EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Constraint analysis for DSP code generation

Citation for published version (APA):

Mesman, B., Timmer, A. H., Meerbergen, van, J., & Jess, J. A. G. (1999). Constraint analysis for DSP code
generation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(1), 44-57.
https://doi.org/10.1109/43.739058

DOI:
10.1109/43.739058

Document status and date:
Published: 01/01/1999

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/43.739058
https://doi.org/10.1109/43.739058
https://research.tue.nl/en/publications/b39bbb45-7609-4e18-a172-ef7887f1532f

44 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

Constraint Analysis for DSP Code Generation

Bart Mesman, Adwin H. Timmer, Jef L. van Meerbergen, and Jochen A. G. Jess

Abstract— Code generation methods for digital signal- file usually provides input for only one functional unit, the
processing (DSP) applications are hampered by the combination resource binding induces a binding of values to register files.
of tight timing ~constraints imposed by the performance |, o, experiments (Section IX), resource binding has been

requirements of DSP algorithms and resource constraints . h -
imposed by a hardware architecture. In this paper, we present a done by the Mistral2 toolset [4] for a very long instruction

method for register binding and instruction scheduling based on word (VLIW) architecture.

the exploitation and analysis of the combination of resource and ~ The reason that register binding and scheduling under timing

timing constraints. The analysis identifies implicit sequencing constraints have not yet been addressed thoroughly is that most

relations between operations in addition to the preceding o ine cyrrently available software compiling techniques were

constraints. Without the explicit modeling of these sequencing ~ . . ,
originally developed for general-purpose processors (GPP’s),

constraints, a scheduler is often not capable of finding a solution - ha - ’
that satisfies the timing and resource constraints. The presented Which have characteristics different from those of ASIP’s.

approach results in an efficient method to obtain high-quality « GPP’s most often have a single large register file, ac-
instruction schedules with low register requirements. cessible from all functional units, thus providing a lot
Index Terms—Code generation, register binding, scheduling. of freedom for both scheduling and register binding.
ASIP’s usually have a distributed register-file architecture
(for a large access bandwidth) accompanied by special-
purpose registers. Automated register binding is severely

IGITAL signal-processing (DSP) design groups and hampered by this type of architecture.
embedded processor users indicate the increasing use

of application-domain-specific instruction-set processors
(ASIP’s) [1] as a significant trend [2]. ASIP’s are tuned toward
specific application domains and have become popular due to
their advantageous tradeoff between flexibility and cost. This
tradeoff is present neither in application-specific integrated
circuit (ASIC) design, where emphasis is placed on cost, norin® Designing a compiler comprises a tradeoff between com-
the design of general-purpose DSP’s, where emphasis is placed Pile time and code quality. Typically, GPP software
on flexibility. Because of the importance of time-to-market, should compile quickly, and code quality is less im-
software for these ASIP's is preferably written in a high-level ~ portant. For embedded software (that is, for an ASIP),
programming language, thus requiring the use of a compiler. however, code quality is of utmost importance, which
In this paper, we will address some of the compiler issues May require intensive user interaction and longer compile
that have not been addressed thoroughly yet: the problems times.

of register binding and scheduling under timing constraints. As a result of these characteristics, compiling techniques
Note that we do not consider resource binding. Althougtriginating from the GPP world are less suitable for the
resource binding can have a major effect on the quality ofapping problems of ASIP architectures. The field of high-
the code, much work has been done on this subject [Bvel synthesis [5], concerned with generating application-
Furthermore, ASIP’s mostly have such irregular architecturepecific hardware, has also been engaged in the scheduling and
that there is often little choice for mapping an operatiomegister-binding problem. Because the resource-constrained
For example, addresses are calculated on a dedicated goiteduling problem was proven NP-complete [6], most so-
complying with the desired bit width, there is usually onlyution approaches from this field have chosen to maintain the
one functional unit performing barrel shifting, etc. Because vfellowing two characteristics.

consider distributed register-file architectures where a registet pecomposition in a scheduling and register allocation

phase. Because these phases have to be ordered, the result

Manuscript received April 1, 1998; revised August 27, 1998. This paper of the first phase is a constraint for the second phase.
was recommended by Associate Editor G. Borriello. A ision in the first ph m | t n inf ibl

B. Mesman and J. L. van Meerbergen are with Philips Research Lab- decsp € 1irst phase may ead 10 a easible
oratories, Eindhoven 5656 AA The Netherlands and the Department of coOnstraint set for the second phase.
Electrical Engineering, Eindhoven University of Technology, Eindhoven, The The use of heuristics in both phases
Netherlands. ’

A. H. Timmer is with Philips Research Laboratories, Eindhoven 5656 AA Heuristics for register binding and operation scheduling are

I. INTRODUCTION

ASIP’'s are mostly used for implementing DSP func-

tionality that enforces strict real-time constraints on the
schedule. GPP compilers use timing as an optimization
criterion but do not take timing constraints as a guideline
during scheduling.

The Netherlands. _ o runtime efficient. When used in an ASIP compiler, however,
J. A. G. Jess is with the Department of Electrical Engineering, E|ndhowﬁ11 bl ith the i . f timi

University of Technology, Eindhoven, The Netherlands. ey are unable) to cope W!t the Interactions o tlmlng_,
Publisher Item Identifier S 0278-0070(99)00810-6. resource, and register constraints. The user often has to provide

0278-0070/99$10.001 1999 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION 45

pragmas (compiler hints) to help the scheduler in satisfying theRauet al.[17] successfully performed register binding tuned
constraints. Furthermore, in order to obtain higher utilizaticl pipelined loops. They mention that for better code quality,
rates for the resources and to satisfy the timing constraintspncurrent scheduling and register allocation is preferable,”
software pipelining [7], also called loop pipelining or loopbut for reasons of runtime efficiency they solve the problem
folding, is required. In Section lll, we will show that aof scheduling and register binding in separate phases.
heuristic-like list scheduling is already unable to satisfy the Some approaches have been reported that perform schedul-
timing and resource constraints on a very simple pipelinieg (with loop pipelining) and register binding simultaneously.
example. Eichenbergeet al.[18] solve some of the shortcomings of the

We discuss related work in Section II. In Section Ill, th@pproach used by Govindarajanal.[19], but both try to solve
dataflow graph (DFG) model is introduced with some definthe entire problem using an ILP approach, which is computa-
tions. An example of a tightly constrained schedule probletionally too expensive for practical instances of the problem
will demonstrate why traditional heuristics are not suitabldepicted above. Following is a summary of these points.

to cope with the combination of different types of tight « On one hand, the combination of timing, resource, and
constraints. In Section IV, the problem statement is given and register constraints does not describe a search space that
a global solution strategy is proposed. Sections V-VII focus can be suitably traversed by simple heuristics.

on a_nalysis. In Section VIIl, Co_mplexity issues are discussed., On the other hand, practical instances of the total problem
Section IX shows some experimental results. are too large to be efficiently solved with ILP-based
methods.

. Therefore, we will try a different approach based on the

Code generation for embedded processors has become a,
: : . T analysis of the constraints without exhaustively exploring

major trend in the CAD community. Most active in this are h T L 120 full f d

are the group of Paulin with the FlexWare environment [8 © search space. immet al. [20] successfully pertormec.

