
 

Scheduler optimization in real-time distributed databases

Citation for published version (APA):
Bodlaender, M. P. (1999). Scheduler optimization in real-time distributed databases. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR520890

DOI:
10.6100/IR520890

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR520890
https://doi.org/10.6100/IR520890
https://research.tue.nl/en/publications/23867923-76d9-4873-bc6a-eae287177093


M.P. ~<>JfaenJer 

Schedu!er 6p-Ntrih~:att<>n 

tn R.ea!-lltrie 

Dtstr~huted Databases 



SCHEDULER OPTIMIZATION IN REAL-TIME 
DISTRIBUTED DATABASES 



Copyright © 1999 by Maarten Peter Bodlaender, Eindhoven, The Netherlands. 

All rights reserved. No part of this publication may be stored in a retrieval system, transmitted, 
or reproduced, in any form or by any means, including but not limited to photocopy, photograph, 
magnetic or other record, without prior agreement and written permission of the author. 

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Bodlaender, Maarten P. 

Scheduler optimization in real-time distributed databases I 
by Maarten P. Bodlaender. · 
Eindhoven: Eindhoven University of Technology, 1999. 
Proefschrift. - ISBN 90-386-0681-8 

NUGI 855 
Subject headings: distributed algorithms I scheduling I databases I 
CR Subject classification (1998): C.2.4, C.3, 0.4.1 

This thesis has been carried out under the auspices of the Institute for P.rogramrning Research and 
Algorithrnics (IPA). 

Printed by University Press Facilities, Eindhoven 
Cover design by Ben Mobach and drawing by M.K. Bodlaender-Groote 



SCHEDULER OPTIMIZATION IN REAL-TIME 
DISTRIBUTED DATABASES 

PROEFSCHRIFT 

TER VERKRIJGJNG VAN DE GRAAD VAN DOCTOR AAN DE 

TECHNISCHE UNIVERSITEIT EINDHOVEN, OP GEZAG VAN 

DE RECTOR MAGNIFICUS, PROF.DR. M. REM, VOOR EEN 

COMMlSSIE AANGEWEZEN DOOR HET COLLEGE VOOR 

PROMOTlES IN HET OPENBAAR TE VERDEDIGEN OP 

DINSDAG II MEl 1999 OM 16.00 UUR 

DOOR 

MAARTEN PETER BODLAENDER 

GEBOREN TE EDE 



Dit proefschrifi is goedgekeurd door de promotoren: 

prof.dr.dipl.ing. D.K. Hammer 
en 
prof.dr. E.H.L. Aarts 

Copromotor: 
dr. P.D.V. van der Stok 



Voorwoord 

Ongeveer vier jaar geleden nodigde Peter van der Stok mij uit voor een orienterend gesprek. Dat was 
bet begin van een heel prettige en vruchtbare samenwerking. Het eindresultaat van deze samenwer­
king houdt u in uw handen. Discussies met Peter hebben mij altijd enorrn ge'inspireerd. Hij had altijd 
tijd voor me, en bijna altijd geduld met me. Daar komt nog bij dat bet STW project waarin mijn 
promotie-onderzoek plaatsvond perfect geregeld was. Mijn dank aan Jean Pierre Veen van de Stich­
ting Technische Wetenschappen voor een soepele begeleiding van ons project. Samen met Jan van 
der Wal, Ad Aerts en mede-promovendus Simone Sassen hadden we regelmatig projectbesprekingen. 
Die hielden de druk op de ketel en zorgden ervoor dat onze ideeen kritisch bekeken werden. Simone 
en ik vulden elkaar goed aan, en hoofdstuk zes is daar een mooi voorbeeld van. Bedankt Simone. 

De !eden van bet gebruikerscommittee hebben veel invloed gehad op de richting van mijn on­
derzoek. Met name wil ik Jan van der Meer bedanken. Hij bracht me in contact met de database 
mensen binnen Ericsson. Ik ben vee! verschuldigd aan Claes Wikstrom, een van de ontwerpers van 
de Mnesia database. Een bezoek aan Ericsson Ellemtel en lange discussies op bet strand van Kauaii 
hebben vee! bijgedragen aan de ideeen in dit proefschrift. Bart Nieuwenhuis en Wim Jonker van KPN 
Research gaven een beschrijving van de telecomsystemen van de toekomst die goed aansloot bij de 
ideeen die ik bij Ericsson opdeed. Hoofdstuk vier was nooit tot stand gekomen zonder hun hulp. 
Ian Willers van het CERN was altijd kritisch tijdens de gebruikersbijeenkomsten, wat op dat moment 
even moeilijk is, maar later erg nuttig blijkt. Toen bet schrijven van mijn proefschrift moeilijk ging, 
bracht een bezoek aan bet CERN nieuwe inspiratie. Helaas namen Pascale Minet van INRIA, en A. 
Vreven van Rabofacet alleen in het begin dee! aan ons gebruikerscommittee. In die eerste fase hebben 
ze bijdragen geleverd die terug te vinden zijn in dit proefschrift. Mijn dank aan professor Sang Son 
van de universiteit van Virginia, wiens heldere kijk op temporele consistentie mij inspireerde tot bet 
schrijven van hoofdstuk acht. 

Ook bedank ik mijn promotoren Dieter Hammer en Emile Aarts, en de !eden van mijn leescom­
missie voor de tijd en moeite die ze hebben genomen. Zonder hun commentaar was de uiteindelijke 
versie heel wat minder mooi geworden. Verder wil ik graag Paul van Gorp, Isabelle Reymen, Huub 
van de Wetering en Wieger Wesselink noemen. Naast vriendschap gaven ze mij nuchter commentaar 
en advies. Ook wil ik alle deelnemers aan de wekelijkse DEDOS bijeenkomsten bedanken voor zeer 
leerzame, maar vaak zware middagen. Ik ben heel, heel veel verschuldigd aan Marijke Bodlaender­
Groote en Klaus Bodlaender. Soms besef ik dat onvoldoende. Ten slotte bedank ik al mijn collega's 
op de Technische Universiteit Eindhoven voor de fijne tijd, en in bijzonder ~ +&. Als zij glimlacht 
zingt mijn hart. 



ii VOORWOORD 



Contents 

Voorwoord 

1 Introduction 
1.1 What are real-time, distributed databases? 
1.2 Database architecture . . . . . . . . . . . 
1.3 Typical real-time systems that need databases 
1.4 Research objective . . . . 
1.5 Related work . . . . . . . 
1.6 Organization of this thesis 

2 Specification of scheduling problems 
2.1 Specification of design problems . 
2.2 Real-time database scheduling problems 

2.2.1 Schedulers . . . . . 
2.2.2 Platform description . . . . 
2.2.3 Data characteristics . . . . . 
2.2.4 Transaction characteristics . 
2.2.5 Objective functions . 

2.3 Conclusions . . . . . . . . . . . . . 

3 Design issues 
3.1 Targeted problem specification ................. . 

3.1.1 Candidates for detailed specifications ........ . 
3. 1.2 Example: statistical information used for optimization 

3.2 Concurrency .............. . 
3.3 Scheduler overhead .......... . 

3.3.1 Overhead reduction techniques . 
3.4 The overhead/concurrency tradeoff . . . 
3.5 Available information versus time & quality 

3.5.1 On-line scheduling decisions .. 
3.5.2 Off-line scheduling decisions 

4 Scheduling in low-conflict environments 
4.1 Environment study 
4.2 Specification 
4.3 Design .. 
4.4 Algorithm . . 

iii 

1 
I 
3 
5 
7 
8 

12 

15 
15 
18 
18 
21 
22 
24 
30 
31 

33 
33 
34 
35 
39 
41 
42 
43 
44 
45 
45 

49 
49 
50 
51 
53 



iv 

4.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.6 Performance analysis of OCC-light . . . . . . . . . . . . . . . 
4.7 Performance analysis of Mnesia's two phase locking scheduler 
4.8 Test results 
4.9 Conclusions ............. . 

5 Scheduling in high-conflict environments 
5.1 Environment study 
5.2 Specification . . . . . . . 
5.3 Design .......... . 
5.4 The DOCC-BF algorithm . 

5.4.1 System architecture . 
5.4.2 Scheduler description . 

5.5 Correctness . . . . . . . . 
5.5.1 Deadlock freedom 
5.5.2 Life lock freedom . 

5.6 Optimizing the algorithm . 
5.7 Performance analysis ... . 
5.8 Test results ........ . 

5.8.1 Experiment I: local transactions 
5.8.2 Experiment 2: remote data access, large conflict probability 

5.9 Conclusions . . . . 

6 Predictable scheduling 
6.1 Specification . . . . . . . . . . . 
6.2 A family of scheduling algorithms 

6.2.1 SQSL-soft . . 
6.2.2 SQSL-firm . . . . . . . . 
6.2.3 SQSL-MLF ....... . 
6.2.4 SQSL-MLF with queue-skipping 
6.2.5 Scheduler discussion . . . . . 

6.3 Performance analysis . . . . . . . . . . 
6.4 Comparison with simulation results . . 

6.4. I Simulation compared to fitting . 
6.4.2 Comparison of the schedulers 

6.5 Conclusions . . . . . . . 

7 Off-line database scheduling 
7.1 Environment study ... . 
7.2 Specification ...... . 
7.3 Scheduler design and algorithms 

7.3.1 Conflict detector . 
7.3.2 T PC' Constructor 

7.4 Conclusions ....... . 

CONTENTS 

56 
58 
59 
59 
63 

65 
65 
66 
66 
70 
71 
72 

77 
80 
81 
81 
84 
84 
85 
86 
87 

89 
89 
90 

91 
93 
94 
95 
% 
97 

105 
105 
106 
108 

109 
109 
114 
115 
115 
120 
120 



CONTENTS 

8 Temporal consistency in hard real-time databases 
8.1 Environment study . . . . . . . . . . . . . . . . . . . . . . 
8.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . 
8.3 Scheduler design . . . . . . 
8.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . 
8.5 Complete example: air traffic control . . . . . . . . . . . . . 
8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 

9 Conclusions 
9.1 Performance . . . . . . . . . . . . . . . . . 
9.2 Targeted design . . . . . . . . . . . . . . . . . . . 
9.3 Analysis and design . . . . . . . . . . . . . . . . . . .... . 
9.4 Off-line database scheduling ...................... . 
9.5 Temporal consistency . . . . . . . . . . . . . . . . 
9.6 A final word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A List of symbols 

B Pseudo-code conventions 
B.l Expressions . . . . . . . . . 
B.2 Statements . . . . . . 
B.3 Concurrent programs 

C Basic algorithms 
C.l Locking . . . . . . . . . . . 
C.2 Wait-die deadlock breaking . 
C.3 Two phase locking 
C.4 Two phase commit . . . . . . . 

Index 

Summary 

Samenvatting 

Curriculum Vitre 

v 

121 
121 
127 
129 
132 
134 
137 

139 
139 
140 
141 
141 
142 
142 

143 

145 
145 
146 
147 

149 
149 
150 
151 
151 

161 

165 

167 

169 



vi CONTENTS 



Chapter 1 

Introduction 

Computers play a strong supporting role in our society. Governments and large organizations depend 
on them for administration. They are the core of our banking system. Communication networks are 
fully digital, and controlled by dedicated computers. In factories, computers are used extensively for 
process control, resource allocation and routing. 

One of the most important tasks of computer systems is to collect, store and provide information. 
Large systems can contain several terabytes of data, which are accessed and modified by multiple 
parties. These data are often vital to the organization that owns them. Data should never be lost, 
should be consistent, and they should be quickly accessible by authorized parties. Databases provide 
this functionality. They offer a structural way to solve problems that are related to data. In general, all 
databases allow storage and retrieval of data. Specific databases can solve more data-related problems. 

Systems that interact directly with the outside world often have strict timing requirements. A 
response to an outside world event should be given within a certain time-span. Such systems are called 
real-time systems. When a real-time system accesses data from a database, the database response 
should also be given within a certain time-span. Databases that can satisfy timing requirements are 
called real-time databases. 

This thesis deals with the optimization of real-time, distributed database schedulers, to improve 
performance and predictability. 

1.1 What are real-time, distributed databases? 

Databases are building blocks for bigger systems. Different types of databases exist. What services 
they should offer depends entirely on the application(s) that use them. All databases offer the follow­
ing basic functionality. 

Structural storage of data. All data stored in the database is handled in a uniform way, and data 
can only be accessed through a well-defined interface: applications issue transactions to the database. 
A transaction consists of a number of read and write operations on data, and some computation. The 
actual organization of data within the database is hidden from the applications that access the database. 

Consistency. The data stored in the database should be consistent. Consistency requirements can 
be arbitrary predicates over the entire data set. For example, in financial administrations it is required 
that the balance-sheet of a company always totals to zero. Execution of a transaction should not 



2 CHAPTER 1. INTRODUCTION 

destroy this consistency. 

The execution of a transaction can be temporarily stalled. For example, the transaction waits 
for a user response, or waits until a data access is completed. During this time, the processor is 
available to other transactions. Allowing transactions to execute in an interleaved fashion utilizes the 
processor more efficiently. Jn distributed systems interleaving transactions is even more important, 
since more than one processor is available on which transactions can be executed. To utilize all 
processors efficiently, an interleaved execution of transactions is required. To maintain consistency 
when transactions can execute in an interleaved fashion, the database should support the following 
functionality. 

Concurrency control. If applications access the database concurrently and update overlapping sets 
of data, interferences between different transactions can lead to unexpected and unwanted results. 
Data is no longer consistent, even if the individual transactions preserve consistency. Concurrency 
control ensures that transactions only access the database at the same time, if they do not interfere. 
For example, if transactions access different parts of the database, their executions do not interfere 
with each other. 

Traditionally, databases are implemented on single processor computers. As there are limits to 
the power of single processor systems, databases are implemented on other hardware architectures 
with more processors. This enlarges the capacity of the database, allowing for more than one database 
access at the same time, but it introduces coordination problems between the different processors. We 
discern the following two multiple-processor hardware architectures: a shared-memory architecture, 
and a distributed architecture. In shared-memory architectures, processors communicate with each 
other through a memory that is directly accessible by all processors. In distributed architectures, pro­
cessors communicate through a network. Databases that use the specific features of these architectures 
are called shared-memory databases and distributed databases. Burdening transaction programmers 
with the precise details of the hardware architecture is unwanted. therefore the following functionality 
is supported by databases. 

Distribution transparency. Applications that access the database need to have no knowledge about 
the underlying hardware. Assignment of transactions to processors and the fetching of accessed data 
is handled by the database. 

In real-time applications the computer interacts with an outside world that is constantly changing. 
Real-time applications often store data that describe the state of the outside world. Since the outside 
world changes, these data are no longer accurate after some time, and lose their value to the applica­
tion. Usually, whether certain data is useful or not depends on its age: the older it gets, the less useful 
it becomes for the applications that access it. When an application reacts to the outside world, it has to 
do so within a bounded time-span. The reaction should not come too early, and should not be too late. 
If the application issues a transaction to the database as part of this reaction, the transaction needs to 
be completed in bounded time. Real-time databases offer the following functionality. 

Transaction timeliness. Applications that issue transactions to the database can determine in which 
interval a transaction should be completed. Three types of requirements are recognized: hard, firm, 
and soft real-time requirements. If the database does not satisfy a hard real-time requirement, the 



1.2. DATABASE ARCHITECTURE 

[ User rquests ) 
er Interface 

(Database Queries] 

'

Query 
Optimizer 

Transactions 

'

Transaction 
~~~~M~ana~ 

Schedule) 

I Execution 

Dataset~ 

Figure 1.1: DBMS 

3 

entire system fails. If the database does not satisfy a firm real-time requirement, the corresponding 
transaction is worthless and can be discarded. If a soft real-time requirement is not satisfied by the 
database, the value of the corresponding transaction decreases, but does not instantly become zero. 

Data accuracy. Applications that access the database can rely on the fact that data stored in the 
database accurately describes the outside world. 

Furthermore, databases can offer reliability guarantees, backup mechanisms in case of failures, se­
curity mechanisms, and active response to certain database states. Many other extensions to databases 
exist, for example adding structures to the database that facilitate queries and searches on the data set. 

The thesis focuses on real-time scheduling of transactions on multi-processor databases. The 
databases that are considered support structural storage of data, consistency and concurrency control 
and distribution transparency. Special attention is 'given to transaction timeliness and data accuracy. 
Since we are interested in real-time systems with strong timing requirements, we limit ourselves to 
main-memory databases. This means that all data is stored in primary memory, and system crashes 
lead to loss of all information. Disk-based databases have not been investigated. 

1.2 Database architecture 

A database consists of several subsystems, and a set of stored data, see figure LL All subsystems 
together form the database management system (DBMS). The stored data is called the dataset. This 
is often called the database, but to avoid confusion with the complete system, we define a more precise 
term. 

Database management systems consist of a use~ interface that converts user requests into database 
queries. The user interface can be a powerful command language like SQL. Each user request is a 
statement in this language. Alternatively, the interface can be less flexible, like a form that must be 
filled by a user. Even simple pressure sensors cah be the interface to the database. In this case, a 



4 

Transactions 

I Transaction 
Manager 

Schedule 

I Execution 

Dataset 

Figure 1.2: FLAT DBMS 

pressure change represents a user request 

CHAPTER 1. INTRODUCTION 

Database queries are generated by the user interface, and are usually specified in a relational or 
algebraic language. The query optimizer manipulates the evaluation-order of database queries to min­
imize computation cost. Query optimization is a research field in itself, that has drawn considerable 
attention over the years [5, 45, 33]. The query optimizer produces executable transactions. A trans­
action is composed of read and write actions on the dataset, together with some internal computation. 

An example of the importance of query optimization is the following query. It is executed in a 
database where the names and ages of several persons are stored. Its task is to collect the names of all 
persons that are older than three years, and whose name starts with 'X'. This consists of two algebraic 
operations: selection of persons, using predicate 'age > 3' (aage>3), and selection of persons, using 
predicate name = X ... (anamc=x . .J. Suppose thousand persons in the database satisfy age > 3, and 
ten persons satisfy name = X .... Then aage>3 followed by O'name=x ... has an intermediate result of 
thousand persons, while O'name=x ... followed by aage>3 has an intermediate result of only ten persons. 
The second order is more efficient. 

The transaction manager determines when and how transactions are executed. For concurrency 
control, it produces a schedule that consists of a partial order on the (interleaved) execution of trans­
actions. To guarantee transaction timeliness, the schedule is enhanced with start-times for each trans­
action execution. Data accuracy is guaranteed by adding a set of data-refresh transactions to the total 
set of transactions that is executed. Furthermore, the execution of transactions can be enhanced with 
mechanisms that implement various other database services, like reliability or security. Finally, the 
transactions are executed on the dataset according to the schedule. 

Flat database management systems 

Real-time systems mostly work with pre-defined responses to external events. There is no need to 
generate new transactions, each time the database is accessed. Instead of generating new transactions 
using database queries, transactions are taken from a set of pre-defined transactions. These transac­
tions can be defined and optimized beforehand. This eliminates the need for a generic query language 
and query optimizer. 

Replacement of generic database queries and the query optimizer by a set of pre-defined trans­
actions leads to the flat database management system, as shown in figure 1.2. Besides the fact that 



1.3. TYPICAL REAL-TIME SYSTEMS THAT NEED DATABASES 5 

it eliminates the overhead of the query optimizer, it provides other benefits as well. When the set of 
pre-defined transactions is limited, the transaction manager can be optimized to handle those transac­
tions more efficiently. By decreasing the generality of the transaction manager, overhead caused by 
superfluous mechanisms is avoided. 

In this thesis we investigate flat DBMSes, and focus on the scheduling aspects of the transaction 
manager. To accomplish this, we define the required functionality of the transaction manager, and 
then propose solutions that maximize the overall performance. 

1.3 'fYpical real-time systems that need databases 

Real-time databases range from full-blown systems that offer all the features described above, to 
lightweight databases that offer little more than speed and structural storage. We studied the charac­
teristics of six application domains, and we investigated what kind of real-time databases are used in 
those environments. Below, we briefly discuss some of the results of our investigations. Information 
from private communications with people that work in these areas. and information from papers that 
describe these applications [43, 23, 25, 97] is used in these descriptions. 

Telecommunication. A private automatic branch exchange (PABX) contains a database in which 
amongst others the signatures of PABX users are stored. A signature contains information about the 
different networks accessible to the user and the correspondence between a short user defined number 
and the physical telephone number within a network. This is typically represented by one kilobyte of 
information. Most of the operations are look-up only, so execution times are short. 

Telecom operators have millions of customers, and real-time access to the database is required 
whenever a customer makes a call. The arrival pattern of customer calls is chaotic, and is well­
described by a Poisson process. The nature of these arrival processes is such that occasionally more 
customers arrive with a request than can be handled by the system at that time. Therefore, a 100% 
service guarantee can never be given. · 

As telecom systems are expanding rapidly, for example by the growth of on-line computing, arrival 
rates of as much at ten-thousand transactions per second are expected in the future. Right now, one 
database handles about fifty transactions each second. Less frequent and less time-critical are updates 
that are performed for system maintenance. 

The large amount of information stored, and the high rate of database accesses suggest that a 
single processor architecture does not suffice. A distributed architecture is preferable, due to the 
reduced costs and the ability to scale the system by adding more machines. Another major benefit 
of distributed systems is the increased availability and reliability of the system, aspects that are very 
important in the telecom environment. 

High energy physics. High energy physics (HEP) experiments generate vast amounts of data in a 
very short time-span. The interaction of two particles in a magnetic field generates a set of particles 
following tracks with a certain curvature. The passage of the particles is measured by a number of 
detectors. The type of the interaction can be determined from the spatial reconstruction of the particle 
tracks from the detector data. 

The data received from the sensors is large, several megabytes for one measurement. Reconstruc­
tion transactions extract the relevant information from measured data. This reduces the necessary 
memory requirements, such that the extracted data can be stored in a database. The database should 
ensure that the reconstruction transactions can handle the arrival rate of measurements. Main-memory 



6 CHAPTER I. INTRODUCTION 

acts as a buffer, in which new measurements are stored until a processor becomes available to execute 
a reconstruction transaction. Hard deadlines on the reconstruction transactions are determined by the 
interaction rate, the number of processors, and the amount of storage space available for intermediate 
results. 

Execution times of reconstruction transactions are large, because they access a large amount of 
data, and complex physical equations have to be solved. Since all relevant data is combined into 
one large data item, reconstruction transactions access only a few data items. Sensor data arrives at 
the system at regular intervals, so the maximum load of the system can be computed before hand. 
100% service guarantees can be given, if the system is built correctly. Periodic transactions with soft 
deadlines display statistics on the accuracy of the measurements over the last few hours or visualize 
spatial reconstructions of particularly interesting interactions. 

Container port. Ships loaded with containers are scheduled for arrival in time slots during which 
the quay is at their disposal. Containers, stored at predetermined locations in the ship's hold, are 
transported to specified storage locations on the quay. Automatic guided vehicles (AGV) transport the 
containers over a predetermined route from the crane to the specified storage location or vice-versa. 
Transactions access the database at three different time scales: l) planning of the ships' arrivals (days), 
2) planning of the storage of containers once the ship arrived (hours), and 3) the almost continuous 
routing and collision avoidance of the AGVs (minutes, seconds). Especially transactions of type 3) 
have strict real-time requirements. 

The transactions that are needed to route AGVs have firm deadlines. If a deadline is missed, it 
means that the AGV has to stop to ensure that no collisions take place. Since these AGVs weigh over 
ten-thousand kilo, stopping and starting is slow. Therefore, it is important that deadlines are almost 
never missed. Data items accessed by transactions mostly consists of positional information, which 
can be described in a few kilobytes. The executing times of routing transactions are short, as most 
routing decisions are pre-computed. 

Routing transactions are essentially periodic in nature, since AGV tracks are divided into sections. 
However, when multiple AGVs request routing information from the database at the same time, there 
are peak-moments. Still, the maximum number of concurrent database accesses is bounded. 

Automatic teller machines. Automatic teller machines (ATMs) are linked to a number of central 
computers connected to a database with information on clients and their accounts. Requests for in­
formation about accounts are sent with a high rate from the ATMs to the central site. Bounds on 
the response times of these requests are firm. On the other hand, updates of the account are handled 
with soft deadlines. The data stored for one account is limited to a few kilobytes, and no complex 
operations have to be carried out by the transactions. Therefore, the execution time of a transaction 
is short. The arrival pattern of customer requests is essentially a chaotic process, so no 100% service 
guarantees can be given. 

Actual developments indicate that there is a growing market for accounts with a continuous real­
time access, especially in connection with stock transfer. Consistency and reliability are important 
requirements for these databases. 

Financial trading applications. Financial trading applications (FTA) follow market developments 
and try to recognize trends, such that profitable trading becomes possible. An instrument is an entity 
with a price that can be traded. Typical examples of instruments are equities, bonds, options, and 



1.4. RESEARCH OBJECTNE 7 

commodities like pork bellies. Real-time data about instruments are received from various stock ex­
changes and brokerage houses, and are stored in temporal databases. Historical data about instruments 
are used by traders to identify trends in the market, such that future prices can be extrapolated. 

Updates to the database arrive at a high rate, typically more than five-hundred transactions arrive 
each second from a ticker. A single update transaction affects only a few data items. The data stored 
in the database are read by trend-recognition transactions. Trend-recognition transactions are complex 
and access often more than hundred instances of the same data item. For example, the price of one 
instrument at different points in time can be used for prediction. 

The system load of financial trading applications will increase in the future. Markets grow and 
traders want to combine information from multiple markets in their information systems. Trend recog­
nition will become increasingly complex, as the financial theories are further developed. 

Command and control systems. Command and control systems (C& C) monitor the environment 
with a set of sensors. The data received from the sensors are correlated to get an integrated view of 
the real-world. A decision support system uses this view to decide on actions that have to be taken by 
the system. 

Databases are useful to store and update the sensor data and the correlation data that are 
derived from the sensor data. The database contains information about a set of monitored objects. 
Sensor data for one object arrives periodically, with different periods for different sensors. The 
arrival process of new objects that have to be monitored is chaotic, due to the open nature of 
the environment. The total arrival rate of sensor data is very high, depending on the area that is 
monitored by the C&C system. As much as thousand updates every second have to be expected and 
transient overloads cannot be avoided. The size of sensor information on one monitored object is 
about half a kilobyte. Correlation of sensor data is complex, requiring advanced correlation tech­
niques. To predict future states, multiple instances of the same data item can be used for extrapolation. 

All of the systems described above require databases that can handle a very high rate of database 
accesses. Furthermore, each separate database access should be handled in real-time, with minimal 
delay. The systems differ fundamentally in a number of important characteristics. Real-time require­
ments in the HEP system are hard, while deadlines in the AGV routing system are firm. PABX, ATM, 
PTA, and C&C systems can still use the results of late transactions, so their real-time requirements 
are soft. The transaction arrival patterns of ATM, PABX, PTA, and C&C systems are very chaotic in 
nature, so transient overloads are unavoidable. The HEP system and the AGV routing system have 
predictable, bounded transaction arrival patterns. Transactions in ATM, PABX, and the AGV routing 
system have low data requirements, while HEP sensor data is large, and the financial applications 
deal with large sets of data. C&C systems consist of sensor updates that have low data requirements, 
and correlations that deal with larger sets of data. Correctness requirements differ; ATM, HEP, PTA, 
and the AGV routing system place high demands on consistency. The PABX application allows that 
transactions occasionally read inconsistent data, but never write inconsistent values to the database. 
C&C systems relax functional consistency in favor of temporal consistency: a global view of the 
environment at one point in time has to be constructed. 

1.4 Research objective 

We focus on the scheduling aspect of the transaction manager in a fiat database management system 
architecture. The scheduler within the transaction manager actually has tcvn tasks: concurrency con-



8 CHAPTER 1. INTRODUCTION 

trol and real-time scheduling. Both tasks are difficult by themselves, as is exemplified by the large 
volume of research in these areas (see section 1.5). Combining them increases the complexity of the 
resulting scheduling problem. Generated schedules have to satisfy real-time requirements that restrict 
start times and finish times of transactions, and consistency requirements that restrict the functional 
behavior of the system. The fact that the scheduler is often executed on the same platform as the 
transactions further complicates the scheduling problem. 

This thesis does not discuss allocation of transactions to processors nor allocation of data items 
to sites. These subjects have a strong impact on the performance of the system, but are beyond the 
scope of this thesis. Data allocation, and the accompanying transaction allocation is usually treated 
in combination with query optimization [5]. In this thesis we focus on the scheduling aspects, and 
assume that the allocation is fixed and that data items are not replicated. Furthermore, we abstract 
from communication scheduling in distributed systems by assuming a fixed communication delay. 

1.5 Related work 

The field of real-time (distributed) databases stems from the combination of real-time scheduling 
and database concurrency control. We discuss results from both areas that directly relate to real­
time distributed databases. Readers that are interested in real-time systems can start with the excellent 
survey that appeared in [87] or look up the books [76, 49]. Databases are treated in depth in [51, 73]. In 
the discussion below, we treat the specification of scheduling problems separately from the algorithms 
that have been designed to solve them. 

Problem specification 

Lawler [56] introduced the a 1 {J I y notation to describe real-time machine scheduling problems. The 
meaning of this notation is as follows. A set of tasks with certain characteristics {J is executed on a 
platform with characteristics a. The quality of solutions is measured with performance criterion y. A 
large class of scheduling problems, not limited to machine scheduling, can be described by varying 
the contents of a, {J, y. 

Lawler's notation clearly identifies problem characteristics. The notation is open, new descriptions 
can be added to the a, {J, and y fields. Over the years, a large vocabulary has been created, in which 
most real-time scheduling problems can be expressed. This categorization brings some order in a 
very diverse research area. No comparable categorization exists for database concurrency control 
problems. 

Database scheduling problems are quite similar to real-time scheduling problems, in most aspects. 
A set of transactions (comparable to tasks) is executed on a platform. Traditionally, solutions should 
optimize the transaction throughput of the database. Contrary to the problems that Lawler's notation 
was intended for, database scheduling problems are necessarily dynamic and on-line, because insuf­
ficient scheduling information is available off-line. Furthermore, the requirements that are placed on 
the execution of transactions are quite different from the requirements that are placed on tasks. Es­
rawan, Gray, Lorie, and Traiger [30] introduced the transaction concept in 1976: a task (transaction) 
that reads values from a consistent database, writes consistent values back to the database. 

When transactions execute concurrently, interferences between their executions can destroy the 
database consistency. The notion of serializable schedules that Esrawan, et.al. [30] introduced can be 
used to guarantee that interferences do not occur. It was further formalized by Papadimitriou [75] and 
Vidyasankar [100]. Serializability is summarized as follows. The effect of a serializable schedule is 



1.5. RELATEDWORK 9 

functionally equivalent to a sequential execution of the same set of transactions. The serializability 
notion is quite intuitive. Sequential executions cannot interfere with each other. Therefore, if the result 
of a schedule is equivalent to the result of a sequential schedule, no interferences occur. Different 
notions of serializability exist, depending on the equivalence-relation that is used. Vidyasankar related 
several notions of serializability [100]. 

All view-serializable schedules have to be view-equivalent to a sequential schedule. Two sched­
ules S and S' are view-equivalent if each transaction t reads the same values in both S and S' (note 
that in this definition is assumed that each schedule starts with a write-only transaction that writes all 
data items, and ends with a read-only transaction that reads all data items). Papadimitriou showed that 
the problem of deciding whether a given schedule is view-serializable is NP-complete [75]. 

Conflict-serializability is more restrictive. A conflict between two transactions p and q occurs, if 
both access the same data item, in conflicting modes (at least one ofthe transactions performs a write). 
A conflict has a direction: if p performs the access before q, the conflict is ordered p -+ q. Two 
schedules S and S' are conflict-equivalent if they contain the same set of conflicts, and the conflicts 
are ordered in the same direction. A schedule is conflict-serializable if it is conflict-equivalent to 
a sequential schedule. Concurrency control mechanisms usually recognize a subset of all confiict­
serializable schedules. 

Epsilon serializability [78] was introduced by Ramamritham and Pu in an attempt to simplify the 
scheduling problem by weakening the serializability requirement. Interferences between transactions 
are allowed, as long as the resulting inconsistencies are bounded to a specified margin. When the 
margins are wide, the scheduling problem is easy. 

Kuo and Mok introduced view-Ll-similarity [54] in another attempt to avoid the NP-complete 
scheduling problem. A "similarity bound" is specified for each data item. Normal serializability is 
replaced by a weaker variant. Transactions can concurrently write data items, as long as writes occur 
within an interval shorter than the similarity bounds of the data items. The rationale for this approach 
is that instances created at roughly the same time, are "similar" enough to be treated as the same. 

Audsley, Bums, Richardson, and Wellings propose to drop serializability altogether [8, 9] for 
data that describes a continuously changing real-world. Instead, a notion of temporal consistency is 
introduced: a data item is consistent, if it has been measured recently in the real-world. This notion 
of consistency we call data-based temporal consistency [46, 102, 2]. This notion is generalized to 
transaction-based temporal consistency [20, 19] in this thesis. Datta and Viguier present similar ideas 
[28], but arrive at their result by amalgating temporal [89] and real-time databases. 

If we describe the concurrency control scheduling problem in terms of Lawler's notation, serializ­
ability would qualify as a task-characteristic. It is a generalization of the shared resources characteris­
tic, which is often used to describe mutual exclusion requirements in real-time scheduling problems. 
Buckley and Silberschatz [22] describe a database where transactions follow fixed database access 
patterns, and show that efficient schedulers can use this information. Agrawal, El Abbadi, and Jeffers 
[3, 4] study the effects of relaxing transaction atomicity. Atomicity is also relaxed in altruistic locking, 
which has been introduced by Salem, Garcia-Molina, and Shands [81]. 

Traditionally, database systems were disk-based (for textbooks, see Prad and Adamski [77], or 
Korth and Silberschatz [51]). Since the advent of large and cheap memories, main-memory databases 
are a viable alternative [52, 82, 16]. Another important platform characteristic is the basic architecture, 
i.e. centralized databases [52], or distributed databases [93, 13, 31, 92, 86]. 

Performance criteria are poorly developed for the concurrency control scheduling problem. Pa­
padimitriou evaluated the scheduler performance by counting the number of different schedules that it 
can generate. The underlying idea is that a scheduler which can generate a large number of schedules, 
can generate a schedule that utilizes the available processors effectively. Already in 1979 Papadim-



10 CHAPTER I. INTRODUCTION 

itriou noted [75] that this performance criterion is not concrete enough for more practical applications. 
It completely neglects the platform and task characteristics of the scheduling problem! A scheduler 
that achieves a 100% utilization on one processor is perfect in a centralized system, but can be poor 
in a distributed system. 

The poor performance criteria have led to discussions regarding the relative performance of dif­
ferent concurrency control algorithms (65, 93, 69]. Comparison of schedulers is mostly based on 
simulations of the concurrency control algorithms [41, 92, 40, 72]. Other articles [90, 105, 69, 104] 
used stochastic analysis of specific systems to arrive at their results. In these specific systems, perfor­
mance criteria like transaction-throughput can be used. 

Unfortunately, conclusions based on simulations hold for very specific applications, with a specific 
platform, and specific transaction characteristics. Conclusions based on stochastic analysis can be a 
bit more general, if the analysis is parameterized, but still only cover a small part of the general 
scheduling problem. The performance of the scheduler has to be evaluated for each application area. 
Real-time databases use performance criteria from real-time scheduling. Two of the most commonly 
used criteria are the average response time (65, 90, I 05], and the percentage of transactions that miss 
their deadlines [55, 57, 72]. 

Scheduling results 

Liu and Layland [59] introduced two of the most successful real-time scheduling algorithms, ear­
liest deadline first scheduling (EDF) and rate-monotonic scheduling (RMS). Both provide optimal 
solutions to the single processor scheduling problem, with independent, preemptive tasks that do not 
share resources, and the performance criterion is the number of tasks that miss their deadline. Un­
fortunately, most scheduling problems are complicated by additional requirements like dependencies 
between tasks, or the use of shared resources. A large class of these scheduling problems is known to 
be NP-hard, and is described by Ausiello, et. ai [10]. For example, to combine real-time scheduling 
with databases the scheduler needs to deal with shared resources (data items). Mok showed in his 
PhD. thesis that this problem is NP-hard (67]. For the scheduling problems that we discuss in this 
thesis, heuristics are needed to efficiently find solutions. 

Rate-monotonic scheduling consists of an off-line priority assignment, and a straightforward on­
line scheduler. Therefore the run-time overhead of RMS is low. A disadvantage of rate-monotonic 
scheduling is that all scheduling information has to be available off-line. Earliest deadline first 
scheduling uses the same on-line scheduler, but assigns priorities dynamically during the on-line ex­
ecution. It provides more flexibility at the cost of increased run-time overhead. Liu and Layland 
present sufficient feasibility tests (59] for both schedulers. However, using the feasibility test for EDF 
removes much of EDF's flexibility. The feasibility test can only be performed if the entire task-mix is 
available off-line. Tasks cannot be added during online execution, or the feasibility test is no longer 
valid. 

Lehocsky, Sha, and Ding present [58] necessary and sufficient feasibility tests for RMS. They 
argue that RMS has great practical potential. One of their observations is that RMS can be modified 
to handle synchronization constraints. Indeed, Sha, Rajkumar, and Lehocsky present two scheduling 
algorithms [85] that deal with tasks that have shared resources, the basic priority inheritance protocol 
{BPI) and the priority ceiling protocol (PCP). Both adapt RMS, such that critical sections around the 
use of shared resources can be handled. Interestingly, Chen and Lin [24] show that these adaptations 
are not unique to RMS, and adapt EDF using the same ideas. 

The most successful database scheduler is without doubt two phase locking (2PL) that was first 
described by Esrawan, Gray, Lorie, and Traiger [30]. 2PL is called "pessimistic": if the scheduler 



1.5. RELATED WORK 11 

cannot ensure that the execution of a transaction is serializable, the transaction is blocked. Blocking 
occurs when transactions access a data item that is in use by other transactions. Long blocking-chains 
can occur, if blocked transactions previously locked a set of data items. If the system-load is high, 
this unbounded blocking can cause trashing: the throughput of the database goes down radically. 
Franaszek, Haritsa, Robinson, and Thomasian present the locking with limited wait-depth scheduler 
[31, 32], that prevents thrashing. Another disadvantage of 2PL is that deadlocks can occur if transac­
tions block each other. A large body of research has been directed at either preventing or detecting 
and solving deadlocks. Knapp wrote an clear introduction in this subject [48]. 

As an alternative to "pessimistic" concurrency control, optimistic concurrency control (OCC­
pure) was introduced by Kung and Robinson [53]. Even if serializability is not ensured, transactions 
are allowed to execute. However, when a transaction is completed, a check is made to see if the 
execution is serializable. If not, the transaction is restarted. OCC-pure wastes processor power when 
transactions are restarted. More advanced OCC protocols [84, 88, 57] increase the concurrency of the 
scheduler by having more elaborate serializability-checks. This reduces the number of restarts, hence 
less processor power is wasted. 

Bestavros describes an interesting scheduling regime called speculative concurrency control [14, 
15]. It mixes optimistic and pessimistic scheduling by introducing "shadow-executions", transactions 
are executed in parallel under both scheduling regimes. The most successful execution is committed. 
The other execution is aborted. Multiple shadow-executions of the same transaction can be created, 
each time a possible conflict is detected. Speculative concurrency control wastes a lot of processor­
time, but does improve performance if processors are not a bottleneck. It is an interesting concept, 
trading processor-power for concurrency. 

2PL and OCC-pure have both been adapted for distributed environments [13, 55, 93, 72, 92]. 
Distributed 2PL [13, 72} is quite similar to normal 2PL. Usually, each site in the network has its own 
local Jock-server that manages the access of data items, stored at that site. As a result, requesting 
write-locks becomes an expensive operation when the written data is stored at a remote site. 

An important problem that has to be tackled when distributing OCC algorithms is the validation 
phase. To prevent racing conditions, centralized OCC algorithms treated validation and writing of 
results as one critical section. This would lead to a major bottleneck in a distributed environment. 
Combinations of OCC and locking are either used to overcome distribution problems [93, 41 ], or try 
to enhance concurrency by offering both mechanisms at the same time [86, 103]. K.w. Lam, Lee, 
K.y. Lam, and Hung adapt the popular OCC-TI scheduler to distributed environments [55], again 
using locks. Chapter 5 presents an different adaptation of OCC-TI, which uses a more elaborate 
blocking mechanism to solve the race-conditions with minimal delays. Distributed commit protocols 
[51] ensure that transactions are successfully completed at all sites, or are uniformly aborted. 

A major source of scheduler overhead in distributed databases is communication, required by the 
scheduler. Although this is generally recognized [71, 37, 6, 44], database schedulers are usually not 
designed to minimize the scheduler communication overhead, but to maximize parallelism. 

Deadlock detection schemes have to be distributed as well [48]. The schemes are often elaborate 
and complicated. This is illustrated by several erroneous algorithms that were published (references 
can be found in [48]). 

Real-time database scheduling can be viewed as an extension of real-time scheduling with a more 
precise look at shared resources, or as an extension to databases with time requirements. Algorithms 
have been devised using these two viewpoints. Sha, Rajkumar, and Lehocsky apply the priority ceiling 
protocol [85] to the two phase locking protocol, by requiring "two phase" behavior of tasks. The 
resulting protocol can be used for off-line scheduling of hard real-time databases. Chen and Lin's 
extension of EDF with a priority ceiling is more suited for on-line, dynamic scheduling, as the entire 



12 CHAPTER 1. INTRODUCTION 

task mix does not have to be known in advance. 
OCC-pure is not suited for extension with real-time scheduling mechanisms. When a transaction 

checks if its execution is serializable, it examines executions of committed transactions. If it finds 
interferences with a committed transaction, it restarts. The commit of a low-priority transaction can 
lead to the restart of a high priority transaction, which is then likely to miss its deadline. Schlageter 
introduced optimistic concurrency control with forward validation (OCC-F) in an early paper [84]. 
OCC-F offers more concurrency than OCC-pure, by restarting transactions earlier, before they start 
validation (see also Harder [88]). This makes OCC-F suitable for real-time scheduling, as conflicts be­
tween transactions are resolved before either has committed. Hence, a real-time protocol like EDF can 
be used to decide which transaction is restarted [40]. OCC-F has drawbacks. It requires scheduling 
information about transactions that have not finished execution. Without constraining the executions 
of transactions, such scheduling information is not available at this early stage. OCC-F is only imple­
mentable if the transactions have access-invariance (their data access is known in advance), or if the 
validation phase and write phase occur in one, large critical section. 

Boksenbaum, Cart, Ferrie, and Pons combine forward and backward validation [21] in one dis­
tributed protocol to solve the problems of OCC-F. It is the first article that features dynamic time­
stamps, a technique that Lee and Son used as the basis of their famous OCC-TI scheduler [57]. The 
dynamic time-stamp technique can be used to recognize the serializability of a very large class of 
schedules. Huang, Stankovic, Ramamritham, and Towsley combine forward validation with locking 
[41], again solving the problem that scheduling information is not known at an early stage. Both 
scheduling algorithms allow real-time choices to be made. Since they are both transaction-driven pro­
tocols, scenario's exist in which the information that is needed for real-time scheduling is unavailable. 
In this case, the protocols revert to backward validation or first-come, first-served locking. 

1.6 Organization of this thesis 

The first chapter contains an introduction into the field of real-time databases, an informal problem 
description, six example real-time systems that use databases and this small overview. 

Chapter 2 shows how real-time database scheduling problems can be specified. It starts by pre­
senting a generic specification method, and adds domain specific knowledge to the method to specify 
real-time database scheduling problems. Chapter 3 focuses on design issues that play an important 
role in real-time database scheduling problems. These issues are a recurring theme throughout the 
thesis. Chapter 4 takes a closer look at the telecom environment. The characteristics of the environ­
ment are then used to determine the trade-offs that are described in chapter 3. A database scheduler is 
designed in accordance with these trade-offs. A small analysis and test-results of an actual implemen­
tation complete the chapter. Chapter 5 is not directly inspired by an actual environment, but assumes 
that a scheduler for a high-conflict environment needs to be designed. The hypothetical characteristics 
lead to the design of the OCC-BF scheduler. Since this is a new, quite complex scheduler, the chapter 
contains the algorithm, a correctness proof and possible optimizations. Chapter 6 is motivated by the 
wish to have predictable performance. The aim of the scheduler design is to allow good performance 
predictions. Analyzability is acquired at the cost of reduced database flexibility. The chapter con­
tains the SQSL scheduler, extensions to the scheduler, simulation and analysis results. Chapter 7 is 
based on general safety-critical environments. Hard real-time characteristics are used to simplify the 
scheduling problem. We design an off-line, hard real-time scheduler, which schedules transactions on 
the same platform as the applications that access the database. Chapter 8 is loosely based on the HEP 
sensor system, and more directly on the stock market systems that are described in [2, 25, 23]. The 



1.6. ORGANIZATION OF THIS THESIS 13 

specific characteristics of those systems enable an imponant simplification of the database scheduling 
problem: serializability does not need to be maintained at all times. We design an off-line hard real­
time database scheduler that can be scheduled along with the applications that access the database. 
Chapter 9 takes a look at what has been achieved in this thesis, and what future research can be used 
to improve the quality of real-time database scheduling. Finally, there are three appendices. Appendix 
A contains a list of symbols that are used in this thesis. Appendix B describes the pseudo-code that 
is used in algorithm descriptions. Appendix C describes a few basic algorithms that are referred to in 
this thesis. 



14 CHAPTER I. INTRODUCTION 



Chapter 2 

Specification of scheduling problems 

It is generally recognized [77, 27] that problem specification and gathering of user requirements is 
part of the total design trajectory. Important design decisions are taken when the system requirements 
and available resources are specified. Since this thesis aims to aid designers in the design of efficient 
real-time database schedulers, this chapter treats problem specification. The chapter consists of two 
parts. First, section 2.1 introduces a generic framework for the specification of design problems. The 
elements that are contained in the problem specification are defined, and their meaning is explained. 
In section 2.2, this framework is applied to real-time database scheduling problems. 

2.1 Specification of design problems 

Dasgupta [27] defines a design problem as a set of requirements R. A solution to the design problem is 
a design D, such that any implementation of D satisfies R. Dasgupta distinguishes between empirical 
requirements and conceptual requirements. Empirical requirements are requirements that specify 
externally observable or empirically determinable qualities that are desired for the designed object. 
Conceptual requirements reflect doctrines, style, esthetics or design philosophies. An example of an 
empirical requirement is "the total execution time should be less than 5 seconds". A typical conceptual 
requirement is the "no goto" programming style, or more to the point: the database paradigm. 

The goal of our specification framework is to specify clear, unambiguous design problems, and 
empirical requirements serve that purpose. Problem specifications in this thesis do not directly reason 
about conceptual requirements. 

Observations and constraints 

Checking whether empirical requirements hold consists of observing a set of values of the designed 
object, and checking whether they satisfy all requirements. We distinguish two elements: a set of 
observations, and a set of constraints on the values of observations. The description of an observation 
specifies what part of the designed object has to be measured. Constraints specify the legitimate values 
of observations (i.e. a correctly designed object will satisfy all constraints). 

Definition 2.1 An observation is a part of the (behavior of the) object that can be measured. 

Definition 2.2 A constraint is a proposition over the values of observations. 

15 



16 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

Note that observations and constraints can be specified that bear no relation to the design problem 
that should be specified. For example, the outside temperature (an observation) is usually of no 
concern in real-time database scheduling problems. The sets of observations and constraints that are 
contained in the problem specification should be based on a carefully chosen model. 

Matching mathematical model and real world 

We specify design problems by constructing a mathematical model. A good model has to match 
closely with the part of the real world that it aims to describe. To avoid ambiguities, the matching can 
be mentioned explicitly in the problem specification. 

Observations are represented by problem variables. The value of a problem variable is taken from 
a pre-defined domain. This value can be assigned by performing a measurement on the object in 
the real world. With each problem variable, an unambiguous description of the observation that is 
modeled is associated. 

The objective function is an expression that contains a subset of all problem variables, and returns 
a value from a total order. It should be specified whether the expression has to be maximized or 
minimized. For example, let T be the set of all transactions that are executed. Suppose for each 
transaction t, M (t) is 0, if t misses its deadline, and 1, if t meets its deadline. The objective "minimize 
the number of missed deadlines" is represented by maximization of objective function "LteT M(t)". 

Example specification. A short example from real-time scheduling is used to illustrate how obser­
vations and constraints can be used in specifications. Examples of objective functions will be given in 
later sections. In an embedded system, real-time transactions are issued to a database. A transaction t 
has to finish execution within a certain time-span. Two observations are identified: the response time 
oft, and the relative deadline oft. These are modeled by the following two problem variables. 

Variable Domain Description 
R, seconds The response time oft. 
Dt seconds The relative deadline oft. 

One constraint specifies that the transaction has to be finished before its deadline. 

Constraint Description 
Transaction t meets its deadline. 

Free and fixed problem variables 

The mapping from real world to mathematical model that is presented above does not yet distinguish 
between the object that has to be designed, and the (unalterable) environment of the object. This 
distinction is added by splitting all problem variables into two types: free and fixed problem variables. 

A fixed problem variable describes the environment of the object, which cannot be influenced by 
the design. For example, the transactions that arrive at the database are issued by applications that use 
the database. The database designer has no control over these applications, so the set of transactions 
that arrive at the database is a fixed problem variable. 

Free problem variables describe the object itself, and can be influenced by design decisions. For 
example, the response time of a transaction depends on the the efficiency of the scheduler, and is 
therefore a free problem variable. 



2.1. SPECIFICATION OF DESIGN PROBLEMS 17 

Fact constraints and goal constraints 

Two types of constraints are distinguished. Fact constrfii.nts hold for each possible design, they cannot 
be violated. Goal constraints can be violated by incorrectly designed objects. Fact constraints can 
be used to describe the environment in which the object should function. Goal constraints describe 
the desired behavior of the object. Constraints that only involve fixed problem variables are fact 
constraints, since they are not influenced by the design. Constraints that involve free problem variables 
are either fact constraints, or goal constraints. 

An example of a fact constraint that involves free problem variables is the following. Suppose the 
processor speed is represented by free problem variable S (choosing the hardware is part of the design 
problem). Suppose the work of transaction t is represented by fixed problem variable W. Suppose the 
time needed to process transaction t is given by free problem variable X (it is a free problem variable, 
as it is influenced by the choice of the processor). The relation between the processor speed, the work 
of transaction t and its execution time is now captured by fact constraint "WI S = X". 

A typical goa1 constraint is seria1izability. Suppose the database access order of all transactions 
is given by Jist DAD. A so-ca11ed serializability graph SG can be constructed by creating a vertex 
for each transaction. For each pair of vertices A, B, a directed edge A --+ B is added if A and B 
performed a conflicting data access (in order A; B). A data access order satisfies the serializability 
constraint if its corresponding seria1izability graph is acyclic. Hence, the resulting goa1 constraint is: 
"S G is acyclic". 

Value assignment 

The value assignment of a problem variable is the result of an observation of part of the designed 
object. In case of fixed problem variables, this can be viewed as an instantiation of the problem: the 
actual input is determined. For example, if T is the fixed problem variable that represents the set of 
transactions, assignment of T occurs before the scheduler can start its execution. In the case of free 
problem variables, the assignment of variables is used to verify the design, by checking the validity of 
all goal constraints. The aim of the specification is to serve as a source of information for the designer, 
and a means to verify the design. 

Value assignment occurs quite differently in constraint satisfaction problems (CSPs). Although 
the specification of a CSP (see [96] for a textbook on constraint satisfaction) looks similar to a spec­
ification that is described according to our framework, CSP specifications require a greater level of 
detail. A CSP a1so consists of a set of variables and a set of constraints on the values of these vari­
ables. However, CSPs are solved by directly assigning values to variables. Once a value assignment 
is found that satisfies all constraints, the CSP is solved. To use a CSP in the specification of a design 
problem, a mapping from the assigned values to an implementation of the designed object is needed. 
This mapping can be very complex, and specifying it is a design problem in itself. 

Specifying time 

Remember that a design problem specifies the desired behavior of the object that has to be designed. 
In most cases, there is a temporal aspect to the behavior of an object, events occur in some temporal 
order. Therefore, the moment that an observation takes place is important This moment is called the 
assignment moment. Usually, the assignment moment is implicitly contained in the description. 

In many problem domains, especially real-time scheduling, assignment moments strongly influ­
ence the design. Information about the value of an observation cannot be used before the assignment 
moment. This provides a hard lower-bound on the moment that decisions can be taken that are based 



18 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

on this information. Depending on the problem domain, the domain of assignment moments can be 
very precise (split into micro-seconds) or very rough (an enumerated type that contains "specification, 
before execution, during execution"). 

2.2 Real-time database scheduling problems 

The specification framework from the previous section is applied to real-time database scheduling 
problems. We identify the relevant concepts that should be modeled, and give observations and con­
straints that fit these concepts in our framework. The scheduling problems that are described in this 
thesis are inspired by the needs of the applications described in chapter 1. The following generic 
problem statement is applicable to all scheduling problems that we investigate. 

Real-time database scheduling problem statement A set of transactions has to be exe­
cuted on a platform. The executions and the platform have to satisfy a number of Junctional 
and temporal requirements. An off-line execution precedes the .execution of transactions. 
This off-line execution has to satisfy a possibly different set of functional and temporal 
requirements. 

The generic problem statement is necessarily vague on a number of points. What are the essential 
properties of the transactions? How many are there? What does the platform look like? What exactly 
are those functional and temporal requirements? These questions are answered differently for each 
application, resulting in a set of unique scheduling problems. To some extent, these problems can be 
unified by generalization and abstraction. However, solutions to such generalized problems are often 
less efficient than solutions to very specific scheduling problems. In chapter 3 we give a number of 
examples that support this claim. To fill in the missing information of the generic problem statement, 
we use a classification scheme that is similar to Lawler's classification of real-time scheduling prob­
lems [56], describing platform characteristics, transaction characteristics and an objective criterion. 
Our classification is slightly modified to deal with scheduling problems that are related to real-time 
databases. 

The platform is described in section 2.2.2. Characteristics of data are treated in section 2.2.3. 
Transaction characteristics (similar to task characteristics) are described in section 2.2.4. Lawler's 
"objective criteria" closely match objective functions, and they are discussed in section 2.2.5. Lawler's 
classification focuses on off-line scheduling, and the distinction between off-line and on-line execu­
tion is not specified clearly. The next section describes the general shape of solutions to scheduling 
problems, distinguishing between off-line and on-line execution. 

2.2.1 Schedulers 

An algorithm that serves as a solution to a scheduling problem is called a scheduler. A scheduler 
consists of a set of run-time or pre-runtime processes and data structures. A solution to a scheduling 
problem can be viewed as an implementation guideline: it contains the algorithms that have to be 
implemented and descriptions of the resources that can be used in the implementation. A scheduler is 
correct, if it satisfies all goal constraints that are contained in the problem specification. 

We take a look at the execution model that is used for scheduling problems, discuss the goals of 
the scheduler, and discuss the options of the scheduler. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 

offline input 

• [Qffiine execution 

. + 
~~~1 

