

Constraint analysis for DSP code generation

Citation for published version (APA):
Mesman, B., Timmer, A. H., Meerbergen, van, J., & Jess, J. A. G. (1999). Constraint analysis for DSP code
generation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(1), 44-57.
https://doi.org/10.1109/43.739058

DOI:
10.1109/43.739058

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/43.739058
https://doi.org/10.1109/43.739058
https://research.tue.nl/en/publications/b39bbb45-7609-4e18-a172-ef7887f1532f

44 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Constraint Analysis for DSP Code Generation
Bart Mesman, Adwin H. Timmer, Jef L. van Meerbergen, and Jochen A. G. Jess

Abstract— Code generation methods for digital signal-
processing (DSP) applications are hampered by the combination
of tight timing constraints imposed by the performance
requirements of DSP algorithms and resource constraints
imposed by a hardware architecture. In this paper, we present a
method for register binding and instruction scheduling based on
the exploitation and analysis of the combination of resource and
timing constraints. The analysis identifies implicit sequencing
relations between operations in addition to the preceding
constraints. Without the explicit modeling of these sequencing
constraints, a scheduler is often not capable of finding a solution
that satisfies the timing and resource constraints. The presented
approach results in an efficient method to obtain high-quality
instruction schedules with low register requirements.

Index Terms—Code generation, register binding, scheduling.

I. INTRODUCTION

DIGITAL signal-processing (DSP) design groups and
embedded processor users indicate the increasing use

of application-domain-specific instruction-set processors
(ASIP’s) [1] as a significant trend [2]. ASIP’s are tuned toward
specific application domains and have become popular due to
their advantageous tradeoff between flexibility and cost. This
tradeoff is present neither in application-specific integrated
circuit (ASIC) design, where emphasis is placed on cost, nor in
the design of general-purpose DSP’s, where emphasis is placed
on flexibility. Because of the importance of time-to-market,
software for these ASIP’s is preferably written in a high-level
programming language, thus requiring the use of a compiler.
In this paper, we will address some of the compiler issues
that have not been addressed thoroughly yet: the problems
of register binding and scheduling under timing constraints.
Note that we do not consider resource binding. Although
resource binding can have a major effect on the quality of
the code, much work has been done on this subject [3].
Furthermore, ASIP’s mostly have such irregular architectures
that there is often little choice for mapping an operation.
For example, addresses are calculated on a dedicated unit
complying with the desired bit width, there is usually only
one functional unit performing barrel shifting, etc. Because we
consider distributed register-file architectures where a register

Manuscript received April 1, 1998; revised August 27, 1998. This paper
was recommended by Associate Editor G. Borriello.

B. Mesman and J. L. van Meerbergen are with Philips Research Lab-
oratories, Eindhoven 5656 AA The Netherlands and the Department of
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The
Netherlands.

A. H. Timmer is with Philips Research Laboratories, Eindhoven 5656 AA
The Netherlands.

J. A. G. Jess is with the Department of Electrical Engineering, Eindhoven
University of Technology, Eindhoven, The Netherlands.

Publisher Item Identifier S 0278-0070(99)00810-6.

file usually provides input for only one functional unit, the
resource binding induces a binding of values to register files.
In our experiments (Section IX), resource binding has been
done by the Mistral2 toolset [4] for a very long instruction
word (VLIW) architecture.

The reason that register binding and scheduling under timing
constraints have not yet been addressed thoroughly is that most
of the currently available software compiling techniques were
originally developed for general-purpose processors (GPP’s),
which have characteristics different from those of ASIP’s.

• GPP’s most often have a single large register file, ac-
cessible from all functional units, thus providing a lot
of freedom for both scheduling and register binding.
ASIP’s usually have a distributed register-file architecture
(for a large access bandwidth) accompanied by special-
purpose registers. Automated register binding is severely
hampered by this type of architecture.

• ASIP’s are mostly used for implementing DSP func-
tionality that enforces strict real-time constraints on the
schedule. GPP compilers use timing as an optimization
criterion but do not take timing constraints as a guideline
during scheduling.

• Designing a compiler comprises a tradeoff between com-
pile time and code quality. Typically, GPP software
should compile quickly, and code quality is less im-
portant. For embedded software (that is, for an ASIP),
however, code quality is of utmost importance, which
may require intensive user interaction and longer compile
times.

As a result of these characteristics, compiling techniques
originating from the GPP world are less suitable for the
mapping problems of ASIP architectures. The field of high-
level synthesis [5], concerned with generating application-
specific hardware, has also been engaged in the scheduling and
register-binding problem. Because the resource-constrained
scheduling problem was proven NP-complete [6], most so-
lution approaches from this field have chosen to maintain the
following two characteristics.

• Decomposition in a scheduling and register allocation
phase. Because these phases have to be ordered, the result
of the first phase is a constraint for the second phase.
A decision in the first phase may lead to an infeasible
constraint set for the second phase.

• The use of heuristics in both phases.

Heuristics for register binding and operation scheduling are
runtime efficient. When used in an ASIP compiler, however,
they are unable to cope with the interactions of timing,
resource, and register constraints. The user often has to provide

0278–0070/99$10.00 1999 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 45

pragmas (compiler hints) to help the scheduler in satisfying the
constraints. Furthermore, in order to obtain higher utilization
rates for the resources and to satisfy the timing constraints,
software pipelining [7], also called loop pipelining or loop
folding, is required. In Section III, we will show that a
heuristic-like list scheduling is already unable to satisfy the
timing and resource constraints on a very simple pipeline
example.

We discuss related work in Section II. In Section III, the
dataflow graph (DFG) model is introduced with some defini-
tions. An example of a tightly constrained schedule problem
will demonstrate why traditional heuristics are not suitable
to cope with the combination of different types of tight
constraints. In Section IV, the problem statement is given and
a global solution strategy is proposed. Sections V–VII focus
on analysis. In Section VIII, complexity issues are discussed.
Section IX shows some experimental results.

II. RELATED WORK

Code generation for embedded processors has become a
major trend in the CAD community. Most active in this area
are the group of Paulin with the FlexWare environment [8],
Marwedel’s group [9], IMEC with the Chess environment
[10], and Philips [11]. Because of the pressure for small
instructions, mostly irregular processor architectures are used.
A structural processor model for these irregular architectures,
combined with the demand forretargetability,caused a great
emphasis on code selection [12]. Compilers for these platforms
have produced rather disappointing results when compared
to manually written program code. Therefore, we choose to
model the instruction-set irregularities procedural as hardware
conflicts during the scheduling phase. This reduces the de-
pendencies between the different code-generation phases and
enables the expression of all different constraints (instruction-
set irregularities, resource constraints, timing and throughput
constraints, precedence, register binding, etc.) as much as
possible in a single model.

Software pipelining has been the subject of many research
projects. The modulo scheduling scheme by Rau [13] has
inspired many researchers. His approach is essentially a list-
scheduling heuristic. Backtracking is used when an operation
cannot be scheduled.

Many more approaches are based on the list-scheduling
heuristic, notably the work of Goossens [7] and Lam [14].

The group of Nicolau [15] devised a heuristic that often
finds an efficient schedule with respect to timing. It does
not take constraints on the timing into account, however,
and the latency and initiation interval are difficult to control.
Because implicit unrolling is performed until a steady state has
been reached, code duplication occurs frequently, resulting in
possibly large code sizes. These are intolerable for embedded
processors with on-chip instruction memory, especially for
VLIW architectures.

