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Samenvatting

Voor het simuleren van scheurpropagatie in brosse materialen wordt vaak de eindige elemen-
ten methode toegepast. Deze methode gebruikt een opdeling van het materiaaldomein in
zogenaamde elementen. Relevante grootheden in het domein, zoals verplaatsingen en span-
ningen, worden benaderd per element. Een opdeling in elementen wordt gegeven door een
verzameling van knooppunten die onderling verbonden zijn om de elementen te vormen. Om-
dat scheurpropagatie de uitbreiding van scheuropperviakken inhoudt, dient tijdens simulaties
de elementenopdeling en dus de zogenaamde connectiviteit van knooppunten, voortdurend te
worden aangepast. Dit aanpassen van de elementenopdeling staat bekend als “remeshen” en
kan het simuleren van scheurpropagatie behoorlijk gecompliceerd en tijdrovend maken.

De elementvrije Galerkin methode is een methode die ook knooppunten gebruikt, maar waarbij
het gebruik van een connectiviteit afwezig is. Verplaatsingen en spanningen in het materiaaldo-
mein worden benaderd met behulp van een techniek genaamd “moving least squares approxima-
tion”, die vrij ig van een connectiviteit. Deze techniek vereist, naast de informatie betreffende
de knooppunten, een verzameling van gewichtsfuncties en een verzameling van basisfuncties.
Omdat de uitbreiding van scheuroppervlakken kan worden weergegeven zonder het wijzigen
van een connectiviteit van knooppunten, is het mogelijk scheurpropagatie te simuleren zonder
de noodzaak tot “remeshen”. Het doel van het onderzoek gepresenteerd in dit proefschrift is
de formulering van een numeriek model, gebaseerd op de elementvrije Galerkin ruethode, dat
geschikt is voor het simuleren van scheurpropagatie in brosse materialen.

Het numericke model veronderstelt lineair elastisch materiaalgedrag en gebruikt criteria voor
scheurgroei en de richting van scheurgroei in brosse materialen. Deze criteria komen voort nit
de breukmechanica en worden uitgedrukt in spanningsintensiteitsfactoren. Met behulp van de
elementvrije Galerkin methode worden benaderende waardes berekend voor de verplaatsingen
en de spanningen in een materiaaldomein waarin een scheur aanwezig is. Daarvoor dienen
de onbekende verplaatsingen van de knooppunten te worden verkregen. Hiervoor - wordt een
numeriek integratie schema gebruikt dat is gebaseerd op een onderliggende configuratie van in-
tegratiecellen. Deze configuratie kan onafhankelijk van de knooppuntsverdeling gekozen worden
en hoeft niet te worden aangepast tijdens simulaties van scheurpropagatie. Het schema houdt
rekening met de dichtheid van de knooppuntsverdeling, met de spanningssingulariteiten en met
de discontinuiteiten van grootheden over de scheur. Voor de benaderingstechniek gebaseerd op
“moving least squares approximation” worden verschillende modellen voor de discontinuiteit
in het materiaaldomein ten gevolge van de aanwezigheid van een scheur onderzocht. Dit resul-
teert in een nieuw zogenaamd wig-model toegepast op de gewichtsfuncties en in het gebruik
van speciale basisfuncties voor de representatie van spanningssingulariteiten. Uit de berekende
verplaatsingen en spanningen in het materiaaldomein worden de spanningsintensiteitsfactoren
bepaald, die vervolgens worden toegepast in de breukeriteria. '

Een nadeel van de elementvrije Galerkin methode is de benodigde rekeninspanning. Voor een
reductie daarvan zijn drie combinaties van deze methode met de eindige elementen methode
onderzocht, zodat het uitbreiden van scheuroppervliakken nog steeds kan worden weergegeven
zonder de noodzaak tot “remeshen”. De effectiviteit van de ontwikkelde numerieke modellen
wordt gedemonstreerd aan de hand van enkele typische twee-dimensionale breukmechanische



problemen. De resultaten voor statische problemen tonen aan dat de spanningsintensiteitsfac-
toren nauwkeurig berekend kunnen worden. Voor het probleem van quasi-statische scheurpro-
pagatie in een balk met een enkelzijdige snede belast onder afschuifcondities, zijn scheurpaden
verkregen die goed overeenkomen met experimentele resultaten uit de literatuur. Dit toont,
tesamen met andere numerieke resultaten, dat het simuleren van quasi-statische scheurpropa-
gatie resulteert in betrouwbare scheurpaden. De verschillen tussen de resultaten verkregen met
de elementvrije Galerkin methode en die verkregen met een combinatie van deze methode met
de eindige elementen methode, zijn relatief klein.

Er wordt geconcludeerd dat de elementvrije Galerkin methode een doeltreffende numerieke me-
thode is voor elastostatische problemen. Door het nieuw ontwikkelde wig-model is de methode
ook toepasbaar op scheurproblemen. Combinaties van de methode met de eindige elemen-
ten methode zijn mogelijk, zodat een reductie van rekentijd verkregen kan worden. Ondanks
de rekeninspanning, blijken de geformuleerde numerieke modellen uitermate geschikt voor het
simuleren van scheurpropagatie.

i



Summary

For the simulation of crack propagation in brittle materials, the finite element method is often
applied. This method uses a division of the material domain into so-called elements. Relevant
quantities in the domain, such as displacements and stresses, are approximated per element. A
division into elements is given by a set of nodal points which are mutually connected to form the
elements. Since crack propagation concerns the growth of crack surfaces, the element division,
and therefore the connectivity of nodal points, has to be adapted continuously during simula-
tion. This adaptation of the element mesh is known as remeshing and can make simulation of
crack propagation rather complicated and time-consuming.

The element-free Galerkin method is a method which also uses nodal points, but where the nse
of a connectivity is absent. Displacements and stresses in the material domain are approximated
by means of a connectivity-free technique known as moving least squares approximation. This
technique requires, besides the nodal data, a set of weight functions and a set of basis functions.
Since the growth of crack surfaces can be reflected without changing a connectivity of nodes, it is
possible to simulate crack propagation without remeshing. The aim of the research presented in
this thesis is the formulation of a numerical model based on the element-free Galerkin method,
which is convenient for the simulation of crack propagation in brittle materials.

The numerical model assumes linear elastic material behaviour and uses criteria for crack
growth and the direction of crack growth in brittle materials. These criteria arise from the field
of fracture mechanics, and are expressed in terms of stress intensity factors. By means of the
element-free Galerkin method, approximate values for the displacements and the stresses are
calculated in a material domain containing a crack. To this end, the unknown displacements of
the nodal points have to be obtained. Therefore, a numerical integration scheme is used, based
on a background configuration of integration cells. This configuration can be chosen indepen-
dently of the distribution of nodal points and does not have to be adapted during simulation
of crack propagation. The scheme accounts for the density of the nodal distribution, for the
stress singularities, and for the discontinuities of quantities over the crack. Concerning the
moving least squares technique, several models are considered to account for the discontinnity
in the material domain due to the presence of a crack. This results in a new so-called wedge
model which is applied to the weight functions, and the use of special basis functions for the
representation of stress singularities. From the calculated displacements and stresses in the
material domain, the stress intensity factors are determined, which are subsequently applied in
the fracture criteria.

A drawback of the element-free Galerkin method is its computational effort. For a reduction
of computing time, three combinations of this method with the finite element method are
investigated such that the growth of crack surfaces can still be reflected without remeshing.
The effectiveness of the developed numerical models is demonstrated in several typical fracture
mechanics problems in two dimensions. Results for static problems reveal that accurate stress
intensity factors are computed. For the problem of quasi-static crack propagation in a single-
edge notched beam loaded under shear conditions, crack paths are obtained which are in good
agreement with experimental results reported in the literature. This shows, together with
other numerical results, that simulation of quasi-static crack propagation results in reliable

il



crack paths. The differences between the results obtained by the element-free Galerkin method
and those obtained by a combination of this method with the finite element method are only
minor.

It is concluded that the element-free Galerkin method ig an effective numerical method for
elagto-static problems. Due to the new developed wedge model, the method is also applicable
to problems involving cracks. Combinations of the method with the finite element method are
possible, such that a reduction of computing time can be obtained. Despite the computational
effort, the formulated numerical models appear to be very useful for the simulation of crack
propagation. '
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Chapter 1

Introduction

This thesis deals with the simulation of crack propagation in brittle materials. A widely used
numerical method for solving such mechanical problems is the finite element method. In the past
decades, many applications of this method to crack propagation problems have been reported.
The method is based on a division of the material into subdomains, so-called finite elements.
Such a division is given by a set of nodal points which are connected in a certain way to form the
elements. Since crack propagation concerns the growth of an internal free boundary, changing
the element division for the material domain and, therefore, changing the connectivity of the
nodes is necessary to simulate this crack propagation. The adaptation of the element mesh,
which is also known as remeshing, can make the simulation of crack propagation by the finite
element method rather complicated and time-consuming.

A few years ago, a numerical method known as the element-free Galerkin method has been -
introduced, which has many similarities with the finite element method. The element-free
Galerkin method, however, is free from any connectivity of nodal points and it is because of
this feature that the terminology “element-free” is used. Hence, the method is attractive for
the simulation of crack propagation, since the formation of new crack surfaces can be reflected
without changing any connectivity of nodes. Up to now, several applications of the method to
crack propagation problems have been reported. However, some problems are still unsolved.
Therefore, in this thesis a study of the method and its application to the simulation of quasi-
static crack propagation in brittle materials is presented.

1.1 Numerical analysis of failure

Two different methodologies for failure of materials can be distinguished, namely, fracture
mechanics and continuum damage mechanics. In fracture mechanics, a crack is assumed to be
present in the material. Such a crack introduces a discontinuity in the material and, in the
case of linearly elastic material behaviour, the stresses become infinite at the crack tip. This
singularity in the stresses is proportional to the inverse square root of the distance to the crack
tip. This relationship is illustrated in Figure 1.1 and can be expressed in the simplified form

K
== (1.1)

g =
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Figure 1.1: Singularity in stresses.

where ¢ represents the stress, r is the distance to the crack tip, and K is a normalizing factor
known as the stress intensity factor. This factor is related to the geometry of the material, the
applied forces, and the boundary conditions.

Equation (1.1) shows that the yield stress will be exceeded at positions sufficiently close to the
crack tip, resulting in plastic deformation of the material. For brittle fracture there is only a
small zone of plastic deformation near the crack tip (small-scale yielding, see Rice [60]). In
this case, plasticity in the vicinity of the crack tip is neglected and equation (1.1) is assumed
to be valid in a close neighbourhood of the crack tip. For ductile fracture this plastic material
behaviour is essential and cannot be neglected.

In order to predict the behaviour of cracked material, criteria for crack growth and for the
direction of crack growth have to be postulated, see Broek [13], Cherepanov [17] or Kanninen
and Popelar [37]. A common criterion for brittle materials states that crack growth occurs
when the stress intensity factor reaches a critical value. This value is a material constant and
is known as the fracture toughness. When K is below the critical value, the crack remains
stationary. The field of fracture mechanics is considered in more detail in the next chapter.

Continuum damage mechanics does not assume a discontinuity in the material. Defects such
as microcracks and the growth of these defects are accounted for in a continuous, smeared
way by means of so-called damage variables. These variables can be seen as internal variables
representing the state of the material. A part of the material containing defects is therefore
represented by a small zone with high values for the damage variables, resulting in a degradation
of the material properties, see Figure 1.2. Such an approach generally works well for materials
where the damage is smeared out over larger areas, such as in the case of ductile material
behaviour. It is believed, however, that one can also obtain reliable results for brittle material
behaviour. Reduction of the material stiffuess is often characterized by a constitutive stress-
strain relation of the form

g= Edé, (1.2)
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Figure 1.2: (&) Microcracks modelled by (b) degradation of material properties in the dark-shaded
areas.

where o and € are the stress and the strain, respectively, and F; = (1 — D)E, with E the
Young’s modulus of the original undamaged material. The parameter D is a damage variable.

In continuum damage mechanics, no criteria for the direction of crack growth have to be
postulated as is the case in fracture mechanics. However, a criterion is necessary to specify the
evolution of the damage variable D. An increase of D is mostly given by a so-called evolution
law in terms of the stresses, the strains, and the actual damage. For example, one can take the
equation for creep damage

D =no(1 - D)%, (1.3)

as suggested by Chaboche [15). The constants #, n; and 72 in (1.3) are material dependent and
have to be determined experimentally.

The constitutive relation {1.2) can be generalized to two and three dimensions. For materials
exhibiting anisotropic damage behaviour it is necessary to introduce additional damage vari-
ables, which means that D is extended to a damage vector, e.g. see Murakami [55]. With the
equations (1.2} and (1.3) the mathematical formulation of a problem in continuum damage
mechanics is complete. However, the interpretation and the choice of the damage variables D,
the constitutive equations, and the evolution of D may change with the type of problem. For a
complete description of the field of continuum damage mechanics, we refer to Chaboche [14, 15]
and Lemaitre [46].

In the past decades, the finite element method has shown to be a powerful and efficient numerical
method for solving mechanical problems involving non-linear constitutive material behaviour
and/or large deformations, see Hughes [33], Johnson [36] or Zienkiewicz [75]. This method is
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(a) (b)

Figure 1.3: Remeshing: Finite element division (a) before and (b) after crack propagation step.
Crack path is indicated by a thick solid line.

based on a weak form of the governing equations, in which the displacements are mostly taken
piecewise linear or piecewise quadratic. Therefore, the material is divided into subdomains,
so-called finite elements, see Figure 1.3. This division is given by the connection of a set of
nodal points. The displacements are interpolated linearly or quadratically within an element,
which leads to a sparse system of linear equations for the unknown displacements of the nodes.
A result of the interpolation of the displacements is that the stresses are constant or linear in
the element. For the application of the finite element method to the field of fracture mechanics,
however, special crack-tip elements have to be used to describe the singular stresses (1.1) in a
correct way, see Barsoum [3] or Stern and Becker {66, 67]. In [3] the singular stress behaviour
is obtained by moving mid-side nodes of a quadratic element to a quarter-point position. This
behaviour is obtained in [66, 67] by interpolation of the displacements with the help of special
shape functions based on the square root function.

The field of fracture mechanics has been studied extensively in the past decades, which has
resulted in a wide range of application and a high degree of accuracy of the developed ap-
proaches. However, when the finite element method is applied to fracture mechanics in order
to simulate crack propagation, a main drawback is encountered. To reflect the formation of
new crack surfaces, the mesh of elements has to be adapted after each crack propagation step.
This remeshing of the element division is illustrated in Figure 1.3. In addition, the crack-tip
elements have to be shifted to the new position of the crack tip and quantities such as strains
and stresses, which are generally discontinuous over element boundaries, have to be projected
from the old to the new element division. For complicated crack paths, this process of continu-
ous remeshing, including projection of quantities and new assembly, concerns a large number
of elements and can therefore be very time-consuming.

Application of the finite element method to the field of continuum damage mechanics does not
suffer from remeshing problems, since no physical crack is assumed to exist in the material.
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Figure 1.4: Softening behaviour.

Other problems, however, may occur. The evolution of the damage, e.g. see {1.3), can be chosen
more or less arbitrary as long as the global material response is acceptable. Severe material
degradation, as in the case of brittle fracture, can lead to softening behaviour. This means
that the stress decreases with increasing strain, see Figure 1.4. As a result, the mathematical
formulation of the problem becomes ill-posed. Application of the finite element method then
results in irrelevant solutions and often shows a mesh dependency of the solution concerning
both the width and the orientation of the elements, see Lasry and Belytschko [45] or Sluys [65,
Ch. 3]. In general, a refinement of the element division leads to higher values of the damage in a
region of smaller width. Furthermore, a change in the orientation of the finite element division
mostly leads to a different direction of the damaged region. In many situations, damage is
concentrated on very small parts of the material, which has the consequence that this localized
deformation cannot be captured easily without a very fine element division.

For the above problems in the application of the finite element method to fracture mechanics
and to continuum damage mechanics, a large number of solutions has been suggested in the
literature. Only a few of these solutions are summarized here. In order to capture localized
deformation in a correct way, Belytschko, Fish and Engelmann [4], Fish and Belytschko [24], and
Hegen [29], consider finite element techniques where the strains can become discontinuous over
azone in an element. In [45] and [65, Chs. 4-7], the ill-posedness of the formulation is avoided by
addition of higher-order terms in the governing equations. Xu and Needleman [74] circumvent
the problem of remeshing in the case of fracture mechanics problems by restricting the direction
of crack propagation to be along element boundaries. In Horsten and Van Vroonhoven [32] and
Van Vroonhoven [72, Ch. 8], a hybrid fracture/damage approach is introduced. By a convenient
corbination of concepts of fracture mechanics and continuum damage mechanics, problems of
remeshing are diminished. Furthermore, mesh dependency of the solution is absent in this
approach.

In the past two decades, a new numerical method has been developed for application to fracture
mechanics in order to simulate crack propagation: the boundary element method, see Brebbia
and Dominguez [12] or Chen and Zhou {16]. The method is attractive, since, in contrast to the
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finite element method, only the boundary of the material and the crack surfaces are discret-
ized. Therefore, a significant part of the remeshing associated with the finite element method is
avoided. In the boundary element method, the governing equations are transformed into boun-
dary integral equations. To this end, a so-called fundamental solution (Green’s function) of the
problem equations has to be available. Hence, the method is limited to the class of isotropic,
linearly elastic materials. The boundary integral equations are solved by means of an element
division of the boundary and of the crack surfaces. In contrast to the finite element method,
this leads to a non-sparse system of equations for the unknown displacements of the nodes.
In the case of application of the boundary element method to fracture mechanics, substantial
difficulties need to be overcome. In order to avoid the system of equations to be ill-conditioned,
special techniques are necessary to formulate the equations concerning the crack surfaces. Fur-
thermore, as in the finite element method, special elements have to be used near the crack tip.
For more details and examples of the application of the boundary element method to fracture
mechanics, we refer to the work of Mi [52].

1.2 Element-free analysis of fracture

Recently, a new numerical method known as the element-free Galerkin method has been de-
veloped for solving mechanical problems. The method approximates displacements by using
a set of nodal points. However, a connectivity of nodal points is not used which explains the
terminology “element-free”. Because of this, the method is very attractive for application to
fracture mechanics problems, since the formation of new crack surfaces can be reflected without
remeshing, or equivalently, without changing any connectivity of nodal points. It is only ne-
cessary to place some nodal points around the newly created crack surfaces as is shown in
Figure 1.5. Since the displacements in the element-free Galerkin method are generally continu-
ously differentiable, the strains and the stresses are continuous. Hence, in the case of crack
propagation problems, projection of strains and stresses from the old to the new discretization
for the method is straightforward.

Similar to the finite element method, the element-free Galerkin method uses a weak form of the
governing equations. Continuously differentiable representations for the displacements are used,
which are obtained with the help of a technique known as moving least squares approximation,
see Lancaster and Salkauskas [43, 44]. For this technique, a set of nodal points and some nodal
data have to be specified, as well as a set of so-called basis functions. The displacements are
then given by a linear combination of the basis functions, which coefficients vary from point to
point and are found by solving a set of linear equations. As for the finite element method, this
approach leads to a sparse system of linear equations for the unknown displacements of the
nodes. The discrete equations are obtained by means of numerical integration with the help of
a background configuration of so-called integration cells.

The first work on the element-free Galerkin method has been presented by Nayroles, Touzot and
Villon [56]. Their method is named “diffuse elements”, since it is presented as a generalization
of the finite element method. The current form of the element-free Galerkin method, however,
is first described by Belytschko et al. [7, 48]. In their papers the ideas presented in [56] are
worked out to a more general form. Furthermore, it is recognized in [7, 48] that the method can
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Figure 1.5: Element-free set-up (a) before and (b) after crack propagation step. Crack path is
indicated by a thick solid line.

be an effective means for solving problems in fracture mechanics. A large amount of work on
the application of the element-free Galerkin method to static and dynamic fracture problems
has already been presented, see Belytschko et al. [5]-[11], [25], [48], [49] and [58]. Due to the
fact that firstly the displacements are continuously differentiable and secondly the method is
able to represent the specified set of basis functions exactly, the method is also attractive for
application to other areas than fracture mechanics. For instance, Krysl and Belytschko [41, 42]
describe analyses of thin plates by using the element-free Galerkin method.

Despite the work on the application of the element-free Galerkin method to fracture mechanics
so far, there are still problems associated with the method. Omne of the main problems is that
the application of moving least squares approximation near a crack is not straightforward and
can lead to inaccurate approximations of displacements and stresses near the crack tip. In
addition, special basis functions have to be used for the approximation technique in order to
describe the singular stresses (1.1) correctly. A second problem concerns numerical integration.
The background configuration of integration cells is chosen independently of the nodal points.
Nevertheless, it has to account in a certain way for the density of the nodes in the neighbourhood
of each cell, in order to obtain a certain degree of accuracy. Furthermore, there is the problem of
integration of discontinuous quantities, when a part of a crack is in the interior of an integration
cell.

In addition to the problems mentioned above, the method shows some drawbacks concerning
computational effort. Moving least squares approximation requires that at each point under
consideration a linear set of equations has to be solved to obtain the displacements. This causes
the element-free Galerkin method to be computationally expensive in comparison with the finite
element method. Moreover, the displacements are not piecewise linear or piecewise quadratic,
which implies that numerical integration requires a large amount of integration points.

Several solutions to the above problems have already been proposed in [5]-[11], [25], [48], [49]
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and [58]. A reduction of the computational costs of the method is obtained by coupling the
method with the finite element method. An efficient scheme for numerical integration has
been proposed based on a background configuration of integration cells. This scheme, however,
does not account for the integration of discontinuous quantities within a cell. Furthermore,
the scheme only partially accounts for the density of the nodal points, since the order of
integration depends on the number of nodes in a cell. Several attempts have been made to
apply the moving least squares technique near a crack path in a correct way. These efforts,
however, lead to shape functions which are discontinuous in the material or to nodal points on
one crack surface affecting the displacements on the opposite surface. Special basis functions
obtained from the asymptotic expressions for the displacements are used in the moving least
squares technique, in order to describe the singular stresses (1.1) correctly.

The main goal of the research presented in this thesis is the development of the element-
free Galerkin method to a robust and accurate method for application to fracture mechanics
problems. We shall restrict ourselves to the simulation of 2D quasi-static crack propagation in
brittle materials. A secondary goal of the research concerns the development of a combination
of the element-free Galerkin method with the finite element method, such that a reduction of
computational costs can be obtained.

For the development of the element-free Galerkin method, solutions are presented to the pro-
blems mentioned above. Concerning moving least squares approximation, several ways are
considered to apply this technique near a crack. For a correct representation of the singular
stresses (1.1), the set of basis functions is extended with an extra basis function which behaves
like the square root function near the crack tip. A numerical integration scheme based on a
background configuration of integration cells is used. To account for the presence of a crack,
cells can be divided into subcells matching the crack, such that quantities which are discontinu-
ous over the crack are integrated correctly. Numerical integration within a cell is based on the
number of nodes which contribute to the displacements in the cell and on the size of the cell.
This yields that a change in the number of cells leads to small changes in the solution. Fur-
thermore, in the case of the use of a basis function which behaves like the square root function
near the crack tip, the scheme automatically accounts for efficient and accurate integration of
the singular derivatives of the function. Three different ways for combining the element-free
Galerkin method and the finite element method are studied. It turns out that a combination
by means of interface elements, see Belytschko, Organ, Krongauz [10], has to be preferred.

Some characteristics and the performance of the developed methods are investigated by appli-
cation of the methods to several typical fracture mechanics problems. These problems concern
both static problems and crack propagation problems. The results of the applications show
that the element-free Galerkin method and a combination of the method with the finite ele-
ment method are effective means for numerical analysis of crack propagation.

1.3 Overview of the thesis

The thesis i3 organized as follows. Chapter 2 deals with fracture mechanics and the finite ele-
ment method. The basic equations are given for linearly elastic material behaviour, which is



1.3. OVERVIEW OF THE THESIS 9

followed by a review of concepts of fracture mechanics. Stress intensity factors are introduced
and criteria are considered for crack growth and the direction of crack growth in brittle materi-
als. The chapter ends with a short presentation of the finite element method and its application
to fracture mechanics problems.

Chapter 3 studies approximation techniques which are free from a connectivity of nodal points.
The main part of the chapter is devoted to moving least squares approximation. First, the
theory of this technique is described. Next, several ways are considered for the application of
the moving least squares technique near a crack path. This leads to the use of the so-called
wedge model for the description of the crack, and to the addition of special functions to the
set of basis functions for the description of the singular stresses. Finally, other approximation
techniques are reviewed for application in an element-free numerical solution method.

Next, in Chapter 4, the description of the element-free Galerkin method can be found. The
discrete equations obtained by means of application of moving least squares approximation are
given. This is followed by the numerical integration scheme for computation of the discrete
equations. The determination of integration points for a cell, the integration of discontinuous
quantities within a cell, and the integration near a crack tip in the case of the use of special
basis functions are considered in detail. Essential features, such as the performance and the
convergence of the method, are studied for several two-dimensional elasto-static problems. The
chapter ends with a description of the computation of fracture mechanics parameters from
fracture analyses.

Three possible ways to combine the element-free (Galerkin method with the finite element
method are considered in Chapter 5. First, a description is given of the three combinations,
which is followed by a comparison of these combinations for two-dimensional elasto-static pro-
blems. As in Chapter 4 for the element-free Galerkin method, the convergence aspects of the
combinations are studied.

In Chapter 6 results of the applications to fracture mechanics problems are given for both
the element-free Galerkin method and a combination of the method with the finite element
method. The ability of the numerical models to compute accurate stress intensity factors is
studied. Moreover, the models are applied to the simulation of brittle crack propagation in
two dimensions. Conclusions about the results and a comparison of the two approaches are
presented at the end of the chapter,

The thesis ends with a chapter serving as a concluding discussion. A review is given of the
methods and the applications to fracture mechanics problems. Furthermore, conclusions and
open ends of the presented study, and recommendations for further research can be found in
this chapter.
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Chapter 2

Fracture mechanics and finite element
method

This chapter deals with the field of study known as fracture mechanics, which concerns failure
of materials. Furthermore, the finite element method and its application to failure problems is
considered. The chapter starts with the introduction of the bagic equations for the deformation
of linearly elastic media. This is followed by the main concepts of fracture mechanics. The
chapter ends with a description of the finite element method and the use of the method in
fracture mechanics problems.

2.1 Deformation of linearly elastic media

In this section the problem of deformation of linearly elastic media is considered. The general
problem for a three-dimensional, homogeneous, isotropic, medium is given. This is followed by
two common situations in which the dimension of the problem is reduced by one. Finally, weak
formulations of the problem of deformation are introduced.

2.1.1 Equations of linear elasticity

Consider the deformation of a homogeneous, isotropic, linearly elastic medium B under applied
forces and prescribed displacements. In general, such a problem concerns 21 quantities: com-
ponents u; of the displacement vector u, entries €;; of the symmetric Green Lagrange strain
tensor e, and entries ¢;; of the symmetric Cauchy stress tensor ¢ with indices 4, j = 1,2,3. These
quantities are taken with respect to a fixed orthonormal basis {e1, €2, €3} of three-dimensional
space and depend on the three spatial coordinates zy, z3, 3 and on the time ¢. Small strains
¢;; and small rotations are assumed. Hence, for 21, 7o and 23 one can take the Cartesian
coordinates in the undeformed configuration §1 of the elastic medium B.

The material behaviour of the elastic medium is characterized by two material constants, namely
Young's modulus of elasticity E and Poisson’s contraction ratio v. Another frequently used
material constant is the shear modulus G = E/2({1 +v). The density of the material is given by
p. Let the medium be subject to volume forces f in Q and subject to prescribed tractions p}

11
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and prescribed displacements 4} on the boundary 802, ¢ = 1,2, 3. The problem of deformation
of the elastic medium is described by kinematic relations, constitutive equations, equations of
motion and a set of boundary conditions. This dynamic problem is given by:

Determine displacements u;, strains ¢;;, and stresses 0y, 1,7 = 1,2, 3, as sufficiently smooth
functions of the spatial coordinates z1, x5, x3 and the time t, such that the following equations
are satisfied:

1
e = 5 (it i), (2.1)
E v
T T4y (éiﬁ+1-2v5’°’°6‘j)’ 22
oy + i = pilis (2.3)

in the domain Q, 1,7 = 1,2,3, as well as the boundary conditions

oyn; = p;on [y, (2.4)
w; = wu;only, (2.5)

on the boundary 0Q =1, UL, with 'y, and 'y, disjoint, i =1,2,3.

Differentiation with respect to the coordinate x; is denoted by ; and a superposed dot is used
for differentiation with respect to the time ¢, The entries of the outward unit normal on the
boundary 8§ are given by n;, i = 1,2,3, and §;; is Kronecker’s symbol {§;; = 1 when i = j,
b6;; = 0 when ¢ $# j). In equations (2.2)-(2.4) and in the remaining part of the thesis, the
Einstein convention of summation over repeated indices is employed.

For the static problem, the right-hand side of the equations of motion (2.3) is set equal to zero,
yielding the equilibrium equations. For the dynamic problem, additional initial conditions for
the displacements u; and their time derivatives 4; have to be given.

The material behaviour of a homogeneous, isotropic, linearly elastic medium is expressed by
the constitutive equations (2.2}, which are known as Hooke’s law. These equations are a special
case of the constitutive equations for a {non-isotropic) linearly elastic medium

Oij = X €, 4,7 =1,2,3, (2.6)

where the fourth-order tensor x is positive definite and left, right and fully symmetric. When
the medium is not homogeneous, the tensor x depends on the position x.

2.1.2 Planar problems

There are two common situations in which the dimension of the problem of deformation of an
elastic medium can be reduced by one. These two situations are known as plane strain and
plane stress.

A situation of plane strain is characterized by the fact that the displacement and the strains
in the zs-direction are zero, i.e., us3 = 0 and ¢35 = 0, i = 1,2,3. Hence, the deformation only
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takes place in the (z;,2,)-plane and this deformation is independent of the coordinate z;. For
instance, a situation of plane strain can be assumed for a medium for which displacement in
the z3-direction is not possible. Because of (2.2), the zero strains imply that the shear stresses
o13 and 093 are zero, while the normal stress gq3 is given by

o33 = V(o1 + 033)- (2.7)

The problem of deformation in the case of plane strain is also given by equations (2.1)-(2.5). All
the quantities, however, are independent of the coordinate z3, while the indices are restricted
to 1,2. Since the deformation is independent of 23 and only takes place in the (z;, zz)-plane,
the undeformed configuration € of the medium can be taken as two-dimensional.

The situation of plane stress is characterized by zero stresses in the zs-direction, i.e. o435 = 0,
7 = 1,2, 3. For example, a situation of plane stress can be assumed for a medium which is thin
in the zz-direction compared to its dimensions in the (1, z2)-plane, subject to in-plane volume
forces, i.e. fi = 0. In practice, for such a medium the stresses in the zs-direction only vanish
after averaging over the thickness. As a consequence, the deformation is then independent of
the coordinate x3. This situation is often referred to as generalized plane stress. When o3 = 0,
i = 1,2,3, the constitutive equations (2.2} yield that the shear strains ¢;3 and €3 are zero,
while €33 is given by

124

(en1 + €22). (2.8)

€33 =
1—v

The problem of deformation of an elastic medium in a situation of plane stress is given by (2.1)-
(2.5), where all the quantities are independent of the coordinate 23, the indices are restricted to
1,2 and 2 can be taken as two-dimensional. Because of (2.8), equation (2.2) has to be replaced
by

E v
%=1, (fij 1z vfkk&a’) . (2.9)

where 7,7 = 1,2 and & sums only over 1,2.

There is a correspondence between the problems of plane strain and plane stress. A problem
of plane stress with E = F;/(1 — v?) and v = v1/(1 — 1) is equivalent to a problem of plane
strain with Young’s modulus F; and Poisson’s ratio v;.

2.1.3 Weak forms of the problem of deformation

In general, the problem of deformation of an elastic medium, as given by the boundary value
problem (2.1)-(2.5), cannot be solved exactly. Numerical methods are necessary to provide
accurate approximations for the displacements, strains and stresses in the medium. The nu-
merical methods discussed in this thesis use weak forms of the (strong) deformation problem
(2.1)-(2.5). Some of these weak forms are given in this section. For a more detailed description,
see Washizu [73, Chs. 1, 2].
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For the introduction of weak forms of the deformation problem, we restrict ourselves to the
static problem, i.e. pii = 0. For simplicity of the presentation, it is assumed that 'y, = I, and
Ty, =T, i =1,2,3. Upon multiplication of the static version of (2.3) with a test displacement
éu and integration over the undeformed configuration {2, one obtains

/Q Su; 05 A2 + /Q Su; f7d9 =0, (2.10)

where o is related to u by means of (2.1) and (2.2). Note that (2.10} is valid for each test
displacement du for which the integrals in this equation exist. When du is continuously differ-
entiable on € and éu = 0 on T, relation (2.10) can be rewritten. After partial integration of
the first term in {2.10), one obtains with (2.4) and the integration theorem of Gauss

/ S5y 045 A —f Bus f7 éﬂ-/ bu; p} dI' = 0. (2.11)
Q o) Tp
Here, du; ;) is the symmetric part of the gradient du;; and is given by
1 -
bug) = 5 (Busy +uys), 47=1,2,3. (2.12)

Equation (2.11) must be satisfied for all differentiable fu with fu = 0 on I',. For fu,u €
(H*(2))*, however, expression (2.11) still has a meaning. Here, H'(f2) is the Sobolev space of
order one. This space is defined by

HY(Q) ={f € I}Q) | fs € IX©), i =1,2,3}, (2.13)

where L2(£2) is the set of square integrable functions, i.e.

LY(Q) = {f ‘L F(x)2dQ < +oo}. (2.14)

This space is also denoted by H°(2). For more details about Sobolev spaces, see Ciarlet [18,
Ch. 1]. As weak form of the deformation problem for a homogeneous, isotropic, linearly elastic
medium we formulate:

Determine displacements u; € H*(SY), strains ¢;; € HO(Y), and stresses 0;; € HO(Q), i, =
1,2,3, such that (2.1), (2.2) and (2.5) are satisfied, and (2.11) holds true for all bu; € H ()
with éu; =0 on [y, 1=1,2,3.

From the derivation of (2.11), it is clear that the solution of the (strong) deformation problem
{2.1)-{2.5) also satisfies this weak form. The weak form can be seen as a necessary condition
for the solution of a minimization problem. Let the functional 7 be defined for u; € H{{2),
i=1,2,3, by

(u) = / oij€s; dSY — / wif? d) — / wip? dT, (2.15)
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where ¢ and o are related to u by (2.1) and (2.2). The functional 7 is interpreted as the
potential energy of the medium. The first term represents its internal elastic energy, while the
second and third term represent the work of the external forces.

Among all displacements which satisfy the essential boundary conditions (2.5}, = is minimal
for the solution u of the static deformation problem for the elastic medium, see Johnson {36,
Chs. 1, 2]. As a consequence,

d
7 [rlu+céu)] _ =0 (2.16)
for all test displacements $u; € H*(Q) with éu; = 0 on [y, i = 1,2,3. This yields equation
(2.11).