I 
Online execution 

I__, 
: i 

~----___ji~ 

Time 

Figure 2.1: LAYERED EXECUTION MODEL 

19 

Off-line and on-line execution. We distinguish between the actual execution of the system (called 
the run-time or on-line execution), and execution that takes place during the setup of the run-time 
system (called pre-runtime or off-line execution). This distinction leads to the layered execution 
model that is depicted in figure 2.1. Both the off-line and on-line execution are part of the execution 
of the scheduler. Time requirements on the off-line execution are typically weak, limited to a bound 
on the total execution time of the off-line execution. The big-0 notation (see for explanation [68], 
page 52-60) is used to specify this bound. 

The input for the off-line execution arrives as one large set of information, at the start of the 
execution. The input for the on-line execution arrives as a continuous stream, instead of one large 
lump. Time scales are completely different for the off-line and on-line execution. Often, there are 
strong temporal requirements on the on-line execution. For example, individual transactions have to 
finish execution within milliseconds. 

ScheduHng goals. Schedulers regulate the execution of transactions. The first goal of the sched­
uler is to compute a schedule for a given set of transactions. Real-time database schedules describe 
the partial order in which transactions access the database, and describe at what moments transac­
tions can start execution, and when they are delayed. We recognize three types of constraints on the 
schedule: non-interference between transactions, real-time requirements on transaction executions, 
and requirements on the access of temporal data. 

The second goal of the scheduler is to enforce the computed schedule, actually executing or delay­
ing transactions. Schedulers can only enforce the schedule during run-time execution, and execution 
of the scheduler itself influences the real-time behavior that should be controlled. This additional over­
head has to be accounted for when the schedule is constructed. Run-time overhead can be reduced by 
computing (part of) the schedule off-line, as is often done in hard real-time scheduling. 

Availability of scheduling information. The scheduler constructs the schedule using information 
about the set of transactions that has to be executed. It cannot generate the schedule before the nec­
essary information is available. If the input of the scheduler is modeled by problem variables, the 
assignment moments of these variables specify when the scheduler can receive its input. We give a 
classification of the moments at which scheduling information can become available. This classifica­
tion forms the domain of the assignment moments of problem variables. 



20 CHAPTER 2. SPECIFICATION OF SCHEDUUNG PROBLEMS 

• Specification. The infonnation is directly contained in the specification. Typically, the hard­
ware architecture (but not necessarily the exact configuration), data access modes, transaction 
types, and some global restrictions on problem variables (like serializability) are available. 

• Off-line. Infonnation becomes available after the design, but before on-line execution. This will 
almost always be the case for the platfonn description. Classical off-line scheduling algorithms 
often require extensive amounts of infonnation to be available off-line. 

• On-line, announced. Infonnation about events becomes available on-line, some time before 
the events take place. A constraint can restrict the interval in which the infonnation will become 
available. An example is the interesting hard real-time scheduling mechanism from [35], where 
all transactions that are received for execution are buffered and executed in batches. Or the 
announcement scheduling from [ 42], where transactious announce their execution, in order to 
facilitate scheduling. 

• On-line, unannounced. lnfonnation about events becomes available just prior to the occur­
rence of the actual event. For example: infonnation about data accesses is only generated when 
a transaction is about to perfonn a data access. 

• On-line, fait accompli. Infonnation about events usually becomes available after the event has 
occurred. This is often the case for exact transaction execution durations. Only when a transac­
tion has finished its execution, can this duration be measured. Fait accompli infonnation is the 
primary source of infonnation of optimistic concurrency control algorithms. It can be very de­
tailed and it is easy to accumulate. OCC schedulers can therefore take sophisticated scheduling 
decisions. Unfortunately, OCC schedulers have a limited set of manipulation options: they can 
either execute a transaction, abort it, or restart it. Since the scheduling decisions are based on 
fait accompli infonnation, delaying transactions is not possible. 

Manipulation options of the scheduler. After computing a schedule, the scheduler has to ensure 
that transactions execute according to that schedule. The manipulation options of the scheduler depend 
on the status of the execution of the transactions, and the possibilities offered by the platfonn. There 
are four ways to manipulate a transaction: execute it, delay it, restart (part of) the transaction, or 
abort it. In certain states some manipulations can be impossible. For example, when a transaction has 
already released its results to the rest of the system, it cannot be restarted anymore since its results are 
possibly in use now. 

Delaying an executing transaction can be achieved in two ways. Synchronization points can be 
built into the execution of a transaction. Whenever a synchronization point is reached, the scheduler 
is activated, and can decide to delay the transaction. The scheduler has control over the progress of 
the transaction: it can decide which part of the transaction has to be delayed, and which part can 
be executed. Therefore, synchronization points are useful to enforce functional requirements like 
serializability. 

Alternatively, a transaction t can be delayed as the result of an outside event, like a delayed 
user response. Transaction t is pre-empted at an arbitrary point p during its execution. Whether 
or not t has executed a critical execution step c depends on p, and the speed at which transaction 
t is executing. This is called a racing condition: either t is pre-empted before it perfonns c, or 
not. Generally, the outcome of a racing condition is hard to predict, and racing conditions should 
be avoided when possible. We conclude that unsynchronized delay of a transaction is not suitable to 
control the functional behavior of a transaction. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 21 

A number of scheduling algorithms require that the scheduler can pre-empt transactions at arbi­
trary points in time, regardless of the state of these transactions. Unsynchronized delay of transactions 
is suitable for these algorithms. 

2.2.2 Platform description 

Three different architectures are treated: centralized, shared-memory and distributed architectures. 
For each of these architectures we present a set of problem variables that describes the architecture. In 
all three cases, we limit ourselves to main-memory databases. Main-memory databases have become 
a practical alternative to disk-based databases, with the increased availability of large and cheap mem­
ories. Their speed is superior to disk-based systems, which makes them the ideal choice for systems 
with high throughput, or tight deadlines. We assume that sufficient memory is available to satisfy 
the memory requirements of all transactions that are executing, and hence do not model memory 
requirements. 

The execution speed of a transaction depends on the speed of the processor(s) on which it is 
executed, and the number of execution steps that it requires (also called the amount of work required). 
The speed of a processor is modeled by a problem variable that contains the amount of work that a 
processor can handle in one time unit. The number of processors that are available influences how 
much work the system can process in one time unit. Therefore, the number of processors is also 
modeled by a problem variable. Many schedulers execute transactions in an interleaved fashion on a 
single processing unit. Whenever the execution of a transaction is pre-empted by another transaction, 
or a scheduler process, a context switch takes place. Context switches are often time consuming, 
compared to the average execution length. The overhead caused by a context switch is modeled by 
a problem variable. Communication in shared-memory architectures and distributed architectures 
influences the execution time of transactions that need data from more than one processor. In the next 
three paragraphs we model the architectures separately. 

Centralized architecture. Communication between processing units is not applicable, since there 
is only one processing unit. The fixed problem variables that describe the platform are as follows. 

Fixed Variable I Domain Description I 
Cpower 1 work/second Amount of work that a processor can process . 

in one time unit. I 
Cswitch I seconds Overhead caused by a context switch. I 

Shared-memory architecture. The communication in a shared-memory architecture takes place 
through the shared memory. Typically, accessing the shared memory takes some setup time (latency). 
Once the access is in progress, data is transferred at a certain rate (throughput). Both latency and 
throughput are modeled by problem variables. Synchronization between processors is made possible 
by synchronization primitives (semaphores). Calling these primitives takes time, which is modeled 
by a problem variable. 



22 CHAPTER 2. SPECIFICATION OF SCHEDUUNG PROBLEMS 

Fixed Variable Domain Description 
Site Set 9' (identities) The set of processors. 
Ncpus N+ The number of processing units. 
Cpower work/second Amount of work that a processor can process 

in one time unit 
Mlatency seconds Latency of the shared memory 
Mthoughput bytes/second Throughput of the shared memory 
Msync seconds 1 Overhead caused by the synchronization 

primitive 
Cswitch seconds Overhead caused by a context switch 

Distributed architecture. Distributed architectures communicate through a network. We abstract 
from the topology of the network, and assume communication is characterized by the setup time 
(latency) and the transfer rate (throughput). These observations are modeled by problem variables. 
Synchronization between processors is realized by sending and receiving empty messages, and needs 
no separate modeling. 

I Fixed Variable Domain • Description 
Site Set 9'(identities) The set of processors. 
Ncpus N+ The number of processing units. 
Cpower worklsecood 

1 
~moun~ of w~rk that a processor can process [ 

• m one ume umt. 
Cswitch seconds Overhead caused by a context switch. 
Nlatency seconds Latency of the network. 
Nthoughput bytes/second Throughput of the network. 

Comparison with Lawler's notation 

This modeling is quite different from Lawler's description of the hardware. Lawler's description 
is more focussed on scheduling of large factory environments. The main difference with real-time 
database scheduling is the time-scale. Real-time transactions are very short, compared to production 
machine jobs. As a result, the time spent on communication, synchronization, and computation of 
the schedule is significant, compared to the execution time of one transaction. Therefore, scheduling 
overhead has to be modeled in more detail than is usual for factories. On the other hand, production 
machines are often dedicated to a certain operation, which is not the case for processors. Here Lawler's 
classification was simplified. 

2.2.3 Data characteristics 

Two kinds of data items are recognized: temporal and non-temporal data items. Temporal data items 
are treated in chapter 8. In this section we define the characteristics of non-temporal data-items. We 
assume that the set of non-temporal data items is fixed, and is represented by fixed problem variable 
DataSet. They are characterized by their size, their location, and by the way they can be accessed. 
Since the location of data items is only relevant in distributed architectures, this is treated separately. 

The size of a data item influences the time necessary to read or write the data item. Since these 
two operations are the most important operations performed on data items, we model the size of data 
items by a problem variable DataSize. We simplify our model by assuming that all data items are of 
equal size. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 23 

Data access. The database offers a fixed set of operations that manipulate data items. Transactions 
can execute these operations if they need to access the database. A conflict relation is defined on the 
set of operations (for a more theoretical approach to conflict relations, see [50]). If two operations 
conflict, a wrong execution order of these operations can possibly violate a consistency requirement. 
Furthermore, an interference relation is defined on the set of operations. If two operations interfere, 
interleaved execution of these operations can possibly violate a consistency requirement. In the re­
mainder of this thesis we assume that all data access operations are atomic. Therefore, we do not use 
the interference relation between data access operations. It is included here, to show that the atomicity 
assumption on data access operations can be lifted under the right circumstances. 

The interference relation is strictly stronger than the conflict relation. lt specifies mutual exclusion 
constraints on data access operations. The conflict relation is used to define functional consistency. 
This is treated under transaction characteristics. We give an example that explains the use of these 
relations. Suppose the set of operations is 

{read, write, addition} 

A read operation on a data item X returns the current value of X. A write operation on X sets the 
current value, and an addition operation adds a constant to the current value. The conflict relation is 
now given by the following matrix. 

I conflict read write l addition 
I read false true true 

write true true I true 
I addition true true · false 

Two read operations can be executed in an arbitrary order, without influencing the final results. 
Two addition operations can also be executed in an arbitrary order without influencing the final result. 
All other combinations of operations have two different results, depending on the execution order. 
The interference relation is given by the following matrix. 

! inference I read write addition I 
' read : false I true true I 

write I true · true true I 
addition I true I true true I 

Since read operations do not change the database state, but only local variables, interleaved execution 
of two reads will not interfere. An addition operation does change the database state, by reading the 
old value, adding something and writing it back. If two addition operations are interleaved incorrectly, 
one of the two additions is lost. Therefore, addition operations can interfere, if they are performed in 
an interleaved fashion. 

The set of operations on data items, and the conflict and interference relations are modeled as 
fixed problem variables. The set of possible operations is called Optypes. Since we allow arbitrary 
operations to be defined, the domain of Optypes is the set of legal identifiers. The set of all access 
operations is 0 P S. For each operation, functions Amode and Daccess define the access mode and 
the data item that is accessed. Since applications define which data accesses take place, these are fixed 
problem variables. 



24 CHAPTER 2. SPECIFICATION OF SCHEDUUNG PROBLEMS 

Fixed Variable Domain Description 
DataSize bytes 

1 

The size of a data item. 
DataSet !P (identifiers) The set of data items that is stored in the 

database. 
OPS !P(identifiers) The set of all access operations. 
OPtypes !P (identifiers) The set of possible operations. I 
A mode I OPS-+ OPtypes . Function that defines access mode of each op- ! 

eration. 
Daccess I OPS-+ DataSet ! Function that defines which item an operation 

I i accesses. 
ConfRel 0 Ptypes x 0 Ptypes - The conflict relation on 0 Ptypes. 

Boot 
Inter Rei 0 Ptypes x 0 Ptypes -The interference relation on 0 Ptypes. 

Bool 

Unless specified otherwise, all specifications in this thesis use the following set of operations, 
conflict and interference relation: 

I Fact constraint Description 
I 0 Ptypes = {read, write} Data items can be read and written. 
1 Conf Rel(p. q) = (p =write) v (q =write) Only read/read access is non-conflicting. 
i Inter Rel(a, b) = Conf Rel(a, b) The interference and conflict relation are 

I the same. 

The following predicate specifies whether two access operations conflict. 

conflict(op, op') = Daccess(op) = Daccess(op') A Conf Rel(Amode(op), Amode(op')) 

Location. The actual dataset is stored in main memory. In centralized architectures, and shared­
memory architectures, location is not an issue. The following specification holds for distributed archi­
tectures. The dataset is divided over the available processors, called sites. A common technique that 
enhances (amongst others) the availability of data is replication [5, 11, 34]. This is not considered in 
this thesis, each data item is stored at a single site. When a transaction needs to access a data item, it 
is either stored locally, or on a remote site. The exact division of the dataset strongly determines the 
execution times of transactions, and is modeled by a problem variable Data Place. 

Fixed Variable Domain Description 
Data Place Items-+ SiteSet A function that assigns data items to sites. 

Data allocation to sites has a major influence on the execution duration of transactions, and is 
treated in most database textbooks [12, 51]. In this thesis we assume that data allocation has occurred 
before the off-line execution starts. 

2.2.4 'Iransaction characteristics 

Applications interact with the database by issuing transactions, which are subsequently executed by 
the scheduler. The execution of a transaction has to satisfy both real-time and database requirements. 
We divide the description of the real-time requirements into two parts. First, we describe those prob­
lem variables that are relevant for almost all real-time scheduling problems. Next, we describe the 
problem variables that are used in soft, firm and hard real-time scheduling. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 25 

Generic real-time characteristics of transactions. Fixed problem variable T describes the set of 
transactions that is executed by the scheduler. Note that the size of T is unbounded if a continuous 
stream of transactions arrives at the database. Each transaction twill have a start time and finish time. 
Since these are determined by the scheduler they are modeled by free problem variables St(t) and 
Ft(t). Furthermore, each transaction t has an amount of work W(t) that has to be performed, this is a 
fixed problem variable. The total execution time necessary to execute t is described by fixed problem 
variable X (t). 

Fixed Variable Domain Description 
T fP (identifiers) • The set of transactions that is executed by the 

scheduler. 
w T-+ work The amount of work of transaction. 
X T-+ seconds The total execution time of a transaction. 

Free Variable Domain Description 
St T-+ seconds The start time of transactions. 
Ft T-+ seconds The finish time of transactions. 

A few fact constraints relate these problem variables. 

Fact constraint 
i Vt E T: Ft(t)- St(t)?: X(t) 

I Vt E T; X(t) W(t}/Cpower 

Description 
A transaction cannot finish before its exe­
cution time has passed. 

· Relation between processor speed, 
amount of work and execution time. 

Soft real-time, unannounced transactions. Soft real-time databases do not require that all trans­
actions are known before the on-line execution. Transactions arrive at the system in a continuous 
stream. The set of transactions T is fait accompli information: its definition is complete when the 
on-line execution finishes. In continuous systems, T is unbounded. 

The arrival time of transaction tis described by fixed problem variable Arr(t). An arrived trans­
action can directly begin execution. Its execution has to be finished before a specified deadline. This 
deadline is represented by fixed problem variable Dl(t). Transactions are occasionally allowed to 
miss their deadlines. 

Fixed Variable 1 Domain • Description 
Arr ! T -+ seconds I The moment of arrival of transactions. 
Dl I T -+ seconds : The deadline of transactions. 

Instead of an absolute deadline on the finish time of a transaction, a bound on the response time 
R(t) = Ft(t) Arr(t) of transaction t can be specified. The response time is the difference between 
the finishing time of a transaction, and the arrival time of a transaction. In many cases, R(t) is of more 
interest than Arr(t) or Ft(t). An advantage of this modeling is that R(t) can be specified using local 
clocks, instead of a global clock (which is necessary for absolute time points). 



26 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

Firm real-time, unannounced transactions. Finn real-time databases do not require that all trans­
actions are known before the on-line execution. Transactions arrive at the system in a continuous 
stream. The set of transactions T is fait accompli infonnation: its definition is complete when the 
on-line execution finishes. In continuous systems, T is unbounded. 

The arrival time of transaction t is described by fixed problem variable Arr(t). An arrived trans­
action can directly begin execution. Its execution has to be finished before a specified deadline. This 
deadline is represented by fixed problem variable Dl(t). Transactions that fail to meet their dead­
lines can be aborted, as their execution becomes valueless. Free problem variable abort(t) specifies 
whether t is aborted. 

I Fixed Variable Domain 
Arr T ~seconds 

I Dl T-+ seconds 

Free Variable Domain 
abort T-+ Boolean 

Goal constraint 
· Vt E T : abort(t) ==* Ft(t) > Dl(t) 

Description 
The moment of arrival of transactions. 
The deadline of transactions. 

Description 
Signifies whether the transaction is aborted. 

Description 
Transactions that miss their deadline can 
be aborted. 

I 
I 

Hard real-time time-intervals. A classic real-time scheduling problem requires that a well-defined 
set of transactions are executed in pre-defined time intervals. If a transaction fails to execute within 
its allotted time-span, the system fails. For each transaction t, this interval is described by fixed 
problem variables Est(t) and Dl(t) that represent the earliest start time and deadline oft. To give 
off-line guarantees that the system satisfies the hard real-time requirements, this infonnation becomes 
available at the start of the off-line execution. Hence, the set of transactions T (which was defined 
earlier) is finite and its assignment moment is at the start of the off-line execution. 

I Fixed Variable Domain 
1 Est T-+ seconds 

Dl T-+ seconds 

j Goal constraint 
I Vt E T: Est(t):::; St(t):::; Ft(t):::; Dl(t) 

Database requirements on transactions 

Description 
Earliest start time of a transaction. 
Deadline of the transactions. 

J Description 

1 

Transactions execute 
signed intervals. 

within their as-

I 

The schedule that is generated by the scheduler has to satisfy the serializability requirement: the 
schedule has to be equivalent to a sequential schedule. Depending on the exact equivalence relation, 
different notions of serializability exist, like conflict-, view- or epsilon-serializability. 

All notions of serializability are defined on the order in which database accesses take place. In­
stead of the entire schedule (that also contains real-time information), we model the sequence of 
all database accesses by a total order -<A on the set of database accesses 0 P S. This total order is 
described by a free problem variable Aorder that has type OPS x OPS -+ Bool. Each access 
operation belongs to a particular transaction. The fixed problem variable tr specifies this relation. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 27 

Free Variable Domain Description 
tr ops.....,. T Function that defines to which transaction an 

operation belongs. 
Aorder OPSxOPS.....,. Boo/ The sequence of all database accesses. 

We introduce extra notation to reason about Aorder. The n'h access in a sequence, described by 
Aorder is denoted Aorder(n). The index of data access op in the sequence described by Aorder is 
ix(Aorder, op ). The order relation -<A is reflected by the index function: 

p -<A q # ix(Aorder, p) < ix(Aorder,q) 

Note that data items can be accessed concurrently, and A order is strictly sequential. If two actions 
a, b are executed concurrently, they can be ordered arbitrarily. 