Integer linear programming (ILP) approaches to finding
pipelined schedules started with the work of Hwang [16].
A considerable amount of constraints caused most formal
methods to generate intolerable runtimes for DFG’s containing
more than about 20 operations.

Rauet al. [17] successfully performed register binding tuned
to pipelined loops. They mention that for better code quality,
“concurrent scheduling and register allocation is preferable,”
but for reasons of runtime efficiency they solve the problem
of scheduling and register binding in separate phases.

Some approaches have been reported that perform schedul-
ing (with loop pipelining) and register binding simultaneously.
Eichenbergeret al. [18] solve some of the shortcomings of the
approach used by Govindarajanet al. [19], but both try to solve
the entire problem using an ILP approach, which is computa-
tionally too expensive for practical instances of the problem
depicted above. Following is a summary of these points.

• On one hand, the combination of timing, resource, and
register constraints does not describe a search space that
can be suitably traversed by simple heuristics.

• On the other hand, practical instances of the total problem
are too large to be efficiently solved with ILP-based
methods.

Therefore, we will try a different approach based on the
analysis of the constraints without exhaustively exploring
the search space. Timmeret al. [20] successfully performed
constraint analysis on a schedule problem using bipartite
matching, but this work is difficult to extend to register
constraints.

III. D EFINITIONS

In this section, we will introduce the general high-level
synthesis scheduling problem. The difficulty of solving this
problem when the constraints are tight is illustrated with a
simple example. A perspective is introduced to understand the
reasons why this is a difficult problem to solve for traditional
methods.

A. High-Level Synthesis Scheduling

A DSP application can be expressed using a DFG [21].
Definition 1—DFG: A DFG is a five-tuple (, ,
, ,), where:

• is the set of vertices (operations);

• is the set of sequence precedence edges;

• is the set of data precedence edges;

• Y is a set of values;

• is a function describing which value is
communicated over a data precedence edge;

• ZZ is a function describing the timing delay
associated with a precedence edge.

In Fig. 13(a), for example, the set of operations source,
a, b, c, d, e, sink. The set of sequence precedence edges
= (source, a), (b, c), (d, e), (e, sink), and the set of data
precedence edges (a, b), (c, d) . The set of values

. Furthermore (a, b) , and (c, d)
. Every edge has except

(source, a) .
Two (dummy) operations are always (implicitly) part of the

DFG: the source and the sink. They have no execution delay,
but they do have a start time. The source operation is the “first”
operation, and the sink operation is the “last” one.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

A DFG describes the primitive actions performed in a DSP
algorithm and the dependencies between those actions. A
scheduledefines when these actions are performed.

Definition 2: A schedule ZZ describes the start
times of operations.

For , denotes the start time of operation. We
also considerpipelinedschedules: in a loop construction, the
loop bodyis executed a number of times. In a traditional sched-
ule, iteration of the loop body is executed strictly after
the execution of theth iteration. Goossens [7] demonstrates
a practical way to overlap the executions of different loop-
body iterations, thus obtaining potentially much more efficient
schedules. The pipelined schedule is executed periodically.

Definition 3—Initiation Interval (II): An II is the period
between the start times of the execution of two successive
loop-body iterations.

A schedule has to satisfy the following constraints. The
precedence constraints,specified by the precedence edges,
state that

Furthermore, the source and sink operations have an implicit
precedence relation with the other operations

source

When a DFG is mapped on a hardware platform, we
encounter several resource limitations. Theseresource con-
straints are given by the function

, defined by

if and have a conflict
otherwise.

A conflict can be anything that prevents the operations
and from executing simultaneously. For example, they are
executed on the same functional unit, transport the result of the
computation over the same bus, or there is no instruction for
the parallel execution of and [20]. A resource constraint

thus states that

For loop-pipelined schedules, the implication of a resource
constraint is

mod II

For reasons of simplicity, we assume that all operations have
an execution delay of one clock cycle. In Section V-A, we
will show how pipelined or multicycle operations are modeled
using precedence constraints. The general high-level synthesis
scheduling problem (HLSSP) is formulated as follows.

Problem Definition 1—HLSSP:Given are a DFG, a set of
resource constraints , an II, and a constraint on the
latency (completion time). Find a schedule that satisfies
the precedence constraints , the resource constraints,
and the timing constraints II and.

In Section V-A, we will introduce some additional con-
straints that characterize our specific problem. We note that
HLSSP is NP-hard [6].

B. Schedule Freedom

In the previous subsection, we introduced the high-level
synthesis scheduling problem. In order to solve this problem
(and the extended scheduling problem from Section IV), it
is convenient to describe the set of possible solutions: the
solution space.In this subsection, we will describe the solution
space as a range of possible start times for each operation.
Because this set of feasible start times is as difficult to find as
it is to find a schedule, we will approximate it by the “as soon
as possible/as late as possible” (ASAP–ALAP; Definitions 8
and 9) interval, the construction of which is solely based on
the precedence constraints . By generating additional
precedence constraints that are implied by the combination
of all constraints, the ASAP–ALAP interval provides an
increasingly more accurate estimate of the set of feasible start
times.

We start with a description of the solution space.
Definition 4: The set of feasible schedules is the set

of schedules such that each schedule satisfies the
precedence constraints, the resource constraints, and the timing
constraints.

An operation thus has a range of feasible start times, each
corresponding to a different schedule.

Definition 5: The actual schedule freedom of a DFG is the
average size of the set of feasible start times minus one

The actual schedule freedom quantifies the amount of choice
for making schedule decisions. For traditional schedule heuris-
tics, a large actual schedule freedom is advantageous because
it gives the scheduler more room for optimization. The actual
schedule freedom is defined by the application (the DFG and
the timing constraints) and the available hardware platform. A
large actual schedule freedom is not guaranteed, and we have
to deal with a tightly constrained scheduling problem.

Because of the complexity of finding the set of feasible start
times, a conservative ASAP–ALAP estimate is more practical.
For the definition of the ASAP–ALAP interval, we need the
notion of immediate predecessors and successors.

Definition 6: The immediate predecessors, successors

The ASAP value is recursively defined as follows.
Definition 7—ASAP Value:

ASAP

if

ASAP otherwise.

The latest possible start time is called the ALAP value. Let
denote the latency constraint. Then ALAP(sink) , and for

all other operations, the following holds.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 47

Definition 8—ALAP Value:

ALAP

sink if

ALAP otherwise.

The start time of each operation must lie in between the
ASAP and ALAP values, inclusively

ASAP ALAP

Therefore, the ASAP–ALAP interval is a conservative esti-
mate of (contains) the set of feasible start times.

In this paper, we will extract sequencing constraints that
are necessarily implied by the combination of all constraints.
These sequencing constraints are then explicitly added to the
DFG as precedence constraints. Because the ASAP–ALAP
interval is based solely on the precedence constraints, it
provides an increasingly more accurate estimate of the set
of feasible start times. For most scheduling methods, either
the ASAP–ALAP intervals or the precedence constraints are
an extremely important guideline: these methods take the
precedence or the ASAP–ALAP interval explicitly as a basis.
Schedule choices are made with respect to the available
resources. When the ASAP–ALAP interval does not reflect
the actual schedule freedom very accurately, there will often
come a point in the schedule process where there are no
available resources for an operation, and the operation cannot
be scheduled. In this way, the precedence constraints and
the resulting ASAP–ALAP interval implicitly represent the
“search scope” of the scheduler. Therefore, we also define the
“apparent freedom,” also called mobility or slack.