Marwedel’s group [9], IMEC with the Chess environmen onstraint analysis on a schedule problem using bipartite

group 13l, atching, but this work is difficult to extend to register

[10], and Philips [11]. Because of the pressure for sm%l nstraints

instructions, mostly irregular processor architectures are useg. '

A structural processor model for these irregular architectures, I1l. DEFINITIONS

combined with the demand faetargetability, caused a great In this section, we will introduce the general high-level

emphasis on code selecti_on [12].' Qompilers for these platforrys thesis scheduling problem. The difficulty of solving this
have produced. rather disappointing results when comparér/ blem when the constraints are tight is illustrated with a
to manually written program code. Therefore, we choose E?mple example. A perspective is introduced to understand the

model the instruction-set irregularities procedural as hardwafreeasons why this is a difficult problem to solve for traditional
conflicts during the scheduling phase. This reduces the %eiét ods

pendencies between the different code-generation phases an
enables the expression of all different constraints (instructioA: High-Level Synthesis Scheduling

set irregularities, resource constraints, timing and throughputA DSP application can be expressed using a DFG [21].

constraints, precedence, register binding, etc.) as much af)efinition 1—DFG: A DFG is a five-tuple U, By U E
possible in a single model. Y. val, w), where: ' v Ld 1

Software pipelining has been the subject of many research . _ .

projects. The modulo scheduling scheme by Rau [13] has’ V is the set of vertices (operations);

inspired many researchers. His approach is essentially a listt £s €V x V is the set of sequence precedence edges;

scheduling heuristic. Backtracking is used when an operatione £, C V x V is the set of data precedence edges;

cannot be scheduled. . . Yis a set of values;
Many more approaches are based on the list-scheduling . . - . .

heuristic, notably the work of Goossens [7] and Lam [14]. ° val: By _ Y is a function describing which value is
The group of Nicolau [15] devised a heuristic that often communicated over a data precedence edge;

finds an efficient schedule with respect to timing. It does * w: E,UEqs — Z is a function describing the timing delay

not take constraints on the timing into account, however, associated with a precedence edge.

and the latency and initiation interval are difficult to control. In Fig. 13(a), for example, the set of operatidfis= source,

Because implicit unrolling is performed until a steady state has b, c, d, e, sink. The set of sequence precedence ddges

been reached, code duplication occurs frequently, resulting=in{(source, a), (b, c), (d, e), (e, sifk)and the set of data

possibly large code sizes. These are intolerable for embedgeedcedence edgeB,; = {(a, b), (c, d}. The set of values

processors with on-chip instruction memory, especially f&f = {v, w}. Furthermoreval (a, b) = v, and val (c, d)

VLIW architectures. = w. Every edge(v;, v;) € E hasw(v,;, v;) = 1 except
Integer linear programming (ILP) approaches to finding(source, a)= 0.

pipelined schedules started with the work of Hwang [16]. Two (dummy) operations are always (implicitly) part of the

A considerable amount of constraints caused most fornaFG: the source and the sink. They have no execution delay,

methods to generate intolerable runtimes for DFG’s containibgit they do have a start time. The source operation is the “first”

more than about 20 operations. operation, and the sink operation is the “last” one.

Il. RELATED WORK

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

A DFG describes the primitive actions performed in a DSB. Schedule Freedom
algorithm and the dependencies between those actions. A, he previous subsection, we introduced the high-level

sched_ul_e_deflnes when these actions are perf_ormed. synthesis scheduling problem. In order to solve this problem
_ Definition 2: A schedules: V' — Z describes the start ;nq the extended scheduling problem from Section V), it
times of operations. _ _ is convenient to describe the set of possible solutions: the
For v e_V, g(v)_denotes the start time of operation We solution spaceln this subsection, we will describe the solution
also considepipelinedschedules: in a loop construction, thgyace a5 a range of possible start times for each operation.
loop bodyis executed a number of times. In a traditional schegra .5 se this set of feasible start times is as difficult to find as
ule, iterations + 1 of the loop body is executed strictly afteri; is 1o find a schedule, we will approximate it by the “as soon
the exe_cution of théth iteration. Gooss_ens [7] d_emonstrategs possible/as late as possible” (ASAP—ALAP: Definitions 8
a practical way to overlap the executions of different 100Rs,q 9) interval, the construction of which is solely based on
body iterations, thus obtaining potentially much more efficienf,o precedence constrains, U E,. By generating additional
schedules. The pipelined schedule is executed periodicallyrecedence constraints that are implied by the combination
Definition 3—Initiation Interval (II): An 1l is the period of all constraints, the ASAP-ALAP interval provides an

between the start times of the execution of two successiyR easingly more accurate estimate of the set of feasible start
loop-body iterations. times.

A schedule has to satisfy the following constraints. The \ye start with a description of the solution space.
precedence constraintspecified by the precedence edges, pefinition 4: The set of feasible schedules is the set

state that of schedules such that each schedsle= $ satisfies the
Y(vi, v;) € E: s(u;) > s(v;) +w(vs, v;). precedence constraints, the resource constraints, and the timing
constraints.
Furthermore, the source and sink operations have an implicitAn operation thus has a range of feasible start times, each
precedence relation with the other operations corresponding to a different schedule.
Definition 5: The actual schedule freedom of a DFG is the
average size of the set of feasible start times minus one

When a DFG is mapped on a hardware platform, we

Vv, € Vis(u;) > s(source.

encounter several resource limitations. Thesgource con- 1 Z (|T(v:)| = 1).
straints are given by the functionsc(v;, v;): V x V — VI =
{0, 1}, defined by
0, if v; andv; have a conflict The actual schedule freedom quantifies the amount of choice
rsc(vi, v;) = 1, otherwise. for making schedule decisions. For traditional schedule heuris-

tics, a large actual schedule freedom is advantageous because
A conflict can be anything that prevents the operations i gives the scheduler more room for optimization. The actual
andv; from executing simultaneously. For example, they ag:pedule freedom is defined by the application (the DFG and
executed on the same functional unit, transport the result of fpR timing constraints) and the available hardware platform. A
computation over the same bus, or there is no instruction f@l’rge actual schedule freedom is not guaranteed, and we have
the parallel execution of; andv; [20]. A resource constraint 1o deal with a tightly constrained scheduling problem.
rsc(vi, v;) thus states that Because of the complexity of finding the set of feasible start
rsc(vi, v;) = 1 = s(v;) # s(v;)- times, a conservative ASAP—ALAP estimate is more practical.
For the definition of the ASAP—-ALAP interval, we need the
For loop-pipelined schedules, the implication of a resourecmtion of immediate predecessors and successors.
constraint is Definition 6: The immediate predecessors, successors
rsc(v;, v;) = 1= s(v;) # s(vj)mod Il y v pred(v) = {u € V|(u, v) € E}
For reasons of simplicity, we assume that all operations have eV suce(v) = {u € V|(v, v) € E}.
an execution delay of one clock cycle. In Section V-A, we
will show how pipelined or multicycle operations are modeled The ASAP value is recursively defined as follows.
using precedence constraints. The general high-level synthesiBefinition 7—ASAP Value:
scheduling problem (HLSSP) is formulated as follows.
Problem Definition 1—HLSSPGiven are a DFG, a set of 0, if pred(v) =0
resource constraintssc(v;, v,), an ll, and a constraint on the ASAP(v) = Clglag(:
latency ! (completion time). Find a schedulethat satisfies uipreay .
the precedence constrainks U F,, the resource constraints, ~(ASAP(u) +w(u, v)), otherwise.
and the timing constraints Il and
In Section V-A, we will introduce some additional con- The latest possible start time is called the ALAP value. Let
straints that characterize our specific problem. We note thatenote the latency constraint. Then ALAP(siak)l, and for
HLSSP is NP-hard [6]. all other operations, the following holds.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION a7

Definition 8—ALAP Value: .1 Q 11=3

latency =6 A-D
[— w(v, sink), if succ(v) =0 D resource conflicts: B.D
_ i 1121 (B
ALAP(v) = { o NIINAS
-ALAP(u) — w(v, u), otherwise. pot 1 /B ‘
(u) (v,) [2.31 @ e
The start time of each operation must lie in between the 3.4] @ e
ASAP and ALAP values, inclusively pot (ILA 5
2B/ E

V(v € V): ASAP(v) < s(v) < ALAP(v). 451 (B)
a}

0
Therefore, th_e ASAP-ALAP mte_rval IS a C_Onservatlve eSt,fig. 1. Example with loop folding: (a) precedence graph, (b) list-schedule,
mate of (contains) the set of feasible start times. and (c) only feasible schedule in six clock cycles.
In this paper, we will extract sequencing constraints that

are necessarily implied by the combination of all constraintg. loop folding has to be applied [indicated by the arrow
These sequencing constraints_ are then explicitly added to mq:ig. 1(b) and (c)]. Because folding introduces extra code,
DFG as precedence constraints. Because the ASAP-ALGR o not want to fold more than once, which constrains
interval is based solely on the precedence constraints,jk latency to six clock cycles. In Fig. 1(b), the result of a
provides an increasingly more accurate estimate of the §igf scheduler is shown. The left column contains tirae
of feasible start times. For most scheduling methods, eithgsantial(schedule time modulo I1). The list scheduler greedily
the ASAP-ALAP intervals or the precedence constraints ahedules A, B, and C as soon as possible (ASAP), and
an extremely important guideline: these methods take thgnciudes that D cannot be scheduled. In Fig. 1(c), a feasible
precedence or the ASAP-ALAP interval explicitly as a basigchequle is given. The key to obtaining this schedule is to
Schedule choices are made with respect to the availaBlgsinone B one clock cycle relative to its ASAP value. In
resources. When the ASAP-ALAP interval does not_refleﬁg_ 1, the apparent freedom or mobility equals one clock
the actual schedule freedom very accurately, there will 0ftec|e per operation. The reader can verify that the combination
come a point in the schedule process where there are §j0srecedence, resource, latency, and throughput constraints
available resources for an operation, and the operation canp@l,es no actual schedule freedom at all: the schedule in
be scheduled. In this way, the precedence constraints gfg 1(c) is the only possible schedule in six clock cycles.
the resulting ASAP-ALAP interval implicitly represent therpe [ASAP, ALAP] estimate of the schedule interval was not
“search scope” of tr,‘,e scheduler. Therefore, we also define th&: rate enough, and the other constraints should have been
apparent freedom,” also called mobility or slack. - considered as well. In Section V-B, we will show how the
Definition 9—Apparent Schedule Freedom (Mobility, Slackyna|ysis of the combination of all constraints provides the most
The apparent schedule freedom is the average size of the g&f,rate ASAP-ALAP intervals (equal to the actual schedule
of ASAP-ALAP intervals freedom) for the schedule problem of Fig. 1.