In this thesis, it is assumed that each separate transaction reads and writes each data item at most 
once. This can be implemented easily and simplifies the descriptions of the scheduling algorithms. 
The following predicate expresses that all transactions satisfy this behavior. 

accessonce(Aorder) 
Vp, q E Aorder : tr(p) == tr(q) 1\ Daccess(p) == Daccess(q): Amode(p) :f. Amode(q) 

The different kinds of serializability that were mentioned in chapter I can be expressed as con­
straints on Aorder. Note that most scheduling problems in this thesis are only concerned with conflict 
serializability, view serializability and epsilon serializability are defined to present an overview of the 
most common consistency constraints. Conflict serializability is a subset of view-serializability, and 
they do not require additional information. Epsilon-serializability relaxes the serializability require­
ment by allowing some interferences to occur. To control these interferences, additional information 
is necessary. Before describing the different serializability concepts, we introduce the notion of a 
sequential schedule. All serializable schedules are (in some sense) equivalent to such a schedule. A 
schedule is serializable, if its corresponding sequence of database accesses Aorder satisfies the fol· 
lowing conditions. An access order is sequential if the operations of all transactions are consecutive. 

sequential(Aorder) Vp, g, q E Aorder : (tr(p) = tr(q) 1\ p -<A g -<A q)::::} tr(g) = tr(p) 

Conflict seriaJizability. Two schedules SandS' are conflict-equivalent, if the access order Aorders 
of S can be obtained from the access order Aorders' of S' by a sequence of non-conflicting swaps. A 
swap exchanges the order of two neighboring database accesses. A non-conflicting swap is a swap of 
two operations that do not conflict (see C onf Ref). A schedule S is conflict-serializable if a sequential 
schedule exists that is conflict-equivalent. Conflict serializability of access orders A is specified by 
the following constraint. 

swap( A, A') =A = A' with A[i] = A'[i + I] 1\ A[i + I] = A'[i] 1\ ~conflict(A[i], A[i + 1]) 

conftictequiv(A, A')= A= A' v 3A" : swap(A, A") 1\ conflictequiv(A", A') 

conflictserializable(A) = 3A' : sequential(A') 1\ conflictequiv(A, A') 

View serializability. Two schedules S and S' are view-equivalent, if the reads-from relation of S and 
S' is the same, and they contain the same database accesses. The reads-from relation of a schedule 



28 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

S depends on the corresponding data access order Aorder. First, we define a new conflict-relation 
ViewConf Rei that ignores write/write conflicts: 

ViewConf Rel(op, op') = Amode(op) =write 1\ Amode(op') =read 1\ 

Daccess(op) = Daccess(op') 

The reads-from relation is defined on the operations in an access order A, and has the following 
property. 

rf(A, op, op') = op -<A op' 1\ ViewConf Rel(op, op')l\ Jjop": op -<A op" 1\ rf(A, op", op') 

Before we introduce view-equivalence we define the encapsulation A, of access order A. Ae is con­
structed from A by adding a transaction tbegin and tend to A. Transaction tvegin precedes all other 
transactions, and writes each item accessed in A. Transaction tend is preceded by all other transac­
tions, and reads each item accessed in A. Two schedules S, S' are view-equivalent if the reads-from 
relation of the encapsulated corresponding access orders A,, A~ is the same. View-equivalence, and 
view-serializability of access orders A is defined as follows. 

viewequiv(A, A')== 'lop, op' E Ae : (r f(A,, op, op') <;:> rf(A~. op, op')) 1\ op, op' E A~ 

viewserializable(A} == 3A' : sequentiai(A') 1\ viewequiv(A, A') 

Epsilon serializability. Epsilon serializability allows more schedules than conflict serializability 
(and can be extended to allow more schedules than view serializability). The class of allowed data 
access orders is increased by weakening the conflict-relation that is used in conflict serializability. 
Each operation op on data "exports" an amount of inconsistency Exp(op). For each operation op an 
"import-limit" I mp(op) is defined. If the import-limit of transactions that modify the database-state 
equals 0, only read-only transactions benefit from epsilon serializability. The new epsilon-conflict 
relation is defined as follows. 

EpsConf Rel(op, op') = Conf Rel(op, op') 1\ exp(op) > imp(op') v exp(op') > imp(op) 

Epsilon equivalence is defined in the same way as conflict-equivalence, with the new conflict-relation. 
Epsilon serializability of access orders A is defined as follows. 

epsswap(A, A') A = A' 

with A[i] = A'[i +I] 1\ A[i + 1] = A'[i] 1\ -.EpsConfRel(A[i], A[i +I]) 

epsilonequiv(A, A') A= A' v 3A" : epsswap(A, A") 1\ epsilonequiv(A", A') 

epsilonserializable(A) == 3A' : sequentiai(A') 1\ epsilonequivalent(A, A') 

I Fixed Variable Domain I Description I 
: Exp 0 P S -+ inconsistency 

0 P S -+ inconsistency 
I 

The amount of inconsistency that is exported I. 

by an access operation. i 

i The amount of inconsistency that can be im- ~· 
' ported by an access operation. 

Another variant of Epsilon serializability places an import-limit on the entire transaction, instead 
of the individual operations. We did not investigate this. 



2.2. REAL-TIME DATABASE SCHEDULING PROBLEMS 29 

Location 

In centralized architectures, location of transaction execution is not a major issue. In shared-memory 
architectures, load balancing between the processors is necessary, but location has no other meaning, 
since processors are identical. The following specification holds for distributed architectures, where 
sites differ, since they store different parts of the data set. We assume that transactions execute at one 
site, which is defined by fixed problem variable Trans Place. Data items are fetched from remote 
sites, before they are processed by transactions. Remote data access is time-consuming, compared to 
local data access. To optimize the performance of the database, transactions should be executed at 
the site where their data is stored. In this thesis, we do not consider transaction placement, therefore 
Trans place is a fixed problem variable. A predicate is introduced that specifies whether data access 
is local or remote. 

local (op) Trans Place(tr(op)) = DataPlace(Daccess (op)) 

The Data Place and Trans Place variable can be hard to define. Placement of data items can change, 
as new items are created, and old items are deleted. For effective use of the information, placement 
of the transaction executions, and their data access is also necessary information. ln many occasions, 
the effort of measuring the value of Data Place and Trans Place is not worth the benefit. 

A useful abstraction is to measure the probability that a data access is local. This statistical 
information can be obtained through simple experiments, and (as we will show in chapter 4) can steer 
scheduler design. Each scheduler can calculate this information fait accompli, or the probability can 
be received as separate input at an earlier stage. 

Fixed Variable Domain Description 
Trans Place T-+ SiteSet This function identifies the site on which a 

transaction executes. 
Pdatalocal [0, l] The probability that a data access is local. 

Summary of database requirements. The different serializability notions all place restrictions on 
the allowed data access order. Therefore, they are expressed as goal constraints on the free problem 
variable Aorder. 

Goal constraint Description I 
' conflictserializable(Aorder) Access order A order is conflict- I 

serializable. 
i viewserializable(Aorder) Access order Aorder is view-

serializable. 
epsilonserializable(Aord er) 

1 

Access order A order is epsilon-
serializable. 

We defined one fact constraint This constraint restricts the access pattern of transactions, without 
restricting the expressiveness of transactions. 

' Fact constraint 
accessonce(Aorder) 

Description I 
Transactions read and write each data I 
item at most once. 



30 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

Restricting the input 

Many systems, especially hard real-time systems, place extra demands on the transactions that are 
executed, restricting their generality. Knowledge about these restrictions can simplify the scheduling 
problem. In hard real-time systems, it is common practice to require that additional information about 
transactions is provided off-line. Such additional information is specified by adding fact constraints, 
and possibly a separate set of fixed problem variables that describe the additional input. We give a 
number of examples. Perhaps the best-known example is the worst-case execution time. Applications 
specify a worst-case bound WCX(t) on the clean execution time X(t) of each transaction t. Fact 
constraint X (t) ::::; WCX (t) specifies this relation. Worst-case execution times are necessary to give 
an off-line guarantee that all deadlines will be met during on-line execution. 

An example from database scheduling is a restriction on the data access order of transactions. 
Suppose there exists an acyclic directed graph G, where the vertices represent the data items stored in 
the database, and the edges represent the order in which the transactions can access the database. A 
transaction t accesses the database according to graph G, iffor all accesses a -< b, no path from b to 
a exists in G. 

The fact constraint "all transactions access the database according to G" severely reduces the 
generality of the database, but it allows for more efficient scheduling. For example, acyclic data access 
removes the need for deadlock prevention mechanisms in two phase locking. Another example or 
restricting the input can be found in chapter 4, where it is specified that around 90% of all transactions 
is a read-only transaction. 

2.2.5 Objective functions 

The objective function consists of the performance measure that best describes the objective of the 
scheduler design. Performance measures use the values of problem variables as input. By weighing 
one or more problem variables, different performance measures can be defined. We investigate what 
performance measures are good candidates for objective functions of hard-, firm- and soft real-time 
database scheduling problems. 

Soft real-time systems. In soft real-time databases, the value of a late transaction decreases, but is 
not instantly zero. Ideally, the objective function is "the total value of all transactions". However, eval­
uating this performance measure is very impractical. Usually, the real-time performance is measured 
in the percentage of transactions that meets its deadline. 

I Objective function: minimize ~)t E T : Ft(t) > Dl(t) : 1)/ITII 

Information about deadlines is not always available, either because the application doesn't specify 
them, or because the system does not have a global clock that can be used as a reference point. In 
a system where this information is unavailable, the scheduler can only try to execute transactions as 
fast as possible, and avoid exceptionally long transaction executions. Objective functions can use the 
response time distribution of transactions. 

I Objective function: minimize LreT R (t) /IT I ! 

For example, we can require that the system minimizes the average response time, under the 
condition that at most I 0% of the transactions use more than 4 times the average response time A v R. 



2.3. CONCLUSIONS 

: Goal constraint 
i i:(t E T: R(t) ~ 4AuR : 1)/ITI $ 0.1 

31 

I Description 
: At most I 0% of all transactions has more 
I than 4 times the average response time. 

Firm real-time systems. In firm real-time databases, the value of a late transaction instantly de­
creases to zero. The transaction can be aborted without further degrading the system performance. 
The objective function minimizes the number of transactions that miss their deadline. 

[ObJective function: minimize i:U E T: Ft(t) > Dl(t) : 1)/ITII 

Hard real-time systems. A hard real-time system fails if one of its timeliness constraints is violated. 
No transaction misses its deadline in a correct implementation. Therefore, the objective functions that 
are used for soft and firm real-time systems are not suitable for hard real-time systems. 

So what are interesting performance measures? A performance measure that is generally inter­
esting is the hardware that is required. Minimizing the hardware that is necessary to implement the 
system decreases overall system cost. If the number of processors nC PU is a free problem variable, 
it can be an interesting performance measure. By choosing this measure as an objective function, the 
optimal solution to the scheduling problem will have a minimal number of processors. 

I Objective function: minimize n CPU 1 

When the hardware is fixed, another objective function is needed. A typical objective function 
from hard real-time scheduling is maximization of the the maximum amount of work that the system 
can handle, without violating goal constraints. To measure this maximum, the amount of work that 
should be handled by the system has to be a free problem variable. Hence, the system designer can 
decide how many transactions have to be scheduled by the system. 

/Objective function: maximize I:, E T: W(t) / 

Tuning the objective function 

The objective function can be tuned to particular applications. For example, transactions might have 
a different value to the application: some transactions should never fail, while others are less criti­
cal. The performance measure that counts the number of missed deadlines should be replaced by a 
performance measure that counts the total value of failed transactions. 

2.3 Conclusions 

The framework that is presented in section 2.1 can be used to eliminate hidden assumptions that are 
often part of informal problem specifications. It captures the relation between the real world, and 
the mathematical model in the unambiguous descriptions. Furthermore, their is a clear distinction 
between the environment and the object that should be designed. The environment is described by 
fixed problem variables and fact constraints. The object that should be designed is described by free 
problem variables and goal constraints. The explicit description of the environment serves as a source 
of information for the designer. 



32 CHAPTER 2. SPECIFICATION OF SCHEDULING PROBLEMS 

In the second section of this chapter we applied the specification framework to real-time database 
scheduling problems. A number of standard specifications are introduced that will be used in the 
next chapters. The aim of this section is to help in the specification of real-time database scheduling 
problems that can arise in practice. Rather than fixed rules, it offers suggestions and examples. 



Chapter 3 

Design issues 

The design of the scheduler focuses on the satisfaction of the goal constraints, and optimizes the 
objective function at the same time. In this chapter techniques are presented that aid in this process. 
The presentation is not exhaustive. Rather, the design issues have been identified during the project of 
which this thesis is the end-result. These issues reappear in chapters 4 to 8. The contribution of this 
chapter is the separation of issues & concepts of design from the actual solutions in later chapters. It 
can be used as a checklist during scheduler design. The following design issues are presented in this 
chapter. 

Targeted problem specification. In section 3.1, the advantages of targeted problem specifications 
over abstract problem specifications are discussed. It shows with an example that performance im­
provements can be made, if more detailed problem specifications are given. 

Concurrency. Schedulers have to optimize the value returned by the objective function. However, 
such functions do not specify how the optimization should be realized. Section 3.2 introduces the 
concept of concurrency, and shows that an increase in concurrency can optimize the soft, firm and 
hard real-time objective functions from chapter 2. 

Overhead. Section 3.3 discusses the impact of scheduler overhead, and ways to reduce this over­
head. The treatment of concurrency and scheduler overhead is concluded in 3.4, where a tradeoff 
between these two concepts is recognized. Information that is contained in the targeted problem 
specification can be used to decide this tradeoff. 

Availability of scheduling information. The moment at which scheduling decisions can be taken 
depends on the availability of scheduling information. Section 3.5 explains the relation between 
availability of information and scheduling decisions, both for on-line and off-line scheduling. 

3.1 Targeted problem specification 

When a real-time scheduling problem is formulated for a given application, there is a substantial 
amount of freedom. To keep the specification clear, the problem should be formulated in an abstract 
and shori: way. Good problem specifications maintain essential details, while abstracting from details 
that do not influence the final design. However, many abstractions can be chosen. 

It is attractive to leave out all details, and specify a very generic real-time scheduling problem. 
This has two major benefits. First of all, such a problem specification is easy to construct. Second, 
scheduling solutions to such generic problems can be found in literature. Abstracting from a very 

33 



34 CHAPTER 3. DESIGN ISSUES 

detailed problem description is possible by weakening or removing fact constraints .. Since fact con­
straints are never violated, all solutions to an abstracted problem description still satisfy the detailed 
problem description. Other abstraction mechanisms involve the creation of a different set of problem 
variables that abstract from details. Leaving out details can have an adverse effect. Efficient solutions 
that are based on specific properties will not be designed, if those properties are not described. More 
general solutions that ignore specific properties are possibly less efficient 

We propose a two-level problem specification. The first part of the specification consists of an ab­
stract version of the scheduling problem. This contains all goal constraints, the objective function, and 
the problem variables that are necessary to specify them. Chapter 2 contains the abstract problem spec­
ifications that are used in this thesis. The second part of the specification contains application-specific 
details. Additional information is specified by adding fixed problem variables and fact constraints. 
A promising way of tailoring solutions with this additional information first selects a solution to the 
abstract problem and then optimizes it for the specific situation. For example, this approach has been 
followed in the scheduler specification and design in section 3.l.2. 

3.1.1 Candidates for detailed specifications 

The set of transactions that has to be executed by the database is the input of the database scheduler. 
This input is often less generic than is specified in the abstract problem specification. For example, 
generic transactions access arbitrary data items in arbitrary access modes. In a banking system it 
is highly unlikely that a bank account is written, without being read previously, a fact that is not 
contained in the abstract problem specification. 

Most applications issue a set of transactions that satisfies some specific properties. Therefore, 
additional constraints on the input are a possible candidate for a more detailed problem specification. 
Very detailed information about the input is often hard to obtain. For example, calculating the exact 
execution time of a transaction in advance is intractable for generic transactions. This is related to the 
halting problem, see [61]. Even for smaller classes of transactions analysis is hard, the execution is 
influenced by too many factors to be analyzed exactly. Still, a worst-case analysis of the execution 
time of a certain class of transactions is a common approach, and it offers sufficient information to 
enable hard real-time guarantees. There are several ways in which additional fact constraints can be 
specified that provide information about the input that the application sends to the database. 

Information about individual transactions. This requires that the transaction set is known in ad­
vance. Information about each individual transaction is specified. For example, the access pattern of 
transactions is known. This includes information abont the set of accessed data items of each transac­
tion, the type of accesses that are performed, and the order in which these accesses take place. Such 
information is hard to obtain and requires a thorough analysis before it can be used for design. These 
detailed specifications are too large to comprehend without additional abstraction. 

Transaction type restrictions. If it is known that the set of possible transactions that is issued is 
limited to a set of specified parameterized types, the wide range of all possible transactions is reduced. 
A concrete example is information like "all transactions access the database according to an acyclic 
access graph". Although this information is very generic, when it is available, it is ensured that two 
phase locking will not deadlock! 

Statistical information. Information about percentages and distributions are available. During ac­
tual executions these percentages might slightly differ. but they specify the general trend. For ex­
ample, if it is known that "95% of all data accesses are addition operations", the optimization of the 



3.1. TARGETED PROBLEM SPECIFICATION 35 

addition operation will result in large performance gains. Since statistical information gives proba­
bilities executions with deviating percentages can occur. This bas not been taken into account in the 
specifications in this thesis. 

Existential information. Information about the existence of certain characteristics is known. For 
example, "there exists more than one transaction that can write to data item X". This information 
makes it impossible to apply the single-writer principle to the transaction that writes X. 

Apart from the set of transactions that is input to the scheduler, also the platform on which the 
scheduler should be implemented can be specified in more detail. Information about the relative 
speeds of computation, communication and synchronization is important for effective overhead re­
duction. 

3.1.2 Example: statistical information used for optimization 

We give an example of a targeted problem specification. An application needs a database that handles 
a large volume (2: 95%) of small transactions that write one data item, and a very low volume (::;:: 5%) 
of maintenance transactions that write an unknown number of data items. Both types of transactions 
read an unknown number of data items. The average maintenance transaction duration is much longer 
than the average single-write transaction. The intention is to use a distributed architecture. A given 
transaction allocation mechanism ensures that transactions that write only one data item, execute at 
the site where this data item is stored. 

Specification. The specification first describes the generic scheduling problem, combining a real­
time objective function with conflict serializability. In the next part, the problem-specific details are 
contained. The single-write and local-write property of 95% of all transactions is specified. The 
relation between execution durations of the transaction types is omitted, and will not influence our 
design. 

I platform: distributed page 22 
· data: non-temporal, distributed page 22 I 
I transactions: real-time, conflict-serializable, unannounced, deadlines page 24 
I objective function: minimize deadlines missed page 31 I 

Additional detailed description. 

Fixed Variable Domain Description 
Sw T-+ Boolean Annowtces single-write property. 

We introduce two predicates that describe the single-write property, and the local write property of 
transactions. With these predicates the additional fact constraints are specified. 

singlewrite(t) = 
l[op!op E OPS 1\ trans(op) = t 1\ Amode(op) =write]!= 1 

localwrite(t) = 
Vop E OPS: trans(op) = t 1\ Amode(op) =write: local(op) 



36 

Fact constraint 

1 Vt E T : Sw(t) ~ singlewrite(t) 

(L t E T : singlewrite(t) : 1)/ITI ~ 0.95 

Vt E T : singlewrite(t) :::} localwrite(t) 

CHAPTER 3. DESIGN ISSUES 

Description j 
Relation between announcement and ac- I 
tual data access. 
Percentage of transactions that have the · 
single-write property. i 

All single-write transactions are local i 
writers. 

Design. Each site S has a separate scheduler process that manages all locks of transactions at that 
site, and manages all data items stored at that site. First, a solution to the generic scheduling problem 
is selected from literature. We choose distributed two phase locking that uses the two phase com­
mit protocol (see appendix C), extended with earliest deadline first scheduling [59]. Deadlocks are 
prevented by the wait-die strategy, explained in appendix C. Although possibly not optimal for our 
specific case, these algorithms are widely used and well understood, and suffice for this example. 

Next, the solution is tailored to the specific scheduling problem. The Sw boolean divides the 
transaction set into single-write transactions and maintenance transactions. Since the single-write 
transactions are the majority of all transactions (over 95%), successful optimization of their execution 
will result in significant performance improvements. 

Design decision 3.1 The scheduler will be optimized for efficient trealment of single-write transac­
tions, since these are pre-dominant. 

Since single-write transactions only write local data items, no distributed commit protocol like 
two phase commit is required. Therefore, the commit phase of single-write transactions is very short, 
as no inter-site communication is necessary. On average there are more read locks than write locks on 
data items, since single-write transactions hold at most one write lock. This effect can be strengthened 
by delaying the write of single-write transactions to the end of the transaction, buffering the value in a 
shadow-copy. The write lock of single-write transactions tis requested just prior tot's commit. Since 
no two phase commit protocol is necessary, the single-write transaction can directly unlock the write 
lock after the write to main memory has been performed. 

Design decision 3.2 The write lock of single-write transactions is postponed until the commit phase, 
to minimize the blocking probability. 

Suppose single-write transactions read on average N data items, and the presence of maintenance 
transactions is not considered. As a pessimistic assumption after design decision 3.2, we assume 
linearly distributed Jock-holding durations. Therefore, each active transaction holds on average (N + 
1)/2 read locks and 1/(N + I) write locks. There are on average (N + 1)2/2 more read locks than 
write locks in the system. Let lw. be the probability that a data item is write locked. The probability 
that a single-write transaction blocks on any of its reads is~ 1-(1-lw)N ~ N x lw. The probability 
that a single-write transaction blocks on its write is~ lw x (N +I )2/2. The ratio of write-blocks and 
read-blocks is (N + 1)2 f2N, which is > 2, for N ::;: I. 

Design decision 3.3 The scheduler will minimize blocking of write locks of single-write transactions, 
since this accounts for over 213 of all blocking of single-write transactions. 

The write Jock on data item X of a single-write transaction t is the last lock that is requested prior 
tot's commit. We investigate what happens if tis allowed to write, regardless of read locks that are 
placed on X. 



3. I. TARGETED PROBLEM SPECIFICATION 37 

Suppose item X is read locked by a transaction q. Transaction q reads item X only once (see 
chapter 2). Two scenarios remain: (l) q reads X before t writes it, or (2) vice versa. We require 
that transaction q reads the data item at the moment that q requires the read lock. This is a common 
assumption, often found in distributed databases, that does not reduce the generality of the database. 
Due to this assumption, only scenario (1) is left Consequently, transaction t is serialized after q. 
Therefore t's locks should not be released until q is releasing its locks. Furthermore, the value of X, 
written by t, should be read until q releases its Jocks. 

Transaction t can prevent read access to X by placing a write Jock. Ordinarily, the write lock 
request would block, since q has previously read locked X. However, since it is ensured that q will 
not read X anymore, t can safely write to X, and commit. We allow t to place its write lock next to 
the existing read lock, without being blocked. The scheduler has to ensure that other transactions p 
do not interfere with the execution of q and t. This is accomplished by releasing the locks of p and q 
after both transactions have finished execution. Hence, when transaction t commits and terminates, t 

does not release any of its locks. Instead, when q unlocks X, it detects the write lock oft that is first 
in the lock queue. Transaction q unlocks all locks that were held by t. This ensures 2PL behavior. If 
data item X is read locked by more than one transaction q1 ••• qk. the last transaction q; that unlocks X 
also unlocks t's locks. 

The delayed unlock rule effectively eliminates all blocking of write locks of single-write trans­
actions by read Jocks. However, the Jock holding duration is not reduced, and thrashing (saturation 
of the database with held locks) can occur if the delayed unlock rule is applied to a large number of 
single-write transactions. 

Design decision 3.4 Blocking of write lock requests of single-write transactions by read locks is elim­
inated by using the delayed unlock rule defined above. 

This completes the design of the optimized scheduling algorithm. Interestingly, Thomas' write 
rule [13] can be applied to eliminate all blocking of write lock requests of single-write transactions. 
To keep the example as short as possible, this optimization has not been applied. 

Algorithm. Algorithm 3.1 describes the optimized two phase locking scheduler. Instead of a stan­
dard implementation of locks, the locking procedures are contained explicitly in the algorithm. Trans­
actions access the database by calling the read and write procedures. When a transaction finishes 
execution, it invokes the commit procedure. One-write transactions finish their execution by calling 
the write procedure. These procedures are executed in atomic sections. This requirement can be 
weakened, but serves to keep the example short. 

Each site S manages the locks on data items stored at site S by maintaining a set of (accessmode, 
transaction-id) tuples for each data item X, called Lockset[X]. Also, a lock-queue Q[X] is associated 
with each data item. For each transaction t, AccessSet(t) is the set of held locks. Each transaction t 
has a unique deadline Dl(t), used in the wait-die procedure. The wait-die procedure checks t against 
transactions that hold the lock on X, or are enqueued in the lock-queue for X. Wait-die is described 
in detail in appendix C. It guarantees that cyclic locking does not occur. 

For brevity, algorithm 3.1 does not consider the distributed nature of the database. In principle, 
whenever a transaction calls a read or write procedure, this is a remote procedure call if the data access 
is remote. Similar, whenever a remote data item is unlocked, the unlock is a remote procedure call. 

The read procedure checks the lock status to decide whether the requesting transaction t can 
immediately read item X. If the lock queue is not empty, or a write lock is placed on X, t's requests 
is enqueued. The write procedure allows one write transactions t to place a write lock on X, even in 



38 CHAPTER 3. DESIGN ISSUES 

read(t.X) 
wait-die( t.X,read) 
if ~Q(X).empty() v 3(write, q) E Lock Set( X] then Q(X).enqueue(read,t) 
else LockSet(XJ+ == (read, t) 

return value[X] 

write( t,X, v) 
walt-die(t,X,write) 
ifSw(X) 1\ Jl(write.q) E LockSet[X] then Lockset[XJ+ =(write, f) 
else if ~Q[X].empty()v LockSet(X] ::j= 0 then Q[X].enqueue(write,t) 

else LockSet(X]+ ==(write, t) 
if Sw(X) then value[X]:=v 

if Jl(read, q) E LockSet(X] then unlock AccessSet(t) 
return { committed } to transaction t 

else store (X, v) in shadow table 

commit(!) 
if not Sw(t) then two-phase-commit(t) 

unlock(t,X) 
Lockset(X]- ={(read, t), (write, t)} 
if3q: Lockset[X] ={(write, q)} then unlock AccessSet(q) 
if Lockset[ X] 0 then grant locks to waiting transactions in Q[X] 

Algorithm 3.1: OPTIMIZED 2PL SCHEDULER 

the presence of read locks. Maintenance transactions are blocked as nonnal. Furthennore, one write 
transactions t commit and write their value if the lock is granted. Unlocking is delayed if one write 
transaction t placed a write lock when a read lock is already placed. The unlock procedure checks that 
delayed unlocks are perfonned when appropriate. When a data item X becomes available, one or more 
transactions from the lock queue are granted the lock. This has not been described in detail, to keep 
the example sho(t. The commit procedure invokes the two phase commit procedure (see appendix C) 
only for maintenance transactions. 

Correctness. The example focuses on the design of the optimized algorithm, and hence the cor­
rectness proof will be short and infonnal. If required, it can be used as the basis of a more rigorous 
proof. 

It is shown that the schedules that can be generated by the optimized scheduler are conflict equiv­
alent to schedules that can be generated by the two phase locking scheduler. A schedule satisfies two 
phase locking behavior if the following requirements are met: 1) each data access to a data item X 
by a transaction t is preceded by a matching lock operation on X, and followed by a matching unlock 
operation on X. 2) The precondition for a lock operation on a data item X is that the data item is 
not locked in a conflicting mode. 3) If transaction t locks a data item X, transaction t has not yet 
perfonned an unlock operation on any data item Y. If the execution of a transaction t follows these 
rules, t holds locks on all items that it accesses, just prior to its first unlock operation. 

Schedules that are generated by the optimized scheduler satisfy requirements 1) and 3). The 

only difference between the optimized scheduler and nonnal two phase locking is the write(t, X, v) 



3.2. CONCURRENCY 39 

of single-write transactions t. It can ignore the read locks on X that are currently possessed by 
transactions q 1 ••• qk, thus violating requirement 2. We show that a conflict-equivalent schedule exists 
that does not violate requirements l, 2 and 3. Consider data access orderS, extended with lock and 
unlock operations, generated by the optimized scheduler. Consider the sub-sequence that relates to 
the access of X by transactions t, q 1 .. • qk. 

Since the read lock grant and the read of a transaction occur in an atomic section, it is ensured that all 
reads of q 1 ... qk are performed before Wl1(X). Furthermore, all locks oft are released after q1 ... q• 
have unlocked X, in arbitrary order. Between Rlq' (X) and U/1(X), no other transaction p wrote to 
X, since write Jocks are exclusive. Between Wl,(X) and Ul1(X), no transaction read X, since no new 
read locks on X are granted, and q1 ... qk have already read X, and transactions read each data item at 
most once. Finally, Ul1(X) is the first unlock operation oft. 

Therefore, an extended data access orderS', equal to S except for the position of W1 (X), is conflict 
equivalent to S as long as W1(X) occurs after Wl1(X) and before Ul1(X). LetS' be an extended data 
access order that is conflict equivalent to S, where W1(X) is positioned just prior to Ul1(X). 

Finally, note that changing the position of lock and unlock operations preserves conflict equivalence. 
By moving Wl,(X) between the last unlock operation of X by transactions q1 ... qk, and W,(X), the 
execution oft and q1 ... q• satisfy the two phase locking requirements. 

Rlqt (X)Rqt (X) ... Rlqt(X)Rq< (X) .......... Ulq' (X) ... .Ulqi (X) Wl1(X) W1(X)U l 1 (X) ... Ul1(Y) 

By applying transformations of this kind to the writes of all single-write transactions that ignored read 
locks, the extended data access order S of the optimized two phase locking scheduler is shown to 
be conflict equivalent to an extended data access order S' that satisfies the two phase locking rules. 
Hence, S is conflict serializable. 

Conclusion. The execution of single-write transactions has been optimized considerably, by reduc­
ing the blocking probability. Write locks of single-write transactions are only visible to other transac­
tions if the delayed unlock rule is invoked. This only occurs if the write of a single-write transaction 
encounters a conflicting read lock. Since there are less write locks set in the system at any time, the 
blocking probability of reads is reduced. Write lock requests of single-write transactions no longer 
block on read locks, due to the delayed unlock rule. Lock holding times have not been reduced, but 
the real-time response of single-write transactions is improved. These optimizations were possible 
because additional information about transactions was available. 

3.2 Concurrency 

Schedulers allow certain data access orders and prevent other orders from occurring. Optimally only 
those access orders are prevented that violate goal constraints. In practice schedulers are more restric­
tive, they only allow a subset of all correct data access orders. The set of allowed data access orders 
of a scheduler is described by free problem variable AD A 0. 

Suppose that a transaction issues a certain data access request. The scheduler has to delay 
this data access if immediate execution of the data access would result in the data access order 



40 CHAPTER 3. DESIGN ISSUES 

Aorder ¢ ADAO. Therefore, a large set ADAO has a low probability of delaying transactions. 
This observation is the rationale behind the following measure of concurrency. 

Definition 3.1 A measure of concurrency is the number of data access orders that are allowed by the 
scheduler. 

It is recognized (75) that the measure is not very suitable to compare the performance of two sched­
ulers S, S'. The comparison is strengthened by trying to proof either ADAOs c ADAOs', or vice 
versa. Basically, if neither can be shown, it is not clear which scheduler offers better concurrency. 

In general, the probability that a data access request is delayed is inversely proportional to the 
concurrency that is allowed by the scheduler. For specific applications the relation is more subtle. At 
any point in time, a finite sequence of data accesses has taken place. This sequence P A 0 is a prefix 
of the final access order Aorder. A transaction tis delayed if it requests a data access op, such that 
P A 0; op is no longer a prefix of any sequence in AD A 0. 

Specific applications do not request arbitrary data accesses op. Instead, the requested data accesses 
follow a specific pattern. Typical examples of such patterns are: transactions always read data before 
writing data, transactions access a small fraction of the entire database, or transactions have a fixed 
order in which they access data (for example an alphabetical order on their identities). 

Information about these data access patterns is captured by the fixed problem variable RDAO 
that represents the set of all possible requested data access orders. If RDAO c ADAO, all pos­
sible requested access orders are allowed access orders, transactions can execute freely. Whenever 
RDAO )t ADAO, it is possible that the scheduler has to execute data accesses in a different order 
than they are requested. This requires that certain data accesses are delayed. 

From the discussion above it should be clear that our measure of concurrency is not accurate if 
additional information is known about the possible access request patterns. A more precise measure 
would be the size of RDAO n ADAO, counting the number of data access orders that can actually 
occur, taking into account the scheduler that is used, and the application that accesses the database. 
Even more precise measures would also count the number of re-orderings that are necessary to fit a 
requested data access order into ADAO. This is not further investigated in this thesis. We give a 
number of examples of types of concurrency that can be offered by a scheduler. 

Unbounded concurrency. If all interleaving& are possible, a transaction can execute whenever a 
processor is available. All data accesses are accepted, no scheduler overhead needs to be generated. 
Unbounded concurrency also accepts data access orders that violate serializability constraints. There­
fore, unrestricted transaction execution can lead to unexpected and unwanted results if concurrent 
transactions conflict. 

Theoretically optima] concurrency. As long as only serializable [75, 100] interleavings are pos­
sible, database consistency is ensured. Transactions are only delayed if immediate execution would 
destroy database consistency. Let P A 0 be the finite sequence of performed data accesses, and op be 
a requested data access. It has been shown [75] that recognizing whether P AO; op is a prefix of a 
conflict-serializable data access order is an NP-complete problem. 

Approximation: two phase locking. The 2PL approximation uses a set of simple rules to decide 
whether a data access order is acceptable. These rules can be checked in O(k) time for a transaction 
that performs k data accesses, but without extensions deadlocks can occur. Additional rules to solve 



3.3. SCHEDULER OVERHEAD 41 

deadlocks generate more overhead. At least k + 2 synchronization points are necessary for a transac­
tion that performs k data accesses. The following example shows that 2PL is less concurrent then the­
oretically optimal concurrency. A correct interleaving of transactions t: R1(X) W1(Y), and q: Wq(X) 
is R,(X) Wq(X) W,(Y). This interleaving cannot be generated by 2PL, transaction twill not release 
the lock on X before it has written Y. Therefore, 2PL will sometimes delay transactions, even if their 
immediate execution is serializable. To show that 2PL does allow some interleavings of conflicting 
transactions, a 2PL interleaving of Rp(X) Wp(Z) and R,(Y) W,(Z) is Rp(X) R,(Y) Wp(Z) W,(Z). 
The reads of X and Y are performed concurrently. 

Approximation: trivial coneurrency. No interferences occur between non-conflicting transac­
tions, so any interleaving of two non-conflicting transactions is correct. Trivial concurrency only 
allows two transactions p and q to execute in an interleaved fashion, if they are non-conflicting. 
Otherwise, p and q execute sequentially. Deciding whether a transaction is non-conflicting with 
concurrently executing transactions takes O(k) time for a transaction that performs k data accesses. 
Enforcing trivial concurrency requires a synchronization point at the start and end of each transaction. 

Trivial concurrency allows less interleavings than 2PL. For example, Rp(X) R,(Y) Wp(Z) W,(Z) 
is an allowed 2PL data access order, but it is rejected by trivial concurrency. Since p and r conflict 
over Z, only sequential orderings of p and r are accepted by trivial concurrency. 

One of the research goals in database scheduling has been to design database schedulers that 
offer a lot of concurrency. Such schedulers can benefit from multi-processor architectures, as more 
transactions are allowed to execute in parallel, amongst other benefits. However, there are other factors 
apart from the concurrency offered by the scheduler, that influence the scheduler choice. 

3.3 Scheduler overhead 

The response time of a transaction consists of execution of the transaction procedure, waiting time, 
and time that is spent on the execution of scheduler procedures. Scheduler overhead consists of 
two parts, decision overhead and enforcing overhead. The scheduler selects an access order Aorder 
from ADAO that closely matches the access request order. This selection process takes time and is 
called decision overhead. After deciding the data access order, the order needs to be enforced. The 
communications and synchronizations that are necessary constitute the enforcing overhead. 

Decision overhead is determined by the quality of the scheduler implementation, and by the con­
currency that is offered by the scheduler. For certain AD A 0 sets, recognizing whether a certain data 
access leads to a data access order that still belongs to the set can be checked very efficiently and fast. 
For other ADAO sets, the decision overhead is considerable. Recall that the decision overhead for 
the maximal ADA 0 set that consists of serializable schedules is an NP-complete problem [75]. The 
decision overhead becomes negligible, if A order is computed off-line. 

Enforcing overhead is counted in the number of synchronization points that are used to enforce the 
data access order, and the number of communications that are necessary. Similar to decision overhead, 
enforcing overhead is determined by the concurrency of the scheduler, and the quality of the imple­
mentation. For example, 2PL allows transactions to execute partly in parallel, even if they conflict. If 
it is unknown in advance which data accesses will conflict, a synchronization point is required before 
each data access. If conflicting transactions are executed sequentially, a synchronization point at the 
start and end of each transaction suffices. Therefore, trivial concurrency can be implemented with two 



42 CHAPTER 3. DESIGN ISSUES 

synchronization points per transaction. Of course, inefficient implementations of trivial concurrency 
can add more synchronization points, but these are not required. 

3.3.1 Overhead reduction techniques 

In chapter 2 the three main sources of both decision and enforcing overhead are described: communi­
cation, synchronization and internal computation of the scheduler. The scheduler uses communication 
to gather the information that it needs for its decision procedures, and to enforce synchronized execu­
tion on different sites. Synchronization is used to gather information about the data access order that 
has previously occurred, and to enforce certain data access orders. Internal computation is used for 
the decision procedures. We investigate how the scheduler can be constructed, such that this overhead 
is minimized. The discussion primarily holds for on-line scheduling, but parts of it can also be applied 
to off-line scheduling with a dispatcher. 

Matching communication patterns. In distributed platforms, an important source of overhead is 
inter.site communication. Scheduler communications typically involve only a few bytes, therefore 
the communication latency determines the amount of overhead. Scheduler communication overhead 
can be reduced considerably by attaching scheduling information to messages that are needed for the 
normal execution of transactions. This is called piggy-backing. Piggy-backing is only possible when 
scheduler communication and transaction communication coincide. While designing the scheduler, 
the communication patterns of the scheduler and the transactions should match when possible. Dis­
tributed transactions are concluded with the two phase commit protocol, to ensure atomicity. The 2PC 
protocol sends four sequential messages between the coordinator, and all sites that participate in the 
transaction. The protocol is further described in appendix C. These messages are good candidates for 
piggy-backing of scheduler information. 