In the above weak formulation, the solution u of the weak form (2.11) is sought in a subspace
of (H*(Q))%. In the numerical techniques that are discussed in this thesis, the solution of this
weak form is approximated by restricting u and éu to be in a finite dimensional subspace.
For some of these finite dimensional subspaces, one cannot always fulfil the essential boundary
conditions u = u* on [, exactly. Therefore, weak forms have to be used where the essential
boundary conditions are taken into account in a different way. For example, consider a weak
form where the essential boundary conditions are accounted for by means of extra terms coming
from a Lagrange multiplier formulation of these conditions {see also Belytschko, Lu and Gu

[7D:
Determine displacements u; € H*(Q2), strains €;; € H°(Q), stresses 0;; € H°(2), and Lagrange
multipliers \; € HYT\), 4,7 = 1,2, 3, such that (2.1), (8.2) are valid, and such that

[Q Sugs 1 0 49— /g Sug f1 dQL— /P §u; p?t dT

[ 6 (uwi—ul) d0 - [F Sui A dT = 0 (2.17)

Iy
for all bu; € HY(Q) and 6); € H(T,), 1 =1,2,3.

When I', only consists of a set of discrete points {z,}, one has to replace A by a finite set of
Lagrange multipliers {A®}. Moreover, the two integrals in (2.17) concerning §A; and A; then
have to be replaced by finite sums over the discrete points z,, see Hegen [30].

There are more weak forms of the deformation problem for an elastic medium where the essential
boundary conditions u = u* on I', are accounted for by means of extra terms as in a Lagrange
multiplier formulation. For example, a weak form where the Lagrange multiplier A is replaced
by its physical meaning, the traction t = on along I',,. Or, for example, a weak form where the
essential boundary conditions are accounted for by means of a penalty term. For more details,
see [30] and Lu, Belytschko and Gu [48].

2.2 Concepts of fracture mechanics

In this section the field of study is considered which concerns failure of materials and which is
known as fracture mechanics. In fracture mechanics attention is focused on cracked material.
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Figure 2.1: Three fundamental modes for the loading of material with a crack.

For the description of the behaviour of such material in a loading situation, criteria are necessary
for crack growth and for the direction and speed of crack growth. Some of these criteria are
considered.

2.2.1 Mechanics of crack growth

A crack is an internal boundary of the material, which makes the material discontinucus. For a
crack one distinguishes between the crack flanks and the crack front. The crack flanks are the
surfaces which make up this internal boundary. These flanks are connected by a line which is
called the crack front. In two dimensions the crack flanks are lines and the crack front consists
of a single point. In that case, one also speaks of the crack tip.

On the basis of energy dissipation, two types of fracture are distinguished: brittle fracture and
ductile fracture, see Broek [13, Chs. 1, 2]. Ductile fracture is characterized by high energy
dissipation due to plastic deformation and slip in the neighbourhood of the crack tip. This
high energy dissipation is absent in brittle fracture. For this type of fracture, almost all the
dissipated energy is due to the formation of new crack surfaces.

In this thesis we restrict ourselves to brittle materials and, therefore, only brittle fracture is
considered. Fracture for brittle material behaviour is characterized by the occurrence of only
a small area of plastic deformation around the crack tip (small-scale yielding, see Rice [60]).
This is in contrast with ductile fracture, where mostly large areas of plasticity are ohserved.
Therefore, homogeneous, isotropic, linearly elastic material behaviour is assumed for brittle
materials and plasticity in the vicinity of the crack tip is neglected.

We distinguish between three fundamental modes for the loading of cracked material. These
three modes differ in the orientation of the applied loads with respect to the crack flanks, see
Figure 2.1. In the mode I loading situation, also known as the opening mode, the material is
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loaded by tensile forces perpendicular to the crack flanks, while in the mode Il loading situation,
also known as the sliding mode, the material is loaded by shear forces which are parallel to
the crack flanks and perpendicular to the crack front. Shear forces parallel to the crack front
result in the mode 1II loading situation, which is also known as the tearing mode. A general
situation of loading of cracked material consists of a superposition of these three fundamental
modes. Since in this study one is only concerned with planar problems, problems with a mode
1T loading component will not be considered.

2.2.2 Planar deformation near a crack tip

Consider linearly elastic material which contains a crack. The material is loaded under planar
conditions. The static problem is considered, i.e. pti; = 0, ¢ = 1,2, 3. It is assumed that volume
forces fF are absent. We focus on the near-tip solution. Therefore, it is assumed that the crack
is a semi-infinite line. The coordinate system {e;,e;} is chosen such that the crack tip is the
origin and e, is parallel to the crack flanks with {z; < 0, z = 0} corresponding with the crack.

When the crack flanks are taken to be stress-free and when (anti-) symmetry conditions are
applied to the displacement field, expressions can be derived for the displacements and the
stresses for both mode I and mode II loading situations. This is described in several text
books, see for instance [13, Ch. 3], Cherepanov {17, Ch. 3] or Kanninen and Popelar [37, Ch. 3.
Summation of these two solutions results in the solution for the displacements and the stresses
for a mixed-mode planar loading situation. The stresses have the form

351, ) = =40+ A= [(0)+ % + O(VF), (219

for r—0 and i,j = 1,2. In equation (2.18), » and # are the local polar coordinates such that
21 = rcosf and 25 = reind, r > 0, -7 < @ < 7, and %a 1,7 = 1,2, are finite stresses at the
crack tip. Since the crack surfaces are taken to be stress-free, the stresses o), and o9, vanish,
i.e. ady = 09, = 0. Stress intensity factors K7 and K are introduced as normalizing constants
for the symmetric and anti-symmetric parts of the stress fleld. These factors are the fracture
parameters for the corresponding modes I and II. They are expressed in units Nm /2 and are
defined by

K[ = hl‘% VQWTUZZ(T,O), (219)
K = Iixré V2 0p3(7,0). (2.20)

The dependence of the stresses on the polar angle # is given by the functions fj and f ,
1,7 = 1,2. Expressions for these functions are given in Appendix A.

The corresponding displacement field which is discontinuous over the crack, is given by

K{ I
u+2G {8+ —==

Kir

e ”(9} + Ofr), (2.21)
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where u? are the displacements of the crack tip, 7 = 1,2. The angular variation of the displace-
ments in (2.21) is given by the functions u! and u!7, i = 1,2. These functions can also be found
in Appendix A.

2.2.3 Fracture criteria

In this thesis we restrict ourselves to the growth of pre-existing cracks. It is assumed that crack
initiation has occurred so that at least one crack is present in the material. The deformation
of the cracked material is governed by the equations for the deformation of a linearly elastic
material under planar conditions, e.g. see (2.1), {2.3)-(2.5) and (2.9). These equations, however,
are not sufficient for the analysis of cracks. Fracture criteria for crack growth and for the crack
growth direction have to be postulated, see [13, Ch. 1] or {17, Ch. 1].

Two different types of fracture criteria are distinguished: local and global criteria. Local criteria
are based on the stress field in the neighbourhood of the crack tip. Global criteria are criteria
based on an energy balance. For both types of fracture criteria, we discuss a fracture criterion
for a mixed-mode loading sitnation. This fracture criterion can then be used to decide whether
an existing crack will extend, and if so, in which direction.

First, consider a pure mode I loading situation. As follows from (2.18), the singular stresses
in the neighbourhood of a crack tip are solely determined by the stress intensity factor K . It
is postulated that crack growth will occur when K reaches the critical stress intensity factor
Ki,, i.e., when

K=Ky, (2.22)

The factor K, is a material parameter, the so-called mode I fracture toughness, and has to
be determined experimentally. The direction of crack growth for this situation is trivial and is
perpendicular on the direction of loading.

Next, consider a crack which is a semi-infinite line. Let the crack be loaded by a combination of
modes I and II. It is assumed that K7 > 0. The critical stress and the direction of crack growth
have to be determined. We discuss a criterion based on the maximum circumferential tensile
stress, see [13, Ch. 14], [17, Ch. 4] or Erdogan and Sih [22]. When the stresses (2.18) are trans-
formed into the local polar coordinate system (r,0) around the crack tip, the circumferential
tensile stress ogg is given by

oos(r,8) = o11(r,8)sin’ 0 + o9y(r, 0) cos® § — 2015(r, 8) sin f cos 6
1 301 2010y cinf1g)
= T (K; cos”(36) — 3Ky cos*(30) 51n(~2-9,) . (2.23)

It is postulated that crack growth occurs in the direction 6, where the circumferential stress is
maximal and where it reaches the critical stress for a mode I loading situation, that is when

810'99 (T3 6}3) = 0

20 0, {2.24)
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Figure 2.2: Crack propagation angle 8, in degrees for mazimum circumferential stress criterion
(-~ and for the J-vector (- - -).

32099(1', 9;,)

502 <0 (2.25)
K
oes(r,0,) = \/_2% (2.26)

The solution of the first two equations for , is given by

Ky — K} + 8K}
§, = 2arctan | — ! . (2.27)
4K r
Substitution of {2.27) into (2.26) results in the criterion for crack growth
WIK}, (KI +3JK7 + 8KZ, )
Ky, (2.28)

372
(K{Z + 12K12[ - K}’\fKIZ +8KI21)

The propagation angle 8, given in (2.27) is depicted for 0 < Kj,;/K; < 1 in Figure 2.2. In the
case of a loading situation which is dominated by mode I, i.e. |K;|/Kr << 1, (2.27) and (2.28)
can be approximated by the first two terms of a Taylor expansion in K7/ K. These expansions
are given by

b= 2% + 3RO\ RF) (2.29)

3Kf Kiy
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Figure 2.3: Curves for J-integral.

Another criterion for crack growth in a mixed-mode loading situation is the global criterion
based on the amount of energy stored in the material and available for the creation of new
crack surfaces. This amount is represented by a vector J which components have unit Jm™2.
The vector J is obtained by a so-called J-integral, see [60],

Ji = / (Wenk — oyynjuig) dv, k=1,2. (2.31)
THIEG

In (2.31), v is a curve around the crack tip with begin and end points on the crack surfaces,
and 5 and v are two curves with the begin and end points of v as their begin points and
the crack tip as their end poist, see Figure 2.3. The ontward unit normal on these curves is
denoted by n and W, is the elastic energy density

1
W = 5015 (2.32)

Because of the integration theorem of Gauss and {2.1)-(2.3) and (2.9), one has for linearly
elastic material behaviour in absence of volume forces that

f{Wenk - crijnju,;);c) dy=0, k=12, (2.33)

when no singularity is inside the contour of integration. This means that (2.31) is independent
of the choice of the curve 7.

In the local coordinate system with the crack tip as origin, the first component of the vector
J equals the well-known energy release rate G, see [37, Chs. 1, 3]. Since the components of J
have the dimension of energy per unit of surface, J can be regarded as the energy flux per unit
length into the crack tip, see [17, Ch. 5], or as the crack extension force per unit length, see
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[13, Ch. 5]. Therefore, it is postulated that crack growth takes place when the stored energy
per unit of surface reaches the critical energy release rate G¢, i.e.

I =Gc. (2.34)

The critical energy release rate G¢ is a material parameter.

The components of J are related to the stress intensity factors Ky and Ky in the case of brittle
fracture. Substitution of the expressions (2.18), (2.21) into (2.31), together with an integration
curve v close to the crack tip, yields that the components of J in the local coordinate system
are given by, see [13, Ch. 5] or [60],

(k+1) (g 2
Jl = "-'gG‘*—“ (Kl +KII): (235)
+1
By = _(&4G )KIKIL (2.36)

where k = 3 — 4v in case of plane strain and x = (3 — v)/(1 + v) in case of plane stress.

Substitution of (2.35), (2.36) into (2.34) results in

(k+1)
8G

"= g (2.37)

(K} +6KPK} +Kfr)

When the critical stress intensity factor for a pure mode I loading situation is substituted into
(2.37), a correspondence between G and K7, is obtained, i.e.

(k+1)
8G

K2 =ge. (2.38)

Tn absence of volume forces, the vector J can be seen as the negative gradient of the potential
energy per unit length of the material with respect to the direction of crack growth, see [37,
Ch. 3]. Hence, the release of energy due to crack extension is maximal in the direction of J.
Therefore, the direction of J is taken as the direction of crack growth. Together with (2.35)
and (2.36), this means that the angle 6, of crack propagation is given by

(2.39)

2K K
6, = arctan ( ! ”) .

K+ K}

For small values of | Ky7|/ K}, the criterion (2.39) returns small propagation angles as is expected.
However, in the case of mode IT dominated problems, i.e. |Kr|/K; > 1, the criterion is not
suitable. This is seen, for instance, from the fact that (2.39) is symmetric in the stress intensity
factors. Hence, for a pure mode Il loading situation the same propagation angle is obtained as
for a pure mode I loading situation.

In Figure 2.2, the propagation angle (2.39) is depicted for 0 < K;;/K; < 1. It is seen that for
small values of K;;/K; the difference between the propagation angles (2.27) and (2.39) is small.
This can be deduced from the fact that the leading texms of the Taylor expansions of (2.37) and
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{2.39) in terms of K7/ K are exactly the same as those for the maximum circumferential stress
criterion, see (2.29), (2.30). Therefore, it is concluded that the fracture criteria (2.37), (2.39)
and (2.27}, (2.28) are equivalent for fracture problems dominated by mode I, i.e. |Kp|/K; << 1.
For fracture problems dominated by mode II, i.e. |K r|/K; > 1, the criteria (2.37), {2.39) are
not suitable and (2.27), (2.28) have to be used.

2.3 Finite element method

In the previous section aspects of fracture mechanics have been introduced. Criteria have been
presented for crack growth and for the direction of crack growth. To apply these criteria, the
values of the fracture mechanics parameters, such as the stress intensity factors and the J-
vector, have to be determined. They are computed from the displacements, strains and stresses
in the neighbourhood of the crack tip. These quantities can be found from the problem of planar
deformation of a linearly elastic medium, e.g. see (2.1), (2.3)-(2.5) and {2.9). In general, this
problem cannot be solved exactly. Numerical methods are necessary to provide approximate
solutions.

The finite element method, in short FE-method, is a numerical method for the solution of
a boundary value problem, like (2.1}, (2.3)-(2.5) and (2.9). Hence, this method can provide
approximate values for displacements, strains and stresses in a material. The method uses a
weak form of the deformation problem. With the help of a division of the material into a
number of subdomains, so-called elements, then approximate values are obtained.

In this section the main concepts of the FE-method are presented. For a more thorough
description of the method, the reader is referred to Hughes [33], [36] or Zienkiewicz [75]. The
section ends with some aspects and problems of the application of the FE-method to fracture
mechanics.

2.3.1 Approximation by means of FE-shape functions

Consider a domain € in two-dimensional space, which is divided into a number of elements €.,
e =1,..., N, see Figure 2.4. For these elements one often takes triangles or quadrilaterals.
This division is such that

a=J9. (2.40)

Two elements can only have parts of their boundaries in common. To be more specific, when two
elements have a part of a side in common, they have the entire side in common. Furthermore,
nodal points, see Figure 2.4. Interior points or boundary points of elements may also be among
the nodal points. Hence, the division of §2 into elements is fully described by the specification
of the nodal points of each element. Such a specification of nodes for the element division is
called the connectivity of the nodal points.
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Figure 2.4: Element division and nodal points for Q.

With the help of the connectivity of the nodal points, a global shape function ¢,(x) is defined
for each nodal point x,. These shape functions satisfy the selectivity property

¢a(xb) = 6,1(,, a, b= 1, ceey T (241)

Each shape function ¢, has a compact support, since ¢, is non-zero only in the elements
surrounding x,. Furthermore, ¢, is zero on the sides of the elements on which the nodal point
X, is not positioned. Hence, when x, & 92, ¢, vanishes on the boundary 59.

An approximation u” for a function % on € is then given by
n
uh(%) = Y taa(x), (2.42)
a=1

where u, = u(x,). Due to (2.41), u" interpolates u in the nodal points. Moreover, the values
of u on the boundary 9 are fully determined by those u, for which x, € 9.

The way in which the shape functions are obtained for a FE-division is now described for a
two-dimensional domain Q. For x € Q. and x, ¢ Q, we have ¢,(x) = 0. When x, € Q. the
value of @,(x) is determined in the following way.

For each group of elements 2, of the same type (triangle or quadrilateral) which contain the
same number of nodal points, a standard element €, is considered. For a quadrilateral for
instance, this standard element is a square. The Cartesian coordinates in €, are denoted by
&1 and &. Each nodal point x, € Q. corresponds with a local node &, € Q,. Local shape
functions (&) correspond with the local nodes. These functions are polynomials such that
the selectivity property (2.41) with respect to the local nodes holds true and such that ¢,
vanishes on the sides of €5 on which &, is not positioned. An isoparametric mapping from the
standard element Q, onto the element £, is then given by

x(€) = ; Xa(s)05(€), (2.43)
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(2) (b)
Figure 2.5: (a) Quadrilateral element, (b) triangular element.

where £ € §,, the index b sums over the local nodes and X, is the nodal point which
corresponds with the local nodal point £,. Note that x(€,) = X,).-

With the help of the isoparametric mapping (2.43) the global shape functions on {2, are given
by

bay(%) = @p(€), (2.44)
with £ such that x = x(€).

In order to have a correct definition of ¢, by means of (2.44), the isoparametric mapping (2.43)
has to be bijective. Therefore, the element {2, may not be distorted too much from its original
shape, the standard element 2.

The definition of the FE-shape functions by means of (2.43) and (2.44) is called isoparametric,
since the same set of local shape functions is used in both equations. There exist more general
(non-isoparametric) FE-shape functions, where different sets of local shape functions are used
for (2.43) and (2.44), see [33].

As an example of isoparametric shape functions, consider the four-node quadrilateral element
depicted in Figure 2.5a. The standard element is 2, = {(£,&) | —1 <& <1, -1 <& <1}
with the vertices as the local nodes. The local shape functions ¢, are bi-linear in the coordinates

E'i)

e1(€) = (1 = &)(1 - &)/4, 0a(€) = (1 +61)(1 - &2)/4, (2.45)
w3(€) = (1 + &)1+ &)/4, (€)= (1 - &)1+ &)/4. (2.46)

The isopsrametric mapping (2.43) for this quadrilateral is bijective only when the quadrilateral
contains no angles larger than w. The global shape functions ¢, can then represent a linear
function on §2, exactly and these shape functions are bi-linear in the coordinates z; only when
the guadrilateral is a rectangle. For more details, see {33, Ch. 3] or [75, Ch. 7).

In Figure 2.5b, a three-node triangular element is depicted. The standard element for this type
of element is Q, = {(£1,&) | 0< & €1, 0 <& <1, & + & < 1} with the vertices as the local
nodes. The local shape functions g, are linear in &,

pi{§) =1-& —&, P2(€) = &, w3(€) = & (2.47)
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The isoparametric mapping (2.43) is then linear and bijective. The global shape functions ¢,
are then also linear in the spatial coordinates z; and vanish on the side opposite to the node
Xq.

For the isoparametric mapping (2.43) restricted to a side of the standard element, the non-zero
terms correspond with the nodal points on this side. Because of the symmetry in the local shape
functions, the global shape functions are then continuous across element boundaries. In general,
the derivatives of the global shape functions are not continuous across element boundaries,

Due to definition (2.44) the global derivatives of the shape functions ¢, are related to the
local derivatives of ¢y by means of the Jacobi matrix of the isoparametric mapping (2.43), i.e.

B%ap) (x) _ ps(€) (a_x) _1.

= o \3 (2.48)

This yields that the global derivatives of the shape functions become singular when the Jacobian
of the isoparametric mapping (2.43) is singular. Later it will be shown that with this feature
one can capture a 1/+/7-singularity with the global shape functions.

2.3.2 Discrete equations
Consider a planar problem of deformation of an elastic medium, e.g. see (2.1), (2.3)-(2.5)
and (2.9). With the help of a division into finite elements of the domain , one can obtain

approximate solutions for the displacements, strains and stresses in the medium. Therefore,
one uses the weak form (2.11) of the deformation problem and one sets

a() = 3 dud(x). (2.49)

The nodal displacements d, are obtained according to a Galerkin approach. The test displace-
ments du in (2.11) are restricted to be of the same form as u. This leads to a linear system for
the nodal displacements of the form

Kd =T, (2.50)
where the vector d consists of the nodal displacement vectors d,, i.e.

d" =[] --- df]. (2.51)

The stiffness matrix X and the right-hand side vector f are built from the 2x2 nodal submatrices
K. and the 2 x 1 nodal subvectors f,, respectively, which are given by

Kab

1l

/QBZ‘DBbdQ, ab=1,..m, (2.52)

£, fq')af* dn+f $p™dl, a=1,...,n. (2.53)
Q Iy

1l
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It is emphasized that the submatrices K, and the subvectors f, are nodal contributions and
not element contributions to K and f, respectively. However, in practice these submatrices and
subvectors are determined for each element as is described in the sequel of this section. The
matrix B, consists of the derivatives of the shape functions ¢,,

qsa,l g
Ba = 0 éa,ﬁ y &= 1: cees Ty (254)
¢a,2 é&,l

and the 3 x 3 matrix D represents the constitutive law of the elastic material. For instance, for
a situation of plane stress, the matrix D is given by

1 v
D=—E— v 1 0 |. (2.55)
1—v?
00

The submatrix K is non-zero only when ¢, and ¢, are non-zero on a common part, i.e., when
x, and x; both belong to a common element §2,.

In order to meet the essential boundary conditions u = u* on T, the nodal displacements d,
for x, € T, are set equal to u*(x,) and the corresponding equations in (2.50) are skipped. With
the solution d of (2.50), equation (2.49) then results in approximations for the displacements
in the material. Taking derivatives of (2.49) and using the constitutive equations, e.g. (2.9},
results in approximate values for the strains and stresses. Since FE-shape functions have
mostly discontinuous derivatives across element boundaries, the stresses and strains obtained
from (2.49) are normally not continuous in the domain.

2.3.3 Numerical integration

To obtain the stiffness matrix K and the right-hand side vector f, integrals over the domain
2 and the boundary ', have to be calculated. In general, the exact values for these integrals
cannot be found. Numerical integration is necessary to obtain the entries for K and f. The
shape functions are given per element 2, by means of a transformation of local (polynomial)
shape functions given on a standard element Q,. Furthermore, the derivatives of the shape
functions are generally discontinuous across element boundaries. Therefore, numerical integra-
tion is performed for each element. For instance, the contribution of (., to (2.52) is computed
by means of

., BronBG a0 = [ BI(ENDBx(E | x| a0 (2.56)

The integral over the standard element €2, is then evaluated by means of a particular numerical
integration rule. In most cases, Gaussian quadrature is taken as integration rule, see Atkinson
[2, Ch. 5]. In general, numerical integration does not lead to the exact element contribution.
However, by taking an integration rule of a specific order which depends on the order of inter-
polation in the standard element, sufficiently accurate element contributions can be obtained.
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® Crack

Figure 2.6: Part of FE-discretization near crack tip.

Summation of all the element contributions (2.56) leads to the nodal submatrix matrix K.
In the same way the domain integral for the nodal right-hand side subvectors f; are obtained.
The boundary integrals for f, are obtained by summation of the contributions of the non-empty
intersections of I', with the element boundaries.

A schematic set-up of a FE-analysis for a (cracked) material domain is given in Appendix B.

2.3.4 Finite element method in fracture mechanics

By means of FE-analysis of cracked material, fracture mechanics parameters can be obtained.
These parameters can then be used in fracture criteria, such as (2.27) and (2.28). Some aspects
and problems of the application of the FE-method for fracture mechanics are now considered.

A crack in the material can be easily modelled by means of the connectivity of nodal points.
Consider a part of a FE-discretization near a crack tip as depicted in Figure 2.6. On both
crack surfaces nodal points are present, but these nodal points are not connected by rneans
of an element. Hence, the FE-shape functions are discontinuous over the crack. Since the
displacementis are also discontinuous over the crack, see (2.21), the shape functions can be used
in the representation (2.49) of the displacements.

It has been shown in (2.21), that the displacements near the crack tip behave like /7 with r
being the distance to the crack tip. To obtain an accurate approximation of the displacements
by means of a FE-discretization, special crack tip elements are used near the crack tip, see
Barsoum [3], Lim, Johnston and Choi [47], Stern [66], and Stern and Becker [67]. These
elements provide shape functions which embody the 1/+/r-singularity of the stresses in their
derivatives. A short description of the isoparametric finite elements presented in [3] now follows.

Consider the triangular element (2, depicted in Figure 2.7. This collapsed quadrilateral element
is given by eight nodal points x1, ..., xs. The nodes x;, x4 and xg coincide with the crack tip and
the nodes x5 and x7 are on one fourth of the element sides on which the crack tip is positioned.
As standard element £, the eight-node serendipity square is taken with bi-quadratic local shape
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Figure 2.7 Crack-tip element of Barsoum.

functions, see [33, Ch. 3] or [75, Ch. 7]. Due to the coincidence of the nodes x;, x4 and xg and
the special choices for the quarter point nodes x5 and x7, the Jacobian of the isoparametric
mapping (2.43) is singular on the side of Q, which corresponds with the crack tip. This yields
with (2.48) singular derivatives of the global shape functions in the crack tip. The singularity
equals 1/+/r along the two element sides on which the crack tip is positioned.

From a FE-analysis of cracked material, fracture mechanics parameters can be obtained in
several ways. When crack-tip elements are used, the computed strains and stresses reveal a
1/+/r-like singularity. With the help of the expressions {2.18) and {2.21) values for the stress
intensity factors can then be found from the computed displacements and stresses. Due to the
finite representation of the displacements in the neighbourhood of the crack tip, the angular
variation in displacements and stresses cannot be represented exactly. Therefore, the use of
(2.18) and (2.21) does not necessarily have to lead to very accurate values for K; and K.

The stress intensity factors can also be obtained from the vector J with the help of (2.35) and
{2.36). The vector J, given by (2.31), can be obtained by means of contour integration. For the
computation of J in the case of a FE-analysis, one should account for the discontinuities in the
strains and stresses across element boundaries. Furthermore, due to the finite representation
of the displacements close to the crack tip, a correction for the crack surface integrals in (2.31)
has to be used as introduced by Eischen [20]. This correction is considered in more detail in
Section 4.4.

The vector J for a FE-analysis can also be obtained by the method of crack extension, see
Ishikawa [35] and Parks [59]. Crack extension can be easily modelled in the FE-method by a
shift of only some nodes near the crack tip, resulting in a small change in the stiffness matrix K.
From this shift the potential energy of the material for a slightly longer crack can be obtained
without a complete FE-analysis for the material. Since J can be regarded as the negative
gradient of the potential energy per unit length of the material with respect to the direction of
crack growth, see [37, Ch. 3], J can be obtained by using the values of the potential energy for
several crack extensions. Contour integration is thus avoided for the computation of J.

With the computed fracture parameters, the direction of crack propagation can be determined.
However, when the FE-method is used for the simulation of crack propagation, in successive
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analysis steps, generally, the same mesh of finite elements cannot be used. After each propaga-
tion step local (and global) remeshing of the set of elements is necessary. Extra nodal points
and a different connectivity have to be introduced to model the new crack surfaces, see Sumi
[68]. Furthermore, when crack-tip elements are used, these elements have to be shifted to the
new position of the crack tip, see Nishioka and Atluri [57]. This process of remeshing and
new assembly of the stiffness matrix can be very time-consuming for complicated crack paths.
Moreover, it is not always possible possible to generate an element-division for each crack path
without distorted finite elements.

Recently, see Nayroles, Touzot and Villon [56], Belytschko, Gu and Lu [5], [7] and [48], a
numerical technique has been introduced for application to fracture mechanics, which differs
from the FE-method. A numerical method is used which provides shape functions without
using any connectivity of nodal poiuts. Hence, there are no remeshing problems in the case of
crack propagation. In the remaining part of the thesis, this method is studied and applied to
fracture mechanics problems in two dimensions.
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Chapter 3

Connectivity-free approximation
techniques

For an element-free numerical solution method for a boundary value problem, based on & weak
formulation of the problem, one has to use an approximation technique which provides shape
functions without the use of a connectivity of nodal points. In this chapter some of these
techniques are considered. First, a technique known as moving least squares approximation, in
short MLSA, is introduced. Since the approximation of quantities near a crack for MLSA is
not straightforward, several ways of approximation near a crack are considered. The chapter
concludes with an overview of other approximation techniques which are free from a connectivity
of points. By a comparison of these techniques with MLSA, it is made clear why MLSA is
preferred in the element-free numerical solution method which is described in Chapter 4.

3.1 Moving least squares approximation

Moving least squares approximation is a technique which provides an approximation of a func-
tion without the use of a connectivity of points. The technique uses a set of nodal points, a
set of weight functions, and a set of basis functions. At every point of the domain, the ap-
proximant of a function is a linear combination of the basis functions. The coefficients for the
basis functions in this linear combination differ from point to point and are computed with the
help of the weight functions and the nodal values of the function under consideration. As a
consequence, a system of equations has to be solved at every point of the domain in order to
obtain the coefficients for the basis functions. Hence, this way of approximation is computa-
tionally expensive in comparison with approximation by finite elements, where the approximant
is given per element. The MLSA-approximant is obtained, however, without the use of any
connectivity of nodal points.

Moving least squares approximation is introduced for a two-dimensional domain . It is easy
to see that this introduction applies for any space dimension. It is shown that MLSA can be
described in terms of shape functions. Some essential features of these shape functions are
considered and examples of shape functions are given. A more detailed description of MLSA
can be found in Lancaster and Salkauskas [43], [44, Chs. 2, 9).

31
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3.1.1 Approximation by means of MLSA-shape functions

Consider a domain £ in two-dimensional space (e.g. the domain £ for the problem of deforma-
tion of an elastic medium, see Section 2.1). To approximate a certain function u{x) on {, a
finite set {p.(x}}e=1, .,m Of so-called basis functions is considered. This set can, for instance, be
a finite subset of the set of monomials in the space coordinates {1, 21,9, 22, 2122,...}.

The moving least squares approximant u*(x) of a function u(x) on €2 is given for x € Q by a
linear combination of the basis functions p.(x)} with coefficients p.(x), that is by

(%) = pT (), (3.1)
where

p(x)" = [p(x) p(x) -+ p(x)] (3.2)

px)" = [p(x) pa(x) o pw(x)) (3.3)

In order to determine the vector w{x), a set of nodal points {X,}s=1,.» is chosen together with
a set of weight functions {w,(X)}e=1,. . defined on a neighbourhood of Q such that x, € Q,
0 < wa(x) <1 and we{x,) > 0, a =1,...,n Here one can think of weight functions which
have a compact support, i.e., which are only non-zero on a small bounded subset of 1.

The entries of u(x) are obtained for each x € Q by minimization with respect to g of the sum
S(p) =3 wa(x) (p(xa) (%) — ta) - (3.4)
a=1

Here, u, is the value of © in x,, i.e. u, = u{X,), @ = 1,...n. If the weight functions w, have
compact support, the summation in (3.4) consists only of a few terms and the value of u"(x)
is then fully determined by a few nodal values u,.

From (3.4) it is seen that the entries of u(x) are determined by means of a weighted least
squares procedure. Since the weights differ from point to point, one speaks of moving least
squares approximation. Equation (3.4) can also be written as

S(w) = (PTa(x) — u) Wx) (PTu(x) - u), (35)

where u is the vector with entries u,, and ¢ = 1,...n such that w,(x) > 0, and the entries of
the matrices P and W are given by

P, = pix,), ¢c=1,...,mae{i=1,...,n | wix) >0}, (3.6)
Was wa(X)0as, a,b€ {i=1,...,n | w(x)>0}. (3.7

i

The fact that S(p) has to be stationary with respect to pa(x]) results in a set of linear equations
fOI' {J,(X), ’

PW(x)PT (x) = PW (x)u. (3.8)
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For the sake of simplicity, the following short-hand notation is introduced
A(x) = PW(x)PT. (3.9)

When the system of equations (3.8) has & unique solution p(x) for each x € , we will say
that MLSA is well-defined for the domain §2. This is the case if and only if the rank of the
matrix P equals m, the number of basis functions p,, see Hegen [29] or [43]. Hence, a necessary
condition for MLSA to be well-defined for §2 is that at least m weight functions are non-zero
in each x € . At the end of this section it is explained in which way MLSA can be made
well-defined for 2. For the remaining part of this section it is assumed that this is indeed the
case. When MLSA is well-defined, a unique value u"(x) can be found for each x € Q2 by means
of (3.1). It is noticed that multiplication of all the weight functions by an arbitrary positive
scalar does not change the approximant and its derivatives.

The approximant «" can also be expressed with the help of shape functions. One can write

uh(x) = Z uagi)a(x): (310)
a=1
where the shape functions ¢,, a = 1,...,n, are defined by

500 = { 220 AT GOPW (0, () >0, o

0, wa{x) = 0.

Examples of shape functions ¢, are shown later in this section. Equation (3.11) shows that
we(x) = 0 yields that ¢,(x) = 0. Hence, when w, has compact support, ¢, also has com-
pact support. Derivatives of the shape functions are obtained by differentiation of (3.11).
The derivative of the inverse A~1(x) can be obtained easily by differentiation of the identity
A(x)A™Y(x) = I, I being the identity matrix.

The smoothness of the approximant u* and the shape functions ¢, are related to the smoothness
of both the basis functions and the weight functions. Let C*(Q2) be the space of k times
continuously differentiable functions on 2. Then, when w, € C*(Q), a=1,...,n, k € IN, and
p. € CHQ), c=1,...,m,l € IN, one has that u* € C*(Q) and ¢, € C°(Q),a = 1,...,n, where
s = min{k, ). A proof of this is found in {29] and [43].

Replacing u(x) by p.(x), or equivalently u, by p.(x,), results in v*(x) = p.(x), i.e.

n

Pe(x) = 3 pe(Xa)da(X), c=1,...,m. (3.12)

a=1

Hence, the basis functions can be represented exactly by the shape functions. However, the
shape functions are not a linear combination of the bagis functions. For instance, when the basis
functions are monomials in the space coordinates, the shape functions are not polynomial as is

ey

functions {¢.}e=1,..m consisting of linear combinations of p. such that the same set of functions
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is spanned by the two sets. Then, since (3.1) is linear in the basis functions, MLSA results for
both sets of basis functions in the same approximant and the same set of shape functions.

A disadvantage of MLSA is that for each point under consideration a linear system must
be solved to obtain the value of the approximant »® and the shape functions ¢,. This is a
burdensome task. In [48] matrix inversion is avoided by orthogonalization of the basis functions
with respect to the weight functions. It is claimed that the computational cost of solving the
system is then reduced. The computational cost of the orthogonalization procedure, however,
are of the same order as the cost of matrix inversion. Orthogonalization of the basis functions
is equivalent to solving the linear system (3.8) by means of the singular value decomposition
of the matrix A(x). Since the matrix A(x) can become poorly conditioned in some cases,
orthogonalization is preferred to matrix inversion.

