refer to Chaboche [14, 15] 
and Lemaitre [46]. 

In the past decades, the finite element method has shown to be a powerful and efficient numerical 
method for solving mechanica} problems involving non-linear constitutive material behaviour 
and/or large deformations, see Hughes [33], Johnson [36] or Zienkiewicz [75]. This method is 
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(a) (b) 

Figure 1.3: Remeshing: Finite element division (a) before and (b) after crack propagation step. 
Crack path is indicated by a thick solid line. 

based on a weak form of the governing equations, in which the displacements are mostly taken 
piecewise linear or piecewise quadratic. Therefore, the material is divided into subdomains, 
so-called finite elements, see Figure 1.3. This division is given by the connection of a set of 
nodal points. The displacements are interpolated linearly or quadratically within an element, 
which leads to a sparse system of linear equations for the unknown displacements of the nodes. 
A result of the interpolation of the displacements is that the stresses are constant or linear in 
the element. For the application of the finite element method to the field of fracture mechanics, 
however, special crack-tip elements have to be used to describe the singular stresses (1.1) in a 
correct way, see Barsoum [3] or Stern and Becker [66, 67]. In [3] the singular stress behaviour 
is obtained by moving mid-side nodes of a quadratic element to a quarter-point position. This 
behaviour is obtained in [66, 67] by interpolation of the displacements with the help of special 
shape functions based on the square root function. 

The field of fracture mechanics has been studied extensively in the past decades, which has 
resulted in a wide range of application and a high degree of accuracy of the developed ap
proaches. However, when the finite element method is applied to fracture mechanics in order 
to simulate crack propagation, a main drawback is encountered. To reflect the formation of 
new crack surfaces, the mesh of elements has to be adapted after each crack propagation step. 
This remeshing of the element division is illustrated in Figure 1.3. In addition, the crack-tip 
elements have to be shifted to the new position of the crack tip and quantities such as strains 
and stresses, which are generally discontinuous over element boundaries, have to be projected 
from the old to the new element division. For complicated crack paths, this process of continu
ous remeshing, including projection of quantities and new assembly, concerns a large number 
of elements and can therefore be very time-consuming. 

Application of the finite element method to the field of continuum damage mechanics does not 
suffer from remeshing problems, since no physical crack is assumed to exist in the material. 
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softening 

Figure 1.4: Softening behaviour. 

Other problems, however, may occur. The evolution of the damage, e.g. see (1.3), can be chosen 
more or less arbitrary as long as the global material response is acceptable. Severe material 
degradation, as in the case of brittle fracture, can lead to softening behaviour. This means 
that the stress decreases with increasing strain, see Figure 1.4. As a result, the mathematical 
formulation of the problem becomes ill-posed. Application of the finite element method then 
results in irrelevant solutions and often shows a mesh dependency of the solution concerning 
both the width and the orientation of the elements, see Lasry and Belytschko [45] or Sluys [65, 
Ch. 3]. In general, a refi.nement of the element division leads to higher values of the damage in a 
region of smaller width. Furthermore, a change in the orientation of the finite element division 
mostly leads to a different direction of the damaged region. In many situations, damage is 
concentrated on very small parts of the material, which has the consequence that this localized 
deformation cannot be captured easily without a very fine element division. 

For the above problems in the application of the finite element method to fracture mechanics 
and to continuum damage mechanics, a large number of solutions has been suggested in the 
literature. Only a few of these solutions are summarized here. In order to capture localized 
deformation in a correct way, Belytschko, Fish and Engelmann [4], Fish and Belytschko [24], and 
Regen [29], consider finite element techniques where the strains can become discontinuous over 
a zone in an element. In [45] and [65, Chs. 4-7], the ill-posedness of the formulation is avoided by 
addition of higher-order terms in the governing equations. Xu and Needleman [74] circumvent 
the problem of remeshing in the case of fracture mechanics problems by restricting the direction 
of crack propagation to be along element boundaries. In Horsten and Van Vroonhoven [32] and 
Van Vroonhoven [72, Ch. 8], a hybrid fracture/damage approach is introduced. By a convenient 
combination of concepts of fracture mechanics and continuum damage mechanics, problems of 
remeshing are diminished. Furthermore, rnesh dependency of the solution is absent in this 
approach. 

In the past two decades, a new numerical method has been developed for application to fracture 
mechanics in order to sirnulate crack propagation: the boundary element method, see Brebbia 
and Dominguez [12] or Chen and Zhou [16]. The method is attractive, since, in contrast to the 
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finite element method, only the boundary of the material and the crack surfaces are discret
ized. Therefore, a significant part of the remeshing associated with the fini te element method is 
avoided. In the boundary element method, the governing equations are transformed into boun
dary integral equations. To this end, a so-called fundamental solution (Green's function) of the 
problem equations has to be available. Hence, the method is limited to the class of isotropic, 
linearly elastic materials. The boundary integral equations are solved by means of an element 
division of the boundary and of the crack surfaces. In contrast to the finite element method, 
this leads to a non-sparse system of equations for the unknown displacements of the nodes. 
In the case of application of the boundary element method to fracture mechanics, substantial 
difficulties need to be overcome. In order to avoid the system of equations to be ill-conditioned, 
special techniques are necessary to formulate the equations concerning the crack surfaces. Fur
thermore, as in the finite element method, special elements have to be used near the crack tip. 
For more details and examples of the application of the boundary element method to fracture 
mechanics, we refer to the work of Mi [52]. 

1.2 Element-free analysis of fracture 

Recently, a new numerical method known as the element-free Galerkin method has been de
veloped for solving mechanica! problems. The method approximates displacements by using 
a set of nodal points. However, a connectivity of nodal points is not used which explains the 
terminology "element-free". Because of this, the method is very attractive for application to 
fracture mechanics problems, since the formation of new crack surfaces can be refiected without 
remeshing, or equivalently, without changing any connectivity of nodal points. It is only ne
cessary to place some nodal points around the newly created crack surfaces as is shown in 
Figure 1.5. Since the displacements in the element-free Galerkin method are generally continu
ously differentiable, the strains and the stresses are continuous. Hence, in the case of crack 
propagation problems, projection of strains and stresses from the old to the new discretization 
for the method is straightforward. 

Similar to the finite element method, the element-free Galerkin method uses a weak form of the 
governing equations. Continuously differentiable representations for the displacements are used, 
which are obtained with the help of a technique known as moving least squares approximation, 
see Lancaster and Salkauskas [43, 44]. For this technique, a set of nodal points and some nodal 
data have to be specified, as well as a set of so-called basis functions. The displacements are 
then given by a linear combination of the basis functions, which coefficients vary from point to 
point and are found by solving a set of linear equations. As for the finite element method, this 
approach leads to a sparse system of linear equations for the unknown displacements of the 
nodes. The discrete equations are obtained by means of numerical integration with the help of 
a background configuration of so-called integration cells. 

The first work on the element-free Galerkin method has been presented by Nayroles, Touzot and 
Villon [56]. Their method is named "diffuse elements", since it is presented as a generalization 
of the finite element method. The current form of the element-free Galerkin method, however, 
is first described by Belytschko et al. [7, 48]. In their papers the ideas presented in [56] are 
worked out toa more genera! form. Furthermore, it is recognized in [7, 48] that the method can 
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(a) (b) 

Figure 1.5: Element-free set-up ( a) before and (b) after crack propagation step. Crack path is 
indicated by a thick solid line. 

be an effective means for solving problems in fracture mechanics. A large amount of work on 
the application of the element-free Galerkin method to statie and dynamic fracture problems 
has already been presented, see Belytschko et al. [5]-[11], [25], [48], [49] and [58]. Due to the 
fact that firstly the displacements are continuously differentiable and secondly the method is 
able to represent the specified set of basis functions exactly, the method is also attractive for 
application to other areas than fracture mechanics. For instance, Krysl and Belytschko [41, 42] 
describe analyses of thin plates by using the element-free Galerkin method. 

Despite the work on the application of the element-free Galerkin method to fracture mechanics 
so far, there are still problems associated with the method. One of the main problems is that 
the application of moving least squares approximation near a crack is not straightforward and 
can lead to inaccurate approximations of displacements and stresses near the crack tip. In 
addition, special basis functions have to be used for the approximation technique in order to 
describe the singular stresses (1.1) correctly. A second problem concerns numerical integration. 
The background configuration of integration cells is chosen independently of the nodal points. 
Nevertheless, it has to account in a certain way for the density of the nodes in the neighbourhood 
of each cell, in order to obtain a certain degree of accuracy. Furthermore, there is the problem of 
integration of discontinuous quantities, when a part of a crack is in the interior of an integration 
cell. 

In addition to the problems mentioned above, the method shows some drawbacks concerning 
computational effort. Moving least squares approximation requires that at each point under 
consideration a linear set of equations has to be solved to obtain the displacements. This causes 
the element-free Galerkin method to be computationally expensive in comparison with the finite 
element method. Moreover, the displacements are not piecewise linear or piecewise quadratic, 
which implies that numerical integration requires a large amount of integration points. 

Several solutions to the above problems have already been proposed in [5]-[11], [25], [48], [49] 
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and [58]. A reduction of the computational costs of the method is obtained by coupling the 
method with the finite element method. An efficient scheme for numerical integration has 
been proposed based on a background configuration of integration cells. This scheme, however, 
does not account for the integration of discontinuous quantities within a cell. Furthermore, 
the scheme only partially accounts for the density of the nodal points, since the order of 
integration depends on the number of nodes in a cell. Several attempts have been made to 
apply the moving least squares technique near a crack path in a correct way. These efforts, 
however, lead to shape functions which are discontinuous in the material or to nodal points on 
one crack surface affecting the displacements on the opposite surface. Special basis functions 
obtained from the asymptotic expressions for the displacements are used in the moving least 
squares technique, in order to describe the singular stresses (1.1) correctly. 

The main goal of the research presented in this thesis is the development of the element
free Galerkin method to a robust and accurate method for application to fracture mechanics 
problems. We shall restrict ourselves to the simulation of 2D quasi-statie crack propagation in 
brittle materials. A secondary goal of the research concerns the development of a combination 
of the element-free Galerkin method with the finite element method, such that a reduction of 
computational costs can be obtained. 

For the development of the element-free Galerkin method, solutions are presented to the pro
blems mentioned above. Concerning moving least squares approximation, several ways are 
considered to apply this technique near a crack. For a correct representation of the singular 
stresses (1.1), the set of basis functions is extended with an extra basis function which behaves 
like the square root function near the crack tip. A numerical integration scheme based on a 
background configuration of integration cells is used. To account for the presence of a crack, 
cells can be divided into subcells matching the crack, such that quantities which are discontinu
ous over the crack are integrated correctly. Numerical integration within a cell is based on the 
number of nodes which contribute to the displacements in the cell and on the size of the cell. 
This yields that a change in the number of cells leads to small changes in the solution. Fur
thermore, in the case of the use of a basis function which behaves like the square root function 
nea.r the crack tip, the scheme automatically accounts for efficient and accurate integration of 
the singular derivatives of the function. Three different ways for combining the element-free 
Galerkin method and the finite element method are studied. lt turns out that a combination 
by means of interface elements, see Belytschko, Organ, Krongauz [10], has to be preferred. 

Some characteristics and the performance of the developed methods are investigated by appli
cation of the methods to several typical fracture mechanics problems. These problerns concern 
both statie problems and crack propagation problems. The results of the applications show 
that the element-free Galerkin method and a combination of the method with the finite ele
ment method are effective means for numerical analysis of crack propagation. 

1.3 Overview of the thesis 

The thesis is organized as follows. Chapter 2 deals with fracture mechanics and the finite ele
ment method. The basic equations are given for linearly elastic material behaviour, which is 
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followed by a review of concepts of fracture mechanics. Stress intensity factors are introduced 
and criteria are considered for crack growth and the direction of crack growth in brittle materi
als. The chapter ends with a short presentation of the finite element method and its application 
to fracture mechanics problems. 

Chapter 3 studies approximation techniques which are free from a connectivity of nodal points. 
The main part of the chapter is devoted to moving least squares approximation. First, the 
theory of this technique is described. Next, several ways are considered for the application of 
the moving least squares technique near a crack path. This leads to the use of the so-called 
wedge model for the description of the crack, and to the addition of special functions to the 
set of basis functions for the description of the singular stresses. Finally, other approximation 
techniques are reviewed for application in an element-free numerical solution method. 

Next, in Chapter 4, the description of the element-free Galerkin method can be found. The 
discrete equations obtained by means of application of moving least squares approximation are 
given. This is followed by the numerical integration scheme for computation of the discrete 
equations. The determination of integration points for a cell, the integration of discontinuous 
quantities within a cell, and the integration near a crack tip in the case of the use of special 
basis functions are considered in detail. Essential features, such as the performance and the 
convergence of the method, are studied for several two-dimensional elasto-static problems. The 
chapter ends with a description of the computation of fracture mechanics parameters from 
fracture analyses. 

Three possible ways to combine the element-free Galerkin method with the finite element 
method are considered in Chapter 5. First, a description is given of the three combinations, 
which is followed by a comparison of these combinations for two-dimensional elasto-static pro
blems. As in Chapter 4 for the element-free Galerkin method, the convergence aspects of the 
combinations are studied. 

In Chapter 6 results of the applications to fracture mechanics problems are given for both 
the element-free Galerkin method and a combination of the method with the finite element 
method. The ability of the numerical models to compute accurate stress intensity factors is 
studied. Moreover, the models are applied to the simulation of brittle crack propagation in 
two dimensions. Conclusions about the results and a comparison of the two approaches are 
presented at the end of the chapter. 

The thesis ends with a chapter serving as a concluding discussion. A review is given of the 
methods and the applications to fracture rnechanics problems. Furthermore, conclusions and 
open ends of the presented study, and recommendations for further research can be found in 
this chapter. 
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Chapter 2 

Fracture mechanics and finite element 
method 

This chapter deals with the field of study known as fracture mechanics, which concerns failure 
of materials. F\J.rthermore, the finite element method and its application to failure problems is 
considered. The chapter starts with the introduction of the basic equations for the deformation 
of linearly elastic media. This is followed by the main concepts of fracture mechanics. The 
chapter ends with a description of the finite element method and the use of the method in 
fracture mechanics problems. 

2 .1 Deformation of linearly elastic media 

In this section the problem of deformation of linearly elastic media is considered. The general 
problem for a three-dimensional, homogeneous, isotropic, medium is given. This is followed by 
two common situations in which the dimension of the problem is reduced by one. Finally, weak 
formulations of the problem of deformation are introduced. 

2.1.1 Equations of linear elasticity 

Consider the deformation of a homogeneous, isotropic, linearly elastic medium B under applied 
forces and prescribed displacements. In general, such a problem concerns 21 quantities: com
ponents u; of the displacement vector u, entries éij of the symmetrie Green Lagrange strain 
tensor E, and entries <J;j of the symmetrie Cauchy stress tensor a with indices i, j 1, 2, 3. These 
quantities are taken with respect to a fixed orthonormal basis {ei, e2 , e3 } of three-dimensional 
space and depend on the three spatial coordinates x1 , x2 , x3 and on the timet. Small strains 
E;j and small rotations are assumed. Hence, for x1 , x2 and x3 one can take the Cartesian 
coordinates in the undeformed configuration (l of the elastic medium B. 

The material behaviour of the elastic medium is characterized by two material constants, namely 
Young's modulus of elasticity E and Poisson's contraction ratio v. Another frequently used 
material constant is the shear modulus G E/2(1 + v). The density of the material is given by 
p. Let the medium be subject to volume forces ft in n and subject to prescribed tractions p; 

11 
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and prescribed displacements ui on the boundary an, i = 1, 2, 3. The problem of deformation 
of the elastic medium is described by kinematic relations, constitutive equations, equations of 
motion and a set of boundary conditions. This dynamic problem is given by: 

Determine displacements ui, strains E;j, and stresses aij, i,j = 1,2,3, as sufficiently smooth 
functions of the spatial coordinates xi, x 2, x3 and the timet, such that the following equations 
are satisfied: 

1 
Eij = 2 ( Ui,j + 'Uj,i) , 

___!!__ (e + __ v_EkkD) 
1 + v '1 1 - 2v '1 

' 

(Jij,j + Jt pÜ;, 

in the domain n, i, j = 1, 2, 3, as well as the boundary conditions 

Ui 

PT on rpp 

u; on r'Uil 

on the boundary an f p; U r u, With f Pi and f u; disjoint, i 1, 2, 3. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Differentiation with respect to the coordinate xi is denoted by ,j and a superposed dot is used 
for differentiation with respect to the time t. The entries of the ontward unit normal on the 
boundary an are given by n;, i = 1, 2, 3, and Dij is Kronecker's symbol (Dij 1 when i = j, 
6ij = 0 when i ::/= j). In equations (2.2)-(2.4) and in the remaining part of the thesis, the 
Einstein convention of summation over repeated indices is employed. 

For the statie problem, the right-hand side of the equations of motion (2.3) is set equal to zero, 
yielding the equilibrium equations. For the dynamic problem, additional initial conditions for 
the displacements u; and their time derivatives Ü; have to be given. 

The material behaviour of a homogeneous, isotropic, linearly elastic medium is expressed by 
the constitutive equations (2.2), which are known as Hooke's law. These equations area special 
case of the constitutive equations fora (non-isotropic) linearly elastic medium 

(Jij = Xijkl Ekl, i, j = 1, 2, 3, (2.6) 

where the fourth-order tensor x is positive definite and left, right and fully symmetrie. When 
the medium is not homogeneous, the tensor x depends on the position x. 

2.1.2 Planar problems 

There are two common situations in which the dimension of the problem of deformation of an 
elastic medium can be reduced by one. These two situations are known as plane strain and 
plane stress. 

A situation of plane strain is characterized by the fact that the displacement and the strains 
in the x3-direction are zero, i.e" u3 = 0 and E;3 0, i = 1, 2, 3. Hence, the deformation only 
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takes place in the (xi, x2)-plane and this deformation is independent of the coordinate x3 . For 
instance, a situation of plane strain can be assumed for a medium for which displacement in 
the x3-direction is not possible. Because of (2.2), the zero strains imply that the shear stresses 
u13 and u23 are zero, while the normal stress u33 is given by 

(2.7) 

The problem of deformation in the case of plane strain is also given by equations (2.1)-(2.5). All 
the quantities, however, are independent of the coordinate x3 , while the indices are restricted 
to 1, 2. Since the deformation is independent of x3 and only takes place in the (xi, x2)-plane, 
the undeformed configuration n of the medium can be taken as two-dimensional. 

The situation of plane stress is characterized by zero stresses in the x3-direction, i.e. u;3 = 0, 
i 1, 2, 3. For example, a situation of plane stress can be assumed fora medium which is thin 
in the x3-direction compared to its dimensions in the (x1 , x2)-plane, subject to in-plane volume 
forces, i.e. /3 0. In practice, for such a medium the stresses in the x3-direction only vanish 
after averaging over the thickness. As a consequence, the deformation is then independent of 
the coordinate x 3 • This situation is often referred to as generalized plane stress. When u;3 O, 
i = 1, 2, 3, the constitutive equations (2.2) yield that the shear strains c13 and c23 are zero, 
while E33 is given by 

(2.8) 

The problem of deformation of an elastic medium in a situation of plane stress is given by (2.1)
(2.5), where all the quantities are independent of the coordinate x3, the indices are restricted to 
1, 2 and 0 can be taken as two-dimensional. Because of (2.8), equation (2.2) has to be replaced 
by 

u,·,· _!!____ (E" + _v_Ekko) 
1 + v •J 1 - v •J ' 

{2.9) 

where i,j = 1, 2 and k sums only over 1, 2. 

There is a correspondence between the problems of plane strain and plane stress. A problem 
of plane stress with E = Ei/(1 - vl) and v = vi/(1 v1) is equivalent toa problem of plane 
strain with Young's modulus E 1 and Poisson's ratio v1• 

2.1.3 Weak forms of the problem of deformation 

In general, the problem of deformation of an elastic medium, as given by the boundary value 
problem (2.1)-(2.5), cannot be solved exactly. Numerical methods are necessary to provide 
accurate approximations for the displacements, strains and stresses in the medium. The nu
merical methods discussed in this thesis use weak forms of the (strong) deformation problem 
(2.1)-(2.5). Some of these weak forms are given in this section. Fora more detailed description, 
see Washizu [73, Chs. 1, 2]. 
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For the introduction of weak forms of the deformation problem, we restrict ourselves to the 
statie problem, i.e. pü 0. For simplicity of the presentation, it is assumed that r "' = r u and 
rp, rP, i 1, 2, 3. Upon multiplication of the statie version of (2.3) with a test displacement 
8u and integration over the undeformed configuration n, one obtains 

k 8u; O'ij,j dü. + k 8u; ft dQ = 0, (2.10) 

where a is related to u by means of (2.1) and (2.2). Note that (2.10) is valid for each test 
displacement óu for which the integrals in this equation exist. When 6u is continuously differ
entiable on Q and 6u 0 on r "' relation (2.10) can be rewritten. After partial integration of 
the first term in (2.10), one obtains with (2.4) and the integration theorem of Gauss 

(2.11) 

Here, ÓU(i,j) is the symmetrie part of the gradient Óu;,j and is given by 

ÓU(i,j) ~ ( ÓU;,j + ÓUj,i) , i, j = 1, 2, 3. (2.12) 

Equation (2.11) must be satisfied for all differentiable 6u with 6u = 0 on ru. For 6u, u E 
(H1(Q))3 , however, expression (2.11) still has a meaning. Here, H 1(Q) is the Sobolev space of 
order one. This space is defined by 

(2.13) 

where L2(Q) is the set of square integrable functions, i.e. 

(2.14) 

This space is also denoted by H0 (ü.). For more details about Sobolev spaces, see Ciarlet [18, 
Ch. 1]. As weak form of the deformation problem fora homogeneous, isotropic, linearly elastic 
medium we formulate: 

Determine displacements u; E H 1(ü.), strains i:;j E H 0(ü.), and stresses u;i E H 0(n), i,j 
1,2,3, such that (2.1}, (2.2} and {2.5} are satisfied, and (2.11} holds truefor all óu; E H 1(Q) 
with ÓU;, = 0 on ru, i = 1,2,3. 

From the derivation of (2.11 ), it is clear that the solution of the (strong) deformation problem 
(2.1)-(2.5) also satisfies this weak form. The weak form can be seen as a necessary condition 
for the solution of a minimization problem. Let the functional T be defined for u, E H 1(rt), 

1,2,3, by 

r(u) = ~1 (J·E·· dû-1 uf~ dü.-fr u·p* dr 
2 '1 'J ' ' ' ' ' 11 11 I'p 

(2.15) 
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where f and CJ are related to u by (2.1) and (2.2). The functional T is interpreted as the 
potential energy of the medium. The first term represents its internal elastic energy, while the 
second and third term represent the work of the external forces. 

Among all displacements which satisfy the essential boundary conditions (2.5), T is minimal 
for the solution u of the statie deformation problem for the elastic medium, see Johnson [36, 
Chs. 1, 2]. As a consequence, 

(2.16) 

for all test displacements OUi E H 1(fl) with OUi 0 on ru, i 1,2,3. This yields equation 
(2.11). 

In the above weak formulation, the solution u of the weak form (2.11) is sought in a subspace 
of ( H 1 ( 0.) )3 . In the nmnerical techniques that are discussed in this thesis, the solution of this 
weak form is approximated by restricting u and ou to be in a finite dimensional subspace. 
For some of these finite dimensional subspaces, one cannot always fulfil the essential boundary 
conditions u u* on r u exactly. Therefore, weak forms have to be used where the essential 
boundary conditions are taken into account in a different way. For example, consider a weak 
form where the essential boundary conditions are accounted for by means of extra terms coming 
from a Lagrange multiplier forrnulation of these conditions (see also Belytschko, Lu and Gu 
[7]): 

Determine displacements u; E H 1(rt), strains E;j E H0(n), stresses CJ;j E H0(n), and Lagrange 
multipliers À; E H 0(ru), i,j = 1,2,3, such that {2.1), (2.2} are valid, and such that 

{ 8u(i,i) CJ;j d0. - { 8u; Jt dO - { 8u; Pt dr ln ln lrp 
- { Ó Ài( U; u:) dr - f OUi À; dr 0 

lru Jru (2.17) 

for all ou; E H 1(û) and ÓÀ; E H 0(r u), i = 1, 2, 3. 

When r,.. only consists of a set of discrete points { Za}, one has to replace À by a finite set of 
Lagrange multipliers p.a}. Moreover, the two integrals in (2.17) concerning 8>..î and Ài then 
have to be replaced by finite sums over the discrete points Za, see Regen [30]. 

There are more weak forms of the deformation problem for an elastic medium where the essential 
boundary conditions u u* on r u are accounted for by means of extra terms as in a Lagrange 
multiplier formulation. For example, a weak form where the Lagrange multiplier À is replaced 
by its physical meaning, the traction t CJn along r u· Or, for example, a weak form where the 
essential boundary conditions are accounted for by means of a penalty term. For more details, 
see [30] and Lu, Belytschko and Gu [48]. 

2.2 Concepts of fracture mechanics 

In this section the field of study is considered which concerns failure of materials and which is 
known as fracture mechanics. In fracture mechanics attention is focused on cracked materiaL 
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1 

Mode 1 

opening mode 
Mode II 

sliding mode 
Mode III 

tearing mode 

Figure 2.1: Three fundamental modes /or the loading of material with a crack. 

For the description of the behaviour of such material in a loading situation, criteria are necessary 
for crack growth and for the direction and speed of crack growth. Some of these criteria are 
considered. 

2.2.1 Mechanics of crack growth 

A crack is an internal boundary of the material, which makes the material discontinuous. For a 
crack one distinguishes between the crack flanks and the crack front. The crack flanks are the 
surfaces which make up this internal boundary. These flanks are connected by a line which is 
called the crack front. In two dimensions the crack flanks are lines and the crack front consists 
of a single point. In that case, one also speaks of the crack tip. 

On the basis of energy dissipation, two types of fracture are distinguished: brittle fracture and 
ductile fracture, see Broek [13, Chs. 1, 2]. Ductile fracture is characterized by high energy 
dissipation due to plastic deformation and slip in the neighbourhood of the crack tip. This 
high energy dissipation is absent in brittle fracture. For this type of fracture, almost all the 
dissipated energy is due to the formation of new crack surfaces. 

In this thesis we restrict ourselves to brittle materials and, therefore, only brittle fracture is 
considered. Fracture for brittle material behaviour is characterized by the occurrence of only 
a small area of plastic deformation around the crack tip (small-scale yielding, see Rice [60]). 
This is in contrast with ductile fracture, where mostly large areas of plasticity are observed. 
Therefore, homogeneous, isotropic, linearly elastic material behaviour is assumed for brittle 
materials and plasticity in the vicinity of the crack tip is neglected. 

We distinguish between three fundamental modes for the loading of cracked material. These 
three modes differ in the orientation of the applied loads with respect to the crack flanks, see 
Figure 2.1. In the mode I loading situation, also known as the opening mode, the material is 



2.2. OONCEPTS OF FRAOTURE MEOHANICS 17 

loaded by tensile forces perpendicular to the crack flanks, while in the mode II loading situation, 
also known as the sliding mode, the material is loaded by shear forces which are parallel to 
the crack flanks and perpendicular to the crack front. Shear forces parallel to the crack front 
result in the mode lil loading situation, which is also known as the tearing mode. A general 
situation of loading of cracked material consists of a superposition of these three fundamental 
modes. Since in this study one is only concemed with planar problems, problems with a mode 
UI loading component will not be considered. 

2.2.2 Planar deformation near a crack tip 

Consider linearly elastic material which contains a crack. The material is loaded under planar 
conditions. The statie problem is considered, i.e. pü; = 0, i 1, 2, 3. It is assumed that volume 
forces ft are absent. We focus on the near-tip solution. Therefore, it is assumed that the crack 
is a semi-infinite line. The coordinate system {ei, e2} is chosen such that the crack tip is the 
origin and e1 is parallel to the crack fl.anks with {x1 :::; 0, x2 = O} corresponding with the crack. 

When the crack flanks are taken to be stress-free and when (anti-) symmetry conditions are 
applied to the displacement field, expressions can be derived for the displacements and the 
stresses for both mode I and mode II loading situations. This is described in several text 
hooks, see for instance [13, Ch. 3], Cherepanov [17, Ch. 3) or Kanninen and Popelar [37, Ch. 3]. 
Summation of these two solutions results in the solution for the displacements and the stresses 
for a mixed-mode planar loading situation. The stresses have the form 

Kr ·I ( ) KII n( ) o ( '-) ~jij e + rro=.lij e + O"ij + 0 vr , 
v 21fr v 2?rr 

(2.18) 

for r-tO and i,j = 1,2. In equation (2.18), rand Bare the local polar coordinates such that 
X1 = r COS 8 and X2 î' sin B, r > Ü, -?r :S: B :::; 1T, and O"~, i, j = 1, 2, are finite stresses at the 
crack tip. Since the crack surfaces are taken to be stress-free, the stresses ar2 and a~2 vanish, 
i.e. a~2 0. Stress intensity factors Kr and Kn are introduced as normalizing constants 
for the symmetrie and anti-symmetrie parts of the stress field. These factors are the fracture 
parameters for the corresponding modes I and II. They are expressed in units Nm-312 and are 
defined by 

lim v'2iT a22(r, 0), 
r-+0 

lim v'2iT 1712(r, 0). 
r-+0 

(2.19) 

(2.20) 

The dependence of the stresses on the polar angle e is given by the functions Il and fi~1 , 
i,j = 1, 2. Expressions for these functions are given in Appendix A. 

The corresponding displacement field which is discontinuous over the crack, is given by 

(2.21) 
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where u? are the displacements of the crack tip, i = 1, 2. The angular variation of the displace-
ments in (2.21) is given by the functions u{ and ufl, i = 1, 2. These functions can also be found 
in Appendix A. 

2.2.3 Fracture criteria 

In this thesis we restrict ourselves to the growth of pre-existing cracks. It is assumed that crack 
initiation has occurred so that at least one crack is present in the material. The deformation 
of the cracked material is governed by the equations for the deformation of a linearly elastic 
material under planar conditions, e.g. see (2.1), (2.3)-(2.5) and (2.9). These equations, however, 
are not sufficient for the analysis of cracks. Fracture criteria for crack growth and for the crack 
growth direction have to be postulated, see [13, Oh. 1] or [17, Oh. 1]. 

Two different types of fracture criteria are distinguished: local and global criteria. Local criteria 
are based on the stress field in the neighbourhood of the crack tip. Global criteria are criteria 
based on an energy balance. For both types of fracture criteria, we discuss a fracture criterion 
for a mixed-mode loading situation. This fracture criterion can then be used to decide whether 
an existing crack will extend, and if so, in which direction. 

First, consider a pure mode I loading situation. As follows from (2.18), the singular stresses 
in the neighbourhood of a crack tip are solely determined by the stress intensity factor K 1 . It 
is postulated that crack growth will occur when K 1 reaches the critical stress intensity factor 
K10 , i.e., when 

(2.22) 

The factor K 10 is a material parameter, the so-called mode I fracture toughness, and has to 
be determined experimentally. The direction of crack growth for this situation is trivial and is 
perpendicular on the direction of loading. 

Next, consider a crack which is a semi-infinite line. Let the crack be loaded by a combination of 
modes I and IL It is assumed that K 1 > 0. The critica! stress and the direction of crack growth 
have to be determined. We discuss a criterion based on the maximum circumferential tensile 
stress, see [13, Ch. 14], [17, Ch. 4] or Erdogan and Sih [22]. When the stresses (2.18) are trans
formed into the local polar coordinate system (r, B) around the crack tip, the circumferential 
tensile stress (}'9e is given by 

a00(r, B) = (}'11 (r, B) sin2 e + (}'22 ( r, B) cos2 8 - 2<T12 (r, e) sine cos e 

k (Krcos3 (~8) 3Kucos2 (~8)sin(~e)). (2.23) 

It is postulated that crack growth occurs in the direction (}P where the circumferential stress is 
maximal and where it reaches the critical stress for a mode I loading situation, that is when 

0, (2.24) 
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Figure 2.2: Crack propagation angle ()P in degrees for maximum circumferential stress criterion 
and f or the J -vector (- - -) . 

à2aee(r, Bp) 
f)()2 

aee(r, Bp) 

< 0, 

The solution of the first two equations for ()P is given by 

Substitution of (2.27) into (2.26) results in the criterion for crack growth 

4v'2KJ1 
-----'----------"-~ = K10· 

( Kl + 12Klr - K1VKJ +8KJ1 ) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The propagation angle ()P given in (2.27) is depicted for 0 ::; Kn / K 1 ::; 1 in Figure 2.2. In the 
case of a loading situation which is dominated by mode I, i.e. IKnl/ K 1 << 1, (2.27) and (2.28) 
can be approximated by the first two terms of a Taylor expansion in Ku / Kr. These expansions 
are given by 

8 = -2KII 14Kf1 0 (Kl1) 
P K1 + 3 KJ + KJ ' (2.29) 

(2.30) 
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Figure 2.3: Curves for J-integral. 

Another criterion for crack growth in a mixed-mode loading situation is the global criterion 
based on the amount of energy stored in the material and available for the creation of new 
crack surfaces. This amount is represented by a vector J which components have unit Jm-2

. 

The vector J is obtained by a so-called J-integral, see [60], 

(2.31) 

In (2.31), 'Y is a curve around the crack tip with begin and end points on the crack surfaces, 
and 'Yc and 'Y~ are two curves with the begin and end points of 'Y as their begin points and 
the crack tip as their end point, see Figure 2.3. The outward unit normal on these curves is 
denoted by n and We is the elastic energy density 

(2.32) 

Because of the integration theorem of Gauss and (2.1)-(2.3) and (2.9), one has for linearly 
elastic material behaviour in absence of volume forces that 

(2.33) 

when no singularity is inside the contour of integration. This means that (2.31) is independent 
of the choice of the curve 'Y-

In the local coordinate system with the crack tip as origin, the first component of the vector 
J equals the well-known energy release rate Q, see [37, Chs. 1, 3]. Since the components of J 
have the dimension of energy per unit of surface, J can be regarded as the energy flux per unit 
length into the crack tip, see [17, Ch. 5], or as the crack extension force per unit length, see 
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[13, Ch. 5]. Therefore, it is postulated that crack growth takes place when the stored energy 
per unit of surface reaches the critica! energy release rate Qc, i.e. 

IJl =9c. (2.34) 

The critica! energy release rate 9c is a material parameter. 

The components of J are related to the stress intensity factors K 1 and Ku in the case of brittle 
fracture. Substitution of the expressions (2.18), (2.21) into (2.31), together with an integration 
curve 'Y close to the crack tip, yields that the components of J in the local coordinate system 
are given by, see [13, Ch. 5] or [60], 

11 = (;;; + 1) (K 2 + K 2 ) 
BG I Il ' 

(;;;+l) K K 
-~ I IJ, 

where K = 3 - 411 in case of plane strain and i;, = (3 - 11)/(l + 11) in case of plane stress. 