A typical example of a mismatch in communication patterns is the 2PL remote write lock. Suppose 
transaction t decides to write remote data item X. The scheduler requires a Jock request message 
and a lock grant message at that time. The actual value is not written by t until t commits, so the 
two messages cannot be piggy-backed and count as scheduler overhead. On the other hand, the 
communication patterns of 2PL and transaction t match when t decides to read a remote data item. 
The scheduler again requires two messages, and t requires two messages to request and receive the 
value. The scheduler communication can be piggy-backed on tbe transaction communication. 

Synchronization points versus concurrency. Synchronization points are another source of over­
head, and the number of synchronization points can be reduced to improve scheduler efficiency. There 
is a trade-off here, because the number of synchronization points determines how many correct inter­
leavings the scheduler can enforce. Suppose a transaction t does not have a synchronization point 
between two data accesses op, op'. The scheduler cannot delay t after op, and before op'. Therefore, 
if the scheduler decides to delay op', necessarily op needs to be delayed as well. All schedules that 
do not delay op, and do delay op' cannot be enforced. Should a synchronization point exist between 
op and op', such schedules can be enforced. 

In order to reduce the number of synchronization points, it should be checked that existing syn­
chronization points are actually necessary to enforce the required level of concurrency. Superfluous 
synchronization points can be removed. As an example, we previously concluded that trivial concur­
rency can be enforced with two synchronization points. Suppose each transaction has a synchroniza­
tion points at the start and finish of its execution. Trivial concurrency is enforced by the following 
rule. If transaction p conflicts with executing transaction q, p is delayed in its first synchronization 



3.4. THE OVERHEAD/CONCURRENCY TRADEOFF 43 

point until q reaches its last synchronization point. Schedulers that enforce trivial concurrency with 
more than two synchronization points can be optimizedJ 

Optimizing internal computation. Internal computation of the scheduler can be costly. It is im­
portant to implement the scheduler using suitable data structures and fast algorithms that operate on 
them. Furthermore, the number of transaction restarts should be minimized, as each failed transaction 
execution counts as overhead. There is a relation between the time complexity of the internal compu­
tation of the scheduler, and the concurrency that is offered by the scheduler. It goes beyond this thesis 
to exactly specify the relation, but we have the following remarks. 

l. The time complexity of a scheduler that recognizes all serializable schedules is exponential, 
provided that no-one proves that P=NP [75]. 

2. The time complexity of a scheduler is bounded from below by the size of its input. 

3. The time complexity of a scheduler that recognizes all sequential schedules is 0(1) for each 
transaction. 

4. The time complexity of a scheduler that recognizes 2PL schedules is O(k), fork data accesses 
per transaction. This does not include deadlock detection. 

Item 2 gives a weak lower bound on all scheduling algorithms, a bound that is sharp for most on-line 
scheduling algorithms. Items 3 and 4 are examples of schedulers whose time complexity matches the 
lower bound, given by item 2. A scheduler that generates sequential schedules only needs the identity 
of each transaction to define an order. Hence, its time complexity is 0(1). A two phase locking 
scheduler needs all data accesses of a transaction to schedule it. Hence, its time complexity is at least 
O(k), fork accesses. The lock-queues that are used in two phase locking have 0(1) time complexity 
for each lock request, so indeed the complexity of 2PL schedulers is 0 (k). 

3.4 The overhead/concurrency tradeoff 

A tradeoff exists between the concurrency that is offered by the scheduler, and the scheduling over­
head. Increasing the concurrency of a scheduler usually results in an increased scheduler overhead. 
This relation is not linear or even monotonic, it is very well possible to design a scheduler with little 
concurrency and high overhead. However, the generic relation holds, both for decision overhead and 
enforcing overhead. 

Item 2 from paragraph "Optimizing internal computation" shows that the decision overhead grows 
at least linearly with the size of the scheduler input. The amount of information that is used by the 
scheduler determines what schedules can be recognized. For example, to schedule a data access op of 
transaction t, two phase locking schedulers use information about the availability of the accessed item 
Daccess(op). Which other transactions q request use of Daccess(op), and which other accesses 
they make, is not input to the scheduler. Therefore, the unmodified two phase locking scheduler 
suffers from deadlocks, as wait-cycles cannot be prevented without additional information. In order 
to overcome deadlocks, additional information is necessary. This increases the time complexity of the 
algorithm. Alternatively, schedules that potentially lead to deadlocks have to be rejected. This reduces 
the concurrency. 



44 CHAPTER 3. DESIGN ISSUES 

In paragraph "Synchronization points versus concurrency" the relation between concurrency and 
the required number of synchronization points is mentioned. To obtain more concurrency, data ac­
cess orders have to be allowed that require a large number of synchronization points. Again, more 
concurrency leads to more overhead. 

So there is a choice, either select a scheduler with high concurrency at the cost of increased 
overhead, or a lightweight scheduler that offers little concurrency. When to select which scheduler? 
The tradeoff can be decided by the application specific information that is contained in the problem 
specification. We distinguish two parameters that determine the tradeoff decision. 

Transaction execution duration. The influence of scheduling overhead depends on the execution 
duration of transactions. We show this with the following example. Suppose the scheduler needs 
10 microseconds to deal with each transaction. If a transaction executes for 1 second, the scheduler 
overhead is at most 0.0001% of the response time, almost negligible. If transactions are short, and 
execute 10 microseconds (actually quite long for simple lookup transactions), scheduler overhead is up 
to 50% of the total response time. If the overhead is a significant percentage of the total response time 
of transactions, it becomes important to try to reduce it. Therefore, the average length of transactions 
that are issued by the application gives a good indication whether optimizing scheduler overhead is 
important, or not. 

Total conflict probability. The data access request orders (see section 3.2) that are issued by the 
application determine the usefulness of a scheduler with high concurrency. In order to characterize 
data access request orders with one number, we introduce the total conflict probability. The conflict 
probability is defined as the probability that two arbitrary transactions conflict. The total conflict 
probability is defined as the probability that a transaction encounters a conflict during its execution. 

If the conflict probability is low, most requested data accesses do not lead to interferences. As 
long as a transaction does not encounter a conflict, even small AD A 0 sets like trivial concurrency 
are sufficient to execute transactions without delays. If the conflict probability is high, a large number 
of data accesses lead to interferences between transactions. A scheduler that allows a small set of data 
access orders can only select a poor Aorder. Since more complex schedulers can allow a larger class 
of data access orders, they can probably find better data access orders that incur less transaction delays. 

For applications with a high total conflict probability and long average transaction durations, a 
scheduler that offers a high degree of concurrency should be selected. If the conflict probability is 
low, and the average transaction duration is short, overhead becomes the limiting factor. A lightweight 
scheduler is preferable over a complex scheduler, even if it offers less concurrency. Chapter 4 presents 
a typical low-conflict environment where simple schedulers outperform schedulers that offer a lot of 
concurrency. 

3.5 Available information versus time & quality 

Scheduling decisions cannot be made before the information necessary for the decision is available. 
Although quite trivial, this is easily overlooked, and has a big impact on the scheduler design. The 
moment that a scheduling decision is made determines the manipulation options that are available to 
enforce the decision. In general, early scheduling decisions are easier to enforce than late decisions. 
Therefore it is good practice to take scheduling decisions as soon as all necessary information is 
available. 



3.5. AVAILABLE INFORMATION VERSUS TIME & QUALITY 45 

3.5.1 On-line scheduling decisions 

A question that has to be answered for each real-time database scheduling problem is: "When is 
sufficient information available to make the scheduling decision?". Different information is necessary 
for different types of concurrency. Therefore, the concurrency that should be offered by the scheduler 
determines when scheduling decisions can be made. There is a balancing point here, schedulers have 
to delay scheduling decisions until the required information is available. However, if they delay their 
scheduling decisions too long, the generated schedule cannot be enforced anymore. Therefore, the 
moment that scheduling information becomes available also determines the optimal schedule that can 
be generated and enforced. 

For example, we investigate static locking, as described in chapter 6 and optimistic concurrency 
control, as described in chapter 4. Both offer trivial concurrency. Trivial concurrency can be en­
forced with only two synchronization points for each transaction t. So when do the schedulers make 
the scheduling decisions, related to t? This depends on the availability of scheduling information. 
Suppose no extra scheduling information is made available by the applications. Information about 
execution times and access patterns of transactions is observed by the scheduler, unannounced or 
fait accompli information. Checking whether p conflicts with committed transactions can only be 
completed after p's access pattern is known, at the second synchronization point. At this point, the 
manipulation options are limited, either p is committed or p is restarted. Therefore, without addi­
tional knowledge, and with the requirement that there are only two synchronization points for one 
transaction, the resulting scheduler has to be an OCC variant (see also [53] and chapter 4). 

If the access patterns of transactions are announced by the application at the first synchronization 
point, the scheduling decisions can be made at that time. The advantage of this early decision making 
is that the scheduler has an extra manipulation option, it can decide to delay transactions. A so-called 
static locking scheduler (see also chapter 6) results. The additional information allows the scheduler 
to waste less resources. The restart mechanism of the OCC scheduler occupies the processor with 
useless executions. The static locking scheduler avoids this by preventing transactions to occupy the 
processor, until successful execution is ensured. 

3.5.2 Off-line scheduling decisions 

Real-time requirements increase the complexity of scheduler design by limiting the available on-line 
execution time. Scheduling algorithms have to execute under stringent timing requirements. Their 
time-complexity has to be low, and they have to be implemented as efficiently as possible, to meet 
the real-time requirements on a low cost platform. This complexity can be reduced by pre-computing 
scheduling decisions off-line. During on-line computation, the pre-computed scheduling decision can 
be retrieved by a fast lookup, instead of making the time-consuming scheduling decision again. 

If the entire schedule is computed off-line, the functionality of the on-line scheduler (called the 
dispatcher) is only to enforce the pre-computed schedule. No schedule decisions are made on-line. 
Such systems are not very flexible, their functions are completely defined in advance, as well as the 
moment that these functions will be performed. It can be hard to provide sufficient off-line infor­
mation, such that the entire schedule is generated off-line. If insufficient scheduling information is 
available to compute the entire schedule, scheduling decisions have to be taken on-line. However, it 
can still be possible to pre-compute some scheduling decisions, thus reducing the on-line scheduling 
overhead. 



46 CHAPTER 3. DESIGN ISSUES 

Read(t,X); 
if C I [t, X] then Sch-read(t,X) else Dirty-read(X); 

Write( t,X, v ); 
if C l[t, X] then Sch-write(t,X,v) else Dirty-write(X,v); 

Algorithm 3.2: OFF-LINE MODIFICATION OF ARBITRARY SCHEDULERS 

Example: combining off-line and on-line scheduling 

A real-time database scheduler has to be constructed, which guarantees conflict-serializability, and 
executes transactions within [est, dl] intervals. The set of transactions T, and their [est, dl] are known 
in advance. Unfortunately, no worst-case execution times of transactions are available. If transactions 
miss their deadline, they have to be aborted. A worst-case approximation of the access set of each 
transaction is available off-line, a transaction twill not use any data item outside set Maxuse(t). 

These restrictions are very common in databases. The dataset that is stored in databases is almost 
always divided into tables. If transactions are generated using SQL-Iike query languages (see [51]), 
the tables that will be accessed are known in advance. For example, it might be known that a transac­
tion uses data items from a "customer" table, and it will not access the "supplier" table. The scheduler 
should minimize the percentage of transactions that miss their deadlines. A centralized architecture is 
available for on-line execution. 

Specification. 

platform: centralized page 21 
data: non-temporal page22 
transactions: firm-real-time, conflict-serializable page 24 
objective function: minimize deadlines missed page 31 

Additional specification of details. 

Fixed Variable Domain · Description 
Maxuse T -+ !P(DataSet) Transactions access data from this set. 

I Fact constraint Description 
IVopEOPS: 
1 Daccess(op) E Maxuse(trans(op)) 

Transactions do not access data outside 
their Maxuse set. 

I 

I 
! 

I 

Design. Off-line scheduling of the transaction-set is inefficient, since no worst-case execution times 
are known. Solutions that take all scheduling decisions off-line will iguore the extra information that 
becomes available on-line. This results in a high percentage of transactions that miss their deadline, 
or an inefficient use of resources. 

Suppose there is an on-line scheduler Sch that solves the generic scheduling problem. We trans­
form it to a scheduler that includes both off-line and on-line computation, and has less on-line over­
head. From the Maxuse-sets, and the est, dl pairs it can be computed whether a data access to X can 



3.5. AVAILABLE INFORMATION VERSUS TIME & QUALITY 47 

lead to interference. Suppose t accesses X in interval [a, b]. If no other transaction t' that overlaps in 
time has X E Maxuse(t'), the access oft is interference free. We define lookup table C/[t, X] which 
determines whether access to X by t can lead to interference. Table C/ is computed off-line from the 
Maxuse-sets. 

time-disjunct(t, t') = dl(t') < est(t) v dl(t) < est(t') 

Cl[t, X] Vt' E T : t' ::/= t:::} time-disjunct(!, t') v X~ Maxuse(t') 

The interference free predicate that is specified above can be weakened, if checks are formulated that 
show whether a possible conflict between two transactions can lead to non-serializable schedules, or 
not. This has not been investigated further. 

The off-line scheduler modifies the on-line scheduler using the C /-function. Usually, data access 
is monitored by the on-line scheduler by adapting the access procedures for reading and writing. 
Procedures "Dirty-read(X)", and "Dirty-write(X,v)" are introduced, that directly read and write data 
items, without bothering with the on-line scheduler. The on-line scheduler Sch is invoked by calling 
Sch-read(t,X) and Sch-write(t,X,v). The modified read and write access of transactions are given in 
algorithm 3.2. 

If there are relatively few overlaps between the Max use-sets, or transactions are often separated 
in time, the optimization yields a significant performance improvement. Since the C I -function is local 
to each transaction, it can be implemented efficiently using 0(1) lookup tables. The computational 
overhead of this optimization is marginal. 

The optimization can be carried even further, if the C I function evaluates to true for the entire 
Max use-set of a transaction t, the lookup can be omitted, and the scheduler is never invoked, no on­
line scheduler overhead is generated at all for transaction t. If Cl[t, X] is false for most of its domain, 
an off-line heuristic can decide that the optimization is not useful for the transaction. The off-line 
scheduler can decide not to apply this optimization, thus avoiding the overhead that is introduced by 
the lookup. 

Conclusions 

When and what scheduling information becomes available determines for a large part the scheduler 
that will be designed. The choice between off-line and on-line scheduling is governed by the avail­
ability of information. and it influences the overhead of on-line schedulers. Information about the 
availability of scheduling information at each point during the execution should be part of every prob­
lem specification that concerns real-time database scheduling. 



48 CHAPTER 3. DESIGN ISSUES 



Chapter 4 

Scheduling in low-conflict environments 

A common feature of database environments is a low conflict-probability. Databases are often large, 
with millions of data items, and the probability that transactions conflict over the same data items can 
be close to zero. The real-time database scheduling problem that is defined and studied in this chapter 
is inspired by scheduling problems from the telecom environment. Mnesia is a real-time database 
that has been developed by Ericsson, especially for telecom applications [71, 62]. It is equipped 
with a two phase locking scheduler that uses a wait-die strategy to avoid deadlocks. This strategy 
reduces the concurrency offered by the scheduler, but adds little scheduler overhead. Furthermore, 
each transaction is committed using the two phase commit protocol. The Mnesia scheduler has been 
replaced with the scheduler that is designed in this chapter, to obtain test results. Parts of this chapter 
have been previously published [18]. 

The chapter is organized as follows. An environment study in section 4.1 extracts relevant infor­
mation that will be part of the problem specification. A number of assumptions are made to formalize 
the arguments, and obtain the problem specification that is given in section 4.2. Section 4.3 explains 
the scheduler design, and shows how the issues from chapter 3 are used to formulate and make design 
decisions. The resulting algorithm is presented in section 4.4, analyzed in section 4.6 and test results 
appear in section 4.8. The results of the chapter are summarized in 4.9. 

4.1 Environment study 

The telecom environment is large, with several different applications that have completely different 
characteristics. The application under consideration has been designed to use a distributed database, 
and has the following characteristics that influence the scheduler design. 

Data access of transactions. The database consists of a large number of data items, and transactions 
access only a few. Therefore, the probability that two transactions access the same data items is low. 
The exact conflict probability is unknown, especially since the system that is under consideration is 
still in its experimental phase. Educated guesses place the conflict probability between 0 and 0.0001. 
We assume that an upper-bound on the conflict probability b is 0.0001. 

Transaction durations. Transactions require little computation. Therefore, the overhead posed by 
the database is a significant part of the transaction response-time. In test-runs with a 2PL scheduler, 
overhead amounts to 80% of the response time. The importance of overhead depends heavily on the 
costs of communication and synchronization, compared to the internal computation of transactions. 
Typically, only a few operations are performed on the value of a data item that is read. We assume 

49 



50 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 

that the amount of work that a transaction performs is at most linear in the number of accessed data 
items, and that it takes at most I millisecond of internal computation for each data item that it writes 
(this matches the results from test 4.3b). 

Data size. Typically, only a few kilobytes of information is stored in a data item. Therefore, the 
communication costs of transferring the value of data items between sites are dictated by the latency 
of the network, rather than the throughput. 

Transaction arrival process. Transactions arrive unannounced. at a hlgh rate, with exponentially 
distributed inter-arrival times. The total number of transactions that arrive is more than can be handled 
by one processor. It is desirable that the database is scalable, i.e. the number of transactions that the 
database can execute in one time unit should be a linear function of the number of processors. No 
assumptions are made about the arrival rate of transactions, and the arrival rate is not announced by 
the application. We do assume that the conflict probability is bounded by a fixed constant b (specified 
above), independent of the transaction arrival rate. 

Access types. A high percentage of transactions is read-only, or perform addition operations. Con­
current read accesses to the same data item do not conflict, and concurrent addition operations can 
also be executed in an arbitrary order. In this chapter we have not considered optimization of addition 
operations. We assume that over 90% of all data accesses are read-accesses. 

Distributed data access. The database is tailored such that transactions have a high probability of 
accessing local data items. This is realized by replicating hot-spot data that is used for lookup only, 
and by a transaction distribution mechanism that dispatches transactions to the site where their data is 
stored. We assume that over 90% of all data accesses are local. 

Real-time requirements. No explicit deadlines are generated for transactions. Instead, the database 
should try to minimize the response time of transactions. 

We make additional assumptions to characterize the platform on which the scheduler is imple­
mented. These figures are derived from actual measurements in a network of SPARC 5 workstations. 
One-way communication between sites takes on average 1.5ms: Mlatency = l.5ms. Synchroniza­
tion implemented with local message passing takes on average 0.13ms: Msync = 0.13ms. We 
assume that Cpower = l, which means that the work of transactions equals their execution time. 

4.2 Specification 

The generic scheduling problem is well-defined. Transactions arrive unannounced at the database. 
They access non-temporal data that is distributed over a distributed platform. The database should 
guarantee conflict-serializability, and minimize the response time of transactions. 

Generic scheduling problem. 

platform: distributed page 22 
data: non-temporal, distributed page22 I 
transactions: real-time, confiict-serializable, unannounced page 24 
objective function: minimize average response time page 30 I 



4.3. DESIGN 51 

Additional detailed information. 

I Fact constraint Description I 
Lt,qf!!T:transconflict(t,q) 1/ITI:l :S 0.00001 Conflicts between transactions are rare. 
W(t) < !Aorder(t)i x lms Transactions are short. i 
LopEOPS:Amode(op)=read 1/10 P S! :::; 0.9 Most data access is read access. i 

L"oeOPS:iocal(op) 1/!0PSI =:: 0.9 Most data access is local. 

4.3 Design 

Recall that algorithm 3.1 solves a problem that is quite similar to the problem that is specified in 
section 4.2. However, algorithm 3.1 uses the fact that transactions announce their one-write property. 
This announcement is not available here, and hence algorithm 3.1 cannot be applied. 

The objective of the scheduler that has to be designed is to minimize the transaction response 
time. The transaction response time depends on the trade-off between the overhead that the scheduler 
generates, and the processor utilization that the scheduler realizes (see chapter 3). How this trade-off 
should be made depends on the conflict probability, and the average transaction length. The conflict 
probability is very low, suggesting that a relatively small class of schedules (like trivial concurrency) 
suffices to obtain near-optimal processor utilization. Secondly, transaction lengths are short, compared 
to the overhead that is introduced by synchronization and communication. Therefore, a significant 
reduction in overhead can be achieved by minimization of the scheduler overhead. 

Design decision 4.1 The scheduler overhead is reduced, at the expense of the concurrency offered by 
the scheduler. However; the scheduler should offer at least trivial concurrency. 

To enforce trivial concurrency, at least two synchronization points are required for each transac­
tion: at the start, and at the end of its execution. The synchronization points are both required to 
determine whether a transaction t has started, before a conflicting transaction q has ended execution. 
The scheduler can enforce its decisions by executing transactions, delaying transactions, or restart­
ing transactions. It can delay transactions in their first synchronization point, or restart them in their 
second synchronization point. 

Scheduling decisions that determine whether a transaction t can execute, or has to be delayed, 
require that information about Aorder(t) is available. However, Aorder(t) is fait accompli informa­
tion, so the required information is unavailable in the first synchronization point. Therefore, delaying 
transactions in their first synchronization point cannot be used to enforce trivial concurrency. We 
choose to add a restart mechanism to the second synchronization point, essentially building an opti­
mistic concurrency control scheduler [53, 57, 55, 84, 88]. The additional overhead that results from 
restarts will be low, since the conflict probability is very low. 

Design decision 4.2 A synchronization point is added to the start and finish of each transaction ex­
ecution. In the second synchronization point, transactions are restarted if their execution does not 
satisfY trivial concurrency. 

To check whether the execution of a transaction satisfies trivial concurrency, the access-set of 
each transaction t is administrated by the scheduler. This can be realized without synchronization or 
communication costs by superimposing scheduler administration procedures on access procedures. 
Superimposing a procedure F on procedure G means that every time G is executed, F is executed 
as well, and F can access the same information that G can access. Information about data access of 



52 CHAPTER 4. SCHEDULING IN LOW-CONFLICf ENVIRONMENTS 

committed transactions is aggregated, for each data item X a time-stamp is maintained that is equal to 
the largest time-stamp of all transactions that wrote X. The resulting scheduler is a lightweight variant 
of the optimistic concurrency control scheduler that Kung and Robinson introduced [53], which we 
call OCC-light. 

The scheduler has to operate in a distributed environment, and we did not yet check whether the 
communication patterns of the transaction execution, and the scheduler execution match. There are 
two things to consider. First, the information that is required by the scheduler has to be gathered. 
The access-set of the transaction t under consideration is gathered by super-imposed scheduler proce­
dures. When transaction t finishes execution and reaches the synchronization point, this information 
is available locally. 

If the access set oft overlaps with the access set of recently committed transaction q that executes 
on another site, a synchronization between the site where t executes, and where the site where q 
executes is required. Observe that t and q access at least one common data item. By synchronizing 
the site where t executes with all sites where t accessed data, a synchronization between t and q 
is established, since q follows the same protocol. This synchronization can be piggybacked on the 
two-phase commit protocol, which is used to commit/abort transactions [51], thus avoiding additional 
message overhead. 

Design decision 4.3 The second synchronization point of t synchronizes with all sites where t ac­
cessed data. The messages involved are piggy-backed on the two phase commit protocol. 

The synchronization oft with other transactions uses information about committed transactions 
q, to decide if t can commit. When t and q are both about to commit, synchronization between the 
two transactions becomes complicated. Suppose the scheduler decides to delay t, until q commits or 
restarts. Most probably, q decides to commit (conflict probabilities are very low). Therefore, with a 
very large probability t has to restart. Should t wait until q commits or restarts? With our main goal 
(low scheduler overhead) in mind, the question is solved by a simple heuristic. This heuristic also 
eliminates the need for a deadlock breaking mechanism. 

If t and q accessed X in a conflicting way on siteS, the following restart rule is used. If during the 
synchronization oft with S, it is discovered that q has synchronized with S, but is not yet committed 
or restarted, it is assumed that q will commit, and t is restarted. The heuristic can lead to mutual 
restarts, if t and q conflict on two different sites. However, it is extremely unlikely that this occurs 
(the probability is about 0.0001 2). By introducing a random wait period for transactions that are 
restarted in this fashion, life lock caused by mutual restarts is prevented. 

Design decision 4.4 Synchronization between transactions that are both in their second synchroniza­
tion point is resolved by a restart rule: if p observes that conflicting transaction q started validation, 
p restarts after a random wait period. 

The two synchronization points of a transaction t are used to determine whether conflicting trans­
actions committed in the interval, defined by the synchronization points. This requires that the first 
synchronization point synchronizes with all sites where t can access data. Such a synchronization 
involves a global clock, or a broadcast of messages, a significant overhead to the protocol. 

We can eliminate this overhead by observing the following. The communication pattern of OCC­
light fits nicely within the communication pattern of transactions. However, it does not match com­
pletely: when a transaction reads a remote data item, a value-request message, and a value message are 
sent. The OCC-light scheduler does not piggyback any information on these messages. By exploit-



4.4. ALGORITHM 53 

ing the free synchronization for remote reads, the scheduler can offer more than trivial concurrency, 
without any additional synchronization or communication cost. 

Design decision 4.5 The free synchronization that occurs when a transaction reads a remote data 
item is used to eliminate the need for a global clock protocol, and to increase the concurrency offered 
by the scheduler. 

Instead of a global clock, each site maintains its own logical clock. Transactions t obtains a 
stan-timestamp from the local logical clock. This synchronizes 1 with all local events. Whenever a 
transaction t reads a remote data item at site S, it uses the free synchronization to read the logical 
clock at siteS. This synchronizes the read access oft with all events at siteS. 

Trivial concurrency ensures (amongst others} that the synchronization order of transactions is 
equal to the commit order of transactions. Note that the restart-rule of the second synchronization 
already solves write-write conflicts: when two concurrent transactions both write the same item, at 
least one restarts. Suppose that a read-write conflict occurs between t and q. Under trivial concur­
rency, transaction q writes item X, before t starts, or after t commits. If data item X is local, this 
requirement is easily checked with the two synchronization points oft. For remote reads, we relax 
this requirement, by observing that confiict-serializability is enforced, if q writes X before t reads X, 
or after t commits. This weaker requirement can be checked with the extra synchronization point that 
occurs when the read-request of t is handled. 

Design decision 4.6 The scheduler supports trivial concurrency for locally accessed data items, but a 
weaker requirement (more concurrency!) is supported for remotely accessed data items. This removes 
the need for global synchroni:wtion at the start of a transaction, local synchroni:wtion suffices. 

We shortly summarize the design of the OCC-Iight scheduler. Problems with concurrent valida­
tion, and write-write conflicts are solved by the restart-rule. Local read/write conflicts are solved using 
the synchronization points at the start and end of each transaction. Trivial concurrency is enforced for 
local conflicts. Remote read/write conflicts are solved using the free synchronization point just before 
the read access, and the synchronization point at the end of each transaction. This allows more than 
trivial concurrency for remote conflicts. 

4.4 Algorithm 

We implement synchronization points by introducing a single scheduler process on each site. When a 
transaction synchronizes on a site, it activates the scheduler on the site, and waits for response. The 
scheduler process at a site S acts as the coordinator of transactions that execute at S. Furthermore, 
the scheduler process at siteS also manages access to the data items, stored at S. If t accessed data 
at site S, the scheduler process is a participant oft. The algorithm description consists of two parts. 
Algorithm 4.1 describes the procedures that directly modify the transaction execution. In algorithm 
4.2 the scheduler process at each site is described by a set of messages to which it reacts, the scheduler 
is essentially a reactive server. The bold-face printed labels (i.e. Ac(t,X)} are used in the correctness 
proof, and are explained in section 4.5. The notation used for these algorithms is further explained in 
appendix B. 

The execution of a transaction t is encapsulated within a procedure "Transaction". This is nec­
essary to restart t, if its validation fails. Furthermore, each transaction t synchronizes with the local 
scheduler at the start, and end of its execution by invoking "Start" and "End". Data access during 



54 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 

Write(t,X,v) 
sites(tJ+ = DataPlace(X) 
Ws(t]+ = (DataPlace(X), X, v) 

Read(t,X) 
sites(t]+ = DataPlace(X) 
if DataPlace(X) = Trans Place(t) 
then TS:=TS{t] 

Ac(t,X) V:= value[X] 
else scheduler@ DataPlace(X) ! {read request, t, X) 

receive { read value, t, X, V, TS } -+ skip end 
Rs[tJ+ = (DataPlace(X), X, TS) 
return V 

Transaction( t, Tcode) 
Start-syncbronization(t) 
Result:=Tcode(t) 
if End-syncbronization(t)=commit then return Result 
else return Transaction(t,Tcode) 

Start-synchronization( t) 
scheduler@TransPlace(t) ! {start request, t) 
receive {start ok, TS[t]J-+ skip 
end 

End-synchronization(!) 
scheduler@ Trans Place(t) ! {commit request,t,ST[t],sites[t],Rs[t],Ws[t]) 
receive {commit result, Result)-+ return Result end 

Algorithm 4.1: MODIFICATION OF TRANSACTION EXECUTION 

the execution of a transaction is regulated by procedures "Read" and "Write". Each transaction t 

maintains the following local data structures. 

Start timestamp T S[t]. This timestamp is defined in the first synchronization point, by reading the 
local clock. It is used for validation of local read accesses. 

Accessed sites set sites[t]. This set stores the identities of all sites where t accessed data. It is used 
during validation. 

Read sets Rs[t]. For each siteS E sites[t], the set of read data items at S, with associated timestamp 
is maintained. The timestamp of locally read data items X equals the start-timestamp oft, which is 
smaller or equal than WT S[X] when X was actually read: (TransPlace(t), X, T S) E Rs[t] =} 

T S = T S[t]. The timestamp of remotely read data items X equals WT S[X], at the time X was 
actually read. These time-stamps are used to validate read access to data. 

Write sets Ws[t]. For each siteS E sites[t], the set of written data items at S, together with the 
written value, is maintained. This is used during validation to enforce the restart-rule, and during 



4.4. ALGORITHM 

St( t) { start request, t } 
t ! { start ok, Clock() I 

Ac(t,X) { read request, t, X I 
t ! { read value, t, X, value[X), WTS[X) } 

Vs(t) {commit request, t, ST[t], sites[t), Rs[t], Ws[t]) 
validated(t], completed[t], resuit(t] := 0, 0, commit 
foreach S E si tes(t] do 

scheduler@ S ! 
{validate request, t, S, [(X, TS)I(S, X, TS) E Rs[t]], [(X, v)[(S, X, v) E Ws[t]]} 

V(t,S) {validate request,t, S, Rs, Ws} 
result:=commit 
foreach (q, Rs', Ws') E Pending do 

ifitems(Rs) n items(Ws') f= 0 then result:=restart 
if items(W s) n items(Rs' U Ws') f= 0 then result:=restart 

foreach (X, OTS) E Rs do 
if WT S(X) > OT S then result:=restart 

ifresult=comrnit then Pending+= (t, Rs, Ws) 
scheduler@ Trans Place(t) ! {validate result, t, S, result} 

{validate result, t, S, result } 
if result[t]=commit then result[t]:=result 
validated[tl+ = S 
if validated[t] =sites! t] then 

Co(t) foreach S E sites(t] do scheduler@S! I result[t], t, S) 

Ad(t,S) { result , t, S I 
Pending-= (t, Rs, Ws) 
if result=commit then 

foreach (X, v) E Ws do 
value[X] := v 
WTS[X] :=Clock() 

scheduler@TransPiace(t)! {completed, t, S) 

I completed , t, S I 
completed!t]+ = S 
if completed[!]= sites[t] 
then erase sites(t], validated[t], completed[ I], resultftl 

t ! I commit result, result[t]} 

Algorithm 4.2: SCHEDULER EVENTS 

commit, to write the new values of data items. 

At each site S the scheduler maintains the following data structures. 

55 



56 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 

Logical clock. The clock is incremented whenever it is read by calling function "clock()". There is 
no synchronization between clocks at different sites. The clock is used whenever transactions perform 
the start-synchronization, and whenever transactions actually write data items. 

Write timestamps WT S[X]. For each data item X that is stored at site S, the write-timestamp 
WT S[X] is maintained. This timestamp contains the value of the logical clock, at the last time that 
X was written (and hence WT Sis strict monotone increasing). It is used for the validation of read 
accesses to X. 

Pending transactions Pending. Each transaction t that performed validation at site S, but did 
not yet commit is represented by three-tuple (t, Ws, Rs) E Pending. Sets Ws and Rs contain the 
information from sets Ws[t], Rs[t] that pertain to siteS. A simple selector function "items(Ws)" 
returns the set of data items, referred to in W s or R s. 

Validation result result[t]. For each transaction t that executes at siteS, the scheduler at S main­
tains the (intermediate) result of its validation. result[t] is either "committed" or "restarted". If 
result[t]= committed after validation is completed, transaction t commits. 

Participant information set sites[t], validated[t], completed[!]. These sets store the sites 
that participate in transaction t, completed validation oft and completed their participation in the 
execution of t. 

The scheduler reacts to the following set of messages. First, a request for a timestamp can arrive, 
if a new transaction starts execution. Next, read requests arrive if transactions read remote items. The 
request for validation and commit is the last message issued by transactions. The scheduler invokes 
the validation of the transaction at all involved sites (note that the scheduler sends a message to itself, 
if local items are accessed. This has been optimized in the implementation, but for simplicity is not 
contained in the description of the algorithm). The following messages implement this validation. A 
validation request initiates the validation on a site. A validation result message is returned. Next, a 
commit-message (or a restart message) distributes the commit/restart decision to all involved sites. 
Acknowledgments are returned to the coordinator, which notifies the transaction of the result. 

It is possible that a transaction t reads a data item that it has written before. Transaction t should 
read the value it wrote. Although this is solved in the real implementation, this has been excluded 
from the presented algorithms, for clarity. The message sent in the end-synchronization contains the 
Rs[t] and W s[t] sets. 

4.5 Correctness 

To ease reasoning about the algorithm, several parts of the algorithm are called events, and have been 
given uniquely identifying names, printed in bold font. An event can consist of a single program 
statement (i.e. the Co(t) event), or an entire block of statements (i.e. the V(t,S) event). All events 
of one process are strictly ordered, but events of different processes can be executed concurrently. 
Except for local read accesses, all recognized events are handled by scheduler processes. Since there 
is a single process at each site, except for the Ac(t.X) event, all events on a single site are ordered 
(note that remote read accesses are handled by the scheduler, and are therefore ordered). Since the 
local Ac(t,X) event executed concurrently with other events, it does not access scheduler information. 
Since it can be executed concurrently with a write operation, local read access can return incorrect 
data. We recognize the following set of events. To ensure the uniqueness of these events, we assume 
that restarting transactions select a new transaction identity. 



4.5. CORRECTNESS 57 

Start event St(t). This event signifies the start synchronization of transaction t. The start timestamp 
oft is assigned in this event. '' 

Data access event Ac(t,X). This event represents read access to X by transaction t. Local read 
events do not occur in the scheduler process. Hence, they can interleave with scheduler events at the 
TransPlace(t). Since the local Ac(t,X) event only modifies data structures that are local tot, this 
does not influence the scheduler execution. 

Validation start event Vs(t). This event represents the start of the validation of transaction t. It 
marks the end of the execution phase of transaction t, and enables all validation events. 

Validation event V(t,S). This event represents the validation of transaction t at site S. It enters 
transaction tin the Pending set at S, and detects conflicts oft and other transactions. Furthermore, 
it enforces the restart-rule. 

Commit event Co(t). This event represents the commit (or restart) of transaction t. It activates the 
administration events. 

Administration event Ad(t,S). This event represents the actual writing of data items by committed 
transaction t at site S. If transaction t restarts, it represents the clean-up of the data structures at S. 

A transaction can be executed more than once, due to restarts. The successful run of a transaction 
is the execution in which the transaction commits. We prove that the successful runs of transactions 
are conflict-equivalent to the order in which transactions commit. In the proof below, "After E P" 
means that predicate P is true in all states where event E has occurred. The precedence relation -< 
denotes causal dependency. First, we give some preliminary results over the basic execution order of 
certain events. 

Basic transaction-order 
Vt, X. S: St(t)-< Ac(t,X)-< Vs(t)-< V(t,S)-< Co(t)-< Ad(t,S) 

Theorem 4.1 The successful runs of two transactions p and q are conflict-equivalent to the commit 
order. 

Proof 
1 Either p, q do not conflict, or they do conflict 
2 Suppose p, q do not conflict 
2.1 QED. 
3 Suppose p and q conflict over data item X at site S 
3.1 wlog. V(p,S) -< V(q,S) 
3.2 Either V(q,S) -< Ad(p,S) or Ad(p,S)-< V(q,S) 
3.3 Suppose V(q,S)-< Ad(p,S) 
3.3.1 q is restarted, contradiction 
3.4 Suppose Ad(p,S) -< V(q,S) 
3.4.1 Co(p) -< Co(q) 
3.4.2 Either (q writes X) or (q reads X and p writes X) 
3.4.3 Suppose q writes X 
3.4.3.1 Ad(p,S) -< Ad(q,S) 
3.4.3.2 QED. 

(exhaustive) 

{2, def. conflict-equivalence) 

(symmetry p, q, mutual exclusion) 

(exhaustive) 

(3,3.1,3.3, restart-rule) 

(3.4, transaction-order) 
(3, def. conflict) 

(3.4, transaction-order) 

(3.4.1, 3.4.3.1, transaction-order) 



58 CHAPTER 4. SCHEDUUNG IN LOW-CONFLICT ENVIRONMENTS 

3.4.4 Suppose q reads X and p writes X 
3.4.4.1 Lemma: Ad(p,S)-< Ac(q.X) 
3.4.4.1.1 Suppose Ac(q,X) -< Ad(p,S) 
3.4.4.1.2 After Ac(q.X), (S, X, C) e Rs[q], WT S[X]?.: C 

3.4.4.1.3 After Ad(p,S), WT S[X] > C 

3.4.4.1.4 q restarts, contradiction 
3.4.4.2 QED. 