In the orthogonalization procedure, a new basis {g.}e=1,.m 18 obtained from the original basis
{pc}e=1,..m by a Gramm-Schmidt orthogonalization procedure. These basis functions g, are
linear combinations of the functions p., where the scalars depend on the coordinates of the
point under consideration %. The basis {¢.}e=1,.m is given by

a(x,x) = p(x), (3.13)

(%, %) = px)— CZ:: aq(X)qa(x,%), ¢c=2,...,m, (3.14)

where

o=t wa(i)pc(xu)%(xav i)
o1 Wa(X)qa(Xa, x)?

Cea(X) = , e=2,....m d=1,...,c~1. (3.15)

The basis functions ¢, are orthogonal with respect to the weight functions,
n
> wa(X)ge(Xa, X)qa(Xa, X) =0, c,d=1,...,m, c#£d, (3.16)

as can easily be verified. Hence, one speaks of orthogonal basis functions .. When the ortho-
gonal basis is used for MLSA instead of the original basis, the matrix A(%) is diagonal and the
coefficients u.(X) can be found directly. They are given by

Topet Wh(X) e (X5, X)Up
Thet we(X)ge (x5, X)? 7

fe(%) = =1,...,m (3.17)

Taking uy = 845 yields that the shape functions ¢,, ¢ = 1,...,n, given in (3.11), can be written
forx =x as

Bal(x) = wa(xyzzsz;(x)q;fg{;‘)) a=1,. .n (3.18)

Note that this expression for the shape functions is also valid for indices a with w,(x) = 0.
Derivatives of the shape functions can be obtained by taking derivatives of (3.18) and (3.13)-
(3.15).
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(a) (b)
Figure 3.1: (a) Rectangular set, (b) triangular set.

From (3.18) it is clear that indeed ¢, € C*(2), s = min(k, 1), when w, € C¥(Q), e =1,...,n,
k€ IN, and p. € CY(Q), ¢ = 1,...,m, | € IN. Furthermore, (3.18) shows that when the
basis functions are monomials, the shape functions are not necessarily polynomial, and that
the influence of the weight functions on the values of the shape functions is only relative.

In general, the shape functions ¢, do not have the selectivity property

ba(Xp) = bap, a,b=1,...,n. (3.19)
As a consequence, the constants u, do not have to be the nodal values of u”,

(X)) #F ey, a=1,...,n {3.20)

Moreover, in contrast with the finite element (in short FE) shape functions described in Sec-
tion 2.3, the shape function ¢, corresponding to the nodal point x, ¢ 9 can be non-zero on
the boundary of the domain.

There is a possibility to enforce property {3.19). For this purpose, one should take the constant
function on €2 in the basis and one should use weight functions of the form

We(X) = ta(X)|x — Xa| ™, x # X, (3.21)

where 3, € IV, 8, > 0, and |x| is the Euclidean norm of x. The functions ¢,(x),a=1,...,n
are defined on a neighbourhood of Q such that 0 < t,(x) < 1 and tu(%.) > 0, 2 = 1,...,n.
The weight functions (3.21) are singular in the nodal points. For such weight functions, MLSA
still defines shape functions, which remain finite and which satisfy the smoothness property.
Furthermore, the selectivity property (3.19) holds true. For more details the reader is referred
to [29] and [43].

Other situations where the selectivity property (3.19) is satisfied, are situations where the
shape functions coincide with shape functions originating from a finite element discretization.
Consider four nodal points of a rectangular set of nodal points, see Figure 3.1a. Let the
monomials 1, zy, zy and x1z, form the set of basis functions and let the weight functions w,
for these four points be positive in the interior of the rectangle formed by these four points and
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Figure 3.2: C%-weight functions of Gaussian type.

be zero on the sides of the rectangle on which x, is not positioned. When all the other weight
functions are zero on this rectangle, MLSA results in bi-linear interpolation, as can be seen
from (3.12). Hence, the shape functions ¢, are bi-linear on the rectangle and satisfy (3.19).
These shape functions are equal to those of a finite element interpolation for such a rectangle,
see (2.43)-(2.46).

When the four nodal points form a non-rectangular quadrilateral, the shape functions ¢, emer-
ging from MLSA are still bi-linear. The finite element interpolation for such a quadrilateral via
the isoparametric mapping (2.43), however, results in shape functions which are not bi-linear.
In that case, the shape functions do not coincide with those emerging from MLSA.

Another situation where the shape functions satisfy (3.19) and coincide with the shape functions
of a finite element interpolation, is depicted in Figure 3.1b. Assume for this triangular set that
the monomials 1, z;, 25 form the set of basis functions. Let the weight functions w, for these
three points be positive in the interior of the triangle formed by these points and be zero on
the side opposite to x,. When all the other weight functions are zero on this triangle, MLSA
results in linear interpolation and the shape functions ¢, are linear on the triangle and satisfy
(3.19). These shape functions are exactly the same shape functions which are used in a linear
finite element interpolation for such a triangle, see (2.43), (2.44) and (2.47).

Hence, it is possible to obtain shape functions by MLSA which satisfy (3.19). In some situations
these shape functions are identical to shape functions which are used in the finite element
method.

3.1.2 Examples of shape functions

Some examples of shape functions obtained by moving least squares approximation are now
presented. To this end, several types of weight functions are introduced first. The following
weight functions with compact support are taken:
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Figure 3.3: Equidistant pattern of nodal points.
o (% weight functions of Gaussian type with circular disk as support:
exp(—rf/s})—exp(—Rf/sf)

we(x) = 1—exp(-RZ/s2) ’
0, 7o > R,

Ta S Rlll (3-22)

where 7, = |x — X,/ is the distance between x and x, and R, > 0 is the radius of the
support of w,. The constants s, control the relative weights.

e CP-weight functions which are products of two one-dimensional versions of weight func-
tions of Gaussian type.

e Cl-weight functions of polynomial type with circular disk as support:

r2 rd rd
wa(x) = { 17Oz T8 ~3gp Te S Fa (3.23)
0, 7o > R,

where 7, = |x — x,| and R, > 0.

e Cl-weight functions which are products of two one-dimensional weight functions of poly-
nomial type.

e Weight functions of singular type:
wa(x) = ta(x)7, 7, (3.24)
where 7, = |x — x,| and ¢,(x) is one of the previous weight functions.

The CP°-weight functions are differentiable except on the boundary of their supports. In a
numerical implementation the derivatives on this boundary are set equal to zero. The discon-
tinuity in the derivatives for the Gaussian weight functions can be neglected when s, is chosen
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Figure 3.4: Cross section of (a) shape functions ¢, and (b) derivatives ¢, for square set of
nodal points.

such that R,/s, > 4. For an example of a weight function of Gaussian type, see Figure 3.2.
The other types of weight functions, except those of singular type, have a similar form. Some
examples of shape functions are now depicted. Consider a square set of nodal points, i.e., the
nodes are vertices of a set of squares in the domain as in Figure 3.3. Let the coordinate system
be such that the nodes are positioned along the lines z; = constant and xz, = constant. The
set {1, 2, T9, 7122} of bi-linear functions is taken as set of basis functions and products of one-
dimensional Gaussian weight functions are taken as weight functions with the scaling constant
set equal to s, = R,/4. Let the grid size h of the nodal distribution be equal to the distance in
the z,-direction (and hence, also the distance in the z,-direction) between the nodes. Different
radii R, for the supports of the weight functions are taken. Cross sections of the resulting shape
functions ¢, and their derivative ¢, for a particular nodal point x, are depicted in Figure 3.4.

This figure shows that the shape functions indeed coincide with the FE-shape functions when
the supports of the weight functions are equal to the union of the surrounding squares. For
relatively small supports, the shape functions are similar to these FE-shape functions and
hence, the shape functions emerging from MLSA and their derivatives are locally strongly non-
polynomial. From Figure 3.4 it is seen that the shape functions behave locally as high-order
polynomials for relatively large radii R, for the supports of the weight functions. The shape
functions depicted in Figure 3.4 show that the selectivity property (3.19) does not hold true
and that the shape functions are not piecewise polynomial.

Different radii R, for the supports of the singular weight functions are also taken. Cross sections
of the obtained shape functions ¢, and derivatives ¢, are depicted in Figure 3.5. This figure
shows that the selectivity property (3.19) holds true. For both relatively small and relatively
larger radii for the supports of this type of weight functions, the shape functions are similar to
the FE-shape functions for such a set of nodes. Hence, the shape functions and their derivatives
are strongly non-polynomial on small parts of the domain.
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Figure 3.5: Cross section of (a) shape functions ¢, and (b) derivatives ¢, for square set of
nodal points, singular weight functions.

From the previous examples it is concluded that the shape functions are locally strongly non-
polynomial in the case of singular weight functions. This is also the case for non-singular
weight functions with supports which are just large enough such that MLSA is well-defined.
For non-singular weight functions with relatively large supports, the shape functions are locally
high-order polynomials. In Chapter 4 the element-free Galerkin method is described which
uses shape functions obtained by MLSA. In this method, numerical integrations are performed
in a more or less arbitrary way. Therefore, for a good performance of the method, the shape
functions should locally behave as high-order polynomials. Hence, non-singular weight functions
are used with relatively large supports. Singular weight functions and non-singular weight
functions with relatively small supports are not used.

3.1.3 Parameters for MLSA

This section ends with some considerations about the parameters of MLSA. A description is
given of the distributions of nodal points, the weight functions, and the basis functions which
are used for MLSA in the remaining part of the thesis. Moreover, it is explained in which way
MLSA can be made well-defined.

Nodal points x,, a = 1,...,n, are mostly placed equidistant in two (mutually orthogonal)
directions, see Figure 3.3. Extra patterns of nodes are added to such a distribution on parts
of the domain where more accuracy is required. Such a nodal distribution has the advantage
that it can be generated easily. Furthermore, such a distribution is more convenient for the
definition of weight functions, in order to accomplish that moving least squares approximation
is well-defined for the domain.

As set of basis functions, a subset of the set of monomials in the space coordinates is mostly
considered. In the case of fracture mechanics problems, however, a special non-polynomial
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function is added to the basis. This is described in the next section. The non-singular weight
functions (3.22), (3.23) are considered. For the weight functions of Gaussian type, the scalar
s, is set equal to s, = Ro/4, a = 1,...,n. Since these weight functions have a circular disk
as support, there are no directions introduced in the shape functions obtained by moving least
squares approximation.

When nodal points x,, @ = 1,...,n, and basis functions p.(x), c = 1,...,m, are given, the radii
R,, a = 1,...,n, of the supports of the weight functions should be chosen such that MLSA
is well-defined for each point x of the domain Q. For a general distribution of nodal points,
this cannot be verified. Therefore, one can hardly find a way to determine radii R, such that
MLSA is well-defined for 2 and such that these radii are not too large in comparison with the
dimensions of the domain 2.

For distributions of nodes which are equidistant in two directions, however, it is possible to
guarantee that MLSA is well-defined for §2. It is assumed that one can think of the domain
Q divided into a set of quadrilaterals with the nodal points as vertices. Such a division is not
unique and in some cases (e.g. a superposition of an arbitrary set of nodes on a part of Q upon
an equidistant pattern) it can be hardly determined. These quadrilaterals have more or less the
same size. Only on parts of the domain where the nodal distribution has been refined, these
quadrilaterals have a smaller size.

If one can guarantee that MLSA is well-defined for each quadrilateral, MLSA is well-defined for
the entire domain. Therefore, under the assumption that each nodal point x, is a vertex of a
set of quadrilaterals which cover its entire neighbourhood in the domain Q, a local mesh size h,
is determined for the quadrilaterals surrounding x,, a = 1,...,n. With the help of this mesh
size h, the radius R, for the support of w, is given a value, in order to achieve that MLSA is
well-defined on the quadrilaterals surrounding x,.

Let v; be the unit vector pointing from X, in the direction of the node which is closest to x,,
and let vy be such that v, L v;. The vectors v; and v, divide two-dimensional space into four
quadrants @, i = 1,2, 3,4, with x, as the origin. For instance, we have

Qb= {x |v(x—%a) 2 0, v](x—x,)>0}. (3.25)

The vector v; does not have to be unique. In the case of nodal patterns which are (locally)
equidistant in two mutually orthogonal directions such as in this thesis, this does not affect
the following procedure to determine a value for h,. In the case of a non-unique v, for a more
general nodal pattern, however, the procedure can explicitly depend on the choice for v;.

Let Q, i = 5,6,7,8, be the four quadrants obtained after rotation of Q%, 7 = 1,2, 3,4, over an
angle m/4. For the eight quadrants Q%, i = 1,...,8, a size A% is determined in the following
way. Let the set H: be defined by

H = {|xb — X

a

Xy € QL Xp £ Xa, b=1,...,n}. (3.26)

Then, when H contains more than two non-zero elements, A is set to the third non-zero value
of H:. Here, we think H: to be sorted such that the elements are given in ascending order.
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Figure 3.6: Non-convexr domain.

When H! is not empty and contains one or two non-zero elements, h is set to the maximal
value of H:. If H: is empty, A% is set equal to zero. The local mesh size h, is now defined by

8 hi
by, = a_ (3.27)
2 iN.

where N, is the number of non-empty sets H:.

It is seen easily that, for a set of nodes which are vertices of a set of squares with length h, one
obtains h, = h for all interior nodes. The above computation of h, has been modified in such
a way that this is also the case for boundary nodes.

The radii R, of the supports of the weight functions are now set equal to a scalar multiple of
hg, i.e.

R, =vh,, a=1,...,n. (3.28)

By setting v > 0 to a specific value one can guarantee for the assumed nodal distribution that,
given the number of basis functions, enough weight functions are non-zero in each quadrilateral
and hence, that moving least squares approximation is well-defined for 2. To obtain shape
functions from MLSA which behave locally as high-order polynomials, see Figure 3.4, in most
cases v has a value which is much larger than the minimal value such that moving least squares
approximation is well-defined.

3.2 Moving least squares approximation near a crack

In contrast with discretizations according to the finite element method, it is not straightforward
for moving least squares approximation to have a correct discretization in the neighbourhood of
a crack by means of the nodal points, the weight functions, and the basis functions. In cracked
material, quantities such as displacements and stresses are discontinuous over a crack, see (2.18)
and (2.21). Therefore, in the case of cracked material, special choices must be made for the
parameters of MLSA in order to provide discontinuous approximations of such quantities.
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Figure 3.7: Piecewise linear crack.
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A crack is an internal boundary which makes the domain under consideration non-convex.
This ig illustrated in Figure 3.6, where a non-convex domain is depicted with a nodal point
X,. Such a non-convexity can result in a poor performance of MLSA for the domain. In order
for MLSA to be well-defined for the domain, the radius of the circular support of the weight
function w, of the nodal point x, can be so large that w, is non-zero on the lower part of
the domain. Hence, the shape function ¢, is non-zero on the lower part, which implies that
the nodal point x, influences the value of the MLSA-approximant on this part of the domain.
Such a discretization for MLSA can lead to an inaccurate approximation, since in general the
behaviour of quantities is totally different on the upper and lower part of the domain. In this
section discretizations for MLSA are considered, which attempt to circumvent this problem in
the case of domains containing a crack. Moreover, since the displacements in the vicinity of a
crack tip show a /r-behaviour, special basis functions for MLSA are considered.

For the remaining part of this thesis it is assumed that a crack is a piecewise linear curve,
represented by a set of points {ys}e=1, ¢, C = 2, such that the crack iz made up of the line
segments [ys, ¥541), see Figure 3.7. The crack tip is represented by y¢ which is an internal point
of the material. The line segments [ys, ¥5+1] are thought of as the union of two line segments
[¥6, ¥o41l, and [ys, yoq1]. which represent the upper and lower crack surfaces, respectively. We
restrict ourselves to cracks for which the erack path given by {ys}s=1_ ¢ cannot have segments
which are {almost) parallel and having opposite directions.

For the presentation of crack discretizations for MLSA, a function ¢¢ is specified first, which
specifies the position of a point relative to the crack. The crack and its extensions ahead and
behind the crack, divide the material into two parts. Then, the function g¢ is defined such
that go(x) = +1 yields that x is positioned on the upper and lower part, respectively, while
gc(x) = 0 implies that x is positioned on the extensions of the crack, see Figure 3.8. This is
mathematically specified below.

Let v¢ be the unit vector in the direction of y41 — y5 and v5 be obtained after anti-clockwise
rotation of v? over an angle 7/2,b=1,...,C — 1, and let the sets V;, ..., Vo be given by

Ve = {x|(x-yo)v{™ >0}, (3.29)
Vo= {x|xgul Ve x-y)™V 20}, b=1...,0-1, (3.30)
Vo = {x ix ¢ uf;;lva}. {3.31)

Note that the sets Vg, ..., Vi are disjoint, see Figure 3.8. The function ge is defined for x € V¢
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V,

Figure 3.8: Sels Vio_s, Vo1, Ve and values of ge.

according to

1, (x—-ye)'vit>o0,
ge(x) =1 -1, (x—yo)'vi™' <0, , (3.32)
0, (x—ye)vi =0

Forx eV, b=1,...,C — 1, the function g¢ is defined by

1? {X - Yb)T"g >0 or xe {yés Yb+1]+;

3.33
-1, (x—yu)Tvi <0 or x € [y, ¥os1]_- (333)

go(x) = {

And for x € V, the function ¢¢ is defined by

1, (x—y)¥vi>0,
gC(X> = _1: (X - y1>Tv% < Oa (334)
0, (x-y)vi=0.

Note that go{yc) = 0. The definition of gc can be extended to smooth versions of the piecewise
linear cracks congidered in this thesis. However, such a definition is beyond the scope of the
thesis.

In Section 3.1 moving least squares approximation has been considered. It has been described
in which way shape functions are obtained and that the supports of these shape functions are
equal to the supports of the weight functions, see (3.11) or (3.18). Moreover, it has been shown
that the smoothness of the shape functions is related to the smoothness of the weight functions.
When x is in the support of the shape function ¢,, or equivalently in the support of the weight
function w,, we say that the nodal point x, has influence in x.

For all crack discretizations for MLSA presented in this section, it is assumed that weight
functions are initially defined without taking the crack into account. The weight functions are
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Figure 3.9: Angle of influence.

modified afterwards for the presence of a crack. These modified weight functions are used for
MLSA on the cracked domain. Such a modification only considers a few nodal points and, for
most cases, it is of the form

Wi (x) = dy(x)w(x), a=1,...,n. (3.35)

The modification function d.{x) accounts for the crack in the material. For this function the
following requirements are formulated:

R1] Moving least squares approximation with the modified weight function w**"” is well-defined
[ g q pp g A
for the entire domain.

[R2] The shape functions are able to represent quantities which are discontinuous over a crack.
[R3] Nodal points on one crack surface have no influence on the other crack surface.

{R4] The influence of nodal points near the crack tip may not extend over a polar angle which
exceeds 7.

The requirements R1 and R2 are obvious from the previous considerations. Requirement R3
states that when x, is on one crack surface its shape function has to be zero on the other
crack surface. Requirement R4, which can be seen as a generalization of R3, is illustrated in
Figure 3.9. For the nodal point x,, the points x and X in the support of w, make an angle ¥
with respect to the crack tip y¢. The maximum ¥, of these angles represents the angle over
which the nodal point x, has influence. This angle ¥, may not be too large, i.e. ¥, < 7. The
limit value in requirement R4 is a choice. One could also have taken a smaller value. However,
since in this thesis nodal distributions are considered for which not many nodes are distributed
in the angular direction around the crack tip, e.g. see Figure 3.15, this value may not be taken
too small. Note that requirement R3 states that ¥, < 2« for nodal points x, on a crack surface.
In the next sections it is seen whether the requirements R1-R4 can all be satisfied.

3.2.1 Discontinuous crack model of Belytschko

The first modification function to satisfy the requirements R1-R4 can be found in the paper
of Belytschko et al. [7]. When nodal points, weight functions and basis {functions have been
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Figure 3.10: Discontinuous crack model of Belytschko.

chosen, nodal points x, in the summation (3.4) are neglected if the line which connects x, and
the point under consideration x, intersects the crack, see Figure 3.10.

This crack model can be put into the form (3.35). Let v¢ be the unit vector in the direction of
Yo —X, and let the vector v§ be obtained after anti-clockwise rotation over the angle go(x, )7 /2.
Then, for each nodal point x,, the modification function d, is defined as

0, X)go(xe) = —1, (x — ye)Tve <0,

da(x) — gC( )-gc{ ) ( yC) 2 (3’36)
1, otherwise.

When ge{x)go(x,) = —1 the points x and x, are positioned on different parts of the material

and when (x — y¢)¥vé < 0 the line connecting x and x, intersects the crack. In Figure 3.10,
the values of d, are depicted for a nodal point x, for which go(x,) = 1.

The modification function d, is discontinuous over the crack. Therefore, the modified weight
function given hy (3.35) is also discontinuous over the crack. Together with a continuous set
of basis functions this results in shape functions which are discontinuous over the crack, see
Section 3.1. Hence, requirement R2 is met. The shape functions for nodal points on a crack
surface are zero on the opposite one, which means that requirement R3 is also met. From
the definition (3.36) it follows that for nodal points x, close to a crack surface, the angle of
influence is approximately n. However, for nodal points ahead of the crack tip, the angle of
influence can be about 2n. Therefore, requirement R4 is not met. Requirement R1 for MLSA
can be guaranteed for this crack model by taking a sufficient number of nodal points in the
neighbourhood of the crack tip or sufficiently large radii for the supports of the weight functions.

Hence, only requirement R4 is not met. This model, however, has another disadvantage. The
modification function d, is not only discontinuous over the crack, but also over a line in the
interior of the material, see Figure 3.10. As a consequence, the shape functions are discontinuous
in the interior of the material over several lines emanating from the crack tip. This makes the
crack model not convenient for the approximation of quantities which are continuous in the
material and discontinuous over a crack.
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Figure 3.11: Continuous crack model of Belytschko.

3.2.2 Continuous crack model of Belytschko

Belytschko, Krongauz, Fleming, Organ and Liu 6] present an improvement of the previous
crack model, which does not exactly fit in the form (3.35). In this model, discontinuities of
the shape functions in the material are absent by a different manner of computation of the
parameter 7, for the weight functions (3.22) and (3.23). The parameter 7, is given by, see also
Figure 3.11,

e = { Ix - yel + [xa — yel, ge(x)gelxa) = =1, (x = ye)TvE <0, (3.37)

Ix — x,l, otherwise.

Due to this improvement, the weight function is continuous over the line where the previous
crack model failed to be continuous. However, the weight functions have discontinuous derivat-
ives over this line with the consequence that the shape functions are continuous in the interior
of the material but not continuously differentiable, see Section 3.1. The definition of 7, in
(3.37) implies that for nodal points on one crack surface and close to the crack tip, the weight
functions are non-zero on the other crack surface. Hence, the shape functions are also non-zero
and this yields that the crack model viclates requirements R3 and R4. It can be easily seen
that requirement R2 is met, since 7, is discontinuous over the crack, which makes the weight
and shape functions discontinuous over the crack.

Some other manners for the computation of r, are presented in Organ, Fleming, Terry and
Belytschko [58]. These manners are similar to (3.37) and violate also requirements R3 and R4.
The problems of the crack model (3.37) were also recognized in [6], where it was remarked that
application of the model in the element-free numerical solution method which is described in
the next chapter, resulted in substantial oscillations in the stress fields near the crack tip.

The discontinuity in the modification function (3.36) can also be avoided by changing these
functions in such a way that they are continuously differentiable in the material, e.g.
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(a) Flat plot
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Figure 3.12: Continuous version of discontinuous crack model of Belytschko.

07 gC(x)gC(xa) = -1: Ca S —&,
o % ¢
do(x) = ¢ 1-65 +85 =3, go(x)gc(Xa) = -1, —€ < (. <0, (3.38)
1, otherwise,

where (, = (x — y¢)Tv¢ and ¢ is a positive constant.
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In Figure 3.12, with the help of a flat and a surface plot, the values of d, are depicted for a
nodal point x, for which go(x,) = 1. By means of (3.38)? the function d, varies in the zone
—& < {, < 0 between 0 and 1 such that d, is continuously differentiable. Hence, the weight
functions and, therefore, the shape functions, are continuously differentiable in the material and
discontinuous over the crack. However, for nodal points on a crack surface, the shape functions
are continuous over the crack and, as for (3.37), requirements R3 and R4 are violated.

3.2.3 Continuous crack model

In Hegen [31] another crack model is suggested in order to meet the requirements R1-R4.
Similar to (3.38) the following modification function d, is introduced, see also Figure 3.13,

05 gC(x)gC(xa) = P“la g < —Eg < 0,
¢? ¢ ¢t
do{x) =< 1~ 6;.5 + 85 - 3;;;, go(X)go(xe) = —1, —g, € <0, (3.39)
1, otherwise,

where ¢ = (x — y¢)Tv{ ™}, ¢, is a non-negative constant and vE~! is the unit vector used in
the definition (3.29). It is suggested to take £, = max(R, — {x, ~ yc|, 0)/4, with R, the radius
of the support of the weight function w,. In Figure 3.13, by means of a flat and a surface plot,
the values of d, are depicted for a nodal point x, for which go(x,) = 1.

This modification function is continuously differentiable in the material and discontinuous over
the crack. Hence, via the modified weight function (3.35) shape functions are discontinuous
over the crack and requirement R2 is met. The requirements R3 and R4, however, are still
violated. Nodal points on one crack surface have a non-zero shape function on the other crack
surface. By taking a small value for ¢, one can try to isolate this inconvenience on a small
part of the crack surface. Large gradients in the modification function and hence, in the shape
functions are then the result.

3.2.4 'Wedge model for crack

The previous crack models show that it is not possible to meet the requirements R1-R4. In
fact, requirement R1 is in conflict with regquirements R3 and R4. In order for MLSA to be
well-defined in the crack tip y¢, a certain number of weight functions should be non-zero in ye.
Since the weight functions have to be continuous in the material (in order to have continuous
shape functions), one cannot avoid that nodal points near the crack tip have a large angle of
influence ¥,. Therefore, requirement Rl is weakened to:

[R1a] Moving least squares approximation with the modified weight function w2®¥ is well-defined
for the entire domain except for the crack tip.

Concerning the nodal distribution, it is assumed that one nodal point coincides with the crack
tip. For simplicity, this nodal point is taken to be xy, i.e. X; = y¢. It is shown now that it
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Figure 3.13: Continuous crack model.

is possible to meet the requirements Rla-R4. Therefore, a modification function d, is given,
which is built from three functions d., d?> and d®. The function d} accounts for the requirements
Rla-R4. Since these requirements consider only a small neighbourhood of the crack tip, the
function is only used in this neighbourhood. On the remaining part the function d? is used
which is continuously coupled with d. with the help of the function d®.
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For the definition of the functions, let # be the polar angle of x with respect to the local
coordinate system with yo as origin, such that the lines § = *x correspond with the crack
faces. Let 8, be the polar angle of the nodal point x,. The function d! is then given for a > 1
by

0, 6 -8, > w/2,

& ¢ 3.40)
(26 - (1) o-al<urz (

Mﬁ’{@%ﬁ%%ﬂ

For a = 1, one sets di(x) = 1. R; is the radius of the support of wy, {! = min(Ry, (x—yc)Tv$),
¢ = min(R,, (x — y¢)7vE) and

vi = [—sin(f, —w/2) cos(f, —w/2)]", (3.41)
[ sin(f, +w/2) — cos(f, +w/2)T. (3.42)

I

&
Va

In the flat and surface plot given in Figure 3.14, the values of d. are depicted for a nodal
point x, for which go(x,) = 1. By means of {3.40)? the function d} varies in the wedge
O, — w/2 < 8 < 8, +w/2 between 0 and 1 such that dl is continuously differentiable. Since
in the neighbourhood of a crack the nodal points are mostly distributed equidistant in two
mutually orthogonal directions, see Figure 3.15, we suggest w = 37 /4 for the wedge angle in
order for MLSA to be well-defined near the crack tip.

Let the function d? for o > 1 be given by

(}) gC(xG) = dl: e Z 6& +7T,
di(x)=1{ 0, go(xa)=+1,0<0,—m, (3.43)
1, otherwise.

For a = 1, one sets d2(x) = 1. The function 4 is similar to the modification function (3.36) for
the discontinuouns crack model of Belytschko. Furthermore, let the function d°® be defined by

11 r .<_ Rl:
Fx)=4¢ 22- 5P -(2-5) Ri<r<2R, (3.44)
0, T 2 2R1,

where 7 = |x — y¢|. Hence, the continuous differentiable function d® has value 1 near the crack
and vanishes at a remote distance of the crack.

The function 42 is discontinuous over a line in the material. However, by premultiplication
with 1 — d® this discontinuity is outside the support of the weight function w,, since the radii
R, for the supports of the weight functions of the nodal points close to the crack tip, are near
the radius Ry of the support of w;. The modification function d, is now given by

da(x) = E(x)di(x) + (1 - d*(x)) d(x). (3.45)
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Figure 3.14: Wedge around x, with yo as verter.

Hence, d, behaves like d? in the neighbourhood of the crack tip and like d2 for most of the
remaining part of the material. Note that dj(x) = 1 and that d,(y¢) =0, a > 1.

It is seen easily from (3.45) and the definitions of d} and 42 that requirement R3 is met.
Because the wedge angle w for d! is less than 7 and because of the definition of d2, the angles
of influence for the nodal points do not exceed w, which means that requirement R4 is valid.
Requirement R2 is also met, because shape functions are discontinuous over the crack. By
taking a sufficient amount of nodal points in the vicinity of the crack or sufficiently large radii
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for the weight functions, MLSA is well-defined for the entire material, except for the crack
tip y¢. The discontinuity of d, is exterior to the supports of the weight functions, which
yields continuously differentiable modified weight functions (3.35). This yields that the shape
functions are continuously differentiable, except for the crack tip ye.

For the crack tip y¢, one has that w,(yc) > 0 only for @ = 1. Hence, MLSA is not well-defined
for the crack tip. The matrix A given in (3.9) is singular. Nevertheless, a value can be obtained
for the approximant u" given by (3.1). Therefore, assume the constant function p;(x) = 1 is
among the basis functions. Then by changing to the basis {pi(x), pa(x) — p2(¥c), - - -, Pm(x) —
Pmi{ye)}, MLSA is still well-defined for the domain, except for the crack tip. For yo the
approximant (3.1) equals

WMye) = m(yom(ye) + 3 kelye) pelyo) - pel¥e)) = m(yo). (3.46)

c=2

The coefficients p.(ye), ¢ > 1 do not have to be computed, while u1(ye) can be found from
minimization of

S(p) = wiye)(mlye) — w)*. (3.47)

Equation (3.46) shows that u” can still be given a value and that " is continuous. The values
for u.(¥¢) for ¢ > 1 can not be found due to the singular matrix A, which yields that %" is not
differentiable for yc. The shape functions ¢, are special cases of u” (take u, = &, in (3.10)) from
which one can conclude that the shape functions for this model are continuously differentiable,
except for the crack tip where they are only continuous. In the case of continuously differentiable
basis functions, the derivatives of the shape functions and the derivatives of the approximant
are bounded in the neighbourhood of the crack tip. A mathematical proof of this and of the
previous statements can be found in Appendix C.

For the wedge model requirements Rla-R4 are all met. The displacements for cracked elastic
material are also continuously differentiable except for the crack tip, see (2.21). Hence, one can
conclude that among the presented crack models the wedge model is the most suitable crack
model for the representation of displacements in cracked elastic material. Therefore, this model
is used in the sequel for MLSA near a crack.

3.2.5 Nodal distributions and basis functions

In the previous subsections several modifications of weight functions for the presence of a crack
have been presented. The other parameters for MLSA are now considered in the case of a crack.

In order to provide accurate approximations for a function in the vicinity of a crack tip and to
guarantee that MLSA is well-defined, the following is done concerning the nodal distributions.
It is accomplished by means of reflection that the nodes are locally symmetric with respect to
the line segment [yo_1,y0] of the crack, see Figure 3.15. Furthermore, the nodal distribution
is refined by addition of extra patterns of nodes in the neighbourhood of the crack. These
extra patterns are also locally symmetric with respect to [yo_1,¥¢], see Figure 3.15. Hence,
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Figure 3.15: Extra locally symmetric pattern of nodes near crack, more nodes just behind erack
tip than ehead of crack tip.

nodal points on the crack are double, i.e., for a nodal point x, on one crack surface there is a
corresponding nodal point X, = X, a # b, on the other crack surface. The extra nodal patterns
are also equidistant and the occurrence of double points which are not on the crack, is avoided.

In this section it has been concluded that the wedge model is the most suitable model for
moving least squares approximation near a crack. Application of this model by means of
{3.35), however, yields that near the crack surfaces just behind the crack tip yc only a few
nodes are involved in the sum (3.4). As deseribed in Section 3.1 this can lead to shape functions
which are locally strongly non-polynomial. To avoid this feature, more nodes are placed just
behind the crack tip than ahead of the crack tip, see Figure 3.15. However, then one can still
have that only a few nodes are involved in (3.4) for points close to the crack tip. Therefore,
the radii of some nodes near the crack tip are taken larger. For the nodes x, which are behind
the crack tip, i.e., which are not in the set Vi, see (3.29), and for which

[xa = yc| < 1.75R,, (3.48)
the radii of the supports of the weight functions w, are changed to
RY™ = 15R). ' (3.49)

For all the other nodal points, the radii R, remain unchanged. In (3.48), R; is the radius of
the support of wy, which is the weight function for the nodal point x; positioned at the crack
tip. The parameters in (3.48) and (3.49) are just a choice. One can replace them by values
which are smaller or larger than 1.75 and 1.5, respectively.

It was shown in Section 2.2 that the displacements of a linearly elastic medium show a +/7-
behaviour (r being the distance to the crack tip) in the neighbourhood of a crack, see (2.21). In
order to obtain an accurate approximation of the displacements near the crack tip, the function
/T is added to the set of basis functions as suggested in [31]. The shape functions then show
a /7-behaviour in the neighbourhood of the crack tip, see Figure 3.16. Furthermore, these
functions are not differentiable in the crack tip since the derivatives reveal a 1//r singularity.
On the remaining part of the material the shape functions are continuously differentiable.

Since the displacements of a linearly elastic medium only show a /r-behaviour in a small
neighbourhood of the crack tip, it is not necessary to use the basis function /7 for the entire
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Figure 3.16: Shape function with square root behaviour.

material. The use of a local basig function which is only non-zero in a small neighbourhood of
the crack tip and which behaves like /7 in this neighbourhood, looks convenient. However, the
fact that such a basis function vanishes on a large part of the material, results in MLSA being
not well-defined for that part. Taking such a function in the basis in the vicinity of the crack
tip only, leads to discontinuous shape functions.

More promising is the use of a basis function which is the square root function combined with a
monomial, i.e., a continuously differentiable function which equals /7 in a neighbourhood of y¢
and which behaves like a monomial on most of the remaining material. The /r-behaviour near
the crack tip can then be achieved and MLSA can then be made well-defined for the material.
Therefore, in the sequel the following basis function p is used:

p(x) = EEWVr + (1~ &(x))z129, (3.50)

where x € 2 and 7 = |x — y¢| the distance to the crack tip. The function d® is given in (3.44).
Hence, the basis function (3.50) behaves like /7 near the crack tip and like z;z; on most of
the remaining material.

3.3 Other connectivity-free approximation techniques

Connectivity-free approximation techniques are often addressed in literature as techniques for
scattered data interpolation or approximation. An overview and comparison of some classes of
such techniques is found in the paper of Franke [26].