Substitution of (2.35), (2.36) into (2.34) results in 

( 
4 2 2 4 )

112 
K 1 +6K1 Ku + Ku = 9c. 

(2.35) 

(2.36) 

(2.37) 

When the critical stress intensity factor for a pure mode I loading situation is substituted into 
(2.37), a correspondence between 9c and K10 is obtained, i.e. 

(i;, + 1) K2 - n 
8Q Ia -"'1C· (2.38) 

In absence of volume farces, the vector J can be seen as the negative gradient of the potential 
energy per unit length of the material with respect to the direction of crack growth, see [37, 
Oh. 3]. Hence, the release of energy due to crack extension is maximal in the direction of J. 
Therefore, the direction of J is taken as the direction of crack growth. Together with (2.35) 
and (2.36), this means that the angle Op of crack propagation is given by 

(2.39) 

For small values of !Knl/ K 1, the criterion (2.39) returns small propagation angles as is expected. 
However, in the case of mode II dominated problems, i.e. IK ui/ K 1 > 1, the criterion is not 
suitable. This is seen, for instance, from the fact that (2.39) is symmetrie in the stress intensity 
factors. Hence, for a pure mode II loading situation the same propagation angle is obtained as 
for a pure mode I loading situation. 

In Figure 2.2, the propagation angle (2.39) is depicted for 0 s; Ku / K 1 S L It is seen that for 
small values of KII/K1 the difference between the propagation angles (2.27) and (2.39) is small. 
This can be deduced from the fact that the leading terms of the Taylor expansions of (2.37) and 
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(2.39) in terms of Kn / K1 are exactly the same as those for the maximum circumferential stress 
criterion, see (2.29), (2.30). Therefore, it is concluded that the fracture criteria (2.37), (2.39) 
and (2.27), (2.28) are equivalent for fracture problems dominated by mode I, i.e. !Kul/ K 1 << 1. 
For fracture problems dominated by mode II, i.e. !Kul/ K1 > 1, the criteria (2.37), (2.39) are 
not suitable and (2.27), (2.28) have to be used. 

2.3 Finite element method 

In the previous section aspects of fradure mechanics have been introduced. Criteria have been 
presented for crack growth and for the direction of crack growth. To apply these criteria, the 
values of the fracture mechanics parameters, such as the stress intensity factors and the J
vector, have to be determined. They are computed from the displacements, strains and stresses 
in the neighbourhood of the crack tip. These quantities can be found from the problem of planar 
deformation of a linearly elastic medium, e.g. see (2.1), (2.3)-(2.5) and (2.9). In general, this 
problem cannot be solved exactly. Numerical methods are necessary to provide approximate 
solutions. 

The finite element method, in short FE--method, is a numerical method for the solution of 
a boundary value problem, like (2.1), (2.3)-(2.5) and (2.9). Hence, this method can provide 
approximate values for displacements, strains and stresses in a material. The method uses a 
weak form of the deformation problem. With the help of a division of the material into a 
number of subdomains, so-called elements, then approximate values are obtained. 

In this section the main concepts of the FE--method are presented. For a more thorough 
description of the method, the reader is referred to Hughes [33], [36] or Zienkiewicz [75]. The 
section ends with some aspects and problems of the application of the FE--method to fracture 
mechanics. 

2.3.1 Approximation by means of FE-shape functions 

Consider a domain n in two-dimensional space, which is divided into a number of elements fle, 

e = 1, ... , N, see Figure 2.4. For these elements one often takes triangles or quadrilaterals. 
This division is such that 

N 

n = U n" (2.40) 
e=l 

Two elements can only have parts of their boundaries in common. To be more specific, when two 
elements have a part of a side in common, they have the entire side in common. Furthermore, 
a set of nodal points { Xa} a=l,".,n is chosen such that the vertices of the elements are among the 
nodal points, see Figure 2.4. Interior points or boundary points of elements may also be among 
the nodal points. Hence, the division of ~ into elements is fully described by the specification 
of the nodal points of each element. Such a specification of nodes for the element division is 
called the connectivity of the nodal points. 
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Figure 2.4: Element division and nodal points for D. 

With the help of the connectivity of the nodal points, a global shape function <Pa(x) is defined 
for each nodal point Xa. These shape functions satisfy the selectivity property 

<Pa(xb) = 8ab, a, b = 1, ... 'n. (2.41) 

Each shape function <Pa has a compact support, since <Pa is non-zero only in the elements 
surrounding Xa. Furthermore, <Pa is zero on the sides of the elements on which the nodal point 
Xa is not positioned. Hence, when Xa fj. an, <Pa vanishes on the boundary an. 
An approximation uh for a function u on n is then given by 

n 

uh(x) = L Ua</Ja(x), (2.42) 
a=l 

where ua = u(xa)· Due to (2.41), uh interpolates u in the nodal points. Moreover, the values 
of U on the boundary an are fully determined by those Ua for which Xa E an. 
The way in which the shape functions are obtained for a FE-division is now described for a 
two-dimensional domain n. For x E De and Xa fj. n" we have <Pa(x) = 0. When Xa E De the 
value of <Pa(x) is determined in the following way. 

For each group of elements De of the same type (triangle or quadrilateral) which contain the 
same number of nodal points, a standard element Ds is considered. For a quadrilateral for 
instance, this standard element is a square. The Cartesian coordinates in Ds are denoted by 
Çi and 6. Each nodal point Xa E De corresponds with a local node eb E Ds. Local shape 
functions <i?b(e) correspond with the local nodes. These functions are polynomials such that 
the selectivity property (2.41) with respect to the local nodes holds true and such that 4?b 
vanishes on the sides of Ds on which eb is not positioned. An isoparametric mapping from the 
standard element Ds onto the element De is then given by 

x(e) = LXa(b)4?b(e), (2.43) 
b 
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4 3 3 

1 2 1 2 

(a) (b) 

Figure 2.5: (a) Quadrilateral element, (b) triangular element. 

where e E n., the index b sums over the local nodes and Xa(b) is the nodal point which 
corresponds with the local nodal point eb. Note that x(eb) Xa(b)· 

With the help of the isoparametric mapping (2.43) the global shape functions on ne are given 
by 

(2.44) 

with e such that x = x(e). 

In order to have a correct definition of <Pa by means of (2.44), the isoparametric mapping (2.43) 
has to be bijective. Therefore, the element ne may not be distorted too much from its original 
shape, the standard element n •. 
The definition of the FE-shape functions by means of (2.43) and (2.44) is called isoparametric, 
since the same set of local shape functions is used in both equations. There exist more general 
(non-isoparametric) FE-shape functions, where different sets of local shape functions are used 
for (2.43) and (2.44), see [33]. 

As an example of isoparametric shape functions, consider the four-node quadrilateral element 
depicted in Figure 2.5a. The standard element is n. {( 6, 6) 1 -1 ::; 6 ::; 1, -1 ::; 6 ::; 1} 
with the vertices as the local nodes. The local shape functions tfb are bi-linear in the coordinates 
Ç;, 

tp1(e) = c1- 6)(1- ç2)/4, 

rp3(e) = c1+6)(1+6)/4, 

ip2(e) c1+6)(1 - 6)/4, 
ip4(e) = c1 6)(1+6)/4. 

(2.45) 

(2.46) 

The isoparametric mapping (2.43) for this quadrilateral is bijective only when the quadrilateral 
contains no angles larger than 11'. The global shape functions <Pa can then represent a linear 
function on ne exactly and these shape functions are bi-linear in the coordinates x; only when 
the quadrilateral is a rectangle. For more details, see [33, Ch. 3] or [75, Ch. 7]. 

In Figure 2.5b, a three-node triangular element is depicted. The standard element for this type 
of element is n. = {(Çi, 6) 1 0::; 6 5 1, 0 5 6 5 1, 6 + 6 5 1} with the vertices as the local 
nodes. The local shape functions 'Pb are linear in Ç;, 

(2.47) 
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The isoparametric mapping (2.43) is then linear and bijective. The global shape functions <Pa 
are then also linear in the spatial coordinates x; and vanish on the side opposite to the node 

For the isoparametric mapping (2.43) restricted toa side of the standard element, the non-zero 
terms correspond with the nodal points on this side. Because of the symmetry in the local shape 
functions, the global shape functions are then continuous across element boundaries. In general, 
the derivatives of the global shape functions are not continuous across element boundaries. 

Due to definition (2.44) the global derivatives of the functions </>a(b) are related to the 
local derivatives of <Pb by means of the Jacobi matrix of the isoparametric mapping (2.43), i.e. 

8r.pb(e) (ax)-1 

ae ae (2.48) 

This yields that the global derivatives of the shape functions become singular when the Jacobian 
of the isoparametric mapping (2.43) is singular. Later it will be shown that with this feature 
one can capture a 1/ vr-singularity with the global shape functions. 

2.3.2 Discrete equations 

Consider a planar problem of deformation of an elastic medium, e.g. see (2.1), (2.3)-(2.5) 
and (2.9). With the help of a division into finite elements of the domain 0, one can obtain 
approximate solutions for the displacements, strains and stresses in the medium. Therefore, 
one uses the weak form (2.11) of the deformation problem and one sets 

n 

u(x) = L da</>a(x). (2.49) 
a=l 

The nodal displacements da are obtained according to a Galerkin approach. The test displace
ments 8u in (2.11) are restricted to be of the same form as u. This leads to a linear system for 
the nodal displacements of the form 

Kd=f, (2.50) 

where the vector d consists of the nodal displacement vectors da, i.e. 

(2.51) 

The stiffness matrix K and the right-hand si de vector f are built from the 2 x 2 nodal submatrices 
Kab and the 2 x 1 nodal subvectors fa, respectively, which are given by 

kB~DBbd0., a,b 1, ... ,n, 

f ef!af*dO+ f q>"p*df, a=I, ... ,n. lri. lrp 

(2.52) 

(2.53) 
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lt is emphasized that the submatrices K 00 and the subvectors fa are nodal contributions and 
not element contributions to K and f, respectively. However, in practice these submatrices and 
subvectors are determined for each element as is described in the sequel of this section. The 
matrix Ba consists of the derivatives of the shape functions <Pa, 

[ 
rPa,1 0 l 

Ba 0 <Pa,2 , a = 1, ... , n, 
rPa,2 </Ja,l 

(2.54) 

and the 3 x 3 matrix D represents the constitutive law of the elastic material. For instance, for 
a situation of plane stress, the matrix D is given by 

[ ~ ~ ~ l · 
Q Q 12v 

(2.55) 

The submatrix Kab is non-zero only when <Pa and <Pb are non-zero on a common part, i.e., when 
Xa and Xb both belong to a common element Üe· 

In order to meet the essential boundary conditions u u* on rui the nodal displacements da 
for Xa E r" are set equal to u*(xa) and the corresponding equation.s in (2.50) are skipped. With 
the solution d of (2.50), equation (2.49) then results in approximations for the displacements 
in the material. Taking derivatives of (2.49) and using the constitutive equations, e.g. (2.9), 
results in approximate values for the strains and stresses. Since FE-shape functions have 
mostly discontinuous derivatives across element boundaries, the stresses and strains obtained 
from (2.49) are normally not continuous in the domain. 

2.3.3 Numerical integration 

To obtain the stiffness matrix K and the right-hand side vector f, integrals over the domain 
n and the boundary r P have to be calculated. In general, the exact values for these integrals 
cannot be found. Numerical integration is necessary to obtain the entries for K and f. The 
shape functions are given per element ne by means of a transformation of local (polynomial) 
shape functions given on a standard element n.. Furthermore, the derivatives of the shape 
functions are generally discontinuous across element boundaries. Therefore, numerical integra
tion is performed for each element. For instance, the contribution of rle to (2.52) is computed 
by means of 

(2.56) 

The integral over the standard element n. is then evaluated by means of a particular numerical 
integration rule. In most cases, Gaussian quadrature is taken as integration rule, see Atkinson 
[2, Ch. 5). In general, numerical integration does not lead to the exact element contribution. 
However, by taking an integration rule of a specific order which depends on the order of inter
polation in the standard element, sufficiently accurate element contributions can be obtained. 
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Figure 2.6: Part of FE-discretization near crack tip. 

Summation of all the element contributions (2.56) leads to the nodal submatrix matrix Ka1" 

In the same way the domain integral for the nodal right-hand side subvectors fa are obtained. 
The boundary integrals for fa are obtained by surnrnation of the contributions of the non-empty 
intersections of r p with the element boundaries. 

A schematic set-up of a FE-analysis fora (cracked) rnaterial domain is given in Appendix B. 

2.3.4 Finite element method in fracture mechanics 

By means of FE-analysis of cracked rnaterial, fracture mechanics parameters can be obtained. 
These parameters can then be used in fracture criteria, such as (2.27) and (2.28). Some aspects 
and problems of the application of the FE-method for fracture mechanics are now considered. 

A crack in the material can be easily modelled by means of the connectivity of nodal points. 
Consider a part of a FE-discretization near a crack tip as depicted in Figure 2.6. On both 
crack surfaces nodal points are present, but these nodal points are not connected by means 
of an element. Hence, the FE-shape functions are discontinuous over the crack. Since the 
displacements are also discontinuous over the crack, see (2.21), the shape functions can be used 
in the representation (2.49) of the displacements. 

It has been shown in (2.21), that the displacements near the crack tip behave like y'r with r 
being the distance to the crack tip. To obtain an accurate approximation of the displacements 
by means of a FE-discretization, special crack tip elements are used near the crack tip, see 
Barsoum [3], Lim, Johnston and Choi [47], Stern [66], and Stern and Becker [67]. These 
elements provide shape functions which embody the 1/ y'r-singularity of the stresses in their 
derivatives. A short description of the isoparametric finite elements presented in [3] now follows. 

Consider the triangular element Üe depicted in Figure 2.7. This collapsed quadrilateral element 
is given by eight nodal points x 1, .•. , Jes. The nodes x 1 , x4 and x8 coincide with the crack tip and 
the nodes x5 and x7 are on one fourth of the element sides on which the crack tip is positioned. 
As standard element n. the eight-node serendipity square is taken with bi-quadratic local shape 
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L -- 41 

Figure 2.7: Crack-tip element of Barsoum. 

functions, see [33, Ch. 3] or [75, Ch. 7]. Due to the coincidence of the nodes x1 , x4 and x8 and 
the special chokes for the quarter point nodes x 5 and x 7 , the Jacobian of the isopararnetric 
mapping (2.43) is singular on the side of n, which corresponds with the crack tip. This yields 
with (2.48) singular derivatives of the global shape functions in the crack tip. The singularity 
equals 1/ Jr along the two element sides on which the crack tip is positioned. 

From a FE-analysis of cracked material, fracture mechanics parameters can be obtained in 
several ways. When crack-tip elements are used, the cornputed strains and stresses reveal a 
l/Jr-like singularity. With the help of the expressions (2.18) and (2.21) values for the stress 
intensity factors can then be found frorn the computed displacements and stresses. Due to the 
finite representation of the displacements in the neighbourhood of the crack tip, the angular 
variation in displacements and stresses cannot be represented exactly. Therefore, the use of 
(2.18) and (2.21) does not necessarily have to lead to very accurate values for KI and Ku. 

The stress intensity factors can also be obtained from the vector J with the help of (2.35) and 
(2.36). The vector J, given by (2.31), can be obtained by means of contour integration. For the 
computation of J in the case of a FE-analysis, one should account for the discontinuities in the 
strains and stresses across element boundaries. Furthermore, due to the finite representation 
of the displacements close to the crack tip, a correction for the crack surface integrals in (2.31) 
has to be used as introduced by Eischen [20]. This correction is considered in more detail in 
Section 4.4. 

The vector J for a FE-analysis can also be obtained by the method of crack extension, see 
Ishikawa [35] and Parks [59]. Crack extension can be easily modelled in the FE-method by a 
shift of only some nodes near the crack tip, resulting in a small change in the stiffness matrix K. 
From this shift the potential energy of the rnaterial for a slightly longer crack can be obtained 
without a complete FE-analysis for the material. Since J can be regarded as the negative 
gradient of the potential energy per unit length of the material with respect to the direction of 
crack growth, see [37, Ch. 3], J can be obtained by using the values of the potential energy for 
several crack extensions. Contour integration is thus avoided for the computation of J. 

With the computed fracture parameters, the direction of crack propagation can be determined. 
However, when the FE-rnethod is used for the simulation of crack propagation, in successive 
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analysis steps, generally, the same mesh of fi.nite elements cannot be used. After each propaga
tion step local (and global) remeshing of the set of elements is necessary. Extra nodal points 
and a different connectivity have to be introduced to model the new crack surfaces, see Sumi 
[68]. Furthermore, when crack-tip elements are used, these elements have to be shifted to the 
new position of the crack tip, see Nishioka and Atluri [57]. This process of remeshing and 
new assembly of the stiffness matrix can be very time-consuming for complicated crack paths. 
Moreover, it is not always possible possible to generate an element-division for each crack path 
without distorted finite elements. 

Recently, see Nayroles, Touzot and Villon [56], Belytschko, Gu and Lu [5], [7] and [48], a 
numerical technique has been introduced for application to fracture mechanics, which differs 
from the FE-method. A numerical method is used which provides shape functions without 
using any connectivity of nodal points. Hence, there are no remeshing problems in the case of 
crack propagation. In the remaining part of the thesis, this method is studied and applied to 
fracture mechanics problems in two dimensions. 
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Chapter 3 

Connectivity-free approximation 
techniques 

For an element-free numerical solution method for a boundary value problem, based on a weak 
formulation of the problem, one has to use an approximation technique which provides shape 
functions without the use of a connectivity of nodal points. In this chapter some of these 
techniques are considered. First, a technique known as moving least squares approximation, in 
short MLSA, is introduced. Since the approximation of quantities near a crack for MLSA is 
not straightforward, several ways of approximation near a crack are considered. The chapter 
concludes with an overview of other approximation techniques which are free from a connectivity 
of points. By a comparison of these techniques with MLSA, it is made clear why MLSA is 
preferred in the element-free numerical solution method which is described in Chapter 4. 

3.1 Moving least squares approximation 

Moving least squares approximation is a technique which provides an approximation of a func
tion without the use of a connectivity of points. The technique uses a set of nodal points, a 
set of weight functions, and a set of basis functions. At every point of the domain, the ap
proximant of a function is a linear combination of the basis functions. The coefficients for the 
basis functions in this linear combination differ from point to point and are computed with the 
help of the weight functions and the nodal values of the function under consideration. As a 
consequence, a system of equations has to be solved at every point of the domain in order to 
obtain the coefficients for the basis functions. Hence, this way of approximation is computa
tionally expensive in comparison with approximation by finite elements, where the approximant 
is given per element. The MLSA-approximant is obtained, however, without the use of any 
connectivity of nodal points. 

Moving least squares approximation is introduced for a two-dimensional domain n. It is easy 
to see that this introduction applies for any space dimension. It is shown that MLSA can be 
described in terms of shape functions. Some essential features of these shape functions are 
considered and examples of shape functions are given. A more detailed description of MLSA 
can be found in Lancaster and Salkauskas [43], [44, Chs. 2, 9]. 

31 
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3.1.1 Approximation by means of MLSA-shape functions 

Consider a domain ü in two-dimensional space (e.g. the domain n for the problem of deforma
tion of an elastic medium, see Section 2.1). To approximate a certain function u(x) on n, a 
finite set {Pc(x)}c=l,".,m of so-called basis functions is considered. This set can, for instance, be 
a finite subset of the set of monomials in the space coordinates {l, x1 , x2 , xf, x 1x2 , ••• }. 

The moving least squares approximant uh(x) of a function u(x) on ü is given for x E D by a 
linear combination of the basis functions Pc(x) with coefficients µc(x), that is by 

where 

p(xf 

µ(xf 

[P1(x) P2(x) 
[µ1 (x) µ2(x) 

Pm(x)], 
µm(x)]. 

(3.1) 

(3.2) 

(3.3) 

In order to determine the vector µ(x), a set of nodal points {xa}a=l, .. "n is chosen together with 
a set of weight functions {wa(x)}a=l, ... ,n defined on a neighbourhood of D such that Xa ED, 
0 ::::; wa(x) ::::; 1 and wa(xa) > 0, a = 1, ... , n. Here one can think of weight functions which 
have a compact support, i.e., which are only non-zero on a small bounded subset of n. 

The entries of µ(x) are obtained for each x En by minimization with respect toµ of the sum 

S(µ) = t Wa(x) (p(xaf µ(x) ua)
2

. (3.4) 
a=l 

Here, Ua is the value of u in Xa, i.e. Ua = u(xa), a l, ... n. If the weight functions Wa have 
compact support, the summation in (3.4) consists only of a few terms and the value of uh(x) 
is then fully determined by a few nodal values Ua· 

From (3.4) it is seen that the entries of µ(x) are determined by means of a weighted least 
squares procedure. Since the weights di:ffer from point to point, one speaks of moving least 
squares approximation. Equation (3.4) can also be written as 

(3.5) 

where u is the vector with entries Ua, and a = 1, ... n such that wa(x) > 0, and the entries of 
the matrices P and W are given by 

P00 = Pc(xa), c 1,"., m, a E {i 1,.", n [ w;(x) > O}, 

Wab Wa(x)c5ab 1 a, b E {i 1, ... , n 1 wi(x) > O}. 

(3.6) 
(3.7) 

The fact that S(µ) has to be stationary with respect to µ(x) results in a set of linear equations 
for µ(x), 

PW(x)Pr µ(x) PW(x)u. (3.8) 
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For the sake of simplicity, the following short-hand notation is introduced 

A(x) = PW(x)PT. (3.9) 

When the system of equations (3.8) bas a unique solution µ(x) for each x E n, we will say 
that MLSA is well-defined for the domain n. This is the case if and only if the rank of the 
matrix P equals m, the number of basis functions Pc, see Hegen [29] or [43]. Hence, a necessary 
condition for MLSA to be well-defined for n is that at least m weight functions are non-zero 
in each x E n. At the end of this section it is explained in which way MLSA can be made 
well-defined for n. For the remaining part of this section it is assumed that this is indeed the 
case. When MLSA is well-defined, a unique value uh(x) can be found for each x En by means 
of (3.1). It is noticed that multiplication of all the weight functions by an arbitrary positive 
scalar does not change the approximant and its derivatives. 

The approximant uh can also be expressed with the help of shape functions. One can write 

n 

uh(x) = L Ua</>a(x), (3.10) 
a=l 

where the shape functions </>a, a = 1, ... , n, are defined by 

. ( { 2:~ 1 Pc(x) [A-1(x)PW(x)Jca, Wa(x) > 0, 
<Pa x) = 

0, Wa(x) = 0. 
(3.11) 

Examples of shape functions <Pa are shown later in this section. Equation (3.11) shows that 
wa(x) = 0 yields that ef>a(x) = 0. Hence, when Wa has compact support, <Pa also has com
pact support. Derivatives of the shape functions are obtained by differentiation of (3.11 ). 
The derivative of the inverse A-1(x) can be obtained easily by differentiation of the identity 
A(x)A-1(x) I, I being the identity matrix. 

The smoothness of the approximant uh and the shape functions <l>a are related to the smoothness 
of both the basis functions and the weight functions. Let Ck(fl) be the space of k times 
continuously differentiable functions on n. Then, when Wa E Ck(fl), a = 1, ... , n, k E JN, and 
Pc E C1(û), c = 1, ... , m, l E IN, one has that uh E C 5 (!l) and </>a E C'(!l), a = 1, ... , n, where 
s min(k, l). A proof of this is found in [29] and [43]. 

Replacing u(x) by Pc(x), or equivalently Ua by Pc(xa), results in uh(x) Pc(x), i.e. 

n 

Pc(x) L Pc(Xa)<l>a(x), c = 1, ... 'm. (3.12) 
a=l 

Hence, the basis functions can be represented exactly by the shape functions. However, the 
shape functions are not a linear combination of the basis functions. For instance, when the basis 
functions are monomials in the space coordinates, the shape functions are not polynomial as is 
shown in the sequel. Let the set of basis functions {Pc}c=l"."m be replaced by the set of basis 
functions { qc} c=l,".,m consisting of linear combinations of Pc such that the same set of functions 
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is spanned by the two sets. Then, since (3.1) is linear in the basis functions, MLSA results for 
both sets of basis functions in the same approximant and the same set of shape functions. 

A disadvantage of MLSA is that for each point under consideration a linear system must 
be solved to obtain the value of the approximant uh and the shape functions </>," This is a 
burdensome task. In [48] matrix inversion is avoided by orthogonalization of the basis functions 
with respect to the weight functions. It is claimed that the computational cost of solving the 
system is then reduced. The computational cost of the orthogonalization procedure, however, 
are of the same order as the cost of matrix inversion. Orthogonalization of the basis functions 
is equivalent to solving the linear system (3.8) by means of the singular value decornposition 
of the matrix A(x). Since the matrix A(x) can become poorly conditioned in some cases, 
orthogonalization is preferred to matrix inversion. 

In the orthogonalization procedure, a new basis {qc}c=l"",m is obtained from the original basis 
{Pc}c=l"."m by a Gramm-Schmidt orthogonalization procedure. These basis functions qc are 
linear combinations of the functions Pc, where the scalars depend on the coordinates of the 
point under consideration x. The basis {qc}c=l, .. "m is given by 

q1(x,x) = P1(x), 
c-1 

qc(x, x) Pc(x) - 2::: o:cd(x)qd(x, x), c = 2, ... , m, 
d=l 

where 

The basis functions qc are orthogonal with respect to the weight functions, 

Tl 

z:::: Wa(X.)qc(Xa, x)qd(Xa, x) = 0, C, d l, ... , m, C =j: d, 
a=l 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

as can easily be verified. Hence, one speaks of orthogonal basis functions qc. When the ortho
gonal basis is used for MLSA instead of the original basis, the matrix A(x) is diagonal and the 
coe:fficients µc(x) can be found directly. They are given by 

(3.17) 

Taking Ub Óab yields that the shape functions a l, ... , n, given in (3.11), can be written 
for x = x as 

(3.18) 

Note that this expression for the shape functions is also valid for indices a with wa(x) 0. 
Derivatives of the shape functions can be obtained by taking derivatives of (3.18) and (3.13)
(3.15). 
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(a) (b) 

Figure 3.1: (a) Rectangular set, (b) triangular set. 

From (3.18) it is clear that indeed </>a E 0 8 (û), s = min(k, l), when Wa E Ck(ü), a = 1, ... , n, 
k E IN, and Pc E 0 1(0), c 1, ... , m, l E IN. Furthermore, (3.18) shows that when the 
basis functions are monomials, the shape functions are not necessarily polynomial, and that 
the influence of the weight functions on the values of the shape functions is only relative. 

In general, the shape functions <l>a do not have the selectivity property 

<l>a(xb) = Dab, a, b l, ... , n. (3.19) 

As a consequence, the constants Ua do not have to be the nodal values of uh, 

(3.20) 

Moreover, in contrast with the finite element (in short FE) shape functions described in Sec
tion 2.3, the shape function efJa corresponding to the nodal point Xa (/_ OÜ can be non-zero on 
the boundary of the domain. 

There is a possibility to enforce property (3.19). For this purpose, one should take the constant 
function on n in the basis and one should use weight functions of the form 

(3.21) 

where /Ja E IN, f3a > 0, and lxl is the Euclidean norm of x. The functions ta(x), a 1, ... , n 

are defined on a neighbourhood of n such that 0 ::::; ta(x) :::; 1 and ta(xa) > 0, a 1, ... , n. 

The weight functions (3.21) are singular in the nodal points. For such weight functions, MLSA 
still defines shape functions, which remain finite and which satisfy the smoothness property. 
Furthermore, the selectivity property (3.19) holds true. For more details the reader is referred 
to [29] and [43]. 

Other situations where the selectivity property (3.19) is satisfied, are situations where the 
shape functions coincide with shape functions originating from a finite element discretization. 
Consider four nodal points of a rectangular set of nodal points, see Figure 3.la. Let the 
monomials 1, xi, x2 and x 1x2 form the set of basis functions and let the weight functions Wa 

for these four points be positive in the interior of the rectangle formed by these four points and 
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Figure 3.2: C 0 -weight functions of Gaussian type. 

be zero on the sides of the rectangle on which Xa is not positioned. When all the other weight 
functions are zero on this rectangle, MLSA results in bi-linear interpolation, as can be seen 
from (3.12). Hence, the shape functions <l>a are bi-linear on the rectangle and satisfy (3.19). 
These shape functions are equal to those of a finite element interpolation for such a rectangle, 
see (2.43)-(2.46). 

When the four nodal points form a non-rectangular quadrilateral , the shape functions <l>a emer
ging from MLSA are still bi-linear. The fini te element interpolation for such a quadrilateral via 
the isoparametric mapping (2.43), however , results in shape functions which are not bi-linear. 
In that case, the shape functions do not coincide with those emerging from MLSA. 

Another situation where the shape functions satisfy (3.19) and coincide with the shape functions 
of a fini te element interpolation, is depicted in Figure 3.1 b. Assume for this triangular set that 
the monomials 1, x1 , x 2 form the set of basis functions. Let the weight functions Wa for these 
three points be positive in the interior of the triangle formed by these points and be zero on 
the side opposite to Xa· When all the other weight functions are zero on this triangle, MLSA 
results in linear interpolation and the shape functions <l>a are linear on the triangle and satisfy 
(3.19). These shape functions are exactly the same shape functions which are used in a linear 
finite element interpolation for such a triangle, see (2.43), (2.44) and (2.47). 

Hence, it is possible to obtain shape functions by MLSA which satisfy (3.19). In some situations 
these shape functions are identical to shape functions which are used in the finite element 
method. 

3.1.2 Examples of shape functions 

Some examples of shape functions obtained by moving least squares approximation are now 
presented. To this end, several types of weight functions are introduced first. The following 
weight functions with compact support are taken: 
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Figure 3.3: Equidistant pattern of nodal points. 

• C 0-weight functions of Gaussian type with circular disk as support: 

{ 
exp(-rJ/sJ)-exp(-RJ /sJ) 

Wa(x) = 1-exp(-R;l/s:;J ) ra:'.:'.: Ra, 

0, ra> Ra, 
(3.22) 

where ra = lx - xal is the distance between x and Xa and Ra > 0 is the radius of the 
support of Wa· The constants sa control the relative weights. 

• c0-weight functions which are products of two one-dimensional versions of weight func
tions of Gaussian type. 

• C 1-weight functions of polynomial type with circular disk as support: 

( ) -{ l-6R'~+8R'~-3Rr·:, ra:'.:'.:Ra, 
Wa X - a a a 

0, ra>Ra, 
(3.23) 

where ra= lx - Xal and Ra> 0. 

• C 1-weight functions which are products of two one-dimensional weight functions of poly
nomial type. 

• Weight functions of singular type: 

(3.24) 

where ra= lx - xal and ta(x) is one of the previous weight functions. 

The C 0-weight functions are differentiable except on the boundary of their supports. In a 
numerical implementation the derivatives on this boundary are set equal to zero. The discon
tinuity in the derivatives for the Gaussian weight functions can be neglected when sa is chosen 
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Figure 3.4: Cross section of ( a) shape functions <Pa and (b) derivatives <l>a,1 for square set of 

nodal points. 

such that Ra/ sa ;::: 4. For an example of a weight function of Gaussian type, see Figure 3.2. 
The other types of weight functions, except those of singular type, have a similar form. Some 
examples of shape functions are now depicted. Consider a square set of nodal points, i.e. , the 
nodes are vertices of a set of squares in the domain as in Figure 3.3. Let the coordinate system 
be such that the nodes are positioned along the lines x 1 = constant and x2 = constant. The 
set { 1, x1 , x 2 , x1 x2 } of bi-linear functions is taken as set of basis functions and products of one
dimensional Gaussian weight functions are taken as weight functions with the sealing constant 
set equal to sa= Ra/4. Let the grid size hof the nodal distribution be equal to the distance in 
the x1-direction (and hence, also the distance in the x2-direction) between the nodes. Different 
radii Ra for the supports of the weight functions are taken. Cross sections of the resulting shape 
functions <Pa and their derivative <l>a,I for a particular nodal point Xa are depicted in Figure 3.4. 

This figure shows that the shape functions indeed coincide with the FE-shape functions when 
the supports of the weight functions are equal to the union of the surrounding squares. For 
relatively small supports, the shape functions are similar to these FE-shape functions and 
hence, the shape functions emerging from MLSA and their derivatives are locally strongly non
polynomial. From Figure 3.4 it is seen that the shape functions behave locally as high-order 
polynomials for relatively large radii Ra for the supports of the weight functions. The shape 
functions depicted in Figure 3.4 show that the selectivity property (3.19) does not hold true 
and that the shape functions are not piecewise polynomial. 

Different radii Ra for the supports of the singular weight functions are also taken. Cross sections 
of the obtained shape functions <Pa and derivatives <l>a,l are depicted in Figure 3.5. This figure 
shows that the selectivity property (3.19) holds true. For both relatively small and relatively 
larger radii for the supports of this type of weight functions, the shape functions are similar to 
the FE-shape functions for such a set of nodes. Hence, the shape functions and t heir derivatives 
are strongly non-polynomial on small parts of the domain. 
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Figure 3.5: Cross section of (a) shape functions rPa and (b) derivatives rPa,l for square set of 
nodal points, singular weight functions. 

From the previous examples it is concluded that the shape functions are locally strongly non
polynomial in the case of singular weight functions. This is also the case for non-singular 
weight functions with supports which are just large enough such that MLSA is well-defined. 
For non-singular weight functions with relatively large supports, the shape functions are locally 
high-order polynomials. In Chapter 4 the element-free Galerkin method is described which 
uses shape functions obtained by MLSA. In this method, numerical integrations are performed 
in a more or less arbitrary way. Therefore, for a good performance of the method, the shape 
functions should locally behave as high-order polynomials. Hence, non-singular weight functions 
are used with relatively large supports. Singular weight functions and non-singular weight 
functions with relatively small supports are not used. 

3.1.3 Parameters for MLSA 

This section ends with some considerations about the parameters of MLSA. A description is 
given of the distributions of nodal points, the weight functions, and the basis functions which 
are used for MLSA in the remaining part of the thesis. Moreover, it is explained in which way 
MLSA can be made well-defined. 

Nodal points Xa, a = 1, ... , n, are mostly placed equidistant in two (mutually orthogonal) 
directions, see Figure 3.3. Extra patterns of nodes are added to such a distribution on parts 
of the domain where more accuracy is required. Such a nodal distribution has the advantage 
that it can be generated easily. Furthermore, such a distribution is more convenient for the 
definition of weight functions, in order to accomplish that moving least squares approximation 
is well-defined for the domain. 