(Ac(), transaction order, monotony WTS) 

(3.4.4, 3.4.4.1.1, 3.4.4.1.2, Ad(), def. clock, monotony WTS) 
{3.4, 3.4.4.1.2, 3.4.4.1.3, V(q,S)) 

(3.4.1,3.4.4.1) 
0 

The restart-rule ensures that the commit events of conflicting transactions are causally ordered. 
Hence, theorem 4.1 proves conflict serializability of successful runs. Since restarting transactions do 
not modify the database, they do not invalidate the execution of other transactions. It is possible that 
restarting transactions cause other transactions to restart as well (due to the simplicity of the restart­
rule). Therefore, life lock can occur. Transactions can be restarted infinitely often if a constant stream 
of conflicting transactions validates. However, the probability of such scenario's is small, since the 
conflict-probabilities are assumed to be near zero. Transactions can never be deadlocked, since they 
never wait on other transactions. 

4.6 Performance analysis of OCC-Iight 

We derive an expression for the overhead that is generated by the OCC-light scheduler. The expression 
shows how much overhead is attributed to synchronization and communication. 

When transaction t starts, it is embedded in a scheduling procedure. This counts as internal 
computation overhead, no synchronizations and communications are necessary for this embedding. 
Instead of closely analyzing the overhead that results from internal computation of the scheduler, we 
introduce the term I ntocc-t that represents all overhead of this type. It is clear that this overhead is 
dependent on the number of data accesses, and the type of data accesses of transaction t. Furthermore, 
in our (non-optimal) implementation, it is also dependent on the number of data accesses of concur­
rently validating transactions. This can be avoided by using improved data structures. The impact of 
these dependencies have not been analyzed. 

At the start of transaction t, it is synchronized with the scheduling process at the site where t 

executes, introducing one synchronization step Sync. Each write-request oft is administrated, but not 
actually performed. No context switches are necessary, and the administration consists of updating 
a data-structure local to t. Each local read-request oft is administrated, similar to write-requests. 
A "dirty" read is performed, which can be pre-empted by writing transactions. No synchronization 
is required. Remote read-requests involve two sequential messages (value request, and result). The 
scheduler actions are piggybacked on the normal execution, and extra overhead is minimal. The 
message-size grows with a few bytes (:5 40), The validation of t is performed by the scheduler. 
This introduces two context switches, which count as one synchronization. The global validation 
is piggybacked on the two phase commit protocol, and does not introduce extra messages. However, 
if the transaction is restarted, the messages of the two phase commit Protocol that is aborted due to 
the validation do count as scheduler overhead (2 extra messages). When remote items are written, the 
transaction-execution needs two sequential messages, these do not count as overhead. The scheduler 
piggybacks information on these messages. The extra overhead of this is negligible. If t restarts, the 
failed execution X also counts as overhead. The overhead of the scheduler can now be defined. Let 



4. 7. PERFORMANCE ANALYSIS OF MNESIA'S TWO PHASE LOCKING SCHEDULER 59 

V be the number of validation phases (V - l unsuccessful validations, and I successful validation). 
Let Vg be the number of failed validation phases that oontain validation of remote data accesses (i.e. 
V8 ~ V, and V8 = 0 iftransactions only access local data). 

Oocc-1 =Sync+ (V- l)X + V X Sync+ V8 x 2Comm + Intocc-1 

4.7 Performance analysis ofMnesia's two phase locking scheduler 

The prototype database Mnesia is equipped with a lightweight two phase locking scheduler (see also 
appendix C). We analyze the performance of this scheduler in the same way as we analyzed OCC­
light. The 2PL scheduler uses the same embedding of a transaction, as the OCC-light scheduler. The 
embedding is used for deadlock prevention: transactions that are (possibly) deadlocked are restarted. 
We introduce term I ntzp L to denote all scheduler overhead that results from internal computation. 

When a transaction starts, it notifies the scheduler of its existence, a synchronization step. This 
is used for wait-die deadlock prevention, see appendix C. Read and write access procedures are 
both modified. Before data access to items X is allowed, the transaction has to obtain a lock on 
X. This requires a synchronization step. It introduces overhead for local data accesses, and remote 
writes. This synchronization is piggybacked on remote read requests, and hence does not introduce 
additional overhead for remote reads. The 2PL scheduler uses the usual two phase commit protocol, 
and piggybacks the unlock operations on the protocol. Assume that transactions access K1 local items, 
and read Krr remote items, and write Kwr remote items. The deadlock prevention protocol can restart 
a transaction whenever it performs a data access. The restarted execution so-far, and the scheduler 
overhead so-far count as overhead. Instead of analyzing this factor, we introduce term Dprev that 
describes the total time-cost. The overhead generated by Mnesia's 2PL is described as follows. 

02n = (2 + Kt)Sync + 2K.,rComm + Dprev + Intzn 

4.8 Test results 

A number of experiments were conducted with both schedulers. To this end, the existing 2PL sched­
uler of the prototype database Mnesia was replaced by an implementation of the OCC-light scheduler. 
We present the results, and show that they are in accordance with the analysis. 

The schedulers have been tested in realistic environments, where background processes and other 
users occasionally influence the response times of transactions. These influences appear in repeated 
testing, and are best visible in multi-site tests (see figures 4.4 and 4.5). We have investigated the 
response time distributions of the tests, and found that the influence of other processes is very chaotic. 
Most transactions do not suffer any delays, and have an response time that is between 0.5 and 2 times 
the average. However, a very small percentage (less than 10 in a run of 2 minutes) of transactions 
show atypical behavior: they are delayed for several seconds. The perturbations in the graph are due 
to the varying number of atypical transactions in each runs. 

The hardware varied from I to 8 SPARC 5 workstations, running Solaris. Precise specifications 
(internal memory, clock speeds) of these machines were unavailable. The same set of workstations 
was used for the results of a single experiment, but for different experiments, different configurations 
were used. 

A single dot on a curve averages the results from a I 0 second test run for single-site tests, to 2 
minutes for multi-site tests (to account for the different execution durations of transactions). Each ma­
chine that participated in an experiment contained a database site and one or two application processes. 



60 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 

14000 .----.--.....---,---..----, 20000~--r--..----T---~-~ 

12000 

10000 

i : 
4000 

2000 

dirty­
occ -r·-
2pl ·9· .. 

.Ill'·· 

•••.• E.f 
Jil' .B ,.#·,./K 

18000 

18000 

14000 

6000 

4000 

2000 

dirty­
occ -r--
2pl ·13·· 

0~-~--~-~---~--~ 
2 4 6 e 0 2 4 6 8 10 

number ol data items number of data Hems 

(a) Read-only (b) Write-only 

Figure 4.3: TRANSACTION RESPONSE TIME ON ONE SITE, NO CONCURRENCY 

Each site consisted of 100 data items. Each application process executes a sequence of transactions, 
without delay between consecutive transactions. 

Experiment 1: local transactions 

Mnesia is configured as a single site database. Experiments are conducted with read-only and write­
only transactions that accessed from 1 to l 0 arbitrary data-items. These experiments simulate an 
environment with no conflicts (which is close to the telecom environment), by executing the transac­
tions in a sequential order. We tested the 2PL scheduler, the OCC-light scheduler, and the case where 
transactions execute at will, without any scheduler overhead (non-serializable executions can occur). 

Only one application process issues transactions, so the database executes at most one transaction 
at a time. The difference in performance between OCC-light and 2PL is directly related to the over­
head, generated by the schedulers. No conflicts occur, so no reruns are necessary under OCC-Jight, 
V = 1 and V8 = 0. The expression for the overhead is simplified as follows. 

Oocc-1 = 2Sync + lntocc-1 

No deadlocks have to be prevented, and the overhead of 2PL is as follows. 

02PL = (2+K1)Sync+lnt2PL 

From the formula's, we see that OCC-Iight has a constant overhead, if we ignore the overhead that 
results from internal computation. 2PL has an overhead that increases linearly with the number of ac­
cessed items. Therefore, we expect that the difference between OCC-light and 2PL increases linearly. 

Indeed, the experimental results from figure 4.3 show that the difference between OCC-Iight and 
2PL gradually increases. In the write-only experiment in figure 4.3b, the overhead of OCC-light is 
almost constant: the difference between the "dirty" transaction response time and the response time 
under OCC-light is approximately at 1400 microseconds. The read-only experiment in figure 4.3a 
shows a different picture, the computation overhead of OCC-Iight sharply increases with the number 



4.8. TEST RESULTS 

140000 ,---...,...--..,.----.---...-----, 

120000 

100000 

I:: 
E 

40000 

20000 

dirty­
oec -+-·-
2pl ·El·· 

2 4 6 8 
number of data items 

(a) Read-only 

10 

~000.---r---r---r--~--, 

2~ 

-g 200000 

j1~ 
E 100000 

~ 

dirty­
occ -+-·-
2pl ·El··· 

2 4 6 8 
number of data ~ems 

(b) Write-only 

10 

Figure 4.4: TRANSACTION RESPONSE TIME ON EIGHT SITES 

61 

of data items accessed. OCC-Jight's curve is almost as steep as the curve from 2PL, although 2PL 
requires more synchronization points. As mentioned before, the internal overhead generated by OCC­
Iight is dependent on the number of data items that is accessed. The validation of a read access requires 
the checking of the locally stored timestamps with the write-timestamps of data items. Apparently, the 
data-structures used to store the write-timestamps are not efficiently implemented. The experimental 
results in figure 4.3 show that 2PL generates more overhead than OCC-light for more data items. This 
matches our analysis. 

Experiment 2: remote data access 

The database is configured with 8 sites that each store the same number of data items. At each site, an 
application process continuously executes transactions. Transactions access from 0 to I 0 data items. 
Again, the OCC-light scheduler, the 2PL scheduler and "dirty" transactions were tested. Figure 4.4a 
shows the results if transactions only read the database, no conflicts occur. The overhead of OCC-light 
and 2PL is simplified to the following formula's. 

0 occ-1 = 2Sync + I ntocc-1 

olPL = (2 + KI)Sync + Int2PL 

Since only 12.5% of all data accesses are local, the influence of factor K1Sync is small. Furthermore, 
the time-costs of synchronizations are small compared to the execution time of the transaction (that 
requires 2 sequential messages for each accessed data item). OCC-light and 2PL should have simi­
lar performance, if I ntccc-l and I nt2PL are similar. Indeed, this matches the test-results from 4.4a. 
Transactions that access multiple sites are an order of magnitude slower than local transactions, even 
without extra scheduling overhead, as can be seen from the performance of "dirty" transactions. Fig­
ure 4.4b shows the results if transactions only write the database. Conflicts that lead to restarts can 
occur, so the overhead of OCC-Iight is described by: 

Oocc-1 =Sync+ (V- l)X + V x Sync+ Vg X 2Comm +I ntca-1 



62 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 

130000 

120000 dirty-
110000 000 +·-

2pi ·El·· 

100000 

I 90000 

.. 80000 
e 

70000 .!.! 
E 

60000 

50000 

40000 

30000 
0 20 40 60 80 100 

percentage of writes 

Figure 4.5: TRANSACTION RESPONSE TIME ON 8 SITES, READ/WRITE PERCENTAGE 

The total conflict probability is less than 0.5, so the average number of reruns is less than I. If we use 
this as a (very pessimistic) approximation the formula simplifies to: 

Oocc-1 = 3Sync +X+ 2Comm + lntocc-1 

Here X is the execution time of the transaction, which is linear in the number of data items accessed. 
However, X does not include any communications (since the writing of the transaction takes place 
after the validation), therefore X will be small. Hence, we expect that the curve of OCC-light increases 
slightly faster than the curve of the unscheduled ("dirty") execution. We ignore the restarts that result 
from the deadlock prevention of 2PL to arrive at the following expression: 

Ozn = (2+ K;)Sync +2KwrComm + lnt2PL 

As 87.5% of all data accesses is remote, the execution of 2PL introduces almost 2 sequential commu­
nications for each data access. These communications are very time-consuming, and we expect that 
the curve of 2PL increases much faster than OCC-light. Indeed, the results of the analysis match the 
test results of 4.4b. 

Experiment 3: read/write percentage 

The database is configured with 8 sites that each store the same number of data items. At each site, 
an application process continuously executes transactions. Transactions access 6 data items from 
arbitrary sites. Each access can be a read, or a write, decided arbitrarily. The probability that a data 
access is a write-access is varied from 0 to I 00%. 

Figure 4.5 shows the results. The two endpoints (100% reads and 100% writes) do not exactly 
match the previous tests, due to the fact that the tests were executed on a different set of machines. 
OCC-Iight and 2PL have comparable performance for remote reads, but OCC-light outperforms 2PL 
for remote writes. Interestingly, OCC-light improves its performance if the percentage of writes 
increases. Apparently, the total conflict probability is so low, such that the overhead of reruns is 
less than the performance increase that results from Jess reads and more writes. As observed before, 
the validation that requires checking of locally stored timestamps against the write-timestamps of 
data items is not efficiently implemented. This leads to a large computation overhead for each data 



4.9. CONCLUSIONS 63 

item that is reacl. Since validation of write-write conflicts relies on the restart-rule rather than the 
comparison of timestamps, this accounts for the increased performance. 

4.9 Conclusions 

The environment that is described in this chapter requires lightweight schedulers for good perfor­
mance. Due to the very short transactions, scheduler overhead is a major factor. The OCC-light 
scheduler that is designed in this chapter minimizes scheduler overhead. Both analysis and tests show 
that it performs well in low-conflict environments with short transactions. Overhead that results from 
internal computation is a significant factor of the total overhead of OCC-light for local transactions. 
Especially the overhead of checking consistency of reads was significant, and should be implemented 
more efficiently. 



64 CHAPTER 4. SCHEDULING IN LOW-CONFLICT ENVIRONMENTS 



Chapter 5 

Scheduling in high-conflict environments 

When the conflict-probability is high, and execution duration of transactions is long, light-weight 
schedulers (see chapter 4) perfonn poorly. More sophisticated schedulers that incur more scheduler 
overhead can obtain a better perfonnance. 

The chapter is organized as follows. In the next section, the environment in which the scheduler 
should operate is stereo-typed. Assumptions fonnalize the arguments, such that the problem speci­
fication from section 5.2 is obtained. In section 5.3 the scheduler design is discussed. The resulting 
algorithm in section 5.4 is quite complicated. Section 5.5 offers a correctness proof, as well as proofs 
for deadlock- and life lock -freedom. We perfonn a quick analysis of the scheduler overhead in section 
5.7, and test results appear in section 5.8. The chapter concludes with some reflections in section 5.9. 

Two similar schedulers have been published earlier. DOCC-DASO [55] is an adaptation of OCC­
TI that uses locks and a circular validation scheme. The distributed certification protocol from [21] 
already contains the basic ingredients of OCC-TI (although the article is rather difficult to follow). Its 
validation protocol is very message-intensive, consisting of several broadcasts, and is only effective if 
communication between sites uses a bus. 

5.1 Environment study 

The environment we discuss is not directly inspired by the applications from chapter 1. Still, these 
application areas are large, and it is likely that high-conflict environments exist within these areas. We 
are looking for a distributed database design, and we assume the following application characteristics. 

Data access of transactions. The database is either quite small, or it contains a subset of "hot data 
items". Hot data items are accessed more frequently than nonnal data items. Therefore, the probability 
that two transactions access the same data items is high. Again, we have no infonnation about actual 
systems with these characteristics. To bound the conflict probability, we require that it is at least 0.02. 

Transaction durations. Transactions are long. A significant amount of computation occurs be­
tween data accesses. Therefore, the overhead posed by the database will (if the overhead is reason­
able) not be a significant part of the transaction-response time. To fonnalize this characteristic, we 
assume that the amount of work that a transaction perfonns is linear in the number of data items that 
it accesses. Furthennore, at least l 00 internal computation steps are perfonned, for one data access. 

Data size. One a few kilobytes of infonnation are stored in one data item. Therefore, the commu­
nication costs of transferring the value of data items between sites are dictated by the latency of the 
network, rather than the throughput 

65 



66 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

Transaction arrival process. Transactions arrive unannounced, at a high rate, with exponentially 
distributed inter-arrival times. The total number of transactions that arrives is more than can be han­
dled by one processor. It is desirable that the database is scalable, i.e. the number of transactions that 
the database can execute in one time unit should be a linear function of the number of processors. No 
assumptions are made about the arrival rate of transactions, and the arrival rate is not announced by 
the application. 

Real-time requirements. No explicit deadlines are generated for transactions. Instead, the database 
should try to minimize the response time of transactions. 

We make additional assumptions to characterize the platform on which the scheduler is imple­
mented. These figures are derived from actual measurements in a network of SPARC 5 workstations. 
One-way communication between sites takes on average 1.5ms: Mlatency = l.5ms. Synchroniza­
tion implemented with local message passing takes on average 0.13ms: Msync = 0.13ms. We 
assume that Cpower = l, which means that the work of transactions equals their execution time. 

5.2 Specification 

The generic scheduling problem is the same as the generic scheduling problem in chapter 4. 

Generic scheduling problem. 

I platform: distributed page 22 
I data: non-temporal, distributed page 22 
! transactions: real-time, conflict-serializable, unannounced page 24 I 
I objective function: minimize average response time page 30 I 

Additional detm1ed information. 

Fact constraint Description 
_E(t, q E T: transconflict(t, q): 1)/ITI2

:;::: 0.02 The conflict probability is high. ! 

W(t):;::: IAorder(t)l x tOms i Transactions are computation intensive. 

i CPower =I The work of a transaction equals its exe- • 
cution time. I 

1 Msync = 0.13ms Time-cost of a synchronization (actual I 
measurement). 

! Mlatency = 1.5ms Latency of inter-site communication (ac- I 
tual measurement). i 

5.3 Design 

The objective of the scheduler that has to be designed is to minimize the transaction response time. The 
transaction response time depends on the trade-off between the overhead that the scheduler generates, 
and the processor utilization that the scheduler realizes (see chapter 3). How this trade-off should be 
made depends on the conflict probability, and the average transaction length. 

The conflict probability is high, suggesting that a large class of schedules is needed to obtain 
a good processor utilization. Furthermore, transaction execution durations are long, compared to 



5.3. DESIGN 

basic transaction loop 
start: T /[t] := [0, oo) 

access[t] := execute(t, T l[t]) 
validation(t, access, Tl(t]) 

database access procedure 
access(t, X, mode, Val) 

access[t]+ = (X. mode) 
T /[t]n = (WT S[X], oo) 
if mode= write then T /[t]n = (.RTS[X], oo) 
if T l[t] = 0 then restart( I) 

if mode= write then sbadowwrite[t, X]:= Val 
else return value[X] 

validation procedures 
validation(t, access[t], Tl[tj) 

select rr E T/[t] 
foreach q: 3X: (X, tm) E access[t] A (X, qm) E access[q] A Conf .Rel(tm, qm) do 

adjust(t, tm, r1, q, qm) 
foreach (X, read) E access[t] do RT S[X]max = r1 

foreach (X, write) E access[t] do 
WTS[X]max = rt 
value[X] := shadowwrite[t, X] 

adjust( I, tm, r 1 , q, qm) 
if tm =read A qm =write then T /[q]n = (r1, oo) 
iftm =write then T/[q]n = [0, r1) 

if T l[q] = 0 then restart{q) 

restart procedure 
restart(!) 

clear data structures oft 
goto start 

Algorithm 5.1: OCC-Tl SCHEDULER 

67 

the overhead that is introduced by synchronization and communication. No significant performance 
optimizations can be achieved by minimization of synchronizations. Optimization of communication 
overhead can lead to small performance gains, so should not be ignored. 

Design decision 5.1 Our main goal is to allow a large class of schedules. At the same time, the 
scheduler overhead should not be excessive. 

One of the most sophisticated database scheduling mechanisms for centralized architectures is 
optimistic concurrency control with time-stamp intervals (OCC-TI, see [57]). It allows for a large 
class of schedules, by doing precise bookkeeping of access-orders. This is exactly what we need to 
satisfy our first design decision. 

Design decision 5.2 The scheduler should recognize the same class of schedules (or more) as OCC· 



68 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

Tl. 

Algorithm 5.1 show the essential parts of the OCC-TI algorithm (see appendix B for notation def­
initions). The exact manipulations of the data structures have been left out. OCC-TI actually employs 
two kinds of validation: backward validation and forward validation. During backward validation, a 
transaction t validates its execution against the execution of previously committed transactions q. If 
a transaction has to restart, transaction t itself is restarted. During forward validation, a transaction 
t validates its execution against the execution of uncommitted transactions q. If a transaction has to 
restart, transaction q is restarted, instead oft. Since the scheduler designed in this section employs the 
same validation techniques, we call it distributed optimistic concurrency control with backward and 
forward validation (DOCC-BF). OCC-TI is essentially a centralized scheduler, the entire validation 
routine is contained in a critical section. Unless this requirement is lifted, the validation will become 
a tnajor bottleneck in a distributed system. 

Design decision 5.3 The distributed version of OCC-Tl should allow concurrent validation of trans­
actions, to avoid a bottleneck in the validation phase. 

Suppose that transactions can concurrently execute the validation procedure of algorithm 5.1. 
Inconsistencies can occur if transaction p adjusts the time-stamp interval of transaction q, after 'Cq has 
been defined (rq E T l[q] can be disturbed by this behavior). Therefore, if t selects r,, the distributed 
validation protocol has to ensure that conflicting transactions q do not select 'Cq, until t has carried 
out all adjustments. Therefore, conflicting transactions q have to be delayed in their validation phase. 
This can be accomplished by locking all data items that have been accessed by t for the duration of the 
validation. To keep the protocol scalable, locks are stored with the data items they guard. Therefore, 
the distributed validation protocol consists of the following steps: 1) lock all accessed data items 
oft, 2) perform validation as described in algorithm 5.1 and 3) unlock accessed data items. The 
communications necessary in step I and 3 can be piggy-backed on the two phase commit protocol 
(see appendix C). 

The site where a transaction t executes is called the coordinator oft. A site where a transaction t 
accesses data is called a participant of t. The validation is initiated at the coordinator, that notifies all 
participants oft that step I has started. After all Jocks have been granted, the coordinator of t selects 
r,. Finally, the participants oft modify WT S, RT S, write values, and notify conflicting transactions 
q that adjustments are made toT l[q]. 

Design decision 5.4 The distributed validation protocol uses locks to avoid inconsistent validations. 

The decision to use locks introduces the possibility of distributed deadlock. Using deadlock pre­
vention mechanisms like wait-die (see appendix C) would reduce the concurrency offered by the 
scheduler. Since a high degree of concurrency is our primary goal, deadlock prevention techniques 
that require restarts (as used in chapter 4) are not appropriate. The DOCC-DASO scheduler in [55] 
uses an acyclic validation order to prevent deadlocks. This introduces a considerable amount of com­
munication overhead: if transaction t accessed N sites, step l of the validation requires N sequential 
messages. We observe that a transaction t. waiting on a lock held by q, can complete step 1 of its 
validation without delays. As long as tis blocked before step 2, q can still adjust t. By changing the 
locks to so-called delayed locks, the coordinators of transactions can gather sufficient information to 
detect potential distributed deadlocks. For example: suppose transactions t and q both accessed X at 
siteS, and Y at site S'. Suppose t locks X before q, and q locks Y before t. A distributed deadlock 
bas occurred. If t and q complete step l without waiting, the coordinators of t and q can detect this 
cycle: information about the lock-status of X andY is available. 



5.3. DESIGN 69 

Design decision 5.5 The distributed validation protocol uses delayed Jocks that block transactions 
from starting step 2 of the validation protocol. 

We analyze what infonnation about the lock-status can be gathered by the coordinators of trans­
actions. Consider two transactions t, q that both access X in a conflicting way. Either t obtains the 
lock before q (thus blocking q from entering step 2 until t completes step 3), or vice versa. Suppose 
without loss of generality that t obtains the lock before q. The following scenarios are possible. 

• Transaction t releases the lock before q accessed X. Hence, transaction t updates WTS[X], 
RTS[X] before q accesses X. Therefore, when q accesses X, it backward validates against t, 
by adapting Tl[q] according to WTS[X], RTS[X] (see algorithm 5.1). The transactions do 
not need to be aware of each other. 

• Transaction q accessed X before t requests the lock. Both the coordinator of t and q can detect 
that t blocks q from entering step 2. The coordinators of t and q know that both have complete 
infonnation about the lock-order. Since the knowledge is shared, this is called a shared conflict. 

• Transaction q accessed X after t requested the lock. Only the coordinator of q detects that 
t blocks q from entering step 2. Unless t and q conflict over more than one data item, the 
coordinator oft is unaware of q. Since only q has knowledge about the conflict, this is called 
an unshared conflict. 

Therefore, the coordinator of a transaction t distinguishes three types of conflicts with other transac­
tions. First, unshared conflicts that are detected by t prevent t from entering step 2, until the matching 
unlock operations are executed. Second, shared conflicts can be of two types. If transaction t requests 
a lock on X before conflicting transaction q requests the lock, we say that t owns the conflict with q. 
If transaction t requests a lock on X after conflicting transaction q requests the lock, we say that t is 
owned by q. 

Suppose transaction t both owns q, and is owned by q. Neither transaction is allowed to enter 
step 2 of the validation, a deadlock occurs. This situation is possible if t and q conflict over more than 
one data item, at more than one site. The coordinator of t and q both detect this deadlock, since both 
conflicts are shared. We introduce a total order < on the transactions, to decide which transaction 
is allowed to enter step 2 first. This order can reflect the real-time priorities of transactions (for 
example, transactions can be ordered according to their deadlines, such that more urgent transactions 
are allowed to complete validation first). This has not been tested. The following scenarios describe 
all possible deadlocks of cycle length two. 

• Transaction t owns q, and is owned by q. Without loss of generality assume t < q. The 
coordinator oft and q independently decide that tis allowed to enter step 2 before q. 

• Transaction t owns q, and detected an unshared conflict with q. The coordinator of q is unaware 
that t is blocked. Therefore, q cannot decide to enter step 2 before t, and will wait. To avoid 
deadlock, t ignores the unshared conflict, and enters step 2 before q. 

• Transaction t detects an unshared conflict with q, and transaction q detects an unshared conflict 
with t. This scenario cannot occur. If t detects an unshared conflict with q over X, t accessed 
X after q requested a lock to X. Hence, q has completed all data access, before t requests its 
first lock. Therefore, q cannot detect an unshared conflict, QED. 



70 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

The most common deadlock of cycle length two is avoided by the rules given above. The dis­
tinction between shared and unshared conflicts allows the protocol to solve these deadlocks without 
additional communication. The coordinator of a transaction t will maintain the sets owned[t] and 
ownedby[t] that contain the identities of conflicting transactions q. The set unshared[t] contains all 
identities of conflicting transactions q, where t has detected an unshared conflict. This set is not men­
tioned in the final algorithm, as it is implemented by the other data structures. In the design of the 
new scheduler, we will use unshared[t] for clarity. 

Design decision 5.6 The distributed validation protocol uses the deadlock avoidance rules 1 and 2 to 
avoid all deadlocks of cycle length two. 

Distributed deadlocks of cycle length > 2 can only be detected by introducing additional 
communications between sites. We observe that a transaction t can only be part of a deadlock cycle 
if it is blocked: ownedby[t] U unshared[t] ::j: 0. Furthermore, transaction t has to block at least one 
other transaction q: owned[t] =!= 0 v 3q : t E unshared[q]. Potential deadlock cycles are broken 
by requiring that a blocked transaction t does not block other transactions q when q < t. This is 
captured by the reverse rule. 

If transaction t is about to enter validation-step 2, but is blocked by an arbitrary transaction p, and t 
blocks q ::j: p, then t reverses the blocking-order with q if q < t. 

Of course, the coordinator oft notifies the coordinator of q of the decision, such that q is no longer 
blocked by t. This introduces an inter-site communication. Fortunately, this additional communication 
is only required if the reverse rule is used to avoid deadlocks. 

Design decision 5.7 The distributed validation protocol uses the reverse rule to establish an acyclic 
blocking order, thus avoiding deadlocks of cycle length > 2 

The coordinator of transaction t can only reverse the blocking order with q, if it knows of the 
existence of q. If q E owned[t], the coordinator oft knows that q exists. If q ~ owned[t], the conflict 
is unshared. Hence, the coordinator oft cannot use the reverse rule, unless q informs the coordinator 
of t that it is blocked by t. Therefore, the notification rule is introduced. 

If transaction tis about to enter validation step 2, but is blocked with only unshared conflicts by q, 
then t notifies q that it is blocked, if t < q. 

This requires that the coordinator oft communicates with the coordinator of q, notifying q oft's 
existence. This introduces an inter-site communication that is only required if the notification rule 
is applied. At most two sequential inter-site communications (wait notification and reverse wait) are 
necessary to break distributed deadlocks. 

Design decision 5.8 The distributed validation protocol uses the notification rule to ensure that the 
reverse rule can be enforced when necessary. 

This completes the design of the DOCC-BF algorithm as presented in the next section. A number 
of optimizations are possible, which are described in section 5.6. 

5.4 The DOCC-BF algorithm 

We present the DOCC-BF algorithm in a simplified form to facilitate the correctness proof in section 
5.5. First of all, none of the optimizations of section 5.6 are contained in the algorithm. Second, we 



5.4. THE DOCC-BF ALGORITHM 71 

Figure 5.2: AN EXAMPLE SYSTEM CONFIGURATION 

assume that all communication between pairs of sites is first-in, first-out {FIFO). Lifting this assump­
tion is possible (and has been done in the prototype implementation), but complicates the description 
of the algorithm. Third, we abstract from some trivial bookkeeping by assuming that the addresses of 
all scheduler-processes and transactions are globally known. The address of the process that executes 
a transaction t is simply t, the address of the scheduler process that serves as t 's coordinator (see also 
next subsection) is denoted coord(t), and the address of the scheduler process that manages data item 
X is simply X. For simplification, we have assumed that each data item is stored at a separate site. 
The simplification only serves to ease the correctness proof. In the prototype implementation, this 
simplification has been removed. 

5.4.1 System architecture 

At each site S in the network, a scheduler process is created. Such a scheduler process has two main 
functions. It acts as a coordinator for transactions t that execute at siteS, and it acts as a participant 
for transactions t that access data, stored at site S. In the unoptimized algorithm, the data space of the 
coordinator of t does not overlap with participants or other coordinators. All communication takes 
place through messages. The data space of a participant of t can overlap with other participants, and 
some communication between participants takes place through direct modification of data-structures. 

Figure 5.2 gives a possible configuration: transaction t executes at site A, and transaction q ex­
ecutes at site B. Both transactions access data on site C, and transaction t accesses data on site A. 
Some points of interest: although the coordinator of t and the participant oft on site A are actually 
the same scheduler process, the unoptimized algorithm does not use this fact. When the coordinator 
communicates with the participant, the scheduler process actually sends a message to itself! An im­
plementation that uses separate processes for participants and coordinators is possible (and has been 
drawn in the figure). Second, participant t and participant q at site C are also the same scheduler 
process. In this case, the algorithm does make use of this fact, and communication between the two 
participants is implemented by direct modification of data structures. 

The execution of a transaction t is encapsulated, such that the scheduler can restart t's execu­
tion when necessary. We assume that a transaction t is executed by calling execute(t). Furthermore, 
the data access routine is modified, such that t communicates with the appropriate scheduling pro­
cess, when it needs to access data. Finally, we assume that the coordinator oft can stop t's current 



72 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

basic transaction loop 
start: select unique identity t 

execute(t) 
validation(t) 

communication with database 
access(t, X, mode, Val) 

enable Ac(t,X,mode) 
receive Result from coord(t) 
return Result 

validation(t) 
enable Vs(t) 
receive committed from coord(t) 

Algorithm 5.3: DOCC-BF TRANSACTION MODIFICATION 

execution, and start a new one, by issuing command "restart(t)". 
The coordinator of a transaction t sends messages to transaction t. If t requested data access, the 

coordinator returns the result of the data access. If t requested validation, the coordinator returns a 
message if t has committed, and can finish execution. If necessary, the coordinator sends restart mes­
sages, instead of result/commit messages. Since these communications do not influence the scheduler 
execution itself, these have not been included in algorithm 5.3 and algorithm 5.5. 

5.4.2 Scheduler description 

The execution of the distributed scheduler is described as a set of atomic events. An event cannot 
occur before it is eiUlbled. The Co(t) event is an exception to this rule, which is further explained in 
the paragraph below. When an event is enabled, it can occur at any moment, and it will eventually 
occur. Events can enable other events (in our prototype, an event is enabled by sending a matching 
message to a scheduler process). We abstract from the contents of messages that enable events: if 
event b is {indirectly) enabled by event a (i.e. a path of events a = e1, ... en = b exists, such that 
e; enables ei+1), event b can directly access the data structures that are modified by a. Each event is 
uniquely identified by its type, and its parameters, and occurs at most once. The scheduler protocol 
is initiated by the executions of transactions that can e!Uible data access events Ac(t,X,mode) and the 
validation-start event Vs(t) (for explanation of the events, see below). All other events are enabled 
by events. Events are grouped: events that occur at the coordinator of t, and events that occur at the 
participants of t. 

The commit event Co(t). The commit of a transaction t cannot occur before a number of require­
ments have been met. First of all, transaction t must have finished its execution, and have performed 
validation on all sites, where t accessed data. Second, all conflicts with transactions q are either re­
solved, or those transactions q are blocked by t. The order in which these requirements are met is not 
fixed, and the commit oft can be initiated by three different events (Vm(t,X), Rw(t,q) and Cr(t,q,X)). 
To reduce the length of the correctness proof, we assume that the Co(t) event directly follows the event 
that initiated it. Both events are executed in one atomic section. This is denoted as follows: if line 14 



5.4. THE DOCC-BF ALGORITHM 

Ac(t,X,nrode) 
1 ifmode=writethen T l[t, S]n = (RTS[X], oo) 
2 T/[t,X]n=(WTS[X],oo) 
3 ac[l, X, mode]:= true 
4 enable Ar(t,X,mode) 

V(t,X) 
5 foreach q: -.ad[q, X] A 3tm, qm : Conf Rel{tm, qm) A ac[t, X, tm] A ac[q, X, qm] do 
6 conflicts[t, Xl+ =(X, q, qm, t, tm) 
7 if~v[q, X) 
8 then owned[t, X]+= q; ownedby[q, XJ+ = t; 
9 conflicts[q, XJ+ =(X, t, tm, q, qm) 
10 v[t, X]:= true 
11 enable Vm(t,X) 

Ad(t,X) 
12 if ac[t, X, write ]then WTS[X] := max(WTSIXJ, r,) 
13 if ac[t, X, read]then RTS[X] := max(RTSIX], rr) 
14 foreach q : ~ad[q, X] A 3tm, qm: (X, t, tm, q, qm) E conflicts[q, X] U conflicts[t, X] do 
15 enable Cr(q,t,X) 
16 ad[t, X]:= true 

Algorithm 5.4: PARTICIPANT CODE 

73 

of the TIC procedure in algorithm 5.5 is executed, the Co(t) event occurs directly after the event that 
invoked the TIC procedure. We assume that the Co(t) event consists of line 14 and 15 of the TIC 
procedure. 

Participant events 

The scheduler stores for each data item X write-timestamp WT S[X], and read-timestamp RT S[X]. 
For each transaction t of which the scheduler is a participant the following sets are maintained. Set 
conflicts[t, X] contains all transactions that conflict with t over X. Set owned[t, X] contains all trans­
actions that have a conflict with t, and towns the conflict. Set ownedby[t, X] contains all transactions 
q that have a conflict with t, and q owns the conflict. Boolean variables are maintained that are 
set to true if the corresponding events occur: ac[t, X, mode], v[t, X], ad[t, X] are true if events 
Ac(t,X,mode), V(t,X), Ad(t,X) have occurred. See below for the description of the events. Finally, 
T I[t, X] stores restrictions on r1, generated at site X. 

The participant should initialize all data structures, the first time that a transaction t accesses data 
stored at the participant. This initialization is not described in algorithm 5.4. Instead, we assume that 
all data structures are correctly initialized. 

Data access event Ac(t,X,mode). This event is executed on the participant oft that stores data item 
X. Its functionality is similar to the data access procedure in algorithm 5.1. It performs a backward 
validation, by adjusting Tl[t, X] in accordance with mode, and WTS[X], RTS[X]. Furthermore, 
the occurrence of the event is administrated in ac[t, X, mode]. Finally, it enables the Ar(t,X,mode) 
event. 



74 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

Validation event V(t,X). This event is executed at the participant oft where X is stored. It enables 
the Vm(t,X) at the coordinator. Furthennore, it detects all owned, ownedby and unshared conflicts of 
t, regarding X. The occurrence of the validation event is administrated in v[t, X]. 

Administration event Ad(t,X). The administration event is executed at the participant oft where X 
is stored. It updates WT S[X], RT S[X]. Furthennore, it enables Cr(q,t,X) events for each transaction 
q that has been blocked by t. The occurrence of the administration event is administrated in ad[t, X]. 

Coordinator events 

The scheduler stores for each transaction t its timestamp r, (initially undefined), the allowed times­
tamp interval T l[t], the transactions it owns owned[t], and that own t: ownedby[t]. Furthennore, it 
maintains the set of detected conflicts conflicts[!], the set of resolved conflicts resolved[!], and the set 
of transactions that reversed wait order reversed[!] tot. The set of transactions that t has decided to 
wait for is waitfor[t]. Set notified[t] contains the transactions that have been notified that tis waiting. 
The set of participating sites is maintained in sites[t]. Furthennore, the boolean vm[t, X] specifies 
whether the validation event for site X has occurred, and the boolean vs[t] specifies whether the 
validation start event has occurred. 