The first class of techniques discussed in [26] are inverse distance weighted methods. These
methods have the drawback that generally low-order polynomials, especially linear functions,
cannot be represented exactly., Moreover, approximants do not have to be differentiable at
nodal points, see Gordon and Wixom [28]. In [43] and [44], these technigques are extended
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to the concept of moving least squares approximation with singular weight functions. The
latter technique can represent low-order polynomials exactly and reveals the selectivity property
{3.19). As has been shown in Section 3.1, the use of singular weight functions vields shape
functions which are locally strongly non-polynomial.

The second class of technigues discussed in [26] are blending methods based on a division of
the domain into rectangles or triangles. In order to obtain approximations of quantities which
can be discontinuous over a crack in the material, such a division has to match the crack and,
therefore, these techniques are not connectivity-free. This is also the case for the third class of
techniques discussed, which are techniques based on finite element divisions of the domain.

The other classes of techniques which are considered in [26], Foley’s methods and global basis
function type methods, respectively, all reveal the problem that low-order polynomials, espe-
cially linear functions, cannot be represented exactly. This however, did not stop researchers to
apply a global basis function technique, the so-called multi-quadratic technique, in a numerical
method, see Kansa [38, 39].

Another connectivity-free interpolation technique used in a numerical method, is the interpo-
lation technique related to smoothed particle hydrodynamics, see Monaghaxn [53]. The approx-
imant 4"(x) of a function u(x) on the domain { is given for x € by the weighted integral

ut(x) = fgw(x - y)u(y) d2. (3.51)

The weight function w(x) is such that it approaches Dirac’s delta function 8(x), i.e., w has a
relatively small compact support which contains the origin 0 and

/Q w(x) dQ = 1. (3.52)

In general, the approximant (3.51) cannot represent linear functions exactly. Furthermore, since
exact values for the integral in (3.51) cannot be determined, numerical integration is necessary
to obtain accurate values for u. In [5] it is shown that when the finite sum (3.4) is replaced
by an integral, this continuous counterpart of moving least squares approximation can be seen
as equivalent to (3.51).

We conclude that other connectivity-free approximation techniques can hardly be found which
provide shape functions with as nice properties as those for moving least squares approximation.
These properties are:

¢ The shape functions have compact support.

The shape functions are continuously differentiable in the interior of the problem domain
and behave locally as high-order polynomials.

L ]

Low-order polynomials can be represented exactly by the shape functions.

Special shapes, like /7, can be added to the shape functions.

In the case of the presence of a crack, shape functions can be obtained which are convenient
for the representation of the linear elastic displacement field near a crack tip.
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The main drawback of MLSA is its computational effort. For each point under consideration,
a linear system has to be solved to obtain the values of the shape functions. This is in contrast
with FE-shape functions which are obtained per element. Some modifications of MLSA have
been proposed to reduce these computational costs, see Franke and Nielson [27] and [44]. These
modifications concern the computation of the values of the vector u for a set of discrete points
only. With these values new modified vectors fi are obtained for the entire domain in a relatively
cheap way. In [44] this is done by a composition with spline methods and FE-methods with
the consequence that a connectivity is introduced which prevents the technique from being
connectivity-free. In [27] new vectors i are obtained for the entire domain by means of a
weighted method in such a way that the resulting shape functions can represent linear functions
exactly. However, for this latter approach the shape functions do. have supports which are
reasonably larger than the supports of the given weight functions. Hence, this technique is
more non-local than MLSA.

From the considerations in this section we conclude that to come to an element-free numerical
solution method for a boundary value problem we have to make use of the shape functions ob-
tained by moving least squares approximation. This solution method is described in Chapter 4.



Chapter 4

Element-free Galerkin method

In this chapter an element-free numerical method known as the element-free Galerkin metkod,
in short EFG-method, is presented for the solution of a boundary value problem. Firstly, the
discrete equations are considered. Shape functions obtained by moving least squares approxi-
mation (MLSA) are used for the approximation of the displacements in linearly elastic material.
Secondly, a description is given of the numerical integration to obtain the discrete equations.
Convergence aspects of the EFG-method are investigated and the chapter ends with a descrip-
tion of the computation of fracture mechanics parameters from an EFG-analysis of a fracture
mechanics problem.

The element-free Galerkin method has already been considered in [7], [48] and [56]. The method
as introduced in this chapter, however, differs in some ways from the EFG-techniques described
in these papers. In [56], where the method was given the name diffuse elements, a term in the
derivatives of the MLSA-shape functions is neglected. Furthermore, to find the contribution of
an integration point to the stiffness matrix, nodal points which have influence in the integration
point are determined in a rather arbitrary way. In [7] and [48], the EFG-method is reported
in its current form. In these papers, the derivatives of the MLSA-shape functions are obtained
in a correct way. To find the contribution of an integration point to the stiffness matrix, nodal
points which have influence in the integration point are determined correctly by using the weight
functions. For numerical integration a scheme has been introduced by means of a division of
the problem domain into integration cells.

In this chapter new concepts for the EFG-method are introduced. Integration points for an
integration cell are chosen in a different way than described in [7] and [48], and the scheme
for integration in a cell is adapted in the case of the presence of a crack. Furthermore, special
basis functions and special integration cells near a crack tip are used. Stress intensity factors
are obtained by means of contour integration with a correction for the crack-surface integrals.

4.1 Discrete equations

Consider a planar problem of deformation of an elastic mediﬁm, e.g. see (2.1), (2.3)-(2.5)
and (2.9). It is assumed that a set of nodal points {X,}.=1, ., & set of weight functions

57
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squares approximation is well-defined for the undeformed configuration 2 of the elastic medium.
As described in Section 3.1, MLSA results in shape functions ¢,(x), e =1,...,n. In a similar
way as in the finite element method, these shape functions are used to obtain approximate
solutions for the displacements, strains and stresses in the medium.

In. general, the shape functions ¢, can be non-zero on the boundary of the domain, when
Xq € 8Q. Therefore, the weak form (2.17) of the problem of deformation i3 used to account for
the essential boundary conditions. Like in the finite element method, see {2.49), one sets

u(x) = Z: daba(x). (4.1)

Since the shape functions generally fail to satisfy the selectivity property (3.19), the vector d,
does not have to contain the nodal values of u, i.e., in general

u(x,)#d,, a=1,...,n. (4.2)

For the Lagrange multiplier A on I',, one sets

Ax) = ilbiﬁb(x)a (4.3)
b1

where x € T, and {¥5(x)}s=1 .k i8 a set of shape functions on I',. For this set of functions,
the shape functions ¢, restricted to I, are taken for those a with x, € [',, which yields that
k < n. When according to a Galerkin approach the test displacements du and the test Lagrange
multipliers A in (2.17) are also taken of the form (4.1} and (4.3), respectively, one obtains the
following linear system for d, and 1,

=[] =

The matrix 0 contains only zeros and the vectors d and 1 contain the nodal vectors d, and I,
respectively,

d" = [df .- df], (4.5)
O L A (4.6)

The stiffness matrix K and the matrix L for the Lagrange multipliers are built from 2 x 2 nodal
submatrices K, and Lg, respectively, and the right-hand side vectors £ and r are built from
2 x 1 nodal subvectors f, and r;. These submatrices and subvectors are given by

Kab = /lezDBban a,b:l,...,n, (47)

Lab = _"/1; %%Idl", a=1,..,}n,b=1,...,k, (48)

f. = [gf7d0+ [ 6p'dl, a=1,..n, (4.9)
|9 Ty

r, = —/r peu*dl, b=1,... k. (4.10)
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The matrix I is the 2 x 2 identity matrix while the matrix B, is given by

¢a,1 0
B, = 0 (i’a,Z‘ yoa=1,...,n (411)
¢'a,2 ¢a,l

The 3 x 3 matrix D represents the constitutive equations of the elastic material, e.g. see (2.55).

When the boundary I', consists (in addition) of a set of discrete points, one obtains a similar
linear system (4.4), see [30]. In (4.8) and (4.10), the integrals then have to be replaced by finite
sums. Notice that K, is non-zero only when ¢, and ¢, are non-zero on a common part of £,
i.e., when the intersection of the supports of ¢, and ¢, is not empty.

Solving the linear system (4.4) for d and 1 and using (4.1) results in approximations for the
displacements. Taking derivatives of (4.1) and subsequently using the constitutive equations,
e.g. (2.9), leads to approximate values for the straing and stresses in the material.

To arrive at the discrete equations in this section, a Galerkin approach is considered with
shape functions which are obtained without using an element division. Therefore, the method
is named element-free Galerkin method.

4.2 Numerical integration

To obtain the stiffness matrix K, the matrix L, and the right-hand side vectors f and r for the
discrete equations (4.4) of the EFG-method, integrals over the domain € and the boundaries
T, and I'y, have to be evaluated. The exact values for these integrals cannot be computed.
Therefore, numerical integration is necessary to obtain approximate values. As in the FE-
method, the domain and the boundary are partitioned into subdomains, so-called integration
cells, and the integrations are performed numerically for each cell.

Since the shape functions in the EFG-method are quite general and not, contrary to the PE-
method, obtained by a transformation of local (polynomial) functions, there is no optimal
division of the domain and the solution depends on this division, see [30] or Krysl and Belytschko
[42]. The pattern for numerical integration by the set of integrations cells, however, has to
account for the local mesh size of the distribution of nodal points. Moreover, the pattern
should be such that a small variation in the number of cells results in a small change in the
solution. This is described in the present section. In order to obtain values for integrals of
quantities which are discontinuous over a crack, it is shown in which way the configuration of
integrations cells accounts for such a discontinuity. Furthermore, special integration cells near
the crack tip are considered when a /r-like function is added to the basis.

4.2.1 Division into integration cells

For a numerical evaluation of the domain integral for the stiffness matrix K in (4.4), the
domain € is divided into a number of integration cells A,, e = 1,..., N, as proposed in |7}, see
Figure 4.1. For these cells we take triangles and quadrilaterals. The division is such that two
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©
Figure 4.1: Integration cells with definition points for Q.

integration cells can only have parts of their boundaries in common and such that
Q= A. {(4.12)

In contrast with a division of {2 into finite elements, as described in Section 2.3, it is not
necessary for a division into integration cells that two integration cells having a part of a side
in common, must have the entire side in common, see Figure 4.1.

Each integration cell A,, e = 1,...,n, is defined with the help of a number of so-called definition
points z¢. Hence, the division of Q into integration cells is fully described by the connectivity of
the definition points z5. This connectivity, however, is independent of the choice for the nodal
distribution, the basis functions and the weight functions.

With the help of the connectivity of the definition points for the integration cells, the integral
(4.7) is evaluated numerically for each integration cell in the following way. Similar as in the
FE-method, for each group of integration cells A, of the same type, a standard integration cell
A, is considered. The Cartesian coordinates in A, are denoted by & and &. Each definition
point z;, € (2, corresponds with a local definition point £, € A,. Local shape functions ¢ (£} -
correspond with the local definition points. These shape functions are polynomials such that
the selectivity property (2.41) with respect to the local definition points holds true and such
that ¢, vanishes on the sides of A, on which £, is not positioned.

Let the following mapping from the standard cell A, onto the cell A, be defined with the help
of the local shape functions:

x(§) = ZZZ(g)%(S)' (4.13)

In equation (4.13), € € A,, the index ¢ sums over the local definition points, and z5 is the
definition point which corresponds with the local definition point £_. Note the similarity with



4.2. NUMERICAL INTEGRATION 61

the isoparametric mapping (2.43) in Section 2.3.

With the help of the mapping (4.13) the integral (4.7) over the integration cell A, is obtained
by

[, BEGDBx)dA = [ BIx(€)DBi(x(€)) | 55| A (4.14)

Ix
9
The integral over the standard integration cell A, is then evaluated numerically by means of

Gaussian quadrature, see [2, Ch. 5]. In the sequel it is described in which way the integration
points for Gauss integration are determined for A,.

Summation of all cell contributions (4.14) leads to the nodal submatrix K,;. A similar procedure
leads to the domain integral for the right-hand side subvectors f,. By means of divisions of the
boundaries ', and T, into boundary integration cells, the boundary integrals in (4.8)-(4.10)
are determined numerically.

In most situations, integration cells A, are used which have the shape of a square and which
are given with the help of four definition points. As a consequence, the Jacobian in (4.14)
is constant. The sizes of the integration cells are taken of the same order as the maximum
mesh size of the nodal distribution. The boundary integration cells are mostly taken to be the
non-empty intersections of the volume integration cells with the boundaries T, and T,,.

Since the shape functions for MLSA are locally high-order polynomials, see Section 3.1, high-
order Gaussian quadrature is performed in A,. In the seguel of this section it is described
that triangular integration cells given by three definition points are used to match a crack.
For a triangle we take the 13-point Gaussian quadrature formula given in Cowper [19], which
has degree of precision 7. Equivalently for a quadrilateral (4,4)-point Gaussian quadrature is
used, which has the same degree of precision. For a boundary integration cell 4-point Gaussian
quadrature is taken.

The division of the domain into integration cells A, is independent of the discretization for
moving least squares approximation. However, in order to obtain accurate entries for the sub-
matrices (4.7), (4-8) and subvectors (4.9), (4.10) for both coarse and fine MLSA-discretizations,
the pattern for numerical integration has to account for the distribution of nodes. More ac-
curacy is required near the boundary of the domain, near a crack and near the crack tip, since
less nodal points are involved in the summation (3.4). As a result, the shape functions tend
to be locally strongly non-polynomial as was shown in Section 3.1. The pattern for numerical
integration accounts for the distribution of nodes in the following way.

For each integration cell A, the standard integration cell A, is split into a number of subcells
of the same size. Per subcell (4,4)-point or 13-point Gaussian quadrature is then performed to
obtain the integral (4.14). The number of subcells depends on the distribution of the nodes
near A, and the size and position of this cell. For the integration cell A,, the nodal points %,
are determined which are either in the cell or which have one of the vertices of the cell in the
support of their weight function w,. It is assumed that these nodal points contribute ounly to
the cell contributions for K. The number of subcells is then based on the mean distance of
these nodal points to the central point of A,, the characteristic size of the integration cell A,
and on the number of nodal points in A,. Furthermore, it is taken into account whether the
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Figure 4.2: Internal subdivision of integration cell.

integration cell is near the boundary, near the crack or near the crack tip. This procedure to
arrive at the number of subcells for quadrilateral, triangular and boundary integration cells is
given in Appendix D. The procedure is designed in such a way that, when the subdivision is
transformed to A, by (4.13), approximately the same number of integration points is used for
each quadrilateral made up of nodal points. Only near the boundary and near the crack the
number of integration points is larger.

4.2.2 Cell configuration near a crack path

Shape functions are discontinuous over a crack, see Section 3.2. Hence, the configuration of
integration cells has to determine accurately the integrals of quantities which are discontinuous
over a crack. Gauss quadrature, however, assumes a certain degree of continuity of the quantities
which have to be integrated, see [2]. It is therefore essential that integration is not performed in
a cell which contains (a part of) a crack in its interior. Hence, the configuration of integration
cells has to match the crack. However, the complex process of generating a set of cells for a
domain with a crack has to be avoided, since otherwise the configuration of integration cells
must be adapted after each crack increment (in a quasi-static analysis).

The configuration of integration cells can be chosen independently of the distribution of nodes
for moving least squares approximation. Hence, one can easily account for a crack in the do-
main during the process of building up the matrices Ky, Lo and the vectors £, and rp,. A
division of  into integration cells A, is assumed where the presence of a crack is neglected.
During the process of the numerical computation of submatrices and subvectors for each cell
A, the presence of (a part of) a crack in the cell is checked. If a crack is not present, nu-
merical integration is performed in the cell as described above. When (a part of) a crack is
present in the cell, a subdivision of A, into triangular subcells is generated, which matches
the crack, see Figure 4.2. This subdivision into triangular subcells is obtained by using the
program SEPMESH of the SEPRAN package [64]. The integrations are then performed for
each triangular subcell as described above. Summation of the contributions of these subcells
results in the contribution of A,.

One should notice that when two neighbouring infegration cells are subdivided because of the
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Crack

Figure 4.3: Triangular integration cell with crack tip as vertex.

presence of a crack in the cells, the subdivisions of the two cells are made independently of each
other. In the case of simulation of crack propagation, the internal subdivisions into triangular
integration cells can be used in the next computation steps. In one of the following steps, it is
then possible that some of these triangular integration cells can be subdivided again.

4.2.3 Cell configuration near a crack tip

In the case of the use of a basis function with /r-behaviour for MLSA (with r being the
distance to the crack tip), the shape functions ¢, contain a y/r-component. This results in
singular derivatives of the shape functions which behave like 1/,/7 near the crack tip. A
special integration pattern is then necessary in the neighbourhood of the crack tip in order
to obtain sufficiently accurate values for the domain integrals in (4.7). To this end, not only
each integration cell containing a crack tip is subdivided into triangular subcells, but also each
integration cell for which the crack tip is positioned on their boundaries. Hence, the crack
tip is a vertex of a set of triangular integration cells, which matches the crack. While each
triangular cell is defined with three definition points as the vertices of the cell, the triangular
cells which surround the crack tip are defined by eight definition points z¢, . . ., 2§, see Figure 4.3.
These points are such that z{ = z§{ = 2§ = y¢, 25 and z} represent the other two vertices,
zg = (32§ +25)/4, 2§ = (25 +25)/2 and 2§ = (32 + 2§)/4. The square A, = {(§,&) | -1 <
& <1, =1 < & < 1} with eight local definition points is taken as standard integration cell,
similar to the crack-tip element of Barsoum (3] described in Section 2.3. The mapping (4.13)
with bi-quadratic local shape functions on A, then behaves like /7 along the cell sides for
& — —1. Therefore, accurate values for the cell integrals over A, are obtained with (4.14)
when ¢, ~ /T in the neighbourhood of the crack tip.

In the case of simulation of quasi-static crack propagation, the triangular integration cells
surrounding the crack tip can in most cases also be used in the following steps of the process.
However, these cells are then defined with three definition points only. When the crack tip is
at the vertex of a quadrilateral integration cell, the cell is split into triangular subcells, but in
the following steps again the quadrilateral cell is used.
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Figure 4.4: Nodal distribution (a) and cell configuration (b) for patch tests.

4.3 Convergence aspects of EFG-method

In this section the performance of the EFG-method in two-dimensional elasto-static problems
is studied. Results of some patch tests are considered as well as convergence aspects of the
method. In each example, all the quantities and material parameters are thought of as being
non-dimensional. Homogeneous, isotropic, linearly elastic material behaviour is assumed and
volume forces f are absent. The arbitrary material parameters are taken to be £ = 1 and
v = (.25,

Some convergence studies for the EFG-method have already been reported, e.g. see the papers
[7], [30] and [48]. In these papers, however, the integration points for an integration cell are
chosen in a different way than in the scheme proposed in Section 4.2 and Appendix D.

The results reported in this section are obtained by means of an implementation of the EFG-
method in the MATLAB programming environment {51]. A schematic set-up of an EFG-
analysis for a (cracked) material domain is found in Appendix B. By a comparison of the
different steps in this set-up with those in the set-up for the FE-method given in this appendix,
the similarity between the two methods can be seen.

4.3.1 Patch tests

As described by Taylor, Simo, Zienkiewicz and Chan [69], satisfaction of several patch tests for
a FE-formulation is a necessary and a sufficient condition for convergence of the formulation.
In these patch tests the ability of the FE-formulation to represent linear elasto-static solutions
on the problem domain is investigated. Two patch tests proposed in [69] are studied for the
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EFG-parameters llo* — wllo/[ullo | lu* = ulli/|lull,
Gaussian, v =2.0, 36 nodes, 25 cells 3.93.10°% 1.67-107*
Gaussian, v = 2.5, 36 nodes, 25 cells 1.45-10™* 9.74-10™¢
Polynomial, v = 2.0, 36 nodes, 25 cells 4.82. 107 2.88. 103
Polynomial, v = 2.5, 36 nodes, 25 cells 1.81-107% 1.21-1072
Gaussian, v = 2.0, 121 nodes, 100 cells 1.36 - 10-8 1.10- 107
Gaussian, v = 2.5, 121 nodes, 100 cells 7.79-107° 7441074
Polynomial, v = 2.0, 121 nodes, 100 cells 1.35.1074 1.61-10"3
Polynomial, v = 2.5, 121 nodes, 100 cells 6.33- 104 9.42-1078

Table 4.1: EFG-results for problem of prescribed linear boundary displacements, linear basis.

EFG-method.

Consider the patch shown in Figure 4.4a. This patch has length 1 in the z;- and z;-directions.
An equidistant distribution of nodal points for MLSA is depicted in the figure. With a linear
basis, the shape functions obtained by MLSA are able to represent linear displacements exactly,
see {3.12). However, these linear displacements are generally not exactly obtained from an EFG-
analysis because of errors introduced by numerical integration. This is due to the fact that the
shape functions are not piecewise polynomial as has been shown in Section 3.1, which means
that it is not possible to obtain sufficiently accurate values for the system (4.4) by numerical
integration, which has also been remarked in [30] and [40].

Furthermore, shape functions for nodal points near the boundary of the domain are generally
non-zero on this boundary. This implies that the imposition of the exact boundary displace-
ments in the EFG-method is not possible. Therefore, additional errors are introduced due to
the fact that the essential boundary conditions are not satisfied.

This can be seen from the following patch test. Let displacements be given according to the
elasto-static solution of the problem of a uniform axial stress o applied at the boundary z; = 1.
In a situation of plane stress these displacements are given by

U = Exl, (4.15)

uy = —I/%x2, (4.16)

where 0 <z; <1,0<2, < 1.

Let the displacements (4.15), (4.16) be imposed at all the boundary nodes. The set {1, 2,22} is
taken as set of basis functions, 36 and 121 nodal points are used and the domain is divided into
25 and 100 integration cells A,, see Figure 4.4b. Weight functions of Gaussian and polynomial
type, see {3.22), (3.23), and two different values for the parameter v are considered. The radii
of the supports of the weight functions are proportional to the values of v, see (3.28). Errors
in the computed solutions are found in Table 4.1, where ||u|lg is the norm of the Sobolev space
H(Q), ie.

fhuflo = (/Q U dQ) 1/2, (4.17)



66 CHAPTER 4. ELEMENT-FREE GALERKIN METHOD

EFG-parameters llu* = ullo/lfullo | flu* — ulls/|ulls
Gaussian, v = 2.0, 36 nodes, 25 cells 4.86-107° 2.40 - 10-*
Gaussian, v = 2.5, 36 nodes, 25 cells 2.18-1074 1.44-1073
Gaussian, v = 2.0, 36 nodes, 64 cells 2.60-107% 8.86 - 102
Gaussian, v = 2.5, 36 nodes, 64 cells 1921074 6.40-107*
Polynomial, v = 2.0, 36 nodes, 25 cells 1.67-1075 9.55.107%
Polynomial, v = 2.5, 36 nodes, 25 cells 2.71 .10 2.40-107%
Polynomial, v = 2.0, 36 nodes, 64 cells 2.49.107% 1.10-1074
Polynomial, v = 2.5, 36 nodes, 64 cells &.87.10~% 3.46-10™*

Table 4.2: EFG-results for problem with constant uniazial stress, linear basis.

and [lul]; is the norm of the Sobolev space H(Q2), i.e.

1/2
”llul = (L Ui + Ui 5U; 5 dﬂ) . (418)

These errors are obtained numerically by means of the division of the domain £ into integration
cells A..

The results of Table 4.1 show that, unless the fact that the boundary displacements are satisfied
exactly at the nodes, indeed the solution (4.15), (4.16) is not obtained exactly for both the
weight functions of Gaussian type and those of polynomial type. It is also seen that an increase
of the radii for the supports of the weight functions leads to an increase in the error, since
more nodal points in the interior influence the solution on the boundary. In this example,
the performance of the EFG-method for weight functions of Gaussian type is slightly better
than the performance of the weight functions of polynomial type. This can be explained from
the fact that due to the exponential type of the Gaussian weight functions, see (3.22), the
shape functions in the case of these weight functions tend faster to zero near the boundary of
their supports. Hence, interior points have less influence on the boundaries in comparison with
weight functions of polynomial type.

Table 4.1 shows that when the pattern of nodes is refined together with a refinement of the
cell configuration, the errors in the computed displacements decrease due to the fact that the
essential boundary conditions are satisfied in more boundary nodes. Therefore, we conclude
that this patch test for the exact representation of the linear solution {4.15), (4.16) is satisfied
in the weak sense, that is, for b, - 0, where A, is the local mesh size, see (3.27).

As a second patch test, consider the solution (4.15), {4.16). This time, the digplacement u, is
prescribed at the boundary z; = 0 and u, is prescribed at z; = 0 by means of the Lagrange
multiplier formulation (4.4). The constant normal stress o is prescribed at the boundary z; = 1
while the boundary z; = 1 is stress-free. For an EFG-analysis 36 nodal points are taken in the
domain, see Figure 4.4a, and {1, 21, 2,} is taken as set of basis functions. Weight functions of
Gaussian type and polynomial type, a division into 25 and 64 integration cells and two different
values for the parameter v are considered. Results are summarized in Table 4.2.

In Table 4.2, again errors are found in the solution due to numerical integration and due to
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the fact that the essential boundary conditions are not satisfied. An increase in the radii for
the weight functions {due to an increase of v} generally leads to an increase in the errors,
because more nodes influence the displacements at the boundaries. It is seen, especially for the
weight functions of polynomial type, that there is not much difference in the results for the two
divisions into quadrilateral integration cells. This test has also been considered with divisions
into triangular integration cells, which leads to similar results.

Table 4.2 shows that in this example the performance of the weight functions of polynomial
type is better than the performance of the weight functions of Gaussian type. Furthermore, the
results for weight functions of polynomial type are less sensitive to a variation in the number
of cells than the weight functions of Gaussian type. This is explained from the fact that the
shape functions for weight functions of Gaussian type show a more exponential behaviour in
contrast with those for the weight functions of polynomial type, which show a more polynomial
behaviour. Hence, the latter type results in a better performance of the scheme proposed for
numerical integration. Therefore, in the numerical examples that are considered in this chapter
and in the next chapters, weight functions of polynomial type are used.

As for the first patch test, refinement of the nodal distribution together with a refinement of the
cell configuration will lead to a decrease in the error due o a better satisfaction of the essential
boundary conditions, since more shape functions are involved in the representation (4.3) of the
Lagrange multiplier. Hence, it is concluded that this patch test for the exact representation of
the linear solution (4.15), (4.16) is also satisfied in the weak sense.

In the two patch tests for the EFG-method, the problem has been considered that essential
boundary conditions along a continuous part of the boundary are not satisfied. It should be
remarked that for an elasto-static problem where only three displacements are prescribed, in
order to suppress the rigid-body motions, the essential boundary conditions are exactly satisfied
when these conditions are imposed at the corresponding points of the domain.

The element-free Galerkin method and the finite element method differ only in the choice for
the shape functions and the numerical integration to obtain the discrete equations. Therefore,
it is expected that, as described in [69] for the FE-method, satisfaction of the two patch tests
implies convergence of the EFG-method. This is shown in the next numerical example.

4.3.2 Shear force on a plate

Consider the patch 0 < z; <1, 0 < xy < d, where [ = d = 1 are the dimensions of the patch,
see Figure 4.4. At the right boundary z; = 1, a transverse shear force F is applied. When the
shear stress on this boundary is distributed according to g15 = —6(F/d®)x5(zs — 1), the cubic
solution of the elasto-static problem in a situation of plane strain is given by, see Timoshenko
and Goodier {70, Ch. 3],

“GF [B(1 — v}z (20 — &1) + (2 — v)za(zs ~ d)] (xz - g) , (4.19)

—% {1-v)(38l— xl)xf +3v(l -z Hzg — 2)2 + %(4 + 1/)371] , (4.20)
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Figure 4.5: EFG-errors and -convergence rates R for (a) H-norm and (b) H'-norm, problem
of shear force on a plate, linear basis.

where 0 < oy <land 0 < 2y, € d.

The convergence of the EFG-method for this problem is studied. Equidistant patterns of 36,
121, 441 and 1681 nodal points together with a division of the domain into 25, 100, 400, and
1600 integration cells are taken, respectively. The linear set {1,z1, 25} is taken as set of basis
functions and weight functions of polynomial type are used with v = 2.0 and v = 2.5 in
equation (3.28) for the radii of the supports. The displacements u; and u; are prescribed on
the boundary z; = 0 and the shear stress ¢y, is prescribed on 27 = 1. The boundaries x; = 0
and z, = 1 are stress-free.

In Figure 4.5, the logarithms of the errors in the H°- and H'-norm, (4.17) and (4.18), are
depicted versus the logarithm of the mesh parameter k. This parameter h is taken to be the
distance between the neighbouring nodal points along lines x; = constant. A linear corres-
pondence is seen in the figure, which vields that the following estimate holds true for the errors
in the Sobolev norms,

" —ull; < MA"|ul;, i=0,1, (4.21)

for positive constants M and R. Note that M and R may be different for ¢ = 0 and ¢ = 1. The
constants K, so-called convergence rates, equal the slopes of the given lines. Their values are
found in Figure 4.5

Figure 4.5 shows that the EFG-method converges and that the convergence rates R for the two
values of v exceed those for an equivalent FE-discretization, which are exactly 2 and 1 for the
H® and H'-norms, respectively, see [33, Ch. 4]. Similar convergence rates were obtained for
this problem in the case of a division of the domain into triangular integration cells. Equivalent
FE-discretizations should be understood as the use of element divisions which can represent
linear displacements exactly, e.g. divisions into three-node triangles or four-node quadrilaterals.
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(a) (b)

Figure 4.6: Nodal distribution (a) and cell configuration (b) for problem of infinite plate with
circular hole.

The convergence tates for v = 2 are slightly larger than those for v = 2.5. In general, one
expects higher convergence rates for an increase in v, since the shape functions then locally be-
have more as high-order polynomials, which make them more convenient for the representation
of smooth and steep solutions. This is indeed the case as is seen in the next example.

4.3.3 Infinite plate with circular hole

We gtudy the performance of the EFG-method for the problem of the plate with a circular hole.
This problem has a non-polynomial solution and due to the circular boundary nodal patterns
have to be used which are not equidistant in two mutually orthogonal directions.

Consider an infinite plate with a circular hole with radius . Let a uniform axial tension ¢ in
the z;-direction be applied at infinity. The stresses in the plate for a situation of plane strain
are then given by, see Atkin and Fox {1, Ch. 5],

at /3 3at
o = O -1 3 (5 cos 26 + cos49) + 57 o8 46’} ) (4.22)
a® /1 . . 3a* |
Oy = © __r_2 (-2— sin 26 -+ sin 49) + o 811149} , (4.23)
! 30t
039 = © __ﬁ (5 cos 26 — cos46‘> - @cos 49} , (4.24)

where r > o and —7 < § < 7 are polar coordinates. The corresponding displacements are
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Figure 4.7: EFG-errors and -convergence rates R for (a) H%-norm and (b) H'-norm, problem
of infinite plate with circular hole, linear basis.

given by
= Z (1 —vircosf + at (2(1 —v)cosf + Ecos 39) _ & cos 30 {4.25)
e, T 2 2r8 ’ ‘
- 2 sin @ i ((1 2v)sind — 1s’n 39) _a sin 30 (4.26)
up = o |-vrst - 5 i 573 i . .

Both the displacements and the stresses have relatively large gradients in the neighbourhood
of the circular hole.

The part 0 < z1 < 5 and 0 < 23 < 5 of the upper right quadrant of the plate is considered, see
Figure 4.6. On the boundaries z; = 5 and x5 = 5 the applied tractions are prescribed according
to {4.22)-(4.24). Displacements are prescribed according to u; = 0 on z; = 0 and uy = 0 on
23 = 0. The circular boundary has radius ¢ = 1 and is assumed traction-free. For EFG-
analyses of the problem, the nodal points are spaced regularly in the #-direction and irregularly
in the r-direction, see Figure 4.6a, such that there are more points in the neighbourhood of the
circular boundary in order to achieve accurate approximations of the steep displacements. The
same number of points are taken in the r- and #-directions. Weight functions of polynomial
type are used with two different values for the parameter v for the determination of the radii
of the weight functions. The set {1,z;, 2} is taken as set of basis functions.

The problem domain is divided into integration cells A, as depicted in Figure 4.6b. All inte-
gration cells are guadrilaterals defined with four definition points, except the cells next to the
circular boundary which have five definition points to obtain a better approximation of this
boundary. The same number of cells is taken in the r- and #-directions.

The convergence of the EFG-method for this problem is investigated by means of EFG-analyses
with 49, 121 and 441 nodal points together with a division into 36, 100 and 400 integration
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Figure 4.8: EFG-errors in o011 ot 21 = 0 (a) and in 0y at 22 = 0 (b), problem of infinite plate
with circular hole, linear basis.

cells, respectively. The local mesh size h,, see (3.27), averaged over the nodal points x, is
taken as global mesh size h. In Figure 4.7, the logarithms of the errors are depicted versus the
logarithm of h. Convergence rates R are also given in the figure. These rates are taken equal
to the mean slope of the depicted lines,

The figure shows that the EFG-method converges for this problem, despite the non-convex
domain and the approximation of it by integration cells. As in the previous example, the
convergence rates exceed those for an equivalent FE-discretization, which are exactly 2 and 1
for the H°- and H*'-norms, respectively. The convergence rates for v = 2.5 are higher than those
for v = 2.0. This is due to the fact that the shape functions for v = 2.5 locally behave more
as high-order polynomials than the ones for v = 2.0. Hence, the numerical integration scheme
for the EFG-method performs better for these shape functions and an improved convergence
of the representation of the displacements is obtained.

Convergence of the method is also seen from a comparison of the computed stresses with the
solution (4.22)-(4.24). In Figure 4.8, the errors in the stresses oy; and oy are depicted for
z; = 0 and z3 = 0, respectively. The value of ¢ in (4.22)-(4.24) was set to 1-1073. It is seen
that for the distribution of 441 nodal points the stresses are in good agreement with the exact
values.

The convergence of the EFG-method for this problem has also been studied with the quadratic
set {1, 21, Ts, 22, 7172, 7} as set of basis functions. The same nodal distributions and divisions
into integration cells are used as for the linear basis. Only larger values of v are considered,
since more basis functions are involved. Logarithms of the errors and convergence rates for this
approach are found in Figure 4.9.

It is seen again that the method converges and that the convergence rates exceed those for
an equivalent FE-discretization, which are exactly 3 and 2, respectively for the H°- and H!-
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Figure 4.9: EFG-errors and -convergence rates R for (a) H®-norm and (b) H'-norm, problem
of infinite plate with circular hole, quadratic basis.

norms, see [33, Ch. 4]. Equivalent FE-discretizations should be understood here as the use of
element divisions which can represent linear and quadratic displacements exactly. For example,
divisions into six-node triangles and/or nine-node quadrilaterals. The errors in Figure 4.9 are
of the same order as the errors given in Figure 4.7 for the approach using the linear basis.
As for the linear basis, an increase of v leads to an increase in the convergence rates. The
convergence rates for v = 3.0 exceed those for the linear basis depicted in Figure 4.7. This is
due to the fact that the shape functions for the quadratic basis can represent more low-order
polynomials exactly than the ones for a linear basis. The rates for the quadratic basis do not
exceed the ones for the linear basis in the case of v = 2.5. This can be explained from the fact
that for the quadratic basis three extra basis function are involved. When the same radii of the
weight functions are used for both sets of basis functions, the shape functions for the quadratic
basis are locally more strongly non-polynomial than the ones for the linear basis. Hence, the
numerical integration scheme for the EFG-method performs better for the linear basis resulting
in lower convergence rates for the quadratic basis.