Definition 9—Apparent Schedule Freedom (Mobility, Slack):
The apparent schedule freedom is the average size of the set
of ASAP–ALAP intervals

ALAP ASAP

Because the precedence and the ASAP–ALAP interval form
the basis for making schedule decisions, the performance of
a scheduler depends largely on the accuracy of the interval.
When the ASAP–ALAP interval is an accurate estimate of
the set of feasible start times , the mobility is an
accurate estimate of the actual schedule freedom and vice
versa. Therefore, we will use the mobility before and after the
constraint analysis as a performance measure of the analysis.

C. A Small Example

Often a schedule heuristic is “deceived” by the apparent
schedule freedom and is unable to generate a feasible schedule.
A combination of several types of constraints is responsible
for the fact that the actual schedule freedom is smaller than the
apparent freedom. A small example illustrates the difficulty of
handling the combination of different types of constraints.

In Fig. 1, a precedence graph of five operations is given (the
arrows indicate a precedence relation). The [ASAP, ALAP]
interval is printed directly left of the corresponding operation.
In order to meet the constraint of three clock cycles on an

Fig. 1. Example with loop folding: (a) precedence graph, (b) list-schedule,
and (c) only feasible schedule in six clock cycles.

II, loop folding has to be applied [indicated by the arrow
in Fig. 1(b) and (c)]. Because folding introduces extra code,
we do not want to fold more than once, which constrains
the latency to six clock cycles. In Fig. 1(b), the result of a
list scheduler is shown. The left column contains thetime
potential(schedule time modulo II). The list scheduler greedily
schedules A, B, and C as soon as possible (ASAP), and
concludes that D cannot be scheduled. In Fig. 1(c), a feasible
schedule is given. The key to obtaining this schedule is to
postpone B one clock cycle relative to its ASAP value. In
Fig. 1, the apparent freedom or mobility equals one clock
cycle per operation. The reader can verify that the combination
of precedence, resource, latency, and throughput constraints
leaves no actual schedule freedom at all: the schedule in
Fig. 1(c) is the only possible schedule in six clock cycles.
The [ASAP, ALAP] estimate of the schedule interval was not
accurate enough, and the other constraints should have been
considered as well. In Section V-B, we will show how the
analysis of the combination of all constraints provides the most
accurate ASAP–ALAP intervals (equal to the actual schedule
freedom) for the schedule problem of Fig. 1.

IV. PROBLEM STATEMENT AND GLOBAL APPROACH

In the previous section, we introduced the general HLSSP.
In this section, we define our characteristic scheduling problem
and combine it with the problem of finding a register binding.
We will decompose the problem and construct a block diagram
of the global approach. Our characteristic problem statement
for finding a feasible schedule and register assignment is as
follows.

Problem Definition 2—Register Binding and Operation
Scheduling Problem:Given a cyclic DFG, the resource
constraints , a binding of values to register files,
an II, and a constraint on the latency, find an assignment of
values to registers and a schedulethat satisfies the precedence
constraints , the resource constraints, and the timing
constraints II and .

Because it is difficult to make a register binding and
a schedule simultaneously, we decompose the problem in
separate phases, as depicted in Fig. 2. First, an initial register
binding (discussed in Section VII-A) is constructed in a simple
manner. The II for each hierarchical level is also fixed prior to
the analysis. Most often, it is set by the designer. Otherwise,
we start with a lower bound based on loop-carried dependen-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 2. Global approach.

cies [22] and available resources. When this II is not feasible,
it is incremented by one clock cycle. Profiling suggests that
the optimal II is usually only one or two clock cycles away
from the lower bound.

The central part, the constraint analyzer (discussed
in Sections V and VI), generates additional precedence
constraints that are implied by the combination of all
constraints, including the given register binding. These
additional precedence refine the ASAP–ALAP intervals, thus
providing a much more accurate estimate of the set of feasible
start times. They will guide the scheduler and often prevent it
from making schedule decisions leading to infeasibility.

The new precedence constraints are such that the register
binding is guaranteed: all lifetimes between values residing
in the same register have been sequentialized. The con-
straint analyzer (and the lifetime sequencer) thus replaces
the register-binding constraints completely by precedence con-
straints. When the constraint set leaves some room for different
lifetime sequentializations, thelifetime sequencer,discussed in
Section VI-C, chooses between several alternatives. When the
constraint set is tight, as is the case in most of the benchmarks
of Section IX, only one or two choices are made by the
lifetime sequencer. A branch and bound algorithm is therefore
runtime-efficient enough for the lifetime sequencer.

The added precedence may cause violation of the constraint
set (including the register binding). Aninfeasibility analysis
(discussed in Section VII-B) uses the administrative book-
keeping done by the constraint analyzer to find the bottleneck
in the constraint set and the register binding. The “change
register binding” block in Fig. 2 tries to solve this bottleneck
by rebinding a value to a different register. This scheme
is iterated until the constraint set and the register binding
are feasible. Last, the precedence generated by the constraint
analyzer is fed to a simple external schedule heuristic.

An advantage of this new approach is that in practice, a
simple off-the-shelf scheduler can be used to complete the
schedule. Although the existence of a schedule is not strictly
guaranteed after the constraint analyzer, a schedule was found
for all problem instances. As the scheduler and its heuristics
are not critical in this approach, we will not focus on them
in this paper.

Note that a main characteristic of our approach is that
we perform register binding prior to schedule analysis. The

Fig. 3. Modeling the latency.

primary reason for this is our goal to obtain an efficient register
binding given the timing and resource constraints. Therefore,
we first want to fix the register binding, and constrain the
schedule accordingly without violating the other constraints.
The additional precedence constraints will guide the scheduler
more accurately toward a feasible solution.

When violation of the constraint set does occur, the infea-
sibility analyzer should be able to find the bottleneck.

A. Problem Statement for the Constraint Analyzer
and the Infeasibility Analyzer

It is necessary that the constraint analyzer does some
administrative bookkeeping, such that the infeasibility anal-
ysis is able to indicate a bottleneck in the register binding.
The problem statement for the constraint analyzer and the
infeasibility analyzer is therefore as follows.

Problem Definition 3—Operation Ordering and Bottleneck
Identification Problem (OOBIP):Given a cyclic DFG, a reg-
ister binding, a set of resource constraints , an II,
and a constraint on the latency, find either a partial order of
operations satisfying the register binding (if the constraint set
is feasible) or a smallest infeasible subset of value conflicts.

B. Effect of the Scheduler

The question rises as to whether or not the scheduler is
always able to find a solution when the constraint set passes
the infeasibility check. We distinguish two situations: pipelined
and nonpipelined schedules.

For nonpipelined schedules, the scheduler is always able
to find a solution that complies with the register binding.
Experience shows, however, that the latency constraint may
not always be satisfied in the final schedule.

A pipelined schedule is more difficult to obtain; sometimes
a decision is made that inevitably violates the constraint set. It
is therefore wise to alternate between scheduler and constraint
analyzer; first the scheduler makes a schedule decision. The
decision is then modeled in terms of precedence relations
(Section V-A), and the constraint analyzer computes the effect
of this decision on the mobility of the other operations. In this
way, the search space of the scheduler is reduced according to
decisions previously made in the schedule process. Although
there is still no absolute guarantee that a solution is found
in this way, a solution was found on all problem instances
tried so far. If the scheduler fails after all, the infeasibility
analyzer will indicate which value conflicts, resource conflicts,
and schedule decisions are responsible for this failure. The

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 49

designer himself will then have to enforce a different schedule
decision or partial rebinding.