If all conflicts between transactions t, q are resolved, both transactions can commit. We introduce 
shorthand existsunresolved(t. q) that signifies whether t has detected an unresolved conflict between t 
and q: existsunresolved(t, q) = 3X, m, m': (X, t, m, q, m') E conflicts[t]- resolved[!]. We assume 
that conflicts are described in a unifonn notation, although this is not expressed in the algorithm. 
Therefore, the following equivalence relation holds: (X, q, qm, t, tm) = (X, t, tm, q, qm). We will 
use both notations to describe the same conflict between t and q. The merge rule specifies whether a 
transaction t has merged all validation information of all participants. 

Definition 5.1 Merge rule 
allmerged(t) = vs[t] 1\ VX E sites[t] : vm[t, X] 

The commit rule specifies whether a transaction that satisfies the merge rule can commit. A transaction 
t is not allowed to commit, as long as it is blocked by other transactions q. It remains blocked until 
either q restarts (not described in the algorithm), q reverses the blocking order, or the conflicts between 
t and q are resolved. 

Definition 5.2 Commit rule 
cancommit(t) = 

Vq: existsunresolved(t, q)/\ 
(t < q 1\ (q E owned[t] U reversed[t])) v (q E owned[t] 1\ q ¢ ownedby[t] U waiifor[t]) 

The Mtification rule specifies which transactions q have to be notified by transaction t, if t satisfies 
the merge rule, but cannot commit. All transactions q with q > t that block t and are unawareof t 
have to be notified to prevent deadlock. The set of transactions that has to be notified is given by the 
following expression. 

Definition 5.3 Notification rule 
tonotijy(t) = 

[q I existsunresolved(t, q) 1\ t < q 1\ q ¢ owned[t]l\ 
q ¢ ownedby[t] U Mtijied[t]] 



5.4. THE DOCC-BF ALGORITHM 

Ar(t,X,mode) 
I T /[t]n = T l[t, X] 
2 sites[t]U = {X} 

Vs(t) 
3 foreach X E sites(t] do enable V(t,X) 
4 vs[t] := true 

Vm(t,X) 
5 confiicts[t]U conflicts[ t, X] 
6 owned[t]U = owned[t, X] 
7 ownedby[t]U = ownedby[t, X] 
8 vm[t, X] :=true 
9 if allmerged(t) 1\ ~cancommit(t) then 
10 foreach q E tonotify(t) do notified[ I]+= q; enable Wn(q,t) 
I I foreach q E toreverse(t) do waitfor[tl+ = q; enable Rw(q,t) 
12 TTC(t) 

TTC(t) 
13 if allmerged(t) 1\ cancommit(t) then 
14 Co(t) chooser, E T l[t] 
15 foreach X E sites[t) do enable Ad(t,X) 

Wn(t,q) 
16 if Tr =undefined then 
17 conflicts[t]U =[(X, t, tm, q, qm)[(X, t, tm, q, qm) E conflicts[q]] 
18 waitfor[tl+ = q 
19 enable Rw(q,t) 

Rw(t,q) 
20ih1 =undefined then 
21 reversed[t]+ = q 
22 TTC(t) 

Cr(t,q,X) 
23 if Tr =undefined then 
24 conflicts[t]U = [(Y, t, tm, q. qm)[(Y, t, tm, q, qm) E conflicts[q]J 
25 if (X, t, write. q, read) E conflicts[!] then 
26 T /[t]n = (Tq, oo); resolved[£]+= (X, t, write, q, read) 
27 if (X, t, write, q, write) E conflicts[t] then 
28 T/[t]n = (Tq, oo); resolved[tl+ =(X, t, write, q, write) 
29 if (X, t, read, q, write) E conflicts[t] then 
30 T/[t]n = [0, rq); resolved[t]+ =(X, t, read,q, write) 
31 TTC(t) 

Algorithm 5.5: COORDINATOR CODE 

75 

The reverse rule specifies which transactions q take precedence over t, even if t blocks q. This 
rule becomes effective if t satisfies the merge rule, but cannot commit. Transaction t reverses the wait 



76 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

order with all transactions q with q < t, and t blocks q. The set of transactions with whom the wait 
order should be reversed is given by the following expression. 

Definition 5.4 Reverse rule 
toreverse(t) = 

[q I existsunresolved(t, q) A q < t A q E owned[t]l\ 
q ~ ownedby[t] U waiifor[t]] 

At the start of the execution of a transaction t, the coordinator oft needs to be notified oft's 
existence, to initialize the data structures that pertain to t. This initialization has not been included in 
the algorithm 5.5, instead we assume that all data structures are correctly initialized. 

Access resolution event Ar(t,X,mode). The access resolution event is executed at the coordinator 
oft. It updates T l[t] with T l[t, X]. At this point, the scheduler decides to restart t, if T l[t] = 0. 
Restarts of transactions have not been described in the algorithm. The identity of participant X is 
stored in sites[t]. Finally, the event reactivates the transaction execution by returning the result of the 
data access (the algorithm does not describe this result). 

Validation start event V s(t). The validation start event is executed at the coordinator oft. It enables 
V(t,X) events at all participants X oft. The occurrence of the validation start event is administrated 
by the coordinator. 

Validation merge event Vm(t,X). The validation merge event is executed at the coordinator of 
t. It merges the validation information of the V(t,X) event with other validation information in the 
coordinator oft. The occurrence of the event is administrated. Furthermore, the TTC-procedure is 
invoked. 

procedure TTC(t). The TTC procedure (short for "try to commit") is not an event, but is invoked 
by Rw(), Cr() and Vm() events. As long as there is a participant Y for which Vm(t,Y) has not 
yet occurred, no actions are taken. Otherwise, the notification rule is invoked. This can lead to the 
enabling of Wn(q,t) events. If t satisfies the commit-rule, it commits, executing the Co(t) event in 
one atomic section (the Co(t) event is an exception to normal events that is explained above). If t 
cannot commit, the reverse rule is invoked. This can lead to the enabling of Rw(q,t) events. 

Commit event Co(t). The commit event is executed at the coordinator oft. It is directly follows 
a Wn(), Cr() or Vm() event, in the same atomic section. It defines the timestamp r, and enables 
Ad(t,X) events for all participants X. 

Conflict resolution event Cr(t,q,X). The conflict resolution event is executed at the coordinator 
of t. It ensures that the coordinator of t is aware of all conflicts between t and q. Furthermore, 
it resolves the conflict between t and q over X, according to the rules specified in algorithm 5.1. 
Finally, it invokes the TTC(t) procedure. The conflict resolution event directly accesses conflicts[q]. 
This information is included (by the coordinator of q) in the message that enables the administration 
event. In tum, the participant that executes the administration event includes the information in the 
message that enabled the conflict resolution event. 

Reverse wait event Rw(t,q). The reverse wait event is executed at the coordinator oft. It notifies 
the coordinator that the blocking order between t and q is reversed. Furthermore, it invokes the TTC(t) 
procedure. 



5.5. CORRECTNESS 77 

Wait notification event Wn(t,q). The wait notification event is executed at the coordinator of t. 
It notifies the coordinator of t that q is blocked by t. If t has not yet executed Co(t). the Rw(q,t) 
event is enabled. Otherwise, no actions take place. Since the wait notification event directly accesses 
conflicts[q], this infonnation is included in the message that enables the wait notification event. 

5.5 Correctness 

We proof that all schedules generated by DOCC-BF are contlict-serializable. Each schedule is 
conflict-equivalent to the timestamp-order <r that is generated by the algorithm, if the following re­
strictions on the time-stamps (taken from OCC-TI [57]) are maintained: 1) If treads X before q writes 
X then <t < <q. 2) If t writes X before q reads X then "Ct < <q. 3) If t writes X before q writes X then 
"Ct < rq. Since the time-stamps are chosen from the respective T 1 -intervals, this translates to restric­
tions on the T 1 intervals. Requirement <t < tqis satisfied if T l[t] c [0, tq) v T l[qJ c (r, oo). 
We prove that the DOCC-BF algorithm detects all conflicts between pairs of transactions t and q, 
and that each conflict is resolved exactly once, by adapting either T /[t] or T l[q]. Suppose t and q 
have a conflict over data item X. We distinguish two cases. Either t or q (suppose t, without loss of 
generality) has perfonned the Ad(t,X) event before q perfonns the conflicting Ac(q,X,mode) event. 
Since Ad(t,X) updates WT S[X] or RT S[X], T I [q] is modified in the matching Ar(q,X,mode) event. 
Alternatively, Ac(t,X,mode) -< Ad(q,X) A Ac(q,X,mode') -< Ad(t,X). This case requires more elab­
orate analysis. The remainder of the correctness proof deals with this interleaving. We start with some 
preliminary results and definitions. We say that an event e belongs to transaction t, if the first part of 
e's parameter set refers tot. For example, event Ac(t,X,read) belongs tot, event Rw(t,q) belongs to 
t, and event Cr(q,t,X) belongs to q. 

Definition 5.5 An event e belongs to transaction t if the first part of e's unique identity refers tot. 

All data structures are monotone increasing according to the subset-ordering (i.e. an element 
added to a set is never removed). Therefore, if an element is not contained in a set after the transac­
tions have finished execution, it was not contained in that set in earlier stages of the execution. By 
considering the state of the data structures after the execution of transactions is completed, we can 
abstract from different execution orders that have the same functionality. 

Definition 5.6 A system state is t-maximal, if no event that belongs to transaction t is enabled, and 
no event that belongs to t can be enabled in future states. 

We consider the data structures that pertain to t and q, in states that are both t-maximal and 
q-maximal. 

Intuitively, if a state is t-maximal, and t did not complete its execution, t is either deadlocked 
or life locked. Also, if a state is !-maximal and q-maximal, and a conflict between t and q is not 
yet resolved, the protocol is not preserving conflict serializability. A number of basic properties of 
algorithms 5.3, 5.5 and 5.4 are presented below. They are used in the correctness proof, as well as in 
the deadlock and life lock freedom proofs. 

I. Basic transaction execution. Each transaction t will execute an arbitrary number of data access 
events Ac(t,X,mode), and exactly one validation start event Vs(t) (algorithm 5.3). Each data 
access Ac(t,X,mode) is followed by an access resolution event Ar(t,X,mode): Ac(t,X,mode) -< 
Ar(t,X,mode) (line 4 Ac(t,X,mode) ). For each accessed site X, one validation event follows the 
validation start, and one validation merge follows the validation: Vs(t) -< V(t,X) -< Vm(t,X) 



78 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

(line 3 Vs(t), line 11 V(t,X)). The commit event Co(t) occurs after all validation events Vm(t,X): 
Vm(t,X)-< Co(t) (line 13 ITC(t), definition allmerged(t)). For each validation event V(t,X), 
an administration event Ad(t,X) follows (line 3 Vs(t), line 15 TTC(t). All administration events 
are preceded by the commit event: Co(t) -< Ad(t,X) (line 13, 15 ITC(t)). 

Ac(t,X,mode) -< Ar(t,X,mode) -< Vs(t) -< V(t,X) -< Vm(t,X) -< Co(t) -< Ad(t,X) 

2. Uxesites[tJCOnflicts[t, X] s;; conflicts[t] 
Uxesites[t]OWned[t, X] s;; owned[t] 
Uxesires[tJOWnedby[t, X] s;; ownedby[t] 

After V(t,X), conflicts(!, X] is constant (line 7, 10 V(t,X)). After Vm(t,X), conflicts[t, X] s;; 
conflicts[t] (line 5 Vm(t,X)). Property I and line 3 Vs(t) show that V(t,X) and Vm(t,X) occur 
for all X E sites[t]. Since conflicts[t] is monotone, the result follows. Similar reasoning proves 
the result for owned[t, X] and ownedby[t, X]. 

3. q E owned(t].;::. t E ownedby[q] 

This follows from line 8 V(t,X), V(q,X) event, and property 2. 

4. Ac(t,X,tm) -< Ad(q,X) 1\ Ac(q,X,qm) -< Ad(t,X) 1\ 

Conf Rel(tm, qm) :::} (X, t, tm, q, qm) E conflicts(q] U conflicts[!] 

This follows from line 5 ofV(t,X), V(q,X), and property 2. 

5. 3(X, t, tm, q, qm) E resolved[!] :::} [(Y, t, tm, q, qm)i(Y, t, tm, q, qm) E conflicts[q]] s;; 
conflicts[t]) 

Since (X, t, tm, q, qm) E resolved[!], Cr(t,q,X) occurred (line 26, 28, 30Cr(t,q,X)). Hence the 
result (line 24Cr(t,q,X)). 

6. q E owned[t] :::} 3(X, q, qm, t, tm) e conflicts[t] 

This follows from line 6, 8 V(t,X), and property 2. 

7. q E ownedby[t] U waitfor[t]:::} 3(X, q, qm, t, tm) e conflicts[t] 
This follows from the following two statements. 
q E ownedby[t]:::} 3(X, q, qm, t, tm) e contlicts[t] follows from line 8, 9 V(t,X). 
q E waitfor[t] :::} 3(X, q, qm, t, tm) E conflicts[!] follows from line 17, 18 Wn(q,t), line 11 
Vm(t,X),line 10 Vm(t,Y) and definition of tonotify(q) and toreverse(t). 

8. q E reversed[!]:::} t < q 1\ 3(X. q, qm, t, tm) E contlicts[q] 

In event Rw(t,q), q is added to reversed[!]. Two scenario's are possible. First, Rw(t,q) can be 
enabled by line ll Vm(q,X). From the definition of toreverse(q) the result follows. Second, 
Rw(t,q) can enabled by line 19 Wn(q,t), which in tum is enabled by line lO Vm(t,X). From 
the definition of tonotify(t), and line 17, 18 Wn(q,t) the result follows. 

9. q E reversed[!] .;::. t E waitfor[q] 

In event Rw(t,q), q is added to reversed[t]. Two scenario's are possible. First, Rw(t,q) can be 
enabled by line ll Vm(q,X), the result directly follows. Second, Rw(t,q) can enabled by line 
19 Wn(q,t), the result follows from line 18 Wn(q,t). 



5.5. CORRECTNESS 79 

lO. Sets conflicts[!], ownedby[t], owned[t), reversed[!], waitfor[t] and resolved[t] are constant after 
Co(t). 

The only events that modify these data structures are Vm(t,X). Wn(t,q), Rw(t,q) and Cr(t,q,X). 
Of these events, Vm(t,X) cannot occur after Co(t) (property 1). The other events will not 
modify data structures, after Co(t) has occurred (lines 16, 20, 23). Line 20 and 23 have been 
added to simplify the proof-obligation, the protocol ensures that Rw(t,q) and Cr(t,q,X) events 
do not occur after Co(t). This proof has been omitted to keep the correctness proof as short as 
possible. 

The following lemma states that if t commits without solving a conflict over X with q, q will 
solve the conflict. 

Lemma 5.7 Suppose 
(AI) Ac(t,X,tm) -< Ad(q,X) and Ac(q,X,qm) -< Ad(t,X). 
(A2) Conf Rel(tm, qm) 
(A3) Cr(t,q,X) does not occur 
Then Cr( q,t,X) -< Co( q) 

Proof 
Two cases: 3(Y, t, tm, q, qm) e conflicts[!] or f-I(Y, t, tm, q, qm) e conflicts[t] 
1 Suppose f-I(Y, t, tm, q, qm) E conflicts[!] 

(exhaustive) 

2 (X, t, tm, q, qm) E conflicts[q) 
3 q ¢ ownedby[t] 
4 t ¢ owned[q] 
5 t ¢ reversed[q] 
6 \f(Y, t, tm, q, qm) E conflicts[q]: (Y, t, tm, q, qm) E resolved[q] 
7QED. 
Second case: 
1 Suppose 3(Y, t, tm, q, qm) E conflicts[!] 

(1, (AI), property 4) 
(I , property 7) 
(3, property 3) 
(I , property 8) 

( 4,5,commit rule) 
(2, 6, Cr(t,q,X), property 10) 

2 3(Y, t, tm, q, qm) E conflicts[t]- resolved[t] (I, property 4 and 5, (Al-A3)) 
Should transaction t resolve a conflict, (X, t, tm, q, qm) is added to conflicts[!]. This c01iflict is not 
resolved by t (A3), due to statement 1 t has information about at least one unresolved conflict. 
3 t < q => q E owned[t] U reversed[!] (2, commit rule) 
4 q < t => q E owned[t] 1\ q ¢ ownedby[t] U waitfor[t] (2, commit rule) 
5 t < q => t e ownedby[q] U waitfor[q] (3, property 3 and 9) 
6 q < t => t E ownedby[q] 1\ t ¢ owned[q] U reversed[q] (4, property 3 and 9) 
7 3(Y, t, tm, q, qm) e conflicts[q] (5,6, property 7) 
8 V(Y, t, tm, q, qm) E conflicts[q]: (Y, t, tm, q, qm) E resolved[q] (5, 6, 7, commit rule) 
9 [(X, t, tm, q, qm)I(X, t, tm, q, qm) e conflicts[t]] s; conflicts[q] (7, 8, property 5) 
10 (X, t, tm, q, qm) E conflicts[q] (9, property 4) 
11 QED. (8, 10) 

D 

The following lemma states that if t resolves a conflict with q, q does not resolve conflicts with 
t. First, we observe that an Cr(t,q,X) event only resolves a conflict, if r1 is undefined (line 23, or 
property 10). 

Lemma 5.8 If an Cr(t,q,X) event occurs before Co(t), no Cr(q,t,Y) event occurs before Co(q). 



80 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

Proof 
I Suppose Cr(t,q,X) -< Co(t) 1\ Cr(q,t,Y) -< Co{q) 
2 Co(q) -< Ad(q,X) -< Cr(t,q,X) -< Co{t) (1, property l, line 15 Ad(q,X)) 

(!,property 1, line 15Ad(t,Y)) 
(2,3) 

0 

3 Co(t)-< Ad(t,Y)-< Cr(q,t,Y)-< Co(q) 
4 Co(q) -< Co(q), contradiction 

The following theorem proves the result. All conflicts are resolved exactly once. Furthermore, if 
transactions t, q have more than one conflict, all conflicts are resolved by the same coordinator. 

Theorem 5.9 All conflicts between transactions t, q are resolved exactly once, by the same coordi­
nator. 

Proof 
Property 4 shows that all conflicts between t and q are detected. Lemma 5.7 shows that at least 
one coordinator oft, q resolves the conflicts. Finally, lemma 5.8 proves that either tor q solves all 
conflicts between t, q, not both. This proves the result. 

0 

5.5.1 Deadlock freedom 

A set transactions T is deadlocked if no transaction in T can commit, all transactions t E T have 
previously enabled Vs(t), and there are no enabled events left. We assume that no new transactions 
enter the system (to avoid confusion with life lock). 

Theorem 5.10 The DOCC-BF algorithm is deadlock free. 

Proof 
l Suppose a set transactions Tis deadlocked: Vt € T: allmerged(t) 1\ -.cancommit(t) 
2 Choose t € T : Vq € T : t ~ q 
3 3(X, q, qm, t, tm) E conflicts[!]- resolved[!]: q ;f. owned[t] U reversed[t] 

(l, 2, commit rule) 
4 t 1/. ownedby[q] U waitfor[q] (3, property 3, 9) 

5q lj.tonotify(t) (l,lineiOVm(t,X)) 
If q € tonotify(t) during execution of line 10 Vm(t,X), q is added to notified[t]. Therefore, after 
execution of line 10 Vm(t,X), q ;f. tonotify(t). Since t is deadlocked, line 10 Vm(t,X) has been 
previously executed. 
6 q € ownedby[t] u notified[!] 
Two cases: 
7.1 Suppose q € ownedby[t] 
7.2 t € owned[q] 
7.3 3(Y, t, tm, q, qm) E conflicts[q] 
7.4 t € waitfor[q] 
7.5 contradiction 
Second case: 
8.1 Suppose q e notified[!] 
8.2 t E waitfor[q] 
8.3 contradiction 

(3, S, notification rule) 

(7 .I , property 3) 
(7 .2, property 6) 

(1, 5, 7.2, 7.3, reverse rule, line 11 Vm(q,X), line 18 Wn(q,t)) 
(4, 7.4) 

(1, 8.1, line 10 Vm(t,X), line 18 Wn(q,t)) 
(4, 8.2) 



5.6. OPTIMIZING THE ALGORITHM 81 

0 

5.5.2 Life lock freedom 

The DOCC-BF algorithm is life Jock free if the domain of transaction identities is well-founded and 
non-dense (for example: the natural numbers), and that each transaction identity is only used once. 

A transaction t is life locked, if its progress is blocked by an infinite number of transactions q that 
each block t for a finite time (if transaction q blocks t for an infinite time, it is a deadlock situation, 
not a life lock). It is shown that the protocol is life Jock free under the assumptions that are stated 
above. First, we prove that all conflicts with transactions q that are detected by transaction t, are either 
detected during t's validation (the conflict over X is stored in confiicts[t, X]), or q < t. Therefore, 
only a finite number of transactions can block t, and therefore t can eventually commit. The protocol 
is life lock free. 

Lemma5.11 (X, t, tm, q, qm) E conjlicts[t] ~(X, t, tm, q, qm) e conjlicts[t, X] v q < t 

Proof 
1 Suppose (X, t, tm, q, qm) e conflicts[!] 1\ (X, t, tm, q. qm) ¢ conflicts[t, X] A q > t 
2 Wn(t,q) does not occur (1, line 10 Vm(q,X), notification rule) 
3 QED. (1,2, only Vm(U). Wn(t,q) can modify conllicts[t]) 

Lemma5.12 lcorifticts[t]l isfinite 

Proof 

0 

Since the domain of transaction identities is well-founded and non-dense, the set [q lq < t] is finite. 
The result follows from lemma 5.ll, and the fact that lconflicts[t, X]l is finite. 

Theorem 5.13 The DOCC-BF algorithm is life lock free. 

Proof 

0 

Life lock occurs if a transaction t is blocked by an infinite set of other transactions q. A transaction t 
is only blocked by a transaction q if t and q have a conflict, and t detects this conflict. This means that 
the size of confiicts[t] is unbounded, if t is life locked. Lemma 5.12 proves that conflicts[!] is finite, 
hence t is not life locked. 

0 

5.6 Optimizing the algorithm 

The algorithm that we described so far resulted from an extension of OCC-TI to a distributed environ­
ment. Modifications were applied to eliminate critical sections over multiple sites. No attempts have 
been made to optimize the resulting algorithm. In this section, several optimizations are introduced 
that improve the scheduler considerably. Apart from Thomas' write rule, these optimizations have not 
been used in the tests presented in section 5.8. 



82 CHAPTER 5. SCHEDUUNG IN HIGH-CONFLICT ENVIRONMENTS 

Applying Thomas' write rule 

When two transactions p and q have a write-write conflict over X at site S, conflict serializability 
introduces the requirement "tp < tq <? Ad(p,S) -< Ad(q,S)" (the order in which transactions write 
X at site S should match the serialization order). In OCC-TI, a rather arbitrary choice is made, the 
requirement is strengthened with "Co(p) -< Co(q) <? Ad(p,S) -< Ad(q,S)" (i.e. if p commits 
before q, and p, q have a write-write conflict, rp < rq). Although easy to enforce, this additional 
requirement seriously reduces concurrency. 

The optimization consists of two parts. First, we do no longer fix the order of write-write conflicts 
in the order that p and q commit. Second, write-write conflicts are resolved by applying Thomas' 
write rule (see for example [13]). This means that if t 1 < rq, and q writes a data item X before t, t's 
write is not performed. Since rq is administrated in WT S[X], the rule becomes: 

If transaction t wants to write data item X, and r, < WT S[X]. then the write is not performed. 

This simple rule eliminates the need to resolve write-write conflicts in the rest of the algorithm! 
Therefore, write-write conflicts are removed from the conflict-relation, and the Ad(t,S) event is mod­
ified with Thomas' write rule. The resulting schedule is no longer confiict-serializable, but still view­
serializable. There is one requirement that has to be fulfilled, before Thomas' write rule can be 
applied: all time-stamps have to be unique. The reason for this is the following non-serializable sce­
nario: two transactions p, q with identical time-stamps write the same items, on two sites A and B. 
On site A, p precedes q, on site B, q precedes p. If the second write is ignored, the database is incon­
sistent. If the second write is carried out, the database is still inconsistent. This symmetry is broken if 
all time-stamps are unique, if p < q, p's second write is ignored, and q's second write is performed. 
Uniqueness is easily realized by extending the timestamp for this check with the transaction identity 
(in a lexicographic ordering). 

Combining multiple Cr() events 

The previous optimization allows us to apply a second optimization. Suppose transactions p and q 
have a set of conflicts with each other, at several participants. Without loss of generality assume that 
p commits before q. After the first Cr(q,p,X) event, r:p is available in the coordinator of q. Therefore, 
all read-write and write-read conflicts can be resolved directly. All other Cr(q,p,Y) events can be 
ignored. 

Rerouting commit-information 

Read-write and write-read conflicts between p and q can be resolved by q if r:p is available. Instead 
of routing this information through the Ad(p,X) event, Co(p) can directly enable all Cr(q,p,S) events 
that relate to shared read-write or write-read conflicts. 

If this optimization is combined with bundling of Cr() events, and Thomas' write rule, only one 
Cr(q,p) event is necessary for all shared read-write and write-read conflicts, and no Cr() event is 
necessary for write-write conflicts. Furthermore, it requires only one communication (between the 
two coordinators), instead of two (communication over the shared participant-site). Unshared conflicts 
still have to be routed over the Ad() event, since the necessary information is not available in Co(p). 
However, a set of unshared conflicts can still be combined into one Cr() event. All other Cr() events 
are simply ignored. 



5.6. OPTIMIZING THE ALGORITHM 83 

Implicitly resolving conflicts 

If transactions p and q have a conflict with requirement rp < rq, it can be implicitly resolved by the 
resolving of other conflicts. For example, suppose that previous validation resulted in requirements 
r P < l 0 and 20 < rq. The conjunction of these two requirements implies that the requirement -c P < rq 
holds! To apply this optimization, information about already resolved conflicts has to be stored at the 
sites where transactions access data. This requires that the (current) timestamp interval of a transaction 
t is piggy-backed on all communication with participants oft. Participants S store the value ofT I [t], 
at the last data access at S. This old T l[t] value is called T I[t, S]. If a transaction t detects a conflict 
with transaction q during validation, the conflict is ignored if T I[t, S] n T I[q, SJ = 0. 

Exploiting coordinator/participant site-sharing 

In the presented algorithm, we have assumed that coordinators and participants execute on different 
sites, and all communication occurs through messages. In reality, data is often stored at the site where 
a transaction executes. This fact can be used to optimize local data accesses. 

First of all, if a transaction t accesses a local data item, the Ac() and the ArO event can be com­
bined into one atomic event. Similarly, the local VO and Vm() can be combined with the Vs() event. 
Next, the event that commits t can be combined with the local Ad() event. With these optimizations, 
validating and committing a local transaction t is reduced to a single event, if t is not blocked. If t is 
blocked, an additional conflict resolution event is still required. 

Second, suppose t locally accesses X. After t's local validation, transaction q accesses X in a 
conflicting mode. Normally, q would have an unshared conflict with t. With a small adaptation of the 
validation of q, this conflict can be changed to a shared conflict. Since q's validation of X occurs on 
the coordinating site oft, q can directly modify the data structures of the t's coordinator. Thus, q can 
ensure that the conflict is known to both t and q, the conflict over X is shared. Furthermore, there is a 
good probability that the conflict can be resolved implicitly, since the exact T l[t] interval is available. 

Exploiting coordinator/coordinator site-sharing 

Similar to coordinator/participant overlap, two types of optimizations are possible when the coordi­
nators of different transactions execute on the same site. First, unnecessary communication overhead 
can be avoided. Second, the availability of additional information and manipulation options allows 
for more scheduling freedom. 

Suppose transactions p and q have the same coordinator. The following events can be combined, 
should they occur. The Wn(p,q) event can be combined with the Rw(q,p) event. The event that 
commits p can be combined with the Cr(q,p) event, and the Rc(p) event can be combined with the 
lt(q,p) event. The wait order of transactions p and q that share the same coordinator can be changed 
by a few statements. Therefore, we relax the commit-condition of a transaction by the following rule: 
Transaction p can commit if for each conflict between p and a transaction q over a data item X, 
either a conflict resolution took place in coordinator p, or p placed a delayed block on q, or p and q 
share the same coordinator. 
Should a transaction p commit "out of tum" with this optimization, the conflicts between p and q are 
directly resolved by adapting T I [ q]. 



84 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

Online choice of pessimistic or optimistic scheduling 

When p accesses a data item X that has just been validated by (conflicting) transaction q, it can be 
beneficial to wait for q's commit. Suppose p reads a data item X, to be written by q. If p reads X 
before q writes it, the resulting requirement is r P < tq. If p waits with data access until q has written 
X, the resulting requirement is rq < tp· By implicitly trying to resolve the conflict at access time, a 
guaranteed restart can be avoided by choosing the right course of action. 

An example: suppose tp E [30, 40] and tq E [10, 20], due to earlier resolved requirements. If p 
reads before q writes X, either p or q has to be restarted. If p waits until q has written X, the conflict 
is implicitly resolved! 

There are gray areas, where it is not clear whether p should wait, or continue: the T I intervals of 
p and q overlap. p can wait until tq is determined, before deciding to read before q writes, or after q 
has written. If p decides to read before q writes, then the waiting was unnecessary. 

5.7 Performance analysis 

Suppose transaction t reads r = r1 + r, data items, and writes w = w1 + w, data items (r1 and 'JJt 

denote local access, r, and w, denote remote access). A synchronization occurs at the start, and end 
of each transaction execution. The invocation of an Ac() event either requires a communication (if the 
item is stored remotely) or a synchronization (if the item is stored locally). Similar, the invocation of 
the Ar() event requires a communication, or (the same) synchronization. Communications related to 
remote reads are piggy-backed on the value request, and do not introduce additional overhead. Finally, 
control is returned to the transaction, which requires a synchronization. 

During validation, the invocation of the V (), Vm(), Ad() and Fi() events are piggy-backed on the 
two phase commit protocol. The communications necessary for the V() and Vm() invocation only 
count as scheduler overhead if the transaction is restarted. If a transaction is not influenced by the 
execution of other transactions (no restarts occur), the overhead is described as follows. 

Doccbf = (2 + r1 +WI+ r + w)Sync + w,Comm +I nloccbf 

The set-manipulations that are used in the implementation of DOCC-BF introduce a significant 
internal-computation overhead that outweighs the overhead of synchronizations. This is partly caused 
by unoptimized implementation of DOCC-BF, and partly caused by the Erlang language that lacks 
efficient set-manipulation procedures, 

The deadlock-prevention protocol can introduce two additional sequential messages: the wait 
notification and the reverse-wait. Similar to two phase locking, wait-chains of multiple transactions 
can occur (not contained in the performance analysis). If a transaction restarts, its execution so far 
counts as scheduler overhead. The overhead of a transaction that restarts V, times is worst-case if 
the transaction completed execution every time, and it was only restarted just before the deadlock­
prevention protocol allowed it to commit. 

Doccbf = V, * ((2 + rt + W1 + r + w)Sync + (w, + 4)Comm + lntoccbf +X) 

5.8 Test results 

DOCC-BF has been tested in a realistic environment, where background processes and other users oc­
casionally influence the response times of transactions. These influences reappear in repeated testing, 
and are best visible in multi-site tests (see figure 5. 7). 



5.8. TEST RESULTS 85 

•oooor--~-----~--~---, 

0 0~-~~~--=,oo~-~@=--~,oo~-~JO·oo 
iniJJrfiBI CCimpuW!Qn 

(a) Read-only (b) Write-only 

Figure 5.6: ONE SITE, NO CONCURRENCY 

The hardware on which the Mnesia database was running varied between 1 and 8 SPARC 5 work­
stations, running Solaris. DOCC-BF is compared with the OCC-Iight scheduler (that has been de­
signed in chapter 4), to show how the different designs lead to different performance. 

A single dot on a curve averages the results from a I 0 second test run for single-site tests, to 2 
minutes for multi-site tests (to account for the different execution durations of transactions). Each ma­
chine that participated in an experiment contained a database site and one or two application processes. 
Each site consisted of 100 data items. Each application process executes a sequence of transactions, 
without delay between consecutive transactions. 

5.8.1 Experiment l:.local transactions 

This experiment serves to show that DOCC-BF imposes a significant overhead to the system. Mnesia 
is configured as a single site database. Experiments are conducted with read-only and write-only 
transactions that accessed 4 arbitrary data-items. Each transaction spends a fixed amount of time 
performing computation, varying from 0 to 200 computation loops before each data access. One 
computation loop occupies the processor for a limited amount of time (depending on the processor 
speed). Figures 5.6a and b show the test results. The experiment simulates an environment where 
transactions execute sequentially. The scheduler overhead is described by the following simplified 
formulas (derivation of scheduler overhead of OCC-Iight in chapter 4). 

Odocc-bf = 2Sync + 2(r + W) X Sync+ I ntdocc-bf 

Oocc-1 = 2Sync + I ntocc-1 

The experiment shows that DOCC-BF has a considerable overhead that results from internal compu­
tation, the difference between OCC-light and DOCC-BF is almost constantly around 18000 microsec­
onds. This cannot be attributed to the extra synchronization costs, which are (when 4 data items are 
accessed) in the order of 130 x 8::::: 1000 microseconds. 



86 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 

1e~r-----------~------------~-------------r------------~ 

900000 

800000 

700000 

"' 600000 
~ 

~ 500000 
e 

.!.2 

E 400000 

300000 

docc-bf-+­
occ-light -+-­

dirty -G·-

100 150 200 
internal computation 

Figure 5.7: EIGHT SITES, WRITE ONLY 

Since the absolute difference in performance is constant, the relative difference in performance be­
tween DOCC-BF and OCC-light becomes smaller, as the execution duration of transactions becomes 
longer. For transactions that perform no computation (0 computation loops), the factor between OCC­
light and DOCC-BF is 5, while the factor is decreased to 2.25 if transactions perform 200 computation 
loops before each data access. 

5.8.2 Experiment 2: remote data access, large conflict probability 

The database is configured with 8 sites that each store the same number of data items. At each site, 
an application process continuously executes transactions. Transactions write 4 data items, and the 
number of internal computation loops that they perform is varied between 0 and 200 computation 
loops. Again, the DOCC-BF scheduler is compared with the OCC-light scheduler. In the formula 
below V denotes the number of validation phases that are required by OCC-light, and V8 denotes the 
number of validation phases that contained validation of remote data accesses (i.e. V8 :s V). In the 
DOCC-BF formula, V, denotes the number of reruns required by DOCC-BF. 

Docc-1 =Sync+ (V- l)X + V X Sync+ Vg x 2Comm + lntocc-1 

Odocc-bf = V, * ((2 + r, + Wt + r + w)Sync + (w, + 4)Comm + lntdocc-bf +X) 



5.9. CONCLUSIONS 87 

Although the two formulas given above cannot be exactly analyzed, they share a common factor 
X: (V - l)X and V,X (we deliberately choose V, different from V, to signify that these are two 
independent quantities). The validation check of DOCC-BF (dynamic adjustment of time intervals) 
rejects far less interleavings than the validation check of OCC-light. Therefore, V, « V - 1. As a 
result, if X increases, the overhead of OCC-light will have a steeper increase than the overhead of 
DOCC-BF. 

Figure 5.7 shows the test results. As the execution-time of transactions becomes longer, the im­
portance of scheduler overhead reduces, while the importance of concurrency increases. This can be 
seen from the figure, OCC-Iight outperforms DOCC-BF for short transactions, but is outperformed 
by DOCC-BF, if transactions are long. This is in accordance with our expectations, DOCC-BF offers 
more concurrency than OCC-Iight. Therefore, it outperforms OCC-light in high-conflict environments 
with long transactions. 

5.9 Conclusions 

The optimistic concurrency control algorithm OCC-TI [57] was adapted to a distributed environment. 
The main problem of distributing OCC-TI is the efficient regulation of concurrent validation at mul­
tiple sites. Our solution avoids bottlenecks by using a validation method that avoids unnecessary 
delays when possible: transactions are only blocked if further progress can lead to incorrect results. 
Therefore, transactions execute without any delay, until they are about to commit. At that point, a 
transaction can be blocked by a concurrently validating transaction. Postponing the moment that a 
transaction is blocked has two advantages. A transaction is unblocked, if the reason for the block (a 
concurrently validating transaction) leaves the system. Therefore, postponing the block reduces the 
total blocking duration. Second, protocols that use blocking have to avoid deadlocks: cyclic blocking. 
Deadlocks are especially difficult to solve in distributed systems, where information about blocking 
cycles is distributed over multiple sites. By postponing the blocking moment, (part of) the informa­
tion about blocking cycles is collected by the coordinators of transactions. Therefore, the DOCC-BF 
algorithm is able to solve deadlocks of cycle length two without additional communication. 

The bookkeeping that is necessary for the deadlock-prevention protocol is complicated by this 
delayed blocking. Future work should try to simplify the description of the algorithm. In this chapter, 
the focus has been on the correctoess of the new protocol, rather than efficient implementation of the 
algorithm. 

During implementation, it became clear that much more knowledge about the implementation lan­
guage is required, than is generally found in the language documentation. Some language constructs 
were very time-consuming, while others were much faster. No indication about the relative speeds of 
the constructs was available. Since such information is essential for a fast implementation, a signifi­
cant amount of time was spent on testing the (average) speed oflanguage constructs. This information 
should be available beforehand, something that is lacking for most languages. 

Even with an inefficient implementation, the goal of the DOCC-BF algorithm was met: it outper­
forms OCC-Iight in the high-conflict environment that was described at the beginning of this chapter. 
If the execution duration of transactions is long enough, the high scheduler overhead of DOCC-BF 
becomes a minor factor. DOCC-BF offers more concurrency than OCC-Iight, and can therefore utilize 
the available processors more efficiently than OCC-Iight. 



