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Optimal control of a divergent N -echelon inventory system
E.B. Diks and A.G. de Kok

Department of Mathematics and Computing Science
Eindhoven University of Technology

Abstract

Consider a divergent multi-echelon inventory system, e.g. a distribution system or a production
system. At every facility in the system orders are placed (or production is initiated) periodically.
The order arrives after a fixed lead time. At the end of each period linear costs are incurred at each
facility for holding inventory. Also, linear penalty costs are incurred at the most downstream facili
ties for backorders. The objective is to minimize the expected holding and penalty costs per period.
We prove that under the balance assumption it is cost-optimal to control every facility by an order
up-to-policy. The optimal replenishment policy, i.e., the order-up-to-level and the rationing func
tions at each facility, can be determined by decomposition of the system. This decomposition re
sult reduces complex multi-dimensional control problems to 'simple' one-dimensional problems,
which closely resemble the classical newsboy problem achieving a proper trade-off between the
consequences of too much stock and too little inventory.

Keywords: multi-echelon, optimal control, inventory, allocation, rationing, divergent

1 Introduction

The research of multi-echelon models has gained importance over the last decade because integrated
control of supply chains, consisting of a number ofprocessing and distribution stages, has become fea
sible through modern information technology. Multi-echelon inventory systems provide a means of
modeling such supply chains, thereby enabling quantitative analysis and characterization of optimal
control policies (cf. Clark & Scarf [1960], Federgruen & Zipkin [1984], Rosling [1989] and Langen
hoff & Zijm [1990]).

The start of research on multi-echelon inventory models is in generally allotted to Clark & Scarf
[1960], who study an N -echelon serial system without lot sizing. They introduced the concept of ech
elon stock for a given stockpoint to proof that the optimal control policies for the N-echelon serial
system with discounted penalty and holding costs, are characterized by N so-called echelon order-up
to-levels. The echelon stock of a stockpoint equals all stock at this stockpoint plus in transit to or on
hand at any of its downstream stockpoints minus the backorders at its downstream stockpoints. Like
Van Houtum & Zijm [1991a] and Zijm & Van Houtum [1994] we also like to define the echelon in
ventory position of a stockpoint as its echelon stock plus all material in transfer to that stockpoint.

Eppen & Schrage [1981] analyzed a divergent two-echelon system, where the proportional costs
of holding and backordering at the end-stockpoints are identical. They derive approximately optimal
policies and costs of: (1) An order-up-to-policy at the upstream stockpoint, assuming no fixed ordering
cost, and (2) An (m, y) policy at the depot, assuming fixed ordering costs at the upstream stockpoint.
An (m, y) policy is a policy in which every m periods the echelon inventory position is raised to an
order-up-to-level y. A paper of Federgruen & Zipkin [1984] extends the model and the results con
sidered by Eppen & Schrage. The holding and penalty costs do not have to be identical across the
end-stockpoints. The demands at these stockpoints do not have to be normally distributed. They al
low for a larger class of distributions (e.g. Erlang and gamma distribution). As already mentioned
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before, Eppen & Schrage restrict themselves to an order-up-to-policy, or a (m, y) policy to analyze the
system. While Federgruen & Zipkin use an approximate dynamic program to determine the control
policy, which is optimal given the balance assumption. Under this assumption the rationing rule al
ways allocates non-negative stock quantities. In Eppen & Schrage [1981], Langenhoff & Zijm [1990]
and De Kok, Lagodimos & Seidel [1994] similar assumptions are made.

A more 'service related' approach to determine the control parameters is introduced by De Kok
[1990] and Lagodimos [1992]. In this approach the target service levels of the different end-stockpoints
plays an important role in the analysis, instead ofthe minimization of a cost-function. In De Kok [1990]
a planning procedure has been determined for a divergent two-echelon system with a stockless depot.
Later this model is extended in Seidel & De Kok [1990] and De Kok, Lagodimos & Seidel [1994] by
allowing the depot to hold stock.

Although much attention has been given to these divergent two-echelon systems, one seldom finds
extensions to more general divergent N-echelon systems (e.g. Verrijdt & De Kok [1995]). In practice,
however, large production and distribution networks are frequently encountered and therefore gener
alization of two-echelon policies is needed. In this paper we analyze a divergent N-echelon inventory
system in which every stockpoint is allowed to hold stock. Every stockpoint places replenishment or
ders periodically. The order arrives after a fixed lead time, and then it is decided how much and in what
way the stock is allocated among its successors. Only the unfilled demand at the end-stockpoints are
backordered. Penalty costs proportional to the amount short at every end-stockpoint are incurred at the
end of each period. Also holding costs proportional to the inventory on hand are incurred at the end of
each period. The objective is to minimize the average costs per period on the long run.

This model can be regarded as an extension of Langenhoff & Zijm [1990] and Van Houtum & Zijm
[1991b]. Langenhoff & Zijm [1990] prove exact decomposition results for a two-echelon assembly
system, a two-echelon serial system and a divergent two-echelon system. The analysis of the latter
system is more thoroughly analyzed in Van Houtum & Zijm [1991b]. We extend their analysis by
relaxing the following constraints: (1) all lead times to the end-stockpoints are identical, (2) the penalty
costs at all end-stockpoints are identical, and (3) considered model is a two-echelon model.

The paper is organized as foHows. In Section 2 we describe the considered model. In Section 3
we present an average cost analysis for the divergent N-echelon system. Given the balance assump
tion we derive necessary conditions and important properties of an optimal control policy. This bal
ance assumption is not required if immediately after taking a rationing decision there is a sufficiently
large 'demandless' period (e.g. week-end). Since such a period enables to transship products from the
stockpoints with negative allocation quantities to those with positive allocation quantities. In Section
4 we prove exact decomposition results for divergent N-echelon systems given the balance assump
tion. From the optimality of the decomposition we know that there exists an optimal policy in which
every stockpoint is controlled by an order-up-to-policy. This decomposition result reduces the com
plex multi-dimensional control problem to simple one-dimensional problems closely resembling the
classical newsboy problem. Finally in Section 5 we give a few concluding remarks.

2 Model description

Consider a single-item discrete-time multi-echelon inventory system where every stockpoint is allowed
to hold stock. The system has an arborescent structure, i.e., each location has a unique supplier. We
refer to these kind ofsystems as divergent multi-echelon systems. Notice that a divergent multi-echelon
system can be described by a directed graph (see for example Figure 1). The most upstream stockpoint
can place orders at an external supplier which has an infinite capacity, which means that this supplier
can always meet the demand.
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Stage: 4 3 2 1

Figure 1: Schematic representation of a divergent 4-echelon inventory system.