I‘l/_l >~ ALAP(v;) — ASAP(v;).

v CV

IV. PROBLEM STATEMENT AND GLOBAL APPROACH

. In the previous section, we introduced the general HLSSP.
Becagse the prepedence and the .A.SAP_ALAP interval foer]lhis section, we define our characteristic scheduling problem
the basis for making schedule decisions, the performance

a scheduler depends largely on the accuracy of the inter and c_ombine it with the problem of finding a register biljding.
When the ASAP—ALAP interval is an accurate estimate e will decompose the problem and construct a block diagram

. . S % the global approach. Our characteristic problem statement
the set of f_eaS|bIe start time$(v;), the mobility is an for finding a feasible schedule and register assignment is as
accurate estimate of the actual schedule freedom and v,

: - ows.
versa. Therefore, we will use the mobility before and after the, |\ - pefinition 2 Register Binding and Operation

constraint analysis as a performance measure of the analygéheduling ProblemGiven a cyclic DFG, the resource
constraintsrsc(v;, v;), a binding of values to register files,
C. A Small Example an Il, and a constraint on the latentyfind an assignment of
Often a schedule heuristic is “deceived” by the apparewélues to registers and a schedutbat satisfies the precedence
schedule freedom and is unable to generate a feasible schedidastraintst; U E, the resource constraints, and the timing
A combination of several types of constraints is responsibtenstraints 1l and.
for the fact that the actual schedule freedom is smaller than theBecause it is difficult to make a register binding and
apparent freedom. A small example illustrates the difficulty & schedule simultaneously, we decompose the problem in
handling the combination of different types of constraints. separate phases, as depicted in Fig. 2. First, an initial register
In Fig. 1, a precedence graph of five operations is given (thending (discussed in Section VII-A) is constructed in a simple
arrows indicate a precedence relation). The [ASAP, ALARhanner. The Il for each hierarchical level is also fixed prior to
interval is printed directly left of the corresponding operatiorthe analysis. Most often, it is set by the designer. Otherwise,
In order to meet the constraint of three clock cycles on ame start with a lower bound based on loop-carried dependen-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

scheduler

iming
precedence
fesource constraints

change |
register ;Il}?clcf}c%me analyzer
bmdlng TESOUrCe Constraines
register binding
init Fig. 3. Modeling the latency.
I& lifetime
reg.bind sequencer . . . - .
primary reason for this is our goal to obtain an efficient register

Fig. 2. Global approach. bindi.ng given the 'timing anq resource constraints. Thgrefore,
we first want to fix the register binding, and constrain the
)) o ~ schedule accordingly without violating the other constraints.
cies [22] and available resources. When this Il is not feasiblgne aqditional precedence constraints will guide the scheduler
it is incremented by one clock cycle. Profiling suggests thg{qe accurately toward a feasible solution.
the optimal 1l is usually only one or two clock cycles away \when violation of the constraint set does occur, the infea-

from the lower bound. _ . sibility analyzer should be able to find the bottleneck.
The central part, the constraint analyzer (discussed

in Sections V and VI), generates additional preceden
constraints that are implied by the combination of all S
constraints, including thF:a give%/ register binding. Thesaend the Infeasibility Analyzer
additional precedence refine the ASAP—ALAP intervals, thus!t is necessary that the constraint analyzer does some
providing a much more accurate estimate of the set of feasigi@ministrative bookkeeping, such that the infeasibility anal-
start times. They will guide the scheduler and often prevent$is is able to indicate a bottleneck in the register binding.
from making schedule decisions leading to infeasibility. The problem statement for the constraint analyzer and the
The new precedence constraints are such that the regidigasibility analyzer is therefore as follows.
binding is guaranteed: all lifetimes between values residingProblem Definition 3—Operation Ordering and Bottleneck
in the same register have been sequentialized. The Cb(?pntifi_cat_ion Problem (OOBIP):Given a cyclic DFG, a reg-
straint analyzer (and the lifetime sequencer) thus repladg@tr binding, a set of resource constraints(v;, v;), an I,
the register-binding constraints completely by precedence cftd @ constraint on the latencyfind either a partial order of
straints. When the constraint set leaves some room for differ@Rrations satisfying the register binding (if the constraint set
lifetime sequentializations, tHeetime sequencediscussed in is feasible) or a smallest infeasible subset of value conflicts.
Section VI-C, chooses between several alternatives. When the
constraint set is tight, as is the case in most of the benchmabksEffect of the Scheduler

of Section IX, only one or two choices are made by the The question rises as to whether or not the scheduler is
lifetime sequencer. A branch and bound algorithm is therefosgyvays able to find a solution when the constraint set passes
runtime-efficient enough for the lifetime sequencer. the infeasibility check. We distinguish two situations: pipelined
The added precedence may cause violation of the constrgjfti nonpipelined schedules.
set (including the register binding). Anfeasibility analysis For nonpipelined schedules, the scheduler is always able
(discussed in Section VII-B) uses the administrative booko find a solution that complies with the register binding.
keeping done by the constraint analyzer to find the bottleneglperience shows, however, that the latency constraint may
in the constraint set and the register binding. The “chang@t always be satisfied in the final schedule.
register binding” block in Fig. 2 tries to solve this bottleneck A pipelined schedule is more difficult to obtain; sometimes
by rebinding a value to a different register. This schemgdecision is made that inevitably violates the constraint set. It
is iterated until the constraint set and the register binding therefore wise to alternate between scheduler and constraint
are feasible. Last, the precedence generated by the constraidflyzer; first the scheduler makes a schedule decision. The
analyzer is fed to a simple external schedule heuristic. decision is then modeled in terms of precedence relations
An advantage of this new approach is that in practice, (8ection V-A), and the constraint analyzer computes the effect
simple off-the-shelf scheduler can be used to complete tbkthis decision on the mobility of the other operations. In this
schedule. Although the existence of a schedule is not stricilay, the search space of the scheduler is reduced according to
guaranteed after the constraint analyzer, a schedule was fodedisions previously made in the schedule process. Although
for all problem instances. As the scheduler and its heuristittgere is still no absolute guarantee that a solution is found
are not critical in this approach, we will not focus on thenn this way, a solution was found on all problem instances
in this paper. tried so far. If the scheduler fails after all, the infeasibility
Note that a main characteristic of our approach is thahalyzer will indicate which value conflicts, resource conflicts,
we perform register binding prior to schedule analysis. Thend schedule decisions are responsible for this failure. The

S Problem Statement for the Constraint Analyzer

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION 49

decision or partial rebinding.
The following sections comprise a solution to OOBIP.
Section V is concerned with the analysis of resource conflicts,
precedence, and timing constraints. Section VI extends the
analysis to a given register binding. In Section VII-B, we wilfig- 4. Modeling pipelined and multicycle operations.
demonstrate the infeasibility analyzer based on the results of

designer himself will then have to enforce a different schedule
Ty ™1
B

Sections V and VI.
Cy -c
V. RESOURCECONSTRAINED ANALYSIS U

In the previous section, we introduced a block diagram
of our global approach. This section will focus on part ofig. 5. Modeling a schedule decision.
the constraint analyzer [23]. Section V-A models the differ-
ent (_:onstraints as much as possible in ter_ms of precedence. express a schedule decision in the DFG so that its effect
Section V-B analyzes the resource constraints, and.generat.es can be analyzed in the context of the other constraints.
precedence as well, so that most of the constraint set is Scheduling decisions may take different forms. A timing

expressed in a unified model (the DFG). The analysis is (o|ation between two operations can be directly translated
illustrated on the example from Section [lI-C. In Section VI, . 4 sequence edge. When an operatiois fixed at a

the analy5|s is e>_<tende_d tp handlalue conflictsthat result certain clock cyclec, we need two sequence edges, as
from a given register binding. indicated in Fig. 5.