As set of basis functions, a subset of the set of monomials in the space coordinates is mostly 
considered. In the case of fracture mechanics problems, however, a special non-polynomial 
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function is added to the basis. This is described in the next section. The non-singular weight 
functions (3.22), (3.23) are considered. For the weight functions of Gaussian type, the scalar 
sa is set equal to sa = Ra/4, a = 1, ... , n. Since these weight functions have a circular disk 
as support, there are no directions introduced in the shape functions obtained by moving least 
squares approximation. 

When nodal points Xa, a = 1, ... , n, and basis functions Pc(x), c = 1, ... , m, are given, the radii 
Ra, a = 1, ... , n, of the supports of the weight functions should be chosen such that MLSA 
is well-defined for each point x of the domain D. For a genera! distribution of nodal points, 
this cannot be verified. Therefore, one can hardly find a way to determine radii Ra such that 
MLSA is well-defined for D and such that these radii are not too large in comparison with the 
dimensions of the domain D. 

For distributions of nodes which are equidistant in two directions, however, it is possible to 
guarantee that MLSA is well-defined for D. It is assumed that one can think of the domain 
D divided into a set of quadrilaterals with the nodal points as vertices. Such a division is not 
unique and in some cases (e.g. a superposition of an arbitrary set of nodes on a part of D upon 
an equidistant pattern) it can be hardly determined. These quadrilaterals have more or less the 
same size. Only on parts of the domain where the nodal distribution has been refined, these 
quadrilaterals have a smaller size. 

If one can guarantee that MLSA is well-defined for each quadrilateral, MLSA is well-defined for 
the entire domain. Therefore, under the assumption that each nodal point Xa is a vertex of a 
set of quadrilaterals which cover its entire neighbourhood in the domain D, a local mesh size ha 
is determined for the quadrilaterals surrounding Xa, a = 1, ... , n. With the help of this mesh 
size ha the radius Ra for the support of Wa is given a value, in order to achieve that MLSA is 
well-defined on the quadrilaterals surrounding Xa. 

Let v 1 be the unit vector pointing from Xa in the direction of the node which is closest to xa , 

and let v2 be such that v2 l.. v 1. The vectors v 1 and v2 divide two-dimensional space in to four 
quadrants Q~, i = 1, 2, 3, 4, with Xa as the origin. For instance, we have 

Q~ = { x 1 v[ (x - Xa) ::'.'. 0, vf (x - Xa) ::'.'. 0} . (3.25) 

The vector v 1 does not have to be unique. In the case of nodal patterns which are (locally) 
equidistant in two mutually orthogonal directions such as in this thesis, this does not affect 
the following procedure to determine a value for ha. In the case of a non-unique v 1 for a more 
genera! nodal pattern, however, the procedure can explicitly depend on the choice for v 1 . 

Let Q~, i = 5, 6, 7, 8, be the four quadrants obtained after rotation of Q~, i = 1, 2, 3, 4, over an 
angle rr/4. For the eight quadrants Q~, i = 1, . .. ,8, a size h~ is determined in the following 
way. Let the set H! be defined by 

(3.26) 

Then, when H! contains more than two non-zero elements, h~ is set to the third non-zero value 
of H~. Here, we think H! to be sorted such that the elements are given in ascending order. 
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Figure 3.6: Non-convex domain . 

When H! is not empty and contains one or two non-zero elements, h: is set to the maxima! 
value of H! . If H~ is empty, h: is set equal to zero. The local mesh size ha is now defined by 

h -~~ a-L.., r.:; ' 
i=l v2Na 

(3.27) 

where Na is the number of non-empty sets H! . 

It is seen easily that, for a set of nodes which are vertices of a set of squares with length h, one 
obtains ha = h for all interior nodes. The above computation of ho. has been modified in such 
a way that this is also the case for boundary nodes. 

The radii Ra of the supports of the weight functions are now set equal to a scalar multiple of 
ha, i.e. 

Ra=Vha. , a=l, ... , n . (3.28) 

By setting v > 0 to a specific value one can guarantee for the assumed nodal distribution that, 
given the number of basis functions, enough weight functions are non-zero in each quadrilateral 
and hence, that moving least squares approximation is well-defined for n. To obtain shape 
functions from MLSA which behave locally as high-order polynomials , see Figure 3.4, in most 
cases v has a value which is much larger than the minimal value such that moving least squares 
approximation is well-defined . 

3.2 Moving least squares approximation near a crack 

In contrast with discretizations according to the finite element method, it is not straightforward 
for moving least squares approximation to have a correct discretization in the neighbourhood of 
a crack by means of the nodal points, the weight functions , and the basis functions . In cracked 
material , quantities such as displacements and stresses are discontinuous over a crack, see (2.18) 
and (2.21) . Therefore, in the case of cracked material , special choices must be made for the 
parameters of MLSA in order to provide discontinuous approximations of such quantities. 
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Figure 3.7: Piecewise linear crack. 

A crack is an internal boundary which makes the domain under consideration non-convex. 
This is illustrated in Figure 3.6, where a non-convex domain is depicted with a nodal point 
Xa. Such a non-convexity can result in a poor performance of MLSA for the domain. In order 
for MLSA to be well-de:fined for the domain, the radius of the circular support of the weight 
function Wa of the nodal point Xa can be so large that Wa is non-zero on the lower part of 
the dornain. Hence, the shape function <Pa is non-zero on the lower part, which irnplies that 
the nodal point Xa influences the value of the MLSA-approximant on this part of the domain. 
Such a discretization for MLSA can lead to an inaccurate approximation, since in genera} the 
behaviour of quantities is totally different on the upper and lower part of the domain. In this 
section discretizations for MLSA are considered, which attempt to circumvent this problem in 
the case of domains containing a craà. Moreover, since the displacements in the vicinity of a 
crack tip show a y'T-behaviour, special basis functions for MLSA are considered. 

For the remaining part of this thesis it is assumed that a crack is a piecewise linear curve, 
represented by a set of points {Yhh=i, ",e, C ?:: 2, such that the crack is made up of the line 
segments [Yb, Yb+iJ, see Figure 3.7. The crack tip is represented by Ye which is an internal point 
of the material. The line segments [yb, Yb+i] are thought of as the union of two line segments 
[yb, Yb+i]+ and [Yb, Yb+iL which represent the upper and lower crack surfaces, respectively. We 
restrict ourselves to cracks for which the crack path given by {Ybh=i,""e cannot have segments 
which are (almost) parallel and having opposite directions. 

For the presentation of crack discretizations for MLSA, a function ge is specified first, which 
specifies the position of a point relative to the crack. The crack and its extensions ahead and 
behind the crack, divide the material into two parts. Then, the function ge is defined such 
that ge(x) ±1 yields that x is positioned on the upper and lower part, respectively, while 
ge(x) = 0 implies that x is positioned on the extensions of the crack, see Figure 3.8. This is 
mathematically speci:fied below. 

Let vî be the unit vector in the direction of Yb+l - Yb and v~ be obtained after anti-clockwise 
rotation of v~ over an angle 7r /2, b = 1, ... , C - 1, and let the sets Vo, ... , Ve be given by 

Ve {x 1 (x y f Ve-1 > 0} e 1 - ' 
(3.29) 

Vi = {x 1 x 'f. U~=b+l Va, (x -ybf vr?:: o}, b = 1, ... ,C 1, (3.30) 

Va { x j x 'f. U~=l Va} . (3.31) 

Note that the sets V0 , ••• , Ve are disjoint, see Figure 3.8. The function ge is defined for x E Vc 



Figure 3.8: Sets Vc-2, Vc- 1 , Vc and values of ge. 

according to 

{ 

1, (x -yc)I'vf-1 > 0, 

gc(x) -1, (x - Yc f vf-1 < 0, 

0, (x Ycfvf-1 = 0. 

For x E VI,, b = 1, ... , C - 1, the function ge is defined by 

gc(x) = { 
1, (x -yb)Tv~ > 0 or x E [Yb1Yb+1]+, 

(x Ybf v~ < 0 or x E [Yb, Yb+I]_. 

And for x E Vo, the function ge is defined by 

{ 

1, (x Y1f v~ > 0, 

gc(x) -1, (x-y1fv~ <0, 

0, (x Y1)T v~ 0. 

43 

0 

(3.32) 

(3.33) 

(3.34) 

Note that gc(Yc) 0. The definition of ge can be extended to smooth versions of the piecewise 
linear cracks considered in this thesis. However, such a definition is beyond the scope of the 
thesis. 

In Section 3.1 moving least squares approximation has been considered. lt has been described 
in which way shape functions are obtained and that the supports of these shape functions are 
equal to the supports of the weight functions, see (3.11) or (3.18). Moreover, it has been shown 
that the smoothness of the shape functions is related to the smoothness of the weight functions. 
When x is in the support of the shape function <Pa, or equivalently in the support of the weight 
function wa, we say that the nodal point Xa has influence in x. 

For all crack discretizations for MLSA presented in this section, it is assumed that weight 
functions are initially defined without taking the crack into account. The weight functions are 
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modified aiterwards for the presence of a crack. These modified weight functions are used for 
MLSA on the cracked domain. Such a modification only considers a few nodal points and, for 
most cases, it is of the form 

(3.35) 

The modification function da(x) accounts for the crack in the material. For this function the 
following requirements are formulated: 

[Rl J Moving least squares approximation with the modified weight function w~ew is well-de:fined 
for the entire domain. 

[R2] The shape functions are able to represent quantities which are discontinuous over a crack. 

[R3] Nodal points on one crack surface have no influence on the other crack surface. 

[R4] The influence of nodal points near the crack tip may not extend over a polar angle which 
exceeds 'lf. 

The requirements Rl and R2 are obvious from the previous considerations. Requirement R3 
states that when Xa is on one crack surface its shape function has to be zero on the other 
crack surface. Requirement R4, which can be seen as a generalization of R3, is illustrated in 
Figure 3.9. For the nodal point Xa, the points x and x in the support of Wa make an angle IJ! 
with respect to the crack tip Yc· The maximum Wa of these angles represents the angle over 
which the nodal point Xa has influence. This angle IJ! a may not be too large, i.e. IJ! a ::;: 7f. The 
limit value in requirement R4 is a choice. One could also have taken a smaller value. However, 
since in this thesis nodal distributions are considered for which not many nodes are distributed 
in the angular direction around the crack tip, e.g. see Figure 3.15, this value may not be taken 
too small. Note that requirement R3 states that IJ!" < 27f for nodal points Xa on a crack surface. 
In the next sections it is seen whether the requirements Rl-R4 can all be satis:fied. 

3.2.1 Discontinuous crack model of Belytschko 

The first modification function to satisfy the requirements Rl-R4 can be found in the paper 
of Belytschko et al. [7]. When nodal points, weight functions and basis functions have been 
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Figure 3.10: Discontinuous crack model of Belytschko. 

chosen, nodal points Xa in the summation (3.4) are neglected if the line which connects Xa and 
the point under consideration x, intersects the crack, see Figure 3.10. 

This crack model can be put into the form (3.35). Let vf be the unit vector in the direction of 
Yc-Xa and let the vector v2 be obtained after anti-clockwise rotation over the angle gc(xa)1T /2. 
Then, for each nodal point Xa, the modification function da is defined as 

da(x) { 
0, gc(x)gc(xa) = -1, (x - Yc)Tv2 < 0, 

1, otherwise. 
(3.36) 

When gç(x)gc(xa) = -1 the points x and Xa are positioned on different parts of the material 
and when (x Ycf v2 < 0 the line connecting x and Xa intersects the crack. In Figure 3.10, 
the values of da are depicted for a nodal point Xa for which gc(xa) 1. 

The modification function da is discontinuous over the crack. Therefore, the modified weight 
function given by (3.35) is also discontinuous over the crack. Together with a continuous set 
of basis functions this results in shape functions which are discontinuous over the crack, see 
Section 3.1. Hence, requirement R2 is met. The shape functions for nodal points on a crack 
surface are zero on the opposite one, which means that requirement R3 is also met. From 
the definition (3.36) it follows that for nodal points Xa close to a crack surface, the angle of 
influence is approximately 1T. However, for nodal points ahead of the crack tip, the angle of 
influence can be about 27r. Therefore, requirement R4 is not met. Requirement Rl for MLSA 
can be guaranteed for this crack model by taking a sufficient number of nodal points in the 
neighbourhood of the crack tip or sufficiently large radii for the supports of the weight functions. 

Hence, only requirement R4 is not met. This model, however, has another disadvantage. The 
modification function da is not only discontinuous over the crack, hut also over a line in the 
interior of the material, see Figure 3.10. As a consequence, the shape functions are discontinuous 
in the interior of the material over several lines emanating from the crack tip. This makes the 
crack model not convenient for the approximation of quantities which are continuous in the 
rnaterial and discontinuous over a crack. 
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Figure 3.11: Continuous crack model of Belytschko. 

3.2.2 Continuous crack model of Belytschko 

Belytschko, Krongauz, Fleming, Organ and Liu [6] present an improvement of the previous 
crack model, which does not exactly fit in the form (3.35). In this model, discontinuities of 
the shape functions in the material are absent by a different manner of computation of the 
parameter ra for the weight functions (3.22) and (3.23). The parameter ra is given by, see also 
Figure 3.11, 

Ycl + Jxa Ycl, gc(x)gc(xa) = -1, (x -ycf v2 < 0, 

Jx - Xal, otherwise. 
(3.37) 

Due to this improvement, the weight function is continuous over the line where the previous 
crack model failed to be continuous. However, the weight functions have discontinuous derivat
ives over this line with the consequence that the shape functions are continuous in the interior 
of the rnaterial but not continuously differentiable, see Section 3.1. The definition of ra in 
(3.37) irnplies that for nodal points on one crack surface and close to the crack tip, the weight 
functions are non-zero on the other crack surface. Hence, the shape functions are also non-zero 
and this yields that the crack model violates requirements R3 and R4. It can be easily seen 
that requirement R2 is met, since ra is discontinuous over the crack, which makes the weight 
and shape functions discontinuous over the crack. 

Some other manners for the computation of ra are presented in Organ, Fleming, Terry and 
Belytschko [58]. These manners are similar to (3.37) and violate also requirements R3 and R4. 
The problems of the crack model (3.37) were also recognized in [6], where it was remarked that 
application of the model in the element-free numerical solution method which is described in 
the next chapter, resulted in substantial oscillations in the stress fields near the crack tip. 

The discontinuity in the modification function (3.36) can also be avoided by changing these 
functions in such a way that they are continuously differentiable in the material, e.g. 
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Figure 3.12: Continuous version of discontinuous crack model of Belytschko. 

d0 (x) = { 1 

0, 9c(x)gc(x") -1, (a ~ -e:, 

é; +é.3 3(,;' Yc(x)gc(xa) = -1, < (a < Ü, e2 e3 o:• , 

1, otherwise, 

where (a = (x Yc?v2 and e: is a positive constant. 
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(3.38) 
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In Figure 3.12, with the help of a flat and a surface plot, the values of da are depicted for a 
nodal point Xa for which gc(xa) = 1. By means of (3.38) 2 the function da varies in the zone 
-s < (a < 0 between 0 and 1 such that da is continuously differentiable. Hence, the weight 
functions and, therefore, the shape functions, are continuously differentiable in the material and 
discontinuous over the crack. However, for nodal points on a crack surface, the shape functions 
are continuous over the crack and, as for (3.37), requirements R3 and R4 are violated. 

3.2.3 Continuous crack model 

In Regen [31] another crack model is suggested in order to meet the requirements Rl-R4. 
Similar to (3.38) the following modification function da is introduced, see also Figure 3.13, 

{ 1 

0, Yc(x)gc(Xa) = (::; -E:a < 0, 

da(x) 
(2 (3 ,. 

gc(x)gc(xa) -1, -éa::; ( < 0, (3.39) 6-+8- -3-eJ e~ s:' 
1, otherwise, 

where ( = (x Yc)T vf-1, ea. is a non-negative constant and vf-1 is the unit vector used in 
the definition (3.29). It is suggested to take sa= max(Ra - lxa Ycl, 0)/4, with Ra the radius 
of the support of the weight function Wa. In Figure 3.13, by rneans of a flat and a surface plot, 
the values of da are depicted fora nodal point Xa for which gc(xa) 1. 

This modification function is continuously differentiable in the material and discontinuous over 
the crack. Hence, via the modified weight function (3.35) shape functions are discontinuous 
over the crack and requirement R2 is met. The requirements R3 and R4, however, are still 
violated. Nodal points on one crack surface have a non-zero shape function on the other crack 
surface. By taking a small value for sa one can try to isolate this inconvenience on a small 
part of the crack surface. Large gradients in the modification function and hence, in the shape 
functions are then the result. 

3.2.4 Wedge model for crack 

The previous crack models show that it is not possible to meet the requirements Rl-R4. In 
fact, requirement Rl is in conflict with requirernents R3 and R4. In order for MLSA to be 
well-defined in the crack tip Yc, a certain number of weight functions should be non-zero in Yc· 
Since the weight functions have to be continuous in the rnaterial (in order to have continuous 
shape functions), one cannot avoid that nodal points near the crack tip have a large angle of 
influence '11 a· Therefore, requirement Rl is weakened to: 

[Rla] Moving least squares approximation with the modified weight function w~ew is well-defined 
for the entîre domain except for the crack tip. 

Concerning the nodal distribution, it is assumed that one nodal point coincides with the crack 
tip. For simplicity, this nodal point is taken to be x1 , i.e. x1 Yc· lt is shown now that it 
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Figure 3.13: Continuous crack model. 

is possible to meet the requirements Rla-R4. Therefore, a modification function da is given, 
which is built from three functions d~, d~ and d3 • The function d~ accounts for the requirements 
Rla-R4. Since these requirements consider only a small neighbourhood of the crack tip, the 
function is only used in this neighbourhood. On the remaining part the function d~ is used 
which is continuously coupled with d~ with the help of the function d3 . 
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For the definition of the functions, let 0 be the polar angle of x with respect to the local 
coordinate system with Yc as origin, such that the lines B = ±1f correspond with the crack 
faces. Let 04 be the polar angle of the nodal point x4 • The function d~ is then given fora> 1 
by 

d~(x) 
IO - Bal '2:. w/2, 

IO - Bal < w/2. 
(3.40) 

Fora 1, one sets dl{x) 1. R1 is the radius of the support of wi, (J = min(R1 , (x Yc)Tvï), 
(~ = min(R1, (x Ycf v~) and 

[-sin( Ba - w/2) 

v~ = [ sin(Ba+w/2) 

cos(Oa - w/2)]T, 

cos(Oa + w/2W. 

(3.41) 

(3.42) 

In the fiat and surface plot given in Figure 3.14, the values of d~ are depicted for a nodal 
point Xa for which g0 (xa) = 1. By means of (3.40)2 the function d~ varies in the wedge 
Ba w/2 < B < Oa + w/2 between 0 and 1 such that d~ is continuously differentiable. Since 
in the neighbourhood of a crack the nodal points are mostly distributed equidistant in two 
mutually orthogonal directions, see Figure 3.15, we suggest w = 31f / 4 for the wedge angle in 
order for MLSA to be well-defined near the crack tip. 

Let the function d~ for a > 1 be given by 

{ 

0, ga(xa) = -1, B ;?:: Ba+ 1r, 

d~(x) 0, gc(xa) +l, ()::.:; ()" - 11", 

1, otherwise. 

(3.43) 

Fora= 1, one sets d~(x) 1. The function d~ is similar to the modification function (3.36) for 
the discontinuous crack model of Belytschko. Furthermore, let the function d3 be defined by 

(3.44) 

where r = lx -Ycl· Hence, the continuous differentiable function d3 has value 1 near the crack 
and vanishes at a remote distance of the crack. 

The function d; is discontinuous over a line in the material. However, by premultiplication 
with 1 d3 this discontinuity is outside the support of the weight function Wa, since the radii 
Ra for the supports of the weight functions of the nodal points close to the crack tip, are near 
the radius R1 of the support of w1• The modification function da is now given by 

(3.45) 
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Figure 3.14: Wedge around x,, with Yc as vertex. 
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0.1 

Hence, da behaves like d~ in the neighbourhood of the crack tip and like d~ for most of the 
remaining part of the material. Note that d1(x) 1 and that da(Yc) = 0, a > 1. 

It is seen easily from (3.45) and the definitions of d! and d~ that requirement R3 is met. 
Because the wedge angle w for d! is less than 7r and because of the definition of d~, the angles 
of influence for the nodal points do not exceed 1f, which means that requirement R4 is valid. 
Requirement R2 is also met, because shape functions are discontinuous over the crack. By 
taking a sufficient amount of nodal points in the vicinity of the crack or sufficiently large radii 
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for the weight functions, MLSA is well-defined for the entire material, except for the crack 
tip Yc· The discontinuity of da is exterior to the supports of the weight functions, which 
yields continuously differentiable modified weight functions (3.35). This yields that the shape 
functions are continuously differentiable, except for the crack tip y0 . 

For the crack tip Yc, one has that wa(Yc) > 0 only fora 1. Hence, MLSA is not well-defined 
for the crack tip. The matrix A given in (3.9) is singular. Nevertheless, a value can be obtained 
for the approximant uh given by (3.1). Therefore, assume the constant function p1(x) 1 is 
among the basis functions. Then by changing to the basis {p1(x),p2(x) p2 (Yc), ... ,pm(x) 
Pm(Yc)}, MLSA is still well-defined for the domain, except for the crack tip. For Yc the 
approximant (3.1) equals 

m 

uh(Yc) = µi(yc)p1(Yc) + L:>c(Yc)(Pc(Yc) Pc(Yc)) µi(Yc). (3.46) 
c=2 

The coefficients µc(Yc), c > 1 do not have to be computed, while µi(Yc) can be found from 
minimization of 

(3.47) 

Equation (3.46) shows that uh can still be given a value and that uh is continuous. The values 
for µc(Yc) for c > 1 can not be found due to the singular matrix A, which yields that uh is not 
differentiable for Yc· The shape functions <Pb are special cases of uh (take Ua 6ab in (3.10)) from 
which one can conclude that the shape functions for this model are continuously differentiable, 
except for the crack tip where they are only continuous. In the case of continuously differentiable 
basis functions, the derivatives of the shape functions and the derivatives of the approximant 
are bounded in the neighbourhood of the crack tip. A mathematica! proof of this and of the 
previous statements can be found in Appendix C. 

For the wedge model requirements Rla-R4 are all met. The displacements for cracked elastic 
material are also continuously differentiable except for the crack tip, see (2.21). Hence, one can 
conclude that among the presented crack models the wedge model is the most suitable crack 
model for the representation of displacements in cracked elastic material. Therefore, this model 
is used in the sequel for MLSA near a crack. 

3.2.5 Nodal distributions and basis functions 

In the previous subsections several modifications of weight functions for the presence of a crack 
have been presented. The other parameters for MLSA are now considered in the case of a crack. 

In order to provide accurate approximations for a function in the vicinity of a crack tip and to 
guarantee that MLSA is well-defined, the following is clone concerning the nodal distributions. 
It is accomplished by means of reflection that the nodes are locally symmetrie with respect to 
the line segment [y0 _ 1, Yc] of the crack, see Figure 3.15. Furthermore, the nodal distribution 
is refined by addition of extra patterns of nodes in the neighbourhood of the crack. These 
extra patterns are also locally symmetrie with respect to [Yc-i,Yc], see Figure 3.15. Hence, 
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Figure 3.15: Extra locally symmetrie pattern of nodes near crack, more nodes just behind crack 
tip than ahead of crack tip. 

nodal points on the crack are double, i.e., for a nodal point Xa on one crack surface there is a 
corresponding nodal point Xb Xa, a -=j:. b, on the other crack surface. The extra nodal patterns 
are also equidistant and the occurrence of double points which are not on the crack, is avoided. 

In this section it has been concluded that the wedge model is the most suitable model for 
moving least squares approximation near a crack. Application of this model by means of 
(3.35), however, yields that near the crack surfaces just behind the crack tip Yc only a few 
nodes are involved in the sum (3.4). As described in Section 3.1 this can lead to shape functions 
which are locally strongly non-polynomial. To avoid this feature, more nodes are placed just 
behind the crack tip than ahead of the crack tip, see Figure 3.15. However, then one can still 
have that only a few nodes are involved in (3.4) for points close to the crack tip. Therefore, 
the radii of some nodes near the crack tip are taken larger. For the nodes Xa which are behind 
the crack tip, i.e., which are not in the set Vc, see (3.29), and for which 

(3.48) 

the radii of the supports of the weight functions Wa are changed to 

(3.49) 

For all the other nodal points, the radii Ra remain unchanged. In (3.48), R1 is the radius of 
the support of w1 , which is the weight function for the nodal point x 1 positioned at the crack 
tip. The parameters in (3.48) and (3.49) are just a choice. One can replace them by values 
which are smaller or larger than 1.75 and 1.5, respectively. 

lt was shown in Section 2.2 that the displacements of a linearly elastic medium show a ,/i
behaviour (r being the distance to the crack tip) in the neighbourhood of a crack, see (2.21). In 
order to obtain an accurate approximation of the displacements near the crack tip, the function 
,fi is added to the set of basis functions as suggested in [31]. The shape functions then show 
a ,/i-behaviour in the neighbourhood of the crack tip, see Figure 3.16. Furthermore, these 
functions are not differentiable in the crack tip since the derivatives reveal a 1/ ,/i singularity. 
On the remaining part of the material the shape functions are continuously differentiable. 

Since the displacements of a linearly elastic medium only show a ,/i-behaviour in a small 
neighbourhood of the crack tip, it is not necessary to use the basis function ,/i for the entire 
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Figure 3.16: Shape function with square root behaviour. 

material. The use of a local basis function which is only non-zero in a small neighbourhood of 
the crack tip and which behaves like ..fi in this neighbourhood, looks convenient. However, the 
fact that such a basis function vanishes on a large part of the material, results in MLSA being 
not well-defined for that part. Taking such a function in the basis in the vicinity of the crack 
tip only, leads to discontinuous shape functions. 

More promising is the use of a basis function which is the square root function combined with a 
monomial, i.e., a continuously differentiable function which equals ../i in a neighbourhood of Yc 
and which behaves like a monomial on most of the remaining material. The ,./i-behaviour near 
the crack tip can then be achieved and MLSA can then be made well-defined for the material. 
Therefore, in the sequel the following basis function p is used: 

(3.50) 

where x En and r = lx - Ycl the distance to the crack tip. The function d3 is given in (3.44). 
Hence, the basis function (3.50) behaves like ..fi near the crack tip and like x 1x 2 on most of 
the remaining material. 

3.3 Other connectivity-free approximation techniques 

Connectivity-free approximation techniques are often addressed in literature as techniques for 
scattered data interpolation or approximation. An overview and comparison of some classes of 
such techniques is found in the paper of Franke [26]. 

The first class of techniques discussed in [26] are inverse distance weighted methods. These 
methods have the drawback that generally low-order polynomials, especially linear functions, 
cannot be represented exactly. Moreover, approximants do not have to be differentiable at 
nodal points, see Gordon and Wixom [28]. In [43] and [44], these techniques are extended 
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to the concept of moving least squares approximation with singular weight functions. The 
latter technique can represent low-order polynomials exactly and reveals the selectivity property 
(3.19). As has been shown in Section 3.1, the use of singular weight functions yields shape 
functions which are locally strongly non-polynomial. 

The second class of techniques discussed in [26] are blending methods based on a division of 
the domain into rectangles or triangles. In order to obtain approximations of quantities which 
can be discontinuous over a crack in the material, such a division has to match the crack and, 
therefore, these techniques are not connectivity-free. This is also the case for the third class of 
techniques discussed, which are techniques based on finite element divisions of the domain. 

The other classes of techniques which are considered in [26], Foley's methods and global basis 
function type methods, respectively, all reveal the problem that low-order polynomials, espe
cially linear functions, cannot be represented exactly. This however, <lid not stop researchers to 
apply a global basis function technique, the so-called multi-quadratic technique, in a numerical 
method, see Kansa [38, 39]. 

Another connectivity-free interpolation technique used in a numerical method, is the interpo
lation technique related to smoothed particle hydrodynamics, see Monaghan [53]. The approx
imant uh(x) of a function u(x) on the domain fl is given for x E f! by the weighted integral 

uh(x) k w(x - y)u(y) dfi. (3.51) 

The weight function w(x) is such that it approaches Dirac's delta function ó(x), i.e" w has a 
relatively small compact support which contains the origin 0 and 

k w(x)dü = 1. (3.52) 

In genera!, the approximant (3.51) cannot represent linear functions exactly. Furthermore, since 
exact values for the integral in (3.51) cannot be determined, numerical integration is necessary 
to obtain accurate values for uh. In [5] it is shown that when the finite sum (3.4) is replaced 
by an integral, this continuous counterpart of moving least squares approximation can be seen 
as equivalent to (3.51 ). 

We conclude that other connectivity-free approximation techniques can hardly be found which 
provide shape functions with as nice properties as those for moving least squares approxirnation. 
These properties are: 

• The shape functions have compact support. 

• The shape functions are continuously differentiable in the interior of the problem domain 
and behave locally as high-order polynomials. 

• Low-order polynomials can be represented exactly by the shape functions. 

• Special shapes, like /r, can be added to the shape functions. 

• In the case of the presence of a crack, shape functions can be obtained which are convenient 
for the representation of the linear elastic displacement field near a crack tip. 
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The main drawback of MLSA is its computational effort. For each point under consideration, 
a linear system has to be solved to obtain the values of the shape functions. This is in contrast 
with FE-shape functions which are obtained per element. Some modifications of MLSA have 
been proposed to reduce these computational casts, see Franke and Nielson [27] and [44]. These 
modifications concern the computation of the values of the vector µ for a set of discrete points 
only. With these values new modified vectors P, are obtained for the entire domain in a relatively 
cheap way. In [44] this is done by a composition with spline methods and FE-methods with 
the consequence that a connectivity is introduced which prevents the technique from being 
connectivity-free. In [27] new vectors P, are obtained for the entire domain by means of a 
weighted method in such a way that the resulting shape functions can represent linear functions 
exactly. However, for this latter approach the shape functions do have supports which are 
reasonably larger than the supports of the given weight functions. Hence, this technique is 
more non-local than MLSA. 

From the considerations in this section we conclude that to come to an element-free numerical 
solution method for a boundary value problem we have to make use of the shape functions ob
tained by moving least squares approximation. This solution method is described in Chapter 4. 



Chapter 4 

Element-free Galerkin method 

In this chapter an element-free numerical method known as the element-free Galerkin method, 
in short EFG-method, is presented for the solution of a boundary value problem. Firstly, the 
discrete equations are considered. Shape functions obtained by moving least squares approxi
mation (MLSA) are used for the approximation of the displacements in linearly elastic rnaterial. 
Secondly, a description is given of the numerical integration to obtain the discrete equations. 
Convergence aspects of the EFG-method are investigated and the chapter ends with a descrip
tion of the cornputation of fracture rnechanics parameters from an EFG-analysis of a fracture 
mechanics problem. 

The element-free Galerkin method has already been considered in [7], [48] and [56]. The method 
as introduced in this chapter, however, differs in some ways from the EFG-techniques described 
in these papers. In [56], where the method was given the name diffuse elements, a term in the 
derivatives of the MLSA-shape functions is neglected. Furthermore, to find the contribution of 
an integration point to the stiffness matrix, nodal points which have influence in the integration 
point are determined in a rather arbitrary way. In [7] and [48], the EFG-method is reported 
in its current form. In these papers, the derivatives of the MLSA-shape functions are obtained 
in a correct way. To find the contribution of an integration point to the stiffness matrix, nodal 
points which have influence in the integration point are determined correctly by using the weight 
functions. For numerical integration a scheme has been introduced by means of a division of 
the problem domain into integration cells. 

In this chapter new concepts for the EFG-method are introduced. Integration points for an 
integration cell are chosen in a different way than described in [7] and [48], and the scheme 
for integration in a cell is adapted in the case of the presence of a crack. Furthermore, special 
basis functions and special integration cells near a crack tip are used. Stress intensity factors 
are obtained by means of contour integration with a correction for the crack-surface integrals. 

4.1 Discrete equations 

Consider a planar problem of deformation of an elastic medium, e.g. see (2.1), (2.3)-(2.5) 
and (2.9). It is assumed that a set of nodal points {xa}a=I,".,n, a set of weight functions 
{wa(x)}a=l. "n and a set of basis functions {Pc(x)}c=l"."m are chosen such that moving least 
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squares approximation is well-defined for the undeformed configuration n of the elastic medium. 
As described in Section 3.1, MLSA results in shape functions <l>a(x), a = 1, ... , n. In a similar 
way as in the finite element method, these shape functions are used to obtain approximate 
solutions for the displacements, strains and stresses in the medium. 

In general, the shape functions <l>a can be non-zero on the boundary of the domain, when 
Xa f/. &n. Therefore, the weak form (2.17) of the problem of deformation is used to account for 
the essential boundary conditions. Like in the finite element method, see (2.49), one sets 

n 

u(x) = L da<f>a(x). (4.1) 
a=l 

Since the shape functions generally fail to satisfy the selectivity property (3.19), the vector da 
does not have to contain the nodal values of u, i.e., in general 

(4.2) 

For the Lagrange multiplier À on r" one sets 

k 

À(x) L lb'l/Jb(x), (4.3) 
b=l 

where x E r u and { 'if'b(x) h=i"."k is a set of shape functions on r u· For this set of functions, 
the shape functions <f>a. restricted to f u are taken for those a with Xa E f "' which yields that 
k < n. When according to a Galerkin approach the test displacements bu and the test Lagrange 
multipliers DÀ in (2.17) are also taken of the form ( 4.1) and ( 4.3), respectively, one obtains the 
following linear system for da and lb, 

[~ ~][~]=[!]· (4.4) 

The matrix 0 contains only zeros and the vectors d and 1 contain the nodal vectors da and lb, 
respectively, 

( 4.5) 

(4.6) 

The stiffness matrix K and the matrix L for the Lagrange multipliers are built from 2 x 2 nodal 
submatrices Kab and Lab, respectively, and the right-hand side vectors f and r are built from 
2 x 1 nodal subvectors fa and rb. These submatrices and subvectors are given by 

Kab kB~DBbdn, a,b 1, ... ,n, (4.7) 

Lab -lr </>a'l/Jb[ df, a = 1, ... , n, b = 1, ... , k, (4.8) 
ru 

fa l </>af* dn + h <l>aP* df, a 1, ... ,n, (4.9) 
n rp 

rb = -h 'l/Jbu*df, b= 1, ... ,k. (4.10) 
ru 
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The matrix 1 is the 2 x 2 identity matrix while the matrix Ba is given by 

[ 

efia,l 0 l 
Ba = 0 1>a,2 , a 

</>a,2 cf>a,l 

1, ... ,n. (4.11) 

The 3 x 3 matrix D represents the constitutive equations of the elastic material, e.g. see (2.55). 

When the boundary r" consists (in addition) of a set of discrete points, one obtains a similar 
linear system (4.4), see [30]. In (4.8) and (4.10), the integrals then have to be replaced by finite 
sums. Notice that Kab is non-zero only when <Pa and </>b are non-zero on a common part of n, 
i.e., when the intersection of the supports of <Pa and c/>b is not empty. 