The inventory in this multi-echelon system is controlled by periodic review policies. That is, every
R periods the most upstream stockpoint, i say, issues a replenishment order. The replenishment order
arrives after Li periods, where Li is a fixed, non-negative integer. Then the physical stock at stockpoint
i is allocated immediately to its successors. There are two possibilities:

(i). The physical stock is sufficient to raise the echelon inventory position of each successor to its
order-up-to-Ievel. Then the required amounts are sent to the successors and excess stock is kept
at stockpoint i to be allocated in the next occasion.

(ii). The physical stock is not sufficient to reach the order-up-to-Ievels. Then material rationing is re
quired to allocate the available physical stock over its successors appropriately. For this purpose
we introduce rationing functions in the next section.

A similar allocation procedure is applied at the other intermediate stockpoints when a replenishment
order arrives.

Without loss of generality we assume that only the end-stockpoints face external customer demand.
In case an intermediate stockpoint i faces external demand, we redirect this demand to a new succes
sor j with lead time Lj := O. By definition this successor j is an end-stockpoint. During one period
the demand between end-stockpoints may be correlated, however, the demand in subsequent periods
are LLd.. With respect to the customer demand process, we assume that all demand which cannot be
satisfied immediately is backordered.

At the end of each period both penalty and holding costs are incurred. The penalty costs equals Pi
for each backlogged product at end-stockpoint i. For a product at stockpoint i or in transfer to one of
its successors the holding costs equals hi + LkEU; hko where Vi represents all stockpoints on the path
from the supplier to i. Notice that hi can be regarded as an additional holding cost due to value added
in stockpoint i. No fixed ordering costs are assumed. Note that because all excess customer demand
is backordered, linear variable ordering costs do not influence any control policy and can therefore be
omitted. The objective of the analysis is to determine a cost-optimal replenishment policy. That is a
policy, which minimizes the expected total costs on the long run.

For sake of clarity in the remainder of this paper we refer to the length of a review period as one
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x!
IF1ch(;) / J1ch(i)

period (R := 1). Furthermore, we introduce the following notation:

ech(i) .- Set of stockpoints that constitute the echelon of stockpoint i (e.g. ech(5) = {5, 8, 9}),
pre(i) .- Preceding stockpoint of stockpoint i (e.g. pre(8) = 5),

Li .- Lead time from stockpoint pre(i) to i.
Vi .- Set of all stockpoints on path from supplier to stockpoint i (e.g. VI = 0 and V6 =

{I,3}),
Vi .- All stockpoints which are supplied by i (e.g. VI = {2, 3, 4}),
E .- Set of all end-stockpoints (e.g. E = {2, 6, 8,9, lOn,
I .- Set of all intermediate stockpoints (e.g. I = {I, 3, 4, 5, 7}),

N .- Number of stages in inventory system (e.g. N = 4).

The examples between the brackets refer to the situation of Figure 1.

3 Properties optimal replenishment policy

In this section we present an average cost analysis for the divergent N -echelon system, which is strongly
based on the work of Langenhoff & Zijm [1990] and Van Houtum & Zijm [l991a]. In this section we
assume that decomposition of the system, as in Langenhoff & Zijm [1990] and Van Houtum & Zijm
[I99Ib], is a reasonable approach to determine the control parameters of a cost-optimal policy. In
deed, in the next section we proof that decomposition is exact. This decomposition enables us to derive
necessary conditions for a cost-optimal replenishment policy, i.e., the order-up-to-Ievel at every stock
point and the rationing functions to its successors. The optimal order-up-to-policy can be determined
by solving a problem similar to the classical newsboy problem. For the optimal rationing functions we
derive necessary conditions and useful properties.
For our convenience we introduce some additional notation:

z{ [x] .- The echelon inventory position of stockpoint j E Vi just after the allocation,
if the echelon stock of supplier i just before allocation equals x.

Yi .- Echelon order-up-to-Ievel of stockpoint i.

~i .- Maximum physical stock at stockpoint i, Y; - LYj.
jEVj

\II; .- All control parameters downstream of stockpoint i,

{
0 i E E

UjEV/Z{,Yj,\IIj) iEJ.
D; (y;, \II;) .- The expected total costs in ech(i) at the end of an arbitrary period given the

echelon order-up-to-Ievel Y; and \II; (If \II; = 0 we suppress \II;).
.- inf{xla2 D; (x, \II;)/ax2 > OJ.
.- cdf/pdfof demand at all end-stockpoints in ech(i) during L periods (if L = 1

we suppress the index).

(
F!LCh(i) (x») t!> ._ {O x< 0.- F1ch (i) (x + ~) x::: O.

p7 .- Minimum penalty costs per backlogged product in ech(i), i.e., min p j.
jEech(i)nE

h! .- Minimum added value of a successor of stockpoint i, i.e., 1?1in hj .
I JEV;

~ .- Set of successors of i, which have the same minimal penalty costs as i, i.e.,
{j E Vi Ip7 = Pj}.

V; .- Set of successors of i which add the minimal amount to a product, i.e.,
{j E Vi lh7 = hj}.
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First we derive the cost-function which need to be minimized. Theorem 3.1 constitutes the basis
for this derivation.

Theorem 3.1. When at the end ofan arbitrary period the echelon stock ofa stockpoint i equals Xi, the
total costs incurred at the end ofthis period equal

L (hiXi + (hi + Lhj + Pi)(-Xi)+) + LhiXi.
iEE JEUi iEI

Proof In order to proof this theorem we use that if i e I then

(hi + Lhj) LXk = L(hi + Lhj)Xk = L L hjXk.
JEUi kE V; kE V; JEUi kE V; jEUk

From (1) and the property that for the most upstream stockpoint i we have Vi = 0, it follows

L(hi + Lhj)LXj= L LhjXi.
~l ~~ ~V; ~ruE~~

(1)

(2)

From the definition of the inventory costs hi and penalty costs Pi it easily follows that the expected
total costs equals

L (hi + Lhj)Xf + Pi(-Xi)+) + L(hi + Lhj)(Xi - LXj) =
iEE JEUi iEI JEUi jE V;

L (hi + L hj)Xi + (hi + L hj + Pi)(-Xi )+) +LhiXi +
iEE JEUi JEU; iEI

LLhjXi- L(hi + Lhj)LXj ~
iEI JEUi iEI jeU; jE II;

L (hi + Lhj)Xi + (hi + Lhj + Pi)(-Xi)+) + Lhixi + L LhjXi - L LhjXi.
iEE JEUi jeUi iel iEI jeUi iEIUE JEUi

Rewriting the expression above completes the proof. 0

Theorem 3.1 implies that costs hiXi are incurred to each stockpoint i, independent of the sign of Xi,
whereas at an end-stockpointextra costs -(hi + Ljeu; hj + Pi )Xi are incurred when this stockpoint is
in a backlog position.