. . « Resource conflicts and instruction-set conflict¥e use
A. Modeling the Constraints method [20] to model instruction set conflicts as resource
We start this section by showing how some of the constraints conflicts rsc(v;, v;), introduced in Section IlI-A.
can be represented in the DFG model introduced in Section 1.

e Latency: A constraint/ on the latency is translated to a
arc (sink, source) withw = —I, as illustrated in Fig. 3. s o)
This is interpreted as(source > s(sink) — I, which is e now come to the point of explaining the analysis
equivalent tos(sink) < s(source + I, meaning the last Process. By observing a combination of constraints, we can
operation may not be executed more thasiock cycles reduce the search space. This reduction is made explicit
after the start of the first operation. by adding precedence constraints (sequence edges). In this

section, a lemma will be given that observes the interaction

between resource conflicts, precedence, and timing constraints.

e next section demonstrates lemmas to incorporate register

"B. Resource-Constraint Analysis

« Microcoded controller and loop foldingWe assume that
the architecture contains a microcoded controller.

a consequence, the same code is executed every oo

0. .
iteration. This implies that a communicated value igonfhcts. All the lemmas used in our approach rely on the

:) . . . concept of a path between operations.
written in the same register each iteration. When loop N,) .
. i . Definition 10—Path: A path of lengthd from operation;
iterations overlap, we have to ensure that a value js . . .
. . .~ 10 operationu; is a chain of precedencg — vy — ---v; —
consumed before it is overwritten by the next production: A
that impliess(v;) > s(v;) + d.

. . v,
Since subsequent productions are exactly Il clock CydeéDefinition 11— Distance:The distanced(v;, v;) from op-

apart, a value cannot be alive longer than Il clock cycles. _.. .
: erationv; to v; is the length of the longest path from to
So the operation C that consumes a value must execute
e . Ui
within Il clock cycles after the operation P that produces’ : - -
. . A path in the graph thus represents a minimum timing delay.
the value. Just like the latency constraint, a necessary alpéjr

sufficient translation to the precedence model is that for. example, in Fig. 1, the path A+ B — C indicates a

. minimum timing delay of two clock cycles between the start
each data dependency (P, C), there is an arc (C, P) Wt'%nes of A and C. The first lemma presented below affects the

w = —Il. Lemma 8 gives conditions when this timing,. . . -) .
. . timing relation between conflicting operations. It is based on
constraint can be tightened. . . .
o _ _ the fact that two operations with a resource conflict cannot be
* Pipelined executions and multicycle operascheduled at the same potential. Ttmee potentialassociated
tions: Pipelined executions and multicycle operationg, a time ¢ is ¢ mod Il. So if the distance between these
can be modeled by introducing an operation for eagherations would cause them to be scheduled at the same

stage of the execution. Subsequent stages are linkedytitential, the distance has to be increased by at least one
time using two sequence edges, as indicated in Fig.4ock cycle.

For multicycle operations, A and B occupy the same | emma 1: If d(vi, v;) mod Il = 0 and rsc(v;, v;) = 1,

resource. we can add a sequence precedence €dge;) with weight
 Scheduling decisionsiWhen schedule decisions are takerd(v;, v;) + 1 without excluding any feasible schedules.

during the process, the schedule intervals of other opera-This lemma will help us to solve the schedule problem in

tions are affected. Therefore, it is desirable to be able Fig. 1. Remember that the key decision to obtaining a feasible

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

50 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

=3 single reg e’

latency =6 A-D v —- Y|

resource conflicts: g_p © VZ ©)-
(source) (source) (source)

4*0 4*0 4*0 @ [
I A !

C

Fig. 7. Lemma 2 for sequentialized value lifetimes.

example. In all given examples, a path is indicated using a
dashed arc labeled with the length of the path. Sequence edges
are dotted. Standard delay (if not labeled) for a sequence edge
is zero clock cycle; for a data dependence, it is one clock cycle.

Lemma 2: Let value v1, produced by operation P1 and
consumed by C1, and valug, produced by operation P2 and
consumed by C2, reside in the same registei(P1, P2)> 0,
we can add a sequence precedence edge (C1, P2) with weight
zero without excluding any feasible schedules.

Lemma 2 is illustrated in Fig. 7. The value$ andv2 are
bound to the same register. If there is a path of positive length
from P1 to P2, then the whole lifetime of valud has to
precede the lifetime of2. This is made explicit by adding
a sequence edge from the consumer C1 to the producer P2.
schedule is to put a gap of one clock cycle between A and R.similar lemma is valid when there is a path between the
So our goal is to derive thai(A, B) = 2. This derivation ¢onsumers of the values.
is given in Fig. 6. Fig. 6(a) represents the DFG model of | emma 3: Let value v1, produced by operation P1 and
Fig. 1(a). In Fig. 6(a), we see a path A B — C — D ¢consumed by C1, and valug, produced by operation P2 and
of length3 mod Il = 0 from A to D. According to Lemma ¢gonsumed by C2, reside in the same registei(Tfl, C2)> 0,

1, we can add a sequence edge-AD of weight3+1 =4 \ye can add a sequence precedence edge (C1, P2) with weight
because A and D have a resource conflict. This edge is draydio without excluding any feasible schedules.

in Fig. 6(b). Next, there is a path B- E — sink— source— \wyhen there is a path between the producer of one value and
A — Boflengthl+1-6+0+1 = —3 clock cycles. Because the consumer of the other, we can only exclude a possibility
of the resource conflict D-B, this length has to be increased ¥he delay of the path is strictly greater than zero. Otherwise,
one clock cycle. This gives a sequence edge-B of weight he alternative sequentializations, €2P1, could still yield a

—2, as given in Fig. 6(c). We conclude by finding a path Gbasible schedule when P1 and C2 are scheduled in the same
length4 — 2 = 2 clock cycles. In Fig. 6(d), the associateq|gck cycle.

sequence edge (A, B) of weight two is explicitly drawn. The | emma 4: Let value 1, produced by operation P1 and
precedence relations now completely fix the schedule. Thgnsumed by C1, and value, produced by operation P2 and
reader can verify that the [ASAP, ALAP] intervals based oggnsumed by C2, reside in the same registef(ff1, C2)> 1,

the extended DFG of Fig. 6(d) all contain just one clock cyclye can add a sequence precedence edge (C1, P2) with weight

Fig. 6. Derivation of a schedule for Fig. 1.

and the estimated schedule freedom equals zero. zero without excluding any feasible schedules.
Lemma 4 is illustrated in Fig. 8. The overall method of
V1. REGISTERCONSTRAINT ANALYSIS analysis is demonstrated in Fig. 9. In this figure, valugs

The previous section introduced the methodology used @&nd v2 reside in the same register, as do values and
the constraint analyzer of Fig. 2. In this section, we will exteng2. Because operation 1 consumes valueand operation
the techniques to analyze value conflicts that result from7aconsumes value2, the lifetime ofv1 has to precede the
given register binding [24]. This will be done by introducindifetime of v2 as a result of the precedente- 7 (Lemma 3
lemmas similar to Lemma 1 in the previous section. Thegpplies). Therefore, the sequence edge: 8 is added. Now
lemmas provide necessary conditions (in terms of precedeitéere is a patt2 — 1 — 8 from the consumer ofv1 to the
relations) to guarantee a given register binding. Section \@onsumer ofw2, and Lemma 3 applies again. The sequence
A is restricted to nonfolded schedules in order to expla@dge2 — 9 is added as a result. Any schedule heuristic can
the concept more clearly. The lemmas will be generalized #®w find a schedule without violating the register binding,
Section VI-B for register conflicts that cross loop boundarie/hich is not the case if the sequence edges were not added.
which occur when folded schedules are considered.