88 CHAPTER 5. SCHEDULING IN HIGH-CONFLICT ENVIRONMENTS 



Chapter 6 

Predictable scheduling 

The performance of schedulers has been the object of analytic study for many years [69, 65, 103, 
90, 91; 105, 104]. Generally, it is hard to analyze schedulers that have been optimized for high 
performance. So far, most papers derive an expression for the average response time of a transaction 
[69, 65, 103,90, 91, 105, 104] and in rare cases approximations of higher moments are derived [83, 
82]. This thesis is part of STW project "Construction and performance of real-time transactions", 
and focuses on construction of high-performance schedulers. The accompanying thesis of S.A.E. 
Sassen [82] treats the performance analysis of optimistic concurrency control in depth. Expressions 
for the response time distribution of transactions in several environments are derived using (primarily) 
a decomposition-aggregation method. 

In this chapter we show that the complexity of the performance analysis can be significantly 
reduced by a careful scheduler design. A family of so-called single queue static locking (SQSL) 
scheduling algorithms is presented. These schedulers have been designed with analyzability in mind. 
The design of the algorithms is not directly inspired by a specific environment, therefore the chapter 
does not contain an environment study. The scheduling problem is specified in section 6.1 and the 
scheduler designs are found in section 6.2. The performance analysis is given in section 6.3. This 
analysis has previously been published [17]. Simulations show the validity of the analysis in sec­
tion 6.4, and relate the performance of schedulers that have not been analyzed. Finally, section 6.5 
concludes the chapter. 

6.1 Specification 

The algorithms are designed for a shared-memory architecture. As the analysis and simulations in the 
second part of this chapter do not consider scheduler overhead, the relative speeds of communication 
and synchronization have not been specified. Transactions arrive in a continuous stream, and announce 
the dataset that they access, as well as their deadline and a best-case and worst-case approximation 
of their execution time. If a transaction misses its deadline, it becomes useless to the application, 
and it can be discarded. The scheduler should minimize the number of deadlines that are missed. A 
non-functional requirement that is not specified in our framework is analyzability: together with the 
algorithm design, a performance analysis is required. To analyze the system, additional assumptions 
about the scheduler input are required. These are given in section 6.3. 

Generic scheduling problem. 

89 



90 CHAPTER6 PREDICTABLESCHEDULINO 

i platfonn: shared-memory page 21 ! 
data: non-temporal page 22 
transactions: firm real-time, conftict-serializable, unannounced page 24 
objective function: minimize missed deadlines 

Additional detailed infonnation. 

Fixed Variable Domain 
Access T ~ :P(DataSet) 
Wx T ~seconds 

Bx T ~seconds 

Fact constraint 
Vt E T: Bx(t) 5 X(t) 5 Wx(t) 

page 31 

Description 
Transactions announce required data items. i 

Announced worst-case execution time of I 
transactions. 
Announced best-case execution time of trans- ! 

actions. 

Description 
The execution time of a transaction is cor- I' 

rectly announced. 
: Vop E OPS: Daccess(op) E Access(trans(op)) Transactions access items within their an-

I nounced set. I 

6.2 A family of scheduling algorithms 

The design of the scheduling algorithm has to satisfy two objectives: minimization of the number of 
missed deadlines, and it should be analyzable. To design a scheduler such that its real-time perfor­
mance can be analyzed, it should be understood what properties of a scheduling algorithm make it 
difficult to analyze its performance. This depends both on the system (scheduler plus environment) 
under consideration, and the analysis method used. Since the system under consideration can suffer 
from transient overloads (no upper limit is specified on the number of transactions that arrive each 
second), hard real-time analysis does not yield useful results. Analysis methods that can deal with 
such transient overloads, and give probabilistic performance guarantees can be found in queuing the­
ory. Markov models are a well-understood analysis tool, that has been used with success in stochastic 
operations research. 

If a Markov model (see for a textbook [38]) can be constructed of the system under consideration, 
analysis techniques exist that derive the response time distribution of transactions. This gives a direct 
indication whether transactions meet their deadlines, or not. Markov models consist of a set of states, 
and state transitions. States should represent the system at different moments in time, and they have 
to satisfy the Markov property: they should be memoryless. This means that the past states of the 
system do not influence the next transition, only the current state influences the next transition of the 
system. 

All systems that can be represented by a sequence of states can be represented by a Markov model. 
By including the entire history in the system state, the Markov property is trivially satisfied. As long 
as the size of the resulting Markov model is within certain bounds, these models can be analyzed 
in reasonable time. With the current state of the art, Markov models with up to 1000 states can 
be analyzed easily, and depending on the extra computing power available this can be scaled a few 
orders higher. This gives us a good indication whether a certain scheduler is analyzable using Markov 
models: as long as the state space of the resulting Markov model is within reasonable bounds, the 



6.2. A FAMILY OF SCHEDULING ALGORITHMS 91 

Markov analysis is feasible. Our goal will be to design a scheduler that can be analyzed using Markov 
models. 

Design decision 6.1 The scheduler that will be designed should be analyzable with Markov models. 

This decision restricts the available design choices. All scheduler optimizations that lead to in­
feasible large state spaces are excluded. Instead of designing just one scheduler, we design a family 
of schedulers. The first, basic scheduler is analyzed using Markov theory, while the more advanced 
schedulers stepwise introduce optimizations that improve performance, but also require large state 
spaces for their analysis. The analysis that holds for the basic schedulers will provide a worst-case 
analysis for the optimized schedulers. 

Design decision 6.2 A family of schedulers will be designed. The basic schedulers should be analyz­
able with Markov models, and the advanced schedulers should guarantee a higher performance. 

6.:U SQSL-soft 

Before we introduce the new scheduler, let's look at the size of the state space that is required for 
a normal two phase locking scheduler. At any moment, each transaction t holds k, locks. This 
information is relevant to the performance of each transaction, it detennines the block-probability 
and the remaining execution time of each transaction. Suppose at most n transactions execute at the 
same time, and each will acquire k data items. Jn the order of kn states are necessary to describe all 
possible states. Fork = 10 and n = 6 this requires 1.000.000 states already, while information about 
lock-holding times and waiting transactions is not yet included. A scheduling algorithm is necessary 
that can be described by less states. 

Two phase locking has at least k scheduler invocations, if a transaction accesses k data items. At 
each scheduler invocation, the dependencies of a transaction with other transactions are different: the 
number of held locks is different. This leads to a large state space. In order to reduce the state space, 
we will design a scheduler that requires only 2 scheduler invocations to schedule a transaction. As 
a side effect, this reduces the synchronization overhead of the scheduler, since scheduler invocations 
are used to synchronize transactions. Overhead is not further considered in this chapter. 

Design decision 6.3 The scheduler requires only 2 scheduler invocations for each transaction. 

Static locking is a variant of two phase locking that offers trivial concurrency. Instead of requiring 
locks one-at-a-time, all locks are requested at the start of each transaction. This reduces the state space 
considerably: a transaction either holds no locks, or all required locks, there is no in between. 

Design decision 6.4 The scheduler uses static locking to guarantee trivial concurrency. 

Once a transaction has acquired all Jocks, it can run to completion without further interference 
of other transactions. Unfortunately, transactions t can be life locked by a continuous stream of 
transactions that lock at least one of the data items that t needs. To remedy this drawback of static 
locking, we use a first-come, first-served (FCFS) strategy. A transaction that is waiting for execution 
is never overtaken by transactions that arrive after it. 

Design decision 6.5 The scheduler uses a single queue to store transactions that are waiting for 
execution. 



92 

{ arrive, t, Access, Bx, Wx, Dl } 
Q.enqueue(t,Access, Bx, Wx, Dl) 
TTEO 

{ leave, t, Access, Bx, Wx, Dl } 
fP+= 1 
Locked- = Access 
TTE() 

TIE() 
while~ Q.empty() 1\ f P > 0 do 

(t,Access,Bx,Wx,DI):= Q.head() 
if Access n Locked= 111 then 

Q.dequeue() 
LockedU = Access 
fP-= I 
sX.enqueue(t,Access,Bx,Wx,Dl) 

else break 

CHAPTER 6. PREDICTABLE SCHEDULING 

Algorithm 6.1: SQSL·SOFT SCHEDULER 

Concluding, transactions that arrive at the scheduler are executed first.come, first-served. The 
transaction at the head of the waiting queue can execute if all locks are available, and a processor 
is available. The remaining question is: how can this scheduling algorithm fit on a shared memory 
architecture? We have chosen for a setup that bears resemblance to process farming. One processor 
is dedicated to scheduling. This is called the scheduler processor. All other processors are dedicated 
to the execution of transactions, and are called worker processors. Transactions are passed from the 
scheduler processor through the shared-memory to the worker processors. A worker processor exe­
cutes one transaction at a time, or is idle. This simple setup ensures that the arrival of new transactions 
in the system does not delay transactions that are already in execution. 

This completes the design of the first scheduler. Since the designed scheduler does not abort 
transactions that miss their deadline, it is only suitable for soft real-time scheduling. Hence, we call 
the designed scheduler SQSL-soft: single queue static locking with soft deadlines. The SQSL-soft 
scheduler does not use the best-case and worst-case approximations of the transaction execution time, 
and does not use deadline information. Since the information is not used, it will not influence our 
Markov model. The more advanced schedulers will use this information, and require larger Markov 
models. 

Algorithm 

Time spent on scheduling decisions does not influence the execution time of transactions, since there 
is a dedicated scheduling processor. The time spent on scheduling is not taken into account in the anal­
ysis in section 6.3 and is assumed to be negligible compared to the execution durations of transactions. 
Transactions arrive at the scheduler processor, that receives an "arrive" message for each transaction. 
The scheduler processor places them in the shared memory if they can be executed. Worker proces­
sors retrieve transactions from the shared memory and execute them without further delay. Worker 



6.2. A FAMILY OF SCHEDULING ALGORITHMS 

{ start, t, Access, Bx, Wx, Dl } 
tO 

{ finish, t, Access, Bx, Wx, Dl I 
sF.enqueue(t,Access, Bx, Wx, Dl) 

Algorithm 6.2: SQSL-SOFT WORKER 

processors execute one transaction at a time. If they are not executing a transaction, they are idle. 

93 

The scheduler maintains a set Locked that is the union of all Access-sets of executing transac­
tions, and a FCFS-queue Q that stores transaction that are waiting for execution. Queues have the 
following methods operating on them: enqueue(X), dequeue(), head() and empty(). The enqueue 
method adds element X at the back of the queue. The dequeue method discards the first element of 
the queue. The head method returns the value of the first element of the queue. Finally, the empty 
method returns a boolean that signifies whether the queue is empty. 

The number of idle processors is maintained in f P. In the shared memory, a queue s X of transac­
tions that can be executed is stored, and a queue sF of finished transactions is stored. Simple polling 
algorithms check the state of the shared-memory queues s X, sF. These polling algorithms are not 
presented. We assume that if a transaction is finished, the scheduler processor is notified through a 
"leave" message, generated by the polling algorithm. Likewise, a worker processor that is unoccupied 
receives a "start" message from its local polling algorithm, if a transaction is retrieved from the s X 
queue. Algorithm 6.1 describes the algorithm that is executed on the dedicated scheduling processor. 
The execution of worker processors is described in algorithm 6.2. 

Correctness. The correctness of the SQSL-soft algorithm is rather trivial: a transaction t does 
not execute concurrently with conflicting transactions, therefore the data access order is conflict­
equivalent to the commit-order of transactions. Deadlock freedom is ensured, since transactions do 
not lock data item~ unless they can run to completion, and release their Jocks without interferences. 
Life lock freedom is ensured by the single wait-queue. A transaction t is never delayed by transac­
tions that arrive after t. Eventually, all transactions that arrived before t have finished execution and 
released their locks, and t can execute. 

6.2.2 SQSL-firm 

The second scheduler, SQSL-firm makes explicit use of information about deadlines and best-case 
execution times. The poor behavior of SQSL-soft under overload conditions (see test results in section 
6.4) is corrected: late transactions are discarded instead of executed. 

We define <now as the current time. A transaction t will miss its deadline if it does not start 
execution before Dl(t) - Bx(t). Therefore, a waiting transaction t is discarded if <now > Dl(t) -
Bx(t). If a transaction t starts execution before Dl(t)- Wx(t) it is guaranteed to meet its deadline. If 
t starts execution after Dl(t)- Wx(t) and before Dl(t)- Bx(t), it either fails or succeeds, depending 
on X(t). Should Bx(t) = Wx(t), SQSL-firm executes transaction t only if t meets its deadline. 

A timer is introduced for each processor. It has one parameter "activation", that specifies when the 
timer generates a local timeout-message "timeout". This timer is necessary to activate the scheduler 
when a transaction misses its deadline. If the exact execution duration X (t) is unknown in advance, 



94 

{ start, t, Access, Bx, Wx, Dl} 
activation:= Dl 
active:= (t, Access, Bx, Wx, Dl) 
tO 

I finish, t, Access, Bx, Wx, 01 } 
activation:= oo 
sF.enqueue(t,Access, Bx, Wx, Dl) 

{timeout} 
activation:= oo 
(t, Access, Bx, Wx, Dl):=active 
abort(t) 
sF.enqueue(t,Access, Bx, Wx, Dl) 

CHAPTER~ PREDICTABLESCHEDULING 

Algorithm 6.3: SQSL-FIRM WORKER 

i.e. Bx(t) < Wx(t), then it is possible that a transaction t misses its deadline while it is executing. 
The algorithm for worker processors is modified to handle this scenario. Algorithm 6.3 describes 
this modified worker processor algorithm. It sets the timer to the deadline of the transaction that is 
executing, and maintains the properties of the executing transaction in tuple "active". The scheduler 
aborts t when it receives the timeout message. 

The algorithm for the scheduler processor is also modified, the new algorithm is given by algo­
rithm 6.4. The TTE() procedure now deals with deadlines. First of all, the queue is only considered if 
at least one worker processor is idle (f P > 0). Second, transactions t at the head of the queue are dis­
carded ifthey are guaranteed to miss their deadline (T110w > Dl(t)- Bx(t)). Otherwise, the scheduler 
checks if tis allowed to start execution, which is similar to SQSL-soft. If Tnow < Dl(t)- Bx(t) and t 
cannot execute, the timer of the scheduler processor is setto Dl(t)- Bx(t). If Tnow = Dl(t)- Bx(t), 
the scheduler is reactivated by a timeout, and it discards t. We assume that !"now has progressed E > 0 
time units before procedure TTE() is invoked. The "start" and "finish" messages are handled like 
before. 

6.2.3 SQSL-MLF 

The first-come, first-served strategy of SQSL-firtn can be improved by introducing a priority-queue. 
Transactions that are near their deadlines have precedence over other transactions. By taking the 
required execution time into account, the scheduler gives priority to transactions t with a low re­
maining laxity. The laxity is the time that transaction t can . wait without missing its deadline; 
Dl(t)-rnow- X(t). This is known as minimum laxity first (MLF), or shortest time to extinction (STE) 
[74]. Since X(t) is unknown to the scheduler, the worst-case approximation Wx(t) is used instead, 
which gives a pessimistic approximation of the laxity. By replacing the first-come, first-served queue 
with a priority queue, the SQSL-MLF algorithm is obtained from SQSL-finn. The priority queue has 
the same methods as a nonnal queue, but enqueue inserts elements (t, Access. Dl, Wx) according to 
Dl - •now - W x (smallest values first). 

Transactions in the priority queue are dependent: if transaction t appears before q in the priority 
queue, Dl(t) - X (t) :5 Dl(q) - X (q). Due to this dependency, it is no longer possible to repre-



6.2. A FAMILY OF SCHEDULING ALGORITHMS 

{timeout I 
TTEO 

ITEO 
while ..., Q.empty() A f P > 0 do 

(t,Access,Bx,Wx,DI):= Q.head() 
if<now > Dl(t) Bx(t) then 

Q.dequeue() 
else if Access n Locked = 0 then 

Q.dequeue() 
LockedU = Access 
JP- = 1 
sX.enqueue(t,Access,Bx, Wx,DI) 

else break 
iff P = 0 v Q.empty then activation:= oo 
else (t, Access, Bx, Wx, Dl) := Q.head() 

activation ::::: Dl-Bx 

Algorithm 6.4: SQSL-FIRM SCHEDULER 

95 

sent the state of the priority queue by a single number. The resulting state space is too large to use 
straightforward Markov analysis techniques. 

6.2.4 SQSL-MLF with queue-skipping 

The single queue becomes a bottleneck, if the transaction that is first in the queue is blocked for a long 
time. Processors can be idle, even while there are transactions waiting in the queue. To remedy this 
behavior queue-skipping is introduced, a transaction can execute out-of-tum if its execution does not 
delay the SQSL-MLF execution of transactions that it overtakes. We do allow that a skipping transac­
tion t prevents other transactions q from skipping the queue. When the queue-skipping requirement 
is applied to FCFS queues, the analysis of the scheduler without queue skipping can serve as a worst­
case analysis. However, this does not hold for the SQSL-MLF scheduler, since the queue is ordered 
according to the laxity. Therefore, it is possible that a transaction t skips the queue, just prior to the 
arrival of an urgent transaction q. In this worst-case scenario, the queue skipping optimization can 
decrease the performance of the system. However, on average the queue skipping optimization does 
increase performance (see section 6.4). 

Let G R BT be the guaranteed remaining blocking time of transaction q at the head of the waiting 
queue: there exists a transaction t that conflicts with q, which will continue execution for at least 
GRBT time. Transaction q misses its deadline, if Tnow > Dl(q)- Bx(q)- GRBT. This new 
requirement replaces test Tnow > Dl(q) - Bx(q). Since failed transactions leave the queue at an 
earlier stage, the time that they block other transactions in the queue is reduced. Therefore, the new 
requirement increases the overall performance. In fact, if the exact execution time is known in advance 
(Vt : Bx(t) = W x(t)), transactions at the bead of the queue that are not immediately discarded will 
meet their deadline. To compute G R BT, a time-stamp H eld(X] is introduced for each data item X, 
that specifies the earliest moment that X can become available again. 

Calculating whether a transaction t delays transactions that it overtakes can be quite involved, 



96 CHAPTER 6. PREDICTABLE SCHEDULING 

if the calculation is exact. Instead, we simplify the queue-skipping rule such that it becomes less 
computationally intensive (but will allow less queue skipping than the exact queue skipping rule). Two 
scenarios are identified, in which a transaction t is allowed to "skip" the queue and start execution. 

First, if t is certain to finish execution before the transaction q that is at the head of the queue 
can start execution or misses its deadline, then executing t out of order will not delay the SQSL-MLF 
scheduling of the queue. Second, if t uses a different dataset than other transactions in the queue, and 
sufficient worker processors are available, executing t will not delay other transactions in front oft. 

Let wi denote the ;rh transaction that is waiting in the queue (i.e. w1 is the head of the queue). 
Now wk is allowed to execute if the following two conditions are met. First, wk should not conflict 
with transactions that are already in execution: Access(wk) n Locked = 0. Second, wk should not 
violate the queue skipping conditions that were introduced above. There are two ways of satisfying 
them. Either wk does not conflict with any transaction that is in front of wk, and sufficient processors 
are available: Vi E [1, k) : Access(wi) n Access(wk) = 0 A f P ?:: k- I, or transaction wk has 
a total execution time that is shorter than the guaranteed blocking time, and at least one processor is 
available: Wx(wk) < GRBT A f P?:: 1. 

The SQSL-MLF scheduler with queue skipping is obtained from the SQSL-MLF scheduler by 
replacing the TTE() procedure with algorithm 6.5. Furthermore, an extra method item(ix) is added to 
the priority queue, which returns the value of the ix'h item in the queue, and a new method remove(ix) 
removes the ixth element from the queue. 

6.2.5 Scheduler discussion 

The SQSL-soft scheduler is a combination of static locking and first-come, first-served execution. 
These algorithms are well understood, and SQSL-soft is easy to implement. We have made no dis­
tinction between read and write operations, but this can be added without problems by modifying the 
Access n Locked 0 check. Due to the simplicity of SQSL-soft, correctness, deadlock freedom and 
life Jock freedom proofs are straight-forward. Since SQSL-soft is aimed at soft real-time systems, it 
does not abort transactions that missed their deadlines. This lacking feature, together with the single 
queue can form a serious bottleneck. Long waiting queues can lead to the scenario· where transac­
tions start their execution after they have missed their deadline. This results in a low firm real-time 
performance. 

SQSL-firm solves this problem by discarding transactions that can no longer meet their deadlines. 
This reduces the time spent on executing transactions that fail their deadline, thus increasing the time 
spent on executing transactions that meet their deadline. SQSL-firm uses the best-case execution 
time to determine whether a transaction can still meet its deadline. If this approximation is poor, the 
algorithm will often decide to execute transactions that will not meet their deadline. The performance 
of SQSL-firm increases if the difference between best-case and actual execution duration decreases. 
In the optimal case (Bx(t) = X (t)) transactions are always successful if they start execution. 

SQSL-MLF favors urgent transactions that are close to being discarded over non-urgent transac­
tions. This increases the firm real-time performance of the system, but introduces complex depen­
dencies between the transactions in the waiting queue. To include these dependencies in a Markov 
model would increase the size of the state space several orders of magnitude, making straight-forward 
Markov analysis infeasible. 

The queue-skipping optimization to SQSL-MLF improves performance on average, but introduces 
a considerable computation ovemead. Without queue-skipping, the SQSL-MLF scheduler only needs 
to check the transaction at the head of the waiting queue. With queue-skipping, the access sets of at 
most Ncpus - l transactions are accessed whenever it is possible that a new transaction is executed. 



6.3. PERFORMANCE ANALYSIS 

TTEO 
while ..... Q.empty() A f P > 0 do 

(t,Access,Bx,Wx,Dl):= Q.head() 
GRBT := maxxeAccessH eld!X] !now 

ifrnow > Dl- Bx GRBT then 
Q.dequeue() 

else if Access n Locked = 0 then 
JP- = 1 
Q.dequeue() 
foreach X E Access do Held[X}:= r110w + Bx(t) 
LockedU = Access 
sX.enqueue(t,Access,Bx,Wx,DI) 

else skipping() 
break 

iff P = 0 v Q .empty then activation:= oo 
else (t, Access, Bx, Wx, Dl) := Q.head() 

activation := DI-Bx 

skipping() 
i:=l; 
while i~ min(Q.Iength()-1, fP) do 

(t,Access,Bx,Wx,DI) := Q.item(i+l) 
ifrnow > Dl- Bx 
then Q.remove(i) 

97 

elseif(Wx < GRBT v Access n (Uje[J.iJQ.item(j).Access = 0) 1\ Access n Locked= 0 
then JP- = 1 

Q.remove(i) 
foreach X E Access do Held[X]:= <now+ Bx(t) 
LockedU = Access 
sX.enqueue(t,Access,Bx, Wx,Dl) 

else i+=l 

Algorithm 6.5: SQSL-MLF WITH QUEUE SKIPPING 

Since scheduler overhead has been ignored in our simulations, SQSL-MLF with queue skipping out­
performs SQSL-MLF. The advantage of queue skipping is a better processor utilization. The main 
bottleneck of SQSL-MLF is removed by the optimization: if the transaction at the head of the queue 
is blocked for a long time, it can be overtaken by unblocked transactions that appear after it in the 
queue. 

6.3 Performance analysis 

Markov analysis can be used to analyze the first two schedulers SQSL-soft and SQSL-firm. In this 
section we present the analysis of SQSL-soft. The analysis of SQSL-firm is similar to the analysis of 
SQSL-soft. Subsection 6.3 discusses the changes that are necessary to use the SQSL-soft analysis for 
SQSL-firm. 



98 CHAPTER 6. PREDICTABLE SCHEDULING 

Markov model of SQSL-soft 

The SQSL-soft scheduler has a simple structure, with straightforward dependencies between transac­
tions. A first-come, first-served queue holds transactions that are waiting for a processor to execute 
them. Processors can be idle, even if transactions are waiting. In such a case, the transaction at the 
head of the waiting queue conflicts with an executing transaction. 

By making a few additional assumptions about the input that arrives at the system, the system 
performance can be analyzed using Markov models. The assumptions are as follows. The arrival 
of transactions is a Poisson process with parameter A.. This is a common assumption that accurately 
models a wide range of applications. Arguments that support the validity of these assumptions can be 
found in (47] or [80]. Furthermore, execution times of transactions are independent and exponentially 
distributed with rate 1-L· Up to n transactions can be executing at the same time and the queue is 
unbounded. Since one processor is dedicated to scheduling, n = Ncpus - 1. We assume that the 
database stores a fixed number d of data items, and that each transaction accesses a data items. Finally, 
all items have an equal probability of being accessed. 

System states. Under the presented assumptions, the system state is completely described by the 
tuple (i, j}, where i is the number of executing and j the number of waiting transactions. When 
the number of executing transactions is lower than the number of available processors (i < n) and 
the number of waiting transactions is positive (j > 0), the first transaction in the queue has a data 
conflict with at least one executing transaction. If all processors are executing transactions, it is 
unknown whether the first transaction has a data conflict. These observations are in fact extra pieces 
of information that are incorporated into the state description. They lead to the following definition 
of the states (i, j). 

i =Oandj =0: 
I s i < n and j 2:: 0: 

i=nandj;:::O: 

The system is empty. 
i mutually non-conflicting transactions are executing, and j trans­
actions are waiting, of which the first (if any) has a conflict with 
at least one of the i executing transactions. 
i mutually non-conflicting transactions are executing and j trans­
actions are waiting. 

Some probabilities. Let B(i) be the probability that a transaction has a data conflict with one or 
more out of i executing transactions. If transaction t at the head of the queue has a data conflict with 
at least one of i executing transactions, B (i 1 1 i) is the probability that t still has a data conflict with 
at least one of the remaining i - I executing transactions, after one of the i executing transactions has 
left. Conflict probabilities B(i) and B(i - 1 I i) are: 

(d- ai) /(d) B(i- 1) 
B(i) = I - a a and B(i - 1 I i) = B(i) . 

These equations hold as long as a(i + 1) < d, which is the case for all realistic purposes. The 
expression for B(i -1 I i) was derived by applying Bayes' formula B(i 1Ai) = B(i -1 I i) · B(i). 
Here B(i -lAi) is the probability that a transaction conflicts with at least one out of i -1 transactions 
and also conflicts with at least one out of i transactions; the i 1 transactions are a subset of the i 
transactions. Therefore, B(i- lA i) = B(i 1) and the result follows. As the complements of B(i) 
and B(i - 1 I i) are often used, we define A(i) = 1 B(i) and A(i - I I i) = 1 - B(i- 1 1 1). 



6.3. PERFORMANCEANALYSIS 99 

Figure 6.6: A MODEL OF STATIC QUEUEING FOR n 4 

Markov property. The processing of transactions can be described by a continuous time Markov 
chain with state descriptor {i, j). This follows from the exponential, memoryless inter-arrival and 
execution times, the fixed number of items used by each transaction, and the fact that all items have 
an equal probability of being accessed. The future state of the system depends on the current state 
(i, j) and not on the previous states: the Markov property holds. 

Transitions of the Markov model. We analyze what state transitions are possible in the model. 
Transactions arrive at the system with rate A. If there are no waiting transactions, at least one processor 
is free, and i transactions are executing, with probability B(i) the arriving transaction is blocked and 
with probability A(i) is allowed to execute: 

(i, 0) ~ (i, 1) with rate AB(i) if i < n. 

(i, 0) ~ (i + 1, 0) {.vjth rate AA(i) if i < n. 

If the number of waiting transactions j is greater than zero, or no processor is available (i = n ), the 
arriving transaction enters the queue: 

(i, j) ~ (i, j + 1) with rate A if i = n or j > 0. 

Second, if i > 0 transactions are executing, a trabsaction finishes its execution at rate i JL. If the queue 
is empty, a finished transaction is not replaced: 

(i, 0) ~ (i- 1, 0) with rate iJL if i > 0. 

If at least one transaction is waiting and i = n, with probability B(n - 1) the first transaction 
in the queue remains blocked at a transaction completion epoch. With probability A(n - l) the first 
transaction is not blocked and can start executing: 

(n, j) ~ (n- I, j) with rate nj.tB(n- 1) if j > 0. 



100 CHAPTER 6. PREDICTABLE SCHEDULING 

(n, j) ~ (n, j- I) with rate n~-tA(n- 1) if j > 0. 

If j > 0 and i < n just before a transaction completes execution, with probability B(i - 1 I i) the 
first transaction f in the queue remains blocked: 

(i,j) ~ (i -1, j) withratei~-tB(i- 1 I i) ifi <nand j > 0. 

With probability A(i - 1 1 i) f begins execution. Now if a processor is still available, and the queue 
is not empty, the transaction r that is next in line is available for execution. With probability B (i) it is 
blocked: 

(i, j) ~ (i, j - 1) with rate i~-tA(i - 1 I i)B(i) if i <nand j > 1. 

With probability A(i), r is allowed to execute. Now if yet another processor is available, and the 
queue is still not empty, a third transaction is available for execution. With probability B(i + 1) it is 
blocked: 

(i, j) ~ (i + 1, j 2) with rate i~-tA(i I I i)A(i)B(i + I) if i < n - 1 and j > 2. 

With probability A (i + 1) the transaction executes. As long as there is still a processor available 
and the new first transaction in the queue does not conflict with the transactions in execution, the 
scheduler admits a new transaction to a free processor. The transitions that can arise and their rates 
are included in the following, summarizing expression. When j > 0, a departure can cause the 
following state transitions 

(i, j) ~ (i- I+ k, j- k) 

with rate n~-tB(n - 1) if i = n and k = 0 

with rate n~-tA(n I) if i =nand k = 1 

with rateittB(i- I I i) ifi <nand k = 0 
k-2 

withratei~-tA(i -IIi) n A(i +m) ifi < n andk = min{j,n -i + 1} > 0 
m .. o 
k-2 

with ratei~-tA(i -11 i) n A(i +m)B(i -1 +k)ifi < n andO < k < min{j,n- i + 1}. 
m..O 

The convention is used that n~=O = I if .e < 0. 
Figure 6.6 shows the possible transitions when n = 4, and queues are at most 7 transactions long. 

Observe that the system is cyclic, even and odd states can be defined by counting the distance to (0,0). 
All transitions are between an even and an odd state. Figure 6.7 gives a close-up of the transitions to 
and from (1,6), with their intensities. 

Steady-state distribution 

Let vector Tt denote the steady-state distribution of the Markov model described above. Then Tt(i, j) 
is the probability that in the long run the system is in state (i, j). The steady state distribution is used 
in section 6.3 to compute the moments of the response time. We are primarily interested in the first 
two moments: the average and the variance of the response time. · 



6.3. PERFORMANCE ANALYSIS 101 

j1.(1-B(l))(l·B(2))(l·B(3)) 

4,2 

Figure 6.7: TRANSITIONS TO AND FROM (1,6) IF n = 4 

Approximating the steady state by truncating the state space. Balance equations can be derived 
from the expressions in the previous section, by applying the "rate out of stale (i, j) =rate into state 
(i, j)" principle. A Markov generator Q is constructed by combining all transitions defined above. 
Solving the balance equations n Q = 0 gives the steady state distribution rr of the Markov chain. 

Markov generator Q is a matrix of infinite size, since the number of states is unbounded. This 
makes it difficult to solve the balance equations. We computed the steady state probabilities numer­
ically from the balance equations by truncating the state space and thus bounding the size of Q, at a 
sufficiently high number 1 of waiting transactions. The probability that transactions arrive in states 
where ;::: J transactions are waiting should be negligible. Therefore, 1 is related to parameters n, .>.., 
p., a and d. 

The matrix geometric approach instead oftrnncation. The steady state probabilities can be com­
puted without truncating the stale space, by using the matrix geometric approach [70]. Let level j 
represent all states with j waiting transactions, and define 1!) as the vector (rr(O, j) ... rr(n, j)). Then 
steady state distribution rr i has the geometric form: 

TCj = rr1Rj-l for j ::: 1. 

Matrix R is the unique solution to a matrix equation of order n +I. This is the equation I:~~~ Rk Ak 
0 where the Ak 's are specific n x n sub-matrices of Markov generator Q. Matrix R can be solved 
numerically by successive substitution, starting with R = 0. 

Steady state vector rro is also delermined by R. Unfortunately, for most choices of nan explicit 
expression for R cannot be obtained, because of the high order of the matrix equation. So even 
when Neuts's matrix geometric approach is used, the steady state probabilities can only be computed 
numerically. 

Drawing conclusions from the steady state. In Figure 6.8(a), the steady state distributions of the 
total number of transactions in the system are drawn for different conflict probabilities. The param­
elers used are A. = i· p. = l and d = 100. The number a of data ilems used by a transaction was 
varied between 0 and 5 to obtain the different conflict probabilities. The figure shows that high conflict 
probabilities result in longer queues, as some transactions have to wait because of a conflict. 



102 CHAPTER 6. PREDICTABLE SCHEDULING 

0.35 
0 -0.3 0.039 +··· 

0.088 ·8··· 
0.8 

0.153 -><-·-
0.25 0.230 ...... 

0.6 

0.2 :; 
ii:" 

0.15 
w 
ii:" 0.4 

0.1 
0.2 

0.05 

0 

0.01 ......... ······· 
-- .... -· +c;· 

5 10 15 20 25 30 1 2 3 4 
queue length L m 

(a) Steady states (b) Processor waste because of blocking 

Figure 6.8: STEADY STATES AND PROCESSOR USAGE FOR n = 4 AND VARIOUS a 

In Figure 6.8(b) the effect of blocking on processor usage has been plotted. Depicted is the per­
centage of time that < m processors are executing transactions, given that there are 2:: m transactions 
in the system, for m = l to 4. The different graphs correspond to blocking probability 0, O.oi, 
0.039, 0.088, 0.153 and 0.230. If the conflict probability is 0, transactions never wait if a processor is 
available. When conflicts become more frequent, the usefulness of a third and fourth processor drops 
dramatically. For example, in a system with conHict probability 0.153, ~ 60% of the time that there 
are transactions waiting for execution, at most two processors are executing transactions, the other 
processors are idle. Adding processors hardly increases the performance of the system, the high con­
flict probability limits the number of transactions that are allowed to execute concurrently. Increasing 
the processing speed does result in a significant performance increase. Therefore, in.systems where 
the conflict probability is high, a few powerful processors result in more performance gains than a 
large number of Jess powerful processors. 

The steady state of the system gives information about the throughput, average queue-lengths and 
processor activity. If execution times differ substantially, knowledge of the average execution time is 
not sufficient to guarantee that deadlines are met. Information about the distribution of the response 
time is needed. 

The response time distribution 

The distribution of the response time S of a transaction is usually described by the moments of the 
response time. We aim to find E[Sk], the k-th moment of S, for k 2:: 1. The average response 
time E[S] of a transaction can be computed using Little's rule E[L] = AE[S]. Here E[L] is the 
average number of transactions in the system and is obtained from the steady state probabilities: 
E[L] = Li+J>O(i + j)1i(i, j). 

For E[Sk] with k > 1 no direct relation between E[Sk] and E[L], E[L2] up to E[Lk] is known 
for systems like this. To derive an expression for E[Sk] we define a recursive relation that depends 
on E[S1] (l < k), and depends on moments of exponentially distributed stochastic variables. This 



6.3. PERFORMANCE ANALYSIS 103 

process is described below. 

A recursive relation for the response time. We follow the path of an arbitrary transaction through 
the model, from arrival to departure. With a 'path' we mean the states that are reached during the pres­
ence of the transaction under consideration. Tuple [i, j] describes the situation where i transactions 
are in execution and :::: j transactions are waiting in the queue. The tuple (i, j) refers to the system 
state as defined before. Define 

s(i.j] = the time until a transaction t leaves the system, when i transactions 

are executing, and j - l transactions are ahead of t in the queue. 

If j = 0, the transaction under consideration is in execution. When the system is in state (i, j) after 
an arrival, Sli.j) is the response time of the newly arrived transaction. Important is the observation that 
S1;,JJ does not depend on transactions that arrive at the system after the transaction under consideration. 
This follows from the property of the SQSL-soft scheduler that transactions waiting in the queue 
cannot be overtaken. 

The consequence of this observation is that arrivals of other transactions need not be considered 
when E[St.n] is computed. This enables us to concentrate on the departures only. Let X; be the time 
till the next departure when i transactions are executing. X1 is exponentially distributed with rate ijL. 
Let Pli.j]fm.e] be the probability that the next departure leads to a state with m transactions in execution 
and l - l transactions present in the queue ahead of the transaction under consideration. Then 

Sfi.n = X; + Srm.tJ with probability P!i.j][m.tJ for all [m, l]. 

This is a recursive relation, as m + l = i + j - l. Therefore, the moments of Su.n can be computed 
from the moments of Srm.tl with m + l < i + j. Once a transaction is in execution, its service time is 
exponentially distributed with mean 1/ IL· Thus the boundary condition for the recursion is S11,01 = X 
for all i > 0, where X is exponentially distributed with parameter IL· 

Let a<r.t)(i,Jl be the probability that a transition to state (i, j) is caused by an arbitrary transaction 
t that sees state (r, l) on arrival. An expression fort's response time Sis found by conditioning on 
state (r, l) and by using the PASTA [101) property: 

Sli.j] with probability L :n:(r, l)a(r.t)(i,j)· 

(r,l):i+ j =rH+ I 

Deriving the moments of the response time. The moments of the response time are derived directly 
from the recursive relation. Two important rules are used to find E[Sk] fork :::: L 

• Choice. The transaction follows path l with k-th moment E[SfJ, or path m with k-th moment 
E[S~]. The probability that path lis taken is p. Then 

E[Sk] = pE[Sf] + (l - p)E[S!J. 

• Addition. The transaction first follows path l with duration Sl> followed by path m with duration 
Sm. Then 

Based on these rules, the moments of S can be found using dynamic programming. 