In order to relate the inventory of a stockpoint at the beginning of a period with the costs incurred
at the end of this period we define the one-period cost-function Li(X).

Li (x) := The expected costs incurred at the end of a period, when at the beginning of this period
the echelon stock of stockpoint i is increased to x.

To evaluate Li (x) we assume that the total demand of all-end-stockpoints in ech(i) during L periods
is distributed with cdf F1ch

(i) (if L = 1, we suppress the index). From Theorem 3.1 it follows that

{

100 hi (x - u)dpch(i) (u) +100
(hi + ?= hj + Pi)(U - x)dpch(i) (u) i e E

Li(X) := 00 JEU;1 hi(x - u)dpch(i) (u) i e I.
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(4)

Before we are able to compute the expected costs of echelon i at the end of an arbitrary period,
denoted by D; (y;, ~;), we have to decide how to ration the available stock when a stockpoint has in
sufficient stock to meet all the demand. Suppose that at the beginning ofan arbitrary period Gust before
rationing), stockpoint i has an echelon stock of x products. All its successors j E V; want to raise their
echelon inventory position to y j' Hence, if x 2: L jE V; Yj the echelon inventory position of stockpoint
j just after rationing yields Yj, and the remainder x - LjEV; Yj is retained at stockpoint i. However,
if x < LjEV; Yj we have to deal with one of the main difficulties of divergent multi-echelon systems:
how should we ration the available stock over these stockpoints j? To overcome this problem we de
fine a rationing function z{ [xl This means that the rationing policy allocates z{ [x] to stockpoint j, and
no products are retained at stockpoint i. Thus,

L z{[x] = x. (3)
JEV;

We assume that when a stockpoint i rations the available echelon stock x over the stockpoints j E V;,
the echelon inventory position of every stockpoint j just after rationing is at least as large as it was just
before rationing. In Langenhoff & Zijm [1990] this assumption is referred to as the balance assump

tion.
The next theorem enables us to determine the expected costs of echelon i, given replenishment

policy (y;, \II;).

Theorem 3.2. For replenishment policy (y;, \II;) the average costs ofechelon i equals

D;(y;, \}I;) = (JO L;(y; _ u)dPth(i)(u) +L [ (t:.; Dj(Yj, \}Ij)dF1~h(i)(u)+
10 JEV; 10

i~ Dj (zf [y; - ul. \IIj )dF1~'h(i) (u)] .

Proof Consider a replenishment policy (Y;, \II;). Suppose that at the beginning of an arbitrary review
period t the echelon inventory position of echelon i is raised to Y; and the total demand in the periods t
up to and including period t + L; - 1 equals u. Hence at the end of period t + L; - 1 Gust after arrival
order) the echelon stock of echelon i equals Y; - u. Therefore at time t + L; the costs incurred for ech
elon i equals L;(y; - u).

If at the beginning of period t + L; holds y; - u > LjEV; Yj, every stockpoint j E V; raises his inven
tory position to yj' Therefore at time t + L; + Lj the expected costs incurred with echelon j equals
D j (yj, \IIj ) .

However, if at the beginning ofperiod t + L; we have y; - u < L jE V; Yj, every stockpoint j E V; raises

its inventory position to z/[y; - ul Therefore at time t + L; + L j the expected costs incurred for ech

elon j equals D j (z{ [y; - ul. \II j ).

By conditioning on u and using the above mentioned relations the theorem follows. 0

For simplicity we assume that Fech(i) (x) is a differentiable function for x 2: O. Then from Theorem
3.2 it follows that D; (x, \II; ) is also a differentiable function for x. In order to characterize the properties
of the optimal policy we have to analyze the behavior of this function D;(x, \II;). When i is an end
stockpoint the most important properties of D; (x) directly results from (4).

Lemma 3.1. The cost-function D; (x) ofan end-stockpoint i is

(i). linear decreasing with slope -(LjEU; hj + p;)for x < O.

(ii). convex in x. Specifically, if pech(i) (x) is strictly increasing in x 2: 0, then D;(x) is a strict convex

functionfor x 2: O.
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(6)

(5)

(iii). aDi (x) / ax tends to hi when x goes to infinity.

Proof Let i E E. Subsequently substituting the definition of Li (x) in (4), and differentiating the result
to x yields

aDi (x) "" rlch(i)--.....:....:.......;., = hi - (hi + ~hj + pi)(1- r Li+1 (x».
ax , v

JE i

Notice that Ft~~) (x) = 0 for x:::: O. This proofs (i). Result (ii) follows from

a2Di(X) "" ~ch(i)
-~2~ = (hi +~ hj + Pi)J 4+1 (x) ~ O.

ax JEVi

Finally, we notice that when x goes to infinity, F1~~~) (x) increases to 1, which proofs (iii). 0

From Lemma 3.1 it follows that if hi is positive, a minimum of the function Di (x) exists for x > 0, and
if Fech(i) (x) is strictly increasing in x the unicity of this minimum is guaranteed. However, if hi equals
othe minimum is attained in infinity. This can be explained by considering an increase of the order-up
to-level at end-stockpoint i. This results in an increasing ability to meet the customer demands, which
yields lower penalty costs. However, no additional holding costs are incurred since hi = O.

From (4) it follows that the rationing functions {z{ }jEV; directly affects Di (Yi, \IIi). The rationing

functions of stockpoint i which minimize Di (Yi, \IIi) are denoted by {i{} jE V;. Lemma 3.2 yields the
necessary condition for these functions.

Lemma 3.2. A necessary condition for the rationing functions {i{} jE V; minimizing Di (Yi, \IIi) is

aD, (y \II') I
J 'J ,= Ai[X] for every j E Vi.

ay \'=i.Jrx]
• I'

Proof When the echelon stock of stockpoint i, say x, is not sufficient to raise the echelon inventory
positions of the stockpoints j E Vi to their echelon order-up-to-Ievel Yj, the echelon stock x is rationed
over the stockpoints j E Vi- Theorem 3.2 implies that in order to do this optimally we have to solve

minLDj(z{[x],\IIj) s.t. Lz{[x]=x.
~V; ~V;

Using the Lagrange-multipliertechnique yields that the rationing functions {z{ }jE V; can only be optimal
when (6) holds, which completes the proof. 0

Lemma 3.2 proves that the derivative of Dj (y, \IIj) to Y in Y = z{ [x] is independent of stockpoint j.
This is very important in order to characterize the optimal replenishment policy. With Lemma 3.2 we
are able to derive several properties of {z{ }jE Vi. In Lemma 3.3 we prove that there exists an optimal set

of rationing functions {z{} for which every function if is non-decreasing.