Solving the linear system (4.4) ford and l and using (4.1) results in approximations for the 
displacements. Taking derivatives of (4.1) and subsequently using the constitutive equations, 
e.g. (2.9), leads to approximate values for the strains and stresses in the material. 

To arrive at the discrete equations in this section, a Galerkin approach is considered with 
shape functions which are obtained without using an element division. Therefore, the method 
is named element-free Galerkin method. 

4.2 Numerical integration 

To obtain the stiffness matrix K, the matrix L, and the right-hand side vectors f and r for the 
discrete equations (4.4) of the EFG-method, integrals over the domain 0 and the boundaries 
r P and r u have to be evaluated. The exact values for these integrals cannot be computed. 
Therefore, numerical integration is necessary to obtain approximate values. As in the FE
method, the domain and the boundary are partitioned into subdomains, so-called integration 
cells, and the integrations are performed numerically for each cell. 

Since the shape functions in the EFG-method are quite general and not, contrary to the FE
method, obtained by a transformation of local (polynomial) functions, there is no optimal 
division of the domain and the solution depends on this division, see [30] or Krysl and Belytschko 
[42]. The pattern for numerical întegration by the set of integrations cells, however, has to 
account for the local mesh size of the distribution of nodal points. Moreover, the pattern 
should be such that a small variation in the number of cells results in a small change in the 
solution. This is described in the present section. In order to obtain values for integrals of 
quantities which are discontinuous over a crack, it is shown in which way the configuration of 
integrations cells accounts for such a discontinuity. Furthermore, special integration cells near 
the crack tip are considered when a JT-like function is added to the basis. 

4.2.1 Division into integration cells 

For a numerical evaluation of the domain integral for the stiffness matrix K in (4.4), the 
domain nis divided into a number of integration cells ~e, e = 1, ... , N, as proposed in [7], see 
Figure 4.1. For these cells we take triangles and quadrilaterals. The division is such that two 
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Figure 4.1: Integration cells with definition points /or n. 

integration cells can only have parts of their boundaries in common and such that 

( 4.12) 

In contrast with a division of n into finite elements, as described in Section 2.3, it is not 
necessary for a division into integration cells that two integration cells having a part of a side 
in common, must have the entire side in common, see Figure 4.1. 

Each integration cell ~" e = 1, ... , n, is defined with the help of a number of so-called definition 
points z~. Hence, the division of n into integration cells is fully described by the connectivity of 
the definition points z~. This connectivity, however, is independent of the choice for the nodal 
distribution, the basis functions and the weight functions. 

With the help of the connectivity of the definition points for the integration cells, the integral 
(4.7) is evaluated numerically for each integration cell in the following way. Similar as in the 
FE-method, for each group of integration cells ~. of the same type, a standard integration cell 
~. is considered. The Cartesian coordinates in ~. are denoted by Çi and 6. Each definition 
point z~ E De corresponds with a local definition pointe, E ~ •. Local shape functions <pç(e) 
correspond with the local definition points. These shape functions are polynomials such that 
the selectivity property (2.41) with respect to the local definition points holds true and such 
that <pç vanishes on the sides of ~. on which eç is not positioned. 

Let the following mapping from the standard cell ~. onto the cell ~. be defined with the help 
of the local shape functions: 

(4.13) 

In equation ( 4.13), e E ~" the index ç sums over the local definition points, and z~(<l is the 
definition point which corresponds with the local definition point e<. Note the similarity with 
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the isoparametric mapping (2.43) in Section 2.3. 

With the help of the mapping (4.13) the integral (4.7) over the integration cell D.e is obtained 
by 

( 4.14) 

The integral over the standard integration cell D., is then evaluated numerically by means of 
Gaussian quadrature, see [2, Ch. 5]. In the sequel it is described in which way the integration 
points for Gauss integration are determined for b.8 • 

Summation of all cell contributions ( 4.14) leads to the nodal submatrix Kab· A similar procedure 
leads to the domain integral for the right-hand side subvectors fa. By means of divisions of the 
boundaries r p and r u into boundary integration cells, the boundary integrals in ( 4.8 )-( 4.10) 
are determined numerically. 

In most situations, integration cells D.e are used which have the shape of a square and which 
are given with the help of four definition points. As a consequence, the Jacobian in (4.14) 
is constant. The sizes of the integration cells are taken of the same order as the maximum 
mesh size of the nodal distribution. The boundary integration cells are mostly taken to be the 
non-empty intersections of the volume integration cells with the boundaries rp and r u• 

Since the shape functions for MLSA are locally high-order polynomials, see Section 3.1, high
order Gaussian quadrature is performed in D... In the sequel of this section it is described 
that triangular integration cells given by three definition points are used to match a crack. 
For a triangle we take the 13-point Gaussian quadrature formula given in Cowper [19], which 
has degree of precision 7. Equivalently fora quadrilateral (4,4)-point Gaussian quadrature is 
used, which has the same degree of precision. For a boundary integration cell 4-point Gaussian 
quadrature is taken. 

The division of the domain into integration cells D.e is independent of the discretization for 
moving least squares approximation. However, in order to obtain accurate entries for the sub
matrices ( 4. 7), ( 4.8) and subvectors ( 4.9), ( 4.10) for both coarse and fine MLSA-discretizations, 
the pattern for numerical integration has to account for the distribution of nodes. More ac
curacy is required near the boundary of the domain, near a crack and near the crack tip, since 
less nodal points are involved in the summation (3.4). As a result, the shape functions tend 
to be locally strongly non-polynomial as was shown in Section 3.1. The pattern for numerical 
integration accounts for the distribution of nodes in the following way. 

For each integration cell D-e, the standard integration cell L). 5 is split into a number of subcells 
of the same size. Per subcell ( 4,4)-point or 13-point Gaussian quadrature is then performed to 
obtain the integral (4.14). The number of subcells depends on the distribution of the nodes 
near D.. and the size and position of this cell. For the integration cell D.e, the nodal points Xa 
are determined which are either in the cell or which have one of the vertices of the cell in the 
support of their weight function Wa. It is assumed that these nodal points contribute only to 
the cell contributions for K. The number of subcells is then based on the mean distance of 
these nodal points to the centra! point of D.., the characteristic size of the integration cell ~e 
and on the number of nodal points in D... Furthermore, it is taken into account whether the 
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Figure 4.2: Intemal subdivision of integration eetl. 

integration cell is near the boundary, near the crack or near the crack tip. This procedure to 
arrive at the number of subcells for quadrilateral, triangular and boundary integration cells is 
given in Appendix D. The procedure is designed in such a way that, when the subdivision is 
transformed to Ll.. by (4.13), approximately the same number of integration points is used for 
each quadrilateral made up of nodal points. Only near the boundary and near the crack the 
number of integration points is larger. 

4.2.2 Cell configuration near a crack path 

Shape functions are discontinuous over a crack, see Section 3.2. Hence, the configuration of 
integration cells has to determine accurately the integrals of quantities which are discontinuous 
over a crack. Gauss quadrature, however, assumes a certain degree of continuity of the quantities 
which have to be integrated, see [2]. It is therefore essential that integration is not performed in 
a cell which contains (apart of) a crack in its interior. Hence, the configuration of integration 
cells has to match the crack. However, the complex process of generating a set of cells for a 
domain with a crack has to be avoided, since otherwise the configuration of integration cells 
must be adapted after each crack increment (in a quasi-statie analysis). 

The configuration of integration cells can be chosen independently of the distribution of nodes 
for moving least squares approximation. Hence, one can easily account for a crack in the do
main during the process of building up the matrices K"b, Lab and the vectors fa and r 6. A 
division of n into integration cells Ll.e is assumed where the presence of a crack is neglected. 
During the process of the numerical computation of submatrices and subvectors for each cell 
Ll.e, the presence of (a part of) a crack in the cell is checked. If a crack is not present, nu
merical integration is performed in the cell as described above. When (a part of) a crack is 
present in the cell, a subdivision of Ll.. into triangular subcells is generated, which matches 
the crack, see Figure 4.2. This subdivision into triangular subcells is obtained by using the 
program SEPMESH of the SEPRAN package [64]. The integrations are then performed for 
each triangular subcell as described above. Summation of the contributions of these subcells 
results in the contribution of Ll.e. 

One should notice that when two neighbouring integration cells are subdivided because of the 
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Crack 

Figure 4.3: Triangular integrntion cell with crack tip as vertex. 

presence of a crack in the cells, the subdivisions of the two cells are made independently of each 
other. In the case of simulation of crack propagation, the internal subdivisions into triangular 
integration cells can be used in the next computation steps. In one of the following steps, it is 
then possible that some of these triangular integration cells can be subdivided again. 

4.2.3 Cell configuration near a crack tip 

In the case of the use of a basis function with JT-behaviour for MLSA (with r being the 
distance to the crack tip), the shape functions <Pa contain a JT-component. This results in 
singular derivatives of the shape functions which behave like 1/ JT near the crack tip. A 
special integration pattern is then necessary in the neighbourhood of the crack tip in order 
to obtain sufficiently accurate values for the domain integrals in ( 4. 7). To this end, not only 
each integration cell containing a crack tip is subdivided into triangular subcells, but also each 
integration cell for which the crack tip is positioned on their boundaries. Hence, the crack 
tip is a vertex of a set of triangular integration cells, which matches the crack. While each 
triangular cell is defined with three definition points as the vertices of the cell, the triangular 
cells which surround the crack tip are defined by eight definition points z!, ... , z3, see Figure 4.3. 
These points are such that zj' = z4 = z8 = Yc, z2 and z3 represent the other two vertices, 
z5 = (3zj' + z2)/4, z:J = (z2 + z3)/2 and z7 = (3zj' + z3)/4. The square Ó.s = {(6,~2) 1 -1:::; 
Çi :::; 1, -1 :::; 6 :::; 1} with eight local definition points is taken as standard integration cell, 
similar to the crack-tip element of Barsoum [3] described in Section 2.3. The mapping (4.13) 
with bi-quadratic local shape functions on Ó.s then behaves like JT along the cell sides for 
Çi --+ -1. Therefore, accurate values for the cell integrals over Ó.e are obtained with (4.14) 
when <Pa rv Vr in the neighbourhood of the crack tip. 

In the case of simulation of quasi-statie crack propagation, the triangular integration cells 
surrounding the crack tip can in most cases also be used in the following steps of the process. 
However, these cells are then defined with three definition points only. When the crack tip is 
at the vertex of a quadrilateral integration cell, the cell is split into triangular subcells, but in 
the following steps again the quadrilateral cell is used. 



64 CHAPTER 4. ELEMENT-FREE GALERKIN METHOD 

0.8 0 0 0 0 0.8 

0.6 0 0 0 0 0.6 

~ 
(IJ 
x 

0.4 0 0 0 0 0.4 

0.2 0 0 0 0 0.2 

0 0 

0 0.2 0.4 x1 0.6 0.8 0 0.2 0.4 X
1 

0.6 0.8 

(a) (b) 

Figure 4.4: N odal distribution ( a) and eelt configuration (b) f or patch tests. 

4.3 Convergence aspects of EFG-method 

In this section the performance of the EFG-method in two-dimensional elasto-static problems 
is studied. Results of some patch tests are considered as well as convergence aspects of the 
method. In each example, all the quantities and material parameters are thought of as being 
non-dimensional. Homogeneous, isotropic, linearly elastic material behaviour is assumed and 
volume forces ft are absent. The arbitrary material parameters are taken to be E = 1 and 
v 0.25. 

Some convergence studies for the EFG-method have already been reported, e.g. see the papers 
[7], [30] and [48]. In these papers, however, the integration points for an integration cell are 
chosen in a different way than in the scheme proposed in Section 4.2 and Appendix D. 

The results reported in this section are obtained by means of an implementation of the EFG
method in the MATLAB programming environment [51 J. A schematic set-up of an EFG
analysis for a (cracked) material domain is found in Appendix B. By a comparison of the 
different steps in this set-up with those in the set-up for the FE-method given in this appendix, 
the similarity between the two methods can be seen. 

4.3.1 Patch tests 

As described by Taylor, Simo, Zienkiewicz and Chan [69], satisfaction of several patch tests for 
a FE-formulation is a necessary and a sufficient condition for convergence of the formulation. 
In these patch tests the ability of the FE-formulation to represent linear elasto-static solutions 
on the problem domain is investigated. Two patch tests proposed in [69] are studied for the 
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EFG-parameters IJuh - u!lo/llullo !Juh - u!h/llu!Ji 
Gaussian, v=2.0, 36 nodes, 25 cells 3.93 .10-5 

1 1.67. 10-4 

Gaussian, v = 2.5, 36 nodes, 25 cells 1.45 -10-4 9.74 .10-4 

Polynomial, v = 2.0, 36 nodes, 25 cells 4.82 .10-4 2.88 .10-3 

Polynomial, v = 2.5, 36 nodes, 25 cells 1.81 .10-3 1.21·10-2 

Gaussian, v = 2.0, 121 nodes, 100 cells 1.36. 10-5 1.10 -10-4 

Gaussian, v = 2.5, 121 nodes, 100 cells 7.79. 10-5 7.44 -10-4 

Polynomial, v = 2.0, 121 nodes, 100 cells 1.35. 10-4 1.61 .10-3 

Polynomial, v = 2.5, 121 nodes, 100 cells 6.33 .10-4 9.42. 10-3 

Table 4.1: EFG-results for problem of prescribed linear boundary displacements, linear basis. 

EFG-method. 

Consider the patch shown in Figure 4.4a. This patch has length 1 in the x1- and x2-directions. 
An equidistant distribution of nodal points for MLSA is depicted in the figure. With a linear 
basis, the shape functions obtained by MLSA are able to represent linear displacements exactly, 
see (3.12). However, these linear displacements are generally not exactly obtained from an EFG
analysis because of errors introduced by numerical integration. This is due to the fact that the 
shape functions are not piecewise polynomial as has been shown in Section 3.1, which means 
that it is not possible to obtain sufficiently accurate values for the system ( 4.4) by numerical 
integration, which has also been remarked in [30] and [40]. 

Furthermore, shape functions for nodal points near the boundary of the domain are generally 
non-zero on this boundary. This implies that the imposition of the exact boundary displace
ments in the EFG-method is not possible. Therefore, additional errors are introduced due to 
the fact that the essential boundary conditions are not satisfied. 

This can be seen from the following patch test. Let displacements be given according to the 
elasto-static solution of the problem of a uniform axial stress a applied at the boundary x 1 = 1. 
In a situation of plane stress these displacements are given by 

where 0 :S x1 :S 1, 0 :S X2 :S 1. 

(4.15) 

( 4.16) 

Let the displacements ( 4.15), ( 4.16) be imposed at all the boundary nodes. The set {1, x1 , x2 } is 
taken as set of basis functions, 36 and 121 nodal points are used and the domain is divided into 
25 and 100 integration cells ~e, see Figure 4.4b. Weight functions of Gaussian and polynomial 
type, see (3.22), (3.23), and two different values for the parameter v are considered. The radii 
of the supports of the weight functions are proportional to the values of v, see (3.28). Errors 
in the computed solutions are found in Table 4.1, where !lullo is the norm of the Sobolev space 
H 0 (n), i.e. 

( ) 

1/2 

!lullo = fn uiu; dn , ( 4.17) 
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EFG-parameters lluh - ullo/llullo lluh ulli/llull1 
Gaussian, v 2.0, 36 nodes, 25 cells 4.86 -10-5 2.40 -10-4 

Gaussian, v 2.5, 36 nodes, 25 cells 2.18 -10-4 1.44 .10-3 

Gaussian, v 2.0, 36 nodes, 64 cells 2.60 -10-3 8.86 -10-3 

Gaussian, v = 2.5, 36 nodes, 64 cells 1.92 -10-4 6.40 .10-4 

Polynomial, v = 2.0, 36 nodes, 25 cells 1.67 -10-5 9.55 -10-5 

Polynomial, v = 2.5, 36 nodes, 25 cells 2.71·10-5 2.40 .10-4 

Polynomial, v = 2.0, 36 nodes, 64 cells 2.49 -10-5 1.10. 10-4 

Polynomial, v = 2.5, 36 nodes, 64 cells 8.87 · 10-5 3.46 .10-4 

Table 4.2: EFG-results for problem with constant uniaxial stress, linear basis. 

and llulli is the norm of the Sobolev space H 1(rl), i.e. 

llulh { U·U +u u· ·dfl. ( ) 

1/2 

ln i i i,1 ij1 (4.18) 

These errors are obtained numerically by means of the division of the domain rl into integration 
cells .Ó.e. 

The results of Table 4.1 show that, unless the fact that the boundary displacements are satisfied 
exactly at the nodes, indeed the solution ( 4.15), ( 4.16) is not obtained exactly for both the 
weight functions of Gaussian type and those of polynomial type. lt is also seen that an increase 
of the radii for the supports of the weight functions leads to an increase in the error, since 
more nodal points in the interior influence the solution on the boundary. In this example, 
the performance of the EFG-method for weight functions of Gaussian type is slightly better 
than the performance of the weight functions of polynomial type. This can be explained from 
the fact that due to the exponential type of the Gaussian weight functions, see (3.22), the 
shape functions in the case of these weight functions tend faster to zero near the boundary of 
their supports. Hence, interior points have less inftuence on the boundaries in comparison with 
weight functions of polynomial type. 

Table 4.1 shows that when the pattern of nodes is refined together with a refinement of the 
cell configuration, the errors in the computed displacements decrease due to the fact that the 
essential boundary conditions are satisfied in more boundary nodes. Therefore, we conclude 
that this patch test for the exact representation of the linear solution (4.15), (4.16) is satisfied 
in the weak sense, that is, for ha--+ 0, where ha is the local mesh size, see (3.27). 

As a second patch test, consider the solution (4.15), (4.16). This time, the displacement u1 is 
prescribed at the boundary x1 0 and u2 is prescribed at x 2 = 0 by means of the Lagrange 
multiplier formulation (4.4). The constant nonnal stress CJ is prescribed at the boundary x1 1 
while the boundary x 2 1 is stress-free. For an EFG-analysis 36 nodal points are taken in the 
domain, see Figure 4.4a, and {l, xi, x2 } is taken as set of basis functions. Weight functions of 
Gaussian type and polynomial type, a division into 25 and 64 integration cells and two different 
values for the parameter v are considered. Results are summarized in Table 4.2. 

In Table 4.2, again errors are found in the solution due to numerical integration and due to 
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the fact that the essential boundary conditions are not satisfied. An increase in the radii for 
the weight functions ( due to an increase of v) generally leads to an increase in the errors, 
because more nodes influence the displacements at the boundaries. lt is seen, especially for the 
weight functions of polynomial type, that there is not much difference in the results for the two 
divisions into quadrilateral integration cells. This test has also been considered with divisions 
into triangular integration cells, which leads to similar results. 

Table 4.2 shows that in this example the performance of the weight functions of polynomial 
type is better than the performance of the weight functions of Gaussian type. Furthermore, the 
results for weight functions of polynomial type are less sensitive to a variation in the number 
of cells than the weight functions of Gaussian type. This is explained from the fact that the 
shape functions for weight functions of Gaussian type show a more exponential behaviour in 
contrast with those for the weight functions of polynomial type, which show amore polynomial 
behaviour. Hence, the latter type results in a better performance of the scheme proposed for 
numerical integration. Therefore, in the numerical examples that are considered in this chapter 
and in the next chapters, weight functions of polynomial type are used. 

As for the first patch test, refinement of the nodal distribution together with a refinement of the 
cell configuration will lead to a decrease in the error due to a better satisfaction of the essential 
boundary conditions, since more shape functions are involved in the representation (4.3) of the 
Lagrange multiplier. Hence, it is concluded that this patch test for the exact representation of 
the linear solution ( 4.15), ( 4.16) is also satisfied in the weak sense. 

In the two patch tests for the EFG-method, the problem has been considered that essential 
boundary conditions along a continuous part of the boundary are not satisfied. It should be 
remarked that for an elasto-static problem where only three displacements are prescribed, in 
order to suppress the rigid-body motions, the essential boundary conditions are exactly satisfied 
when these conditions are imposed at the corresponding points of the domain. 

The element-free Galerkin method and the finite element method differ only in the choice for 
the shape functions and the numerical integration to obtain the discrete equations. Therefore, 
it is expected that, as described in [69] for the FE-method, satisfaction of the two patch tests 
implies convergence of the EFG-method. This is shown in the next numerical example. 

4.3.2 Shear force on a plate 

Consider the patch 0 s; x1 s; l, 0 s; x 2 s; d, where l d 1 are the dimensions of the patch, 
see Figure 4.4. At the right boundary x1 1, a transverse shear force Fis applied. When the 
shear stress on this boundary is distributed according to a12 -6(F/d3)x2(x2 - 1), the cubic 
solution of the ela..'lto-static problem in a situation of plane strain is given by, see Timoshenko 
and Goodier [70, Oh. 3], 

F 
u1 = - Gd3 [3(1 - v)x1 (2l x1) + (2 (4.19) 

U2 ~3 [cl - v)(3l X1)xf + 3v(l ( 4.20) 
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Figure 4.5: EFG-errors and -convergence rates R for (a) H 0 -norm and (b) H 1 -norm, problem 
of shear force on a plate, linear basis. 

where 0 5. X1 :<:::: l and 0 5. x2 5. d. 

The convergence of the EFG-method for this problem is studied. Equidistant patterns of 36, 
121, 441 and 1681 nodal points together with a division of the domain into 25, 100, 400, and 
1600 integration cells are taken, respectively. The linear set {1, x1, x2} is taken as set of basis 
functions and weight functions of polynomial type are used with v 2.0 and v = 2.5 in 
equation (3.28) for the radii of the supports. The displacements u1 and u2 are prescribed on 
the boundary x1 = 0 and the shear stress o-12 is prescribed on x1 = 1. The boundaries x2 = 0 
and x2 1 are stress-free. 

In Figure 4.5, the logarithms of the errors in the H0- and H 1-norm, (4.17) and (4.18), are 
depicted versus the logarithm of the mesh parameter h. This parameter h is taken to be the 
distance between the neighbouring nodal points along lines x1 = constant. A linear corres
pondence is seen in the figure, which yields that the following estimate holds true for the errors 
in the Sobolev norms, 

0, 1, ( 4.21) 

for positive constants Mand R. Note that Mand R may be different for i 0 and i 1. The 
constants R, so-called convergence rates, equal the slopes of the given lines. Their values are 
found in Figure 4.5 

Figure 4.5 shows that the EFG-method converges and that the convergence rates R for the two 
values of v exceed those for an equivalent FE-discretization, which are exactly 2 and 1 for the 
H0- and H 1-norms, respectively, see [33, Ch. 4]. Similar convergence rates were obtained for 
this problem in the case of a division of the domain into triangular integration cells. Equivalent 
FE-discretizations should be understood as the use of element divisions which can represent 
linear displacements exactly, e.g. divisions into three-node triangles or four-node quadrilaterals. 
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4.6: Nodal distribution (a) and cell configuration (b) for problem of infinite plate with 
circular hole. 

The convergence rates for v = 2 are slightly larger than those for v 2.5. In genera!, one 
<>vr"'"t" higher convergence rates for an increase in v, since the shape functions then locally be
have more as high-order polynomials, which make them more convenient for the representation 
of smooth and steep solutions. This is indeed the case as is seen in the next example. 

4.3.3 Infinite plate with circular hole 

We study the performance of the EFG-method for the problem of the plate with a circular hole. 
This problem has a non-polynomial solution and due to the circular boundary nodal patterns 
have to be used which are not equidistant in two mutually orthogonal directions. 

Consider an infinite plate with a circular hole with radius a. Let a uniform axial tension r; in 
the x1-direction be applied at infinity. The stresses in the plate for a situation of plane strain 
are then given by, see Atkin and Fox [1, Ch. 5], 

(Ju 
[ a2 ( 3 ) 3a

4 
] r; 1 - r2 2 cos 28 + cos 40 + cos 40 , ( 4.22) 

(J12 = [ a2 (1 ) 3a4 ] r; - r
2 

2 sin 28 + sin 40 + sin 40 , ( 4.23) 

[ a2 (1 cos4B) 
3a4 

cos4BJ , (4.24) CJ22 CJ -- -cos20 
r 2 2 

where r ;:::: a and -1f :::; B :::; 1f are polar coordinates. The corresponding displacements are 
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Figure 4.7: EFG-errors and -convergence rates R for (a) H0 -norm and (b) H 1-norm, problem 
of infinite plate with circular hole, linear basis. 

given by 

u1 = 2~ [(1-v)rcosB+ :
2 

(2(1 v)cosB+~cos30)- a
4 

cos38], 

u2 = 2~ [-vrsinB- ~ ((1 2v)sin0- ~sin3e)- ;;3 sin3e]. 

(4.25) 

(4.26) 

Both the displacements and the stresses have relatively large gradients in the neighbourhood 
of the circular hole. 

The part 0 :$ x1 :$ 5 and 0 :$ x2 :$ 5 of the upper right quadrant of the plate is considered, see 
Figure 4.6. On the boundaries x1 5 and x 2 5 the applied tractions are prescribed according 
to {4.22)-(4.24). Displacements are prescribed according to u1 = 0 on x1 0 and u2 0 on 
x 2 = 0. The circular boundary has radius a = 1 and is assumed traction-free. For EFG
analyses of the problem, the nodal points are spaced regularly in the B-direction and irregularly 
in the r-direction, see Figure 4.6a, such that there are more points in the neighbourhood of the 
circular boundary in order to achieve accurate approximations of the steep displacements. The 
same number of points are taken in the r- and 8-directions. Weight functions of polynomial 
type are used with two different values for the parameter v for the determination of the radii 
of the weight functions. The set { 1, x1 , x2 } is taken as set of basis functions. 

The problem domain is divided into integration cells Lle as depicted in Figure 4.6b. All inte
gration cells are quadrilaterals defined with four definition points, except the cells next to the 
circular boundary which have five definition points to obtain a better approximation of this 
boundary. The same number of cells is taken in the r- and IJ-directions. 

The convergence of the EFG-method for this problem is investigated by means of EFG-analyses 
with 49, 121 and 441 nodal points together with a division into 36, 100 and 400 integration 



4.3. CONVERGENCE ASPECTS OF EFG-METHOD 

-4 
1.5x 10 

error in cs11 at x1=0, v=2.0 

(a) 

- 49 nodal points 
:- - 441 nodal points 

4 

4 

2, 
1 

-2 

5 

71 

error ln cs22 at x2"0, v=2.0 

- 49 nodal points 
- - 441 nodal points 

_,,.. _________ ... 

5 

(b) 

Figure 4.8: EFG-errors in cru at x1 0 (a) and in a22 at x 2 0 (b), problem of infinite plate 
with circular hole, linear basis. 

cells, respectively. The local mesh size ha, see (3.27), averaged over the nodal points Xa is 
taken as global mesh size h. In Figure 4.7, the logarithms of the errors are depicted versus the 
logarithm of h. Convergence rates R are also given in the figure. These rates are taken equal 
to the mean slope of the depicted lines. 

The figure shows that the EFG-method converges for this problem, despite the non-convex 
domain and the approximation of it by integration cells. As in the previous example, the 
convergence rates exceed those for an equivalent FE-discretization, which are exactly 2 and 1 
for the H 0- and H 1-norms, respectively. The convergence rates for v = 2.5 are higher than those 
for v 2.0. This is due to the fact that the shape functions for v = 2.5 locally behave more 
as high-order polynomials than the ones for v = 2.0. Hence, the numerical integration scheme 
for the EFG-method performs better for these shape functions and an improved convergence 
of the representation of the displacements is obtained. 

Convergence of the method is also seen from a comparison of the computed stresses with the 
solution ( 4.22)-( 4.24). In Figure 4.8, the errors in the stresses cr11 and cr22 are depicted for 
x 1 = 0 and x 2 = 0, respectively. The value of crin (4.22)-(4.24) was set to 1·10-3 . It is seen 
that for the distribution of 441 nodal points the stresses are in good agreement with the exact 
values. 

The convergence of the EFG-method for this problem has also been studied with the quadratic 
set {1, X1, X2, Xf' X1X2, xn as set of basis functions. The same nodal distributions and divisions 
into integration cells are used as for the linear basis. Only larger values of v are considered, 
since more basis functions are involved. Logarithms of the errors and convergence rates for this 
approach are found in Figure 4.9. 

lt is seen again that the method converges and that the convergence rates exceed those for 
an equivalent FE-discretization, which are exactly 3 and 2, respectively for the H 0- and H 1-
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Figure 4.9: EFG-errors and -convergence rates R for (a) H 0 -norm and (b) H 1-norm, problem 
of infinite plate with circular hole, quadratic basis. 

norms, see [33, Ch. 4]. Equivalent FE-discretizations should be understood here as the use of 
element divisions which can represent linear and quadratic displacements exactly. For example, 
divisions into six-node triangles and/or ninecnode quadrilaterals. The errors in 4.9 are 
of the same order as the errors given in Figure 4. 7 for the approach using the linear basis. 
As for the linear basis, an increase of v leads to an increase in the convcrgence rates. The 
convcrgence rates for v 3.0 exceed those for the linear basis depicted in Figure 4.7. This is 
due to the fact that the shape functions for the quadratic basis can represent more low-order 
polynomials exactly than the ones for a linear basis. The rates for the quadratic basis do not 
exceed the ones for the linear basis in the case of v 2.5. This can be explained from the fact 
that for the quadratic basis three extra basis function are involved. When the same radii of the 
weight functions are used for both sets of basis functions, the shape functions for the quadratic 
basis are locally more strongly non-polynomial than the ones for the linear basis. Hence, the 
numerical integration scheme for the EFG-method performs better for the linear basis resulting 
in lower convergence rates for the quadratic basis. 

4.3.4 Conclusions and discussion 

In this section the performance of the element-free Galerkin method has been studied. The 
numerical examples presented above lead to the following conclusions. The errors in the numer
ical solutions are attributed to errors due to numerical integration and to the fact that essential 
boundary conditions are not satisfied along continuous boundaries. However, patch tests for 
the exact representation of linear solutions are satisfied in the weak sense. From the reported 
results for the patch tests it was concluded that in the sequel weight functions of polynomial 
type are preferred to those of Gaussian type. 

lt has been shown that the EFG-method is a convergent method for elasto-static problems. 
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The convergence rates exceed those for equivalent finite element discretizations. Increase of the 
radii of the supports of the weight functions generally leads to an increase of the convergence 
rates. The same holds true for addition of higher order polynomials together with an increase 
in the radii. 

Sirnilar convergence rates have been reported in [7], [30] and [48]. In these papers, higher values 
for v were also used, which lead to higher convergence rates. In this thesis, however, we restrict 
ourselves to v.i,lues for v which are relatively large with respect to the minimal value for MLSA 
to be well-defined. But v is not taken too large (v :::;; 3), since an increase of v leads to a 
significant increase of the computational effort of the method. Furthermore, larger values for 
v result in linear systems (4.4), which are more non-sparse than those for smaller values. 

From the exarnples it can also be concluded that the nurnerical integration scheme proposed in 
Section 4.2 and Appendix D, results in an accurate performance of the method for different sets 
of basis functions. Some variation of the number of cells and the type of cells resulted in similar 
convergence rates. Therefore, we conclude that in the case when the sizes of the integration 
cells are of the same order as the local mesh size of the nodal distribution, the performance of 
the EFG-method is almost independent of the division of the domain into integration cells. 

4.4 Computation of fracture mechanics parameters 

Consider an EFG-analysis of cracked material. Displacements, strains and stresses are deter
mined as described Section 4.1. To use fracture criteria Îor crack growth, e.g. see (2.27) and 
(2.28), the stress intensity factors Kr and Kn have to be computed from these quantities. In 
this section several ways are described to determine the stress intensity factors. 

In Section 2.2 the displacements and stresses near the crack tip were studied, see (2.18) and 
(2.21). In Section 3.2 it has been described how the y!T-behaviour of these displacements and 
stresses can be captured in an EFG-analysis. Therefore, in the case of shape functions which 
behave like ylT near the crack tip, the stress intensity factors K1 and KII can be determined with 
the help of (2.18), (2.21) and (A.l)-(A.10). For instance, K 1 is computed from the displacements 
and stresses in the direction (J = 0 ahead of the crack by means of 

Kr lim ~ 0'22(r, 0), 
r-o 

( 4.27) 

Kr lim ~ (0'11(r,O) 
r->0 0'~1) ' (4.28) 

Kr 2G ff- ( lim --
1 

- ·u1(r,0) 
r_,O K r un, ( 4.29) 

and Ku is computed by means of 

Ku lim ~ 0'12(r, O), 
r-o 

( 4.30) 

Ku . 2G ff- ( hm -- - u2(r,O) 
r->0 1 K T 

u~). (4.31) 
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When .fi is left out of the basis for MLSA, the expressions ( 4.27)-( 4.31) cannot be used. 
Moreover, as for an analysis by means of the FE-method, the displacements are represented by 
the finite sum ( 4.1). Hence, a finite number of shape functions represents the displacements 
near the crack tip. This implies that, despite the addition of .fi to the basis, an error is 
made in the representation of the angular variation in the displacements. Therefore, the use of 
expressions ( 4.27)-( 4.31) for computation of the stress intensity factors does not have to result 
in sufficiently accurate values for K1 and Ku. 

The stress intensity factors can also be found from the components of the J-vector, see (2.35), 
(2.36). Under the assumption that K 1 2: IKIII, these factors are given by 

(4.32) 

Ku (4.33) 

In (4.32) and (4.33), the components of Jare taken with respect to the local coordinate system 
with the crack tip as origin. When IJ2 l/11 <<1, equations (4.32), (4.33) can be approximated 
by Taylor expansions in 12/ 11. These expansions are given by 

(4.34) 

Kn ( 4.35) 

Hence, for l12 l/J1 <<1, J2 has a greater infl.uence on Kn than on Kr. 

The J-vector is determined by means of J-integration, see (2.31). In this equation the curve 
'Y can be taken at a remote distance from the crack tip, while 'Y6 and are curves along the 
(piecewise linear) crack surfaces from the begin and end points of 'Y to the crack tip. Due to 
the error in the representation of the displacements near the crack tip, the contribution of the 
integrals over 'Y6 and 'Yc can lead to inaccuracies in the components of J. Taking into account 
that the crack surfaces are stress-free, the contributions are given by 

( 4.36) 

where 'Yc = "f6, n is the outward unit normal on and we+ and we- are the elastic energy 
densities (2.32) on 'Y6 and 7(:, respectively. With the help of (2.18) and (2.21) it can be shown 
that, see [20], 

(4.37) 

for r-+ 0. Therefore, as suggested in [20], the contribution ( 4.36) to the components of J can be 
computed in an accurate way by leaving out a part of 'Yc next to the crack tip as is described 
below. 
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s 

Yc-2 

s 

Figure 4.10: Square curve for computation of J. 