4.3.4 Conclusions and discussion

In this section the performance of the element-free Galerkin method has been studied. The
numerical examples presented above lead to the following conclusions. The errors in the numer-
ical solutions are attributed to errors due to numerical integration and to the fact that essential
boundary conditions are not satisfied along continuous boundaries. However, patch tests for
the exact representation of linear solutions are satisfied in the weak sense. From the reported
results for the patch tests it was concluded that in the sequel weight functions of polynomial
type are preferred to those of Gaussian type.

It has been shown that the EFG-method is a convergent method for elagto-static problems.
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The convergence rates exceed those for equivalent finite element discretizations. Increase of the
radii of the supports of the weight functions generally leads to an increase of the convergence
rates. The same holds true for addition of higher order polynomials together with an increase
in the radii.

Similar convergence rates have been reported in [7], [30] and [48]. In these papers, higher valnes
for v were also used, which lead to higher convergence rates. In this thesis, however, we restrict
ourselves to values for v which are relatively large with respect to the minimal value for MLSA
to be well-defined. But v is not taken too large (v < 3), since an increase of v leads to a
significant increase of the computational effort of the method. Furthermore, larger values for
v result in linear systems {4.4), which are more non-sparse than those for smaller values.

From the examples it can also be concluded that the numerical integration scheme proposed in
Section 4.2 and Appendix D, results in an accurate performance of the method for different sets
of basis functions. Some variation of the number of cells and the type of cells resulted in similar
convergence rates. Therefore, we conclude that in the case when the sizes of the integration
cells are of the same order as the local mesh size of the nodal distribution, the performance of
the EFG-method is almost independent of the division of the domain into integration cells.

4.4 Computation of fracture mechanics parameters

Consider an EFG-analysis of cracked material. Displacements, strains and stresses are deter-
mined as described Section 4.1. To use fracture criteria for crack growth, e.g. see {2.27) and
(2.28), the stress intensity factors Ky and K; have to be computed from these quantities. In
this section several ways are described to determine the stress intensity factors.

In Section 2.2 the displacements and stresses near the crack tip were studied, see (2.18) and
(2.21). In Section 3.2 it has been described how the y/7-behaviour of these displacements and
stresses can be captured in an EFG-analysis. Therefore, in the case of shape functions which
behave like /7 near the crack tip, the stress intensity factors K and K can be determined with
the help of (2.18), (2.21) and (A.1)-(A.10). For instance, K is computed from the displacements -
and stresses in the direction # = 0 ahead of the crack by means of

KI == %1!% Vanr Ugg(’l",O), (427)

Kp = lim v2rr (ou(r,0) - o},), (4.28)
. 2G |27 o

Ky = 11_1% P 1137 (u;('r,()) —ul), (4.29)

and Ky is computed by means of

B-’II = %11% Vo 0-12(7': 0)7 (430)

K; = lim 26 ,/z—f- (ua(r,0) — u3) . (4.31)

r—0 1 — g
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When /7 is left out of the basis for MLSA, the expressions (4.27)-(4.31) cannot be used.
Moreover, as for an analysis by means of the FE-method, the displacements are represented by
the finite sum (4.1). Hence, a finite number of shape functions represents the displacements
near the crack tip. This implies that, despite the addition of /7 to the basis, an error is
made in the representation of the angular variation in the displacements. Therefore, the use of
expressions (4.27)-{4.31) for computation of the stress intensity factors does not have to result
in sufficiently accurate values for K; and K,

The stress intensity factors can also be found from the components of the J-vector, see (2.35),
(2.36). Under the assumption that Ky > |Kyy|, these factors are given by

K = %’/5851 (\/JI—J2+\/J1+J2), (4.32)
K = -;-,/:fl (\/Jl-Jz—\/J1+Jg). (4.33)

In (4.32) and {4.33), the components of J are taken with respect to the local coordinate system
with the crack tip as origin. When [J5|/Ji << 1, equations {4.32), (4.33) can be approximated
by Taylor expansions in Jy/J;. These expansions are given by

. 8GJ1 1 Jzz J24

K=\ —= (1 s7rrolgi)) (4.34)
- Schl 1 J2 z}23

R ( 35, ¢ (Jf” ‘ (4.85)

Hence, for [ Ja|/J; << 1, J» has a greater influence on Ky than on K.

The J-vector is determined by means of J-integration, see (2.31). In this equation the curve
7 can be taken at a remote distance from the crack tip, while v} and ~z are curves along the
(piecewise linear) crack surfaces from the begin and end points of v to the crack tip. Due to
the error in the representation of the displacements near the crack tip, the contribution of the
integrals over ¢ and g can lead to inaccuracies in the components of J. Taking into account
that the crack surfaces are stress-free, the contributions are given by

[r‘*wa Wem dy = (W: N W‘—’.) rdy, k=12, (4.36)

(o] Yo

where y¢ = 7%, n is the outward unit normal on v} and W} and W_ are the elastic energy
densities (2.32) on 7% and v, respectively. With the help of (2.18) and (2.21) it can be shown
that, see [20],

_ 4{& -+ 1)0’0 Kn
WheW, =2 10 , 4.
S =W B HoWn (4.37)

for r — 0. Therefore, as suggested in [20], the contribution (4.36) to the components of J can be
computed in an accurate way by leaving out a part of vo next to the crack tip as is described
below.
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Figure 4.10: Square curve for computation of J.

Since a crack is represented as piecewise linear, yo consists of line segments. Consider {4.36)
where ¢ is replaced by the curve 7%, which is the curve v without a small part with length
g1 of the line segment next to the crack tip. With (4.37) this yields for k = 1,2 that

f% (W =W medy = [ (W =W medy + Bt ;)\‘,’%K”n’“ V. (4.38)

For 4%, which is the curve y¢ without a small part with length e; # £; of the line segment
next to the crack tip, the equation (4.38) holds true with £, replaced by ;. By a convenient
combination of (4.38) for v; and 7%, the value for (4.36) can be found. For this way of
computation of the contribution (4.36) to the components of J, no integrations have to be
performed over a part of ¢ next to the crack tip. Only the integrals for v5 and 424 have to
be calculated. Hence, the problem of the inaccuracy of the representation of the displacements
near the crack tip is circumvented.

In Section 2.3 a method for a FE-analysis was considered where the J-vector is obtained by
means of crack extension, see [35] and [59]. Crack extension can also easily be modelled in the
EFG-method by means of a shift of nodal points and leads to a small change in the stiffness
matrix K. However, this change cannot be found as easily as in the FE-method. Many cells
surrounding the crack tip have to be considered to determine the change in K. Therefore, the
method of crack extension is not useful for application in the EFG-method.

As described by Moran and Shih in [54], the J-vector is determined in [48] by converting the
integral in (2.31) over the curve -y into a domain integral over the domain enclosed by 7.
However, then still integrations over the crack surfaces need to be performed. Furthermore, the
enclosed domain contains the crack tip and, therefore, this domain integral is influenced by the
inaccuracy in the representation of the angular variation in the displacements near the crack
tip.

From the above considerations, it is concluded that J-integration by (2.31) and (4.38) is pre-
ferred to obtain the vector J. In the numerical examples shown in the sequel, a part of the last
segment of the crack is taken for v and a square curve perpendicular on the last crack segment
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is taken for -y, see Figure 4.10. The size s of 7y is taken larger than the length of the last erack
segment. As for the computation of the boundary integrals in (4.8)-(4.10), the curves y¢ and v
are divided into integration cells to obtain the components of J. The integrations in these cells
are performed similar to the ones for the boundary integration cells described in Section 4.2.
Furthermore, to compute the crack surface contributions (4.36) by means of (4.38), we take £,
and 5 equal to 0.75h; and 1.5k, hy being the local mesh size, see (3.27}, of the nodal point in
the crack tip.

In this chapter the essential features of the element-free Galerkin method have been introduced.
The performance of the method was studied by means of application in two patch tests. Fur-
thermore, convergence of the method has been shown for two different problems. In the last
section of the chapter, the computation has been described of fracture mechanics parameters
in the case of an EFG-analysis of a fracture mechanics problem. With the techniques given in
this chapter and the study of moving least squares approximation given in Chapter 3 we are
now able to apply the EFG-method to static fracture mechanics problems and to simulations
of quasi-static crack propagation. First, however, combinations of the EFG-method and the
FE-method are studied in the next chapter. In Chapter 6 then results are given of the appli-
cation to fracture mechanics problems of the EFG-method and a combination of the method
with the FE-method.



Chapter 5

Combinations of EFG-method and
FE-method

As presented in Chapter 4, the element-free Galerkin (EFG) method makes use of shape func-
tions obtained by moving least squares approximation (MLSA). In Chapter 3 it has been
remarked that this connectivity-free approximation technique is computationally expensive,
relative to approximation by means of finite elements. Application of the EFG-method is
therefore expensive in comparison with application of the finite element (FE) method, which
has been described in Chapter 2.

The computational effort can be diminished when the EFG-method is used only on the parts
of the domain where application of this method is necessary. Here, one has to think of the
neighbourhood of a crack. For the remaining part of the domain the FE-method can be used.
For such an approach, however, the two parts have to be coupled in a certain way. In this
chapter, three possible combinations of the EFG-method and the FE-method are studied.

5.1 Combination by means of element-free coupling

In Section 3.1 it has been shown that several FE-shape functions can also emerge from moving
least squares approximation. As a consequence, some FE-discretizations can be regarded as an
approach by the EFG-method. This leads to the first way to combine the EFG-method and the
FE-method. The combination can be regarded as an overall EFG-approach, which yields that
problems of coupling both methods are absent. This combination of EFG and FE has already
been reported by the author in [30] and is illustrated below.

Let a division of the problem domain into finite elements Q,, ¢ = 1,..., N, be given by the con-
nectivity of the nodal points x,, e = 1,...,n. As described in Section 3.1, let weight functions
and basis functions be chosen such that MLSA with the nodes x, results in shape functions
¢o(x), & =1...,n, which coincide with the shape functions for the element division. When the
domain is divided into integration cells A, such that A, = Q., e =1,..., N, and the numerical
integration per integration cell is such that it is equivalent to the integrations performed for
the corresponding element, application of the EFG-method is identical to application of the
FE-method.

77
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Ql

Qz

Figure 5.1: Nodal points and integration cells for EFG-method on 2 = Q' U Q2 resulting in
FE-discretization on Q.

The above considerations lead to a straightforward way to apply the EFG-method and the
FE-method together on a single domain. This is illustrated in Figure 5.1, where the domain
€ = QFUP is depicted together with a set of nodal points. According to Section 3.1, the EFG-
method for the upper part §2' will be identical to a FE-discretization by means of four-node
rectangular elements, if

o the set of basis functions is {1, 2y, Ty, 2122},

o the nodal points in €' have weight functions with supports equal to the union of the’
surrounding rectangles with the nodal points as vertices,

» the nodal points in Q? have weight functions which vanish on 2},

o the nodal points on the internal boundary between Q! and Q? have weight functions such
that the intersections of the supports of these weight functions with Q! are equal to the
surrounding rectangles with the nodal points as vertices,

o the integration cells for Q! coincide with the rectangles with the nodal points as vertices
and numerical integration for these cells is equivalent to numerical integration for a four-
node rectangular element.

For £2? a general EFG-approach can be used. Of course, the weight functions should be chosen
such that MLSA is well-defined for 2. Furthermore, a division of % into integration cells
can be made independent of the nodal pattern, see Figure 5.1. Since this example can be



5.2. COMBINATION BY MEANS OF LAGRANGE MULTIPLIER 79

regarded as an overall EFG-approach for Q, the FE-method on Q' and the EFG-method on £?
are automatically coupled.

When the nodal points for 2! are vertices of non-rectangular quadrilaterals, such a combination
of EFG and FE is not possible. This is due to the fact that FE-shape functions and MLSA-
shape functions do not coincide for such a distribution, see Section 3.1. For a nodal distribution
in Q! coming from a division into triangular elements, however, this element-free coupling of
the methods is always possible.

When I', is part of the boundary of the FE-domain 2!, the essential boundary conditions can
be satisfied exactly. In that situation, these conditions can be prescribed at the nodes and the
problem that the conditions are not satisfied, as for a general EFG-approach, is circumvented.
When a part of I, is in the boundary of the EFG-domain, the essential boundary conditions
for this part are accounted for by means of a Lagrange multiplier description, see (4.4).

5.2 Combination by means of Lagrange multiplier

The second possibility to combine the EFG-method and the FE-method is to divide the problem
domain into a subdomain for EFG and a subdomain for FE. These two subdomains are then
coupled by means of a Lagrange multiplier. Such a combination has ailready been reported by
the author in [30] and is described below.

Let the problem domain Q be divided into two subdomains Q' and Q2, i.e. Q@ = Q' U 2, see
Figure 5.1. The boundaries of these subdomains are denoted by I'y and I'y, respectively. For a
combination of a FE-approach for 2! and an EFG-approach for O, one should account for a
coupling of the two subdomains over the common boundary I't N T'y. To this end, we consider
an extension of the weak form (2.17) of the deformation problem for an elastic medium. In this
extension, Q! and Q2 are coupled over I'y M T’y by means of a Lagrange multiplier:

Determine displacements v} € HNQ') and v} € H'(VP), strains ¢, € H(Q') and &; €
HO(Q?), stresses o; € HY(Q') and o; € HY(O?), and Lagrange multipliers \; € H°(T1 NTy),
M e HYT,NTy) and At € HYD,NTy), 4,5 = 1,2,3, such that (2.1), (2.2) are valid on both

Q' and 2, and such that

Lol do — Lo — ul pt
/91 bug; ;y0;; dQ Ll bu; f7 dQ2 /1“,,:11“1 Su; p; dl’

- / 6N} (ub — ) dr - f Sul AL dD — §ul A; dT
TNy Tl IPTaI B
2 2 2 px 2, =
+ fﬂ Gul ;0% 40— /Q Bul 7 d0 - /r B ar (5.1)
- 63 (u? — ;) dT - / §ul A2 dT + §u? X, dT°
Ty ) I'yril'y

- /r g2 (u} —u?) dr =0

for all sul € HYQY), ou? € HYO?), 6\ € HY T NTy), 6A} € HY (T, NTy) and 6X} €
H(T,NTy), i=1,2,3.
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In the weak form (5.1), the Lagrange multiplier X' accounts for the essential boundary condi-
tions on Iy NI, A2 accounts for these conditions on I', NT; and A accounts for the conditions
w=u?onT Nl

In order to derive discrete equations, a division into finite elements is assumed for ', given
by the connectivity of nodal points x}, a = 1,. . As described in Section 2.3, this leads to
FE-shape functions ¢l(x), a =1,...,n. Nodal pomts x2,a=1,...,ny, weight functions and
basis functions are chosen such that moving least squares approxxmation is well-defined for (2.
As described in Section 3.1, this leads to MLSA-shape functions ¢2(x), a =1,...,np

With these two sets of shape functions, the displacements on 2! and 0? in (5.1) are taken of
the form

ul(x) = nzldiéi(x), x € QY (5.2)
a=1

wi(x) = idi@bﬁ(x), x € Q% (5.3)
a==1

The Lagrange multipliers in (5.1} are taken of the form

A(X) = Zk:lbzbg,(x), x e NTy, (54)
k1

Al(x) = Zli@bg(x), xel,NTy, (5.5)

Aix) = 21 Pi(x), x €T, Ny, (5.6)

where {15(%)}o=1,.k, {¥5(X)}o=1, b 20 {QZ(X)}s=1,. 4k, are sets of shape functions on the
boundaries ['; N Ty, I'y NIy and Ty, N Ty, respectively.

For the sets {4} } and {¢/#}, the shape functions ¢ and ¢Z are taken for those indices for which
x. or x2 is positioned on I', NIy or on ', NIy, respectively. For the set {1} on the common
boundary, the shape functions ¢. are taken for those indices for which x! is on I'; N T.

When according to a Galerkin approach the test displacements fu' and éu® and the test
Lagrange multipliers 6, 6A! and A% are taken of the same form as (5.2)-(5.6), one obtains a
linear system for the coeflicient vectors in (5.2)-(5.6), which is similar to (4.4). This system is
of the form

Ky 0 Ly 0 H d* £
0 Ky, 0 Ly Hy || d? f?

¥ 0 0 0 o0 P|=r (5.7)
0 LT 0o o0 0 1? r?

HF HI 0 0 o0 1 0

The matrix 0 and the vector 0 contain only zeros. The submatrices K, K, L, Ly, and the
vectors db, d?, I, 1%, 1, £, £2, r!, r? are given by expressions similar to (4.5)-(4.10). The
submatrices H; and Hy emerge from the integrals over Iy N [y in (5.1).
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Since the shape functions @} (x) are zero on I',NT; for nodal points x. which are not positioned
on this boundary, the essential boundary conditions for Q! can also be imposed directly at the
boundary nodes, instead of using the Lagrange multiplier description in (5.1). This is the
common procedure in FE-analyses and leads also to a system of the form (5.7).

In order to obtain the linear system (5.7), numerical integration is performed as described in
Section 2.3 and Section 4.2. For integration over the common boundary I') N Ty, this boundary
is split into integration cells and integrations are performed similar to the boundary integrations
described in Section 4.2. In order to provide restrictions of FE-shape functions for the repre-
sentation of the Lagrange multiplier on I'y N Ty, see (5.4), we take the non-empty intersections
of the boundaries of the elements in Q! with I'; N Ty as the division of this internal boundary.

Solving the linear system (5.7) for d*, d%, I', 1 and 1 and using (5.2) and (5.3), results in approx-
imations for the displacements on . Taking derivatives of (5.2) and (5.3) and subsequently
using the constitutive equations, e.g. (2.9), leads to approximate values for the strains and
the stresses. Note that due to the coupling of Q! and Q2, strains and stresses are generally
discontinuous across the internal boundary I'; N [y.

5.3 Combination by means of interface elements

The third possible way to combine the EFG-method and the FE-method has been presented by
Belytschko, Organ and Krongauz [10]. A band of special elements, so-called interface elements,
is introduced between the EFG- and FE-domains to enforce continuity of the displacements
over this band. A description of this approach is given in this section.

Let the problem domain be divided into the subdomains Q!, Q2 and 2, i.e. Q = QLU Q2 U Q"
The subdomain Q! is the interface of finite width between the other two subdomains. The
subdomains Q! and Q? are disjoint, while Q' and Qf, and Q% and Q' have only parts of their
boundaries in common, see Figure 5.2.

For a combination of the EFG-method and the FE-method, a division of Q! U Q* into finite
elements €, is assumed and nodal points, weight functions and basis functions are chosen such
that MLSA is well-defined for the subdomain 92 U . The division of Q! U Q' into elements
is such that the interface Q is made up by a subset of the elements, see Figure 5.2. Let the
set {X,}a=1,. n of nodal points for Q be given such that x, is in Q' U Q' and nodal point of
an element €, or such that x, is in Q® U and nodal point for MLSA. When x, is in
the nodal point may be both nodal point of a finite element and nodal point for moving least
squares approximation.

Two sets of shape functions {@L(x)}a=1. » and {#2(x)}a=1, . are considered for the nodal
points. If x, is nodal point of an element, ¢.(x) is the FE-shape function on Q' U Q* for
X,. If this is not the case, ¢l(x) vanishes. If x, is a nodal point for moving least squares
approximation, ¢2(x) is the MLSA-shape function on Q% U Q. If this is not the case, ¢2(x)
vanishes. From these two sets of shape functions, a new set of continuous shape functions
{¢a(X)}az1,. . on ©Q will be defined in such a way that these functions coincide with the FE-
shape functions ¢! on Q' and with the MLSA-shape functions ¢2 on 2. For the definition of
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Ql

QZ

Figure 5.2: Finite elements, nodal points and integration cells for combination of EFG and FE
by means of interface elements.

the functions ¢, an interface function ¢(x) on Q is defined. This function is given by

: 5.8
0, x € QLU (5:8)

{ Treca GL(X), X € QLU
t(x) =

In (5.8) there is only summation over those a for which the nodal point x, is in Q'. Since
the FE-shape functions ¢! are continuous and can represent constant functions exactly, the
interface function is continuous, t(x) = 1 for x € Q! and we have t(x) = 0 for x € Q? and
0 < t(x) < 1 for x € Q'. The interface function ¢, however, is not differentiable across the
boundaries of the interface Q.

With the help of the interface function ¢(x), the shape functions ¢,(x), a=1,...,n, on Q are
defined by

$a(x) = t(x)ga(x) + (1 — t(x)) ga(), (5.9)

where x € Qand a=1,...,n.

From (5.9) and the features of the interface function, it is seen that the shape functions ¢, are
continuous on Q, and that ¢(x) = ¢1(x) for x € Q! and ¢(x) = ¢2(x) for x € Q2. The shape
functions are differentiable on  except for the element boundaries in Q' U Q.

It is seen easily that when the FE-shape functions and the MLSA-shape functions can both
represent polynomials up to a certain degree exactly, the same holds true for the shape functions
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defined by (5.9). For example, consider the four-node quadrilateral elements for Q' UQ* and the
nodes for MLSA on % U Q* depicted in Figure 5.2. On quadrilateral elements linear functions
can be represented exactly. Hence, when the linear basis {1, 2,2} is used for MLSA, linear
functions can be represented exactly on Q2 U Q? because of (3.12), and the same holds true on
Q for the shape functions (5.9).

-

method is used for representation of the displacements, see (2.49) or (4.1). This representation
is then applied in a Galerkin formulation for the weak form (2.11) or (2.17), depending on
whether the essential boundary conditions can be imposed exactly. The combination leads to a
similar linear system as (2.50) or (4.4). Numerical integration in Q! U Q' is performed for each
element, while in Q2 numerical integration is performed by means of a division into integration
cells A,, see Figure 5.2. A prescribed number of integration points is used for the elements in
Q! and the integration points for the elements in (¢ are determined in the same way as for an
integration cell A,, see Section 4.2.

When T',, is part of the boundary of the FE-domain !, the essential boundary conditions can be
satisfied exactly. This was recognized by Krongauz and Belytschko [40]. In this paper they use
a band of interface elements along I', to impose the essential boundary conditions. By means
of this approach they circumvent the problem, discussed for the EFG-method in Section 4.3,
that essential boundary conditions are not satisfied along a continuous part of the boundary.

5.4 Convergence aspects of EFG-FE combinations

In the first three sections of this chapter, different ways to combine the EFG-method and
the FE-method have been described. By means of the problems studied for the EFG-method
in Section 4.3, we focus on the performance of the combinations. In each example, all the
quantities and material parameters are thought of as being non-dimensional. Homogeneous,
isotropic, linearly elastic material behaviour is assumed with the material parameters taken
equal to £ = 1 and v = 0.25. Volume forces f* are absent. As a result of the convergence
study in Section 4.3, in each example weight functions of polynomial type (3.23) are used on
the EFG-part of the domain.

Some convergence studies for these ways to combine the EFG-method and the FE-method have
already been reported, see [10] and [30]. In these papers, however, the EFG-method is applied
with integration points for an integration cell chosen in a different way than in the scheme
proposed in Section 4.2 and Appendix D.

The results reported in this section are obtained by means of implementations of the combi-
nations of the EFG-method and the FE-method in the MATLAB programming environment
[51]. A short description of an analysis by means of a combination of both methods is found
in Appendix B.
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Figure 5.3: Nodal distribution (a) and element/cell configuration (b) for patch tests by means
of combinations of EFG and FE.

5.4.1 Patch tests

The two patch tests considered in Section 4.3 are studied for the three combinations of the
element-free Galerkin method and the finite element method. We start with the square plate
depicted in Figure 5.3, with the linear displacements (4.15), (4.16) for the plane stress problem
of a uniform axial stress o applied at z; = 1, prescribed at the boundaries. The FE-method is
applied on the left half z; < 0.5 and the EFG-method on the right half. As FE-discretization
100 and 400 three-node triangular elements are taken and for the EFG-method the linear basis
{1, 21,22} is considered together with 66 and 232 nodal points. Hence, a total number of 121
and 441 nodes is used, see Figure 5.3a.

The linear displacements (4.15), (4.16) are imposed at all the boundary nodes. These displace-
ments can be represented exactly by the FE-shape functions and the MLSA-shape functions.
On the EFG-part two different values are considered for v to determine the radii of the supports
of the weight functions. These radii are proportional to the value of v, see (3.28). Further-
more, for numerical integration purposes the EFG-part of the domain is divided into 50 and
200 quadrilateral integration cells, respectively, see Figure 5.3b.

For the combination of the EFG-method and the FE-method by means of element-free coupling,
products of one-dimensional weight functions are used for the nodal points on the line z; = 0.5.
The radii of the supports of these weight functions are given values such that MLSA on the
right part results in shape functions which coincide with the FE-shape functions on z; = 0.5.
The weight functions for the other nodal points in the EFG-part of the domain are modified
such that these are zero on the FE-part. When the domains are connected by means of a
Lagrange multiplier, the nodes on z; = 0.5 are double, i.e., there is a set of nodes on z; = 0.5
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EFG+FE-parameters flu® — wllo/lhulle | |[0* — ull1/lJully
Element-free, v = 2.0, 121 nodes, 150 elements/cells 6.54-10* 8.09.10°%
Element-free, v = 2.5, 121 nodes, 150 elements/cells 9.41-10™ 1.29-107°
Element-free, v = 2.0, 441 nodes, 600 elements/cells 2.54-10™4 6.09-1073
Element-free, v = 2.5, 441 nodes, 600 elements/cells 3.36-10"% 9.16-10-3
Lagrange, v = 2.0, 132 nodes, 150 elements/cells 9.75-107° 1.13-1073
Lagrange, v = 2.5, 132 nodes, 150 elements/cells 4.46-107* 6.61-1073
Lagrange, v = 2.0, 462 nodes, 600 elements/cells 2.49-107° 5.69 - 10~4
Lagrange, v = 2.5, 462 nodes, 600 elements/cells 1.09-107* 3.21-1072
Interface, v = 2.0, 121 nodes, 150 elements/cells 9.99- 1075 1.14-1073
Interface, v = 2.5, 121 nodes, 150 elements/cells 4.50- 1074 6.65- 103
Interface, v = 2.0, 441 nodes, 600 elements/cells 2.53-107° 5.71-107*
Interface, v = 2.5, 441 nodes, 600 elements/cells 1.09-10~ 3.20- 1073

Table 5.1: EFG+FE-results for problem of prescribed linear boundary displacements, linear
basis.

for the FE-discretization on the left half of the domain and another set for the EFG-method
on the right half. For the combination by means of interface elements, the triangular elements
in the band next to z; = 0.5 are replaced by triangunlar interface elements.

The results for the three combinations are shown in Table 5.1. In this table, [ju® — ul; and
|lu® — uj|; are the errors in the H°- and H'-norms, see (4.17) and (4.18). These errors are
obtained by means of numerical integration over the elements and over the integration cells.

The results in Table 5.1 show that the linear solution (4.15), (4.16) is not obtained exactly by
the combinations, unless the fact that the boundary displacements are satisfied exactly at the
nodes. Errors are introduced due to the fact that the essential boundary conditions on the
EFG-part of the domain are not satisfied and due to errors because of numerical integration
in this domain. These problems were also reported in Section 4.3. From the table it is seen
that for all three combinations the errors increase when the value of v increases. This can be
explained from the fact that for a higher value of v the sizes of the supports of the MLSA-shape
functions are larger, such that more nodes influence the displacements on the EFG-boundary.

Table 5.1 also shows that a refinement of the element distribution together with a refinement
of the nodal distribution for the EFG-method leads to a decrease in the errors for all three
combinations. This can be explained from the fact that for such a refinement the boundary
conditions are satisfied at more nodes of the EFG-boundary. Therefore, one can conclude that
this patch test for the exact representation of the linear solution is satisfied in the weak sense,
that is, for h, — 0, where h, is the local mesh size, see (3.27).

Nearly all errors in the table are of the same order. The combinations by means of a Lagrange
multiplier and by means of interface elements result in almost equal errors. The performance
of these two combinations for this problem is slightly better than the performance of the
combination by means of element-free coupling.

In Figure 5.4, the relative error in oy is depicted for the combination by means of element-free
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Figure 5.4: Relative error in 011 for element-free coupling (a) and Lagrange multiplier (b),
problem of prescribed linear boundaory displacements, linear basis.

coupling and for the combination by means of a Lagrange multiplier in the case of v = 2.0 and
a nodal distribution of 441 and 462 nodal points, respectively. The error for the combination
by means of interface elements is similar to the one depicted in Figure 5.4b. It is seen that the
error in Figure 5.4b is small and that there is hardly a discontinuity in o33 over the common
boundary of EFG-part and FE-part.

From Figure 5.4a, a large error at 1 = 0.5 is seen for the combination by means of element-free
coupling. Hence, as in [30], one might conclude that this way to combine the two methods is
not correct. However, a close look at this error shows that it is only due to the fact that MLSA
is not well-defined on z; = 0.5. On this internal boundary the only nodes for MLSA involved
in the summation (3.4) are the nodes on this boundary, which yields that the matrix P in
(3.8) does not have maximal rank. As we have seen before for the wedge model in Section 3.2,
this does not prevent MLSA to define a unique value for the shape functions on the internal
boundary. However, the derivative of the shape functions with respect to the z;-coordinate and,
therefore, the stresses cannot be determined at x; = 0.5. The stresses at x; = 0.5 depicted
in Figure 5.4a are found by performing MLSA without the basis function 2;. For z; > 0.5,
MLSA is well-defined and the derivatives and stresses can be determined. It was found that for
1 > 0.5 the error in oy is of the same order as for the combination by means of a Lagrange
multiplier. Hence, we conclude that the combination of EFG and FE by means of element-free
coupling is a correct way to combine the methods.

The second patch test concerns the square plate with applied traction and displacements pre-
scribed at the boundaries. The domain is divided into a part for the EFG-method and a part for
the FE-method in a similar way as in the previous patch test. Again the solution (4.15), (4.16)
is considered. Displacement u, is prescribed at the boundary z; = 0 by means of imposition at
the nodes. At the boundary z, = 0 displacement u, is prescribed by imposition at the nodes
on the FE-part (z; < 0.5) of this boundary and by means of a Lagrange multiplier description
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EFG-+FE-parameters flu* = ullo/llullo | lu* = ull/|lull,
Element-free, v = 2.0, 121 nodes, 150 elements/cells 6.84 - 10™* 810- 1073
Element-free, v = 2.5, 121 nodes, 150 elements/cells 8.86- 104 1.14- 1072
Lagrange, v = 2.0, 132 nodes, 150 elements/cells 7.23-107° 7.56-1074
Lagrange, v = 2.5, 132 nodes, 150 elements/cells 1.68- 1075 2.41-101
Interface, v = 2.0, 121 nodes, 150 elements/cells 2.35- 1078 1.20- 104
Interface, v = 2.5, 121 nodes, 150 elements/cells 1.47-107% 1.57-10™*

Table 5.2: EFG+FE-results for problem with constant uniaxial stress, linear basis.

for the EFG-part {z; > 0.5) of the boundary. The ¢onstant normal stress ¢ is prescribed at
the boundary z; = 1, while the boundary z, = 1 is stress-free.

For an analysis by means of combinations of EFG and FE, the FE-part is divided into 100
three-node triangular elements. For the EFG-part the linear basis {1, 21,25} is taken. A total
number of 121 nodes is used, see Figure 5.3a. Two different values for v are used and for
numerical integration the EFG-part of the domain is divided into 50 quadrilateral integration
cells, see Figure 5.3b. The results for the three combinations are shown in Table 5.2. The errors
found in the solution are due to numerical integration and due to the fact that the essential
boundary conditions at the boundary of the EFG-part of the domain are not satisfied exactly.
An increase of v does not lead to an increase in the errors for the second and third way for
combining EFG- and FE-methods. This can be explained by the fact that a significant part
of the essential boundary conditions are prescribed on the boundary of the FE-part of the
domain, which means that these conditions are not satisfied exactly only on a small part of the
boundary.

The errors for the combination by means of a Lagrange multiplier and by means of interface
elements are of the same order. The errors for the combination by means of element-free
coupling are significantly higher. For the latter combination, the weight functions for MLSA
have to vanish on the FE-part of the domain. Hence, almost all the weight functions are small
near the internal boundary between the FE-part and the EFG-part, resulting in highly non-
polynomial shape functions near this boundary for the EFG-method, see Section 3.1. Therefore,
numerical integration of these shape functions leads to a less accurate performance of this
combination of the EFG-method and FE-method. Since these problems are absent in the other
two ways for combining EFG-method and FE-method, the combination by means of element-
free coupling is not considered in the next examples.

As for the first patch test, refinement of the element mesh and the nodal distribution together
with a refinement of the pattern for numerical integration, will lead to a decrease in the errors.
Since more shape functions are involved in the representation (4.3} of the Lagrange multiplier,
the error in the representation of the boundary displacements decreases. Hence, it is concluded
that this patch test for the exact representation of the linear solution (4.15), (4.16) is satisfied
in the weak sense.

As for the EFG-method in Section 4.3, one expects that satisfaction of the two patch tests
implies convergence of the combinations of the element-free Galerkin method and finite element
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Figure 5.5: EFG+FE-errors and -convergence rates R for (a) H%-norm and (b) H'-norm,
problem of shear force on a plate, linear basis.

method. This is shown in the next two examples where we focus on combinations by means of
a Lagrange multiplier and by means of interface elements.

5.4.2 Shear force on a plate

Consider the square plate depicted in Figure 5.3. Let a transverse shear force ' be applied
at the boundary z; = 1. When the shear stress on this boundary is distributed according
012 = —6(F/d®)zs(xs — 1), where d = 1 is the length of the plate in the z,-direction, the
displacements in the situation of plane strain are given by (4.19) and (4.20). The convergence
of the combinations of the EFG-method and the FE-method by means of a Lagrange multiplier
and by means of interface elements is studied for this problem. The displacements (4.19), (4.20)
are prescribed on the boundary x; = 0 and the shear stress ¢y is prescribed on the boundary
2y = 1. The boundaries z; = 0 and z, = 1 are taken stress-free.

On the left half of the plate (z; < 0.5) the FE-method is applied and on the right half (z; > 0.5)
the EFG-method. As FE-discretization divisions into 50, 200 and 800 four-node quadrilateral
elements are used. For the EFG-method on the right half, the linear basis {1, 1, zs} is taken
together with nodal distributions with local mesh sizes identical to the mesh sizes of the element
discretizations. This leads to a total number of 121, 441 and 1681 nodes, respectively. The
displacements (4.19) and (4.20) are prescribed at the (finite element) nodes on the boundary
Ty = 0.