Lemma 3.3. lffor every stockpoint j E Vi the cost-function Dj (x, \II j) is convex in x, then there exists

an optimal set of rationing functions {z{} such that

dz{ [x]
-->0.

dx -

Specifically, iffor every stockpoint j E Vi the cost-function Dj (x, \IIj) is linear decreasing for x < xj
and strict convex for x ~ xj, then for the optimal set ofrationing functions holds

diJ,,' [x]
-- > 0 for x ~ xi := min{xlZ{[x] ~ xJ~ for j E V;}.

dx

7



(7)aDj (y, \IIj ) I . .
ay y=z{lx]

Proof Let Dj (x, \IIj) be convex in x for every j E V;. Assume for every set of optimal rationing func

tions {z{} there exists a mE V; such that dzj[xJ/dx < 0 for some x. Then there exists an E > 0 such
that zj[x + E] < zj[x]. Let us distinguish between two cases:
• There exists a stockpoint k E Vi such that

ODdy,\IIk)j > oDdy,\IIk ) I .
oy y=zrlx+€] oy y=r;lx]

From Lemma 3.2 it follows that

ODj(y,\IIj)1 . > ODj(y,\IIj)j . for every j E Vi,
oy y=zf[x+€] oy y=z{lxj

Since Dj (y, \IIj) is convex in y we know that z{[x + E] > z{[x] for every j E Vi. This contradicts our
earlier made assumption.
• For every successor j E Vi holds

ODj(y,\IIk)!

ay y=Z!lx+E] ~
Suppose there exists a stockpoint k E Vi

aDk(y,\IIk)1 aDdy, \Ilk) I .
oy y=zf[x+€] < ay y=£f[x]

Since Dj(Y, \IIj) is convex in y we know that z{[x + E] < z{[x] for every j E Vi. So, LjEV; #[x + E] <

LjEV; z{[x]. This contradicts (3), which states LjEV, z{[x + E] = X + E > X = LjEV, z{[x]. Hence,
equation (7) reduces to

aDj(y, \II j ) I aDj(y, \IIj) I
ay Y=Z!lx+E] - ay y=Z!lx] .

Let Ai := {j E V;Jz{[x + E] ~ zf[x]} and Bi := {j E V;Jz{[x + E] > z{[x]}. Let us consider a set of

rationing-functions {if} which is identical to {z{}, except in x + E:

Z![X+E]:={ Y[x] . jEAi
I zf[x] +qfE j E Bi

where
j z{[x + E] - z{[x]

qi := L (z7[x + E] - z7[x]) .
kEB;

We proof that {i{} is an optimal set ofrationingfunctionsinx+ E. First, it can be shown that LjEV, #[x+
E] = x + E. Furthermore, eq. (6) is satisfied, since
(1) For j E Ai we have

aDj(y, \IIj) I oDj(y, \IIj) I
ay y=Z{lX+E] - ay y=z{lx] .

(2) For j E Bi we have

aDj(y,\IIj)1 ODj(y,\IIj)j

ay y=£{lX+E] - ay Y=Z!lXl+q{E'

8



From (3) and zj[x + E] < zil[x] we conclude that both Aj and Bj are non-empty sets. Since Dj(Y, \IIj)

is convex in Y, and z{ [x] < if [x + E] < z{ [x + E] we have

oDj(y, \IIj) I oDj(Y, \IIj) I
oy Y=Z{[X+f] = oy Y=Z{[XJ+q{f'

So, {if} is an optimal set of rationing functions. However, zt[x + E] 2: if[x] contradicts our earlier
made assumption.

(8)

for every j E Vi.oDj(y,\IIj) \ .

oy y=zf[xj

Assume for every stockpoint j E Vi the cost-function D j (x, \IIj) is linear decreasing for x < xj and

strict convex for x 2: xj. Let xi := min{xlz{ [x] 2: xj for j E Vi}. Now we proof that zf[x] is strictly
increasing for x 2: xi. Assume for a stockpoint m E Vi holds dZ~lI [xlidx ::: 0 for a x 2: xi. Then there
exists an E > 0 for which z7'[x + E] ::: zj"[x]. Since D", (y, \II",) is a convex function, we obtain

oDm (y, \11m ) I oDm (y, \II",) I
oy Y=Zi"[X+f] ::: oY y=zi"[x] .

Using Lemma 3.2 and (8) yields,

oDj(y,\IIj) I
oy Y=Zj[X+f] :::

I

Since x 2: xi and zf[x] is non-decreasing in x it follows if [x] 2: xj. The cost-function Dj(y, \IIj) is

strict convex in y = z{[x] 2: xj. Hence, #[x + E] ::: if[x]. So, LjE\'i if[x + E] ::: LjE\'i z{[x]. This

contradicts (3), which states LjEV; z{[x + E] = x + E > X = LjEV; #[x]. Hence dzj[x]/dx > 0 for
x 2: xi· 0

Before proving another property of {#} we introduce the following definitions:

Definition 3.1. \IIi = UjE\'i (zl, Yj, \II j ) is locally optimal when

(i) Rationing functions {#}jE\'i satisfy (6).
(ii) For every j E Vj the order-up-to-Ievel equals Yj := argmin {yloDj(y. \IIj )/oy = O}.

Definition 3.2. ~i is optimal if \IIj is locally optimal for every j E ech(i).

o

o

In the next lemma we state an important property of {if} jE \'i _ It directly follows from Lemma 3.2 and
the definition oflocal optimality. This property guarantees that when stockpoint i has to ration LjE \'i Yj
products over its successors, it ensures the continuity of the amount allocated to a successor j E Vi.