The following sections comprise a solution to OOBIP.
Section V is concerned with the analysis of resource conflicts,
precedence, and timing constraints. Section VI extends the
analysis to a given register binding. In Section VII-B, we will
demonstrate the infeasibility analyzer based on the results of
Sections V and VI.

V. RESOURCE-CONSTRAINED ANALYSIS

In the previous section, we introduced a block diagram
of our global approach. This section will focus on part of
the constraint analyzer [23]. Section V-A models the differ-
ent constraints as much as possible in terms of precedence.
Section V-B analyzes the resource constraints, and generates
precedence as well, so that most of the constraint set is
expressed in a unified model (the DFG). The analysis is
illustrated on the example from Section III-C. In Section VI,
the analysis is extended to handlevalue conflictsthat result
from a given register binding.

A. Modeling the Constraints

We start this section by showing how some of the constraints
can be represented in the DFG model introduced in Section III.

• Latency: A constraint on the latency is translated to an
arc (sink, source) with , as illustrated in Fig. 3.
This is interpreted as source sink , which is
equivalent to sink source , meaning the last
operation may not be executed more thanclock cycles
after the start of the first operation.

• Microcoded controller and loop folding:We assume that
the architecture contains a microcoded controller. As
a consequence, the same code is executed every loop
iteration. This implies that a communicated value is
written in the same register each iteration. When loop
iterations overlap, we have to ensure that a value is
consumed before it is overwritten by the next production.
Since subsequent productions are exactly II clock cycles
apart, a value cannot be alive longer than II clock cycles.
So the operation C that consumes a value must execute
within II clock cycles after the operation P that produces
the value. Just like the latency constraint, a necessary and
sufficient translation to the precedence model is that for
each data dependency (P, C), there is an arc (C, P) with

II. Lemma 8 gives conditions when this timing
constraint can be tightened.

• Pipelined executions and multicycle opera-
tions: Pipelined executions and multicycle operations
can be modeled by introducing an operation for each
stage of the execution. Subsequent stages are linked in
time using two sequence edges, as indicated in Fig. 4.
For multicycle operations, A and B occupy the same
resource.

• Scheduling decisions:When schedule decisions are taken
during the process, the schedule intervals of other opera-
tions are affected. Therefore, it is desirable to be able to

Fig. 4. Modeling pipelined and multicycle operations.

Fig. 5. Modeling a schedule decision.

express a schedule decision in the DFG so that its effect
can be analyzed in the context of the other constraints.
Scheduling decisions may take different forms. A timing
relation between two operations can be directly translated
to a sequence edge. When an operationis fixed at a
certain clock cycle , we need two sequence edges, as
indicated in Fig. 5.

• Resource conflicts and instruction-set conflicts:We use
method [20] to model instruction set conflicts as resource
conflicts , introduced in Section III-A.

B. Resource-Constraint Analysis

We now come to the point of explaining the analysis
process. By observing a combination of constraints, we can
reduce the search space. This reduction is made explicit
by adding precedence constraints (sequence edges). In this
section, a lemma will be given that observes the interaction
between resource conflicts, precedence, and timing constraints.
The next section demonstrates lemmas to incorporate register
conflicts. All the lemmas used in our approach rely on the
concept of a path between operations.

Definition 10—Path:A path of length from operation
to operation is a chain of precedence

that implies .
Definition 11—Distance:The distance from op-

eration to is the length of the longest path from to
.
A path in the graph thus represents a minimum timing delay.

For example, in Fig. 1, the path A B C indicates a
minimum timing delay of two clock cycles between the start
times of A and C. The first lemma presented below affects the
timing relation between conflicting operations. It is based on
the fact that two operations with a resource conflict cannot be
scheduled at the same potential. Thetime potentialassociated
to a time is mod II. So if the distance between these
operations would cause them to be scheduled at the same
potential, the distance has to be increased by at least one
clock cycle.

Lemma 1: If mod II and ,
we can add a sequence precedence edge with weight

without excluding any feasible schedules.
This lemma will help us to solve the schedule problem in

Fig. 1. Remember that the key decision to obtaining a feasible

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 6. Derivation of a schedule for Fig. 1.

schedule is to put a gap of one clock cycle between A and B.
So our goal is to derive that A B . This derivation
is given in Fig. 6. Fig. 6(a) represents the DFG model of
Fig. 1(a). In Fig. 6(a), we see a path A B C D
of length mod II from A to D. According to Lemma
1, we can add a sequence edge AD of weight
because A and D have a resource conflict. This edge is drawn
in Fig. 6(b). Next, there is a path D E sink source
A B of length clock cycles. Because
of the resource conflict D–B, this length has to be increased by
one clock cycle. This gives a sequence edge DB of weight

2, as given in Fig. 6(c). We conclude by finding a path of
length clock cycles. In Fig. 6(d), the associated
sequence edge (A, B) of weight two is explicitly drawn. The
precedence relations now completely fix the schedule. The
reader can verify that the [ASAP, ALAP] intervals based on
the extended DFG of Fig. 6(d) all contain just one clock cycle,
and the estimated schedule freedom equals zero.

VI. REGISTER-CONSTRAINT ANALYSIS

The previous section introduced the methodology used in
the constraint analyzer of Fig. 2. In this section, we will extend
the techniques to analyze value conflicts that result from a
given register binding [24]. This will be done by introducing
lemmas similar to Lemma 1 in the previous section. These
lemmas provide necessary conditions (in terms of precedence
relations) to guarantee a given register binding. Section VI-
A is restricted to nonfolded schedules in order to explain
the concept more clearly. The lemmas will be generalized in
Section VI-B for register conflicts that cross loop boundaries,
which occur when folded schedules are considered.

A. Nonfolded Schedules

In this subsection, two lemmas observe the combination of a
given register binding, precedence, and timing constraints for
nonfolded schedules. Their use is demonstrated with a small

Fig. 7. Lemma 2 for sequentialized value lifetimes.

example. In all given examples, a path is indicated using a
dashed arc labeled with the length of the path. Sequence edges
are dotted. Standard delay (if not labeled) for a sequence edge
is zero clock cycle; for a data dependence, it is one clock cycle.

Lemma 2: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(P1, P2) ,
we can add a sequence precedence edge (C1, P2) with weight
zero without excluding any feasible schedules.

Lemma 2 is illustrated in Fig. 7. The values and are
bound to the same register. If there is a path of positive length
from P1 to P2, then the whole lifetime of value has to
precede the lifetime of . This is made explicit by adding
a sequence edge from the consumer C1 to the producer P2.
A similar lemma is valid when there is a path between the
consumers of the values.

Lemma 3: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(C1, C2) ,
we can add a sequence precedence edge (C1, P2) with weight
zero without excluding any feasible schedules.

When there is a path between the producer of one value and
the consumer of the other, we can only exclude a possibility
if the delay of the path is strictly greater than zero. Otherwise,
the alternative sequentializations, C2P1, could still yield a
feasible schedule when P1 and C2 are scheduled in the same
clock cycle.

Lemma 4: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(P1, C2) ,
we can add a sequence precedence edge (C1, P2) with weight
zero without excluding any feasible schedules.