On the EFG-part of the domain, two different values are considered for v in equation (3.28) for
the sizes of the supports of the weight functions. For numerical integration purposes the EFG-
part of the domain is divided into 100, 400 and 1600 triangular integration cells, respectively,
leading to a total number of 150, 600 and 2400 elements/cells. For the combination by means
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of interface elements, the band of elements next to z; = 0.5 is replaced by interface elements
and for the combination by means of a Lagrange multiplier the nodes on z; = 0.5 are double.

In Figure 5.5, the logarithms of the errors in the H% and H'-norm, see (4.17) and (4.18), are
depicted versus the logarithm of the mesh parameter A. The mesh parameter h is taken to
be the distance in the x;-direction between neighbouring nodes. To obtain accurate values for
the errors in the Sobolev-norms by means of the division into elements and integration cells,
(4,4)-point Gaussian quadrature is used in the elements. A linear correspondence is seen in
the figure, which yields that the error estimates (4.21) hold true. The convergence rates R in
these estimates are equal to the slopes of the given lines. The values for R are also given in
Figure 5.5. In the figure only the rates for v = 2.0 are depicted, since for the value v = 2.5
almost equal errors and hence, equal convergence rates were found. Similar convergence rates
have been found for both v = 2.0 and v = 2.5 when rectangular integration cells are used in
the EFG-part of the domain instead of triangular integration cells.

Figure 5.5 shows that the combinations of the EFG-method and the FE-method converge. The
convergence rates are approximately equal to those for a FE-diseretization of the entire patch
into four-node quadrilateral elements. The convergence rates for such FE-analyses are exactly
equal to 2 and 1 in the H% and H'-norms, respectively, see [33, Ch. 4]. In Section 4.3, it has
been shown that the convergence rates for a pure EFG-approach for this problem are higher than
the ones for the combined approaches. As a result, it is concluded that the convergence of the
combinations of the EFG-method and the FE-method is dominated by the FE-discretizations.
In the next example it is shown that the convergence for the combinations can even be slower
than the convergence for the FE-discretizations.

5.4.3 Infinite plate with circular hole

The performance of the combinations of the EFG-method and the FE-method by means of a
Lagrange multiplier and by means of interface elements is studied for the problem of a plate
with a circular hole discussed in Section 4.3. As in this section, the part 0 < z; < 5 and
0 < z9 < 5 of the upper right quadrant of the plate is considered, see Figure 5.6. On the
part 0 < z; < 3 and 0 < 7, < 3, the EFG-method is applied and on the remaining part
the FE-method. As FE-discretization, divisions into 20, 64 and 132 four-node quadrilateral
elements are used, see Figure 5.6b. For the EFG-method the linear basis {1, zy, zs} is taken.
In the EFG-part of the domain, the nodal points are spaced regularly in the #-direction and
irregularly in the r-direction, see Figure 5.6a, in order to achieve accurate approximations of the
steep displacements and the stress concentrations near the circular boundary, see (4.22)-(4.26).
The total number of nodes which are used, is 105, 241 and 433, respectively.

On the boundaries z; = 5 and xs = 5, the tractions are prescribed according o the stresses
(4.22)-(4.24), which are proportional to o. The circular boundary has radius ¢ = 1 and is
assumed fraction-free. Displacements are prescribed on the boundary of the patch according
to the solution (4.25), (4.26). On the boundary z; = 0, we set u; = 0 while on z, = 0, we set
uy = 0. On the FE-parts of these boundaries the displacements are prescribed at the nodes,
while on the EFG-parts of these boundaries the displacements are accounted for by means of
a Lagrange multiplier description, see (2.17). The EFG-part of the domain is divided into 64,
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Figure 5.6: Nodal distribution (a) and element/cell configuration (b) for combination of EFG
and FE, problem of infinite plate with circular hole.

144 and 256 integration cells, see Figure 5.6b. These integration cells are quadrilaterals with
four definition points. The cells next to the circular boundary are given with the help of the
connectivity of five definition points to achieve a better approximation of this boundary. The
same number of cells is taken in the r- and #-directions. For the EFG-method, two different
values for v are used and thus two different sizes for the supports of the weight functions, see
(3.28). For the combination by means of interface elements, the elements next to the internal
boundary between EFG- and FE-parts are replaced by interface elements. For the combination
by means of a Lagrange multiplier, the nodes on this internal boundary are double.

In Figure 5.7, the logarithms of the errors are depicted versus the logarithm of h. Convergence
rates R are also given in the figure. These rates are taken equal to the mean slope of the
depicted lines. The local mesh size h,, see (3.27), averaged over the nodal points x, is taken
as global mesh size h. To this end, h, is also computed for the nodes of the FE-discretization.
For an accurate computation of the errors in the Sobolev-norms by means of the division into
elements and integration cells, (4,4)-point Gaussian quadrature is used in the elements to obtain
these errors. In the figure, we see that the combinations converge for this problem, despite the
non-convex domain and the approximation of it by the integration cells, and the coupling of
EFG-method and FE-method over a piecewise linear internal boundary. In the figure it is also
seen that only in the case of a combination by means of a Lagrange multiplier and v = 2.0
the convergence rates exceed those for a FE-discretization of the entire domain into four-node
elements. The convergence rates for such FE-analyses are exactly equal to 2 and 1 for the H®-
and H'-norms, respectively, see [33, Ch. 4]. For the other three situations, the convergence
rates are smaller than the rates for the FE-discretization. In Section 4.3 it has been shown that
the convergence rates of a pure EFG-approach for this problem are higher than the values for



5.4. CONVERGENCE ASPECTS OF EFG-FE COMBINATIONS 91

tog (Hu® - ully 7 Hully ) fog (Hu ~ ulty / 1l )
~2.6 v v —r
-2
2.8
-3 ~2.2 ]
-3.2 -24
~3.4F
\- -2.8
-8.6 A - Lagrangs, v=2.0: R=2.17 -~ Lagrange, v=2.0: R= 1.22
a8 «~ Lagrange, v=25:R=178 -2.8- -~ Lagrangs, v=2.5: R = 1.01
o R N interface, v=2.0:R=167 | | pe Inerface, v=2.0. R=0.94
4t - Interface, v=2.5: R=1.59 -3r - Interface, v=25:R=0.93
~0.5 -0.4 ~0.3 -0.2 »0:1 0 -0.5 -04 -0.3 ~(.2 -0.1 ¢
log (h) log (h)
(2) (b)

Figure 5.7: EFG+FE-errors and -convergence rates R for (a) H%-norm and (b) H'-norm,
problem of infinite plate with circular hole, linear basis.

the FE-approach. As a result, we conclude that the combinations of the EFG-method and the
FE-method can lead to convergence rates which are smaller than the convergence rates for the
FE-discretizations.

From Figure 5.7 it is also seen that a higher value for v leads to an increase in the errors and a
decrease in the convergence rates for the combination by means of a Lagrange multiplier. This
is due to the fact that a higher value for v results in larger sizes for the supports of the weight
functions, see (3.28). Therefore, more nodal points in the EFG-part of the domain influence the
displacements on the internal boundary between the EFG-part and the FE-part of the domain.
This yields that it is more difficult to have continuity of displacements across this boundary.
It is seen that for the combination by means of interface elements the errors are smaller than
those for the combination by means of a Lagrange multiplier. However, the convergence rates
for the latter one are a litfle higher. Furthermore, a higher value for v in the case of interface
elements does not lead to an increase in the errors, since the errors for both values of v are
almost the same.

Convergence of the combination by means of a Lagrange multiplier is also seen from a com-
parison of the computed stresses with the solution (4.22)-(4.24). In Figure 5.8, the errors in
011 and o9y are given for x; = 0 and x5 = 0, respectively. A decrease in the errors is observed
for an increase in the number of nodal points. The value of ¢ in the applied tractions was
set 0 1 - 1073, In the figure discontinuities in the stresses are seen at the internal boundary
between the EFG-part and the FE-part of the domain, i.e., at 23 = 3 and z; = 3, respectively.
This is due to the fact that the combination by means of a Lagrange multiplier accounts only
for a weak formulation of the continuity of the displacements across this boundary. For the
combination by means of interface elements, discontinuities in the stresses along the boundaries
of the interface elements are also observed. However, for this combination, no discontinuities
are obtained in the displacements over the internal boundary between the EFG- and FE-parts.
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Figure 5.8: Errors in oy ot z; = 0 (a) and in 02 at 25 = 0 (b), combination of EFG and FE
by means of Lagrange multiplier, problem of infinite plate with circuler hole, linear basis.

It should be remarked that in Figure 5.8 the stresses on the FE-part of the boundary have been
averaged.

The convergence of the combinations for this problem has also been studied for an approach
using a quadratic basis. The FE-part of the domain is divided into 5, 16 and 33 nine-node
quadrilateral elements, respectively. For the EFG-method on the part for which 0 < z; < 3
and 0 < 7y < 3, the quadratic set {1, 21,7y, 2%, 2122, 22} of basis functions is used together
with the same distributions of nodes and the same configuration of integration cells as for the
approach using a linear basis. The two values for v are taken which have also been used for
the gquadratic EFG-approach for this problem reported in Section 4.3. Convergence rates for
the combinations are given in Figure 5.9. It is seen that the combinations converge for this
problem. The convergence rates are smaller than the rates for a FE-diseretization of the entire
domain into nine-node quadrilatern] elements. The convergence rates for such FE-analyses are
exactly equal to 3 and 2 for the H% and H'-norms, respectively, see [33, Ch. 4].

The errors for the combination by means of a Lagrange multiplier are of the same order as those
given in Figure 5.7 for the approach using the linear basis. Similar to that linear approach,
an increase in v leads in Figure 5.9 to an increase in the errors. For this way to combine the
EFG-method and the FE-method, it is also seen that the convergence rates for v = 2.5 are
smaller than the ones for v = 3.0 and smaller than the ones for v = 2.5 given in Figure 5.7. This
is explained by the same considerations as those given in Section 4.3 for the approach using the
quadratic basis. In comparison with an approach using a linear basis, three extra basis function
are involved. Hence, when the same radii of the weight functions are used for both sets of basis
functions, the shape functions for the quadratic basis are locally more non-polynomial than
the ones for the linear basis. The numerical integration scheme for the EFG-method performs
therefore better for the linear basis, resulting in higher convergence rates. For v = 3.0 and a
quadratic basis, the shape functions are locally more polynomial than the ones for v = 2.5.



5.4. CONVERGENCE ASPECTS OF EFG-FE COMBINATIONS 93

log (1lu” - ullg / Hutly ) log ({IuP - ull, / llull, )

-2 —
e -
= o T
_3f
-2.5
-3.5 e
L T .
-4 < :-;-.-;--w'*""’"""
* — Lagrange, v=25:R=124 — Lagrange, v=25:R=0.52
~4.5f ~- Lagrange, v=3.0:R=1.58 b _35} -- Lagrange, v=3.0: R=0.83
----- Interface, v=25:R=245 ’ -« Interface, v=25: R=1.45
-5 -~ Interface, v=23.0: R =250 1 ---- Interface, v=3.0: R=1.54
-0.5 —-0:4 —0:3 —0:2 —0:1 [} :6.5 —0:4 —0:3 — :2 ~
log (h) log (h) 0 04 0
(a) (b)

Figure 5.9: EFG+FE-errors and -convergence rates R for (a) H%-norm and (b) H'-norm,
problem of infinite plate with circular hole, quadratic basis.

This results in higher convergence rates, despite the fact that more nodal points influence the
displacements at the internal boundary between the EFG- and FE-parts of the domain. In
contrast with the application of a pure EFG-approach for this problem reported in Section 4.3,
the use of a quadratic basis for the combination by means of a Lagrange multiplier, does not
lead to higher convergence rates than when a linear basis is used.

It is seen from Figure 5.9 that, for the approach using the quadratic basis, the combination
by means of interface elements performs better than the combination by means of a Lagrange
multiplier. The errors are smaller and the convergence rates for the interface elements exceed
those for the Lagrange multiplier. For interface elements, the errors in the computed displace-
ments and stresses are for both values of v almost the same. Hence, a higher value of v does
not lead to an increase in these errors, as for a Lagrange multiplier. Furthermore, it is seen
that the convergence rates for interface elements with a quadratic basis exceed the ones given
in Figure 5.7 for the linear basis, as for a pure EFG-approach.

5.4.4 Conclusions and discussion

In this section three different ways of combining the element-free Galerkin method and the
finite element method have been discussed: element-free coupling, combination by means of a
Lagrange multiplier and combination by means of interface elements. The examples presented
above lead to the following conclusions. The errors in the numerical solutions can be attributed
to various reasons, namely due to numerical integration, due to the fact that essential boundary
conditions are not exactly satisfied along continuous boundaries, and due to the coupling of
EFG-part and FE-part of the domain. Patch tests for the exact representation of linear solutions
show that the three ways of combining EFG-method and FE-method all perform well. These
patch tests are satisfied in the weak sense by the combinations. From the results for the
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patch tests it is concluded that the combination by means of a Lagrange multiplier and the
combination by means of interface elements is preferred to an element-free coupling of the
methods. This conclusion is because the latter one results in shape functions for the EFG-
method which are locally strongly non-polynomial near the FE-part of the domain.

It has been shown that the combinations by means of a Lagrange multiplier and by means
of interface elements converge for elasto-static problems. Furthermore, it has been shown
that, despite the high convergence rates for pure EFG-analyses reported in Section 4.3, the
convergence rates of the combined approaches do not exceed the rates for the applied FE-
discretizations.

From the examples it has been seen that the combination by means of interface elements,
especially in the case of an approach by quadratic basis functions, performs better than the
combination by means of a Lagrange multiplier. For the latter case, larger errors are obtained
when larger values are used for the radii of the supports of the weight functions. For this way of
combining the EFG-method and the FE-method, the continuity across the internal boundary
between the EFG-part and the FE-part of the domain is only accounted for by means of a weak
formulation of the continuity conditions. This in contrast with the combination by means of
interface elements, where the displacements are continuous across the internal boundary. For
this way of combining the EFG-method and the FE-method, an increase in the radii does not
lead to an increase in the errors.

Similar convergence rates for interface elements for the problem of a shear force on a plate have
also been reported in [10]. In [30] the convergence of the combination by means of a Lagrange
multiplier has been studied for the problem of a shear force on a plate and the problem of
an infinite plate with a circular hole. In this paper the rates obtained for such a combination
for the first problem are similar, as in this section, to the rates for the FE-discretization. For
the problem of a circular hole, however, the paper reports convergence rates which exceed the
obtained rates in this section. The explanation for this comes from the fact that in [30] the
Sobolev-norms are computed with low-order Gaussian quadrature in the elements, yielding that
a significant part of the convergence is due to the numerical computation of these norms.

In the next chapter the EFG-method and the combination of the EFG-method and the FE-
method by means of interface elements, are applied to fracture mechanics. Results are reported
for both static and quasi-static problems.



Chapter 6

Simulation of crack propagation

In Chapter 4 and Chapter 5, the element-free Galerkin (EFG) method and combinations of
this method with the finite element (FE) method have been considered. This chapter studies
the application of the EFG-method and the application of a combination of the EFG- and FE-
methods to fracture mechanics problems. Results are given of analyses of static problems, where
stress intensity factors are determined, and of simulations of quasi-static crack propagation
where crack paths are computed.

Application of the EFG-method to fracture mechanics problems has already been reported in
the literature. In [7] and [48], stress intensity factors are computed for the problem of an edge
crack in a mode I loading situation. The crack is taken into account by symmetry considerations
and by the use of the discontinuous crack model of Belytschko presented in Chapter 3. Results
of the use of this model can also be found in [5], [8]-[11] and [49]. In [5] and Belytschko, Lu and
Gu [8], results of simulations of quasi-static crack propagation are reported. In Belytschko, Lu,
Gu and Tabbara [9], Belytschko and Tabbara [11] and Lu, Belytschko and Tabbara [49], the
EFG-method is applied to dynamic fracture problems. In [10] the discontinuous crack model
of Belytschko is used in a coupled EFG- and FE-approach for dynamic fracture problems. The
EFG-method and the FE-method in this paper are coupled by means of the interface elements
described in Chapter 5. In [6] the continuous crack model of Belytschko presented in Chapter 3
is applied to static fracture problems. In [5]-{11], 48] and [49], polynomial basis functions are
used for the representation of the displacements and the stresses near the crack tip and the
configurations of integration cells are not adapted for the presence of a crack.

Recently, in Fleming, Chu, Moran and Belytschko [25] and in [58], results have been reported
of static and quasi-static fracture analyses where, as in this chapter, special basis functions are
used for accurate representations of displacements and stresses near the crack tip. In {25] and
[58], a polynomial basis is extended with four extra basis functions taken from the near-tip
displacements (2.21). This has the consequence that large radii have to be used for the weight
functions of the nodes, yielding shape functions with relatively large supports and making
the approach more non-local than an approach with fewer basis functions. In [25] a second
approach is described, where a polynomial basis is used and the asymptotic expressions (2.21)
for the displacements are added directly to the set of shape functions. Since these agymptotic
expressions are global functions, this results in a global approach. Both approaches described
in {25], however, are used locally near a crack tip and are coupled with an EFG-approach for

95
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the remaining part of the material, which uses only a polynomial basis. Two ways of coupling
are considered. The first one uses the way of coupling which is also applied in the combination
of the EFG-method and the FE-method by means of interface elements given in Chapter 5.
The second way of coupling simply changes the basis at a remote distance of the crack tip,
which results in discontinuous shape functions. In [25] and [58], the continuous crack model of
Belytschko given in Chapter 3 is applied and the configuration of cells is not adapted for the
presence of a crack.

The results in this chapter are obtained in a different way than those given in [5]-[11], [25], [48],
[49] and [58]. As described in Chapter 3, the wedge model is applied for an EFG-analysis on
(a part of) the domain, together with the addition of only one special basis function, in order
to compute accurate displacements and stresses near the crack tip and to keep the approach as
local as possible. During numerical integration by means of the configuration of integration cells,
the presence of a crack is accounted for by dividing integration cells into subcells. Integration
points for an integration cell are chosen on the basis of the nodal distribution and the size of
the cell. This has been described in Chapter 4.

In this chapter results are given of analyses of both static and quasi-static problems. Three
problems are considered, namely the problem of an edge crack in a mode I loading situation, the
problem of an edge crack in a mixed-mode loading situation and the problem of a single-edge
notched beam under shear loading. The static problems concern geometries with stationary
(non-propagating) eracks. Stress intemsity factors are computed and compared with exact
values. The use of special basis functions in the EFG-method and the dependence of this method
on the configuration of integration cells are investigated. The quasi-static problems concern
geometries with (slowly) propagating cracks. The analyses are quasi-static, since dynamic
effects such as wave propagation are not taken into account. Step lengths for crack propagation
and local mesh sizes for the nodal distribution are studied for an accurate performance of the
EFG-method. The calculated crack paths are compared with results reported in the literature.

In Chapter 5, different combinations of the element-free Galerkin method and the finite element
method have been studied. The combination by means of interface elements turned out to be
the combination with the best performance. This combination is also applied to the above-
mentioned problems. In all applications of the combination, the nodal distributions and cell
configurations are taken similar to those used for the EFG-method in these problems.

The reported results in this chapter are obtained by means of implementations of the EFG-
method and the combination of this method with the finite element method, in the MATLAB
programming environment [51]. Schematic set-ups of analyses for a cracked material domain by
the EFG-method and by the combination of EFG- and FE-methods, are found in Appendix B.
In each fracture example presented in this chapter, all the quantities and material parameters

- are thought of as being non-dimensional. Homogeneous, isotropic, linearly elastic material
behaviour in a situation of plane strain is assumed with the material parameters taken equal to
E =1 and v = 0.25. Volume forces f are absent. Furthermore, weight functions of polynomial
type (3.23) are used.

Each of the first three sections of this chapter deals with one of the above mentioned fracture
mechanics problems. The chapter ends with a section in which a discussion and conclusions
are found concerning the reported results.
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Figure 6.1: Edge crack in (a) mode I and (b) mized-mode loading situation.
6.1 Edge crack in mode I loading situation

In this section we study the the problem of an edge crack in a mode I loading situation, see
Figure 6.1a. In analyses of the problem the influences of the number of nodal points, the cell
configuration, the set of basis functions, and the combination of the EFG- and FE-methods are
investigated. Therefore, one fixed geometry is chosen: the dimensions of the cracked material
domain in Figure 6.1a are set equal to b = h = 1 and the crack length is taken as a = 0.3b.

6.1.1 Results for EFG-method

For EFG-analyses of the problem, two different nodal distributions are considered. The first
one consists of a global equidistant distribution of 66 nodes for the domain, see Figure 6.2a,
together with an extra set of 209 nodes near the crack, see Figure 6.2b. In the figure it is seen
that, as described in Section 3.2, more extra nodes are placed just behind the crack tip than
ahead of the crack tip. The second nodal distribution consists of 231 global nodes together
with 233 nodes near the crack. For this nodal distribution, the local mesh sizes for the nodes
are approximately 50% of those for the first distribution.

The following sets of basis functions are used: the linear basis {1,27,z,}, the linear basis
extended with /7, i.e. {1,7,79,/7}, with 7 being the distance to the crack tip, and the basis
{1,z,, 25, p(x)}, where the function p(x) is defined by (3.50) and behaves like \/r near the
crack tip and like the monomial z,z, on most of the remaining part of the domain. The sizes
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Figure 6.2: Crack, integration cells and global distribution (a), and extra local distribution (b)
of nodal points for EFG-analysis of edge crack in mode I loading situation.

of the supports of the weight functions are given by equation (3.28). The parameter v in this
equation is set equal to v = 2.0 when the basis consists of three basis functions, and to v = 2.5
in the case of four basis functions.

For the distribution of 275 nodes, the domain is divided into 50 or 66 rectangular integration
cells. The latter one is depicted in Figure 6.2. In the case of 50 integration cells, the crack is
at the boundary of several rectangular cells, while for 66 integration cells the crack is in the
interior of several cells such that in an EFG-analysis these cells are subdivided into triangular
integration cells, see Section 4.2. For the distribution of 464 nodes, the domain is divided
into 200 or 231 rectangular integration cells. The constant normal stress o is prescribed at
the horizontal boundaries, while the vertical boundaries are taken stress-free. The rigid body
motions are suppressed by setting three displacements at the boundary equal to zero.

Stress intensity factors are computed from the components of the J-vector, see (4.32), (4.33).
This vector is obtained from an EFG-analysis by J-integration. As described in Section 4.4,
a square curve surrounding the crack tip is used in the computation of the J-integral, see
Figure 4.10. Furthermore, as considered in Section 4.4, a correction is used to avoid integrations
near the crack tip. To investigate the path-independence of the values for J and therefore for
K; and Ky, the vector is computed for 10 different curves . These curves start on the lower
crack surface at a distance 0.125a from the crack tip and the sizes s of the contours range from
0.2a to 0.8a.

Results obtained by EFG-analyses with the given nodal distributions, the different sets of basis
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EFG-parameters K}/ K, SD;
{1,z,2,}, v = 2.0, 275 nodes, 50 cells | 0.962 | 2.33-10"2
{1, 21, 25}, v = 2.0, 275 nodes, 66 cells | 0.967 | 2.37-1072

{1,21,29,1/T}, v=2.5,275nodes, 50 cells | 0.997 | 1.15.1072
{1,21,Z9,+/7}, v=2.5,275nodes, 66 cells | 0.996 | 1.13.107?
{1,zy, 22, p(x)}, v = 2.5, 275 nodes, 50 cells | 0.892 | 2.97-107}
{1, 21,9, p(x)}, v = 2.5, 275 nodes, 66 cells | 1.303 | 4.45- 107}
{1, 21,22}, v = 2.0, 464 nodes, 200 cells | 0.986 | 1.36-1072
{1, 71,22}, v = 2.0, 464 nodes, 231 cells | 0.988 | 1.14-1072
{1,z1,29,4/7}, v=2.5, 464 nodes, 200 cells | 1.002 |7.30-107°
{1,z1,22,4/T}, v=2.5, 464 nodes, 231 cells | 1.001 | 6.24-1073
{1, 21,25, p(x)}, v = 2.5, 464 nodes, 200 cells | 1.229 | 1.17 10~
{1, 21, 29, p(x)}, v = 2.5, 464 nodes, 231 cells | 1.231 | 1.18-107!

Table 6.1: Mean values and standard deviations of K!/K; for EFG-analyses of edge crack in
mode [ loading situation.

functions, the different values for v and the given cell configurations are reported in Table 6.1.
In the first column, the mean values of K*/K; are given, where K? is the computed mode I
stress intensity factor for the contours v and K; = 1.650+/7a is the exact value for this factor
given in Rooke and Cartwright [61, Ch. 1]. In the second column, the standard deviations SD;
of the set of values K?/K; are given. Mode II stress intensity factors K7, are also computed.
Since these factors are always orders of magnitude smaller than K, they are not given.

From the results in Table 6.1 it is concluded that taking /7 in the basis results in more accurate
stress intensity factors than in the case of a linear basis. For a basis with /7, the mean values
of K# are within 0.4% of the exact value with a standard deviation of about 1%, while the
errors in K} for a linear basis are several percents. For contours v which start at the lower
crack surface at a larger distance from the crack tip, smaller errors in K are observed for the
linear basis. It should be noticed that, due to the symmetry of the problem, the integrations
over the crack surfaces in the computation of J have (almost) no influence on the values of K,
see (2.31) and (4.34).

In contrast to the addition of /7 to the basis, the addition of the function p(x) does not result
in more accurate values for the mode I stress intensity factor. Although this function behaves
like \/r near the crack tip, the values for K7 are even worse than the results obtained with the
linear basis. A good explanation for this phenomenon is not evident. Variations in the size of
the region near the crack tip over which p behaves like /7 and in the size of the zone where the
function is continuously coupled with the monomial z,z,, show no improvement in the results.
The poor performance of the basis with the function p might be due to the coupling of /7
and z;z,. Using 275 nodes, parts of the contours of v pass through the zone over which these
functions are coupled and a large variation in the results is observed. In the sequel the function
p will not be used in EFG-analyses.

From Table 6.1 it is also seen that refinement of the nodal distribution results in more accurate
values for K. Furthermore, the results are not sensitive to variations in the configurations of
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Figure 6.3: Results of simulation of quasi-static crack propagation by EFG-method for edge
crack in mode I loading situation: (a) Crack path and instial cell configuration, and (b) final
cell configuration for initial distribution of 275 nodal points, and (c) crack path and initial cell
configuration for initial distribution of 464 nodal points. The cracks are indicated by thick solid
lines and the subsequent positions of the crack tip are indicated by *.

integration cells. Two different types of configurations have been used: one with the crack at the
boundary of several cells and another with the crack in the interior of cells resulting in internal
subdivisions of some cells, e.g. see Figure 6.3b. The results for both types of configurations do
not differ very much. Only, in the case of 275 nodes and the use of the function p(x), a large
difference in the stress intensity factors is observed. This is explained from the fact that the
function p leads to a bad performance of the method as is indicated above.

Application of the EFG-method to the problem of quasi-static crack propagation for this mode
I loading situation is also considered. The nodal distributions of 275 nodes and 464 nodes are
used in the initial step of simulation of crack propagation. For these initial nodal distributions,
the basis {1, z,22,/T} is used together with v = 2.5 in equation (3.28) for the radii of the
supports of the weight functions. For the simulation with the initial nodal distribution of 275
nodes, the division into 66 rectangular integration cells is used. And for the simulation with
the initial nodal distribution of 475 nodes, the division of the domain into 200 rectangular cells
is taken.

In each simulation step, an EFG-analysis for the domain containing the piecewise linear crack
{¥s}s=1..c is performed. The stress intensity factors K} and K}, are computed from the J-
vector. This vector is obtained by J-integration with a correction for the crack-surface integrals,
see Section 4.4. To this end, a square curve 7 is used, see Figure 4.10, starting at the point
Yc-1 and for which the size is set equal to s = 3|yc — yc-1]- The stress intensity factors are
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substituted into equation (2.27), to determine the propagation angle 6,. The crack is then
extended with the line segment [y, Y41, where the new crack tip ycy1 is obtained from

Yo+1 =¥c + Dae. (6.1)

The unit vector e is given by

el = [COS({?’p +8c-1) Sill(gp + é}c_i)] ) (62)

where f¢_; is the angle of the direction of the line segment [yc.1,¥¢|. For the simulation with
initial distribution of 275 nodes, we take Aa = 0.15 and for the one with initial distribution of
464 nodes, we take Aa = 0.075b. Next, a new EFG-analysis is performed with the extended

crack path {y}p=1, .ct1-

In the process of simulation, the configuration of integration cells is kept fixed. This config-
uration can only be changed during an EFG-analysis due to subdivisions of some cells. Fur-
thermore, a large part of the nodal distribution is kept fixed. Only, extra sets of nodes are
placed around the new crack path. Of course, the dense pattern of nodes around the last crack
segment, see Figure 6.2b, is moved to the new crack segment. Hence, the number of nodal
points increases. For example, in the last step of the simulation which starts with 275 nodes,
348 nodes are used, while in the last step of the simulation which starts with 464 nodes, 562
nodes are used. The crack paths, however, are obtained in an element-free way, since during
simulation no remeshing of a connectivity of nodal points takes place.

Simulation results are depicted in Figure 6.3. For the simulation with an initial distribution of
275 nodes, the computed crack path and the initial and final cell configurations are given in
Figure 6.3a and 6.3b. Figure 6.3b shows that the cell at the left of the middle row of cells is also
subdivided. This is due to the fact that the initial crack is given by two parallel line segments,
in order to provide extra patterns of nodes near the crack path. From the depicted final cell
configuration, it is seen that the internal subdivisions of the rectangular integration cells into
triangular integration cells match the crack path. For the simulation with initial distribution of
464 nodes, the computed crack path and the initial cell configuration are found in Figure 6.3c.
From the figure it is seen that symmetry is preserved for the simulations. The computed crack
paths are within a vertical distance of 0.007h from the line of symmetry of the domain.

As described in Section 3.2, the nodal distributions in these simulations are locally symmetric
with respect to the last crack segment. Furthermore, the cell configurations are symmetric
with respect to the line of symmetry of the domain. From the computed crack paths we
can therefore conclude that the symmetry of the problem is preserved by the algorithms to
determine integration points for the cells, see Appendix D, and by the algorithms for the
internal subdivisions of cells due to the presence of a crack in a cell or due to the presence of
the crack tip at the boundary of a cell. Simulations with non-symmetric cell configurations
have also been performed, which again resulted in crack paths close to the line of symmetry.
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Figure 6.4: Crack, elements, integration cells and global distribution (a), and extra local distri-
bution (b) of nodal points for EFG+FE-analysis of edge crack in mode I loading situation.

6.1.2 Results for combination of EFG-method and FE-method

Next, we consider analyses of the problem by means of the combination of the element-free
Galerkin method and the finite element method with the help of interface elements. The same
nodal distributions, consisting of 275 and 464 nodes, respectively, are taken as in the pure
EFG-analyses of the problem. However, for the nodal distribution of 275 nodes, three rows of
nodes on the bottom and the top of the plate are regarded as coming from a FE-discretization
by means of four-node quadrilateral elements, see Figure 6.4. These elements are coupled with
the EFG-part of the domain with the help of four-node quadrilateral interface elements. Hence,
the EFG-method is applied on only 40% of the domain. This part of the domain contains the
crack. In the case of the distribution of 464 nodes, six rows of nodes on the bottom and on
the top of the plate are regarded as coming from a FE-discretization by means of four-node
quadrilateral elements. Also in this case, pure EFG is performed on only 40% of the domain.

For the distribution of 275 nodes, the EFG-part is divided into 20 or 30 rectangular integration
cells leading to a total number of 50 and 60 elements/cells, respectively. The latter one is given
in Figure 6.4. For the situation of 30 integration cells, the crack is in the interior of some cells
which are subdivided into triangular integration cells in the analysis by the combination of
EFG and FE. For the distribution of 464 nodes, the EFG-part of the domain is divided inte
80 or 99 rectangular integration cells leading to a total number of 200 and 219 elements/cells,
respectively.
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EFG+FE-parameters KK, SDy

{1,721, 23,4/}, v = 2.5, 275 nodes, 50 elements/cells | 0.995 |1.19-1072
{1,21,22,/7}, v =25, 275 nodes, 60 elements/cells | 0.997 | 1.85-1072
{1, 21, 22,+/7}, v = 2.5, 464 nodes, 200 elements/cells | 1.004 | 9.55.1073
{1,21, 22,4/}, v = 2.5, 464 nodes, 219 elements/cells | 1.003 | 1.05-1072

Table 6.2: Mean values and standard deviations of K*/ K| for EFG+FE-analyses of edge crack
in mode I loading situation.

In the analyses, the set of basis functions {1, 2y, 73, /7 } i used together with v = 2.5 in equation
{3.28) for the radii of the supports of the weight functions. Furthermore, stress intensity factors
are obtained with the help of the same curves v which are used in the EFG-analyses for the
problem. Hence, the curves are completely in the EFG-part of the domain, such that one does
not have to account for discontinuities in the straius and the stresses in the computation of J.
In Table 6.2, results are reported for different analyses. Mean values and standard deviations
are given for the set of values K%/ K. For each analysis, the mode II stress intensity factors are
several orders of magnitude smaller than K7 and are therefore not given. From the table, it is
seen that accurate stress intensity factors are obtained with the help of the combination. The
mean values of K} are within 0.5% of the exact value with a standard deviation of about 1%.
The results are similar to those obtained with the same basis in a pure EFG-analysis, reported
in Table 6.1. Furthermore, it is seen that the results are not very sensitive to variations in the
cell configurations for the EFG-part of the domain.

Analyses of the problem of quasi-static crack propagation for this mode I loading situation
are also performed with the help of the combination. To this end, the nodal distributions of
275 and 464 nodes are used in the initial step of simulation by means of the combination of
the EFG- and FE-methods. When 275 nodes are used in the initial step of a simulation, the
EFG-part is divided into 30 rectangular integration cells, and when 464 nodes are used this part
is divided into 99 rectangular integration cells. In the simulation process, new crack segments
are determined in the same way as for the simulations for this problem with the help of the
EFG-method, see (6.1), (6.2). The same curves v are used for the determination of the stress
intensity factors after each step of the process. Hence, v is entirely positioned in the EFG-part
of the domain. For the initial step this is accomplished by taking a smaller size for v and
shifting its starting point towards the crack tip.

During simulation the configuration of elements/cells is kept fixed. Only, some integration cells
can be subdivided during an analysis. Furthermore, the FE-nodes and the global EFG-nodes
are fixed. Only, extra sets of nodes for EFG are placed around the new crack path. The
dense pattern of nodes around the last crack segment, see Figure 6.4b, moves with the crack
tip. Hence, the number of nodal points increases. In the last step of the simulation which
started with 275 nodes, 343 nodes were used, while for the one which started with 464 nodes,
562 nodes were used in the last step. Although a connectivity is used for the definition of the
FE-discretization, the crack paths are computed without changing any connectivity of nodal
points and, therefore, one can say that the paths are obtained in an element-free way.