Lemma 3.4. Iffor every stockpoint j E Vi the cost-function Dj(y, \IIj ) is convex in y, thenfor a local

optimal \IIi = UjE\'i ai, Yj, \IIj) holds #[LjEV; Yj] = Yj-
Proof. This proof is by contradiction. Assume Dj (y, \IIj) is convex in y for every j E Vi. Suppose there
exists a stockpoint k E Vi for which i~ [L jE \'i Yj] < Yk. From the definition of Yk and the convexity of
Dk(x, \Ilk)' we conclude

oDdy, \Ilk) I < oDk(y, \Ilk) I =0.

oy Y=z} [LjEV; Yj] oy Y=Yk

Hence, from Lemma 3.2 it follows that Ai [LjE\'i Yj] < O. Since LjE\'i #[LllE\'i YII] = LjE\'i Yj, there
has to be a stockpoint, m say, for which Z?'[LjE\'i Yj] > Y",. Using similar arguments as above it can

be shown that Ai [LjE\'i .vj] 2: O. This leads to a contradiction. Hence, i~[LjE\'i Yj] 2: Yk'

Analogous we can prove i~[LjE\'i Yj] ::: Yk' Thus i7[LjE\'i Yj] = Yk' This concludes the proof. 0
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Lemma 3.4 yields a necessary condition for every rationing function in order to be optimal. Besides this
lemma, we need the definition of L; (x), Theorem 3.2, Lemma 3.2 and Definition 3.1 to proofTheorem
3.3, giving an explicit expression of the derivative of the cost-function D; (x, \II;) to x for local optimal
lIt; .

Theorem 3.3. For every intermediate stockpoint i E I with a locally optimal lIt; holds
if 1::1; < 0,

aD;~;, lIt;) = h; + (X) A;[Y; _ u] df1c1I(i) (u),
Y; Jo I

aD;~;,IIt;) = h; +i oo
A;[Y; - u -1::1;] d (f1~h(i)r~j (u),

with A; [x] as defined in (6).

Proof. Substitution of the definition of L; (x) in (4) and rewriting the result yields

aD; (Y;, lIt;) a { '"'a . =~ h;(y; - (L; + l)/lech(i») +~ Dj(Yj, IIt j )+
Y, Y, jEV;

i~ Dj (z{[y; - u], IItj) - D j (Yj, IItj )df1~'h(i) (u) }

'"'100
dz{ [x] aDj (x, lIt j) I r.oech(i)=h;+~ -- . drLi (u).

J'E v.,. f3.; dx ax x=ZJ,. [yj-U]x=yj-U

Since \II; is locally optimal, {i(}jEV; satisfy (6). Applying Lemma 3.2 yields

aD;(y;,IIt;) =h;+ [00 A;[Y;-U] L di{[x] df1~h(i)(u).
ay; Jf3. . H dx

I JE Yi x=yj-U

Since equality (3) holds for every rationing function, using this property yields

aD;(y;,IIt;) =h;+l°O A;[Y;-U] df1Ch(i) (u). (9)
ay; f3.; I

When 1::1; < 0 the theorem is trivial from (9), since ptCh(i) (u) = 0 when U < O.
For the case 1::1; ~ 0 we introduce u* := u - 1::1;. Substitution of u* in (9) yields

aD; (y;, lIt;) = h; + [00 Aj[Y; _ u* _ 1::1;] df1Ch(i) (u* + 1::1;)
ay; Jo I

=h; + i~ A;[Y; - u* - 1::1;] d (f1~h(i») f3.; (u*).

Since \II; is locally optimal we use Lemma 3.4 to show that A;[Y; - 1::1;] = O. This completes the proof.
o

Similar properties as in Lemma 3.1 are derived in the next theorem for an arbitrary stockpoint. On
the one hand these properties yield insight in the cost-function D; (x, q,; ), while on the other hand it is
required for the proof in Section 4 that the decomposition is exact.
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Theorem 3.4. The cost-function Dj(x, 4Jj ) with optimal ~j is

(i). linear decreasing with slope -(Ljeuj hj + pnfor x < x7.

(ii). convex in x. Specifically, iffor every end-stockpoint kin ech(i) the demand function pch(k) (x)
is strictly increasing for x ::: 0, then Dj (x, 4Jj ) is a strict convex function ofx ::: x7.

(iii). aDj (x, ~j) lax tends to hj when x goes to infinity.

(10)for every j E Vj •=-(L hk + P~,)
y=z{[xj keU",

Proof This proof is by induction on i. By defining x7 := 0 for every end-stockpoint i, Lemma 3.1
proofs the theorem. Next, consider a stockpoint i E I. Assume the theorem holds for every successor
j E Vj (induction assumption). First we prove (i). Let x < x7. Then, there exists a stockpointm E Vj for
which zi[x] ::: x~' Using the induction assumption and Lemma 3.2 yields Aj[X] = -(Ljeu

m
h j + p~).

From the definition of Aj[X] we have

aDj (y,4J j )

ay

Substitution of Aj [x] in the formulas of Theorem 3.3 yields

aD; (x, 'lJ j
) '" * '" *ax = hj - (~ hj + Pm) = -(LJ h j + Pm)·

JeUm JeUi

Next, we prove p~, = P7- Suppose there exists a j E Vj for which P~, > Pj. Using Dj(y, 4Jj ) is convex
in y and the induction assumption yields

Since P;', > pj and Vm = Vj we know

aDj (y, 4Jj ) '" *
ay > -( LJ hk + Pm)'

keUm

This contradicts (10). Thus, a necessary condition for m is

* < *Pm - Pj for every j E Vj •

for every j E Vj.dF1~h(i) (u)

y=z{[x-uj

Hence, P;', = p7, which proves (i).
Next, we prove that D j (x, 4J j ) is convex in x. From the induction assumption and Lemma 3.4 it can be
shown that Aj[Ljev; Yj] = O. This property and (9) yields

2 A 100 d Aj
[ ],2 .T. )a D j (x, 'IJ;) _ z; x - u a D j (y, 't' j

-_? - 2a.x- x- Ljev Yj dx ay

From Lemma 3.3 (using the induction assumption) it immediately follows that a2 Dj (x, 4J j ) jaXl- ::: o.
Specifically, let x 2: x7. It can be shown that Ljev; Yj ::: x7. Thus, there exists an u ::: 0 such that x

Ljev; Yj ::: u ::: x - x7. Then from Lemma 3.3 and the induction assumption it follows that Dj(x, 4Jj )

is strict convex for x::: x7- Finally, we proof that when x goes to infinity aDj(x, 4Jj )/ax tends to hj.
From the induction assumption it follows

- (L hj + pn ::: Aj[X] ::: h7- (11)
jeUj

11



From (9) and (11) it follows

h. - ('"' h· + p*)100

dp:ch(i) (u) < aD; (x, \11;) < h. + h*100

dp:ch(i) (u).
, L...JJ, Lj - a -" Lj

jeUj dj X d;

When Yi tends to infinity both the lower and upper bound converge to hi. 0

The next corollary is of vital importance for the results in the next section, and immediately follows
from Theorem 3.4.