B. Folded Schedules

A. Nonfolded Schedules In this section, we extend the lemmas from Section VI-
In this subsection, two lemmas observe the combination ofafor sequentialized value lifetimes to handle pipelined loop
given register binding, precedence, and timing constraints frhedules. An example demonstrates the use of the extended

nonfolded schedules. Their use is demonstrated with a snathmas.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION 51

rdzl

) single reg 1
©" z @ ~6

Fig. 8. Lemma 4 for sequentialized value lifetimes.

Fig. 11. Serializing alternatives when folding once.

;}2,\,_11 single reg @
#

@ V

Fig. 12. Lemma 5 for sequentialized value lifetimes.

is equivalent to a sequence edge-B A with delay Il +d.
Lemmas 2 and 3 are now easily generalized to Lemmas 5 and
6.

Lemma 5: Let value v1, produced by operation P1 and
consumed by C1, and valu, produced by operation P2 and
consumed by C2, reside in the same registeri(F1, P2)>
k x 1l, we can add a sequence precedence edge (C1, P2) with
weight & x Il without excluding any feasible schedules.

Lemma 6: Let value v1, produced by operation P1 and
consumed by C1, and valug, produced by operation P2 and
time¢ consumed by C2, reside in the same registed(G1, C2)>

Fig. 10. Timing perspective of serializing alternatives.

k x 1l, we can add a sequence precedence edge (C1, P2) with
weight & x Il without excluding any feasible schedules.
Lemma 5 is illustrated in Fig. 12. Lemma 4 is generalized
to Lemma 7.
Lemma 7: Let value v1, produced by operation P1 and
consumed by C1, and valu, produced by operation P2 and

consumed by C2, reside in the same registeri(ff1, C2)>
x Il + 1, we can add a sequence precedence edge (C1, P2)
th weight £ x Il without excluding any feasible schedules.

he last lemma we introduce with respect to folded sched-

When schedules are not folded, it is relatively simple r\?/i
avoid overlapping lifetimes of values residing in the same reg-
!st'e;r'. Oln(I)y w}']O altﬁznau%%sl.have. tc&'betcciﬂydered, a;s deﬁ:'ﬁﬁ s does not serialize lifetimes like the previous lemmas but
In F1g. 1U, where the Solid lines indicate the occupation o r}‘Estricts the lifetime of a value when there exist other values
register. When loop iterations overlap in time, we also ha

o tak that theth lifeti ¢ valuewv? d ; | \éeSsigned to the same register.
0 taKe cgre a |e‘|me of valuevz does not overlap) omma 8: Let W be the set of values that reside in a
with the ¢ + 1st (and the: — 1st) lifetime of valuevl, as

deicted in Fia. 11. Applving the | in thi " _ﬁegisterr, and let minlt¢;) denote the minimal lifetime of value
epicted in F1g. LL. Applying the lemmas In this section W'vithedistancefromthe producer ofto the last consumer of

eliminate some altern_atives, bl.Jt itis not gua}rapteed that Orz';' Then each value € W has a maximum lifetime equal to
one alternative remains. In this case, the lifetime sequenc
in Fig. 2 will have to make a decision in order to avoid
overlapping lifetimes. This is the subject of Section VI-C.
Sequentialized value lifetimes that belong to different loop
iterations pose a problem for the graph model because itnitially, all values have a minimum lifetime of one clock
makes no difference between operatiopad A; (where cycle. The lifetime expression in Lemma 8 is then simplified
A; denotes théth execution of A). This suggests that a timingo Il — (k—1), wherek equals the number of values assigned to
relation between Aand B, has to be translated to a timingregisterr. When, for example, l&= 4, and there are two values
relation between Aand B. This translation is straightforward: in registerr», each of these values has a maximum lifetime
s(Bi4+1) = s(B;) +11, so that the relatios(A;) > s(B;+1)+d of 4 — (2 —1) = 3 clock cycles. When three values reside
is translated to the relatios(A;) > s(B;) + Il + d, which in r, the maximum lifetime becomes two clock cycles. This

r

= > minlt(v).

veEW/u

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

-3 A-D -3 AD
resource conflicts: B-D resoutrce conflicts: B-D
(source) (source) (source) (source) (source) (source)
o vo +0 vo o
®) A ®) 0
v 1 v 1. ‘
®) @) -5
S SR :
© ©
w y w ¥y

{sink) {sink) (sink_} {sink } {sink) {sink }
a) b) c) a) b) c)
Fig. 13. Derivation of a partial schedule. Fig. 15. Derivation of Fig. 13 continued.

can now add a sequence edge from D (consumer of ajue

0 |A /- to A (producer of valuey) of weight —2 x Il = —6.
pot 1 IBf C From Fig. 15(b) to (c), there is now a path from D to A
21/ W of distance—6 = —2 x Il. Because A and D have a resource
Fig. 14. Folded ASAP schedule for Fig. 13. conflict, Lemma 1 states that the distance is increased by one
clock cycle. Accordingly, a sequence edge (D, A) with weight

maximum lifetime is modeled as a sequence edge with weigh_t5 is added.

maxlt from the consumer to the producer of the value, similar As a result of this last sequence f:onstramt, operation D
to modeling the latency. cannot be scheduled further than five clock cycles from
We illustrate the use of these lemmas with the example eration A, which is also the minimum distance because

Fig. 13. Itis similar to the example of Fig. 1, butitis extendefl the sequence e_dge from B 1o C of we_ight _thre_e. The
with a register binding. Value, communicated from operation'mermed"']lte operations (B and C) are also fixed in this way.

A to B, and valuew, communicated from operation C to D, areOnly operation E can be scheduled_ at cIocI_< cycle 6, 7, or 8.
e have now covered the basic techniques used in the

bound to the same register. The same resource conflicts anw . . .
fQnstraint analyzer of Fig. 2. Note that these techniques do

the same initiation interval are used, but there is no constra ADE aE
t guarantee that every conflict is solved (that all lifetimes

on the latency. The first step from (a) to (b) is the same Q? . . - .
the first step in Fig. 6. of values in the same register are serialized); especially when

From Fig. 13(b) to (c), the value is produced by A and the schedule is not pipelined, the constraints are often not

consumed by B. Values is produced by C and consumed bfufficient to eliminate every conflict. In such a case, a schedule
D. Because of Lémma 7 anfA, D) > 4 — 1 x Il +1, we can decision has to be made to serialize two value lifetimes, which

add a sequence edge (B, C) with weighk Il = 3 without is the subject of the next section.
excluding any feasible schedules. o)

In Fig. 14, a folded ASAP schedule is given that satisfies tife Lifetime Sequencing
newly added precedence constraints, and thus also the resour@uppose we have a value conflict between valugpro-
constraints and the register binding. In Fig. 14, the leftmoduiced by operation P1 and consumed by C1, and valje
column indicates the time potential (schedule time modulo lIproduced by operation P2 and consumed by C2. We distinguish
so operation C is scheduled in clock cycle 4, D in clock cyclevo situations:
5, etc. Notice that the constraints have forced a gap of two. nonpipelined schedules;
clock cycles between operations B and C. A greedy scheduling,
approach does not put gaps between operations and Woul?n

never have found a schedule that satisfies all constraints. the f|r_st situation, Fhe I|1_‘et|me sequencer has to solve a
In Fig. 15, it is proven that operations A, B, C, and [j/alue conflict by choosing either C2 P1 or C1— P2. In

. : : : R he pipelined situation, the iteration index must be considered
are actually fixed at their schedule times given in Fig. 14 o
y 9 9 as well: the alternatives are €2+ P14 and Cl,; — P2
efﬂl‘ possibly more than one value &f This is illustrated in

pipelined schedules.