Computed crack paths are shown in Figure 6.5. The initial and the final configurations of
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Figure 6.5: Results of stmulation of quasi-static crack propagation by combination of EFG- and
FE-methods for edge crack in mode I loading situation: (a) Crack path and initial element/cell
configuration, and (b) final element/cell configuration for initial distribution of 275 nodal points,
and (c) crack path and indtial element/cell configuration for initial distribution of 464 nodal
points. The cracks are indicated by thick solid lines and the subsequent positions of the crack
tip are indicated by *.

elements/cells and the obtained crack path for the simulation with the initial distribution of
275 nodal points are given in Figure 6.5a and 6.5b. The final configuration shows that some
cells in the EFG-part of the domain are subdivided due to the presence of crack segments in
these cells. It is seen that the internal subdivisions of some cells are not completely symmetric
with respect to the crack. For the simulation with initial distribution of 464 nodal points, the
crack path and the initial configuration of elements/cells are depicted in Figure 6.5¢.

As for the EFG-approach for this problem, symmetry is preserved. The computed crack paths
are within a vertical distance of 0.001h from the line of symmetry. In the simulations nodal
patterns and element/cell configurations are almost (locally) symmetric with respect to this line.
From the computed crack paths it is concluded that a symmetric response is obtained from
the combination of EFG- and FE-methods including the algorithms for internal subdivisions of
integration cells and the algorithms for the integration points in an integration cell.

6.2 Edge crack in mixed-mode loading situation

In this section the EFG-method and a combination of the method with the FE-method are
applied to the problem of an edge crack in a mixed-mode loading situation, see Figure 6.1b. To
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Figure 6.6: Crack, integration cells and global distribution (a), and extra local distribution (b)
of nodal points for EFG-analysis of edge crack in mized-mode loading situation.

this end, the dimensions of the cracked material domain in this figure are set equal to b= h = 1,
the crack length is taken to be a = 0.3 and for the angle of the crack with the vertical boundary
we take § = 37 /8. In the analyses, again, the influences of the number of nodal points, the cell
configuration, the set of basis functions and the combination of EFG-method and FE-method
are investigated.

6.2.1 Results for EFG-method

For analyses of the problem by the EFG-method, two different nodal distributions are con-
sidered. The first one consists of 330 nodal points from which 112 arise from a global equidistant
pattern and the remaining 208 nodes are extra nodes distributed along the initial crack path,
see Figure 6.6. The second nodal distribution consists of 514 nodal points from which 231 nodes
are from a global equidistant pattern. For the second nodal distribution, the local mesh sizes
are 60% to 70% of the local mesh sizes for the first nodal distribution.

In the EFG-analyses of the problem, {1,z;,2:} and {1,z1,2s,+/T} are used as sets of basis
functions, where r is the distance to the crack tip. The sizeg of the supports of the weight
functions are given by (3.28). In this equation, v = 2.0 in the case of the linear basis, and
v = 2.5 in the case of the basis extended with /7. Furthermore, divisions into 40 and 160 square
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EFG-parameters KK, SDy KWKy SDyr

{L,21,25}, v =20, 330 nodes, 40 cells | 0.992 |1.63-10"2| 0.703 |4.83.1072
{L,z1,2,}, v =20, 330 nodes, 160 cells | 0.975 |1.10-107%2| 0.761 | 1.24-107!
{1,21,%9,+/7},v = 2.5, 330 nodes, 40 cells | 1.003 |2.08-10"% | 1.039 |1.92-107?
{1, 21,23, /7}, v = 2.5, 330 nodes, 160 cells | 0.982 | 7.49-1073 | 1023 |1.95-1072
{1, 2y, 23}, v = 2.0, 514 nodes, 160 cells | 0.984 | 1.01.107? 0.847 3.04- 1072
{1, 21,29}, v = 2.0, 514 nodes, 640 cells | 0.987 | 1.18 1072 0.840 3.32. 1072
{1,21,29,/T},v = 2.5, 514 nodes, 160 cells | 0.995 | 4.65-10"3 | 1.001 |2.04-1072
{1, 21, 72, \/7}, v = 2.5, 514 nodes, 640 cells | 0.993 | 7.76-10~3 | 0993 | 1.75. 102

Table 6.3: Mean values and standard deviations of K}/K; and K¥ /Ky for EFG-analyses of
edge crack in mired-mode loading situation.

integration cells are taken for the distribution of 330 nodes. The configuration of 40 cells is
given in Figure 6.6. The domain is divided into 160 and 640 square cells for the distribution
of 514 nodes. As in the previous example, the constant normal stress ¢ is prescribed at the
horizontal boundaries, while the vertical boundaries are taken stress-free. Three displacements
are prescribed to suppress the rigid body motions.

The stress intensity factors are computed from the components of J-vector, as described in
Section 4.4. To investigate the path-independence of the values for J, several square curves
are taken which are parallel to the vertical boundaries and which start at the lower crack surface
at a distance 0.33a from the crack tip. The sizes s of these curves range from 0.67a to 1.33a.
The results obtained with the different EFG-analyses are given in Table 6.3. In the table, K7
and K are the computed stress intensity factors and K; = 1.430+/7a, Ky; = 0.3420/7a are
the exact values given in [61, Ch. 1]. In the columns of the table, mean values and standard
deviations SDj, SDj; are given for the obtained sets of values for K#/K and K% /K;;.

As in the previous example, the use of the basis extended with /7 results in more accurate
stress intensity factors than when the linear basis is used. Since the values for the crack-
surface integrals in (2.31) have a larger influence on K}, than on K7, see (4.34) and (4.35), the
difference in performance is seen very well from the obtained mode IT stress intensity factors.
Whereas these factors are within a few percents of the exact value in the case of the extended
basis, relatively large errors are observed in the results for the linear basis. Therefore, it is
concluded that, in comparison with the linear basis, the use of +/r leads to more accuracy in
the displacements and stresses near the crack tip. The fact that the crack-surface integrals in
the computation of J have a larger influence on K% than on K%, is also the reason for the fact
that SD;; mostly exceeds SD;.

Asin the mode I example, it is observed that a refinement of the nodal distribution leads to more
accuracy in the obtained stress intensity factors. Furthermore, the different cell configurations
lead to small differences in the obtained results, especially for the nodal distribution of 514
nodes. The results given in Table 6.3 show that the computation of the J-vector by means of
J-integration with a correction for the crack-surface integrals, as described in Section 4.4, gives
reliable results. The stress intensity factors obtained from the components of J are within 2.5%
of the exact values in the case of the use of \/r and 514 nodal points.
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(a) {b)

Figure 6.7: Results of simulation of quasi-static crack propagation by EFG-method for edge crack
in mazed-mode loading situation: (2) Crack path and initial cell configuration, and (b) part of
final cell configuration for initial distribution of 330 nodal points. The cracks are indicated by
thick solid lines and the subsequent positions of the crack tip are indicated by *.

Quasi-static crack propagation is simulated for this mixed-mode loading situation with the
distributions of 330 and 514 nodes in the initial step. In both cases {1,zy,2,,/7} is taken as
the set of basis functions and v = 2.5 is used for the values of the radii of the supports of the
weight functions. The domain is divided into 160 square integration cells for the simulation
with initial distribution of 330 nodal points, and into 640 square cells for the one with 514
nodal points. Given the piecewise linear crack {ys}s=1,.c, new crack segments are obtained,
as described in the previous example, by (6.1} and (6.2), where we take Aa = 0.075b for the
step length. Larger values for Ae are not considered, since for such values it is observed that
it is more likely to have fluctuations in the crack paths. Stress intensity factors are determined
by J-integration with a correction for the crack surface integrals, see Section 4.4. To this
end, a square curve <y is used, see Figure 4.10, parallel to the vertical boundaries with size
s = 3|yc - ¥c-1| and starting at yo_1. Again, during the simulations, the configuration of
integration cells is kept fixed and is only changed due to subdivisions of some cells. The number
of nodal points increases due to extra nodes placed around the new crack path. In the final
step of the simulation starting with 330 nodes, 429 nodes are used and in the last step of the
simulation which starts with 514 nodes, 615 nodes are used.

In Figure 6.7, the obtained crack path and the initial cell configuration are depicted for the
simulation with initial distribution of 330 nodal points. A similar crack path has been obtained
for the initial distribution of 514 nodal points. The computed crack paths are perpendicular to
the direction of loading. The subsequent positions of the crack tip are within a horizontal zone
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EFG+FE-parameters Kt/ K, SD; KM/Ky; SDy;

{1, 21,22, /7}, v = 2.5, 330 nodes, 70 cells | 0.987 | 1.94-10~2 | 1.052 | 3.47- 102
{1,241, 29,/T}, v = 2.5, 330 nodes, 118 cells | 0.984 |826-1073| 1.011 |1.39-1072
(1,21, 22, \/7}, v = 2.5, 514 nodes, 214 cells | 0.994 |4.98-10~3 | 0999 | 2.10-10-2
{1, 21, 29,r/F}, v = 2.5, 514 nodes, 406 cells | 0.993 |7.82-10~% | 0.992 |2.21.10-2

Table 6.4: Mean values and standard deviations of K* /K and K* /Ky for EFG+FE-analyses
of edge crack in mized-mode loading situation.

of 0.005h and 0.003h width, respectively. The problem shows that, as described in [17, Ch. 4],
during continued fracture the crack propagates mainly in mode I and that the mode II stress
intensity factor becomes negligibly small.

A small part of the final cell configuration in the case of the initial number of 330 nodal points
is given in Figure 6.7b. From this figure it is seen that the internal subdivisions of the cells into
triangular integration cells match the crack path. From the obtained results we conclude that
the local mesh sizes together with the step length Aa = 0.075b result in smooth crack paths,
since the fluctuations of the crack path in the vertical direction are very small. Therefore, this
step length and nodal distributions with similar local mesh sizes are also used in the example
presented in the next section.

6.2.2 Results for combination of EFG-method and FE-method

As in the previous section, the problem is also analyzed by means of the combination of the
EFG-method and the FE-method with the help of interface elements. To this end, the nodal
distributions of 330 and 514 nodes used in the EFG-analyses of the problem are also used
for this combination. For the distribution of 330 nodes, six rows at the bottom and three
rows at the top of the domain are regarded as coming from a FE-discretization of four-node
quadrilaterals. The elements are coupled by four-node quadrilateral interface elements with
the EFG-approach for the remaining part of the domain. For the distribution of 514 nodes,
ten and five rows, respectively, are seen as emerging from a FE-discretization. For both nodal
distributions, the EFG-method is applied on only 40% of the domain.

For numerical integration purposes, the EFG-part of the domain is divided into 16 and 64
rectangular integration cells in the case of the distribution of 330 nodal points, leading to a
total number of 70 and 118 elements/cells, respectively. Divisions into 64 and 256 integration
cells, resulting in 214 and 406 elements/cells, are taken for the distribution of 514 nodal points.
In the EFG-part of the domain, the basis {1,z1,z2,/r} is used. The radii for the weight
functions are obtained with the help of (3.28), in which v = 2.5 is taken. Stress intensity
factors are computed as for the EFG-analyses of the problem. Hence, the same curves y are
taken and these curves are entirely positioned in the EFG-part. In Table 6.4, results are found
for several analyses of the problem. The mean values and standard deviations of the obtained
values for K*/K; and K¥ /K are given.

From the results shown in Table 6.4 it is seen that, as for the pure EFG-approach for the
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(a) (b)

Figure 6.8: Results of simulation of quasi-static crack propagation by combination of EFG- and
FE-methods for edge crack in mized-mode loading situation: (a) Crack path and (b) part of final
element/cell configuration for initial distribution of 514 nodal points. The cracks are indicated
by thick solid lines and the subsequent positions of the crack tip are indicated by *.

problem, accurate values are found by the combined analyses. Again, the variation in K%
is larger than the variation in K?, since the crack-surface integrals have more influence on
K¥, see (2.31), (4.34) and (4.35). Some differences are seen in the results for the two cell
configurations in the case of the distribution of 330 nodes. In the case of the distribution of 514
nodes, however, the mean values of the stress intensity factors for the two cell configurations
for the EFG-part of the domain, are within 1% with a standard deviation of about 2%.

For the simulation of quasi-static crack propagation for this mixed-mode problem, the two
nodal distributions are used in the initial step of a simulation. The set of basis functions is
taken equal to {1,z,Z,,+/7} and the value of v is set equal to v = 2.5. The EFG-part of
the domain is partitioned into 64 rectangular integration cells for the simulation with initial
distribution of 330 nodal points, and into 256 rectangular integration cells for the distribution
of 514 nodes. For the piecewise linear crack {y;}1,. c, new crack segments are obtained in the
same manner as described before. Stress intensity factors necessary to determine the direction
of crack propagation, are computed by means of the same curves 7 as the ones used in the
EFG-simulations. In the first step of the simulations by EFG+FE, however, a smaller size is
taken for v and its starting point is shifted towards the crack tip such that the curve is entirely
positioned in the EFG-part of the domain.

In the simulations the configuration of elements/cells for the domain is kept fixed. Some
integration cells in the EFG-part, however, can be subdivided into triangular integration cells.
Many nodal points are also fixed. Ounly, extra nodes for the EFG-method are placed around the
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new crack path. Hence, the number of nodal points increases during simulation. The simulation
starting with 330 nodal points ends with 429 nodal points and the one starting with 514 nodes
ends with 615 nodes.

The computed crack path, the initial configuration of elements/cells and a part of the final
cell configuration for the simulation with initial distribution of 514 nodal points are given in
Figure 6.8. For the simulation with initial distribution of 330 nodal points, the computed crack
path is similar to the one given in the figure. After some steps, the crack paths propagate
perpendicular to the direction of loading, as described in {17, Ch. 4]. This has also been
observed in the EFG-approach for the problem. For the simulations, the subsequent positions
of the crack tip are within a band of 0.0054 width. Furthermore, for the computed crack paths
for this problem given in this section, the end points are all within a distance of 0.014 from
each other.

6.3 Single-edge notched beam under shear loading

As a final test we consider crack propagation under shear loading. The test proposed by
Tosipescn [34] is studied. In this test a beam with a single-edge notch is loaded by compressive
forces, see Figure 6.9. Following Feenstra [23, Ch. 5] and Schlangen [63, Ch. 3], we take b= 1
and h = 2 for the dimensions of the beam. As in Van Vroonhoven {72, Chs. 6, 8], initial crack
lengths ¢ = 0.158 and @ = 0.25b are studied. The forces F} are applied at a distance 0.14 from
the line of symmetry of the beam and the forces F3 at a distance ~ from this line. Hence, we
must take Fy = 0.1F}, because of equilibrium.

6.3.1 Results for EFG-method

For the simulation of quasi-static crack propagation by means of the EFG-method in the case
of o = 0.15b, an initial distribution of 702 nodal points is used, from which 495 nodes arise from
a global equidistant distribution. The local mesh size for the distribution equals b, = 0.1b at
a remote distance from the crack. In the neighbourhood of the crack this size varies between
h, = 0.04b at a certain distance from the crack tip and h, = 0.01b near the crack tip. For
the initial crack length a = 0.25b, the global distribution of 495 nodes is also used. Then, 218
nodes are taken near the crack. The local mesh sizes for this nodal distribution are equal to
those for the distribution of 702 nodal points

In each step of the simulation process, an EFG-analysis is performed with {1,x,25,+/7} as
the set of basis functions. For the radii of the supports v = 2.5 is taken in equation (3.28).
Numerical integration is performed by a division of the domain into 990 square integration
cells, i.e., 15 cells in the vertical and 66 cells in the horizontal direction. The forces Fy and
F, are prescribed at the boundary and the rigid body motions are suppressed by setting three
boundary displacements equal to zero.

Given the piecewise linear crack {y,}s=1,. ¢, new crack segments are obtained with (6.1) and
(6.2), where Ag = 0.075b is taken for the step length. The choice for Aa is based on the previous
example. Stress intensity factors are obtained by J-integration with a correction for the crack-
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Figure 6.9: Single-edge notched beam loaded by compressive forces.

surface integrals, see Section 4.4. For J-integration a square curve + is taken perpendicular to
the last crack segment, with size s = 3|y — yo-1| and starting at the point yo-y. In the first
two steps, however, the curve vy is taken smaller and its starting point is shifted towards the
the crack tip, in order to avoid a negative influence of the stress concentrations near the crack
due to the applied force Fy. The cell configurations are kept fixed during simulation and are
only changed due to internal subdivisions of some cells. The number of nodal points increases
during simulation. For the initial crack length o == 0.155, 857 nodes are used in the last step of
the simulation, while for a = 0.25h, 841 nodes are used in the last step. The computed crack
paths are depicted in Figure 6.10. In this figure also a band is depicted taken from Schlangen
[63, Ch. 4], in which crack paths were found experimentaily in a relatively thick beam for an
initial crack length of a = 0.2b. The used cell configuration is not given in the figure for reasons
of presentation.

Due to the shear loading of the beam, crack propagation takes place along a curved path with
its end point on the lower horizontal boundary to the left of the position where the force Fy
is applied, see Figure 6.10c and 6.10d. It is seen that the crack paths obtained with the EFG-
method satisfy this requirement. In the final steps the crack propagates almost according to a
straight line, which means that in these final steps crack propagation mainly takes place in mode
I as described in {17, Ch. 4]. The initial steps of the simulations involve a pure shear loading of
the crack, see [34]. The obtained mode I stress intensity factors in these steps, however, are not
exactly zero, but are small and negative, which would imply closure of the crack. This has also
been seen by Van Vroonhoven [71] in FE-analyses of this problem by means of the SEPRAN
package [64]. After the first step, we have chosen to set the propagation angle equal to the
propagation angle (2.27), postulated by the criterion based on the maximum circumferential
stress, in which K; = 0 and Ky > 0 is substituted, i.e. 8, ~ —70.5 degrees.

The problem of a single-edge notched beam has been widely studied, both experimentally and
numerically, see {23, Ch. 5], Lubliner, Oliver, Oller and Oiiate [50], Rots [62], [63, Chs. 4, 6],
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Figure 6.10: Results of simulation of quasi-static crack propagation by EFG-method for single-
edge notched beamn under shear loading: Crack paths for (a) a = 0.15b and (b) a = 0.25b. The
positions where the forces are applied, are indicated by o, the subsequent positions of the crack
tip by *, and the cracks by thick solid lines. In (c) and (d) the paths are depicted together with
the experimentally determined band, indicated by thin solid lines, which is given by Schlangen.

and [72, Chs. 6, 8]. From Figure 6.10c and 6.10d it is seen that the computed crack paths are
in good agreement with the experimental results given in [63, Ch. 4] for the initial crack length
a = 0.2b. The obtained crack paths agree also with the numerical results reported in [63, Ch. 6]
and [72, Ch. 8|, which all satisfy the requirement for the end point of the crack. Furthermore,
the first steps of the simulation agree well with the crack paths in [72, Ch. 6] obtained with
an uncoupled fracture approach, which gives only reliable results for the early stage of crack
propagation for this problem. In [23] a straight crack path is obtained inclined at an angle
of about 45 degrees with respect to the horizontal boundary. Beams of other dimensions are
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considered in [50], where a plastic-damage model is used and in [62], where both smeared and
discrete representations for a crack are used. The crack paths obtained in [23], [50] and [62]
also satisfy the requirement for the end point of the crack.

6.3.2 Results for combination of EFG-method and FE-method

Simulation of quasi-static crack propagation for the problem is also performed by the combina-
tion of the EFG-method and the FE-method by means of interface elements. The distributions
of 702 and 713 nodes used in the initial steps of the EFG-simulations are also used in the first
steps of simulations by EFG+FE. Therefore, several rows of nodes next to the left and the right
vertical boundaries of the beam are regarded as coming from FE-discretizations of four-node
quadrilaterals. The elements are coupled with the EFG-part of the beam with the help of
four-node quadrilateral interface elements. This EFG-part contains the crack and comprises
less than 40% of the entire beam. Again, use is made of the basis {1, z), z2,/7} and the value
of v is set to v = 2.5. For numerical integration purposes, the EFG-part is partitioned into
360 square integration cells. This leads to a total number of 640 elements/cells. Given the
piecewise linear crack {ys}s=1, ¢, new crack segments are obtained in the same manner as
in the previous analyses. The same curves v used in the EFG-simulations, are taken in the
current analyses for computation of the stress intensity factors. In the first two steps, however,
the curve v is taken smaller and its starting point is shifted towards the crack tip, in order to
avoid a negative influence of the stress concentrations near the crack due to the applied force
Fy. This has also the consequence that v is entirely positioned in the EFG-part of the beam
in each step. The element/cell configurations are kept fixed during the simulation and are only
changed due to internal subdivisions of some cells. The number of nodal points increases during
simulation. For both the initial crack length a = 0.15b and a = 0.25b, 859 nodes are used in
the last step of the simulation. Crack paths are given in Figure 6.11. The figure also shows
the band taken from Schlangen [63, Ch. 4], in which crack paths were found experimentally in
a relatively thick beam for an initial crack length of @ = 0.2b. The used cell configuration for
the EFG-part of the beam is not given in the figure for reasons of presentation.

As in the EFG-approach, Figure 6.11a and 6.11b show curved crack paths with the end points
on the lower horizontal boundary to the left of the position where the force Fy is applied.
This has also been observed in experiments, see (63, Ch. 4]. Furthermore, in the final stage
of crack propagation, the crack grows mainly in mode I as is expected, see [17, Ch. 4]. From
Figure 6.11c and 6.11d, it is seen that the computed crack paths are in good agreement with
the experimental results given in [63, Ch. 4] for the initial crack a = 0.2b. Again, in the initial
step of the simulations, negative but small mode I stress intensity factors are obtained, which
would imply closure of the crack. Therefore, we take the angle given by (2.27) with K; =0
and K;; > 0, as the crack propagation direction after the first step. The differences between
the crack paths determined with the help of a pure EFG-approach and with the help of the
combination of EFG and FE, are very small. The distances of the subsequent positions of the
crack tip obtained with the two approaches, are within 0.007b and 0.006b for a = 0.15b and
a = 0.25b, respectively.
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Figure 6.11: Results of simulation of quasi-static crack propagation by combination of EFG- and
FE-methods for single-edge notched beam under shear loading: Crack paths for (a) a = 0.15b
and (b) a = 0.25b. The positions where the forces are applied, are indicated by o, the subsequent
positions of the crack tip by *, and the cracks by thick solid lines. In (c) and (d) the paths are
depicted together with the experimentally determined band, indicated by thin solid lines, which
s given by Schlangen.

6.4 Discussion and conclusions

In this chapter results have been reported for several (quasi-) static fracture mechanics problems
in two dimensions. These results are obtained by application of the element-free Galerkin
method and application of the combination of this method with the finite element method by
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means of interface elements. Similar results for the application of the EFG-method have been
reported in some of the papers mentioned in the introduction of this chapter. In [5], {7], [8] and
[48] accurate stress intensity factors are given. To this end, use is made of a linear basis and
a domain integral with a relatively large domain for computation of the J-vector. The crack
is accounted for by symmetry considerations or by the application of the discontinuous crack
model of Belytschko given in Section 3.2. Furthermore, in [5] and [8] progressive crack growth
has been considered for a mixed-mode loading problem, which also shows that after some steps
the crack propagates mainly in mode 1.

In [6] stress intensity factors, which are accurate within a few percent of the exact values, are
obtained for the application of the continuous crack model of Belytschko given in Section 3.2.
Therefore, also a linear basis is used together with a domain integral with a relatively large
domain for computation of the J-vector. In [25] and [58], results are reported for this crack
model together with two different approaches to describe the singular stresses near the crack
tip correctly. In the first approach, a linear basis is taken which is (locally) extended with four
extra basis functions taken from the asymptotic expressions (2.21) for the displacements. In the
second approach, the asymptotic expressions (2.21) are directly added to the shape functions
obtained with the help of a linear basis. For the two approaches, the papers [25] and [58] report
accurate stress intensity factors and accurate stress distributions for a mode I and a mixed-
mode loading situation. The stress intensity factors in the papers are obtained with relatively
small and relatively large domains for computation of the J-vector. Two mixed-mode problems
in [25] show that crack propagation in the final stage takes place mainly in mode I. In contrast
with the computations in this chapter, in the papers [5]-[8], [25], [48] and [58], no adaptation
of the cell configuration takes place when a crack is in the interior of an integration cell.

The results presented in this chapter for the element-free Galerkin method and the combina-
tion of this method with the finite element method, lead to the following conclusions. Both
approaches are able to determine accurate stress intensity factors for mode I and mixed-mode
loading situations. The approaches are not very sensitive to variations in the cell configurations
for numerical integration. Furthermore, an accurate performance of the method is obtained by
the application of the combination of the methods, by the proposed way for determination of
integration points for an integration cell, and by the way for determination of internal subdivi-
sions of cells in the case of the presence of a crack. A study of the different sets of basis functions
has shown that a linear basis extended with /7 should be preferred in a fracture mechanics
problem to bases without this function. Surprisingly, a linear basis extended with a function
which behaves like /7 near the crack tip and like a monomial for most of the remaining part
of the material, leads to less accurate results than for a linear basis. This is attributed to the
coupling of /7 with the monomial.

The application of the EFG-method and the application of a combination of the EFG- and
FE-methods to quasi-static crack propagation problems, result in reliable crack paths. For
a mode I loading problem straight crack paths have been obtained, while for a mixed-mode
problem curved crack paths have been calculated. The problem of a single-edge notched beam
has been investigated with the two approaches named above. The calculated crack paths agree
with experimental and numerical results reported in the literature for this problem. In all
problems it has been observed that the final cell configuration matches the obtained crack
path. Therefore, it is concluded that a suitable method has been developed for the division of
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integration cells in the case of the presence of a crack.

The differences in results obtained by the EFG-method and the EFG-FE combination are very
small for all examples. Hence, we succeeded in the development of a combination of the EFG-
method and the FE-method which is appropriate for application to fracture mechanics problems
in two dimensions. In each example, the EFG-method has only been applied on approximately
40% of the material, leading to a reduction in computation time of 30 to 40%. The most
expensive parts of the combined approaches are due to the refined EFG-discretizations near
the crack. Larger reductions in computation time can be obtained by the application of the
EFG-method on smaller parts of the domain.



Chapter 7

Concluding discussion

In this thesis a new formulation has been given of the element-free Galerkin (EFG) method in
order to simulate crack propagation in brittle materials. Furthermore, combinations with the
finite element (FE) method have been studied, leading to a reduction of computational effort.
This chapter serves as a concluding discussion of the thesis. In the first section, conclusions
are given of the presented work. In the second section, open ends of the study can be found
together with recommendations for further research.

7.1 Conclusions

For the development of the EFG-method for the simulation of crack propagation, connectivity-
free approximation techniques have been studied for the representation of the displacements
in a weak form of the problem equations. The most convenient technique is moving least
squares approximation (MLSA). Several models have been studied for a correct and accurate
representation of the displacements and the stresses near a crack by means of MLSA (see
Chapter 3). This resulted in the development of the so-called wedge model. Unless the fact
that MLSA is not well-defined in the crack tip in the case of this model, it has been proven
that the displacements can be correctly represented on the entire domain. Furthermore, two
special bagis functions have been introduced, in order to describe the singularity in the stresses
at the crack tip. These functions both behave like the square root function in a neighbourhood
of the crack tip.

In Chapter 4 the EFG-method has been studied. The discrete equations of the method obtained
by the application of MLSA have been given. For computation of the entries in these equations,
a numerical integration scheme is used which is based on a background configuration of integra-
tion cells. It is designed in such a way that it automatically accounts for the nodal distribution
for MLSA, for the integration of quantities which are discontinuous over the crack, and for
the integration of the singular derivatives of the special basis functions. The method has been
tested by application to several two-dimensional elasto-static problems. From the results it is
concluded that the method is convergent when the nodal distribution is refined, and that the
rates of convergence exceed those for equivalent analyses by the FE-method. Furthermore, we
can conclude that the EFG-method is not very sensitive to variations in the cell configurations.

117
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Several ways have been studied for the computation of the stress inteusity factors from analyses
of fracture mechanics problems {see Chapter 4). We have chosen to compute the stress intensity
factors from the so-called J-vector, which is obtained by means of contour integration. In addi-
tion to this type of integration, named J-integration, a correction is used to avoid integration
over parts of the crack surfaces next to the crack tip. Hence, the errors in the approximation
of the angular variation of the displacements near the crack tip have only a small influence on
the computed values for the stress intensity factors.

Application of the EFG-method to several static fracture mechanics problems in two dimensions
has shown that accurate values for the stress intensity factors are obtained (see Chapter 6). To
this end, a special basis function, proposed in Chapter 3, has to be used within MLSA. This
function equals the square root function on the entire domain. Surprisingly, the use of a special
basis function which equals the square roof, function only in a close neighbourhood of the crack
tip, results in inaccurate values for the stress intensity factors.

The EFG-method has also been used for the simulation of guasi-static crack propagation. In
each step of such simulations, an analysis is performed of a cracked material domain. From
the calculated stress intensity factors, the direction of crack propagation is determined and the
crack is extended in this direction. The results show that the method calculates reliable crack
paths, which are not very sensitive to variations in the cell configurations. From the results it
is concluded that the proposed scheme for numerical integration leads to a robust and accurate
numerical method, which is appropriate for the simulation of crack propagation.

Three possible ways for combination of the EFG-method and the FE-method have been con-
sidered (see Chapter 5): A combination by element-free coupling, a combination by a Lagrange
multiplier, and a combination by interface elements. By the application of the combinations
to several two-dimensional elasto-static problems, the performance has been studied. From
the results it is concluded that the combinations are convergent when the nodal distribution
is refined. However, the convergence rates generally do not exceed the rates for the applied
FE-discretizations. Furthermore, it is concluded that the use of interface elements has to be
preferred to the other two ways for combination.

The combination of the EFG-method and the FE-method by means of interface elements has
been applied to fracture mechanics problems in two dimensions. The results show that accurate
stress intensity factors are obtained and that reliable crack paths are calculated. The differences
between the results obtained by the EFG-method and the combination are very small. Hence,
it is concluded that we have succeeded in the development of a combination which is convenient
for the application to crack propagation problems.

7.2 Open ends and further research

The added value of the study presented in this thesis is the new formulation of the element-free
Galerkin method for the simulation of crack propagation. Detailed descriptions have been given
of the several steps in the development of the method. Furthermore, the thesis presents a study
on three possible ways for combination of the EFG-method with the FE-method. The developed
numerical methods have been implemented in the MATLAB programming environment [51],
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which is very suitable for the implementation of the FE-method and the EFG-method.

The disadvantage of the EFG-method is that the implementation requires a large amount of
computation time for the simulation of crack propagation. This is partially due to MATLAB.
A reduction of computation time has been obtained by the translation of several parts of the
programs into machine code by the MATLAB compiler, which has become available recently. It
is believed, however, that more significant reductions in computation time can be obtained by
a translation of the programs to a compiler-based computer language such as the new Fortran
90 language, see Ellis, Philips and Lahey [21].

The large amount of computation time required for the simulation of crack propagation is also
due to the EFG-method itself. The application of moving least squares approximation for the
representation of the displacements, makes the method computationally expensive. In addition,
since the displacements are not piecewise linear or piecewise quadratic (see Section 3.1), a large
amount of integration points is necessary for an accurate and robust performance of the method.
Therefore, an analysis for a material domain with the current formulation of the EFG-method
requires approximately 10 times more computation time than an equivalent analysis by the
FE-method. However, in the case of simulation of crack propagation with the EFG-method,
no computation time is required for remeshing in between successive analysis steps, as is the
case for the FE-method.

Some recommendations can be given for further research to come to a reduction of computation
time for the method. First, it is recommended to study new and cheaper versions of the
numerical integration scheme presented in Section 4.2, which are as accurate and robust as the
current scheme. Secondly, it is necessary to reduce the number of nodal points which are used to
model the crack surfaces. It is believed that one can do without the extra nodes used to model
the “tail” of the crack, which has the consequence that one can simulate crack propagation
with almost a fixed number of nodes.

As a third opportunity for reduction of computation time, a further study is recommended on
the application of special basis functions in a local way. Here, one can think of basis functions
which behave as the square root function in a small neighbourhood of the crack tip and as a
fixed monomial on the remaining part of the material, similar to the one proposed in Section 3.2.
Hence, during simulation of crack propagation, the entries in the linear system of equations can
be obtained from the ones for the previous simulation step without much computational effort,
since there is only a local change in the basis functions. This is in contrast with the current
formulation, where in each simulation step the entire system of equations has to be computed,
because of the global change in the set of basis functions. Such a basis funciion is also very
interesting for the use in problems concerning multiple cracks. With the use of only one extra
basis function in which the square root function for each crack tip is locally embedded, all the
stress singularities can then be obtained.

Reduction of computation time can also be achieved by means of the developed combinations of
the EFG-method and the FE-method. The computational effort of such combinations strongly
depends on the part for the EFG-method. In the simulations by means of a combination of the
methods presented in this thesis, the EFG-parts have been predefined, see Chapter 6. These
relatively large parts of the domain are defined in such a way that it is likely that the crack
path remains in these parts of the domain. For more advanced simulations of crack propagation
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based on such a combination, the development of a numerical technique is recommended in
which the EFG-parts are not predefined. In such a numerical technique, large parts of the
domain are discretized by means of the FE-method and the EFG-parts only concern the direct
environment of the crack. In the case of crack propagation into the FE-part, several elements
have to be added to the EFG-parts of the domain. Such a numerical technique will lead to
a large reduction in computation time and can be applied to more general crack propagation
problems than those considered in this thesis.

Finally, a further development of the EFG-method is recommended. Here, we think of the devel-
opment of the method for application to problems involving dynamic and/or three-dimensional
effects, and problems concerning multiple cracks. Such a development will concern not only
the study of special basis functions as described above, but also the study of basis functions
in which a certain angular variation for the near-tip displacements is embedded. The further
development will also have to deal with the extension of the wedge model and the numerical
integration scheme to three dimensions and to problems involving multiple cracks.

The proposed development of the element-free Galerkin method, together with the speed up of
the method, will make the method a more attractive alternative for the finite element method
and for the boundary element method, concerning the simulation of quasi-static and dynamic
crack propagation in two or three dimensions.



Appendix A

Angular variation of stresses and
displacements

The variation in the polar angle of the stresses and displacements near a crack tip for linearly
elastic material is given in this appendix.

In Section 2.2, it has been shown that the stresses in the neighbourhood of the crack tip are
given by (2.18). The dependence on the polar angle 8 is given by the functions i} and

1, = 1,2, which correspond to the opening mode and the sliding mode, respectively. The
functions ;2 for the opening mode are given by

fi(8) = cos(36) (1 —sin(}6)sin(26)), (A.1)
fH(0) = cos(39) (1+sin(}0)sin(26)), (A.2)
fi(8) = cos(36)sin(36) cos(36). (A.3)

The functions f;; I for the sliding mode are

() = —sin(i6) (2 + cos(36) cos(26 )) (A4)
H(0) = cos(36)sin(}6) cos(2), (A.5)
f3(8) = cos(38) (1 —sin(16)sin(36)) . (A.6)

The near-tip displacement field is given in Section 2.2 by equation (2.21). The angular variation
of this field is given by the functions u! and u!!, i = 1,2, where

ul(d) = cos(i) (K, ~ 1+ 2sin®( )) , (A7)
ub() = sin(}6) (1@ + 1 — 2 cos’( ) , {A.8)
ui’(8) = sin(} (n +14+ 2(:082( 6) ) (A.9)
uy’(0) = cos(16) (1 - K+ 231112(59)) . (A.10)

In these equations, s = 3 — 4v in case of plane strain and x = (3 ~ v)/(1 + v) in case of plane
stress.