Corollary 3.1. For every stockpoint i E I with ~; optimal there exists a y; for which

aD; (x, \11;) aD; (x, ~;) > 0
_..:....:..~...:..:...<O x<y,' and x>y,·.
ax' ax -,

o

From Lemma 3.2 and Theorem 3.4 some interesting properties of {Z{}jev; can be derived. These
properties are formalized in the Theorem 3.5. This theorem states that if the echelon stock of stockpoint
i just before rationing, x say, is less than or equal to x7 the optimal rationing rule ensures that only the
echelons j with the lowest penalty cost (pn get a small (or even negative) echelon inventory position
after rationing. Ifx is very large the optimal rationing ru Ie ensures that the major part of x is allocated to
the successors j with the lowest added value, i.e., h7. After this theorem we elaborate on the behavior
of an optimal rationing function, by giving some examples of the behavior of such a function.

Theorem 3.5. For every optimal set ofrationing functions holds
(i)

z{ [x] E [,I~, ,Ij] for x:s x7 = LX; + L tk and j E V; \~,
ke~ keV;\~

(it")

where

Aj[] _z; x < Xj forevery x and j E V;\ V;,

{

aD·(x q,.) }
,I~:= arg':llin J a~ J = -(L hk + pn

x keUj

{

aD. (x \11.) }
,Ij:= argmax J' J = -(L hk + pn

x ax keU'
)

- ./aDj(x,q,j) *1
Xj := argmm = h;

x ax

for j E V;\~,

for j E V;\~,

for j E V;\ V;.

Proof (i): Suppose a stockpoint i has to ration its echelon stock x :s x7 over its successors. Consider
a successor, m say, for which p~, > p7. So, m E Vi\~. We prove (i) by showing that zj[x] ~ ~, and
zj[x] :s~, respectively. For both cases the proofs are given by contradiction.

• Assume zi'[x] < ,I:Il' From the convexity of Dm(y, q,m) in y, and the definition of~, we obtain

y=zi'[x]

<
aDII1 (y, \11m )

ay =-(L hk+ pn·
y=,£" keU",

Using Lemma 3.2 yields

A;[X] < -(hi + L hj + pn·
jeUj

12
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Next, we consider a stockpoint, n say, for which P~ = pi. So, n E Vi' From the convexity of Dn (y, ~n)

and Theorem 3.4 it follows

aDn(y, ~,,) > _(" h + *) n:....!::; _(" h + ~)
ay - LJ k Pn - LJ k P"

kEUn kEUn

Again using Lemma 3.2 yields

Ai[X] 2: -(hi + L hk + pj).
kEUj

Equation (12) and (13) lead to a contradiction. Hence ~[x] 2: in.
• Assume ~[x] > ~. Similar to (12) it can be shown that

A;[X] > -(hi +L hk + pj).
kEUj

Rewriting (14) shows that for every stockpoint j E Vi \ Vi we have

Since Dj (y, ~j) is convex in y we know that 21 [x] > !). Using this and equality (3) yields

L 21 [x] = x - L zf [x] < x - L !) = x - xi + L xj ::: L xj .
jE!{j jE Vj \.!::; jE II; \.!::; jE!{j jE.!::;

So, there exists a stockpoint n E ~ for which 2i' [x] < x~.

(13)

(14)

aD" (y, \11,,)

ay

Again using Lemma 3.2 yields

" * "E.!::;" *= -(LJ hk + p,,) = -(LJ hk + Pi)'
y=l.jl[xl kEUn kEUn

Ai[X] = -(hi + L hk + pi).
kEUj

(15)

Equation (14) and (15) lead to a contradiction. Hence zi"[x] ::: !::,. So zj"[x] E [!111' ~].

(ii): Suppose a stockpoint i has to ration its echelon stock x::: xi over its successors. Consider such a

successor, m say, for which hill > hi- So, mE Vi\ Vi. Assume that 2i"[x] 2: XIII' Since DIIl(y, ~1Il) is
convex in y we have

So from Lemma 3.2 it foHows that Ai [x] 2: hi. From Theorem 3.4 it is clear that for a stockpointj E Vi

holds aDj (y, ~j )/ay < hj = hi. Then Lemma 3.2 leads to a contradiction, since we obtain Ai [x] < hi.
This proves zj[x] < XIIl . 0

In case the cdf of the customer demand is strictly increasing for every end-stockpoint, it can be shown
that!~ = !'J. So in that case zf [x] equals!) for j ¢~ and x ::: xi. In the more general case where strict
monotonicity of the customer demand cdf is not required it can be shown that there exists an optimal
set of rationing functions such that z1 [x] equals!) for j ¢ ~ and x ::: xj. In the remainder of this paper
we consider this specific set.
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From Theorem 3.5 it is possible to distinguish between four classes of rationing functions. Fig
ure 2 depicts an example of a rationing function for each class. Notice that in Figure 2 (a) and (b) the
amount of products allocated to successor j tends to a limit when x goes to infinity, although, the ra
tioning functions in Figure 2 (c) and (d) do not have an upperbound. This is intuitively clear. Suppose
stockpoint i has to allocate many products, x say. Since high penalty costs are incurred for every back
logged product, we would like to allocate as much as possible to successor j. However, also holding
costs are incurred which assures that not too much stock is kept at the various stockpoints. It is clear
that there is a trade off between the penalty costs and the holding costs. If the amount x which need
to be allocated is large then the allocation decisions are based on the holding costs, since the penalty
costs are very small. Specifically, if x goes to infinity the reduction of the penalty costs of echelon j
by allocating an extra product to j equals 0, while the additional holding costs are hj' Therefore, an
extra product will be allocated to those successors with minimal added value.

1\'
z~[x]

x·J- - - - - - - - - --::-;..:-=-=---

I---r-----:------- x

(a) j E Y..;. j ~V;.

I---~----:.-------x

(c) j E Y..;. j E V;.

~~ [x]

---------------.

1-------:------- X
x·

1

(b) j ~ Y..;. j ~Vj.

1-----,::-------- Xx·
I

(d) j ~ Y..;, j E Vj.

Figure 2: The behavior of a rationing function for the four different classes.