Since a crack is represented as piecewise linear, 'Ye consists of line segments. Consider ( 4.36) 
where 'Ye is replaced by the curve 1b, which is the curve 'Yc without a small part with length 
c: 1 of the line segment next to the crack tip. With ( 4.37) this yields for k 1, 2 that 

( 4.38) 

For 'Yh, which is the curve "te without a small part with length c:2 =f c:1 of the line segment 
next to the crack tip, the equation (4.38) holds true with c: 1 replaced by c:2 . By a convenient 
combination of ( 4.38) for "fb and "fb, the value for ( 4.36) can be found. For this way of 
computation of the contribution ( 4.36) to the components of J, no integrations have to be 
performed over apart of "te next to the crack tip. Only the integrals for 'Yt and 'Yh have to 
be calculated. Hence, the problem of the inaccuracy of the representation of the displacements 
near the crack tip is circumvented. 

In Section 2.3 a method for a FE-analysis was considered where the J-vector is obtained by 
means of crack extension, see [35] and [59]. Crack extension can also easily be modelled in the 
EFG-method by means of a shift of nodal points and leads to a small change in the stiffness 
matrix K. However, this change cannot be found as easily as in the FE-method. Many cells 
surrounding the crack tip have to be considered to determine the change in K. Therefore, the 
method of crack extension is not useful for application in the EFG-method. 

As described by Moran and Shih in [54], the J-vector is determined in [48] by converting the 
integral in (2.31) over the curve 7 into a domain integral over the domain enclosed by 7. 
However, then still integrations over the crack surfaces need to be performed. Furthermore, the 
enclosed domain contains the crack tip and, therefore, this domain integral is influenced by the 
inaccuracy in the representation of the angular variation in the displacements near the crack 
tip. 

From the above considerations, it is concluded that J-integration by (2.31) and (4.38) is pre
ferred to obtain the vector J. In the numerical examples shown in the sequel, a part of the last 
segment of the crack is taken for ~fe and a square curve perpendicular on the last crack se~~rw~rn 
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is taken for "(, see Figure 4.10. The size sof 'Y is taken larger than the length of the last crack 
segment. As for the computation of the boundary integrals in (4.8)-(4.10), the curves 'Yc and 'Y 
are divided into integration cells to obtain the components of J. The integrations in these cells 
are performed similar to the ones for the boundary integration cells described in Section 4.2. 
Furthermore, to compute the crack surface contributions (4.36) by means of (4.38), we take e: 1 

and e:2 equal to 0.75h1 and 1.5hi, h1 being the local mesh size, see (3.27), of the nodal point in 
the crack tip. 

In this chapter the essential features of the element-free Galerkin method have been introduced. 
The performance of the method was studied by means of application in two patch tests. Fur
thermore, convergence of the method has been shown for two different problems. In the last 
section of the chapter, the computation has been described of fracture mechanics parameters 
in the case of an EFG-analysis of a fracture mechanics problem. With the techniques given in 
this chapter and the study of moving least squares approximation given in Chapter 3 we are 
now able to apply the EFG-method to statie fracture mechanics problems and to simulations 
of quasi-statie crack propagation. First, however, combinations of the EFG-method and the 
FE-method are studied in the next chapter. In Chapter 6 then results are given of the appli
cation to fracture mechanics problems of the EFG-method and a combination of the method 
with the FE-method. 



Chapter 5 

Combinations of EFG-method and 
FE-method 

As presented in Chapter 4, the element-free Galerkin (EFG) method makes use of shape func
tions obtained by moving least squares approximation (MLSA). In Chapter 3 it has been 
remarked that this connectivity-free approximation technique is computationally expensive, 
relative to approximation by means of finite elements. Application of the EFG-rnethod is 
therefore expensive in cornparison with application of the finite element (FE) method, which 
has been described in Chapter 2. 

The computational effort can be dirninished when the EFG-method is used only on the parts 
of the dornain where application of this rnethod is necessary. Here, one has to think of the 
neighbourhood of a crack. For the remaining part of the domain the FE-method can be used. 
For such an approach, however, the two parts have to be coupled in a certain way. In this 
chapter, three possible combinations of the EFG-method and the FE-method are studied. 

5.1 Combination by means of element-free coupling 

In Section 3.1 it has been shown that several FE-shape functions can also emerge from rnoving 
least squares approximation. As a consequence, sorne FE-discretizations can be regarded as an 
approach by the EFG-method. This leads to the first way to combine the EFG-method and the 
FE-method. The combination can be regarded as an overall EFG-approach, which yields that 
problems of coupling both methods are absent. This combination of EFG and FE has already 
been reported by the author in [30] and is illustrated below. 

Let a division of the problem domain into finite elements D" e = 1, ... , N, be given by the con
nectivity of the nodal points x", a = 1, ... , n. As described in Section 3.1, let weight functions 
and basis functions be chosen such that MLSA with the nodes x" results in shape functions 
<J>"(x), a = 1 ... , n, which coincide with the shape functions for the element division. When the 
domain is divided into integration cells .0.. such that = n., e = 1, ... , N, and the numerical 
integration per integration cell is such that it is equivalent to the integrations performed for 
the corresponding element, application of the EFG-method is identical to application of the 
FE-method. 

77 
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Figure 5.1: Nodal points and integration cells for EFG-method on n D1 U D2 resulting in 
FE-discretization on D1

. 

The above considerations lead to a straightforward way to apply the EFG-method and the 
FE-method together on a single domain. This is illustrated in Figure 5.1, where the domain 
n r21 u r22 is depicted together with a set of nodal points. According to Section 3.1, the EFG
method for the upper part r21 will be identical to a FE-discretization by means of four-node 
rectangular elements, if 

• the set of basis functions is {1,x1,x2,x1x2}, 

• the nodal points in n1 have weight functions with supports equal to the union of the 
surrounding rectangles with the nodal points as vertices, 

• the nodal points in 0 2 have weight functions which vanish on 0 1 , 

• the nodal points on the internal boundary between Q1 and n2 have weight functions such 
that the intersections of the supports of these weight functions with r21 are equal to the 
surrounding rectangles with the nodal points as vertices, 

• the integration cells for Q1 coincide with the rectangles with the nodal points as vertices 
and numerical integration for these cells is equivalent to numerical integration for a four
node rectangular element. 

For 0 2 a general EFG-approach can be used. Of course, the weight functions should be chosen 
such that MLSA is well-defined for r22 . Furthermore, a division of 0 2 into integration cells 
can be made independent of the nodal pattern, see Figure 5.1. Since this example can be 
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regarded as an overall EFG-approach for n, the FE-method on n1 and the EFG-method on ü 2 

are automatically coupled. 

When the nodal points for 0 1 are vertices of non-rectangular quadrilaterals, such a combination 
of EFG and FE is not possible. This is due to the fact that FE-shape functions and MLSA
shape functions do not coincide for such a distribution, see Section 3.1. Fora nodal distribution 
in n1 coming from a division into triangular elements, however, this element-free coupling of 
the methods is always possible. 

When r" is part of the boundary of the FE-domain 0 1
, the essential boundary conditions can 

be satisfied exactly. In that situation, these conditions can be prescribed at the nodes and the 
problem that the conditions are not satisfied, as for a general EFG-approach, is circumvented. 
When a part of r" is in the boundary of the EFG-domain, the essential boundary conditions 
for this part are accounted for by means of a Lagrange multiplier description, see (4.4). 

5.2 Combination by means of Lagrange multiplier 

The second possibility to combine the EFG-method and the FE-method is to divide the problem 
domain into a subdomain for EFG and a subdomain for FE. These two subdomains are then 
coupled by means of a Lagrange multiplier. Such a combination has already been reported by 
the author in [30) and is described below. 

Let the problem domain û be divided into two subdomains 0 1 and fl2 , i.e. û 0 1 u û 2 , see 
Figure 5.1. The boundaries of t.hese subdomains are denoted by f 1 and f 2 , respectively. Fora 
combination of a FE-approach for n1 and an EFG-approach for n2 , one should account for a 
coupling of the two subdomains over the common boundary r 1 n To this end, we consider 
an extension of the weak form (2.17) of the deformation problem for an elastic medium. In this 
extension, n1 and 0 2 are coupled over r 1 n r 2 by means of a Lagrange multiplier: 

Determine displacements u} E H 1(û1
) and ut E H 1(ü2), strains fii E H 0 (û1

) and éli E 
H 0 (û2), stresses <Jfi E H 0 (û1

) and <Jti E H 0 (û2
), and Lagrange multipliers Ài E H 0 (r1 n f 2 ), 

A} E H 0 (ru n f 1) and>.; E H0(r" n f 2), i,j 1,2,3, such that {2.1}, {2.2} are valid on both 
n1 and n2

' and such that 

for all 6u} E H 1(rl1), 6uf E H 1(rl2
), DÀ; E H 0(r1 n r 2), 6A} E H0 (ru n r 1 ) and ó>.; E 

H 0 (ru n f 2 ), i = 1,2,3. 
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In the weak form (5.1), the Lagrange multiplier À 1 accounts for the essential boundary condi
tions on r 'U n r 1, À 

2 accounts for these conditions on r" n r 2 and À accounts for the conditions 
u1 u2 on ri nr2. 

In order to derive discrete equations, a division into finite elements is assumed for Q1 , given 
by the connectivity of nodal points x!, a 1, ... , n1 . As described in Section 2.3, this leads to 
FE-shape functions ef>~(x), a = 1, ... , n 1. Nodal points x~, a = 1, ... , n2 , weight functions and 
basis functions are chosen such that moving least squares approximation is well-defined for Q 2 

As described in Section 3.1, this leads to MLSA-shape functions ef>~(x), a l, ... , n2. 

With these two sets of shape functions, the displacements on f!1 and f!2 in (5.1) are taken of 
the form 

n1 

u1(x) L: d!ef>!(x), x E f!1, (5.2) 
a=l 
nz 

u2 (x) L: d;ef>~(x), x E '22
• (5.3) 

a=l 

The Lagrange multipliers in (5.1) are taken of the form 

k 

A(x) L: tb7/!b(x), x E r1 n r2, (5.4) 
b=l 

k1 

À1(x) 2.:Ii7J!t(x), xEr ... nr1, (5.5) 
b=l 

kz 
>.2(x) L: 1~7/l~Cx), xErunr2, (5.6) 

b=l 

where { 7/lb(x) h=i,""k, {7/Jl{x) h=1, ",k1 and hJl(x) h=1". ,k2 are sets of shape functions on the 
boundaries r 1 n r 2' r u n r 1 and r u n r 2, respectively. 

For the sets { 7/JD and {î,&l}, the shape functions ef>~ and ef>~ are taken for those indices for which 
x~ or x~ is positioned on r u n r 1 or on r" n r 2 , respectively. For the set { 7/!b} on the common 
boundary, the shape functions 4>! are taken for those indices for which x~ is on rl n f2. 

When according to a Galerkin approach the test displacements óu1 and 8u2 and the test 
Lagrange multipliers ó>., ó>.1 and 8>.2 are taken of the same form as (5.2)-(5.6), one obtains a 
linear system for the coefficient vectors in (5.2)-(5.6), which is similar to (4.4). This system is 
of the form 

Ki 0 Li 0 H1 dl fl 

0 Kz 0 L2 H2 d2 f2 
LT 

1 0 0 0 0 11 rl (5.7) 
0 LT 

2 0 0 0 12 r2 

Hf 1 
HT 

2 0 0 0 l 0 

The matrix 0 and the vector 0 contain only zeros. The submatrices K 1 , K 2 , L1 , L2 , and the 
vectors d1 , d2 , 11, 12 , 1, f1, f 2 , r 1 , r 2 are given by expressions similar to (4.5)-(4.10). The 
submatrices H 1 and H 2 emerge from the integrals over f 1 n r2 in (5.1). 
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Since the shape functions ef>~(x) are zero on r"nr1 for nodal points x~ which are not positioned 
on this boundary, the essential boundary conditions for D1 can also be imposed directly at the 
boundary nodes, instead of using the Lagrange multiplier description in (5.1) . This is the 
common procedure in FE-analyses and leads also toa system of the form (5.7) . 

In order to obtain the linear system (5.7), numerical integration is performed as described in 
Section 2.3 and Section 4.2. For integration over the common boundary r 1 nr2 , this boundary 
is split into integration cells and integrations are performed similar to the boundary integrations 
described in Section 4.2. In order to provide restrictions of FE-shape functions for the repre
sentation of the Lagrange multiplier on f 1 n f 2 , see (5.4), we take the non-empty intersections 
of the boundaries of the elements in n1 with r1 n r2 as the division of this internal boundary. 

Sol ving the linear system (5. 7) for d 1 , d2 , 11 , 12 and land using (5.2) and (5.3), results in approx
imations for the displacements on n. Taking derivatives of (5.2) and (5.3) and subsequently 
using the constitutive equations, e.g. (2.9), leads to approximate values for the strains and 
the stresses. Note that due to the coupling of D1 and D2 , strains and stresses are generally 
discontinuous across the internal boundary r 1 n r 2· 

5.3 Combination by means of interface elements 

The third possible way to combine the EFG-method and the FE-method has been presented by 
Belytschko, Organ and Krongauz [10]. A band of special elements, so-called interface elements, 
is introduced between the EFG- and FE-domains to enforce continuity of the displacements 
over this band. A description of this approach is given in this section. 

Let the problem domain be divided into the subdomains D1 , D2 and Di, i.e. n = D1 u D2 u Di. 
The subdomain Di is the interface of fi.nite width between the other two subdomains. The 
subdomains n1 and n2 are disjoint, while n1 and ni, and n2 and ni have only parts of their 
boundaries in common, see Figure 5.2. 

For a combination of the EFG-method and the FE-method , a division of D1 u Di into fi.nite 
elements De is assumed and nodal points, weight functions and basis functions are chosen such 
that MLSA is well-defined for the subdomain D2 u S"ti. The division of D1 u Di into elements 
is such that the interface Oi is made up by a subset of the elements, see Figure 5.2. Let the 
Set {xa}a=l, .. ,n of noda) points for f2 be given SUCh that Xa ÎS in f21 U [2i and nodal point of 
an element n" or such that Xa is in n 2 u Qi and nodal point for MLSA. When Xa is in ni, 

the nodal point may be both nodal point of a finite element and nodal point for moving least 
squares approximation. 

Two sets of shape functions {ef>~(x)}a=l, ,n and {ef>~(x)}a= J , ,n are considered for the nodal 
points. If Xa is nodal point of an element, ef>~(x) is the FE-shape function on n1 u Qi for 
Xa. If this is not the case, ef>~(x) vanishes. If Xa is a nodal point for moving least squares 
approximation, ef>~(x) is the MLSA-shape function on D2 u Oi. If this is not the case, ef>~(x) 

vanishes. From these two sets of shape functions, a new set of continuous shape functions 
{ ef>a(x) }a=l,. ,n on n will be defined in such a way that these functions coincide with the FE
shape functions ef>~ on D1 and with the MLSA-shape functions ef>~ on D2 . For the definition of 
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Figure 5.2: Finite elements, nodal points and integration cells for combination of EFG and FE 
by means of interface elements. 

the functions <l>a an interface function t(x) on nis defined. This function is given by 

(5.8) 

In (5.8) there is only summation over those a for which the nodal point Xa is in 0 1. Since 
the FE-shape functions </>~ are continuous and can represent constant functions exactly, the 
interface function is continuous, t(x) = 1 for x E 0 1 and we have t(x) = 0 for x E 0 2 and 
0 S t(x) S 1 for x E Oi. The interface function t, however, is not differentiable across the 
boundaries of the interface ni. 

With the help of the interface function t(x), the shape functions <l>a(x), a = 1, ... , n, on n are 
defined by 

ef>a(x) = t(x)</>~(x) + (1 - t(x)) </>!(x), (5.9) 

where x E n and a = 1, ... , n. 

From (5.9) and the features of the interface function, it is seen that the shape functions <l>a are 
continuous on 0, and that </>(x) = </>~(x) for x E 0 1 and </>(x) = </>~(x) for x E 0 2 . The shape 
functions are differentiable on n except for the element boundaries in i11 u Di. 

It is seen easily that when the FE-shape functions and the MLSA-shape functions can both 
represent polynomials up toa certain degree exactly, the same holds true for the shape functions 
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defined by (5.9). For example, consider the four-node quadrilateral elements for D1 uni and the 
nodes for MLSA on D2 u çti depicted in Figure 5.2. On quadrilateral elements linear functions 
can be represented exactly. Hence, when the linear basis {1, x 1 , x2} is used for MLSA, linear 
functions can be represented exactly on D2 U Di because of (3.12), and the same holds true on 
n for the shape functions (5.9). 

The set of shape functions { <l>a}a=l, ... ,n for this combination of the EFG-method and the FE
method is used for representation of the displacements, see (2.49) or ( 4.1 ). This representation 
is then applied in a Galerkin formulation for the weak form (2.11) or (2.17), depending on 
whether the essential boundary conditions can be imposed exactly. The combination leads to a 
similar linear system as (2.50) or (4.4). Numerical integration in D1 U çti is performed for each 
element, while in D2 numerical integration is performed by means of a division into integration 
cells ~" see Figure 5.2. A prescribed number of integration points is used for the elements in 
D1 and the integration points for the elements in çti are determined in the same way as for an 
integration cell ~e, see Section 4.2. 

When r u is part of the boundary of the FE-domain D1 , the essential boundary conditions can be 
satisfied exactly. This was recognized by Krongauz and Belytschko [40]. In this paper they use 
a band of interface elements along r u to impose the essential boundary conditions. By means 
of this approach they circumvent the problem, discussed for the EFG-method in Section 4.3, 
that essential boundary conditions are not satisfied along a continuous part of the boundary. 

5 .4 Convergence aspects of EFG-FE combinations 

In the first three sections of this chapter, different ways to combine the EFG-method and 
the FE-method have been described. By means of the problems studied for the EFG-method 
in Section 4.3, we focus on the performance of the combinations. In each example, all the 
quantities and material parameters are thought of as being non-dimensional. Homogeneous, 
isotropic, linearly elastic material behaviour is assumed with the material parameters taken 
equal to E = 1 and v = 0.25. Volume forces ft are absent. As a result of the convergence 
study in Section 4.3, in each example weight functions of polynomial type (3.23) are used on 
the EFG-part of the domain. 

Some convergence studies for these ways to combine the EFG-method and the FE-method have 
already been reported, see [10] and [30]. In these papers, however, the EFG-method is applied 
with integration points for an integration cell chosen in a different way than in the scheme 
proposed in Section 4.2 and Appendix D. 

The results reported in this section are obtained by means of implementations of the combi
nations of the EFG-method and the FE-method in the MATLAB programming environment 
[51]. A short description of an analysis by means of a combination of both methods is found 
in Appendix B. 
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Figure 5.3: Nodal distribution (a) and element/cell configuration (b) for patch tests by means 
of combinations of EFG and FE. 

5.4.1 Patch tests 

The two patch tests considered in Section 4.3 are studied for t he three combinations of the 
element-free Galerkin method and the finite element method. We start with the square plate 
depicted in Figure 5.3, with the linear displacements (4.15), (4.16) for the plane stress problem 
of a uniform axial stress CJ applied at x1 = 1, prescribed at the boundaries. The FE-method is 
applied on the left half x1 S 0.5 and the EFG-method on the right half. As FE-discretization 
100 and 400 three-node triangular elements are taken and for the EFG-method the linear basis 
{1, x1 ,x2 } is considered together with 66 and 232 nodal points. Hence, a total number of 121 
and 441 nodes is used, see Figure 5.3a. 

The linear displacements ( 4.15), ( 4.16) are imposed at all t he boundary nodes. These displace
ments can be represented exactly by the FE-shape functions and the MLSA-shape functions. 
On the EFG-part two different values are considered for v to determine the radii of t he supports 
of the weight functions. These radii are proportional to the value of v, see (3.28) . Further
more, for numerical integration purposes the EFG-part of the domain is divided into 50 and 
200 quadrilateral integration cells, respectively, see Figure 5.3b. 

For the combination of the EFG-method and the FE-method by means of element-free coupling, 
products of one-dimensional weight functions are used for the nodal points on the line x 1 = 0.5. 
The radii of the supports of these weight functions are given values such that MLSA on the 
right part results in shape functions which coincide with the FE-shape functions on x1 = 0.5. 
The weight functions for the other nodal points in the EFG-part of the domain are modified 
such that these are zero on the FE-part. When the domains are connected by means of a 
Lagrange multiplier, t he nodes on x 1 = 0.5 are double, i.e" there is a set of nodes on x 1 = 0.5 
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&parameters 

Element-free, v = 2.0, 121 nodes, 150 elements/cells 
Element-free, v = 2.5, 121 nodes, 150 elements/cells 
Element-free, v = 2.0, 441 nodes, 600 elements/cells 
Element-free, v = 2.5, 441 nodes, 600 elements/cells 
Lagrange, v = 2.0, 132 nodes, 150 elements/cells 
Lagrange, v = 2.5, 132 nodes, 150 elements/cells 
Lagrange, v = 2.0, 462 nodes, 600 elements/cells 
Lagrange, v = 2.5, 462 nodes, 600 elements/cells 
Interface, v = 2.0, 121 nodes, 150 elements/cells 
Interface, v = 2.5, 121 nodes, 150 elements/cells 
Interface, v = 2.0, 441 nodes, 600 elements/cells 
Interface, v = 2.5, 441 nodes, 600 elements/cells 

lluh - ullo/llullo 
6.54 .10-4 

9.41·10-4 

2.54 .10-4 

3.36 .10-4 

9.75 .10-5 

4.46. 10-4 

2.49 · 10-5 

1.09. 10-4 

9.99. 10-5 

4.50. 10-4 

2.53. 10-5 

1.09. 10-4 

8.09 .10-3 

1.29. 10-2 

6.09 .10-3 

9.16. 10-3 

1.13. 10-3 

6.61·10-3 

5.69 .10-4 

3.21. 10-3 

1.14. 10-3 

6.65 .10-3 

5.11.10-4 

3.20 .10-3 

85 

Table 5.1: EFG+FE-results for problem of prescribed linear boundary displacements, linear 
basis. 

for the FE-discretization on the left half of the domain and another set for the EFG-method 
on the right half. For the combination by means of interface elements, the triangular elements 
in the band next to x1 0.5 are replaced by triangular interface elements. 

The results for the three combinations are shown in Table 5.1. In this table, lluh ullo and 
lluh - ull 1 are the errors in the H 0

- and H 1-norms, see (4.17) and (4.18). These errors are 
obtained by means of numerical integration over the elements and over the integration cells. 

The results in Table 5.1 show that the linear solution (4.15), (4.16) is not obtained exactly by 
the combinations, unless the fact that the boundary displacements are satisfied exactly at the 
nodes. Errors are introduced due to the fact that the essential boundary conditions on the 
EFG-part of the dornain are not satisfied and due to errors because of numerical integration 
in this domain. These problems were also reported in Section 4.3. From the table it is seen 
that for all three combinations the errors increase when the value of v increases. This can be 
explained from the fact that for a higher value of v the sizes of the supports of the MLSA-shape 
functions are larger, such that more nodes influence the displacements on the EFG-boundary. 

Table 5.1 also shows that a refinement of the element distribution together with a refinement 
of the nodal distribution for the EFG-method leads to a decrease in the errors for all three 
combinations. This can be explained from the fact that for such a refinement the boundary 
conditions are satisfied at more nodes of the EFG-boundary. Therefore, one can conclude that 
this patch test for the exact representation of the linear solution is satisfied in the weak sense, 
that is, for ha -+ 0, where ha is the local mesh see (3.27). 

Nearly all errors in the table are of the same order. The combinations by means of a Lagrange 
multiplier and by means of interface elements result in almost equal errors. The performance 
of these two combinations for this problem is slightly better than the performance of the 
combination by means of element-free coupling. 

In Figure 5.4, the relative error in 0"11 is depicted for the combination by means of element-free 
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relativa error ln cr11. Element-free relative error in c;11, Lagrange 
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Figure 5.4: Relative error in cr11 for element-free coupling (a) and Lagrange multiplier (b), 
problem of prescribed linear boundary displacements, linear basis. 

coupling and for the combination by means of a Lagrange multiplier in the case of v = 2.0 and 
a nodal distribution of 441 and 462 nodal points, respectively. The error for the combination 
by means of interface elements is similar to the one depicted in Figure 5.4b. It is seen that the 
error in Figure 5.4b is small and that there is hardly a discontinuity in cr11 over the common 
boundary of EFG-part and FE-part. 

From Figure 5.4a, a large error at x1 = 0.5 is seen for the combination by means of element-free 
coupling. Hence, as in [30], one might conclude that this way to combine the two methods is 
not correct. However, a close look at this error shows that it is only due to the fact that MLSA 
is not well-defined on x1 = 0.5. On this internal boundary the only nodes for MLSA involved 
in the summation (3.4) are the nodes on this boundary, which yields that the matrix P in 
(3.8) does not have maximal rank. As we have seen before for the wedge model in Section 3.2, 
this does not prevent MLSA to de:fine a unique value for the shape functions on the intemal 
boundary. However, the derivative of the shape functions with to the x1-coordinate and, 
therefore, the stresses cannot be determined at x1 = 0.5. The stresses at x1 = 0.5 depicted 
in Figure 5.4a are found by performing MLSA without the basis function x1 . For x1 > 0.5, 
MLSA is well-defined and the derivatives and stresses can be determined. lt was found that for 
x1 > 0.5 the error in a 11 is of the same order as for the combination by means of a Lagrange 
multiplier. Hence, we conclude that the combination of EFG and FE by means of element-free 
coupling is a correct way to combine the methods. 

The second patch test concerns the square plate with applied traction and displacements pre
scribed at the boundaries. The domain is divided into a part for the EFG-method and apart for 
the FE-method in a similar way as in the previous patch test. Again the solution (4.15), (4.16) 
is considered. Displacement u1 is prescribed at the boundary x1 = 0 by means of imposition at 
the nodes. At the boundary x2 = 0 displacement u 2 is prescribed by imposition at the nodes 
on the FE-part (x1 ~ 0.5) of this boundary and by means of a Lagrange multiplier description 
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EFG+ FE-parameters jjuh - u!lo/llullo lluh ulli/llulli 
Element-free, v 2.0, 121 nodes, 150 elements/cells 6.84 .10-4 8.10. 10-3 

Element-free, v = 2.5, 121 nodes, 150 elements/cells 8.86 -10-4 1.14· 
Lagrange, v = 2.0, 132 nodes, 150 elements/cells 7.23 -10-5 7.56. 
Lagrange, v = 2.5, 132 nodes, 150 elements/cells 1.68 .10-5 2.41·10-4 

Interface, v = 2.0, 121 nodes, 150 elements/cells 2.35 .10-5 1.20 .10-4 

Interface, v = 2.5, 121 nodes, 150 elements/cells 1.47. 10-5 1.57. 10-4 

Table 5.2: EFG+FE-results for problem with constant uniaxial stress, linear basis. 

for the EFG-part (x1 2: 0.5) of the boundary. The constant normal stress C! is prescribed at 
the boundary x1 = 1, while the boundary x 2 1 is stress-free. 

For an analysis by means of combinations of EFG and FE, the FE-part is divided into 100 
three-node triangular elements. For the EFG-part the linear basis {1,x1,x2} is taken. A total 
number of 121 nodes is used, see Figure 5.3a. Two different values for v are used and for 
numerical integration the EFG-part of the domain is divided into 50 quadrilateral integration 
cells, see Figure 5.3b. The results for the three combinations are shown in Table 5.2. The errors 
found in the solution are due to numerical integration and due to the fact that the essential 
boundary conditions at the boundary of the EFG-part of the domain are not satisfied exactly. 
An increase of v does not lead to an increase in the errors for the second and third way for 
combining EFG- and FE-methods. This can be explained by the fact that a significant part 
of the essential boundary conditions are prescribed on the boundary of the FE-part of the 
domain, which means that these conditions are not satisfied exactly only on a small part of the 
boundary. 

The errors for the combination by means of a Lagrange multiplier and by means of interface 
elements are of the same order. The errors for the combination by means of element-free 
coupling are significantly higher. For the latter combination, the weight functions for MLSA 
have to vanish on the FE-part of the domain. Hence, almost all the weight functions are small 
near the internal boundary between the FE-part and the EFG-part, resulting in highly non
polynomial shape functions near this boundary for the EFG-method, see Section 3.1. Therefore, 
numerical integration of these shape functions leads to a less accurate performance of this 
combination of the EFG-method and FE-method. Since these problems are absent in the other 
two ways for combining EFG-method and FE-method, the combination by means of element
free coupling is not considered in the next examples. 

As for the first patch test, refinement of the element mesh and the nodal distribution together 
with a refinement of the pattern for numerical integration, will lead to a decrease in the errors. 
Since more shape functions are involved in the representation (4.3) of the Lagrange multiplier, 
the error in the representation of the boundary displacements decreases. Hence, it is concluded 
that this patch test for the exact representation of the linear solution (4.15), (4.16) is satisfied 
in the weak sense. 

As for the EFG-method in Section 4.3, one expects that satisfaction of the two patch tests 
implies convergence of the combinations of the element-free Galerkin method and finite element 
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5.5: EFG+FE-errors and -convergence rates R /or (a) H 0-norm and (b) H 1 -norm, 
problem of shear force on a plate, linear basis. 

method. This is shown in the next two examples where we focus on combinations by means of 
a Lagrange multiplier and by means of interface elements. 

5.4.2 Shear force on a plate 

Consider the square plate depicted in Figure 5.3. Let a transverse shear force F be applied 
at the boundary x1 = 1. When the shear stress on this boundary is distributed according 
o-12 = -6(F/d3)x2(x2 - 1), where d = 1 is the length of the plate in the x2-direction, the 
displacements in the situation of plane strain are given by (4.19) and (4.20). The convergence 
of the combinations of the EFG-method and the FE-method by means of a Lagrange multiplier 
and by means of interface elements is studied for this problem. The displacements ( 4.19), (4.20) 
are prescribed on the boundary x1 = 0 and the shear stress o-12 is prescribed on the boundary 
x 1 1. The boundaries x2 = 0 and x 2 = 1 are taken stress-free. 

On the left half of the plate (x1 :S 0.5) the FE-method is applied and on the right half (x1 ;::: 0.5) 
the EFG-method. As FE-discretization divisions into 50, 200 and 800 four-node quadrilateral 
elements are used. For the EFG-method on the right half, the linear basis {1, x1 , x2} is taken 
together with nodal distributions with local mesh sizes identical to the mesh sizes of the element 
discretizations. This leads to a total number of 121, 441 and 1681 nodes, respectively. The 
displacements (4.19) and (4.20) are prescribed at the (finite element) nodes on the boundary 
X1=0. 

On the EFG-part of the domain, two different values are considered for vin equation (3.28) for 
the sizes of the supports of the weight functions. For numerical integration purposes the EFG
part of the domain is divided into 100, 400 and 1600 triangular integration cells, respectively, 
leading toa total number of 150, 600 and 2400 elements/cells. For the combination by means 
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of interface elements, the band of elements next to x1 = 0.5 is replaced by interface elements 
and for the combination by means of a Lagrange multiplier the nodes on x1 = 0.5 are double. 

In Figure 5.5, the logarithms of the errors in the H 0- and H 1-norm, see (4.17) and (4.18), are 
depicted versus the logarithm of the mesh parameter h. The mesh parameter h is taken to 
be the distance in the x1-direction between neighbouring nodes. To obtain accurate values for 
the errors in the Sobolev-norms by means of the division into elements and integration cells, 
(4,4)-point Gaussian quadrature is used in the elements. A linear correspondence is seen in 
the figure, which yields that the error estimates ( 4.21) hold true. The convergence rates R in 
these estimates are equal to the slopes of the given lines. The values for R are also given in 
Figure 5.5. In the figure only the rates for v = 2.0 are depicted, since for the value v 2.5 
almost equal errors and hence, equal convergence rates were found. Similar convergence rates 
have been found for both v 2.0 and v = 2.5 when rectangular integration cells are used in 
the EFG-part of the domain instead of triangular integration cells. 

Figure 5.5 shows that the combinations of the EFG-rnethod and the FE-method converge. The 
convergence rates are approximately equal to those for a FE-discretization of the entire patch 
into four-node quadrilateral elements. The convergence rates for such FE-analyses are exactly 
equal to 2 and 1 in the H 0- and H 1-norrns, respectively, see [33, Ch. 4]. In Section 4.3, it has 
been shown that the convergence rates fora pure EFG-approach for this problem are higher than 
the ones for the combined approaches. As a result, it is concluded that the convergence of the 
combinations of the EFG-method and the FE-method is dominated by the FE-discretizations. 
In the next example it is shown that the convergence for the combinations can even be slower 
than the convergence for the FE-discretizations. 

5.4.3 Infinite plate with circular hole 

The performance of the cornbinations of the EFG-rnethod and the FE-method by rneans of a 
Lagrange multiplier and by means of interface elements is studied for the problem of a plate 
with a circular hole discussed in Section 4.3. As in this section, the part 0 :::; x1 :::; 5 and 
0 :::; x 2 :::; 5 of the upper right quadrant of the plate is considered, see Figure 5.6. On the 
part 0 :::; x1 :::; 3 and 0 :::; x2 :::; 3, the EFG-method is applied and on the remaining part 
the FE-method. As FE-discretization, divisions into 20, 64 and 132 four-node quadrilateral 
elements are used, see Figure 5.6b. For the EFG-method the linear basis {1, Xi, x2} is taken. 
In the EFG-part of the domain, the nodal points are spaced regularly in the 8-direction and 
irregularly in the r-direction, see Figure 5.6a, in order to achieve accurate approximations of the 
steep displacements and the stress concentrations near the circular boundary, see ( 4.22)-( 4.26). 
The total nurnber of nodes which are used, is 105, 241 and 433, respectively. 

On the boundaries x1 = 5 and x 2 = 5, the tractions are prescribed according to the stresses 
(4.22)-(4.24), which are proportional to u. The circular boundary has radius a = 1 and is 
assumed traction-free. Displacernents are prescribed on the boundary of the patch according 
to the solution (4.25), (4.26). On the boundary x1 0, we set u1 0 while on x2 = 0, we set 
u2 = 0. On the FE-parts of these boundaries the displacements are prescribed at the nodes, 
while on the EFG-parts of these boundaries the displacernents are accounted for by rneans of 
a Lagrange multiplier description, see (2.17). The EFG-part of the domain is divided into 64, 
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Figure 5.6: Nodal distribution (a) and element/eelt configuration (b) for combination of EFG 
and FE, problem of infinite plate with circular hole. 