121



122 APPENDIX A. ANGULAR VARIATION OF STRESSES AND DISPLACEMENTS




Appendix B

Set-up for analyses by FE-method and
EFG-method

In this appendix schematic set-ups are given for an analysis for a {cracked) material domain by
means of the finite element method, the element-free Galerkin method or a combination of both
methods. From the different steps in each set-up the similarity is seen between the different
methods.

B.1 Set-up for FE-analysis

In general, a static analysis for a material domain Q {containing a crack) by means of the
FE-method consists of the following steps:

1. Divide € into elements {2, by means of connectivity of nodal points x, such that the ele-
ments match or approximate the boundary 9 and internal boundaries such as cracks;
2. Define volume force f* in 2, essential boundary conditions u = u* along I, and natural
boundary conditions on = p* along I';
3. For each element 2, compute the contribution to K and f, see {2.50), by:
a. Determine the matrix D which represents the constitutive equations in £,
b. For each integration point %, in Q.:
(i) Determine ¢,(%,) and derivatives ¢,;(X,) for the nodal points x, of Q,;
(i) Determine the matrices B,, see (2.54);
(ili) Compute integration point contribution to element integrals, e.g. see (2.56);
¢. Sum over integration point contributions to find element contributions;
4. Sum over element contributions to find stiffness matrix K and contribution to right-hand
side vector f;
5. For each element next to the boundary I', determine contribution to f by:
a. For each integration point X,:
(i) Determine ¢,(%,) for the nodal points x, of Q. on I'y;
(it} Compute integration point contribution to element integral for f;
b. Sum over integration point contributions to find the element contributions;
6. Sum over contributions of elements next to I', to find right-hand side vector f;
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7. Reduce linear system (2.50) by substitution of d, = u*(x,) for x, on ['y;

8. Solve for reduced vector d;

9. Compute by means of (2.49), differentiation and the constitutive equations, the displace-
ments, strains and stresses in the domain;

10. Error estimates for the quantities can be determined when an exact solution is available;

11. Determine from the computed quantities the J-vector and the stress intensity factors.

In a quasi-static analysis for a material domain by means of the FE-method, the above steps
are repeated for a number of (time) steps.

B.2 Set-up for EFG-analysis

A static analysis for a material domain  (containing a crack) by means of the EFG-method
generally consists of the following steps:

1. Define nodal poinis x,, weight functions w, and basis functions p. such that moving least
squares approximation is well-defined for ;
2. Divide Q into integration cells A, such that the cells match or approximate the boundary
o,
3. Divide the boundaries I', and T', into boundary integration cells;
4. Define volume force £* in (2, essential boundary conditions u = u* along I, and natural
boundary conditions on = p* along I'y;
5. For each integration cell A, compute the contribution to K and f, see (4.4), by:
a. Determine the matrix D which represents the constitutive equations in A.;
b. Subdivide A, into triangular subcells to match a crack in the cell;
¢. Determine integration points for A, (by considering each triangular subcell);
d. For each integration point &, in A.:
(i) Compute ¢.(X,) and derivatives ¢,;(X,) for the nodal points x, with non-zero
weight function in Xg;
(ii) Determine the matrices B,, see (4.11);
(iii) Compute integration point contribution to the cell integrals, e.g. see (4.14);
e. Sum over integration point contributions to find the cell contributions;
6. Sum over cell contributions to find stiffness matrix K and contribution to right-hand side
vector f;
7. For each boundary integration cell in I, determine the contribution to f by:
a. Determine integration points for boundary integration cell;
b. For each integration point X,:
(i) Determine ¢,(%,) for the nodal points x, with non-zero weight function in %,;
{(ii) Compute integration point contribution to cell integral for f;
c. Sum over integration point contributions to find the cell contributions;
. Sum over contributions of integration cells in I, to find right-hand side vector f;
9. For each boundary integration cell in Iy, compute contribution to L and r, see (4.4}, by:
a. Determine integration points for boundary integration cell;
b. For each integration point X,
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(i) Determine $,(%,) for the nodal points x, with non-zero weight function in %;
{(ii} Compute integration point contribution to cell integrals for L and r;
¢. Sum over integration point contributions to find cell contributions;
10. Sum over contributions of integration cells in I', to find matrix L and right-hand side
vector T;
11. Solve the linear system (4.4) for d and I;
12. Compute by means of (4.1), differentiation and the constitutive equations, the displace-
ments, strains and stresses in the domain;
13. Error estimates for the quantities can be determined when an exact solution is available;
14. Determine from the computed guantities the J-vector and the stress intensity factors.

In the case when the essential boundary conditions are prescribed at a set of discrete points,
the steps 9 and 10 are replaced by a step which considers these discrete points.

In a quasi-static analysis for a material domain by means of the EFG-method, the above steps
are repeated for a number of discrete (time) steps.

B.3 Set-up for EFG+FE-analysis

For a short description of a static analysis for a (cracked) material domain 2 by means of a
combination of the EFG-method and the FE-method, the set-up is given for an analysis by the
combination of the methods with the help of a Lagrange multiplier, see Section 5.2. Similar
set-ups can be given for the combination of the EFG-method and the FE-method by means of
element-free coupling, see Section 5.1, and the combination by means of interface elements, see
Section 5.3. For the description in this section, (2! is the subdomain where the FE-method is
applied and 02 the subdomain where the EFG-method is applied. Furthermore, I'; and I'y are
the boundaries of Q! and (¥, respectively.

An analysis by means of the combination of EFG and FE with the help of & Lagrange nultiplier
consists of a combination of steps given in the first two sections of this appendix. The subdomain
! is divided into finite elements according to step 1 in Section B.1. Parameters for moving
least squares approximation (MLSA) on ©?, and a division of the subdomain and its boundaries
r,nly, I'ynly and I'' NI into integration cells are chosen according to steps 1-3 in Section B.2.
Volume force, essential and natural boundary conditions are defined afterwards. Then the linear
system (5.7) is built up according to steps 3-7 in Section B.1 and steps 5-10 in Section B.2.

The combination between the subdomains Q! and Q? is accounted for by consideration of the
integration cells for the internal boundary I'; N T’y similar to the steps 9-10 in Section B.2.
For each integration point of a cell, the values of the FE-shape functions and MLSA-shape
functions are obtained and the contribution to the matrices Hy and H, are computed, see (5.7).
Summing over the integration points and integration cells results in thege matrices.

When the system (5.7) has been determined, it is solved for d*, d?, I!, 1? and 1. Similar to
steps 9-11 in Section B.1 and 12-14 in Section B.2, with the help of d* and d? displacements,
strains, stresses, error estimates and fracture mechanics parameters are obtained.
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Appendix C

On MLSA for the wedge model

Concerning the wedge model presented in Section 3.2, moving least squares approximation
(MLSA) is not well-defined for the crack tip. Nevertheless, it has been shown that values for the
shape functions can be obtained. The shape functions are continuously differentiable, except for
the crack tip. In this appendix a mathematical proofis given of the fact that the shape functions
are continuous in the crack tip. In addition, it is proven that for continuously differentiable
basis functions and weight functions, the shape functions are continuously differentiable except
for the crack tip and that the derivatives of the shape functions are bounded in the vicinity of
the crack tip.

It is assumed for MLSA on the domain 2 that:

.....

[A2] A set of basis functions {p.(X)}e=1,..m is given with p;(x) = 1 for each x € 2, p.(0) = 0,
¢ > 1, and such that each basis function is continuously differentiable for the entire
domain 2. Hence, a Taylor series expansion yields that p.(x) = O(|x|) for x—0, ¢ > 1.

[A3] A set of continuously differentiable weight functions {w,(x)}e=1, n is chosen such that

— w1(0) =1, we(0) =0, a > 1;
[Vw,(0)] =0,a=1,...,n;

— wy has derivatives of any order in the interior of its support;

— The origin O is not in the interior of the support of w,, a > 1;

For a > 1, the weight function w, has derivatives of any order in the interior of its
support and all its derivatives are bounded in the neighbourhood of 0.

[A4] MLSA is well-defined for Q\{0}. Hence, for each x € Q\{0} and each ¢ with 1 < ¢ < m,
a nodal point x; with 2 < b < n can be found such that w,(x) > 0 and p.(x;) # 0.

The notation f(x) = O{g(x)) for x —0 means that there exists an M > 0 such that

|f()| < M |g(x)], (C.1)
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for x sufficiently close to 0.

The above assumptions hold true for the wedge model presented in Section 3.2, when the
origin represents the crack tip and when a polynomial set of basis functions is used. In the
by (3.13) and (3.14}, is used to prove that the shape funciions are continuous and have bounded
derivatives in the neighbourhood of the crack tip.

We shall prove that under the above assumptions we have forc=2,...,m
lim ¢.(0, %) = 0 q(ox):o(iw“—(f‘)) for X — 0 (C.2)
x=0 1 B o= =1 Wh(X) ’ )

%2.(0, %)] = O(]) for % 0. (€3)
For each x € 2\{0} one has that
;(in%qc(x, X) < +0, c=2,...,m, (C4)

and the limiting value equals a linear combination of p, (x), 1 < ¢; < ¢. For each ¢, there exists
an index b > 1 such that the limit (C.4) for x = x, is non-zero. Moreover, for x € 2\ {0}

[ Vage(x, %)| = O(l}’{i”” forx—0, ¢=2,...,m, (C.5)
lin%)qc(f(, X)=0; ¢(%,%) =0(x]) forx—0, ¢c=2,...,m, (C.6)
Vg (%,%)| = O(1) forx —0, ¢=2,...,m. (C.7)

The notation limgp f(X) < +o0 means that f(%) has a finite limiting value for % approaching
0. The gradient in {C.7) should be understood in the following way,

Vg%, %) = Vg (X, %) + Vhge(%, %), ¢=2,...,m. (C.8)

Proof:
A proof of {C.2)-(C.7) will be given by means of induction on c.

I. For ¢ = 2, equation (3.14) results with assumptions A1, A2 and A3 in

Z::Z We (i)p2 (xa) .

ga(%, %) = pa(x) — T (X) (C.9)
Therefore,
7:(0,%) = _ Tz We(X)p(e) (C.10)

2::1 We (i} ’
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from which (C.2) is obvious. From the assumption A3 for the weight functions it follows that
{(C.3) holds true.

From equations (C.9) and (C.10) it follows that for x € Q\{0}
lim g2(%, X) = pa(x) — lim ¢2(0,%) = ps(x), (C.11)

because of {C.2). There can be found an index b > 1 such that the limiting value for x = x, is
non-zero, otherwise assumption A4 is not valid. Hence, (C.4) holds true for ¢ = 2. Equation
(C.9) also shows that

lim Vg (x, %) = lim Va2 (0, %). (C.12)

Therefore, equation (C.5) for ¢ = 2 follows directly from (C.3).

Equation (C.9) together with the assumptions for the basis and weight functions results in the
fact that ¢»(X, %) = O(|%]) for * — 0, which yields (C.6) for ¢ = 2. Furthermore, one has that

lim Va(%, %) = Vpa(0) — lim V2(0, %) = Vpy(0), (C.13)

because of (C.3) and hence, {C.7) is valid for ¢ = 2.

11. It is now assumed that (C.2)-(C.7) are valid for all cwith 2 < ¢ < ¢;~1,¢1 > 3. For ¢ = ¢,
the function ¢.(x,%) is given by

2:(x, %) = pe(x) — 35 Ced(X)ga(%, ), (C.14)

=1

see also (3.14), where because of assumption A2

Za=2 We (i)?6<xﬂ)‘?d(xaa 7-()

rea(X) = ==L - e d=1,...,c- L C.15
= @l %) (©15)
For d = 1, one obtains
- En::z We (i)pC(xa) ( i wa(}‘() ) _
aq(X) = =05 - =0 — | forx — 0, C.16
1( ) Za.—_l wu(x> ag‘;’ Z?:l wb(x) ( )
and for d = 2,...,¢— 1 one obtains
(X)) = O(1) forx — 0, {C.17)

since both the numerator and the denominator in {C.15) are of the same order, i.¢., of the order
O(T0 ., we(X)/ Shy wp(X)) for *—0, becaunse of {C.2) and (C.4). Therefore,

ea(%)94(0,%) = O (é f;’?ia—z?ﬁ'i) forx—0, d=2,...,c—1, (C.18)
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which yields that (C.2) is valid for ¢ = ¢.
Equation (C.16) together with assumption A3 shows that

|[Vaa (%) = O(%|) forx — 0. (C.19)
In addition, the gradient of a(X) for d =2,...,¢— 1 is given by

E::z We ()—{)pc(xa)v)'(‘ﬁt (Xay i)

Vacd(i) = 22:1 ’U)a(i)qti(xm }—()2

s Wa(X)Pe(Xa)ga(Xas X) They 2ws(X)qa(Xs, X) Viga(Xe, X)
(Z;;] wa(i)Qd(xm i)z)g

(C.20)

3

“+ a=2

S [V wa (R) (%) — 0 (%) Vo (%)) g (X, %) ga (%1, X)?
(Tt wa(R) 4%, X)) '

Because of (C.2)-(C.5), the first two terms in (C.20) are O(|%|™!) for x—0. The denominator
of the last term is O((T0., wa(X)/ Thoq ws(X))?) for X — 0. Hence, because of assumption
A3, a Taylor series expansion shows that this denominator is of the order O{|%]*) for x — 0.
Furthermore, with assumption A3, it is seen from Taylor series expansions for Vw,(X)uy(X) —
wo(X)Vwe(X), that the terms in the numerator of the last term in (C.20) for a = 2,...n and
b=2,...n are O(|%|®) for x — 0. Because of (C.2) the terms in this numerator for b = 1 have
order O(|%|?) for & — 0. Therefore, the last term of (C.20) is also of order O(|%|™!) for x—0
and we have

|Vaa(%)| = O(j%]™!) forx — 0, d=2,...,c—1, (C.21)

From {C.18), (C.17), {C.19), {C.21) and (C.2), {C.3) for ¢ < ¢y, it now follows that (C.3) holds
true for ¢ = ¢;, since (C.2) yields that ¢.(0,%) = O(|%]?) for x —0.

Furthermore, from (C.16), {C.17), (C.19), (C.21) and (C.2)-(C.5) it follows that (C.4) and
(C.5) are valid for ¢ = ¢;. For each c¢ there exists indeed an index b such that the limit in
(C.4) is non-zero, otherwise assumption A4 is not valid. With {C.6}, (C.7) for ¢ < ¢1, and the
assumptions for the basis functions it is seen that (C.6) and (C.7) hold true for ¢ = ¢;.

It has been proven that (C.2)-(C.7) hold true for ¢ = ¢; and from the principle of mathematical
induction one may conclude that (C.2)-(C.7) hold true for c = 2,...,m.
End of proof

The shape functions ¢,(x}, a = 1,...,n, are given by (3.18). Because of assumptions A2 and
A3, the expression (3.18) can be written as

qﬁa(x) = w“(x) - wa(x)qc(xa, X)QC(X> X)

, =1,...,n C.22
S w(® 2 T w@n 0 (0.22)

With the assumptions for the weight functions it is seen that the first term of (C.22) approaches
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ba1 for x — 0, i.e., approaches 1 for ¢ = 1 and 0 for a > 1. Because of (C.2), (C.4} and (C.6),
the second term in (C.22) is of the order O{|x]) for x —0, which yields that

lin% G (X)) =64, a=1,...,n {C.23)

From (C.23) it is concluded that the shape functions {C.22) are continuous. Moreover, the
first term of {C.22) is continuously differentiable for the entire domain. The second term in
(C.22) is continuously differentiable except for x = 0. However, because of assumption A3 and
(C.2)-(C.7), one has that the second term is O(1) for x— 0. Hence, the derivatives of the shape
functions are bounded near 0.

In general, the shape functions are not differentiable for x = 0 as the following one-dimensional
example shows. Consider the nodal points z; = 0 and z; = 1 and weight functions w; and
wy such that w(0) > 0, we(z) = 0 for x < 0 and we(z) > 0 for z > 0. Let the set of basis
functions be given by {1,z}. When the other weight functions vanish for 0 < z < ¢ with ¢
small, the shape function ¢ for node x4 is given by

0, z<090,
z, O<z<e.

It can be seen easily that this shape function is not differentiable for z = 0.
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Appendix D

On the subdivision of standard
integration cells

In this appendix it is described in which way numerical integration is performed in a standard
integration cell Ay, in order to obtain accurate values for the contribution of the integration cell
A, to the integrals in (4.7)-(4.10). The standard integration cell is divided into subcells and
for each subcell Gaussian quadrature is used. The subdivision is based on the number of nodal
points close to A, on the size of A, on the number of nodal points in A, and on whether the
integration cell is near the boundary, near the crack or near the crack tip.

D.1 Subdivision for quadrilateral integration cell A,

Consider a quadrilateral cell A, with the definition points z¢§, z5, 2§ and 2z as its four vertices.
The square {(£;,&) | =1 < & <1, =1 € & < 1} is taken as standard integration cell A,.
In order to determine integration points for numerical integration in A,, the next procedure is
followed.

Let x,, be the nodal points such that x,, € A, or such that one of the definition points is in
the support of the weight function w,,. The nodal points x,, contribute to the cell integrals
for K and f. The central point of A, is given by 2z¢ | i.e.

1 4
an = Z ZZZ. (Dl)

p=1

Let 72, be the mean distance between the nodes x,, and the central point z¢,,
= g7 S b — 78, (D.2)
M4

which is a characteristic value for the density of the nodal points with respect to the size of
A.. In eguation (D.2), M is the number of nodal points x,,. Of course, M will be at most n,
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the total number of nodal points. Furthermore, h, is defined as the mean distance between the
mid-side points of A, and the central point z¢,,

4

1
he= g 3 [+ — 285 (D3)
e=1

where 2§ = z§. The number of sides of A, which are part of the boundary of the domain Q or
which are part of the crack, is denoted by s, and the number of nodes x,,, in A, is denoted by
M.. Hence, M, < M.

To obtain the contributions of A, to K and f, see (4.4}, equation (4.14} is used. For numerical
evaluation of the integrals over the standard cell, A, is divided into N, x N, square subcells
which all have the same size. Per subcell (4,4)-point Gaussian quadrature is performed. The
value N, is found from the following algorithm:

1. if 78, < hev/2
a. if M, +2¢(M - M,) <7

Ne=1

b. elseif M, + 2°(M — M,) <18
N, =2

c. elseif M, +2°<(M — M,) < 36
N.=3

d. else
N,.=4

end

2. elseif r¢, < 2h./2
a. if M, +2%(M — M,) < 18

N, =1

b. elseif M, + 2% (M — M,) < 36
N, =2

c. else
N, =3

end

3. elseif ¢, < (10/3)h./2
a. if M, + 2% (M — M,) < 36

N.=1
b. else
N, =2
end
4. else
N.=1
end

Wminge:  4m |2, — yc] < 2ha
IVe = 2Ne
end
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This algorithm to determine N, for A, is just a choice. We are aware that other algorithms
with similar properties can be designed. In the algorithm, y¢ is the position of the crack tip
and h, is the local mesh size, see (3.27), for the nodal point x, which is closest or equal to yc.

Four situations are distinguished in the algorithm. Situation 1 represents the case where the
nodal points x,, are situated mostly inside A, since hey/2 is the largest distance to the central
point of the cell. In situation 2, these nodes are situated mostly in A, and its surrounding
cells; 2h.+/2 is the mean distance to z¢, of points in A, and its surrounding cells. Situation 3
represents the case when the nodes are situated mostly in A, and two rows of its surrounding
cells. In situation 4, a significant part of the nodal points x,, is outside A, and two rows of its
surrounding cells.

By means of the subcases of 1, 2, 3 and 4, we account for the density of the nodes x,, with
respect to the size of A,. We provide at least one fourth of a subceell per quadrilateral made up
of nodal points. For instance, in the case of 2a, the nodes are such that one subcell is sufficient
whereas the case 2b represents a situation where the density of the nodes is such that 4 subcells
are necessary.

Since the shape functions can have large gradients near the crack tip, the number N, is doubled
in the last part of the algorithm, when the integration cell A, is close to the crack tip.

D.2 Subdivision for triangular integration cell A,

For a triangular integration cell A, its standard integration cell A, is subdivided according
to a similar procedure. Let the vertices of A, be given by 2§, z§ and z§. The standard cell is
given by the triangle A, = {(£1,£) | 0<& <1,0< & <1, &+ £ < 1}. However, when the
triangle has the crack tip as vertex, the standard cell is given by the square A, = {(£1,&3) |
1< £ <1, -1 <& <1}, see Section 4.2.

Let x,, be the nodal points such that x,, € A, or such that one of the vertices is in the support
of the weight function w,, . The central point of A, is given by z¢,, i.e.

78, = 3 Szt (D.4)

Let r¢, be the mean distance between the nodes x,, and the central point z;

e 1 €
Tm = M %; !xax - Zmi ’ (DS)

where M is the number of nodal points x,,. Furthermore, h, is the mean distance between the
vertices of the cell and the central point z],,

Zh ~ Ty | - (D.6)

1
}le=§z

g=1
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The number of sides and additional vertices of A, which are part of the boundary of Q or which
are part of the crack, is given by s. and the number of nodes x,, in A, is given by M., With
an additional vertex is meant a vertex for which the sides where it is positioned on are not part
of the boundary or part of the crack.

To obtain the contribution of A, to K and f, see (4.4), the standard integration cell A, is
subdivided. When A, is a triangle, it is partitioned into N2 triangular subcells, and when
A, is a square, it is partitioned into (N., N,) square subcells. Per subcell then 13-point and
(4,4)-point Gaussian quadrature, respectively, is performed. The value N, is found from the
following algorithm:

1. ifre < he

a. if M, +2°¢(M - M) <7
N, =1

b. elseif M, + 2% (M ~ M,) < 14
N, =2

c. elseif M, + 2°(M — M) < 29
N =3

d. else
Ne =4

end

2. elseif 72, < 2h,
a, if M, +2%(M—-M,)<14

N, =1

b. elseif M, + 2%(M — M,) < 29
N, =2

c. else
N,=3

end

3. elseif re, < 10h,/3
a. if M, + 2%(M — M,) < 29

N,.=1
b. else
N, =2
end
4. else
N,=1

end

ifminge  3m IZZ - }*’C‘ < 2ha
Ne pe QNe

end

In the algorithm, y¢ is the position of the crack tip and A, is the local mesh size, see (3.27),
for the nodal point x, which is closest or equal to yc.

Note the similarity of this algorithm with the algorithm for a quadrilateral integration cell A,.
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D.3 Subdivision for boundary integration cell A,

Consider a boundary integration cell A, with the interval {€ | —1 < ¢ < 1} as standard
integration cell A,. This standard cell is alsoc subdivided to obtain its contributions to the
matrix L and the vectors f and r, see (4.4). The vertices of A, are given by z¢ and z5.

Let x,, be the nodal points such that z$, 25 or the central point z¢, of A, are in the support of
the weight function w,,. This central point z¢, is given by

1
z, = 5(21 +23). (D.7)
The mean distance ¢, between the nodes x,, and the central point z¢, is found from
P = [ — 28 (D.8)
m M - 1 k3
where M is the number of nodal points x,,. Let A, be given by
1
h, = 5 {z5 — 2z3|. (D.9)

The integer 5, has the value 1 if one of the vertices of A, is positioned on the crack or corner
node of the domain under consideration. If this is not the case, s, has the value 0.

Then, to obtain the contributions of cell A,, its standard cell A, is partitioned into NV, subcells
(intervals) of the same size and 4-point Gaussian quadrature is performed for each subcell. The
value N, is found from the algorithm:

1. if ¢, < he

a. if2%=M < 4
Ne =1

b. elseif 2°M < 6
N, =12

c. elseif 2°°M < 8
N.=3

d. else
N, =4

end

2. elseif r5, < 2h,

a. if 2°M <8
N,=1

b. elseif 2°- M < 14
N.=2

c. else
;'\fe =3

end
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3. elseif ¢, < 10h./3
a. if 2°M < 12

N, =1
b. else
N, =2
end
4. else
N, =1

end

Since a boundary integration cell A, is at a remote distance of the crack tip, no doubling of NV,
has to be considered as in the previous algorithm.
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List of symbols

This chapter contains an explanation of the symbols used in this thesis.

Roman symbols

ay

€, C1
d, dt, d?
d,, dl, a2
d
da
d
4, @2, @
e, e, €y, €3
[
£, 1, 12
fa
£*
f
I

1ofi

ijy Jij
g
gc

index for discrete points and shape functions, radius of circular boundary,
length of crack

index for discrete points

index for discrete points and shape functions, dimension of cracked mate-
rial domain

index for basis functions

vector containing nodal displacement vectors

nodal displacement vector

index for basis functions, length of patch

modification function for presence of crack

modification function for nodal point at crack tip

functions for definition of modification function

unit vector

index for elements and integration cells

right-hand side vector

subvector of right-hand side vector

volume force vector

general scalar function

entry of volume force vector

function for angular variation of elastic stresses near crack tip

general scalar function

function for position relative to crack

mesh size of distribution of nodes, dimension of cracked material domain
local mesh size of distribution of nodes

mean distance to central point of integration cell

local mesh size for nodal point at crack tip

local mesh size of distribution of nodes in quadrant

index for space dimensions

index for space dimensions

index for space dimensions, integer, number of shape functions
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ky, ko number of shape functions

LI vector containing nodal vectors for representation of Lagrange multiplier

L, 1}, 12 nodal vector for representation of Lagrange multiplier

4 index for space dimensions, integer, length of patch

m number of basis functions

n outward unit normal on boundary

n number of nodal points

n;, Ny, Mo entry of outward unit normal on boundary, number of nodal points

P vector of basis functions

P prescribed boundary traction

P, Pe basis function

pf entry of prescribed boundary traction

q. (orthogonal) basis function

r, i r? right-hand side vector

r; subvector of right-hand side vector

T distance to crack tip, polar coordinate

Ta polar coordinate with respect to nodal point

e, mean distance of nodes

s integer, size of square contour for computation of J-integral

Sq scaling constant in weight function of Gaussian type

Se number of sides {and additional vertices) of integration cell contained in
boundary or crack

t traction vector

i time, interface function

ta non-negative function

u, v, u? displacement vector, vector consisting of nodal values of «

u* prescribed displacement

U general function

Uy nodal value of u

ug, ub, u? entry of displacement

uh approximant of

ul elastic displacement of crack tip

u; entry of prescribed displacement vector

ul, ul! function for angular variation of elastic displacements near crack tip

Vi, V3 unit vector for determination of local mesh size

vi, v§ unit vector for definition of modification function

vi, v unit vector for position relative to crack

W, W, wold weight function

W weight function of nodal point at crack tip

whew modified weight function

X, X position vector of point in space

X, X, X2 position vector of nodal point

X1 position vector of nodal point at crack tip

X, position vector of integration point

T, T; L1, L, 3 Cartesian coordinate
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Y position vector of point of piecewise linear crack
Y position vector of crack tip
Zq position vector of discrete point of T,
z¢, position vector of central point of integration cell
z, position vector of definition point for integration cell
A matrix for computation of moving least squares approximant
B, matrix consisting of derivatives of shape functions
C number of points which make up piecewise linear crack
C*(Q) space of & times continuously differentiable functions on Q2
D matrix representing constitutive law of elastic material
E F Young’s modulus of elasticity
E,; Young’s modulus of elasticity for damaged material
F, R, F shear force
G shear modulus
H,, H, matrix for coupling of subdomains
H Q) Sobolev space of order 7 on 2
H: set of distances between nodes
I identity matrix
J vector obtained by J-integration
Jk entry of J-vector
K stress intensity factor, stiffness matrix
Ky nodal submatrix of stiffness matrix
K, K, stiffness matrix
K;, Kir stress intensity factor
Ky, critical stress intensity factor
Kb KN computed stress intensity factors
L, Ly, Ly matrix for Lagrange multiplier
Ly nodal submatrix of matrix for Lagrange multiplier
L) set of square integrable functions on 2
M positive constant, number of nodal points
M, number of nodal points in integration cell
N number of elements or number of integration cells
N, number of non-empty sets
N, number of subcells of standard integration cell
P matrix consisting of nodal values of basis functions
P, entry of matrix consisting of nodal values of basis functions
Q quadrant with nodal point as vertex
R convergence rate
R,, B¢ radius of support of weight function
R, radius of support of weight function for nodal point at crack tip
RV modified radius of support of weight function
result of summation over nodal points
SDy, SDyy standard deviation
A set for position relative to crack

w diagonal matrix consisting of values of weight functions
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LIST OF SYMBOLS

Wab
W,, Wt W-

entry of diagonal matrix consisting of values of weight functions
elastic energy density

Greek and other symbols

Qed

B

Ba

Ve e
Yo f)’é‘? /}?(2}’

]

bis

Su, bul, fu?
S, 6T, 6%
bu;, bul, 6u?
8Ai, 8AL, 622
€

Eij, 6%, 6%

€, €4,y €15 €2
¢ Cas Gy G2
M5 T
8,0,

Oy

fca

K

YD LIBLIB L
iy AL A2

M, it

f}'c

vV,

£

&

&

&, &1, &2

°

@
o

1 2
Tigy Oijy Oij
0

Tgy

~3

scalar for definition of orthogonal basis functions

crack angle

integer

curve for definition of J-integral

segment for computation of J-integral

Dirac’s delta function

Kronecker’s delta

test displacement vector

test Lagrange multipliex

test displacement

entry of test Lagrange multiplier

strain, Green Lagrange strain tensor

entry of Green Lagrange strain tensor in Cartesian coordinate system
{positive) real number

value of inner product

material constant for damage evolution

polar coordinate

propagation angle of crack

angle of direction of last segment of crack

material parameter for planar deformation

Lagrange multiplier

entry of Lagrange multiplier

vector for linear combination of basis functions

scalar for linear combination of basis functions

Poisson’s contraction ratio

position vector of point of standard element or standard integration cell
position vector of local nodal point of standard element
position vector of local definition point of standard integration cell
Cartesian coordinate in standard element

density of linearly elagtic material

index for definition points of integration cells

stress, Cauchy stress tensor

entry of Cauchy stress tensor in Cartesian coordinate system
finite elastic stress at erack tip

circumferential tensile stress

index for local definition points of standard integration cell
potential energy of elastic medium

scalar for determination of sizes of supports of weight functions
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bas Pa B2
©p, P

X

Xijhl

1/11;, wl}a 1/}b2
w

Pzn Fm
T, Tu,
Fl: F2

a

€

[ e

8

1

D00

B

<

Q2

zepevmy

global shape function

local shape function

fourth-order tensor for constitutive equations
entry of fourth-order tensor for constitutive equations
function for representation of Lagrange multiplier
wedge angle

boundary for prescribed traction

boundary for prescribed displacement

boundary of subdomain

step length for crack propagation

integration cell

standard integration cell

angle

angle of influence

undeformed configuration of elastic medium, domain
element

standard element

interface domain

subdomains

boundary of

linearly elastic medium

damage variable

energy release rate

critical energy release rate

vector containing only zeros

set of natural numbers
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5.

. Zowel de elementvrije Galerkin methode als een combinatie van deze methode met

de eindige elementen methode bieden de mogelijkheid om scheurgroei te simuleren
zonder het voortdurend wijzigen van een connectiviteit van knooppunten benodigd
voor het benaderen van verplaatsingen en spanningen in het gescheurde materiaal.

Dit proefschrift, hoofdstukken 3-6.

. Een nauwkeurige benadering van het verplaatsingsveld in de directe omgeving van

een scheur in twee-dimensionaal elastisch materiaal middels vormfuncties verkregen
met behulp van de benaderingstechniek gebaseerd op “Moving Least Squares” is niet
mogelijk als men blijft vasthouden aan de eis dat deze techniek goed gedefinieerd
moet zijn in de scheurtip.

Dit proefschrift, hootdstuk 3.

Ondanks de toevoeging van het theoretische /r-gedrag in analyses van gescheurd
elastisch materiaal middels de elementvrije Galerkin methode of de eindige elemen-
ten methode, zal het toepassen van vrij grove discretisaties in de #-richting rondom
de scheurtip niet leiden tot een heel nanwkeurig verplaatsingsveld nabij de scheurtip.
Desalniettemin kunnen met behulp van een gecorrigeerde J-integraal nauwkeurige
spanningsintensiteitsfactoren worden verkregen uit deze analyses,

Dit proefschrift, hoofdstukken 4 en 6.
J.W. Eischen, Engineering Fracture Mechanics 26 (1987), 691-700.

De eindige elementen techniek waarbij schade binnen een element beschreven kan
worden met behulp van een localiseringszone, zoals voorgesteld door Belytschko,
Fish en Engelmann, is niet toepasbaar op bros materiaalgedrag.

T. Belytschko, J. Fish and B. Engelmann, Computer Methods in Applied Mechanics and
Engineering 70 {1988), 56-89.

D. Hegen, Findrapport Ontwerpersopleiding Wiskunde voor de Industrie, Technische Uni-
versiteit Eindhoven (1994), 25-49.

Het bewijs zonder Fouriertransformatie van het bestaan van een fundamentele oplos-
sing voor lineaire partiéle differentiaal operatoren met constante coéfficiénten, zoals
gegeven door Rosay, kan worden gegeneraliseerd tot lineaire partiéle differentiaal
differentie operatoren met constante coéfficiénten.

J.P. Rosay, The American Mathematical Monthly 98 (1991), 518-523.
D. Hegen, Afstudeerverslag, Rijksuniversiteit Groningen {1992).
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10.

11.

. De familienaam Heegen zoals die momenteel in Nederland voorkomt, is tot stand

gekomen door een verschrijving van de familienaam Hegen bij de burgerlijke stand
van de gemeente Zweeloo gedurende de periode 1865-1879.

Geboorteregister gemeente Zweeloo, 12 juli 1865 t/m 30 september 1879.

. Omdat in artikelen vaak niet precies wordt aangegeven hoe gerapporteerde nume-

rieke resultaten zijn verkregen, verdient het aanbeveling om wanneer in een artikel
resultaten van numerieke berekeningen worden gepresenteerd, deze vergezeld te doen
gaan van de programmatuur waarmee de berekeningen zijn uitgevoerd.

. Het feit dat elk jaar op 1 januari tijdens het traditionele Nieuwjaarsconcert muziek

wordt gespeeld die in een ver verleden niet altijd even goed gewaardeerd werd, doet
vermoeden dat over vele jaren louter hardrock en metal muziek ten gehore zal wor-
den gebracht tijdens dit concert.

. Ondanks het feit dat tegenwoordig middels allerlei geavanceerde computersoftware

voor vele mechanische problemen zonder het gebruik van pen en papier oplossingen
kunnen worden berekend, dient nog steeds met verstand gerekend te worden met
deze software.

Gezien het grote maatschappelijke en economische belang van het voetbalspel, is er
pas echt sprake van een Europese eenwording als er een Europese profvoetbalcom-
petitie is ingevoerd.

In een democratische staatsvorm zou een kiezer een veel actievere rol dienen te
spelen dan eenmaal per zittingstermijn van het parlement zijn gang te maken naar
de stembus.