Lemma 4 is illustrated in Fig. 8. The overall method of
analysis is demonstrated in Fig. 9. In this figure, values
and reside in the same register, as do values and

. Because operation 1 consumes valueand operation
7 consumes value , the lifetime of has to precede the
lifetime of as a result of the precedence (Lemma 3
applies). Therefore, the sequence edge is added. Now
there is a path from the consumer of to the
consumer of , and Lemma 3 applies again. The sequence
edge is added as a result. Any schedule heuristic can
now find a schedule without violating the register binding,
which is not the case if the sequence edges were not added.

B. Folded Schedules

In this section, we extend the lemmas from Section VI-
A for sequentialized value lifetimes to handle pipelined loop
schedules. An example demonstrates the use of the extended
lemmas.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 51

Fig. 8. Lemma 4 for sequentialized value lifetimes.

Fig. 9. Example demonstrating the use of Lemma 3.

Fig. 10. Timing perspective of serializing alternatives.

When schedules are not folded, it is relatively simple to
avoid overlapping lifetimes of values residing in the same reg-
ister. Only two alternatives have to be considered, as depicted
in Fig. 10, where the solid lines indicate the occupation of the
register. When loop iterations overlap in time, we also have
to take care that theth lifetime of value does not overlap
with the st (and the st) lifetime of value , as
depicted in Fig. 11. Applying the lemmas in this section will
eliminate some alternatives, but it is not guaranteed that only
one alternative remains. In this case, the lifetime sequencer
in Fig. 2 will have to make a decision in order to avoid
overlapping lifetimes. This is the subject of Section VI-C.

Sequentialized value lifetimes that belong to different loop
iterations pose a problem for the graph model because it
makes no difference between operation Aand A (where
A denotes theth execution of A). This suggests that a timing
relation between Aand B has to be translated to a timing
relation between Aand B. This translation is straightforward:

B B II, so that the relation A B
is translated to the relation A B II , which

Fig. 11. Serializing alternatives when folding once.

Fig. 12. Lemma 5 for sequentialized value lifetimes.

is equivalent to a sequence edge B A with delay II .
Lemmas 2 and 3 are now easily generalized to Lemmas 5 and
6.

Lemma 5: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(P1, P2)

II, we can add a sequence precedence edge (C1, P2) with
weight II without excluding any feasible schedules.

Lemma 6: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(C1, C2)

II, we can add a sequence precedence edge (C1, P2) with
weight II without excluding any feasible schedules.

Lemma 5 is illustrated in Fig. 12. Lemma 4 is generalized
to Lemma 7.

Lemma 7: Let value , produced by operation P1 and
consumed by C1, and value, produced by operation P2 and
consumed by C2, reside in the same register. If(P1, C2)

II , we can add a sequence precedence edge (C1, P2)
with weight II without excluding any feasible schedules.

The last lemma we introduce with respect to folded sched-
ules does not serialize lifetimes like the previous lemmas but
restricts the lifetime of a value when there exist other values
assigned to the same register.

Lemma 8: Let be the set of values that reside in a
register , and let minlt() denote the minimal lifetime of value

(the distance from the producer ofto the last consumer of
). Then each value has a maximum lifetime equal to

II minlt

Initially, all values have a minimum lifetime of one clock
cycle. The lifetime expression in Lemma 8 is then simplified
to II , where equals the number of values assigned to
register . When, for example, II , and there are two values
in register , each of these values has a maximum lifetime
of clock cycles. When three values reside
in , the maximum lifetime becomes two clock cycles. This

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 13. Derivation of a partial schedule.

Fig. 14. Folded ASAP schedule for Fig. 13.

maximum lifetime is modeled as a sequence edge with weight-
maxlt from the consumer to the producer of the value, similar
to modeling the latency.

We illustrate the use of these lemmas with the example in
Fig. 13. It is similar to the example of Fig. 1, but it is extended
with a register binding. Value, communicated from operation
A to B, and value , communicated from operation C to D, are
bound to the same register. The same resource conflicts and
the same initiation interval are used, but there is no constraint
on the latency. The first step from (a) to (b) is the same as
the first step in Fig. 6.

From Fig. 13(b) to (c), the value is produced by A and
consumed by B. Value is produced by C and consumed by
D. Because of Lemma 7 and(A, D) II , we can
add a sequence edge (B, C) with weight II without
excluding any feasible schedules.

In Fig. 14, a folded ASAP schedule is given that satisfies the
newly added precedence constraints, and thus also the resource
constraints and the register binding. In Fig. 14, the leftmost
column indicates the time potential (schedule time modulo II),
so operation C is scheduled in clock cycle 4, D in clock cycle
5, etc. Notice that the constraints have forced a gap of two
clock cycles between operations B and C. A greedy scheduling
approach does not put gaps between operations and would
never have found a schedule that satisfies all constraints.

In Fig. 15, it is proven that operations A, B, C, and D
are actually fixed at their schedule times given in Fig. 14.
Fig. 15(a) shows a sequence edge (C, B) with weightII

as a result of modeling the loop-folding constraint as given
in Section V-A. It is also a special case of Lemma 8, where

contains only one value.
From Fig. 15(a) to (b), the sequence edge generates a path

from C (producer of value) to B (consumer of value) with
distance II . Because of Lemma 7, we

Fig. 15. Derivation of Fig. 13 continued.

can now add a sequence edge from D (consumer of value)
to A (producer of value) of weight II .

From Fig. 15(b) to (c), there is now a path from D to A
of distance II. Because A and D have a resource
conflict, Lemma 1 states that the distance is increased by one
clock cycle. Accordingly, a sequence edge (D, A) with weight

5 is added.
As a result of this last sequence constraint, operation D

cannot be scheduled further than five clock cycles from
operation A, which is also the minimum distance because
of the sequence edge from B to C of weight three. The
intermediate operations (B and C) are also fixed in this way.
Only operation E can be scheduled at clock cycle 6, 7, or 8.

We have now covered the basic techniques used in the
constraint analyzer of Fig. 2. Note that these techniques do
not guarantee that every conflict is solved (that all lifetimes
of values in the same register are serialized); especially when
the schedule is not pipelined, the constraints are often not
sufficient to eliminate every conflict. In such a case, a schedule
decision has to be made to serialize two value lifetimes, which
is the subject of the next section.

C. Lifetime Sequencing

Suppose we have a value conflict between value, pro-
duced by operation P1 and consumed by C1, and value,
produced by operation P2 and consumed by C2. We distinguish
two situations:

• nonpipelined schedules;

• pipelined schedules.

In the first situation, the lifetime sequencer has to solve a
value conflict by choosing either C2 P1 or C1 P2. In
the pipelined situation, the iteration index must be considered
as well: the alternatives are C2 P1 and C1 P2
for possibly more than one value of. This is illustrated in
Fig. 11 for .

Nonpipelined blocks are sometimes large (1000 opera-
tions), and constraints are not tight. This has two effects:

• many decisions have to be made;

• a lot of schedule freedom is available.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 53

An actual branch and bound approach does not seem ap-
propriate in this case: the number of decisions are too large to
guarantee reasonable runtimes, and because of all the available
schedule freedom, a heuristic approach suffices. Although it is
not guaranteed that a feasible schedule is found in this way
(in this case the values are simply separated), we have not yet
encountered infeasibility in practice. Therefore, we choose one
of the sequentializations by reusing the schedule procedures
applied in the actual scheduler (in Fig. 2) so that our approach
is maximally tuned to the existing design flow. Since our
approach is being integrated in the Mistral2 [4] compiler, the
ASAP values of P1 and P2 determine the highest priority. In
Section IX, we included an experiment showing the effects of
sequencing lifetimes for a nonpipelined schedule.