Fig. 15(a) shows a sequence edge (C, B) with weight=
—3 as a result of modeling the loop-folding constraint as giv

in Section V-A. It is also a special case of Lemma 8, WhelFe'g' 11 _for_k €{-10,1}.)
r contains only one value. Nonpipelined blocks are sometimes large1000 opera-

From Fig. 15(a) to (b), the sequence edge generates a F}éqﬂs), and cor?s.tralnts are not tight. This has two effects:
from C (producer of valuev) to B (consumer of value) with * many decisions have to be made;
distance—3 > —2 x Il +1 = —5. Because of Lemma 7, we ¢ a lot of schedule freedom is available.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION 53

An actual branch and bound approach does not seem ap-
propriate in this case: the number of decisions are too large to

=2
latency=7

guarantee reasonable runtimes, and because of all the available - AD
schedule freedom, a heuristic approach suffices. Although it is | Resource Conﬂ'Ctszg__E

not guaranteed that a feasible schedule is found in this way D-G

(in this case the values are simply separated), we have not yet

encountered infeasibility in practice. Therefore, we choose one

of the sequentializations by reusing the schedule procedures

applied in the actual scheduler (in Fig. 2) so that our approach Register binding: :ggéf g,g
is maximally tuned to the existing design flow. Since our 'r683; i

approach is being integrated in the Mistral2 [4] compiler, the
ASAP values of P1 and P2 determine the highest priority. In
Section IX, we included an experiment showing the effects of

sequencing lifetimes for a nonpipelined schedule. Fig. 16. Example of a precedence graph.
For pipelined schedules, the reverse is true: pipelined loops

consist of relatively few operations (typicalg200), and the A

constraints are much more tight (all lifetimes are restricted v w

to Il, resource constraints and value conflicts cross the loop D

iteration boundaries, etc.). As a result, only a few actual (B

schedule decisions have to be made (typicall§0). The - ,
pipelined benchmarks in Section IX required at most twigd 17- v andw cannot be in the same register.

decisions. In this case, a branch and bound approach is runtime

efficient. Such an approach is also required because in ﬁ{gvides useful user feedback when programmable platforms

context of different types of very tight constraints, the e1‘fec%e concterl_ﬂetd. S(Iecond, whent the constramtg are morettlghtt,
of a schedule decision are very difficult to anticipate, an € constraint analyzer generales more precedence constraints,

we are likely to make a “wrong” decision. For the samg&° it is better able to guide the scheduler toward a feasible

reason, we do not want to reuse the schedule proceduress%I t|0r_1. L -
tarting from this minimum binding, some changes can be

the actual scheduler in Fig. 2: the constraints are simply too 2 . _
tight to take any optimization criteria into account. Instea(ﬁ?ade trivially based on the hierarchy of basic blocks. For

our first choice is determined by the alternative (G2 P1; ;. e]>c<tam|ple, llf }:aluev 'S producgdt be;org Io?tf) andt_consumeg
of Cl.x — P2 for somek) that reduces the mobility of after loop!, it occupies a register during the entire execution

P1, C1, P2, and C2 the least. Note that there is no actL?z;IIOOpl' During the analysis of I_o_op a re_g?ster_ is therefore
“cost function” involved in this branch and bound approacﬁeserved for valuev. Another trivial decision is based on

the detection of infeasibility (violation of the constraintsgataﬂow' For example, n th_e precedence graph in Fig. 17,
determines when to backtrack. aluesv andw cannot reside in the same register because the

The infeasibility analysis is able to assist in selecting th\é"jllue lifetimes cannot be sequentialized.

decision to backtrack: in Section VII-B, it is explained in detail

that infeasibility is detected as a positive delay cycle in tH3. Infeasibility Analysis

precedence graph. A decision is backtrackety when it is The schedule analysis is often capable of detecting that
part of such a cycle, because only then may it be inconsistghé register binding together with the constraint set yields an

with the constraints or previously made decisions. infeasible result. In order to make a sensible change in the
register binding, we want the infeasibility analyzer to identify
VIl. REGISTER BINDING the bottleneck in the register binding. More precisely, we

Yvant the analyzer to give smallest infeasible subset of value
A onflicts that is, a subset of value conflicts (two values residing
approach of Fig. 2 that are related to the register binding. Tﬁe ' e . o :

e AT : : In"the same register) that together cause infeasibility. Identi-
first is the initial binding, addressed in Section VII-A, and the . y _— .

. . I~ . : ing such a subset of decisions is tightly related to detecting
second is the infeasibility analyzer, addressed in Section VIi- L : : -
B Infeasibility. The constraint analyzer detects infeasibility based

' on longest path information in the following way: when the

. oo longest path algorithm finds a path from an operatida itself
A. Initial Binding (a cycle in the precedence graph) and this path has a positive
It is clear from Fig. 16 that an initial register binding has téength, the operatiow is forced to execute strictly before its

be made to start the iteration of the constraint analyzer, givewn start time, which is clearly not possible. So a precedence
the binding of values to register files. We choose the bindiraycle of strictly positive length indicates infeasibility.

such that each register file holds one register. In this way, allThe bottleneck lies directly in the way that the positive
values bound to a registrableneed to have their lifetimes length cycle came into existence. For example, if in Fig. 13
sequentialized. This choice is made for two reasons. Firsttlie latency was constrained to six clock cycles, there was a
produces the least hardware when ASIC'’s are concerned, aeduence edge from the sink to the source with a delay of

In this section, we cover two blocks from our glob

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

1 1 register 3 split up register 1 split up
D—»F —»G
: 0 AB 0 A

c-f| lemma 4b timel 1 c 1 B

1 2 2 2 C
C—»D—PF 33 E D 3 D
- - Infeasibility results from conflicts: 4 F 4 E
a-d L lemma 4b 1) a-d on regl 5 5 F

2 2) c-fonreg3 6 G 6 G

C—»D

Fig. 19. The only two feasible schedules for Fig. 16 with changes in the
c—fv lemma 6 register binding.

2
C—»D
é -1)
Note that the conflich — ¢ on register 2 did not contribute

Fig. 18. Infeasibility analysis for Fig. 16. to the infeasibility, and thus it is useless to put the valtes
ande in separate registers. Instead, we have to choose to split

—6 clock cycles. In Fig. 13(c), that would yield a positivesither register 1 or register 3. Both decisions yield a feasible
delay cycle. Most edges in the precedence cycle involve dahedule, as depicted in Fig. 19.

precedence, one involves the latency, and one involves a

register conflict. The sequence edge-BC is a result of two C. Rebinding

components: 1) the register conflict— w and 2) a path of i - .]]

length four from A to D. The path from A to D consists of one The !nfea§|bll|ty analysis generates a I|s_t of value confhpts.

sequence edge that is added as a result of the resource Co,ﬁiggmfllct arises between two v_alu_es. The list of value conflicts

A-D and a path A— D of length three that consists entirelylS ordered on a number of criteria.

of data precedence. We can thus conclude that infeasibility iss The number of times the conflict appears in the conflict

caused as a result of the following combination of factors: list. When a conflict occurs more often in the list, the
1) a register conflic — w; conflict contributes more extensively to the bottleneck.

For ASIC's, it is ordered on the following.

¢ The type of the values; we prefer allocating an additional
6-bit register to an additional 28-bit register.

2) a resource conflict A-D;
3) the latency constraint;

4) data precedence. Addressability; when a register file contains four registers,
When all constraints are fixed except for the register binding, allocating an additional register requires an additional
we conclude that the decision to put the valuesand w addressing bit in the instruction word. We prefer to extend
together in a single register is the cause of infeasibility. a register file with three or five to seven registers.

Another example is the graph depicted in Fig. 16. Thegr ASIP's, it is ordered on the following.
constraint set is infeasible with the register binding, which

is derived as follows. The infeasibility analysis is graphically
depicted in Fig. 18. Each block represents a path, and e
downward arrow represents an inference. The derivation

top d . Th th D- G of length t I d ist . . .
Ob down. The pa of length two ¢ 1) and register next register. In this way, convergence is guaranteed. The

nfli - f h n B F of weigh) . . o
conflict ¢ — f lead to the sequence edge of weight disadvantage is that the same value conflicts may arise in

Il = 2 as a consequence of Lemma 6 (whére= 1). The i . A .
downward arrows show that this sequence edge is part in ﬁq%bsequent iterations of the scheme in Fig. 2. Because this

path underneath. The second block from the top indicates B not proven to be a problem on our problem Instances, no

path C— F of length three. Together with the register com‘lic\fvOrk has been done to overcome the disadvantage.

a — d, this yields a sequence edge-€ D of weight two as

a result of Lemma 6. In the block at the bottom of Fig. 18, VIIl. COMPLEXITY

the sequence edge B C of weight —1 is generated as a

:ﬁ:#lt"gtilﬁénsn:g ﬁ_.((;/fi_lus a:nd2f_|q tielsjglci rff;;;r “_m(t: ;)ry rec:_uiremen.ts of our approach. The two major contributions

same block shows that this sequence edge causes a p03|8v£zu'_1 ||T1e are. _

precedence cycle G- D — C with a delay of2 + (—1) = 1 « finding the longest paths and upda’qng the paths as a result

clock cycle. As a result of this positive precedence cycle, we of applying the lemmas from Sections V and VI;

conclude that the register binding is infeasible. « infeasibility analysis and changing the register binding.
The infeasibility analysis is done in bottom-up fashion to

identify exactly those sequence edges and conflicts that haveFinding and Updating the Longest Paths

contributed to the positive precedence cycle. The combinatio

of register conflicts that yield infeasibility is identified as:

« Availability of registers; we prefer to move values within
a register file that contains more spare registers.