Also notice that in Figure 2 (b) and (d) the amount of products allocated to successor j is fixed
when x is sufficiently small, although, this is not true in Figure 2 (a) and (c). This can be explained
as follows. If x is very small (or even negative) there is an incentive to allocate the major part to the
successors j which (indirectly) supply end-stockpoints with high penalty costs (j ¢ 1::;). The actual
amount allocated to a successor j ¢ Vi is such that the marginal costs in ech(j) equals the marginal
costs of a successor j E Vi'

Next, we address Theorem 3.6 enabling a simplification of Theorem 3.3.
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Theorem 3.6. Let a~(y) denotes the non-stock out probability ofan end-stockpoint k in a divergent
echelon system, in which the most upstream stockpoint i uses an order-up-to-policy with order-up-to
level y. Iffor every rationing function in stockpoint i holds z{LE jE V; y j] = yj, then

p;ch(k) (y) . E
Lbt l IE,

a~(y) = 1 a~(z{[y - uD dF{~h(i) (u) i E I, !lj < 0 (16)

100

a~(z1[y - u - !ljD d (F{~h(j») ll; (u) i E I, !lj::: 0,

for every j E Vj and k E En ech(j).

Proof. We proof this by using induction on i. When i E E it is trivial.
Suppose equality (16) holds for a divergent system with most upstream stockpoint j (induction as
sumption). Then the non-stock out probability of an end-stockpoint k equals a~ (Yj), where Yj equals
the order-up-to-Ievel of this stockpoint j. Next, consider a divergent system with most upstream stock
point i, and j E Vj • In order to determine the non-stock out probability of stockpoint k in this system we
introduce some additional notation. Let a~.r denotes the non-stock out probability of this stockpoint k
as a result of the rationing decision at the beginning of period t, and Dr-L;,f equals the total demand of
all end-stockpoints during [t - Lj, t).

When at the beginning of an arbitrary period t the echelon stock of stockpoint i is less than the sum of
all order-up-to-Ievels of the stockpoints in Vj , rationing is necessary. This means that every stockpoint
j E Vj gets his appropriate share z/[y - Dr-L;.r] instead of order-up-to-level Yj' From the induction
assumption we obtain that for j E Vi and k E ech(j) n E

y-Dr-L;,f < LYj ::::::::::} a~.r(Y) =a{(z{[y-Dr-Li.rD. (17)
jEV;

However, if at time t the echelon stock at i is sufficient, all stockpoints j E Vi raise their inventory
positions to their order-up-to-levels. From the induction assumption we obtain that for j E Vj and k E

ech(j) n E

Y - Dr-L;.! ::: LYj ::::::::::} aL(y) = a{(Yj).
jEV;

(18)

Since the demand process is stationary we may suppress the index tin aL(Y). From (17) and (18) it
can be verified that for j E Vj and k E ech(j) n E,

!lj < 0 ::::::::::} a~(y) = tx) a{(z{[y - u])dF{ch(i) (u), (19)io I

!lj ::: 0 ::::::::::} a~(y) = (ll; a{(Yj)dF{Ch(i) (u) +100

a{(z{[y -uDdF{ch(i) (u). (20)
~ I ll; I

Rewriting (20), using the assumption that z{ [L jE V; Yj] = Yj, yields that for j E Vj and k E ech(j) n E

!li>O ::::::::::} a~(y)= l°Oa~(z/[Y-!li-U])d(F{~Jl(i»)Il;(U). (21)

From (19) and (21) it follows that equality (16) also holds for i. Induction proofs the theorem. 0

From Theorem 3.3 and 3.6 we are able to derive an explicit expression for aDj (x, ~;)/ax with
optimal \fI j •
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Theorem 3.7. For every Di (x, ~i) with optimal ~i holds

aDi (y, ~i) '" '" ia = -(L.Jhj + Pk) + (hk + L.J hj + Pk)CXk(y) forevery k E ech(i) n E.
y ~~ ~~

Proof. This theorem can be proved by induction on i. For i E E it immediately follows from (5). Next,
consider an intermediate stockpoint i E I. Assume the theorem holds for every successor j E Vi (in
duction assumption). Let y < LjEV; Yj. From Theorem 3.3 it follows

aDi~' ~i) = hi + [00 Aj[Y _ u]dF1ch(i) (u).
y Jo I

Substitution of the definition of Ai [y - u] yields

aDi(Y, ~i) = hi + [00 aDj(x, ~j) dF!ch(i)(u) forevery j E Vi.
ay Jo ax L,

x,=z{[y-uj

Using the induction assumption yields

aDi (y, ~i) _ 100
'" '" j Aj rech(i)

a -hi + -(L.Jh/l+pd+(hk + L.Jh/l+pdcxk(Zi[y-u])drL; (U),
y 0 /lEVj /lEUk

with k E En ech(j).

Theorem 3.6 directly completes the proof for y < LjEV; Yj. The proof is completely analogous for

y 2: LjEV; Yj· 0

From Theorem 3.7 it follows that the optimal order-up-to-level in stockpoint i, Yi say, has to satisfy

Lhj + Pk

cx~ (Yi) = jEUt for every k E ech(i) n E. (22)
hk + hj+Pk

jEVk

Note that condition (22) resembles the classical newsboy result. This classical newsboy result pre
scribes the optimal critical ratio for a single location inventory system to be p/(p + h). Similar news
boy style results are derived in Rogers & Tsubakitani [1991]. They considered the optimization prob
lem of minimizing the penalty costs in a divergent two-echelon system, subjected to a budget constraint
on the total holding costs. Necessary conditions are derived for optimality for the case where every
end-stockpoint faces normal distributed demand.

4 Optimality of decomposition approach

Now we apply the results from the previous section to develop an optimization scheme for (Yi, q,;)
where stockpoint i is the most upstream stockpoint of the N-echelon system. The problem of find
ing this optimal (Yi, q,j) can be decomposed into solving one-dimensional problems subsequently.
For our convenience we assign a low level code (LLC) to every stockpoint. By definition the low
level code of an end-stockpoint i equals 1, i.e., LLC(i):=1. For an intermediate stockpoint i we have
LLC(i):=l +maXjEV; LLC(j). Let t¥" denote the set of stockpoints with low level code n.

Decomposition approach:

(i). n:= 1.

(ii). • Set ~j := 0 for every i E E.
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• Detennine the order-up-to-level Y;, which minimizes D; (y;), for every stockpoint i E E.

(iii). n:= n + l.

(iv). Detennine for every stockpoint i E Wn :

• The rationing functions {Zf}jEVi' which minimizes LjEV; Dj(z{[x], 41j ) for every x.

• 41;:=UjEv;CZ{,Yj,4Jj )foriE Wn·

• The order-up-to-Ievel Y;, which minimizes D; (y;, 4J;).

(v). If njN then return to step (iv).

In order to prove that the approach above yields the optimal policy we introduce some definitions which
are needed for Lemma 4.1.