For pipelined schedules, the reverse is true: pipelined loops
consist of relatively few operations (typically200), and the
constraints are much more tight (all lifetimes are restricted
to II, resource constraints and value conflicts cross the loop
iteration boundaries, etc.). As a result, only a few actual
schedule decisions have to be made (typically10). The
pipelined benchmarks in Section IX required at most two
decisions. In this case, a branch and bound approach is runtime
efficient. Such an approach is also required because in the
context of different types of very tight constraints, the effects
of a schedule decision are very difficult to anticipate, and
we are likely to make a “wrong” decision. For the same
reason, we do not want to reuse the schedule procedures of
the actual scheduler in Fig. 2: the constraints are simply too
tight to take any optimization criteria into account. Instead,
our first choice is determined by the alternative (C2 P1
or C1 P2 for some) that reduces the mobility of
P1, C1, P2, and C2 the least. Note that there is no actual
“cost function” involved in this branch and bound approach:
the detection of infeasibility (violation of the constraints)
determines when to backtrack.

The infeasibility analysis is able to assist in selecting the
decision to backtrack: in Section VII-B, it is explained in detail
that infeasibility is detected as a positive delay cycle in the
precedence graph. A decision is backtrackedonly when it is
part of such a cycle, because only then may it be inconsistent
with the constraints or previously made decisions.

VII. REGISTER BINDING

In this section, we cover two blocks from our global
approach of Fig. 2 that are related to the register binding. The
first is the initial binding, addressed in Section VII-A, and the
second is the infeasibility analyzer, addressed in Section VII-
B.

A. Initial Binding

It is clear from Fig. 16 that an initial register binding has to
be made to start the iteration of the constraint analyzer, given
the binding of values to register files. We choose the binding
such that each register file holds one register. In this way, all
values bound to a registrableneed to have their lifetimes
sequentialized. This choice is made for two reasons. First, it
produces the least hardware when ASIC’s are concerned, and

Fig. 16. Example of a precedence graph.

Fig. 17. v andw cannot be in the same register.

provides useful user feedback when programmable platforms
are concerned. Second, when the constraints are more tight,
the constraint analyzer generates more precedence constraints,
so it is better able to guide the scheduler toward a feasible
solution.

Starting from this minimum binding, some changes can be
made trivially based on the hierarchy of basic blocks. For
example, if value is produced before loop and consumed
after loop , it occupies a register during the entire execution
of loop . During the analysis of loop, a register is therefore
reserved for value . Another trivial decision is based on
dataflow. For example, in the precedence graph in Fig. 17,
values and cannot reside in the same register because the
value lifetimes cannot be sequentialized.

B. Infeasibility Analysis

The schedule analysis is often capable of detecting that
the register binding together with the constraint set yields an
infeasible result. In order to make a sensible change in the
register binding, we want the infeasibility analyzer to identify
the bottleneck in the register binding. More precisely, we
want the analyzer to give asmallest infeasible subset of value
conflicts,that is, a subset of value conflicts (two values residing
in the same register) that together cause infeasibility. Identi-
fying such a subset of decisions is tightly related to detecting
infeasibility. The constraint analyzer detects infeasibility based
on longest path information in the following way: when the
longest path algorithm finds a path from an operationto itself
(a cycle in the precedence graph) and this path has a positive
length, the operation is forced to execute strictly before its
own start time, which is clearly not possible. So a precedence
cycle of strictly positive length indicates infeasibility.

The bottleneck lies directly in the way that the positive
length cycle came into existence. For example, if in Fig. 13
the latency was constrained to six clock cycles, there was a
sequence edge from the sink to the source with a delay of

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Fig. 18. Infeasibility analysis for Fig. 16.

6 clock cycles. In Fig. 13(c), that would yield a positive
delay cycle. Most edges in the precedence cycle involve data
precedence, one involves the latency, and one involves a
register conflict. The sequence edge BC is a result of two
components: 1) the register conflict and 2) a path of
length four from A to D. The path from A to D consists of one
sequence edge that is added as a result of the resource conflict
A–D and a path A D of length three that consists entirely
of data precedence. We can thus conclude that infeasibility is
caused as a result of the following combination of factors:

1) a register conflict ;

2) a resource conflict A–D;

3) the latency constraint;

4) data precedence.

When all constraints are fixed except for the register binding,
we conclude that the decision to put the valuesand
together in a single register is the cause of infeasibility.

Another example is the graph depicted in Fig. 16. The
constraint set is infeasible with the register binding, which
is derived as follows. The infeasibility analysis is graphically
depicted in Fig. 18. Each block represents a path, and each
downward arrow represents an inference. The derivation is
top down. The path D G of length two (II) and register
conflict lead to the sequence edge D F of weight
II as a consequence of Lemma 6 (where). The
downward arrows show that this sequence edge is part in the
path underneath. The second block from the top indicates a
path C F of length three. Together with the register conflict

, this yields a sequence edge C D of weight two as
a result of Lemma 6. In the block at the bottom of Fig. 18,
the sequence edge D C of weight 1 is generated as a
result of Lemma 8. (value and in the same register limits
their lifetimes to II clock cycles). The
same block shows that this sequence edge causes a positive
precedence cycle C D C with a delay of
clock cycle. As a result of this positive precedence cycle, we
conclude that the register binding is infeasible.

The infeasibility analysis is done in bottom-up fashion to
identify exactly those sequence edges and conflicts that have
contributed to the positive precedence cycle. The combination
of register conflicts that yield infeasibility is identified as:

1) on register 1;

2) on register 3.

Fig. 19. The only two feasible schedules for Fig. 16 with changes in the
register binding.

Note that the conflict on register 2 did not contribute
to the infeasibility, and thus it is useless to put the values
and in separate registers. Instead, we have to choose to split
either register 1 or register 3. Both decisions yield a feasible
schedule, as depicted in Fig. 19.

C. Rebinding

The infeasibility analysis generates a list of value conflicts.
A conflict arises between two values. The list of value conflicts
is ordered on a number of criteria.

• The number of times the conflict appears in the conflict
list. When a conflict occurs more often in the list, the
conflict contributes more extensively to the bottleneck.

For ASIC’s, it is ordered on the following.

• The type of the values; we prefer allocating an additional
6-bit register to an additional 28-bit register.

• Addressability; when a register file contains four registers,
allocating an additional register requires an additional
addressing bit in the instruction word. We prefer to extend
a register file with three or five to seven registers.

For ASIP’s, it is ordered on the following.

• Availability of registers; we prefer to move values within
a register file that contains more spare registers.

After the conflict list is ordered, only the top conflict is chosen.
One of the two conflicting values is then allocated to the
next register. In this way, convergence is guaranteed. The
disadvantage is that the same value conflicts may arise in
subsequent iterations of the scheme in Fig. 2. Because this
has not proven to be a problem on our problem instances, no
work has been done to overcome the disadvantage.

VIII. C OMPLEXITY

In this section, we analyze the runtime complexity and mem-
ory requirements of our approach. The two major contributions
to runtime are:

• finding the longest paths and updating the paths as a result
of applying the lemmas from Sections V and VI;

• infeasibility analysis and changing the register binding.