144 and 256 integration cells, see Figure 5.6b. These integration cells are quadrilaterals with 
four definition points. The cells next to the circular boundary are given with the help of the 
connectivity of five definition points to achieve a better approximation of this boundary. The 
same number of cells is taken in the r- and 0-directions. For the EFG-method, two different 
values for v are used and thus two different sizes for the supports of the weight functions, see 
(3.28). For the combination by means of interface elements, the elements next to the internal 
boundary between EFG- and FE-parts are replaced by interface elements. For the combination 
by means of a Lagrange multiplier, the nodes on this internal boundary are double. 

In Figure 5. 7, the logarithms of the errors are depicted versus the logarithm of h. Convergence 
rates R are also given in the figure. These rates are taken equal to the mean slope of the 
depicted lines. The local mesh size ha, see (3.27), averaged over the nodal points Xa is taken 
as global mesh size h. To this end, ha is also computed for the nodes of the FE-discretization. 
For an accurate computation of the errors in the Sobolev-norms by means of the division into 
elements and integration cells, ( 4,4)-point Gaussian quadrature is used in the elements to obtain 
these errors. In the figure, we see that the combinations converge for this problem, despite the 
non-convex domain and the approximation of it by the integration cells, and the coupling of 
EFG-method and FE-method over a piecewise linear internal boundary. In the figure it is also 
seen that only in the case of a combination by means of a Lagrange multiplier and v = 2.0 
the convergence rates exceed those fora FE-discretization of the entire domain into four-node 
elements. The convergence rates for such FE-analyses are exactly equal to 2 and 1 for the H 0-

and H 1-norms, respectively, see [33, Ch. 4]. For the other three situations, the convergence 
rates are smaller than the rates for the FE-discretization. In Section 4.3 it has been shown that 
the convergence rates of a pure EFG-approach for this problem are higher than the values for 
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Figure 5.7: EFG+FE-errors and -convergence rates R for (a) H 0 -norm and (b) H 1-norm, 
problem of infinite plate with circular hole, linear basis. 

the FE-approach. As a result, we conclude that the combinations of the EFG-method and the 
FE-method can lead to convergence rates which are smaller than the convergence rates for the 
FE-discretizations. 

From Figure 5.7 it is also seen that a higher value for v leads to an increase in the errors and a 
decrease in the convergence rates for the combination by means of a Lagrange multiplier. This 
is due to the fact that a higher value for v results in larger sizes for the supports of the weight 
functions, see (3.28). Therefore, more nodal points in the EFG-part of the domain influence the 
displacements on the internal boundary between the EFG-part and the FE-part of the domain. 
This yields that it is more difficult to have continuity of displacements across this boundary. 
It is seen that for the combination by means of interface elements the errors are smaller than 
those for the combination by means of a Lagrange multiplier. However, the convergence rates 
for the latter one area little higher. Furthermore, a higher value for v in the case of interface 
elements does not lead to an increase in the errors, since the errors for both values of v are 
almost the same. 

Convergence of the combination by means of a Lagrange multiplier is also seen from a com
parison of the computed stresses with the solution (4.22)-(4.24). In Figure 5.8, the errors in 
an and a 22 are given for x1 = 0 and x2 0, respectively. A decrease in the errors is observed 
for an increase in the number of nodal points. The value of a in the applied tractions was 
set to 1 · 10-3 . In the figure discontinuities in the stresses are seen at the internal boundary 
between the EFG-part and the FE-part of the domain, i.e" at x 2 3 and x1 = 3, respectively. 
This is due to the fact that the combination by means of a Lagrange multiplier accounts only 
for a weak formulation of the continuity of the displacements across this boundary. For the 
combination by means of interface elements, discontinuities in the stresses along the boundaries 
of the interface elements are also observed. However, for this combination, no discontinuities 
are obtained in the displacements over the internal boundary between the EFG- and FE-parts. 
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Figure 5.8: Errors in u11 at x1 0 (a) and in u22 at x2 = 0 (b), combination of EFG and FE 
by means of Lagrange multiplier, problem of infinite plate with circular hole, linear basis. 

It should be remarked that in Figure 5.8 the stresses on the FE-part of the boundary have been 
averaged. 

The convergence of the combinations for this problem has also been studied for an approach 
using a quadratic basis. The FE-part of the domain is divided into 5, 16 and 33 nine-node 
quadrilateral elements, respectively. For the EFG-method on the part for which 0 ::; x1 ::; 3 
and 0 S X2 S 3, the quadratic set {1, Xi, X2, xr, X1X2, xfl of basis functions is used together 
with the same distributions of nodes and the same configuration of integration cells as for the 
approach using a linear basis. The two values for v are taken which have also been used for 
the quadratic EFG-approach for this problem reported in Section 4.3. Convergence rates for 
the combinations are given in Figure 5.9. lt is seen that the combinations converge for this 
problem. The convergence rates are smaller than the rates for a FE-discretization of the entire 
domain into nine-node quadrilaterd elements. The convergence rates for such FE-analyses are 
exactly equal to 3 and 2 for the H 0- and H 1-norms, respectively, see [33, Ch. 4]. 

The errors for the combination by means of a Lagrange multiplier are of the same order as those 
given in Figure 5. 7 for the approach using the linear basis. Similar to that linear approach, 
an increase in v leads in Figure 5.9 to an increase in the errors. For this way to combine the 
EFG-method and the FE-method, it is also seen that the convergence rates for v = 2.5 are 
smaller than the ones for v = 3.0 and smaller than the ones for v 2.5 given in Figure 5.7. This 
is explained by the same considerations as those given in Section 4.3 for the approach using the 
quadratic basis. In comparison with an approach using a linear three extra basis function 
are involved. Hence, when the same radii of the weight functions are used for both sets of basis 
functions, the shape functions for the quadratic basis are locally more non-polynomial than 
the ones for the linear basis. The nurnerical integration scheme for the EFG-method 
therefore better for the linear basis, resulting in higher convergence rates. For v 3.0 and a 
quadratic basis, the shape functions are locally more polynomial than the ones for v 2.5. 
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Figure 5.9: EFG+FE-errors and -convergence rates R for (a) H 0 -norm and (b) H 1-norm, 
problem of infinite plate with circular hole, quadratic basis. 

This results in higher convergence rates, despite the fact that more nodal points infiuence the 
displacements at the internal boundary between the EFG- and FE-parts of the domain. In 
contrast with the application of a pure EFG-approach for this problem reported in Section 4.3, 
the use of a quadratic basis for the combination by means of a Lagrange multiplier, does not 
lead to higher convergence rates than when a linear basis is used. 

It is seen from Figure 5.9 that, for the approach using the quadratic basis, the combination 
by means of interface elements performs better than the combination by means of a Lagrange 
multiplier. The errors are smaller and the convergence rates for the interface elements exceed 
those for the Lagrange multiplier. For interface elements, the errors in the computed displace
ments and stresses are for both values of v almost the same. Hence, a higher value of v does 
not lead to an increase in these errors, as for a Lagrange multiplier. Furthermore, it is seen 
that the convergence rates for interface elements with a quadratic basis exceed the ones given 
in Figure 5. 7 for the linear basis, as for a pure EFG-approach. 

5.4.4 Conclusions and discussion 

In this section three different ways of combining the element-free Galerkin method and the 
finite element method have been discussed: element-free coupling, combination by means of a 
Lagrange multiplier and combination by means of interface elements. The examples presented 
above lead to the following conclusions. The errors in the numerical solutions can be attributed 
to various reasons, namely due to numerical integration, due to the fact that essential boundary 
conditions are not exactly satis:fied along continuous boundaries, and due to the coupling of 
EFG-part and FE-part of the domain. Patch tests for the exact representation of linear solutions 
show that the three ways of combining EFG-method and FE-method all perform well. These 
patch tests are satis:fied in the weak sense by the combinations. From the results for the 
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patch tests it is concluded that the combination by means of a Lagrange multiplier and the 
combination by means of interface elements is preferred to an element-free coupling of the 
methods. This conclusion is because the latter one results in shape functions for the EFG
method which are locally strongly non-polynomial near the FE-part of the domain. 

It has been shown that the combinations by means of a Lagrange multiplier and by means 
of interface elements converge for elasto-static problems. Furthermore, it has been shown 
that, despite the high convergence rates for pure EFG-analyses reported in Section 4.3, the 
convergence rates of the combined approaches do not exceed the rates for the applied FE
discretizations. 

From the examples it has been seen that the combination by means of interface elements, 
especially in the case of an approach by quadratic basis functions, performs better than the 
combination by means of a Lagrange multiplier. For the latter case, larger errors are obtained 
when larger values are used for the radii of the supports of the weight functions. For this way of 
combining the EFG-rnethod and the FE-method, the continuity across the internal boundary 
between the EFG-part and the FE-part of the domain is only accounted for by means of a weak 
formulation of the continuity conditions. This in contrast with the combination by means of 
interface elements, where the displacements are continuous across the internal boundary. For 
this way of combining the EFG-method and the FE-method, an increase in the radii does not 
lead to an increase in the errors. 

Similar convergence rates for interface elements for the problem of a shear force on a plate have 
also been reported in [10]. In [30] the convergence of the combination by means of a Lagrange 
multiplier has been studied for the problem of a shear force on a plate and the problem of 
an infinite plate with a circular hole. In this paper the rates obtained for such a combination 
for the first problem are similar, as in this section, to the rates for the FE-discretization. For 
the problem of a circular hole, however, the paper reports convergence rates which exceed the 
obtained rates in this section. The explanation for this comes from the fact that in [30] the 
Sobolev-norrns are computed with low-order Gaussian quadrature in the elements, yielding that 
a significant part of the convergence is due to the numerical computation of these norms. 

In the next chapter the EFG-method and the combination of the EFG-method and the FE
method by rneans of interface elements, are applied to fracture mechanics. Results are reported 
for both statie and quasi-statie problems. 



Chapter 6 

Simulation of crack propagation 

In Chapter 4 and Chapter 5, the element-free Galerkin (EFG) method and combinations of 
this method with the finite element (FE) method have been considered. This chapter studies 
the application of the EFG-method and the application of a combination of the EFG- and FE
methods to fracture mechanics problems. Results are given of analyses of statie problems, where 
stress intensity factors are determined, and of simulations of quasi-statie crack propagation 
where crack paths are computed. 

Application of the EFG-method to fracture mechanics problems has already been reported in 
the literature. In [7] and [48], stress intensity factors are computed for the problem of an edge 
crack in a mode 1 loading situation. The crack is taken into. account by symmetry considerations 
and by the use of the discontinuous crack model of Belytschko presented in Chapter 3. Results 
of the use of this model can also be found in [5], [8]-[11] and [49]. In [5] and Belytschko, Lu and 
Gu [8], results of simulations of quasi-statie crack propagation are reported. In Belytschko, Lu, 
Gu and Tabbara [9], Belytschko and Tabbara [11] and Lu, Belytschko and Tabbara [49], the 
EFG-method is applied to dynamic fracture problems. In [10] the discontinuous crack model 
of Belytschko is used in a coupled EFG- and FE-approach for dynamic fracture problems. The 
EFG-method and the FE-method in this paper are coupled by means of the interface elements 
described in Chapter 5. In [6] the continuous crack model of Belytschko presented in Chapter 3 
is applied to statie fracture problems. In [5]-[11], [48] and [49], polynomial basis functions are 
used for the representation of the displacements and the stresses near the crack tip and the 
configurations of integration cells are not adapted for the presence of a crack. 

Recently, in Fleming, Chu, Moran and Belytschko [25] and in [58], results have been reported 
of statie and quasi-statie fracture analyses where, as in this chapter, special basis functions are 
used for accurate representations of displacements and stresses near the crack tip. In [25] and 
[58], a polynomial basis is extended with four extra basis functions taken from the near-tip 
displacements (2.21). This has the consequence that large radii have to be used for the weight 
functions of the nodes, yielding shape functions with relatively large supports and making 
the approach more non-local than an approach with fewer basis functions. In [25] a second 
approach is described, where a polynomial basis is used and the asymptotic expressions (2.21) 
for the displacements are added directly to the set of shape functions. Since these asymptotic 
expressions are global functions, this results in a global approach. Both approaches described 
in [25], however, are used locally near a crack tip and are coupled with an EFG-approach for 
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the remaining part of the material, which uses only a polynomial basis. Two ways of coupling 
are considered. The first one uses the way of coupling which is also applied in the combination 
of the EFG-method and the FE-method by means of interface elements given in Chapter 5. 
The second way of coupling simply changes the basis at a remote distance of the crack tip, 
which results in discontinuous shape functions. In [25] and [58], the continuous crack model of 
Belytschko given in Chapter 3 is applied and the configuration of cells is not adapted for the 
presence of a crack. 

The results in this chapter are obtained in a different way than those given in [5]-[11], [25], [48], 
[49] and [58]. As described in Chapter 3, the wedge model is applied for an EFG-analysis on 
( a part of) the domain, together with the addition of only one special basis function, in order 
to compute accurate displacements and stresses near the crack tip and to keep the approach as 
local as possible. During numerical integration by means of the configuration of integration cells, 
the presence of a crack is accounted for by dividing integration cells into subcells. Integration 
points for an integration cell are chosen on the basis of the nodal distribution and the size of 
the cell. This has been described in Chapter 4. 

In this chapter results are given of analyses of both statie and quasi-statie problems. Three 
problems are considered, namely the problem of an edge crack in a mode I loading situation, the 
problem of an edge crack in a mixed-mode loading situation and the problem of a single-edge 
notched beam under shear loading. The statie problems concern geometries with stationary 
(non-propagating) cracks. Stress intensity factors are computed and compared with exact 
values. The use of special basis functions in the EFG-method and the dependence of this method 
on the configuration of integration cells are investigated. The quasi-statie problems concern 
geometries with (slowly) propagating cracks. The analyses are quasi-statie, since dynamic 
effects such as wave propagation are not taken into account. Step lengths for crack propagation 
and local mesh sizes for the nodal distribution are studied for an accurate performance of the 
EFG-method. The calculated crack paths are compared with results reported in the literature. 

In Chapter 5, different combinations of the element-free Galerkin method and the finite element 
method have been studied. The combination by means of interface elements turned out to be 
the combination with the best performance. This combination is also applied to the above
mentioned problems. In all applications of the combination, the nodal distributions and cell 
configurations are taken similar to those used for the EFG-method in these problems. 

The reported results in this chapter are obtained by means of implementations of the EFG
method and the combination of this method with the finite element method, in the MATLAB 
programming environment [51]. Schematic set-ups of analyses fora cracked material domain by 
the EFG-method and by the combination of EFG- and FE-methods, are found in Appendix B. 
In each fracture example presented in this chapter, all the quantities and material parameters 
are thought of as being non-dimensional. Homogeneous, isotropic, linearly elastic material 
behaviour in a situation of plane strain is assumed with the material parameters taken equal to 
E = 1 and v = 0.25. Volume forces ft are absent. Furthermore, weight functions of polynomial 
type (3.23) are used. 

Each of the first three sections of this chapter deals with one of the above mentioned fracture 
mechanies problems. The chapter ends with a section in which a discussion and conclusions 
are found concerning the reported results. 
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Figure 6.1: Edge crack in (a) mode 1 and (b) mixed-mode loading situation. 

6.1 Edge crack in mode 1 loading situation 

In this section we study the the problem of an edge crack in a mode I loading situation, see 
Figure 6.la. In analyses of the problem the influences of the number of nodal points, the cell 
configuration, the set of basis functions, and the combination of the EFG- and FE-methods are 
investigated. Therefore, one fixed geometry is chosen: the dimensions of the cracked material 
domain in Figure 6.la are set equal to b = h = 1 and the crack length is taken as a = 0 .3b. 

6.1.1 Results for EFG-method 

For EFG-analyses of the problem, two different nodal distributions are considered. The first 
one consists of a global equidistant distribution of 66 nodes for the domain, see Figure 6.2a, 
together with an extra set of 209 nodes near the crack, see Figure 6.2b. In the figure it is seen 
that, as described in Section 3.2, more extra nodes are placed just bebind the crack tip than 
ahead of the crack tip. The second nodal distribution consists of 231 global nodes together 
with 233 nodes near the crack. For this nodal distribution , the local mesh sizes for the nodes 
are approximately 50% of those for the first distribution. 

The following sets of basis functions are used: the linear basis {1, x1 ,x2 }, the linear basis 
extended with ft, i.e. {1 ,x1,x2 , ft}, with r being the distance to the crack tip, and the basis 
{ 1, x 1 , x2 , p(x)}, where the function p(x) is defined by (3.50) and behaves like Jr near the 
crack tip and like the monomial x 1x 2 on most of the remaining part of the domain. The sizes 
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Figure 6.2: Crack, integration cells and global distribution (a), and extra local distribution (b) 
of nodal points for EFG-analysis of edge crack in mode I loading situation. 

of the supports of the weight functions are given by equation (3.28). The parameter v in this 
equation is set equal to v = 2.0 when the basis consists of three basis functions , and to v = 2.5 
in the case of four basis functions. 

For the distribution of 275 nodes, the domain is divided into 50 or 66 rectangular integration 
cells. The latter one is depicted in Figure 6.2. In the case of 50 integration cells, the crack is 
at the boundary of several rectangular cells, while for 66 integration cells the crack is in the 
interior of several cells such that in an EFG-analysis these cells are subdivided into triangular 
integration cells, see Section 4.2. For the distribution of 464 nodes, the domain is divided 
into 200 or 231 rectangular integration cells. The constant normal stress O' is prescribed at 
the horizontal boundaries, while the vertical boundaries are taken stress-free. The rigid body 
motions are suppressed by setting three displacements at the boundary equal to zero. 

Stress intensity factors are computed from the components of the J-vector, see (4 .32), (4.33) . 
This vector is obtained from an EFG-analysis by J-integration. As described in Section 4.4, 
a square curve surrounding the crack tip is used in the computation of the J-integral, see 
Figure 4.10. Furthermore, as considered in Section 4.4, a correction is used to avoid integrations 
near the crack tip. To investigate the path-independence of the values for J and therefore for 
K 1 and Ku, the vector is computed for 10 different curves 'Y· These curves start on the lower 
crack surface at a distance 0.125a from the crack tip and the sizes s of the contours range from 
0.2a to 0.8a. 

Results obtained by EFG-analyses with the given nodal distributions, the different sets of basis 
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EFG-parameters Kf/K1 SD1 
{l, X1, X2}, v = 2.0, 275 nodes, 50 cells 0.962 2.33. 10-2 

{l, X1, X2}, v = 2.0, 275 nodes, 66 cells 0.967 2.37. 10-2 

{l,X1, X2, Vr} , v = 2.5, 275 nodes, 50 cells 0.997 1.15. 10-2 

{1, Xi, X2, Jr"}, v = 2.5, 275 nodes, 66 cells 0.996 1.13. 10-2 

{l,x1,x2,p(x)}, v = 2.5, 275 nodes, 50 cells 0.892 2.97. 10-1 

{l,x1,x2,p(x)}, v = 2.5, 275 nodes, 66 cells 1.303 4.45. 10-1 

{l,X1 ,X2}, v = 2.0, 464 nodes, 200 cells 0.986 1.36. 10-2 

{l, X1, X2}, v = 2.0, 464 nodes, 231 cells 0.988 1.14. 10-2 

{l, X1, X2, Jr"}, v = 2.5, 464 nodes, 200 cells 1.002 7.30. 10-3 

{l,X1,X2,Jr"}, v = 2.5, 464 nodes, 231 cells 1.001 6.24. 10-3 

{l, x1, x2, p(x)} , v = 2.5, 464 nodes, 200 cells 1.229 1.17 . 10- 1 

{l,x1,x2,p(x)}, v = 2.5, 464 nodes, 231 cells 1.231 1.18. 10-1 

Table 6.1: Mean values and standard deviations of K7/K1 for EFG-analyses of edge crack in 
mode 1 loading situation. 

functions, the different values for v and the given cel! configurations are reported in Table 6.1. 
In the first column, the mean values of K7/ K 1 are given, where Kf is the computed mode I 
stress intensity factor for the contours 'Y and K 1 = l.65ay'7ra is the exact value for this factor 
given in Rooke and Cartwright [61, Ch. l]. In the second column, the standard deviations SD1 

of the set of values Kf / K 1 are given. Mode II stress intensity factors Kf1 are also computed. 
Since these factors are always orders of magnitude smaller than Kf, they are not given. 

From the results in Table 6.1 it is concluded that taking JT in the basis results in more accurate 
stress intensity factors than in the case of a linear basis. For a basis with JT, the mean values 
of Kf are within 0.4% of the exact value with a standard deviation of about 1 %, while the 
errors in Kf for a linear basis are several percents. For contours 'Y which start at the lower 
crack surface at a larger distance from the crack tip, smaller errors in KJ are observed for the 
linear basis. It should be noticed that, due to the symmetry of the problem, the integrations 
over the crack surfaces in the computation of J have (almost) no infl.uence on the values of Kf , 
see (2.31) and (4.34). 

In contrast to the addition of JT to the basis, the addition of the function p(x) does not result 
in more accurate values for the mode I stress intensity factor. Although this fun ction behaves 
like JT near the crack tip, the values for Kf are even worse than the results obtained with the 
linear basis. A good explanation for this phenomenon is not evident. Variations in the size of 
the region near the crack tip over which p behaves like JT and in the size of the zone where the 
function is continuously coupled with the monomial x 1x 2 , show no improvement in the results. 
The poor performance of the basis with the function p might be due to the coupling of -JT 
and x1x2 . Using 275 nodes, parts of the contours of 1' pass through the zone over which these 
functions are coupled and a large variation in the results is observed. In the sequel the function 
p wil! not be used in EFG-analyses. 

From Table 6.1 it is also seen that refinement of the nodal distribution results in more accurate 
values for K7. Furthermore, the results are not sensitive to variations in the configurations of 
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Figure 6.3: · Results of simulation of quasi-statie crack propagation by EFG-method for edge 
crack in mode I loading situation: ( a) Crack path and initia[ eelt configuration, and (b) final 
eelt configuration f or initial distribution of 275 nodal points, and ( c) crack path and initia[ eelt 
configuration for initia[ distribution of 464 nodal points. The cracks are indicated by thick solid 
lines and the subsequent positions of the crack tip are indicated by *. 

integration cells. Two different types of configurations have been used: one with the crack at the 
boundary of several cells and another with the crack in the interior of cells resulting in internal 
subdivisions of some cells, e.g. see Figure 6.3b. The results for both types of configurations do 
not differ very much. Only, in the case of 275 nodes and the use of the function p(x) , a large 
difference in the stress intensity factors is observed . This is explained from the fact that the 
function p leads to a bad performance of the method as is indicated above. 

Application of the EFG-method to the problem of quasi-statie crack propagation for this mode 
1 loading situation is also considered . The nodal distributions of 275 nodes and 464 nodes are 
used in the initia! step of simulation of crack propagation . For these initia! nodal distributions, 
the basis {l,x 1,x2 ,JT} is used together with v = 2.5 in equation (3.28) for the radii of the 
supports of the weight functions . For the simulation with the initia! nodal distribution of 275 
nodes, the division into 66 rectangular integration cells is used. And for the simulation with 
the initia! nodal distribution of 475 nodes, the division of the domain into 200 rectangular cells 
is taken . 

In each simulation step, an EFG-analysis for the domain containing the piecewise linear crack 
{Ybh=i , .. ,c is performed. The stress intensity factors KJ and Kj1 are computed from the J
vector. This vector is obtained by J-integration with a correction for the crack-surface integrals , 
see Section 4.4. To this end, a square curve 'Y is used , see Figure 4.10, starting at the point 
Yc- 1 and for which the size is set equal tos= 3IYc - Yc-il · The stress intensity factors are 
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substituted into equation (2.27), to determine the propagation angle Bp· The crack is then 
extended with the line segment [Yc, Yc+iJ, where the new crack tip Yc+1 is obtained from 

Yc+1 = Yc + Llae. (6.1) 

The unit vector e is given by 

(6.2) 

where Bc-i is the angle of the direction of the line segment [Yc-i, Yc]. For the simulation with 
initial distribution of 275 nodes, we take Lla = 0.lb and for the one with initial distribution of 
464 nodes, we take Lla 0.075b. Next, a new EFG-analysis is performed with the extended 

crack path {yh=1""c+1· 

In the process of simulation, the configuration of integration cells is kept fixed. This config
uration can only be changed during an EFG-analysis due to subdivisions of some cells. Fur
thermore, a large part of the nodal distribution is kept fixed. Only, extra sets of nodes are 
placed around the new crack path. Of course, the dense pattern of nodes around the last crack 
segment, see Figure 6.2b, is moved to the new crack segment. Hence, the number of nodal 
points increases. For example, in the last step of the simulation which starts with 275 nodes, 
348 nodes are used, while in the last step of the simulation which starts with 464 nodes, 562 
nodes are used. The crack paths, however, are obtained in an element-free way, since during 
simulation no remeshing of a connectivity of nodal points takes place. 

Simulation results are depicted in Figure 6.3. For the simulation with an initial distribution of 
275 nodes, the computed crack path and the initial and final cell configurations are given in 
Figure 6.3a and 6.3b. Figure 6.3b shows that the cell at the left of the middle row of cells is also 
subdivided. This is due to the fact that the initial crack is given by two parallel line segments, 
in order to provide extra patterns of nodes near the crack path. From the depicted final cell 
configuration, it is seen that the intemal subdivisions of the rectangular integration cells into 
triangular integration cells match the crack path. For the simulation with initial distribution of 
464 nodes, the computed crack path and the initial cell configuration are found in Figure 6.3c. 
From the figure it is seen that symmetry is preserved for the simulations. The computed crack 
paths are within a vertical distance of 0.007h from the line of symmetry of the domain. 

As described in Section 3.2, the nodal distributions in these simulations are locally symmetrie 
with respect to the last crack segment. Furthermore, the cell configurations are symmetrie 
with respect to the line of symmetry of the domain. From the computed crack paths we 
can therefore conclude that the symmetry of the problem is preserved by the algorithms to 
determine integration points for the cells, see Appendix D, and by the algorithms for the 
internal subdivisions of cells due to the presence of a crack in a cell or due to the presence of 
the crack tip at the boundary of a cell. Simulations with non-symmetrie cell configurations 
have also been performed, which again resulted in crack paths close to the line of symmetry. 
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Figure 6.4: Crack, elements, integration cells and global distribution (a), and extra local distri
bution (b) of nodal points for EFG+FE-analysis of edge crack in mode I loading situation. 

6.1.2 Results for combination of EFG-method and FE-method 

Next, we consider analyses of the problem by means of the combination of the element-free 
Galerkin method and the finite element method with the help of interface elements. The same 
nodal distributions, consisting of 275 and 464 nodes, respectively, are taken as in the pure 
EFG-analyses of the problem. However, for the nodal distribution of 275 nodes, three rows of 
nodes on the bottom and the top of the plate are regarded as coming from a FE-discretization 
by means of four-node quadrilateral elements, see Figure 6.4. These elements are coupled with 
the EFG-part of the domain with the help of four-node quadrilateral interface elements. Hence, 
the EFG-method is applied on only 40% of the domain. This part of the domain contains the 
crack. In the case of the distribution of 464 nodes, six rows of nodes on the bottom and on 
the top of the plate are regarded as coming from a FE-discretization by means of four-node 
quadrilateral elements. Also in this case, pure EFG is performed on only 40% of the domain. 

For the distribution of 275 nodes, the EFG-part is divided into 20 or 30 rectangular integration 
cells leading toa total number of 50 and 60 elements/cells, respectively. The latter one is given 
in Figure 6.4. For the situation of 30 integration cells, the crack is in the interior of some cells 
which are subdivided into triangular integration cells in the analysis by the combination of 
EFG and FE. For the distribution of 464 nodes, the EFG-part of the domain is divided into 
80 or 99 rectangular integration cells leading to a total number of 200 and 219 elements/cells, 
respectively. 
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EFG+ FE-parameters Kf/K1 SD1 
{1, x1 , x2 , y'r}, v = 2.5, 275 nodes, 50 elements/cells 0.995 1.19. 10-2 

{1,x1,x2 , y'r}, v = 2.5, 275 nodes, 60 elements/cells 0.997 1.85 .10-2 

: {1, xi, x2 , y'T}, v = 2.5, 464 nodes, 200 elements/cells 1.004 9.55. 10-3 

{1, x1, x 2, y'T}, v = 2.5, 464 nodes, 219 elements/cells 1.003 1.05 .10-2 ! 

Table 6.2: Mean values and standard deviations of KJ/ K 1 /or EFG+FE-analyses of edge crack 
in mode l loading situation. 

In the analyses, the set of basis functions { 1, x1, x2 , y'T} is used together with v 2.5 in equation 
(3.28) for the radii of the supports of the weight functions. Furthermore, stress intensity factors 
are obtained with the help of the same curves / which are used in the EFG-analyses for the 
problem. Hence, the curves are completely in the EFG-part of the domain, such that one does 
not have to account for discontinuities in the strains and the stresses in the computation of J. 
In Table 6.2, results are reported for different analyses. Mean values and standard deviations 
are given for the set of values Kj / Kr. For each analysis, the mode II stress intensity factors are 
several orders of magnitude smaller than Kf and are therefore not given. From the table, it is 
seen that accurate stress intensity factors are obtained with the help of the combination. The 
mean values of Kf are within 0.5% of the exact value with a standard deviation of about 1 %. 
The results are similar to those obtained with the same basis in a pure EFG-analysis, reported 
in Table 6.1. Furthermore, it is seen that the results are not very sensitive to variations in the 
cell configurations for the EFG-part of the domain. 

Analyses of the problem of quasi-statie crack propagation for this mode 1 loading situation 
are also performed with the help of the combination. To this end, the nodal distributions of 
275 and 464 nodes are used in the initial step of simulation by means of the combination of 
the EFG- and FE-methods. When 275 nodes are used in the initial step of a simulation, the 
EFG-part is divided into 30 rectangular integration cells, and when 464 nodes are used this part 
is divided into 99 rectangular integration cells. In the simulation process, new crack segments 
are determined in the same way as for the simulations for this problem with the help of the 
EFG-method, see (6.1), (6.2). The same curves î are used for the determination of the stress 
intensity factors after each step of the process. Hence, / is entirely positioned in the EFG-part 
of the domain. For the initial step this is accomplished by taking a smaller size for / and 
shifting its starting point towards the crack tip. 

During simulation the configuration of elements/cells is kept fixed. Only, some integration cells 
can be subdivided during an analysis. Furthermore, the FE-nodes and the global EFG-nodes 
are fixed. Only, extra sets of nodes for EFG are placed around the new crack path. The 
dense pattern of nodes around the last crack segment, see Figure 6.4b, moves with the crack 
tip. Hence, the number of nodal points increases. In the last step of the simulation which 
started with 275 nodes, 343 nodes were used, while for the one which started with 464 nodes, 
562 nodes were used in the last step. Although a connectivity is used for the definition of the 
FE-discretization, the crack paths are computed without changing any connectivity of nodal 
points and, therefore, one can say that the paths are obtained in an element-free way. 

Computed crack paths are shown in Figure 6.5. The initial and the final configurations of 
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Figure 6.5: Results of simulation of quasi-statie crack propagation by combination of EFG- and 
FE-methods for edge crack in mode I loading situation: (a) Crack path and initia[ element/cell 
configuration, and (b) final element/ cell configuration for initial distribution of 275 nodal points, 
and ( c) crack path and initial element/ cell configuration /or initial distribution of 464 nodal 
points. The cracks are indicated by thick solid lines and the subsequent positions of the crack 
tip are indicated by*· 

elements/cells and the obtained crack path for the simulation with the initia! distribution of 
275 nodal points are given in Figure 6.5a and 6.5b. The final configuration shows that some 
cells in the EFG-part of the domain are subdivided due to the presence of crack segrnents in 
these cells. lt is seen that the internal subdivisions of some cells are not completely symmetrie 
with respect to the crack. For the simulation with initial distribution of 464 nodal points, the 
crack path and the initia! configuration of elements/cells are depicted in Figure 6.5c. 

As for the EFG-approach for this problem, symmetry is preserved. The computed crack paths 
are within a vertical distance of O.OOlh from the line of symmetry. In the simulations nodal 
patterns and element/een configurations are almost (locally) symmetrie with respect to this line. 
From the computed crack paths it is concluded that a symmetrie response is obtained from 
the combination of EFG- and FE-methods including the algorithms for internal subdivisions of 
integration cells and the algorithms for the integration points in an integration cell. 

6.2 Edge crack in mixed-mode loading situation 

In this section the EFG-method and a combination of the method with the FE-method are 
applied to the problem of an edge crack in a mixed-mode loading situation, see Figure 6.lb. To 
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Figure 6.6: Crack, integration cells and global distribution (a), and extra local distribution (b) 
of nodal points for EFG-analysis of edge crack in mixed-mode loading situation. 

this end, the dimensions of the cracked material domain in this figure are set equal tob h = 1, 
the crack length is taken to be a = 0.3b and for the angle of the crack with the vertical boundary 
we take f3 = 31!' /8. In the analyses, again, the intluences of the number of nodal points, the cell 
configuration, the set of basis functions and the combination of EFG-method and FE-method 
are investigated. 

6.2.1 Results for EFG-method 

For analyses of the problem by the EFG-method, two different nodal distributions are con
sidered. The first one consists of 330 nodal points from which 112 arise from a global equidistant 
pattern and the remaining 208 nodes are extra nodes distributed along the initial crack path, 
see Figure 6.6. The second nodal distribution consists of 514 nodal points from which 231 nodes 
are from a global equidistant pattern. For the second nodal distribution, the local mesh sizes 
are 60% to 70% of the local mesh sizes for the first nodal distribution. 

In the EFG-analyses of the problem, {1,xi,x2} and {l,x1,x2,ylT} are used as sets of basis 
functions, where r is the distance to the crack tip. The sizes of the supports of the weight 
functions are given by (3.28). In this equation, v = 2.0 in the case of the linear basis, and 
v = 2.5 in the case of the basis extended with ylT. Furthermore, divisions into 40 and 160 square 
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EFG-parameters Kj/K1 SD1 Kfr/Kn SDu 

{1,X1,X2}, v = 2.0, 330 nodes, 40 cells 0.992 1.63. 10-2 0.703 4.83. 10-2 

{1,xi,x2}, v = 2.0, 330 nodes, 160 cells 0.975 1.10. 10-2 0.761 1.24. 10-1 

{1,Xi,X2, ft}, V 2.5, 330 nodes, 40 cells 1.003 2.08 .10-2 1.039 1.92 .10-2 

{1,Xi,X2,JT},v 2.5, 330 nodes, 160 cells ! 0.982 7.49. 10-3 1.023 1.95. 10-2 

{1,xi,x2}, v 2.0, 514 nodes, 160 cells 0.984 1.01·10-2 0.847 3.04 .10-2 

, {1, xi, x2 }, v = 2.0, 514 nodes, 640 cells 0.987 1.18. 10-2 0.840 3.32. 10-2 

i {l, xi, x2 , ft}, v = 2.5, 514 nodes, 160 cells 1 0.995 4.65. 10-3 1.001 2.04 .10-2 

{1, x1, x2 , ft}, v = 2.5, 514 nodes, 640 cells 0.993 7.76. 10-3 0.993 1.75. 10-2 • 

Table 6.3: Mean values and standard deviations of K7/ K1 and Kfr/ Kn for EFG-analyses of 
edge crack in mixed-mode loading situation. 

integration cells are taken for the distribution of 330 nodes. The configuration of 40 cells is 
given in Figure 6.6. The domain is divided into 160 and 640 square cells for the distribution 
of 514 nodes. As in the previous example, the constant normal stress a is prescribed at the 
horizontal boundaries, while the vertical boundaries are taken stress-free. Three displacements 
are prescribed to suppress the rigid body motions. 