Definition 4.1. Consider an arbitrary policy So = Y; U UjE V; (z{ , Yj, \11j) with i E WN. Let Sn denotes
the replenishment policy in which for every i E W,,+ 1

(i). The order-up-to-Ievels and the rationing functions of a stockpoint upstream of i are identically
defined as in the policy So.

(ii). The order-up-to-Ievel and the rationing functions of i are identically defined as in the policy So
and the optimal policy Wi, respectively.

(iii). The order-up-to-Ievel and the rationing functions of a stockpoint downstream ofi are identically
defined as in the optimal policy 4J;.

o

Lemma 4.1. Let gIl (sn) denote the expected total costs of the stockpoints in U')=] Wj when the multi
echelon system is controlled by policy Sl/' For n E {I, ... , N} holds

gIl (s,,) :::: gIl (sn_] ).

Proof. Suppose So is an arbitrary replenishment policy. Let us consider a stockpoint i E Wn+]. For
our convenience we introduce some additional notation. Let g; (s,,) denote the expected total costs in
UJEV; ech(j), due to the replenishment orders placed by policy s" at the beginning of period t. The

rationing function from stockpoint i to successor j when applying policy s" and Sn-] is denoted by Zf

and z{, respectively. The order-up-to-Ievel of j when applying policy s" and s,,_] are denoted by Yj
and Yj' Let us distinguish between the case where LjEV; Yj < LjEv; Yj and LjEV; Yj > LjEV; Yj·

• LYj < LYj.
JEV; JEV;
If at the beginning of period t the echelon stock of stockpoint i, I;"~ say, is sufficient to raise
the echelon inventory positions of all stockpoints j E Vi to their order-up-to-Ievel, the expected
costs of echelon j equals Dj (y j, 4Jj ) and Dj (yj, 4Jj) for replenishment policy Sn and Sn-1, re
spectively. Hence, Corollary 3.1 yields

I;"~ ::: LYj ===} g;(s,,) = LDj(Yj, 4Jj ):::: LDj(Yj, 4Jj ) = g;(sn-d.
JEV; JEVi JEVi

However, if at the beginning of period t the echelon stock of i is not sufficient, all this echelon
stock is allocated over the echelons j E V;.

h, :::: LYj ===} g:(s,,) = L Dj(z{Ui.,], 4Jj ) :::: L Dj(z{U;,,], 4Jj ) = g:(s,,-d.
jE V; jE Vi jE V;
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Finally, we analyze the situation where Ljev; Yj < Ii,t < Ljev; Yj. Then policy Sn rations all
the echelon stock Ii,t over the stockpoints j E V;, while policy Sn-l raises the echelon inventory
positions of stockpoints j E V; to their order-up-to-Ievels Yj, and the remainder (li,t - Ljev; Yj)
is retained at i.
The rationing function 'if, defined by

'if[x] := Yj - qf(LYj - x) with
jeV;

. Y'-y'
q! := J J ,

I L(Yk - yd
keV;

has the following property Yj ~ z{[li.tl < Yj if Yj ~ Yj, and Yj < if [lu] < Yj if Yj > Yj. From
this property and Corollary 3.1 it follows

L Dj (if [li,t], q,j) ~ L Dj (yj, q,j ). (23)
jeV; jeVj

Since zf is at least as good as if, then from Corollary 3.1 and (23) it follows that

LYj < Ii,t < LYj ==} g~(sJ/) = LDj(z{[l;,t], q,j) ~ LDj(z{[li,t], q,j)
~V; ~V; ~V; ~V;

~ L Dj (Yj, q,j) = g;(S/l-l)'
jeV;

• LYj > LYj.
jeV; jeVj

Analogously, we can proof that

Ii,t ~ LYj ==} g~(S/l) = L Dj(Yj, q,j) ~ L Dj(Yj, q,j) = g~(s/l-d.
jeV; jeV; jeV;

Ii.t ~ LYj ==} g;(sJ/) = L Dj(zf[li,t], q,j) ~ L Dj(zf[li,t], q,j) = g;(S/l-I)'
jeV; jeV; jell;

LYj < Ii.t < LYj ==} g~(sJ/) = L Dj(Yj, q,j) ~ L Dj (Zf[li,t], q,j) = g~(sJ/-I>.
jeV; jeV; jell; jell;

Notice that when Ljev; Yj = Ljev; Yj from Corollary 3.1 we know that g;(S/l) ~ g:(s/l-d.
So for an arbitrary period t and an arbitrary stockpoint i E \¥,l+ I holds

g~(S/l) ~ g~(SJ/-I),

which proofs the lemma. o

In Lemma 4.1 we assumed So to be an arbitrary policy for which the order-up-to-Ievels are independent
of time t. Due to the stationarity of the demand this lemma still holds for a dynamic policy So.

Theorem 4.1. If the balance assumption holds, then the decomposition approach yields the optimal
replenishment policy, i.e., minimizing the long run average costs.

Proof. This proof is very similar to the proofs in Van Houtum [1990] and Van Houtum& Zijm [I99Ib].
Consider an arbitrary replenishment policy So. For both S/l and S/l-l the behavior of the stock at all
stockpoints in UJ=/l+l Wj are identical. Hence, for n = I, ... ,N holds

gN(S/l) - g/l(S/l) = gN(S/l-I) - g/l(s/l-d· (24)

Using (24) and Lemma 4.1 yields

gN(SN) ~ gN(SN-I) ~ ... ~ gN(SO)·

Because replenishment policy SN does not have costs larger than an arbitrary policy, specifically the
optimal policy, we conclude that SN is optimal. 0
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5 Conclusions

In this paper we have reviewed our theoretical analysis of divergent multi-echelon inventory systems.
The objective of the analysis was to determine a cost-optimal replenishment policy, Le., a policy which
minimizes the expected total holding and penalty costs on the long run. It was proved that the de
composition approach as in Langenhoff & Zijm [1990] can be extended to divergent N-echelon sys
tems given the balance assumption. Hence the complex multi-dimensional problem of determining the
cost-optimal policy reduces to the problem of determining (1) the optimal order-up-to-Ievel at every
stockpoint, and (2) the optimal rationing functions to its successors. From the analysis we can easily
determine the optimal order-up-to-Ievel by solving a one dimensional problem closely resembling the
classical newsboy problem (cf. eq. (22)). For the rationing functions we derived several properties
which lead to a classification into four classes (see Figure 2). It is cumbersome and time-consuming
to determine the set of optimal rationing functions. Therefore there is a need for a more approximate
approach to determine a replenishment policy which is almost cost-optimal but easy and fast to deter
mine. In an on-going paper we developed such an approach using linear rationing functions. It turns
out that this approach yields a fast way to determine a near optimal replenishment policy.
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