A. Finding and Updating the Longest Paths

We will first consider the complexity of the former contri-
bution. In our implementation, the longest path between each
pair of operations is administrated. The memory requirements
thus have order .

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 55

If a new edge is added, the impact on the current longest
paths has to be calculated. Therefore, the complexity of adding
a sequence edge is the dominant factor in runtime. This
complexity is essentially determined by the number of paths
that need to be updated as a result of the new sequence edge.
Because we are only interested in the longest paths found so
far, the number of updates equals in the worst case. In most
cases, the addition of a sequence edge will affect a few paths.
In cases where many paths need to be updated, the estimates
of schedule intervals will also be improved substantially.

An upper bound on the number of path updates (as a result
of adding a sequence edge) can be derived as follows. A
path can have a length between and , where is the
constraint on the latency. Because a path is updated only if its
length is increased (by at least one clock cycle), the number of
times a path can be updated is at most. Since the maximum
number of paths we keep track of equals, the number of
path updates can be at most . A single path update
takes constant time, so the runtime of the constraint analysis
is polynomially bounded.

B. Infeasibility Analysis and Rebinding

As the reader may have noticed in the examples, the
infeasibility analysis requires a lot of administrative bookkeep-
ing. Almost every path constructed during the longest path
analysis has to be kept in memory for reference. A feasible
implementation requiring a limited amount of memory to run
an implementation of our method is only guaranteed if the
storage of a path has a memory cost of . This is possible
with the use of anadjacency matrix[25], which is based on
the following fact of longest paths: if the longest path from A
to C travels through B, then the part B to C is the longest path
from B to C. As a result, the only administration necessary
for the path from A (row of the matrix) to C (column of
the matrix) is the first node on the path after A. To facilitate
the infeasibility analysis, we also administrate the first edge
traversed on the path A to C. Each sequence edge on its turn
has a pointer to a register conflict (if there is one) and the
matrix entry representing the path that gave rise to the edge.
The complexity of the infeasibility analysis is thus bounded
by . We assume, however, that the longest paths
have already been calculated in the constraint analyzer.

The complexity of rebinding is determined by the procedure
of ordering the conflict list as explained in Section VII-C.
Because a value conflict gives rise to a sequence edge, the
number of conflicts in the list cannot exceed the number of
edges in the precedence graph. Therefore, the complexity of
rebinding is bounded by .

We conclude that the complexity of one iteration of the
scheme in Fig. 2 equals . In the worst
case, the number of iterations is bounded by, the number
of values in the dataflow graph. In the results section, we will
also depict the iteration count for the different applications.

IX. RESULTS

Our implementation on an HP 9000/735 has been tested
on the inner loops from four different real-life industrial

TABLE I
RESULTS OF EXPERIMENTS

examples that have been mapped on a VLIW architecture with
distributed register files. The results are shown in Table I.
The fourth column represents the number of iterations over
the constraint analyzer (see Fig. 2) before a feasible solution
was found. The last two columns indicate the mobility of
the operations in terms of average number of clock cycles
per operation (Definition 10). The sixth column indicates the
mobility before the analysis; the last column, after analysis
(what is left for the scheduler to fill in). With respect to the
numbers in Table I, no comparison could be made to other
approaches because the register allocator and the schedulers
available to us (several list schedulers) are unable to find any
solution for the given constraints.

The first experiment concerns an infinite impulse response
(IIR) filter of 23 operations, including fetching the coefficients
and data from memory. The minimum latency is ten clock
cycles, which equals the latency constraint. The other exper-
iments concern fast Fourier transform (FFT) applications, the
largest of which holds 81 operations. Note in Table I that the
runtimes are mainly determined by the number of iterations
over the constraint analyzer. The number of iterations is a
measure of the difficulty of finding a register binding because
it reflects the number of changes made to the original binding
in order to get a feasible schedule. In these experiments, the
schedule generated by our method provided a more efficient
register binding than a handmade schedule. Analyses of the
minimal value lifetimes suggested that little or no improve-
ment could be made on the generated register binding.

The mobility is decreased by a factor ranging from 3.6
(Rad4) to 13.2 (FFTb) as a result of the schedule analysis.
Because this decrease of mobility is due to the constraints,
it is a measure for the analyzers’ capability of directing the
scheduler and preventing it from making schedule decisions
that violate the constraints.

We have included one more experiment to test the perfor-
mance of our method on a problem instance that was not
constrained with respect to timing. It is a preliminary test
executed by Frontier Design, who are integrating our method
within the Mistral2 toolset. The benchmark, Par2, contains 91
operations. The original schedule, generated by the Mistral2
toolset, counts 61 clock cycles. As a result of the available
parallelism and the number of memory accesses, the register
binder required six registers at the address-generation unit.
The schedule generated by our method counts only 56 clock
cycles and requires only one register at the address-generation
unit. Because of the schedule freedom, a total of 111 schedule
decisions had to be made by the lifetime sequencer. Runtime
was less than a second. The efficient register binding of the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

new schedule was expected (it was enforced), unlike the
reduction in the number of clock cycles. This reduction is
explained as follows: because of the serialization of the address
lifetimes, the precedence graph became more regular. It is
a well-known fact that heuristics such as the list scheduling
are able to find more efficient schedules when the precedence
graph contains more regularity.

X. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we presented an approach for register binding
and scheduling in the context of loop pipelining, based on
the analysis of precedence, timing, and resource constraints.
By expressing as much of the constraints as possible in a
graph model and calculating the longest paths, we are able
to see the interaction between the different constraints and
compute the effect on the mobility available to a scheduler.
When the combination of constraints and the register binding is
infeasible, an efficient infeasibility analyzer is able to indicate
a change in the binding that is necessary to obtain a feasible
schedule. The results in Section IX show that our method is
able to find a register binding and a pipelined schedule in short
runtimes for industrially relevant designs. We also showed that
the obtained reduction in mobility really prevents a greedy
scheduler from making a wrong decision. When constraints
are not very tight, we are still able to find more efficient
schedules than heuristics. We conclude that analysis tools such
as our implementation are needed in order to obtain a feasible
schedule when facing resource constraints, register constraints,
and tight timing constraints. Our method is being integrated
in the Mistral2 toolset by Frontier Design.

Further research will focus on the analysis of other register-
file models, such as first-in, first-out and stacks.

ACKNOWLEDGMENT

The authors would like to thank M. Strik, K. van Eijk, and
P. Lippens for their support and constructive discussions.

REFERENCES

[1] R. Leupers, W. Schenk, and P. Marwedel, “Microcode generation
for flexible parallel architectures,” inProc. Working Conf. Parallel
Architectures and Compiler Technology,1994.

[2] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “DSP design tool
requirements for embedded systems: A telecommunications industrial
perspective,”J. VLSI Signal Process.,vol. 9, no. 1, 1995.

[3] P. Marwedel and G. Goossens, Eds.,Code Generation for Embedded
Processors. Boston, MA: Academic, 1995.

[4] M. T. J. Strik, “Efficient code generation for application domain specific
processors,” Eindhoven University of Technology, The Netherlands,
Tech. Rep. 90-5282-390-1, 1994.

[5] M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial on
high-level synthesis,” inProceedings of the 25th ACM/IEEE Design
Automation Conference. Anaheim, CA: ACM and IEEE Computer
Society, 1988, pp. 330–336.