The stress intensity factors are computed from the components of J-vector, as described in 
Section 4.4. To investigate the path-independence of the values for J, several square curves 'Y 
are taken which are parallel to the vertical boundaries and which start at the lower crack surface 
at a distance 0.33a from the crack tip. The sizes sof these curves range from 0.67a to 1.33a. 
The results obtained with the different EFG-analyses are given in Table 6.3. In the table, Kf 
and Kf1 are the computed stress intensity factors and K1 = l.43ay0fa:, Kn = 0.342a-y0fa: are 
the exact values given in [61, Ch. 1]. In the columns of the table, mean values and standard 
deviations SD1, SDn are given for the obtained sets ofvalues for K?/Kt and Kfr/Ku. 

As in the previous example, the use of the basis extended with JT results in more accurate 
stress intensity factors than when the linear basis is used. Since the values for the crack
surface integrals in (2.31) have a larger influence on KfI than on Kj, see ( 4.34) and ( 4.35), the 
difference in performance is seen very well from the obtained mode II stress intensity factors. 
Whereas these factors are within a few percents of the exact value in the case of the extended 
basis, relatively large errors are observed in the results for the linear basis. Therefore, it is 
concluded that, in comparison with the linear basis, the use of JT leads to more accuracy in 
the displacements and stresses near the crack tip. The fact that the crack-surface integrals in 
the computation of J have a larger influence on KfI than on Kj, is also the reason for the fact 
that SDu mostly exceeds SD1 . 

As in the mode I example, it is observed that a refinement of the nodal distribution leads to more 
accuracy in the obtained stress intensity factors. Furthermore, the different cell configurations 
lead to small differences in the obtained results, especially for the nodal distribution of 514 
nodes. The results given in Table 6.3 show that the computation of the J-vector by means of 
J-integration with a correction for the crack-surface integrals, as described in Section 4.4, gives 
reliable results. The stress intensity factors obtained frorn the components of J are within 2.5% 
of the exact values in the case of the use of JT and 514 nodal points. 
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Figure 6. 7: Results of simulation of quasi-statie crack propagation by EFG-method for edge crack 
in mixed-mode loading situation: (a) Crack path and initial cell configuration, and (b) part of 
final cell configuration for initia[ distribution of 330 nodal points. The cracks are indicated by 
thick solid lines and the subsequent positions of the crack tip are indicated by *· 

Quasi-statie crack propagation is simulated for this mixed-mode loading situation with the 
distributions of 330 and 514 nodes in the initial step. In both cases {1, X1, X2, vr} is taken as 
the set of basis functions and v = 2.5 is used for the values of the radii of the supports of the 
weight functions. The domain is divided into 160 square integration cells for the simulation 
with initial distribution of 330 nodal points, and into 640 square cells for the one with 514 
nodal points. Given the piecewise linear crack {Ydb=l, .. "c, new crack segments are obtained, 
as described in the previous example, by (6.1) and (6.2), where we take ~a = 0.075b for the 
step length. Larger values for ~a are not considered, since for such values it is observed that 
it is more likely to have fluctuations in the crack paths. Stress intensity factors are determined 
by J-integration with a correction for the crack surface integrals, see Section 4.4. To this 
end, a square curve 'Y is used, see Figure 4.10, parallel to the vertical boundaries with size 
s = 3IYc Yc-il and starting at YG-1· Again, during the simulations, the configuration of 
integration cells is kept fixed and is only changed due to subdivisions of some cells. The number 
of nodal points increases due to extra nodes placed around the new crack path. In the final 
step of the simulation starting with 330 nodes, 429 nodes are used and in the last step of the 
simulation which starts with 514 nodes, 615 nodes are used. 

In Figure 6. 7, the obtained crack path and the initial cell configuration are depicted for the 
simulation with initial distribution of 330 nodal points. A similar crack path has been obtained 
for the initia! distribution of 514 nodal points. The computed crack paths are perpendicular to 
the direction of loading. The subsequent positions of the crack tip are within a horizontal zone 
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EFG+ FE-parameters Kf/Kr SDr Kfr/Ku SDu 
{1, x1 , x2 , yr}, v = 2.5, 330 nodes, 70 cells 0.987 1.94. 10-2 1.052 3.47. 10-2 

{1, xi, x2 , yr}, v = 2.5, 330 nodes, 118 cells 0.984 8.26. 10-3 1.011 1.39. 10-2 

{1, xi, x2 , yr}, v = 2.5, 514 nodes, 214 cells 0.994 4.98. 10-3 0.999 2.10. 10-2 

{1, xi, x2, yr}, v = 2.5, 514 nodes, 406 cells 0.993 7.82. 10-3 0.992 2.21. 10-2 

Table 6.4: Mean values and standard deviations of Kf / Kr and Kfr/ Ku for EFG+FE-analyses 
of edge crack in mixed-mode loading situation. 

of 0.005h and 0.003h width, respectively. The problem shows that, as described in [17, Ch. 4], 
during continued fracture the crack propagates mainly in mode 1 and that the mode II stress 
intensity factor becomes negligibly small. 

A small part of the final cell configuration in the case of the initial number of 330 nodal points 
is given in Figure 6. 7b. From this figure it is seen that the internal subdivisions of the cells into 
triangular integration cells match the crack path. From the obtained results we conclude that 
the local mesh sizes together with the step length ~a = 0.075b result in smooth crack paths, 
since the fl.uctuations of the crack path in the vertical direction are very small. Therefore, this 
step length and nodal distributions with similar local mesh sizes are also used in the example 
presented in the next section. 

6.2.2 Results for combination of EFG-method and FE-method 

As in the previous section, the problem is also analyzed by means of the combination of the 
EFG-method and the FE-method with the help of interface elements. To this end, the nodal 
distributions of 330 and 514 nodes used in the EFG-analyses of the problem are also used 
for this combination. For the distribution of 330 nodes, six rows at the bottom and three 
rows at the top of the domain are regarded as coming from a FE-discretization of four-node 
quadrilaterals. The elements are coupled by four-node quadrilateral interface elements with 
the EFG-approach for the remaining part of the domain. For the distribution of 514 nodes, 
ten and five rows, respectively, are seen as emerging from a FE-discretization. For both nodal 
distributions, the EFG-method is applied on only 40% of the domain. 

For numerical integration purposes, the EFG-part of the domain is divided into 16 and 64 
rectangular integration cells in the case of the distribution of 330 nodal points, leading to a 
total number of 70 and 118 elements/cells, respectively. Divisions into 64 and 256 integration 
cells, resulting in 214 and 406 elements/cells, are taken for the distribution of 514 nodal points. 
In the EFG-part of the domain, the basis {1, x1, x2 , yr} is used. The radii for the weight 
functions are obtained with the help of (3.28), in which v = 2.5 is taken. Stress intensity 
factors are computed as for the EFG-analyses of the problem. Hence, the same curves 'Y are 
taken and these curves are entirely positioned in the EFG-part. In Table 6.4, results are found 
for several analyses of the problem. The mean values and standard deviations of the obtained 
values for Kfl Kr and Kfr/ Kn are given. 

From the results shown in Table 6.4 it is seen that, as for the pure EFG-approach for the 
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Figure 6.8: Results of simulation of quasi-statie crack propagation by combination of EFG- and 
FE-methods for edge crack in mixed-mode loading situation: (a) Crack path and (b) part of final 
element/cell configuration for initial distribution of 514 nodal points. The cracks are indicated 
by thick solid lines and the subsequent positions of the crack tip are indicated by *· 

problem, accurate values are found by the combined analyses. Again, the variation in Kf1 

is larger than the variation in Kf, since the crack-surface integrals have more influence on 
KfI> see (2.31), (4.34) and (4.35). Some differences are seen in the results for the two cell 
configurations in the case of the distribution of 330 nodes. In the case of the distribution of 514 
nodes, however, the mean values of the stress intensity factors for the two cell configurations 
for the EFG-part of the domain, are within 1 % with a standard deviation of about 2%. 

For the simulation of quasi-statie crack propagation for this mixed-mode problem, the two 
nodal distributions are used in the initial step of a simulation. The set of basis functions is 
taken equal to {1, Xi, X2, vr} and the value of v is set equal to v = 2.5. The EFG-part of 
the domain is partitioned into 64 rectangular integration cells for the simulation with initial 
distribution of 330 nodal points, and into 256 rectangular integration cells for the distribution 
of 514 nodes. For the piecewise linear crack {Ybh ... ,c, new crack segments are obtained in the 
same manner as described before. Stress intensity factors necessary to determine the direction 
of crack propagation, are computed by means of the same curves 'î as the ones used in the 
EFG-simulations. In the first step of the simulations by EFG+FE, however, a smaller size is 
taken for 'î and its starting point is shifted towards the crack tip such that the curve is entirely 
positioned in the EFG-part of the domain. 

In the simulations the configuration of elements/cells for the domain is kept fixed. Some 
integration cells in the EFG-part, however, can be subdivided into triangular integration cells. 
Many nodal points are also fixed. Only, extra nodes for the EFG-method are placed around the 
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new crack path. Hence, the number of nodal points increases during simulation. The simulation 
starting with 330 nodal points ends with 429 nodal points and the one starting with 514 nodes 
ends with 615 nodes. 

The computed crack path, the initial configuration of elements/cells and a part of the final 
cell configuration for the simulation with initial distribution of 514 nodal points are given in 
Figure 6.8. For the simulation with initia! distribution of 330 nodal points, the computed crack 
path is similar to the one given in the figure. After some steps, the crack paths propagate 
perpendicular to the direction of loading, as described in [17, Ch. 4]. This bas also been 
observed in the EFG-approach for the problem. For the simulations, the subsequent positions 
of the crack tip are within a band of 0.005h width. Furthermore, for the computed crack paths 
for this problem given in this section, the end points are all within a distance of O.Olh from 
each other. 

6.3 Single-edge notched beam under shear loading 

As a final test we consider crack propagation under shear loading. The test proposed by 
Iosipescu [34] is studied. In this test a beam with a single-edge notch is loaded by cornpressive 
forces, see Figure 6.9. Following Feenstra [23, Ch. 5] and Schlangen [63, Ch. 3], we take b = 1 
and h = 2 for the dimensions of the beam. As in Van Vroonhoven [72, Chs. 6, 8], initial crack 
lengths a = 0.15b and a 0.25b are studied. The forces F1 are applied at a distance O.lh from 
the line of symmetry of the beam and the forces F2 at a distance h from this line. Hence, we 
must take F2 0.lFi, because of equilibrium. 

6.3.1 Results for EFG-method 

For the simulation of quasi-statie crack propagation by means of the EFG-method in the case 
of a 0.15b, an initia! distribution of 702 nodal points is used, frorn which 495 nodes arise from 
a global equidistant distribution. The local mesh size for the distribution equals ha = O.lb at 
a remote distance from the crack. In the neighbourhood of the crack this size varies between 
ha = 0.04b at a certa.in distance from the crack tip and ha = O.Olb near the crack tip. For 
the initial crack length a 0.25b, the global distribution of 495 nodes is also used. Then, 218 
nodes are taken near the crack. The local mesh sizes for this nodal distribution are equal to 
those for the distribution of 702 nodal points 

In each step of the simulation process, an EFG-analysis is performed with {1, Xi, X2, vr} as 
the set of basis functions. For the radii of the supports v = 2.5 is taken in equation (3.28). 
Numerical integration is perforrned by a division of the domain into 990 square integration 
cells, i.e., 15 cells in the vertical and 66 cells in the horizontal direction. The forces F 1 and 
F 2 are prescribed at the boundary and the rigid body motions are suppressed by setting three 
boundary displacements equal to zero. 

Given the piecewise linear crack {Ybh=i"."c, new crack segments are obtained with (6.1) and 
(6.2), where b.a = 0.075b is taken for the step length. The choice for b.a is based on the previous 
example. Stress intensity factors are obtained by J-integration with a correct.ion for the crack-
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Figure 6.9: Single-edge notched beam loaded by compressive forces. 

surface integrals, see Section 4.4. For J-integration a square curve'/ is taken perpendicular to 
the last crack segment, with size s = 3IYo Yo-11 and starting at the point YG-l· In the first 
two steps, however, the curve / is taken smaller and its starting point is shifted towards the 
the crack tip, in order to avoid a negative infiuence of the stress concentrations near the crack 
due to the applied force F1. The cell configurations are kept fixed during simulation and are 
only changed due to internal subdivisions of some cells. The number of nodal points increases 
during simulation. For the initial crack length a 0.15b, 857 nodes are used in the last step of 
the simulation, while for a = 0.25b, 841 nodes are used in the last step. The computed crack 
paths are depicted in Figure 6.10. In this figure also a band is depicted taken from Schlangen 
[63, Ch. 4], in which crack paths were found experimentally in a relatively thick beam for an 
initia! crack length of a = 0.2b. The used cell configuration is not given in the for reasons 
of presentation. 

Due to the shear loading of the beam, crack propagation takes place along a curved path with 
its end point on the lower horizontal boundary to the left of the position where the force F1 

is applied, see Figure 6.lüc and 6.lüd. lt is seen that the crack paths obtained with the EFG
method satisfy this requirement. In the final steps the crack propagates almost according to a 
straight which means that in these final crack propagation mainly takes place in mode 
1 as described in [17, Ch. 4]. The initia! steps of the simulations involve a pure shear loading of 
the crack, see [34]. The obtained mode 1 stress intensity factors in these steps, however, are not 
exactly zero, but are small and negative, which would imply closure of the crack. This has also 
been seen by Van Vroonhoven [71] in FE-analyses of this problem by means of the SEPRAN 
package [64]. After the first step, we have chosen to set the propagation angle equal to the 
propagation angle (2.27), postulated by the criterion based on the maximum circurnferential 
stress, in which K 1 = 0 and Ku > 0 is substituted, Le. OP ;:::j -70.5 degrees. 

The problern of a single-edge notched beam has been widely studied, both experimentally and 
numerically, see [23, Ch. 5], Lubliner, Oliver, Oller and Oîiate [50], Rots [62], [63, Chs. 4, 6], 
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Figure 6.10: Results of simulation of quasi-statie crack propagation by EFG-method for single
edge notched beam under shear loading: Crack paths for (a) a 0.15b and (b) a 0.25b. The 
positions where the forces are applied, are indicated by o, the subsequent positions of the crack 
tip by*, and the cracks by thick solid lines. In (c) and (d) the paths are depicted together with 
the experimentally determined band, indicated by thin solid lines, which is given by Schlangen. 

and [72, Chs. 6, 8]. From Figure 6.lüc and 6.lüd it is seen that the computed crack paths are 
in good agreement with the experimental results given in [63, Ch. 4] for the initial crack length 
a = 0.2b. The obtained crack paths agree also with the numerical results reported in [63, Ch. 6] 
and [72, Ch. 8], which all satisfy the requirement for the end point of the crack. Furthermore, 
the first steps of the simulation agree well with the crack paths in [72, Ch. 6] obtained with 
an uncoupled fracture approach, which gives only reliable results for the early stage of crack 
propagation for this problem. In [23] a straight crack path is obtained inclined at an angle 
of about 45 degrees with respect to the horizontal boundary. Beams of other dimensions are 
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considered in [50], where a plastic-damage model is used and in [62], where both smeared and 
discrete representations for a crack are used. The crack paths obtained in [23], [50] and [62] 
also satisfy the requirement for the end point of the crack. 

6.3.2 Results for combination of EFG-method and FE-method 

Simulation of quasi-statie crack propagation for the problem is also performed by the combina
tion of the EFG-method and the FE-method by means of interface elements. The distributions 
of 702 and 713 nodes used in the initia! steps of the EFG-simulations are also used in the first 
steps of simulations by EFG+FE. Therefore, several rows of nodes next to the left and the right 
vertical boundaries of the beam are regarded as coming from FE-discretizations of four-node 
quadrilaterals. The elements are coupled with the EFG-part of the beam with the help of 
four-node quadrilateral interface elements. This EFG-part contains the crack and comprises 
less than 40% of the entire beam. Again, use is made of the basis {1 , x1 , x2 , Jr} and the value 
of v is set to v = 2.5. For numerical integration purposes, the EFG-part is partitioned into 
360 square integration cells. This leads to a total number of 640 elements/cells. Given the 
piecewise linear crack {Ybh=i". ,c, new crack segments are obtained in the same manner as 
in the previous analyses. The same curves 'Y used in the EFG-simulations, are taken in the 
current analyses for computation of the stress intensity factors . In the first two steps, however, 
the curve 'Y is taken smaller and its starting point is shifted towards the crack tip, in order to 
avoid a negative infiuence of the stress concentrations near the crack due to the applied force 
F1 . This has also the consequence that ~/ is entirely positioned in the EFG-part of the beam 
in each step. The element/cel! configurations are kept fixed during the simulation and are only 
changed due to internal subdivisions of some cells. The number of nodal points increases during 
simulation. For both the initia! crack length a = 0.15b and a = 0.25b, 859 nodes are used in 
the last step of the simulation. Crack paths are given in Figure 6.11. The figure also shows 
the band taken from Schlangen [63, Ch. 4], in which crack paths were found experimentally in 
a relatively thick beam for an initia! crack length of a = 0.2b. The used cel! configuration for 
the EFG-part of the beam is not given in the figure for reasons of presentation. 

As in the EFG-approach, Figure 6.lla and 6.llb show curved crack paths with the end points 
on the lower horizontal boundary to the left of the position where the force F1 is applied. 
This has also been observed in experiments, see [63, Ch. 4]. Furthermore, in the final stage 
of crack propagation, the crack grows mainly in mode I as is expected, see [17, Ch. 4]. From 
Figure 6.llc and 6.lld, it is seen that the computed crack paths are in good agreement with 
the experimental results given in [63, Ch. 4] for the initia! crack a = 0.2b. Again, in the initia! 
step of the simulations, negative but small mode I stress intensity factors are obtained, which 
would imply closure of the crack. Therefore, we take the angle given by (2.27) with K 1 = 0 
and Kn > 0, as the crack propagation direction after the first step. The differences between 
the crack paths determined with the help of a pure EFG-approach and with the help of the 
combination of EFG and FE, are very small. The distances of the subsequent positions of the 
crack tip obtained with the two approaches, are within 0.007b and 0.006b for a = 0.15b and 
a = 0.25b, respectively. 
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Figure 6.11: Results of simulation of quasi-statie crack propagation by combination of EFG- and 
FE-methods for single- edge notched beam under shear loading: Crack paths for (a) a = O.l5b 

and (b) a = 0.25b. The positions where the farces are applied, are indicated by o, the subsequent 

positions of the crack tip by*, and the cracks by thick solid lines. In (c) and (d) the paths are 

depicted together with the experimentally determined band, indicated by thin solid lines, which 
is given by Schlangen. 

6.4 Discussion and conclusions 

In this chapter results have been reported for several (quasi-) statie fracture mechanics problems 
in two dimensions. These results are obtained by application of the element-free Galerkin 
method and application of the combination of this method with the finite element method by 
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means of interface elements. Similar results for the application of the EFG-method have been 
reported in some of the papers mentioned in the introduction of this chapter. In [5], [7], [8] and 
[48] accurate stress intensity factors are given. To this end, use is made of a linear basis and 
a domain integral with a relatively large domain for computation of the ]-vector. The crack 
is accounted for by symmetry considerations or by the application of the discontinuous crack 
model of Belytschko given in Section 3.2. Furthermore, in [5] and [8] progressive crack growth 
has been considered fora mixed-mode loading problem, which also shows that after some steps 
the crack propagates mainly in mode I. 

In [6] stress intensity factors, which are accurate within a few percent of the exact values, are 
obtained for the application of the continuous crack model of Belytschko given in Section 3.2. 
Therefore, also a linear basis is used together with a domain integral with a relatively large 
domain for computation of the ]-vector. In [25] and [58], results are reported for this crack 
model together with two different approaches to describe the singular stresses near the crack 
tip correctly. In the first approach, a linear basis is taken which is (locally) extended with four 
extra basis functions taken from the asymptotic expressions (2.21) for the displacements. In the 
second approach, the asymptotic expressions (2.21) are directly added to the shape functions 
obtained with the help of a linear basis. For the two approaches, the papers [25] and [58] report 
accurate stress intensity factors and accurate stress distributions for a mode I and a mixed
mode loading situation. The stress intensity factors in the papers are obtained with relatively 
small and relatively large domains for computation of the ]-vector. Two mixed-mode problems 
in [25] show that crack propagation in the final stage takes place mainly in mode I. In contrast 
with the computations in this chapter, in the papers [5]-[8]. [25], [48] and [58]. no adaptation 
of the cel! configuration takes place when a crack is in the interior of an integration cel!. 

The results presented in this chapter for the element-free Galerkin method and the combina
tion of this method with the finite element method, lead to the following conclusions. Both 
approaches are able to determine accurate stress intensity factors for mode I and mixed-mode 
loading situations. The approaches are not very sensitive to variations in the cel! configurations 
for numerical integration. Furthermore, an accurate performance of the method is obtained by 
the application of the combination of the methods, by the proposed way for determination of 
integration points for an integration cell, and by the way for determination of internal subdivi
sions of cells in the case of the presence of a crack. A study of t he different sets of basis functions 
has shown that a linear basis extended with yr should be preferred in a fracture mechanics 
problem to bases without this function . Surprisingly, a linear basis extended with a function 
which behaves like yr near the crack tip and like a monomial for most of the remaining part 
of the material, leads to less accurate results than for a linear basis. This is attributed to the 
coupling of yr with the monomial. 

The application of the EFG-method and t he application of a combination of the EFG- and 
FE-methods to quasi-statie crack propagation problems, result in reliable crack paths. For 
a mode I loading problem straight crack paths have been obtained, while for a mixed-mode 
problem curved crack paths have been calculated. The problem of a single-edge notched beam 
has been investigated with the two approaches named above. The calculated crack paths agree 
with experimental and numerical results reported in the literature for this problem. In all 
problems it has been observed t hat the final cell configuration matches the obtained crack 
path. Therefore, it is concluded that a suitable method has been developed for the division of 
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integration cells in the case of the presence of a crack. 

The differences in results obtained by the EFG-method and the EFG-FE combination are very 
small for all examples. Hence, we succeeded in the development of a combination of the EFG
method and the FE--method which is appropriate for application to fracture mechanics problems 
in two dimensions. In each example, the EFG-method has only been applied on approximately 
40% of the material, leading to a reduction in computation time of 30 to 40%. The most 
expensive parts of the combined approaches are due to the refined EFG-discretizations near 
the crack. Larger reductions in computation time can be obtained by the application of the 
EFG-method on smaller parts of the domain. 



Chapter 7 

Concluding discussion 

In this thesis a new formulation has been given of the element-free Galerkin (EFG) method in 
order to simulate crack propagation in brittle materials. Furthermore, combinations with the 
finite element (FE) method have been studied, leading to a reduction of computational effort. 
This chapter serves as a concluding discussion of the thesis. In the first section, conclusions 
are given of the presented work. In the second section, open ends of the study can be found 
together with recommendations for further research. 

7 .1 Conclusions 

For the development of the EFG-method for the simulation of crack propagation, connectivity
free approximation techniques have been studied for the representation of the displacements 
in a weak form of the problem equations. The most convenient technique is moving least 
squares approximation (MLSA). Several models have been studied for a correct and accurate 
representation of the displacements and the stresses near a crack by means of MLSA (see 
Chapter 3). This resulted in the development of the so-called wedge model. Unless the fact 
that MLSA is not well-defined in the crack tip in the case of this model, it has been proven 
that the displacements can be correctly represented on the entire domain. Furthermore, two 
special basis functions have been introduced, in order to describe the singularity in the stresses 
at the crack tip. These functions both behave like the square root function in a neighbourhood 
of the crack tip. 

In Chapter 4 the EFG-method has been studied. The discrete equations of the method obtained 
by the application of MLSA have been given. For computation of the entries in these equations, 
a numerical integration scheme is used which is based on a background configuration of integra
tion cells. It is designed in such a way that it automatically accounts for the nodal distribution 
for MLSA, for the integration of quantities which are discontinuous over the crack, and for 
the integration of the singular derivatives of the special basis functions. The method has been 
tested by application to several two-dimensional elasto-static problems. From the results it is 
concluded that the method is convergent when the nodal distribution is refined, and that the 
rates of convergence exceed those for equivalent analyses by the FE-method. Furthermore, we 
can conclude that the EFG-method is not very sensitive to variations in the cell configurations. 
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Several ways have been studied for the computation of the stress intensity factors from analyses 
of fracture mechanics problems (see Chapter 4). We have chosen to compute the stress intensity 
factors from the so-called J-vector, which is obtained by means of contour integration. In addi
tion to this type of integration, named J-integration, a correction is used to avoid integration 
over parts of the crack surfaces next to the crack tip. Hence, the errors in the approximation 
of the angular variation of the displacements near the crack tip have only a small infl.uence on 
the computed values for the stress intensity factors. 

Application of the EFG-method to several statie fracture mechanics problems in two dimensions 
has shown that accurate values for the stress intensity factors are obtained (see Chapter 6). To 
this end, a special basis function, proposed in Chapter 3, has to be used within MLSA. This 
function equals the square root function on the entire domain. Surprisingly, the use of a special 
basis function which equals the square root function only in a close neighbourhood of the crack 
tip, results in inaccurate values for the stress intensity factors. 

The EFG-method has also been used for the simulation of quasi-statie crack propagation. In 
each step of such simulations, an analysis is performed of a cracked material domain. From 
the calculated stress intensity factors, the direction of crack propagation is determined and the 
crack is extended in this direction. The results show that the method calculates reliable crack 
paths, which are not very sensitive to variations in the cell configurations. From the results it 
is concluded that the proposed scheme for numerical integration leads to a robust and accurate 
numerical method, which is appropriate for the simulation of crack propagation. 

Three possible ways for combination of the EFG-method and the FE-method have been con
sidered (see Chapter 5): A combination by element-free coupling, a combination by a Lagrange 
multiplier, and a combination by interface elements. By the application of the combinations 
to several two-dimensional elasto-static problems, the performance has been studied. From 
the results it is concluded that the combinations are convergent when the nodal distribution 
is refined. However, the convergence rates generally do not exceed the rates for the applied 
FE-discretizations. Furthermore, it is concluded that the use of interface elernents has to be 
preferred to the other two ways for combination. 

The combination of the EFG-method and the FE-method by means of interface elements has 
been applied to fracture mechanics problenis in two dimensions. The results show that accurate 
stress intensity factors are obtained and that reliable crack paths are calculated. The differences 
between the results obtained by the EFG-method and the combination are very small. Hence, 
it is concluded that we have succeeded in the development of a combination which is convenient 
for the application to crack propagation problems. 

7. 2 Open ends and further research 

The added value of the study presented in this thesis is the new formulation of the element-free 
Galerkin method for the simulation of crack propagation. Detailed descriptions have been given 
of the several steps in the development of the method. Furthermore, the thesis presents a study 
on three possible ways for combination of the EFG-rnethod with the FE-rnethod. The developed 
numerical methods have been implemented in the MATLAB programming environment [51], 
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which is very suitable for the implementation of the FE-method and the EFG-method. 

The disadvantage of the EFG-method is that the implementation requires a large amount of 
computation time for the simulation of crack propagation. This is partially due to MATLAB. 
A reduction of computation time has been obtained by the translation of several parts of the 
programs into machine code by the MATLAB compiler, which has become available recently. It 
is believed, however, that more significant reductions in computation time can be obtained by 
a translation of the programs to a compiler-based computer language such as the new Fortran 
90 language, see Ellis, Philips and Lahey [21]. 

The large amount of computation time required for the simulation of crack propagation is also 
due to the EFG-method itself. The application of moving least squares approximation for the 
representation of the displacements, makes the method computationally expensive. In addition, 
since the displacements are not piecewise linear or piecewise quadratic (see Section 3.1), a large 
amount of integration points is necessary for an accurate and robust performance of the method. 
Therefore, an analysis for a material domain with the current formulation of the EFG-method 
requires approximately 10 times more computation time than an equivalent analysis by the 
FE-method. However, in the case of simulation of crack propagation with the EFG-method, 
no computation time is required for remeshing in between successive analysis steps, as is the 
case for the FE-method. 

Some recommendations can be given for further research to come to a reduction of computation 
time for the method. First, it is recommended to study new and cheaper versions of the 
numerical integration scheme presented in Section 4.2, which are as accurate and robust as the 
current scheme. Secondly, it is necessary to reduce the number of nodal points which are used to 
model the crack surfaces. It is believed that one can do without the extra nodes used to model 
the "tail" of the crack, which has the consequence that one can simulate crack propagation 
with almost a fixed number of nodes. 

As a third opportunity for reduction of computation time, a further study is recommended on 
the application of special basis functions in a local way. Here, one can think of basis functions 
which behave as the square root function in a small neighbourhood of the crack tip and as a 
fixed monomial on the remaining part of the material, similar to the one proposed in Section 3.2. 
Hence, during simulation of crack propagation, the entries in the linear system of equations can 
be obtained from the ones for the previous simulation step without much computational effort, 
since there is only a local change in the basis functions. This is in contrast with the current 
formulation, where in each simulation step the entire system of equations has to be computed, 
because of the global change in the set of basis functions. Such a basis function is also very 
interesting for the use in problems concerning multiple cracks. With the use of only one extra 
basis function in which the square root function for each crack tip is locally embedded, all the 
stress singularities can then be obtained. 

Reduction of computation time can also be achieved by means of the developed combinations of 
the EFG-method and the FE-method. The computational effort of such combinations strongly 
depends on the part for the EFG-method. In the simulations by means of a combination of the 
methods presented in this thesis, the EFG-parts have been predefined, see Chapter 6. These 
relatively large parts of the domain are defined in such a way that it is likely that the crack 
path remains in these parts of the domain. For more advanced simulations of crack propagation 
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based on such a combination, the development of a numerical technique is recommended in 
which the EFG-parts are not predefined. In such a numerical technique, large parts of the 
domain are discretized by rneans of the FE-method and the EFG-parts only concern the direct 
environment of the crack. In the case of crack propagation into the FE-part, several elernents 
have to be added to the EFG-parts of the domain. Such a numerical technique will lead to 
a large reduction in computation time and can be applied to more general crack propagation 
problems than those considered in this thesis. 

Finally, a further development of the EFG-method is recommended. Here, we think of the devel
opment of the method for application to problems involving dynamic and/or three-dimensional 
effects, and problems concerning multiple cracks. Such a development will concern not only 
the study of special basis functions as described above, hut also the study of basis functions 
in which a certain angular variation for the near-tip displacements is embedded. The further 
development will also have to deal with the extension of the wedge model and the numerical 
integration scheme to three dimensions and to problems involving multiple cracks. 

The proposed development of the element-free Galerkin method, together with the speed up of 
the method, will make the method a more attractive alternative for the finite element method 
and for the boundary element method, concerning the simulation of quasi-statie and dynamic 
crack propagation in two or three dimensions. 



Appendix A 

Angular variation of stresses and 
displacements 

The variation in the polar angle of the stresses and displacements near a crack tip for linearly 
elastic material is given in this appendix. 

In Section 2.2, it has been shown that the stresses in the neighbourhood of the crack tip are 
given by (2.18). The dependence on the polar angle e is given by the functions !l and /;~1 , 
i,j = 1, 2, which correspond to the opening mode and the sliding mode, respectively. The 
functions f l for the opening mode are given by 

H1 (8) 

/t2(8) 

1Me) 

cos( te) ( 1 - sin( te) sin( ~e)) , 

= cosOe) ( 1 + sin( te) sin Ge)) , 

cos( }O) sin( ~8) cos( ~8). 

The functions fl1 for the sliding mode are 

!{{ ( 8) = sin( }e) ( 2 + cos( }O) cos( ~8)) , 

HJ (8) cos(}8) sin(t8) cos(~O), 

J{f(O) cos(!O)(l sin(!8)sin(~8)). 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

The near-tip displacement field is given in Section 2.2 by equation (2.21). The angular variation 
of this field is given by the functions uf and u{1

, i 1, 2, where 

uf(O) cos(!8)(K 1+2sin2 (!8)), 

u~(O) = sin{1e)(K+l-2cos2(}0)), 
u{1 ( 8) sin( }8) ( K + 1 + 2 cos2 (!O)) , 

u~r ( 8) cos( }8) ( 1 - K + 2 sin2
( }O)) . 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

In these equations, "'= 3 4v in case of plane strain and"' (3 v)/(1 + v) in case of plane 
stress. 
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Appendix B 

Set-up for analyses by FE-method and 
EFG-method 

In this appendix schematic set-ups are given for an analysis fora (cracked) material domain by 
means of the finite element method, the element-free Galerkin method or a combination of both 
methods. From the different steps in each set-up the similarity is seen between the different 
methods. 

B.1 Set-up for FE-analysis 

In general, a statie analysis for a material domain n (containing a crack) by means of the 
FE-method consists of the following steps: 

1. Divide Q into elements Üe by means of connectivity of nodal points Xa SUCh that the ele
ments match or approximate the boundary an and internal boundaries such as cracks; 

2. Define volume force f* in n, essential boundary conditions u = u* along and natura! 
boundary conditions O"ll = p* along r p; 

3. For each element Sle compute the contribution to K and f, see (2.50), by: 
a. Determine the matrix D which represents the constitutive equations in Üe; 

b. For each integration point Xq in rle: 

(i) Determine <Pa(xq) and derivatives <Pa,i(X.q) for the nodal points Xa of Üe; 
(ii) Determine the matrices Ba, see (2.54); 

(iii) Compute integration point contribution to element integrals, e.g. see (2.56); 
c. Sum over integration point contributions to find element contributions; 

4. Sum over element contributions to find stiffness matrix K and contribution to right-hand 
side vector f; 

5. For each element next to the boundary r P determine contribution to f by: 
a. For each integration point X.q: 

(i) Determine <Pa(X.q) for the nodal points Xa of Üe on 
(ii) Compute integration point contribution to element integral for f; 

b. Sum over integration point contributions to find the element contributions; 
6. Sum over contributions of elements next to rP to find right-hand side vector f; 
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7. Reduce linear system (2.50) by substitution of da= u*(xa) for Xa on r"; 
8. Solve for reduced vector d; 
9. Compute by means of (2.49), differentiation and the constitutive equations, the displace

ments, strains and stresses in the domain; 
10. Error estimates for the quantities can be determined when an exact solution is available; 
11. Determine from the computed quantities the J-vector and the stress intensity factors. 