6}%{'er the conflict list is ordered, only the top conflict is chosen.

ne of the two conflicting values is then allocated to the

In this section, we analyze the runtime complexity and mem-

"We will first consider the complexity of the former contri-

] bution. In our implementation, the longest path between each
1) a —d on register 1; pair of operations is administrated. The memory requirements
2) ¢ — f on register 3. thus have ordeD(V?).

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION 55

If a new edge is added, the impact on the current longest TABLE |

paths has to be calculated. Therefore, the complexity of adding RESULTS OF EXPERIMENTS

a sequence edge is the dominant factor in runtime. This exper | |[V[| IL | #iter | run | mobility | mobility
complexity is essentially determined by the number of paths iment ations | time | before after
that need to be updated as a result of the new sequence edge. analysis | analysis
Because we are only interested in the longest paths found so FI;% Zg 2 2 ‘;3 s i‘zg 8'4112
far, the number of updates equ&i$ in the worst case. In most FFTb 160 18 1 20 T 25s | 685 053
cases, the addition of a sequence edge will affect a few paths. Rad4 | 81 | 4 i 08s| 4.03 1.38

In cases where many paths need to be updated, the estimates
of schedule intervals will also be improved substantially.

An upper bound on the number of path updates (as a restamples that have been mapped on a VLIW architecture with
of adding a sequence edge) can be derived as follows.distributed register files. The results are shown in Table I.
path can have a length betweeri and +I, where! is the The fourth column represents the number of iterations over
constraint on the latency. Because a path is updated only ifti® constraint analyzer (see Fig. 2) before a feasible solution
length is increased (by at least one clock cycle), the numberw#s found. The last two columns indicate the mobility of
times a path can be updated is at m2&istSince the maximum the operations in terms of average number of clock cycles
number of paths we keep track of equ&$, the number of per operation (Definition 10). The sixth column indicates the
path updates can be at mat- V2. A single path update mobility before the analysis; the last column, after analysis
takes constant time, so the runtime of the constraint analygighat is left for the scheduler to fill in). With respect to the

is polynomially bounded. numbers in Table I, no comparison could be made to other
approaches because the register allocator and the schedulers
B. Infeasibility Analysis and Rebinding available to us (several list schedulers) are unable to find any

. . I§0Iution for the given constraints.
As the reader may have noticed in the examples, the . . e
The first experiment concerns an infinite impulse response

!nfeasibility analysis requires a lot of admi_nistrative bookkee;mR) filter of 23 operations, including fetching the coefficients
ing. Almost every path constructed during the longest pa nd data from memory. %he minimum latency is ten clock

nalysis h k in memory for reference. A feasibi . .
analysis has to be _e_pt memory for reterence cas bcglcles, which equals the latency constraint. The other exper-
implementation requiring a limited amount of memory to ruti . -

iments concern fast Fourier transform (FFT) applications, the

an implementation of our method is only guaranteed if tr]e . . ;
e . argest of which holds 81 operations. Note in Table | that the
storage of a path has a memory costil). This is possible runtimes are mainly determined by the number of iterations

with the use of aradjacency matri¥25], which is based on
. y A25] Lver the constraint analyzer. The number of iterations is a

the following fact of longest paths: if the longest path from o - : -
to C travelsgthrough B tghen {)he part B to C ig theplongest pal easure of the difficulty of finding a register binding because
’ reflects the number of changes made to the original binding

from B to C. As a result, the only administration necessat . ;
for the path from A (row of the matrix) to C (column of! order to get a feasible schedule. In these experiments, the
the matrix) is the first node on the path after A. To facilitatg
the infeasibility analysis, we also administrate the first ed &
traversed on the path A to C. Each sequence edge on its t) N
has a pointer to a register conflict (if there is one) and gfgent could .b.e made on the generated reglster.blndlng.
matrix entry representing the path that gave rise to the edﬂgThe mobility is decreased by a factor ranging from 3'5
The complexity of the infeasibility analysis is thus bounde ad4) to 1_3'2 (FFTDb) as a re;glt .Of the schedule anaIyS|s.
by O(E - log E). We assume, however, that the longest patl!?se_cause this decrease of mob|I|t>/ is dug_ to the. constraints,
have already been calculated in the constraint analyzer. It IS @ measure for the analyzers’ capability of directing the

The complexity of rebinding is determined by the procedur%ched,mer and preventing it from making schedule decisions
of ordering the conflict list as explained in Section vii-cthat wﬁlate _thel ((:jor;stralnts.) h ;

Because a value conflict gives rise to a sequence edge, th&’/€ a\f/e Inclu eh (;ne more e>k<)[|)er|m_ent to tes:]t € perior-
number of conflicts in the list cannot exceed the number BtaNce of our method on a problem instance that was not

edges in the precedence graph. Therefore, the complexityc8 strained with respect to timing. It is a preliminary test
rebinding is bounded b(E - log E). executed by Frontier Design, who are integrating our method

We conclude that the complexity of one iteration of thgvithin the Mistral2 toolset. The benchmark, Par2, contains 91
scheme in Fig. 2 equal§(2 - V2 + E - log E). In the worst operations. The original schedule, generated by the Mistral2

case, the number of iterations is bounded|By, the number toolset, counts 61 clock cycles. As a result of the available
of values in the dataflow graph. In the results section, we wiigrallelism and the number of memory accesses, the register

also depict the iteration count for the different applications, Pinder required six registers at the address-generation unit.
The schedule generated by our method counts only 56 clock

cycles and requires only one register at the address-generation

unit. Because of the schedule freedom, a total of 111 schedule
Our implementation on an HP 9000/735 has been testéelcisions had to be made by the lifetime sequencer. Runtime

on the inner loops from four different real-life industrialvas less than a second. The efficient register binding of the

chedule generated by our method provided a more efficient
gister binding than a handmade schedule. Analyses of the
inimal value lifetimes suggested that little or no improve-

IX. RESULTS

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

56

new schedule was expected (it was enforced), unlike thp]
reduction in the number of clock cycles. This reduction is
explained as follows: because of the serialization of the addrg
lifetimes, the precedence graph became more regular. It is
a well-known fact that heuristics such as the list scheduling
are able to find more efficient schedules when the precedencg
graph contains more regularity.

X. CONCLUSIONS AND FURTHER RESEARCH [12]

In this paper, we presented an approach for register binding
and scheduling in the context of loop pipelining, based on
the analysis of precedence, timing, and resource constrairﬁjfg].
By expressing as much of the constraints as possible in a
graph model and calculating the longest paths, we are alf@
to see the interaction between the different constraints a
compute the effect on the mobility available to a scheduler.
When the combination of constraints and the register binding[i@]
infeasible, an efficient infeasibility analyzer is able to indicate
a change in the binding that is necessary to obtain a feasibi€l
schedule. The results in Section IX show that our method is
able to find a register binding and a pipelined schedule in short;
runtimes for industrially relevant designs. We also showed that
the obtained reduction in mobility really prevents a greedy
scheduler from making a wrong decision. When constraintss]
are not very tight, we are still able to find more efficient
schedules than heuristics. We conclude that analysis tools s
as our implementation are needed in order to obtain a feasible
schedule when facing resource constraints, register constraifga,
and tight timing constraints. Our method is being integrate
in the Mistral2 toolset by Frontier Design.

Further research will focus on the analysis of other register-
file models, such as first-in, first-out and stacks. [21]

ACKNOWLEDGMENT [22]

The authors would like to thank M. Strik, K. van Eijk, and,3
P. Lippens for their support and constructive discussions.

24
REFERENCES [24]

[1] R. Leupers, W. Schenk, and P. Marwedel, “Microcode generatiolr25]
for flexible parallel architectures,” ifProc. Working Conf. Parallel
Architectures and Compiler Technology994.

P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “DSP design tool
requirements for embedded systems: A telecommunications industrial
perspective,’J. VLSI Signal Processvol. 9, no. 1, 1995.