[6] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness.San Francisco, CA: Freeman, 1979.

[7] G. Goossens, J. Vandewalle, and H. De Man, “Loop optimization
in register-transfer scheduling for DSP-systems,” inProceedings of
the 26th ACM/IEEE Design Automation Conference.Las Vegas, NV:
ACM and IEEE Computer Society, 1989, pp. 826–831.

[8] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “FlexWare: A
flexible firmware development environment for embedded systems,” in
P. Marwedel and G. Goossens, Eds.,Code Generation for Embedded
Processors. Boston, MA: Academic, 1995.

[9] R. Leupers and P. Marwedel, “Retargetable code generation based on
structural processor descriptions,”Design Automation Embedded Syst.,
vol. 3, no. 1, 1998.

[10] D. Lanneer, J. van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and
G. Goossens, “Chess: Retargetable code generation for embedded DSP
processors,” in P. Marwedel and G. Goossens, Eds.,Code Generation
for Embedded Processors.Boston, MA: Academic, 1995.

[11] M. T. J. Strik, J. L. van Meerbergen, A. H. Timmer, and J. A. G.
Jess, “Efficient code generation for in-house DSP-cores,” inProceedings
of the European Design and Test Conference. Paris, France: IEEE
Computer Society Press, 1995, pp. 244–249.

[12] C. Liem, T. May, and P. Paulin, “Instruction-set matching and selection
for DSP and ASIP code generation,” inProceedings the European
Design and Test Conference. Paris, France: IEEE Computer Society
Press, 1997, pp. 31–37.

[13] B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an
easily schedulable horizontal architecture for high performance scientific
computing,” inProc. Ann. Workshop Microprogramming,Oct. 1981, pp.
183–198.

[14] M. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” in Proc. SIGPLAN Conf. Programming Language
Design and Implementation,June 1988, p. 328.

[15] A. Aiken, A. Nicolau, and S. Novack, “Resource-constrained software
pipelining,” IEEE Trans. Parallel Distrib. Syst.,vol. 6, pp. 1248–1270,
Dec. 1995.

[16] C. T. Hwang, Y. C. Hsu, and Y. L. Lin, “A formal approach to the
scheduling problem in high level synthesis,”IEEE Trans. Computer-
Aided Design,vol. 10, pp. 464–475, Apr. 1991.

[17] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker, “Register
allocation for software pipelined loops,” inProc. SIGPLAN Conf.
Programming Language Design and Implementation,June 1992, pp.
283–299.

[18] A. E. Eichenberger, E. S. Davidson, and S. G. Abraham, “Optimum
modulo schedules for minimum register requirements,” inProc. Int.
Conf. Supercomputing,Barcelona, Spain, July 1995, pp. 31–40.

[19] R. Govindarajan, E. R. Altman, and G. R. Gao, “Minimizing register
requirements under resource-constrained rate-optimal software pipelin-
ing,” in Proc. Symp. Microarchitecture,Nov. 1994, pp. 85–94.

[20] A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, and J. A. G. Jess,
“Conflict modeling and instruction scheduling in code generation for
in-house DSP cores,” inProceedings of the 32nd ACM/IEEE Design Au-
tomation Conference. San Francisco, CA: ACM and IEEE Computer
Society, 1995.

[21] D. C. Ku and G. De Micheli, Eds.,High Level Synthesis of ASIC’s
Under Timing and Synchronization Constraints.Norwell, MA: Kluwer
Academic, 1992.

[22] R. Reiter, “Scheduling parallel computation,”J. ACM, vol. 15, pp.
590–599, 1968.

[23] B. Mesman, M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and
J. A. G. Jess, “Constraint analysis for DSP code generation,” inProc.
Int. Symp. System Synthesis,Antwerp, Sept. 1997.

[24] , “A constraint driven approach to loop pipelining and register
binding,” in Proceeding of the Design Automation and Test in Europe.
Paris, France: IEEE Computer Society Press, 1998.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

Bart Mesman received the Electrical Engineering
degree (with honors) from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
in 1995, where he currently is pursuing the Ph.D.
degree.

His doctoral work is on the subject of sched-
uling for embedded DSP processor architectures
with the explicit goal of codesigning processor
architectures and a code-generation methodology
based on constraint analysis. Since 1995, he has
been a Member of both the Digital VLSI Group

at Philips Research, Eindhoven, and the Information and Communication
Systems Group of the Electrical Engineering Department at the University of
Technology, Eindhoven. His research interests include high-level synthesis,
ASIP architectures, and code generation for embedded DSP’s.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al.: DSP CODE GENERATION 57

Adwin H. Timmer received the Electrical Engi-
neering and Ph.D. degrees from the Eindhoven
University of Technology, Eindhoven, The Nether-
lands, in 1990 and 1996, respectively.

In 1995, he joined Philips Research Laboratories,
Eindhoven. In 1998, he was a Visiting IC Architect
with the Philips Semiconductors WSG business
line, Mountain View, CA. His current interests are
in IC architectures for high-performance signal-
processing applications, system-level design meth-
ods, hardware/software codesign, and compilation

techniques for embedded DSP’s.

Jef L. van Meerbergen received the Electrical
Engineering and Ph.D. degrees from the Katholieke
Universiteit Leuven, Belgium, in 1975 and 1980,
respectively.

In 1979, he joined Philips Research Laboratories
in Eindhoven, The Netherlands. He was engaged in
the design of MOS digital circuits, domain-specific
processors, and general-purpose digital signal pro-
cessors. In 1985, he began working on application-
driven high-level synthesis. Initially, this work was
targeted toward audio and telecom DSP applica-

tions. Later, the application domain shifted toward high-throughput appli-
cations (Phideo). His current interests are in system-level design methods,
heterogeneous multiprocessor systems, and reconfigurable architectures. He
is a Philips Research Fellow and, since 1998, a Professor at the Eindhoven
University of Technology. He is an Associate Editor ofDesign Automation
for Embedded Systems.

Dr. van Meerbergen received the Best Paper Award at the 1997 ED&TC
conference.

Jochen A. G. Jessreceived the master’s and Ph.D.
degrees from Aken University of Technology, Ger-
many, in 1961 and 1963, respectively.

He became a Full Professor of electrical engi-
neering at the Eindhoven University of Technology,
Eindhoven, The Netherlands, in 1971. For a number
of years, he had various research and teaching ap-
pointments at Karlsruhe University of Technology,
where he was one of the founders of the Computer
Science Department. During 1968–1969, he spent
a sabbatical year at the University of Maryland,

College Park. In Eindhoven, he was involved in founding and running the
Design Automation Section. This task implied devising a long-term research
program in the area of VLSI design automation and complementing it with the
necessary curricular components. His is a coauthor of about 125 papers. He
guided 31 Ph.D. students to graduation. In 1985, he joined IBM T. J. Watson
Laboratories, Yorktown Heights, NY, for a short period to contribute to a
silicon compilation path for the 801 RISC pipeline in a project guided by R. K.
Brayton and R. Otten. Recently, his interest has focused on hardware platforms
for multimedia systems and the problems of compilation for performance
when mapping high-performance, real-time tasks onto those platforms. He is
member of the board of the European Design Automation Association and
has been its Chairman for a number of years. He is a Cofounder of the
Design Automation and Test in Europe conference. He was Program Chair
and General Chair, respectively, of ICCAD-93 and ICCAD-94.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