In a quasi-statie analysis for a material domain by means of the FE-method, the above steps 
are repeated for a number of (time) steps. 

B.2 Set-up for EFG-analysis 

A statie analysis fora material domain n (containing a crack) by means of the EFG-method 
generally consists of the following steps: 

1. Define nodal points Xa, weight functions Wa and basis functions Pc such that moving least 
squares approximation is well-defined for n; 

2. Divide n into integration cells ~e such that the cells match or approximate the boundary 
an; 

3. Divide the boundaries r p and r u into boundary integration cells; 
4. Define volume force f* in n, essential boundary conditions u u* along r u and natura! 

boundary conditions O"ll p* along rp; 
5. For each integration cell ~e compute the contribution to K and f, see (4.4), by: 

a. Determine the matrix D which represents the constitutive equations in ~.; 
b. Subdivide ~e into triangular subcells to match a crack in the cell; 
c. Determine integration points for ~. (by considering each triangular subcell); 
d. For each integration point Xq in ~.: 

(i) Compute <Pa(xq) and derivatives <Pa,;(xq) for the nodal points Xa with non-zero 
weight function in :Xq; 

(ii) Determine the matrices Ba, see (4.11); 
(iii) Compute integration point contribution to the cell integrals, e.g. see (4.14); 

e. Sum over integration point contributions to find the cell contributions; 
6. Sum over cell contributions to find stiffness matrix K and contribution to right-hand side 

vector f; 
7. For each boundary integration cell in rP determine the contribution tof by: 

a. Determine integration points for boundary integration cell; 
b. For each integration point :Xq: 

(i) Determine <Pa(xq) for the nodal points Xa with non-zero weight function in X:q; 
(ii) Compute integration point contribution to cell integral for f; 

c. Sum over integration point contributions to find the cell contributions; 
8. Sum over contributions of integration cells in r 11 to find right-hand side vector f; 
9. For each boundary integration cell in ru compute contribution to Land r, sec (4.4), 

a. Determine integration points for boundary integration cell; 
b. For each integration point X.q: 
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(i) Determine ef>a(X.q) for the nodal points Xa with non-zero weight function in :Xq; 
(ii) Compute integration point contribution to cell integrals for L and r; 

c. Sum over integration point contributions to find cell contributions; 
10. Sum over contributions of integration cells in r ... to find matrix L and right-hand side 

vector r; 
ll. Solve the linear system (4.4) ford and l; 
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12. Compute by means of (4.1), differentiation and the constitutive equations, the displace
ments, strains and stresses in the domain; 

13. Error estimates for the quantities can be determined when an exact solution is available; 
14. Determine from the computed quantities the J-vector and the stress intensity factors. 

In the case when the essential boundary conditions are prescribed at a set of discrete points, 
the steps 9 and 10 are replaced by a step which considers these discrete points. 

In a quasi-statie analysis for a material domain by means of the EFG-method, the above steps 
are repeated fora number of discrete (time) steps. 

B.3 Set-up for EFG+FE-analysis 

For a short description of a statie analysis fora (cracked) material domain 0 by means of a 
combination of the EFG-method and the FE-method, the set-up is given for an analysis by the 
combination of the methods with the help of a Lagrange multiplier, see Section 5.2. Similar 
set-ups can be given for the combination of the EFG-method and the FE-method by means of 
element-free coupling, see Section 5.1, and the combination by means of interface see 
Section 5.3. For the description in this section, !11 is the subdomain where the FE-method is 
applied and 0 2 the subdomain where the EFG-method is applied. Furthermore, f 1 and f 2 are 
the boundaries of 0 1 and !12 , respectively. 

An analysis by means of the combination of EFG and FE with the help of a Lagrange multiplier 
consists of a combination of steps given in the first two sections of this appendix. The subdomain 
0 1 is divided into :finite elements according to step 1 in Section B. l. Parameters for moving 
least squares approximation (MLSA) on !12 , and a division of the subdomain and its boundaries 
r Pnr 2, r u nr 2 and r 1nr2 into integration cells are chosen according to steps 1-3 in Section B.2. 
Volume force, essential and natura! boundary conditions are defined afterwards. Then the linear 
system (5.7) is built up according to steps 3-7 in Section B.l and steps 5-10 in Section B.2. 

The combination between the subdomains 0 1 and 0 2 is accounted for by consideration of the 
integration cells for the internal boundary f 1 n f 2 similar to the steps 9-10 in Section B.2. 
For each integration point of a cell, the values of the FE-shape functions and MLSA-shape 
functions are obtained and the contribution to the matrices H1 and H2 are computed, see (5.7). 
Summing over the integration points and integration cells results in these matrices. 

When the system (5.7) has been determined, it is solved for d1, d 2
, 11, 12 and l. Similar to 

steps 9-11 in Section B.l and 12-14 in Section B.2, with the help of d 1 and d 2 displacements, 
strains, stresses, error estimates and fracture mechanics parameters are obtained. 
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Appendix C 

On MLSA for the wedge model 

Concerning the wedge model presented in Section 3.2, moving least squares approximation 
(MLSA) is not well-defi.ned for the crack tip. Nevertheless, it has been shown that values for the 
shape functions can be obtained. The shape functions are continuously differentiable, except for 
the crack tip. In this appendix a mathematical proof is given of the fact that the shape functions 
are continuous in the crack tip. In addition, it is proven that for continuously differentiable 
basis functions and weight functions, the shape functions are continuously differentiable except 
for the crack tip and that the derivatives of the shape functions are bounded in the vicinity of 
the crack tip. 

It is assumed for MLSA on the domain n that: 

[Al] A set of nodal points {xa}a=l" .. ,n is given such that x 1 = 0. 

[A2] A set of basis functions {Pc(x)}c=l, ."m is given with p1 (x) = 1 for each x En, Pc(O) = 0, 
c > 1, and such that each basis function is continuously differentiable for the entire 
domain n. Hence, a Taylor series expansion yields that Pc(x) = O(lxl) for x-+0, c > 1. 

[A3] A set of continuously differentiable weight functions { wa(x)}a=l, .. ,n is chosen such that 

- w1(0) = 1, Wa(O) = 0, a > 1; 

- IY'wa(O)I = 0, a = 1, ... , n; 

- w1 has derivatives of any order in the interior of its support; 

- The origin 0 is not in the interior of the support of Wa, a > 1; 

- For a > 1, the weight function Wa has derivatives of any order in the interior of its 
support and all its derivatives are bounded in the neighbourhood of 0. 

[A4] MLSA is well-defi.ned for D\{O}. Hence, for each x E D\{O} and each c with 1 < c::; m, 
a nodal point xb with 2 ::; b ::; n can be found such that wb(x) > 0 and Pc(xb) =f 0. 

The notation f(x) = O(g(x)) for x-+0 means that there exists an M > 0 such that 

IJ (x) 1 ::; M lg(x) I , (C.l) 
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for x sufficiently close to 0. 

The above assumptions hold true for the wedge model presented in Section 3.2, when the 
ongm the crack tip and when a polynomial set of basis functions is used. In the 
remaining part of this appendix, the set of orthogonal basis functions { qc(x, as given 
by (3.13) and (3.14), is used to prove that the shape functions are continuous and have bounded 
derivatives in the neighbourhood of the crack tip. 

We shall prove that under the above assumptions we have for c = 2, ... , m 

(C.2) 

l'Vxqc(O, x)I = O(lxl) for x _.., o. (C.3) 

For each x E f!\{O} one has that 

lim qc(x, x) < +oo, c 2, ... 'm, 
X->0 

(C.4) 

and the limiting value equals a linear combination of Pc1 (x), 1 S c1 S c. For each c, there exists 
an index b > 1 such that the limit (C.4) for x = Xb is non-zero. Moreover, for x E ü\{O} 

(C.5) 

(C.6) 

l'Vqc(x,x)l=O(l) forx_..,O, c 2, ... ,m. (C.7) 

The notation lim;c_,0 f (x) < +oo means that /(x) has a finite limiting value for x approaching 
0. The gradient in (C.7) should be understood in the following way, 

(C.8) 

Proof: 
A proof of (C.2)-(C.7) will be given by means of induction on c. 

1. For c = 2, equation (3.14) results with assumptions Al, A2 and A3 in 

(C.9) 

Therefore, 

(C.10) 
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from which (C.2) is obvious. From the assumption A3 for the weight functions it follows that 
(C.3) holds true. 

From equations (C.9) and (C.10) it follows that for x E rl\{O} 

1im q2(0, x) = P2(x), 
x->0 

(C.11) 

because of (C.2). There can be found an index b > 1 such that the limiting value for x = xb is 
non-zero, otherwise assumption A4 is not valid. Hence, (C.4) holds true for c 2. Equation 
( C. 9) also shows that 

(C.12) 

Therefore, equation (C.5) for c = 2 follows directly from (C.3). 

Equation (C.9) together with the assumptions for the basis and weight functions results in the 
fact that q2(x,x) = O(lxl) for X.-+0, which yields (C.6) for c = 2. Furthermore, one has that 

(C.13) 

because of (C.3) and hence, (C.7) is valid for c = 2. 

II. It is now assumed that (C.2)-(C.7) are valid for all c with 2 :S: c :S: c1-l, c1 ;:: 3. For c c1 , 

the function qc(X, x) is given by 

c-1 

9c(X, x) = Pc(x) 2: D'cd(x)qd(x, x), (C.14) 
d=l 

see also (3.14), where because of assumption A2 

(C.15) 

For d 1, one obtains 

(C.16) 

and for d 2, ... , c - 1 one obtains 

D'cd(x) = 0(1) for x-+ 0, (C.17) 

since hoth the numerator and the denominator in (C.15) are of the same order, i.e" of the order 
O(E~=2 wa(x)/ E~=I wb(x)) for x---+O, because of (C.2) and (C.4). Therefore, 

2, ... ,c-1, (C.18) 
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which yields that (C.2) is valid for c = c1 . 

Equation (C.16) together with assumption A3 shows that 

In addition, the gradient of acd(x) ford= 2, ... , c 1 is given by 

+ 

L:::=2 Wa(x)pc(Xa)\7xqd(Xa, X) 
L:::=l Wa(x)qd(Xa, x)2 

I;~=2 Wa(x)pc(Xa)qd(xa, x) L;b=l 2wb(x)qd(Xb, x)\7xqd(xb, :X) 
(I;~=l Wa(x)qd(Xa, x)2)2 

L::=2 L;b=I[\7wa(x)wb(x) Wa(x)\7wb(x)]Pc(xa)qd(Xa, x)qd(xb, x)2 

CL:::=1 wa(x)qd(xa •. x)2) 2 

(C.19) 

(C.20) 

Because of (C.2)-(C.5), the first two terms in (C.20) are O(lxl-1) for x->O. The denominator 
of the last term is wa(x)/ L:/,'=1 wb(x))2) for x-> 0. Hence, because of assumption 
A3, a Taylor series expansion shows that this denominator is of the order O(lxl4 ) for x _, 0. 
Furthermore, with assumption A3, it is seen from Taylor series expansions for \7wa(x)wb(x) -
wa(x)\7wb(x), that the terms in the numerator of the last term in (C.20) for a = 2, ... n and 
b = 2, ... n are O(lxl3) for x-> 0. Because of (C.2) the terms in this numerator for b = 1 have 
order O(lxl 5) for x _, 0. Therefore, the last term of (C.20) is also of order O(lx!- 1) for x _, 0 
and we have 

l\7 acd(x)I = O(lxl-1
) for x _, 0, d = 2, ... , c - 1, (C.21) 

From (C.16), (C.17), (C.19), (C.21) and (C.2), (C.3) for c < c1, it now follows that (C.3) holds 
true for c = c1 , since (C.2) yields that qc(O, x) = O(lxl2) for :X->0. 

Furthermore, from (C.16), (C.17), (C.19), (C.21) and (C.2)-(C.5) it follows that (C.4) and 
(C.5) are valid for c c1. For each c there exists indeed an index b such that the limit in 
(C.4) is non-zero, otherwise assumption A4 is not valid. With (C.6), (C.7) for c < ei, and the 
assumptions for the basis functions it is seen that (C.6) and (C.7) hold true for c = c1. 

It has been proven that (C.2)-(C.7) hold true for c = c1 and from the principle of mathematica! 
induction one may conclude that (C.2)-(C.7) hold true for c 2, ... , m. 
End ofproof 

The shape functions <Pa(x), a I, ... , n, are given by (3.18). Because of assumptions A2 and 
A3, the expression (3.18) can be written as 

(C.22) 

With the assumptions for the weight functions ît is seen that the first term of (C.22) approaches 
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Óa1 for x--.O, i.e., approaches 1 fora 1 and 0 fora> 1. Because of (C.2), (C.4) and (C.6), 
the second term in (C.22) is of the order O(lxl) for x-->O, which yields that 

lim <Pa(x) = Óa1, a = 1, ... , n. 
X-->0 

(C.23) 

From (C.23) it is concluded that the shape functions (C.22) are continuous. Moreover, the 
first term of (C.22) is continuously differentiable for the entire domain. The second term in 
(C.22) is continuously differentiable except for x = 0. However, because of assumption A3 and 
(C.2)-(C.7), one has that the second term is 0(1) for x-.O. Hence, the derivatives of the shape 
functions are bounded near 0. 

In general, the shape functions are not differentiable for x 0 as the following one-dimensional 
example shows. Consider the nodal points x1 0 and x2 = 1 and weight functions w1 and 
w2 such that w1(0) > 0, w2(x) = 0 for x :::; 0 and w2(x) > 0 for x > 0. Let the set of basis 
functions be given by { 1, x}. When the other weight functions vanish for 0 < x < e: with e: 

small, the shape function efJ2 for node x2 is given by 

{ 

0, 
<P2(x) = 

x, 

x:::: 0, 

0 < x < E:. 

(C.24) 

It can be seen easily that this shape function is not differentiable for x = 0. 
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Appendix D 

On the subdivision of standard 
integration cells 

In this appendix it is described in which way numerical integration is performed in a standard 
integration cell D.., in order to obtain accurate values for the contribution of the integration cell 
D.. to the integrals in (4.7)-(4.10). The standard integration cell is divided into subcells and 
for each subcell Gaussian quadrature is used. The subdivision is based on the number of nodal 
points close to D.., on the size of D.., on the nurnber of nodal points in D.. and on whether the 
integration cell is near the boundary, near the crack or near the crack tip. 

D.1 Subdivision for quadrilateral integration cell 6.e 

Consider a quadrilateral cell D.. with the definition points zi, z~, z3 and z4 as its four vertices. 
The square { ( ~1 , 6) 1 -1 ::::; Çi ::::; 1, -1 :::; 6 ::::; 1} is taken as standard integration cell D. •. 
In order to determine integration points for numerical integration in D.., the next procedure is 
followed. 

Let Xa1 be the nodal points such that Xa1 E D.. or such that one of the definition points is in 
the support of the weight function Wa1 • The nodal poiTlts Xa1 contribute to the cell integrals 
for K and f. The central point of D.. is given by z:;,, i.e. 

(D.l) 

Let r~ be the rnean distance between the nodes x"1 and the central point z:;,, 

(D.2) 

which is a characteristic value for the density of the nodal points with respect to the size of 
D. •. In equation (D.2), M is the number of nodal points Xa1 . Of course, M will be at most n, 
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the total number of nodal points. Furthermore, he is defined as the mean distance between the 
mid-side points of Ó.e and the central point z;;,, 

(D.3) 

where z~ zi. The number of sides of 6.e which are part of the boundary of the do main n or 
which are part of the crack, is denoted by Se and the number of nodes Xa1 in Ó.e is denoted by 
Me. Hence, M.:::; Af. 

To obtain the contributions of Ó.e to K and f, see (4.4), equation (4.14) is used. For numerical 
evaluation of the integrals over the standard cell, Ó.s is divided into Ne x Ne square subcells 
which all have the same size. Per subcell (4,4)-point Gaussian quadrature is performed. The 
value Ne is found from the following algorithm: 

1. if r;;, < h.v'2 
a. if Me+ 2•e(M - M.)< 7 

N. = 1 
b. elseif M.+ 2•·(M M.)< 18 

N.=2 
c. elseif M.+ 2•·(M - M.)< 36 

N. =3 
d. else 

N. =4 
end 

2. elseifr;;, < 2h.v'2 
a. if M.+ 2•·(M - M.)< 18 

Ne = 1 
b. elseif M.+ 2s.(M M.)< 36 

N. =2 
c. else 

N. =3 
end 

3. elseif r;;, < (10/3)h.v'2 
a. if M.+ 2••(M - M.)< 36 

N. = 1 
b. else 

N. = 2 
end 

4. else 
1v. = 1 

end 
if mine=1, ... ,4,m lz~ - Ycl < 2ha 

N. := 2N. 
end 
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This algorithm to detennine Ne for ti" is just a choice. We are aware that other algorithms 
with similar properties can be designed. In the algorithm, Yc is the position of the crack tip 
and ha is the local mesh size, see (3.27), for the nodal point Xa which is closest or equal to Yc· 

Four situations are distinguished in the algorithm. Situation 1 represents the case where the 
nodal points Xa1 are situated mostly inside tie, since he../2 is the largest distance to the centra] 
point of the cell. In situation 2, these nodes are situated mostly in tie and its surrounding 
cells; 2he ../2 is the mean distance to z:'r, of points in ti. and its surrounding cells. Situation 3 
represents the case when the nodes are situated mostly in tie and two rows of its surrounding 
cells. In situation 4, a significant part of the nodal points Xa1 is outside tie and two rows of its 
surrounding cells. 

By means of the subcases of 1, 2, 3 and 4, we account for the density of the nodes Xa1 with 
respect to the size of ti •. We provide at least one fourth of a subcell per quadrilateral made up 
of nodal points. For instance, in the case of 2a, the nodes are such that one subcell is sufficient 
whereas the case 2b represents a situation where the density of the nodes is such that 4 subcells 
are necessary. 

Since the shape functions can have large gradients near the crack tip, the number N. is doubled 
in the last part of the algorithm, when the integration cell ti. is close to the crack tip. 

D.2 Subdivision for triangular integration cell Lle 

For a triangular integration cell its standard integration cell ti, is subdivided according 
to a similar procedure. Let the vertices of tie be given by zi, z~ and z3. The standard cell is 
given by the triangle ti, {(6,6) 10S6 S l, 0 S 6 S l, 6 +6 S l}. However, when the 
triangle has the crack tip as vertex, the standard cell is given by the square ti, = {(Ç!i6) 1 

-1SfaS1, -1 S 6 S l}, see Section 4.2. 

Let xa1 be the nodal points such that Xa1 E tie or such that one of the vertices is in the support 
of the weight function Wa 1 • The central point of tie is given by i.e. 

(D.4) 

Let r;',. be the mean distance between the nodes Xa1 and the central point z~,, 

(D.5) 

where M is the number of nodal points Xa1 • Furthermore, he is the mean distance between the 
vertices of the cell and the central point z;',., 

(D.6) 
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The number of sides and additional vertices of D.. which are part of the boundary of n or which 
are part of the crack, is given by Se and the number of nodes Xa1 in is given by Me. With 
an additional vertex is meant a vertex for which the sides where it is positioned on are not part 
of the boundary or part of the crack. 

To obtain the contribution of ile to K and f, see (4.4), the standard integration cell D., is 
subdivided. When is a triangle, it is partitioned into Ne2 triangular subcells, and when 
D., is a square, it is partitioned into (Ne, Ne) square subcells. Per subcell then 13-point and 
(4,4)-point Gaussian quadrature, respectively, is performed. The value N. is found from the 
following algorithm: 

1. if r:',. <he 
a. if Me+ 2••(M 1vfe) < 7 

Ne 1 
b. elseif Me+ 2'•(M - Me)< 14 

Ne = 2 
c. elseif Me+ 2••(M - Me)< 29 

Ne =3 
d. else 

Ne=4 
end 

2. elseif r:',. < 2he 
a. if Me+ 2'•(M - M.) < 14 

Ne = 1 
b. elseif Me+ 2'•(M - Me)< 29 

N. 2 
c. else 

N. 3 
end 

3. elseif r:;,, < lOhe/3 
a. if Me+ 2'•(M - Me) < 29 

Ne = 1 
b. else 

Ne = 2 
end 

4. else 
Ne 1 

end 

if mine=l" .. ,3,m lz~ - Ycl < 2ha 

Ne := 2Ne 
end 

In the algorithm, Yc is the position of the crack tip and ha is the local mesh size, see (3.27), 
for the nodal point Xa which is closest or equal to YC· 

Note the similarity of this algorithm with the algorithm fora quadrilateral integration cell D.e. 
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D.3 Subdivision for boundary integration cell ,6.e 

Consider a boundary integration cell Àe with the interval { Ç 1 -1 ~ Ç ~ 1} as standard 
integration cell À 8 • This standard cell is also subdivided to obtain its contributions to the 
matrix Land the vectors f and r, see (4.4). The vertices of Àe are given by z~ and z;. 

Let Xa1 be the nodal points such that z'.1, z2 or the central point z:;,, of Àe are in the support of 
the weight function Wa1 . This central point z~ is given by 

(D.7) 

The mean distance r:;, between the nodes Xa1 and the centra! point z:;,, is found from 

(D.8) 

where M is the number of nodal points Xa1 • Let he be given by 

(D.9) 

The integer Se has the value 1 if one of the vertices of Àe is positioned on the crack or corner 
node of the domain under consideration. If this is not the case, se has the value 0. 

Then, to obtain the contributions of cell À" its standard cell Às is partitioned into Ne subcells 
(intervals) of the same size and 4-point Gaussian quadrature is performed for each subcell. The 
value Ne is found from the algorithm: 

1. if r~ <he 
a. if 2•·M < 4 

Ne 1 
b. elseif 28

• M < 6 
Ne 2 

c. elseif 2•• M < 8 
Ne= 3 

d. else 
N. = 4 

end 
2. elseif r~ < 2he 

a. if 2••M < 8 
Ne = 1 

b. elseif 2•• M < 14 

N. = 2 
c. else 

N. 3 
end 
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3. elseif r:,, < lOh,/3 
a. if 2•, M < 12 

N, = 1 
b. else 

end 

4. else 

N, = 2 

N, = 1 
end 

Since a boundary integration cell b.., is at a remote distance of the crack tip, no doubling of N, 
has to be considered as in the previous algorithm. 
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List of symbols 

This chapter contains an explanation of the symbols used in this thesis. 

Roman symbols 

a 

C, C1 

d, d 1, d 2 

da, d!, d~ 
d 
da 
d1 
d!, d~, d3 

e, ei, e2, e3 
e 
f, f1, f 2 

fa 

f* 
f 
f t 
f;~, Îi~I 
g 
ge 
h 

ha 
he 
h1 
h~ 

j 
k 

index for discrete points and shape functions, radius of circular boundary, 
length of crack 
index for discrete points 
index for discrete points and shape functions, dimension of cracked mate
rial domain 
index for basis functions 
vector containing nodal displacement vectors 
nodal displacement vector 
index for basis functions, length of patch 
modification function for presence of crack 
modification function for nodal point at crack tip 
functions for definition of modification function 
unit vector 
index for elements and integration cells 
right-hand side vector 
subvector of right-hand side vector 
volume force vector 
general scalar function 
entry of volume force vector 
function for angular variation of elastic stresses near crack tip 
general scalar function 
function for position relative to crack 
mesh size of distribution of nodes, dimension of cracked material domain 
local mesh size of distribution of nodes 
mean distance to central point of integration cell 
local mesh size for nodal point at crack tip 
local mesh size of distribution of nodes in quadrant 
index for space dimensions 
index for space dimensions 
index for space dimensions, integer, number of shape functions 
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k1, k2 
l, 11, 12 

lb, IL' Iï 
l 
m 
n 
n 

p 
p* 

p, Pc 

Pi 
qc 
r, r 1 , r 2 

rb 

r 

t 
t 

ta 
u, u 1 , u2 

u* 

u 
Ua 

u;, u;, u; 
uh 

u? 
ui 
uf, u[I 
V1, V2 

vf, v2 
vf, v~ 
w, Wa, W~ld 

W1 

w~ew 

x,x 
Xa, 

X1 

Xq 

x2 
a 

X, Xi, X1, X2, X3 

LIST OF SYMBOLS 

number of shape functions 
vector containing nodal vectors for representation of Lagrange multiplier 
nodal vector for representation of Lagrange multiplier 
index for space dimensions, integer, length of patch 
number of basis functions 
outward unit normal on boundary 
number of nodal points 
entry of ontward unit normal on boundary, number of nodal points 
vector of basis functions 
prescribed boundary traction 
basis function 
entry of prescribed boundary traction 
( orthogonal) basis function 
right-hand side vector 
subvector of right-hand side vector 
distance to crack tip, polar coordinate 
polar coordinate with respect to nodal point 
mean distance of nodes 
integer, size of square contour for computation of J-integral 
sealing constant in weight function of Gaussian type 
number of si des (and additional vertices) of integration cell contained in 
boundary or crack 
traction vector 
time, interface function 
non-negative function 
displacement vector, vector consisting of nodal values of u 
prescribed displacement 
general function 
nodal value of u 
entry of displacement 
approximant of u 
elastic displacement of crack tip 
entry of prescribed displacement vector 
function for angular variation of elastic displacements near crack tip 
unit vector for determination of local mesh size 
unit vector for definition of modification function 
unit vector for position relative to crack 
weight function 
weight function of nodal point at crack tip 
modified weight function 
position vector of point in space 
position vector of nodal point 
position vector of nodal point at crack tip 
position vector of integration point 
Cartesian coordinate 
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Yb 

Yc 
Za 

z:',, 
z~ 
A 
Ba 
c 
Ck(fi) 
D 
E, Ei 
Ed 
F, Fi, Fz 
G 
Hi, H2 
Hi(O) 

H! 
1 
J 
Jk 
K 
Kab 

Ki, Kz 
K1, Kn 
K1a 

KJ, Kf1 
L, Li, Lz 
Lab 

Lz(n) 
M 

Me 
N 

Na 
Ne 
p 

Pca 
Q~ 
R 
Ra, R~'ct 
Ri 
R~ew 

s 
SD1 , SDn 
Vi, 
w 

position vector of point of piecewise linear crack 
position vector of crack tip 
position vector of discrete point of r u 

position vector of central point of integration cell 
position vector of definition point for integration cell 
matrix for computation of moving least squares approximant 
matrix consisting of derivatives of shape functions 
number of points which make up piecewise linear crack 
space of k times continuously differentiable functions on n 
matrix representing constitutive law of elastic material 
Young's modulus of elasticity 
Young's modulus of elasticity for damaged material 
shear force 
shear modulus 
matrix for coupling of subdomains 
Sobolev space of order i on n 
set of distances between nodes 
identity matrix 
vector obtained by J-integration 
entry of J-vector 
stress intensity factor, stiffness matrix 
nodal submatrix of stiffness matrix 
stiffness matrix 
stress intensity factor 
critical stress intensity factor 
computed stress intensity factors 
matrix for Lagrange multiplier 
nodal submatrix of matrix for Lagrange multiplier 
set of square integrable functions on n 
positive constant, number of nodal points 
number of nodal points in integration cell 
number of elements or number of integration cells 
number of non-empty sets 
number of subcells of standard integration cell 
matrix consisting of nodal values of basis functions 
entry of matrix consisting of nodal values of basis functions 
quadrant with nodal point as vertex 
convergence rate 
radius of support of weight function 
radius of support of weight function for nodal point at crack tip 
modified radius of support of weight function 
result of summation over nodal points 
standard deviation 
set for position relative to crack 
diagonal matrix consisting of values of weight functions 
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entry of diagonal matrix consisting of values of weight functions 
elastic energy density 

Greek and other symbols 

f3 
fJa 

"(, 16, 1ë 
')'ç, 1b, î'h 
ó 
Óij 

óu, óu1, óu2 

ÓÀ, ÓÀ
1

, ÓÀ2 

óu;, óut, óur 
ó>.i, ó>.}' ó>.7 
E 

1 
Eij, Eij, 

t:, éa, ei, c2 

(, (a, (~, (~ 
T/, 'f/1, 'T/2 
B, Ba 
Bp 
Bc-1 
K 

À, Àa, À1, À2 

Ài, >.}, >.; 
µ,µ 
µc 
V 1 V1 

e 
eb 
eç 
!;,;, 6, 6 
p 

(} 

(l 

1 2 
(lij, (lij• (!ij 

0 
(lij 

aoo 
ç 

T 

v 

scalar for definition of orthogonal basis functions 
crack angle 
integer 
curve for definition of J-integral 
segment for computation of J-integral 
Dirac's delta function 
Kronecker's delta 
test displacement vector 
test Lagrange multiplier 
test displacement 
entry of test Lagrange multiplier 
strain, Green Lagrange strain tensor 
entry of Green Lagrange strain tensor in Cartesian coordinate system 
(positive) real number 
value of inner product 
material constant for damage evolution 
polar coordinate 
propagation angle of crack 
angle of direction of last segment of crack 
material parameter for planar deformation 
Lagrange multiplier 
entry of Lagrange multiplier 
vector for linear cornbination of basis functions 
scalar for linear cornbination of basis functions 
Poisson's contraction ratio 
position vector of point of standard element or standard integration cell 
position vector of local nodal point of standard element 
position vector of local definition point of standard integration cell 
Cartesian coordinate in standard element 
density of linearly elastic rnaterial 
index for definition points of integration cells 
stress, Cauchy stress tensor 
entry of Cauchy stress tensor in Cartesian coordinate system 
finite elastic stress at crack tip 
circumferential tensile stress 
index for local definition points of standard integration cell 
potential energy of elastic medium 
scalar for deterrnination of sizes of supports of weight functions 



LIST OF SYMBOLS 

cPa' c/J~' c/J~ 
<pb, <pç 

x 
Xijkl 

î/Jb, î/Jt' î/Ji 
w 

rp, rPi 

ru, rui 

r1, r2 
~a 

~e 

~. 
w 
Wa 
n 
ne 
n. 
ni 
n1, n2 
an 
B 
D 
ç 
9c 
0 
IN 

global shape function 
local shape function 
fourth-order tensor for constitutive equations 
entry of fourth-order tensor for constitutive equations 
function for representation of Lagrange multiplier 
wedge angle 
boundary for prescribed traction 
boundary for prescribed displacement 
boundary of subdomain 
step length for crack propagation 
integration cell 
standard integration cell 
angle 
angle of influence 
undeformed configuration of elastic medium, domain 
element 
standard element 
interface domain 
subdomains 
boundary of n 
linearly elastic medium 
damage variable 
energy release rate 
critical energy release rate 
vector containing only zeros 
set of natural numbers 
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An Element-free Galerkin Method for 

Crack Propagation in Brittle Materials 

van 

Dries Regen 



1. Zowel de elementvrije Galerkin methode als een combinatie van deze methode met 
de eindige elementen methode bieden de mogelijkheid om scheurgroei te simuleren 
zonder het voortdurend wijzigen van een connectiviteit van knooppunten benodigd 
voor het benaderen van verplaatsingen en spanningen in het gescheurde materiaal. 

Dit proefschrift, hoofdstukken 3-6. 

2. Een nauwkeurige benadering van het verplaatsingsveld in de directe omgeving van 
een scheur in twee-dimensionaal elastisch materiaal middels vormfuncties verkregen 
met behulp van de benaderingstechniek gebaseerd op "Moving Least Squares" is niet 
mogelijk als men blijft vasthouden aan de eis dat deze techniek goed gedefinieerd 
moet zijn in de scheurtip. 

Dit proefschrift, hoofdstuk 3. 

3. Ondanks de toevoeging van het theoretische ,/F-gedrag in analyses van gescheurd 
elastisch materiaal middels de elementvrije Galerkin methode of de eindige elemen
ten methode, zal het toepassen van vrij grove discretisaties in de B-richting rondom 
de scheurtip niet leiden tot een heel nauwkeurig verplaatsingsveld nabij de scheurtip. 
Desalniettemin kunnen met behulp van een gecorrigeerde ]-integraal nauwkeurige 
spanningsintensiteitsfactoren worden verkregen uit deze analyses. 

Dit proefschrift, hoofdstukken 4 en 6. 

J.W. Eischen, Engineering Fracture Mechanics 26 (1987), 691-700. 

4. De eindige elementen techniek waarbij schade binnen een element beschreven kan 
worden met behulp van een localiseringszone, zoals voorgesteld door Belytschko, 
Fish en Engelmann, is niet toepasbaar op bros materiaalgedrag. 

T. Belytschko, J. Fish and B. Engelmann, Computer Methods in Applied Mechanics and 

Engineering 70 (1988), 59-89. 

D. Hegen, Eindrapport Ontwerpersopleiding Wiskunde voor de Industrie, Technische Uni

versiteit Eindhoven (1994), 25-49. 

5. Het bewijs zonder Fouriertransformatie van het bestaan van een fundamentele oplos
sing voo:i: lineaire partiële differentiaal operatoren met constante coëfficiënten, zoals 
gegeven door Rosay, kan worden gegeneraliseerd tot lineaire partiële differentiaal 
differentie operatoren met constante coëfficiënten. 

J.P. Rosay, The American Mathematica/ Monthly 98 (1991), 518-523. 

D. Hegen, Afstudeerverslag, Rijksuniversiteit Groningen (1992). 



6. De familienaam Heegen zoals die momenteel in Nederland voorkomt, is tot stand 
gekomen door een verschrijving van de familienaam bij de burgerlijke stand 
van de gemeente Zweeloo gedurende de periode 1865-1879. 

Geboorteregister gemeente Zweeloo, 12 juli 1865 t/m 30 september 1879. 

7. Omdat in artikelen vaak niet precies wordt aangegeven hoe gerapporteerde nume
rieke resultaten zijn verkregen, verdient het aanbeveling om wanneer in een artikel 
resultaten van numerieke berekeningen worden gepresenteerd, deze vergezeld te doen 
gaan van de programmatuur waarmee de uitgevoerd. 

8. Het feit dat elk jaar op 1 januari tijdens het traditionele Nieuwjaarsconcert muziek 
wordt gespeeld die in een ver verleden niet altijd even goed gewaardeerd werd, doet 
vermoeden dat over vele jaren louter hardrock en metal muziek ten gehore zal wor
den gebracht tijdens dit concert. 

9. Ondanks het feit dat tegenwoordig middels allerlei geavanceerde computersoftware 
voor vele mechanische problemen zonder het gebruik van pen en papier oplossingen 
kunnen worden berekend, dient nog steeds met verstand gerekend te worden met 
deze software. 

10. Gezien het grote maatschappelijke en economische belang van het voetbalspel, is er 
pas echt sprake van een Europese eenwording als er een Europese profvoetbalcom
petitie is ingevoerd. 

ll. In een democratische staatsvorm zou een kiezer een 
spelen dan eenmaal per zittingstermijn van het 
de stembus. 

veel actievere rol dienen te 
zijn gang te maken naar 