P. Marwedel and G. Goossens, EdSgde Generation for Embedded
Processors. Boston, MA: Academic, 1995.

M. T. J. Strik, “Efficient code generation for application domain specific
processors,” Eindhoven University of Technology, The Netherlands
Tech. Rep. 90-5282-390-1, 1994.
M. C. McFarland, A. C. Parker, and R. Camposano, “Tutorial o
high-level synthesis,” inProceedings of the 25th ACM/IEEE Design
Automation Conference Anaheim, CA: ACM and IEEE Computer
Society, 1988, pp. 330-336.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide
to the Theory of NP-Completenesssan Francisco, CA: Freeman, 1979.
G. Goossens, J. Vandewalle, and H. De Man, “Loop optimizatio
in register-transfer scheduling for DSP-systems,” Rroceedings of
the 26th ACM/IEEE Design Automation Conferenckas Vegas, NV:
ACM and IEEE Computer Society, 1989, pp. 826-831.

(2]

(3]
(4]

(5]

(6]
(7]

(8]

g.‘

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 1, JANUARY 1999

R. Leupers and P. Marwedel, “Retargetable code generation based on
structural processor description®esign Automation Embedded Syst.,
vol. 3, no. 1, 1998.

8 D. Lanneer, J. van Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and

G. Goossens, “Chess: Retargetable code generation for embedded DSP
processors,” in P. Marwedel and G. Goossens, Eigde Generation
for Embedded ProcessorsBoston, MA: Academic, 1995.

M. T. J. Strik, J. L. van Meerbergen, A. H. Timmer, and J. A. G.
Jess, “Efficient code generation for in-house DSP-corefPtateedings

of the European Design and Test ConferencBaris, France: |IEEE
Computer Society Press, 1995, pp. 244-249.

C. Liem, T. May, and P. Paulin, “Instruction-set matching and selection
for DSP and ASIP code generation,” iroceedings the European
Design and Test ConferenceParis, France: IEEE Computer Society
Press, 1997, pp. 31-37.

B. R. Rau and C. D. Glaeser, “Some scheduling techniques and an
easily schedulable horizontal architecture for high performance scientific
computing,” inProc. Ann. Workshop Microprogrammin@ct. 1981, pp.
183-198.

M. Lam, “Software pipelining: An effective scheduling technique for
VLIW machines,” in Proc. SIGPLAN Conf. Programming Language
Design and Implementatiodune 1988, p. 328.

A. Aiken, A. Nicolau, and S. Novack, “Resource-constrained software
pipelining,” IEEE Trans. Parallel Distrib. Systyol. 6, pp. 1248-1270,
Dec. 1995.

C. T. Hwang, Y. C. Hsu, and Y. L. Lin, “A formal approach to the
scheduling problem in high level synthesiSEEE Trans. Computer-
Aided Designyol. 10, pp. 464—-475, Apr. 1991.

B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker, “Register
allocation for software pipelined loops,” ifProc. SIGPLAN Conf.
Programming Language Design and Implementatidone 1992, pp.
283-299.

A. E. Eichenberger, E. S. Davidson, and S. G. Abraham, “Optimum
modulo schedules for minimum register requirements,Pioc. Int.
Conf. Supercomputindarcelona, Spain, July 1995, pp. 31-40.

R. Govindarajan, E. R. Altman, and G. R. Gao, “Minimizing register
requirements under resource-constrained rate-optimal software pipelin-
ing,” in Proc. Symp. MicroarchitecturéNov. 1994, pp. 85-94.

A. H. Timmer, M. T. J. Strik, J. L. van Meerbergen, and J. A. G. Jess,
“Conflict modeling and instruction scheduling in code generation for
in-house DSP cores,” iRroceedings of the 32nd ACM/IEEE Design Au-
tomation Conference San Francisco, CA: ACM and IEEE Computer
Society, 1995.

D. C. Ku and G. De Micheli, Eds.High Level Synthesis of ASIC's
Under Timing and Synchronization ConstraintdNorwell, MA: Kluwer
Academic, 1992.

R. Reiter, “Scheduling parallel computationJ. ACM, vol. 15, pp.
590-599, 1968.

B. Mesman, M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and
J. A. G. Jess, “Constraint analysis for DSP code generationPrae.

Int. Symp. System Synthedsitwerp, Sept. 1997.

, “A constraint driven approach to loop pipelining and register
binding,” in Proceeding of the Design Automation and Test in Europe
Paris, France: IEEE Computer Society Press, 1998.

T. H. Cormen, C. E. Leiserson, and R. L. Rivestfroduction to
Algorithms. Cambridge, MA: MIT Press, 1990.

Bart Mesman received the Electrical Engineering
degree (with honors) from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
in 1995, where he currently is pursuing the Ph.D.
degree.

His doctoral work is on the subject of sched-
uling for embedded DSP processor architectures
with the explicit goal of codesigning processor
architectures and a code-generation methodology
based on constraint analysis. Since 1995, he has
been a Member of both the Digital VLSI Group

P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala, “FlexWare: Aat Philips Research, Eindhoven, and the Information and Communication

flexible firmware development environment for embedded systems,” 8ystems Group of the Electrical Engineering Department at the University of
P. Marwedel and G. Goossens, EdSagde Generation for Embedded Technology, Eindhoven. His research interests include high-level synthesis,

Processors. Boston, MA: Academic, 1995.

ASIP architectures, and code generation for embedded DSP's.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

MESMAN et al. DSP CODE GENERATION

S

Adwin H. Timmer received the Electrical Engi-
neering and Ph.D. degrees from the Eindhove
University of Technology, Eindhoven, The Nether-
lands, in 1990 and 1996, respectively.
In 1995, he joined Philips Research Laboratories
Eindhoven. In 1998, he was a Visiting IC Architect
with the Philips Semiconductors WSG business ™
line, Mountain View, CA. His current interests are
in IC architectures for high-performance signal-
processing applications, system-level design met
ods, hardware/software codesign, and compilatiof

57

Jochen A. G. Jesgeceived the master’s and Ph.D.
degrees from Aken University of Technology, Ger-
many, in 1961 and 1963, respectively.

He became a Full Professor of electrical engi-
neering at the Eindhoven University of Technology,
Eindhoven, The Netherlands, in 1971. For a number
of years, he had various research and teaching ap-
pointments at Karlsruhe University of Technology,
where he was one of the founders of the Computer
Science Department. During 1968-1969, he spent
a sabbatical year at the University of Maryland,

techniques for embedded DSP’s.

respectively.

oven, he was involved in founding and running the

Design Automation Section. This task implied devising a long-term research
program in the area of VLSI design automation and complementing it with the
necessary curricular components. His is a coauthor of about 125 papers. He
guided 31 Ph.D. students to graduation. In 1985, he joined IBM T. J. Watson

Jef L. van Meerbergen received the Electrical Laboratories, Yorktown Heights, NY, for a short period to contribute to a

Engineering and Ph.D. degrees from the Katholiek&ilicon compilation path for the 801 RISC pipeline in a project guided by R. K.
Universiteit Leuven, Belgium, in 1975 and 1980, Brayton and R. Otten. Recently, his interest has focused on hardware platforms

for multimedia systems and the problems of compilation for performance

targeted toward audio and telecom DSP applica-
tions. Later, the application domain shifted toward high-throughput appli-
cations (Phideo). His current interests are in system-level design methods,
heterogeneous multiprocessor systems, and reconfigurable architectures. He
is a Philips Research Fellow and, since 1998, a Professor at the Eindhoven

University of Technology. He is an Associate Editor Bésign Automation
for Embedded Systems.

Dr. van Meerbergen received the Best Paper Award at the 1997 ED&TC

conference.

In 1979, he joined Philips Research Laboratorievhen mapping high-performance, real-time tasks onto those platforms. He is
in Eindhoven, The Netherlands. He was engaged imember of_ the bo_ard of the European Design Autorr_]ation Association and
the design of MOS digital circuits, domain-specifichas been its Chairman for a number of years. He is a Cofounder of the
processors, and general-purpose digital signal pr(pe5|gn Automatlo_n and Te_st in Europe conference. He was Program Chair
cessors. In 1985, he began working on applicationr@Nd General Chair, respectively, of ICCAD-93 and ICCAD-94.

driven high-level synthesis. Initially, this work was

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 07,2010 at 10:11:07 UTC from IEEE Xplore. Restrictions apply.