104 CHAPTER 6. PREDICTABLE SCHEDULING 

Example. Suppose n > 2 and we need the second moment of the response time of transaction t 
that is first in the queue while two transactions are in execution (situation [2, l]). Transaction t must 
wait until a transaction leaves. This time is represented by random variable X2 which is exponentially 
distributed with parameter 2~-t. After the departure, t remains blocked with probability B(l I 2). 
Otherwise t begins execution. Using both choice and addition rule, the expression becomes: 

E[S&. 11] A(l 12)E[(Xz + S12,0J)
2
] + B(li2)E[(Xz + S1J,l])

2
] 

= A (I 12)(E[Sf2,01] + 2E[Stz.oJ1E[Xz]) + 
B(li2)(E[Sf1.1]] + 2E[S(l,IJ]E[Xz]) + E[X2]2. 

To find E[Sf2.1l], the first and second moment of Xz, S1z.o1 and S[!,ll must be known. In general, for 
E[S~.JJ]' moments E[Stm.eJ1, ... , E[S(m,tl] with m + l < i + j and the first k moments of exponen­
tially distributed variables are needed. With the choice rule, the second moment of the response time 
of an arbitrary customer is found. 

E[S2
] = L :rr(r, l) L O(r.t)(i,j)E[SB.nJ. 

(r,l) (i,j):i+j=r+Hl 

Approximating the response time distribution by fitting 

We use a mixture of exponentially distributed variables that has the same moments of S to approximate 
the response time distribution. The way this mixture is chosen influences the quality of the approxi­
mation. Denote the stochastic variable corresponding to the chosen mixture by S. Then P(S ~ x), 
the probability that a transaction meets its deadline, is approximated by P(S ~ x). We say the distri­
bution of Sis fitted to the moments of S. We used the two-moment fit as described in [94]. The fitting 
procedure can fit a distribution to any combination of E[S] and E[S2]. 

Adapting tbe Markov model for SQSL·firm 

SQSL-firm uses information about Dl (t) - Bx(t) to decide whether a transaction t is discarded. This 
can be incorporated in the model, without increasing the state space, if the following assumptions 
are added. First, it is assumed that the actual execution times of transactions match the best-case 
approximation that is input to the scheduler: Vt : Bx(t) = X (t). Second, we assume that the initial 
laxity D/(t) - Bx(t) is exponentially distributed with parameter d. This preserves the memoryless 
property of the states. 

Algorithm 6.4 discards late transactions when they arrive at the front of the queue. This is func­
tionally equivalent to an immediate discard of a transaction, if its slack time becomes less than 0 
(although the second implementation requires more computational overhead). The transaction dis­
card introduces a set of new state transitions. Only transactions that are in the queue can miss their 
deadline, because of the slack time definition. If there is more than one waiting transaction (j > l ), a 
transaction that is not first in line can miss its deadline: 

{i, j) -+ (i, j - 1) with rate (j l)d 

This transition can also result from an execution completion event, so the rates have to be combined 
by simple addition. 

More complex transitions can result if the first transaction in the queue misses its deadline. The 
next transaction in line is no longer blocked, and might be able to execute instantly. Therefore, up to 



6.4. COMPARISON WITH SIMULATION RESULTS 105 

n l transitions are possible if the first transaction misses its deadline, since at most n 1 processors 
are idle if the queue is not empty. Suppose p transactions enter execution (0 ~ p ~ n - i). If the 
waiting queue is not empty after the transition, the possible transitions are described as follows. 

(i, j + l) ~ (i + p, j- p) with rate dB(i + p)n:~A(i +x) 

If the queue is empty after the transition, the possible transitions are: 

(i, p + 1) ~ (i + p, 0) with rate dn::~A(i + x) 

We assume that B(n) = I, as no processors are available for execution. 

The path through the system. There are two ways of determining the success probability of a 
transaction. The first way is to replay the analysis of SQSL-soft with the new transitions, and to 
use the resulting distribution P(X < c) to check P(X < Y), where Y is exponentially distributed 
with parameter d. The second way is to determine ?(success) directly when following the path of a 
transaction through the system. In each state [i, j], there is a probability P(d[i,iJ) that the transaction 
under consideration misses its deadline. 

P(d1· -1)- d 
l,J - iJL+jd+d 

The total probability that a transaction meets its deadline can be computed with numerical methods, 
not unlike the way the moments are computed. For example, suppose state [i, j] can change into state 
[i, j - 1] or [i - I. j] with probability p and l- p. The success probability P(s{i.jj) is now: 

P(sti.jj) =(I - P(dt,.n))(pP(s!i.j-1]) + (1 - p)P(s[i-l,jJ)) 

This eliminates the need for the approximate fitting procedures. 

6.4 Comparison with simulation results 

All four SQSL schedulers were simulated using discrete time simulation. The simulations use the 
same assumptions about the input of the system as the analysis in 6.3. In addition, it is assumed that 
transactions exactly announce their execution time: Vt : Bx(t) = Wx(t), and that the initial laxity 
of each transaction Dl(t) - Bx(t) is exponentially distributed with parameter 4JL. Subsection 6.4.1 
compares the results from the Markov analysis with the simulations. Subsection 6.4.2 compares the 
performance of all four SQSL schedulers, using simulations. 

6.4.1 Simulation compared to fitting 

A simulation of the system has been programmed, and several test runs were made. Again, A. = ~ and 
J-L = 1 was used. In Figure 6.9, the simulation and analysis results for E[S] and E[S2] are shown. 
The results show that the truncation of the state space results in inaccuracies when the system is not 
stable. For n = 4 we used moments E[S] and E[S2] from our analysis to approximate P(S ~ x) for 
x = l, 3, 5 and 7. Conflict probability B(l) was varied from 0 to 0.230, corresponding to 0 to 5 data 
accesses in a database with 100 data items. We also estimated P(S ~ x) by simulation. The results of 
both analysis and simulation are given in table 6.1. The simulated values are the midpoints of a 95% 
confidence interval with a width smaller than 0.02. Table 6.1 shows that the fitting procedure gives an 
excellent approximation of the response time distribution. 



106 

4 CPUs, analysis +-
3 CPUs, analysis 

8 4 CPUs, simulation ·a· .. 
3 CPUs, simulation ·><· .. 

6 

4 

QL---~----~--~----~--~ 
0 0.05 0.1 0.15 0.2 0.25 

8(1) 

(a) First moment 

CHAPTER 6. PREDICTABLE SCHEDULING 

60 

60 

40 

20 

0.05 0.1 0.15 0.2 0.25 
8(1) 

(b) Se.:ond moment 

Figure 6.9: ANALYSIS AND SIMULATION FOR n = 3 AND n 4 

6.4.2 Comparison of the schedulers 

The four SQSL schedulers were tested in a number of simulations, which varied in the conflict prob­
ability. Note that for SQSL-soft and SQSL-firm, simulation and analysis results match. In figure 6.10 
the arrival rate of transactions is varied between 0.5/J- and 3.5/J-. The conflict probability between two 
transactions is fixed to 0.39, and the number of processors is 4. 

The SQSL-soft scheduler loses all real-time performance if the system becomes overloaded. A 
long queue of waiting transactions builds, as arrival of transactions is higher than the throughput of 
the system. The other schedulers do not suffer from this problem, as they discard late transactions, 
long queues can never build. The increase in performance is remarkable, even at low arrival rates a 
performance difference of 35% exists between SQSL-soft and SQSL-firm. In fact, SQSL-firm hardly 
discards transactions for low arrival rates. It appears that by discarding a few "bad" transactions, 
almost all other transactions meet their deadlines. 

The performance of the more complex schedulers is higher than SQSL-firm, although the gain 

P(S ~ l) P(S ~ 3) P(S < 5) 
B(I) Fit Sim. Fit Sim. Fit Sim. 
0 0.61 0.61 0.95 0.95 0.99 0.99 
0.010 0.59 0.59 0.94 0.94 0.99 0.99 
0.039 0.54 0.54 0.90 0.90 0.98 0.98 
0.088 0.45 0.45 0.83 0.83 0.95 0.95 
0.153 0.32 0.32 0.68 0.68 0.85 0.85 
0.230 0.16 0.17 0.41 0.42 0.59 0.60 

Table 6.1: RESULTS FOR THE RESPONSE TIME DISTRIBUTION 



6.4. COMPARISON WITH SIMULATION RESULTS 107 

0.9 

o.a 

! 0.7 

'5 0.6 

~ 0.5 

I 0.4 

0.3 soft-
firm ....... 

0.2 !If .. ., .... 

0.1 
skipping +· 

0 
0.5 1.5 2 2.5 3 3.5 4 

arrival rate 

Figure 6.10: COMPARING SCHEDULING METHODS, N=4, P(CONFLICT)=0.39 

in performance becomes smaller, with each optimization. This behavior is expected, since each op­
timization is guaranteed to improve or at least not degrade system performance. In figure 6.11 a, the 
arrival rate of transactions is fixed to 2J.1., and the conflict probability is varied between 0 and 0.230, 
which is translated to access of 0 to 5 data items in the database. The results are similar to the re­
sults of 6.10: if the conflict probability increases, the system can handle less transactions in parallel. 
Therefore, the system becomes overloaded at lower arrival rates. 

The advantage of queue skipping is shown in figure 6.1 lb. Both pure MLF scheduling and MLF 
scheduling with queue skipping are depicted. The parameters of the simulation (n = 8 and }.. = 411) 
result in a system where a lot of processor power is wasted because of blocking. Especially in these 
circumstances queue skipping is advantageous. 

0.9 

o.a 0.95 mlf ....... . 

... 0.7 
£ 
'5 0.6 

~ 0.5 

skipping 

i 0.9 

I 0.4 

0.3 soft-<>-

o; .. 0.85 E 
1r' 

firm-+- .. 
0.2 m!f .. ,. •.. 0.8 

0.1 
skipping ·>< .. 

0 0.75 
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 

B(1) B(1) 

(a)n = 4, /. 2~t (b) n = 8, A = 4~t 

Figure 6.11: VARIOUS CONFLICT PROBABILITIES 



108 CHAPTER 6. PREDICTABLE SCHEDULING 

6.5 Conclusions 

The accuracy of the straightforward Markov analysis shows that it is indeed possible to design an­
a(yzable real-time database schedulers. This can substantially reduce the effort that is necessary to 
obtain reliable and efficient performance evaluations of database schedulers. To date, most perfor­
mance evaluations are based on simulations and testing, which is time-consuming and often costly. 
For example, a single simulation run of SQSL-soft required around 8 hours of computation, while 
our analysis takes a few minutes on the same workstation. On the other hand, mathematical analysis 
of existing schedulers is very demanding. By showing that schedulers can be designed to reduce the 
complexity of the analysis we offer a third alternative, that is possibly more cost-effective. 

The SQSL schedulers presented offer a choice to a real-time database designer. The first sched­
ulers are straightforward to implement, and impose little overhead on the system. The more elaborate 
schedulers have a better processor usage, which increases the database performance. However, these 
schedulers need more information about transactions, and require more computation time to use this 
information in their scheduling decisions. 

MLF scheduling uses ordered insertion in the queue, and the queue skipping test uses expensive set 
intersections. The overhead that these mechanisms impose on the system is higher than the overhead 
caused by either the SQSL-soft scheduler or the SQSL scheduler with deadlines. Depending on the 
transaction complexity, straightforward schedulers that impose little overhead on the system might 
actually be better suited to a particular environment. However, this requires a more involved modeling 
than has been presented in this chapter, since the overhead has to be modeled in detail. 

Analysis of the first two schedulers is possible because of the specific nature of the SQSL sched­
uler, combined with important assumptions that enable us to use a memoryless model. Further re­
search could be directed at improving the analysis methods, such that more complex schedulers can 
be handled. Another direction can be to closer investigate the relation between the scheduler design, 
and its analysis. A combined approach could lead to clear, predictable database schedulers. 



Chapter 7 

Off-line database scheduling 

Off-line, hard real-time scheduling systems are used in safety critical systems with real-time demand>,. 
Their real-time behavior has to be totally predictable. This makes it difficult to program these sys­
tems. To somewhat ease the programming effort, extend an off-line, hard real-time programming 
environment with database functionality. The hard real-time database functionality is implemented by 
a pre-processor of the main scheduler, such that the off-line scheduler does not need to be modified. 
Part of this work has appeared earlier in [36]. 

7.1 Environment study 

The hard real-time environment under consideration is the DEDOS programming environment [39]. 
Its off-line scheduler guarantees hard real-time requirements, but the system does not offer database 
functionality. At this time, the DEDOS programming environment and its scheduler are still under 
development (see [99, 98]). In this chapter we add database functionality by adding a pre-processing 
step that translates database requirements into hard real-time requirements. Since the internal structure 
of the DEDOS scheduler remains unchanged, the pre-processing step can also be applied to other 
scheduling systems that offer a similar interface. 

Front-end Compiler DEDOS input 

HRT schedule 

Figure 7.1: OVERVIEW OF THE DEDOS SYSTEM 

109 



110 CHAPTER 7. OFF-LINE DATABASE SCHEDULING 

ront-end Compiler DEDOS input + database information 

enhanced DEDOS input 

HRT schedule 

~ 
Figure 7.2: OVERVIEW OF THE EXTENDED DEDOS SYSTEM 

Description of DEDOS 

Figure 7.1 gives a short overview of the DEDOS system. A front-end compiler translates a high level 
language into input for the D EDOS scheduler. The DE DOS scheduler uses this input and the hardware 
description to generate a schedule. This schedule is executed on the hardware by a dispatcher. 

The DEDOS scheduling input consists of a hardware model and a software model. We omit the 
hardware description, since it will not influence our database extension, assignment to hardware is 
handled by the DEDOS scheduler. This includes the scheduling of communication between execution 
units. Programs consist of a collection of objects 0 B. An object is a collection of data, together with 
methods that can be used to inspect or modify this data. Objects can communicate through method 
calls or asynchronous communication, irrespective of physical location of objects. 

The execution of a method can be pre-empted at pre-defined points. These pre•emption points 
define non-interruptible pieces of code, called execution units, or units in short. Set B contains all 
execution units. Function B 0 B determines for each execution unit to which object it belongs. Func­
tion Wx determines for each execution unit the worst-case execution time. Function St determines 
the start time for each execution unit. B, B 0 Band W x are produced by the front-end compiler, St is 
computed by the scheduler. 

Timing requirements are expressed by time precedence constraints. Set T PC contains an time 
precedence constraints. A time precedence constraint relates the start times of two execution units: 
if a and b are execution units then time precedence constraint (a, s, f, b) specifies the following 
requirement on S t: 

St(a) + s :::; St(b) :::; St(a) + f 
Normal precedence constraints can be expressed with time precedence constraints in the following 
way: "a -< b": 

(a, Wx(a), oo, b) 

Similar, a time precedence constraint (a, s, f, b) implies a -< b if and only if s:;:: Wx(a). 

Transaction-seriallzer interface 

Figure 7.2 shows the DEDOS system after it has been extended with database functionality. The 
transaction serializer will be further defined in this section. We assume that the front-end compiler 
has already been modified such that information about transactions and database accesses are available 



7.1. ENVIRONMENT SWDY 

Traditional 
Read Request 

HRTRead 
Optimization 

) 
I 

Traditional 
Write Request 

~I 
HRTWrite 
Optimization 

Figure 7.3: OPTIMIZING HARD REAL-TIME DATA ACCESS 

Ill 

to the transaction serializer. We describe the extra input that results from adding information about 
transactions and database accesses. 

A transaction is modeled by an object with a single start method. Set T describes the set of 
transactions, and is a subset of B 0 B. Data items are modeled by objects with a read and write 
method. Set DataSet describes the set of data items. Set 0 P S contains all read and write accesses, 
and is a subset of B. Functions tr, Amode and Daccess (together with OPS defined in chapter 2) 
define for each execution unit op E 0 P S to which transaction op belongs, the type of data access and 
the data item that op accessed. The fixed problem variables T, DataSet, tr and 0 PS are determined 
by the front-end compiler. 

Hard real-time data access optimization 

Figure 7.3 shows the classic way of invoking read and write methods in a message sequence chart 
(MSC). Message sequence charts [79, 64, 63] visualize communication protocols in an intuitive way. 
The vertical axis represents the flow of time. A vertical bar represents the execution of one or more 
execution units in a single process. Parallel bars thus represent parallel executions. Arrows correspond 
to messages between processes. 

The traditional read/write request is initiated by a request message from the transaction, to the 
process that maintains the data item. The request is handled, and the result or acknowledgment is 
returned. Since the DEDOS environment schedules all execution in advance, the read access request 
becomes superfluous, leading to the optimized read access. And because the DEDOS environment 
offers a dependable platform, no acknowledge for the write request is necessary. These optimizations 
are carried out by the front-end compiler that translates data access operations to communications 
between the transaction object and the data item object. 

Therefore, if transaction t reads data item X, an asynchronous communication from the data 
item object X to the transaction object t is defined. Similar, if transaction t writes data item X, an 
asynchronous communication from the transaction object t to the data item object X is defined. Since 
all data access is now asynchronous, this allows for a substantial increase in concurrent execution of 
transactions. 



112 CHAPTER 7. OFF-UNE DATABASE SCHEDULING 

Figure 7.4: TWO EXAMPLE GRAPHS 

Database functionality 

The transaction serializer ensures that the execution of transactions is conflict serializable. However, 
the order in which execution units are executed is determined by the DEDOS scheduler. The trans­
action serializer can enforce a certain execution order a -< b by supplying the corresponding time 
precedence constraint (a, Wx(a), oo, b) to the DEDOS scheduler. The set of time precedence con­
straints that is supplied to the DEDOS scheduler is denoted T PC'. This set has to include all time 
precedence constraints that have been specified by the application programmer, so T PC s;; T PC'. 
Furthermore we restrict the generality of time precedence constraints: time precedence constraints 
cannot refer to internal execution units of transactions (they can refer to the first and last execution 
unit of a transaction). This restriction is necessary to preserve the atomicity constraint of transactions. 

Abstract representation of tbe database scheduling problem. To focus on the scheduling prob­
lem, we look for an abstract representation of the database scheduling problem that is solved by the 
transaction serializer. It is known from literature [73] that schedules can be tested for conflict serial­
izability by constructing a so-called conflict-graph. A conflict-graph uses vertices to represent trans­
actions and edges to represent precedence constraints between conflicting data accesses. A schedule 
is conftict-serializable if the corresponding conflict-graph is acyclic. 

Suppose two transactions p. q perform at least one conflicting data access. Either (p, q) or (q, p} 
is a directed edge in the conflict-graph. Which edge is added depends on the actual execution order 
that is determined by the DEDOS scheduler. Unless a time precedence constraint in T PC' enforces 
p -< q (or vice versa), the DEDOS scheduler chooses an arbitrary order. Arbitrary orders cannot be 
represented by a conflict-graph, hence it does not suffice to describe our scheduling problem. 

We generalize the conflict-graph to a mixed graph. A mixed graph G = (V, E", Ed) consists of 
a set of vertices V, a set of undirected edges E", and a set of directed edges Ed (E" n Ed = 0). 
Similar to the conflict graph, vertices represent transactions and edges represent conflicts between 
transactions. A directed edge (a, b) specifies that the order between the conflicting operations a, b is 
fixed by a time precedence constraint An undirected edge (a, b) specifies that the DEDOS scheduler 
can choose an arbitrary order. For undirected edges the relation (a. b) = (b, a) holds throughout the 
chapter, and the conversion is not explicitly mentioned in the presented algorithms. A cycle in the 
mixed graph occurs if a path p1 ... pk p1 (k > 2) exists such that p; e V (I :::s i :::S k) and either 
(p;, Pi+d E E" or (p;, Pi+I) E Ed. If the mixed graph is acyclic, the DEDOS scheduler can only 
generate conflict-serializable schedules (since each directed edge in the mixed graph corresponds to a 
time precedence constraint). 

An extension of the mixed graph is necessary to deal with cyclic dependencies between pairs of 
transactions. If transactions p, q perform at least two conflicting data accesses, the access order has 
to be specified, since a cycle of length two can occur. Since the mixed graph allows for at most one 
edge between two vertices, this cyclic dependency cannot be detected without extending the graph 
definition. We label undirected edges that correspond to pairs of transactions that have two or more 



7.1. ENVIRONMENTSTUDY 113 

conflicts with each other. Let lab be the set of labeled edges. 
Usually, the mixed graph G = (V, E". Ed) that l!t generated from the input of the transaction 

serializer (the conflict relation, and T PC) is cyclic. The task of the transaction serializer is to find a 
(partial) orientation Eu', Ed', such that the resulting mixed graph G' = (V, Eu', Ed') is acyclic, and 
all labeled edges have received an orientation (Eu' n lab = 0}. In effect, the transaction serializer 
orients a number of undirected edges (replaces them by directed edges), and adds the corresponding 
time precedence constraints toT PC'. 

Towards an objective function. Adding time precedence constraints can restrict the solution space 
of the DEOOS scheduler. Since the internal structure of the DEDOS scheduler is unknown, we have 
to assume that restricting the solution space decreases the probability that a feasible solution is found. 
Therefore, we investigate if the number of undirected edges I E"'l in the resulting graph G' is a good 
objective function. 

Suppose that a set of independent directed paths exist in G = (V, E", Ed), with total length k. 
Then the maximum number of undirected edges in G' (V, Eu', Ed') is at most IV I - k - I. For 
k = 0, this is proven as follows: the 1 V 1 - 1 undirected edges form a spanning tree of G. Adding 
a single edge introduces a cycle. If a directed path P = p1 ••• p1 exists, no undirected path can exist 
between two vertices on PinG' (since G' is acyclic). Hence, the maximum number of edges consists 
of a spanning tree on V- P, plus a single edge toP: !VI-IPI. There are at most IVI2 - !VI edges. 
Generally, the majority of the edges in the final solution G' has to be directed to eliminate cycles. We 
conclude that IE"' I is not suitable as an objective function. 

Even if edges are directed, the remaining solution allows for a certain amount of concurrency. 
Consider figure 7.4. The left graph allows for more concurrency: vertex a and c can execute in parallel, 
while the right graph enforces strict sequential computation. To strengthen our earlier point: function 
IE" I does not distinguish between these two graphs! A well-known objective function from hard­
realtime scheduling (the sum of all completion times [76]) does distinguish between these two graphs. 
With a slight modification it can serve as the objective function. Completion times of transactions are 
determined by the DEDOS scheduler, and are not available to the transaction serializer. Instead, we 
calculate transaction completion time, assuming that all transactions have unit execution length. 

Definition 7.1 Fora given graph G = (V, Eu, Ed), define Cg; (i E V) as the length of the longest 
directed path in G with endpoint i. 

Now function L;ev Cg; (abbreviated L Cg;) does distinguish between the two graphs in figure 
7.4. The left graph has L Cg; = l, which is better than L Cg; = 3, for the right graph. Furthermore, 
if C g; = 0 for all transactions i, all transactions can execute in parallel (no precedence constraints 
delay transactions). More general, if Cg; is low, compared to the total number of transactions, it 
means that the level of concurrency is high. This suggests that minimization of L Cg; is suitable 
as an objective function. Since the transaction serializer uses no knowledge about the scheduling 
regime of the DEOOS scheduler, both proposed objective functions are rather crude heuristics. Their 
performance should be tested by actual scheduling of applications on the DEDOS platform. 

Summarizing, time precedence constraints and conflicts relations are translated to a labeled mixed 
graph G. An acyclic mixed graph G' is generated by finding a partial orientation of G. The directed 
edges in G' are translated to time precedence constraints that are (together with previously defined 
time precedence constraints) passed to the DEDOS scheduler. In this chapter, the main focus is on 
identification of the scheduling problem. The problem specification specifies the predecessor-heuristic 
as its objective function. Finding an acyclic graph that optimizes the objective function LieT Cg; is 



114 CHAPTER 7. OFF-LINE DATABASE SCHEDULING 

NP-complete, as we show by mapping the 

l21chains, Pu II L C; 

onto our problem in subsection 7 .3.1. We will call this the graph orientation problem in the remalnder 
of this chapter. More complex heuristics (for example, a combination of the two mentioned heuris­
tics) and accompanying algorithms can return solutions that improve the probability that the DEDOS 
scheduler returns a feasible schedule. This has not been investigated. 

7.2 Specification 

The transaction serializer is added as a pre-processor to the DEDOS scheduler. Hence, all platform 
details are hidden from the transaction serializer. The transaction serializer influences the execution 
of transactions by adding time precedence constraints toT PC'. 

Generic scheduling specification. 

platform: DEDOS scheduler section 7.1 I 
data: non-temporal page22 I 
transactions: conflict-serializable page24 I 

i objective function: LieT Cg; section 7.1 I 

Additional specification. 

Fixed Variable Domain Description I 
OB 9'(identifiers) The set of all objects. I 
B 9' (identifiers) The set of execution units. 

1 Wx B-? R+ Worst case execution time function. I 
TPC !P(B X R X R X B) ! Set of time precedence constraints. I 

Free Variable 1 Domain I Description 
TPC' 9'(B X R X R X B) I Set of time precedence constraints created by 

transaction serializer. 
St B-? R+ I Start times of execution units 

• Fact constraint Description I 
! TPC s;; TPC' The transaction serializer only adds con- I 

straints. 
I V(a, s, f, b) E T PC' : St(a) + s ::S St(b) ::S 
. St(a) + f 

Scheduler enforces TPCs. 

I

Va,b E OPS: (a,s,f,b) E TPC' As::: Wx(a):. The data access order is determined by 
a -<Aorder b i timed precedence constraints. 



7.3. SCHEDULER DESIGN AND ALGORITHMS 115 

1 V, Eu, Ed,lab ::i;; T, 0, 0, 0 
2 foreach a, b E 0 P S :a < b A conflicts(a, b) do 
3 if (a, b) E £U then lab+ = (a, b) 
4 else £U+ =(a, b) 

Algorithm 7.5: CONFLICT DETECTOR 

7.3 Scheduler design and algorithms 

The transaction serializer has to ensure that the order in which transactions execute their access op­
erations is conflict serializable. Although it cannot directly determine the start times of data access 
operations, it can specify time precedence constraints between data access operations. Normal prece­
dence constraints can be expressed by time precedence constraints, so a conflict serializable order can 
be enforced. The transaction serializer continues to add time precedence constraints toT PC' and thus 
exchanging undirected edges for directed edges in the mixed graph, until G is acyclic. The transaction 
serializer is divided in four steps, to manage the complexity of the scheduling problem. 

1. Conflict detector The conflict detector explicitly defines the solution space of the transaction 
serializer. For each transaction t, a vertex is added to mixed graph G. For each pair of con­
flicting execution units a, b undirected edge (a, b) is added to mixed graph G. If an undirected 
edge is added more than once (two transactions have two or more conflicts with each other), the 
edge is labeled by adding it to set lab. 

2. Application PC extractor The application PC extractor eliminates cycles in G by replacing 
undirected edges with directed edges, in accordance with the time precedence constraint-set 
T PC. This does not exclude feasible solutions. 

3. Heuristic unit The heuristic unit eliminates the remaining cycles in G (thus creating G') using 
heuristics that possibly eliminate feasible solutions. 

4. T PC' constructor The T PC' constructor performs a straightforward translation from the 
mixed graph, to time precedence constraints. 

7 .3.1 Conflict detector 

The conflict detector generates the initial mixed graph G = (V, E", Ed) and its labeling lab. The 
vertices represent transactions, undirected edges represent conflicts between transactions, and directed 
edges represent serialization order. Initially, V = T, and E" = Ed =lab= 0. We use a straight­
forward algorithm that checks the conflict relation for each pair of data accesses to determine E". 
Algorithm 7.5 describes this. At the same time, algorithm 7.5 labels undirected edges, if they represent 
more than one conflict. Since each pair of data accesses is investigated (line 2) the time complexity 
of the conflict detector is 0(1 0 P Si2). This complexity can be reduced if the conflict relation can be 
enumerated. However, since there can be 0(1 0 P S\2) conflicts, this will not improve the worst-case 
execution time. 



116 CHAPTER 7. OFF-UNE DATABASE SCHEDULING 

1 foreach p. q E B do M[p, q] := (-oo, oo) 
2 foreach (p, s, t, q) E T PC do 
3 M[p, q]e = (s, t) 
4 M[q, p]e = (-s, -t) 
5 fork:= I to llogiBil do 
6 foreach p, q, hE B do M[p,q]e = M(p, h] ® Mlh. q] 
7 TPC* := 0 
8 foreach p, q E B : p::::: q do 
9 (s, f):= M(p, q] 
10 T PC*+ (p, s, f, q) 

Algorithm 7.6: TAKING TRANSITIVE CLOSURE OF TPC 

Application precedence constraint extractor 

The application precedence constraint extractor generates a set of precedence constraints A PC from 
T PC and W x. These precedence constraints are used to direct edges in G in accordance with the time 
precedence constraints that are supplied by the application. The application precedence constraint 
extractor executes the following steps. 

1. Take the transitive closure ofT PC: T PC*. 

2. Generate precedence constraints from T PC*: APC. 

3. Adapt Gin accordance with APC. 

Two kinds of time precedence constraints are considered, both of which are contained in the set 
T PC: time precedence constraints that are specified explicitly in the application program, and time 
precedence constraints that result from sequential execution of execution units. Set T PC* represents 
the transitive closure of the partial order specified by set T PC. Algorithm 7.6 maintains a two­
dimensional array M. At each position M[p, q], the time precedence constraint between operation p 
and q is maintained as a tuple (s, f). The following two rules are used to combine information from 
different time precedence constraints. 

• Transitivity The transitivity rule combines sequences of timed precedence constraints. 

(a,s, f,b) ® (b,s', f',c) =(a, s +s', f + f',c) 

• Combination If two time precedence constraints are specified between a pair of execution units, 
they can be combined into one. 

(a, s, f, b)$ (a,s', f', b)= (a,max(s,s'),min(f, j'),b) 

Transitive closure ofT PC. Algorithm 7.6 first initializes array M by combining all time prece­
dence constraints T PC. Since there are IBI execution units, the transitivity rule has to be applied 
rtogiBil times to all possible combinations in M, to complete the transitive closure ofT PC. Af­
ter the k'h execution of line 6, entry M[p, q] contains the timed precedence constraint between p 
and q that is the combination of all possible sequences of time precedence constraints of length 2k 



7.3. SCHEDULER DESIGN AND ALGORITHMS 117 

1 APC :=0 
2 foreach (a, s, j. b) E T PC* :a, bE OPS A conflict(a, b) 1\ s ::: Wx(a) do 
3 APC+ = (tr(a} .o< tr(b)) 
4foreach (a,s, f,b) E TPC*: a,b E OPS A conflict(a,b)A f ::0 -Wx(b)do 
5 APC+ = (tr(b) .o< tr(a)) 

Algorithm 7.7: GENERATING PCs FROM TPCS 

or less. Therefore, line 6 has to be executed floglBil times, to complete the transitive closure of 
T PC. Finally, the results in Mare stored as set T PC*. The time complexity of algorithm 7.6 is 
O(logiBI x IBI3), since the foreach-statement on line 6 checks O(IBI3) possible combinations. 

Generate precedence constraints. Algorithm 7.7 generates the set of application precedence con­
straints from T PC*. If an access operation b starts after a is guaranteed to finish (St(a) + Wx(a) S 
St(b)), this implies that tr(b) is serialized after tr(a). If b finishes before a starts (St(a) :::: 
St(b) Wx(b)), the reverse holds: tr(b) .o< tr(a). In all other cases, executions of access opera­
tions are allowed to overlap, and precedence constraints cannot be extracted. The time complexity of 
algorithm 7.7 is 0(1BI2), as a time precedence constraint is specified between each pair of execution 
units. This complexity can be reduced to 0(10PS12) by suitable data-structures that eliminate the 
need to consider time precedence constraints that do not relate to pairs of data access operations. 

Adapt G. Algorithm 7.8 adapts the mixed graph by replacing undirected edges by directed edges. 
Although the DEDOS scheduler can never generate a schedule if contradicting time precedence con­
straints are specified (both a .o< band b .o< a), the check in line 5 stops the algorithm from proceeding 
at this early stage. Performing the checks (a, b) E E" and (a, b) E Ed can be done in 0(1 ), if the 
right data structures are used (for example adjacency matrixes, see [26]). The time complexity of 
algorithm 7.8 is 0(1Ti2), since it considers each element of APC at most once. 

Heuristic unit 

Finding a set of directed edges Ed' that replace undirected edges from P, such that the G 
(V, E"', Ed') is acyclic, and L;ev Cg(i) is minimal is NP-complete. We show that the 

121chains, Pii = 11 L C; 

1 foreach (a .o< b) E APC do 
2 if(a,b)EE" 
3 then E"- =(a. b) 
4 Ed+=(a,b) 
5 else if (b, a) E Ed then report incorrect specification 

Algorithm 7.8: ADAPTING THE MIXED GRAPH WITH APC 



118 CHAPTER 7. OFF-LINE DATABASE SCHEDULING 

job-shop scheduling problem that is known to be NP-hard [95], can be polynomially reduced onto our 
problem. 

Complexity of the graph orientation problem. The J 21chai ns, Pii = \ I E C; job-shop problem 
is described as follows. Mixed graph G j = (Vi, Ej, Ej) consists of a set of operations Vi. Each 
job a has to be executed on two resources r 1, r2. These executions are represented by operations 
a 1, a2 E Vi. The order in which these operations have to occur depends on the job, and is represented 
either by directed edge (a1, a2) E Ej or (a2, aJ) E Ej. Each job requires an execution time of 1 on 
each resource. Each resource can only execute one operation at a time. Operations a;, b; on the same 
resource are connected by an undirected edge (a;, b;) E Ej. The order in which jobs can be executed 
is restricted by so-called chains, that determine a partial order on the execution of jobs. If job a, with 
(a;, ap) E Ej precedes job b with (bb bt) E Ej in the partial order, this is represented by directed 

edge (ap. bk) E Ej. An execution order should be defined by giving an orientation of Ej. such that 
the resulting schedule minimizes E C;, the sum of all completion times of jobs. 

The mapping from instances of the job-shop problem to instances of finding an orientation of 
mixed graph G = ( V, E", Ed) is as follows: V Vi, P E'J, Ed = Ej. Furthermore, all 
undirected edges in E" are labeled (lab = Eu ), to ensure that they receive an orientation. Solution 
G' = (V, E"', Ed') is an acyclic directed graph. Since the reduction is almost a one-on-one mapping, 
the corresponding orientation is a solution to the job-shop scheduling problem. As jobs have a unit ex­
ecution time, E Cg; = E C;. Therefore, an optimal solution to the mixed graph orientation problem 
implies an optimal solution to the job-shop scheduling problem. 

Solution methods. Several approaches are possible to find solutions that optimize the objective 
function. The problem can be formulated as a constraint satisfaction problem (for a discussion of 
CSPs, see chapter 2). The cycle remover that is described in algorithm 7.10 can be used for reduction 
of the solution space. Algorithm 7.9 computes the objective function for a given result. The objective 
function is discussed below. 

Genetic algorithms received their name from a strong similarity of biological processes [66]. For 
a more pragmatic approach to genetic algorithms and a description of other solution methods, see 
[1]. The optimization problem can be transformed into a problem that can be solved with genetic 
algorithms. Two transformations take place. The objective function is modified to serve as the so­
called fitness function. Infeasible solutions that still allow cyclic dependencies are penalized: total 
is increased with a sufficiently large constant Cerror· This constant should be higher than any E Cg; 
that belongs to a feasible solution. For example, Cerror = iVI2 suffices, as it can be shown that 
L: C g; ::s IV I ( 1 VI - 1) f2. Checking whether cycles in the mixed graph and labeled undirected edges 
still occur is possible in O(V +E) time with standard DFS [26]. In this fashion, the genetic selection 
mechanisms will prefer feasible solutions. 

The mixed graph is written as a string of 0/1/2 values (a "genome"). Each character ("gen") in 
the string represents an initially undirected edge. Value 0 and 2 represent the opposite orientations 
of a directed edge, and 1 represents an edge that remains undirected. By encoding only the initially 
undirected edges, instead of the entire graph, the string length is reduced. The fitness function has 
to reconstruct the entire graph from the string, and the set of initially directed edges. The modified 
version of algorithm 7.9 can then be used as the fitness-function that is required in genetic algorithms, 
since it penalizes incorrect solutions. 



7.3. SCHEDULER DESIGN AND ALGORITHMS 

I foreach v E V doCg[v) :=-I 
2 F.DONE,total:=f/1,0,0 
3 foreach v E V :,.:Jv' E V: (v', v) E Ed do F+ = v; Cg[v] := 0 
4 while F :p. 0 do 
5 choosev E F; F- = v; DONE+ v 
6 total+= Cg[v] 
7 foreach v' E V : (v, v') E Ed do 
8 Cg[v']max = Cg[v] + !; 
9 if\f(v", v') E Ed: v" E DONE then F+ = v' 

Algorithm 7.9: COMPUTING THE OBJECTIVE FUNCTION 

119 

Computing the objective function. The objective function I: Cg; is computed in algorithm 7.9 by 
using a modified breadth first search (BFS) on a forest [26]. At any time, a "front" F of vertices exists 
that can be processed. A vertex v can be processed, if all its predecessors q ((q, v) E Ed) have been 
processed. Initially, F contains all vertices that have no predecessors. For each vertex v, Cg[v] is 
computed by taking the maximum of Cg[v'] + 1, for all predecessors v' of v (line 8). The algorithm 
stores each processed vertex in set D 0 N E. Each vertex is added exactly once to set F. Therefore, the 
while-loop in line 4 is executed 1 VI times. The foreach statement in line 7 checks each outgoing edge 
of the vertex that is under consideration. Using suitable data-structures (adjacency lists, see [26]), 
each outgoing edge is found in 0(1) time. Similar, the checks in line 9 can be resolved in 0(1) if 
the sets DONE and Ed are suitably chosen. Therefore, the time complexity of the entire traversal is 
O(IVI + IEdl). 

Cycle remover. Suppose in mixed graph G a path of directed edges exists from a to b. If (b, a) E 

Ed, graph G is cyclic, and no serializable schedule can be constructed. The application has to be 
redefined. If (a, b) E E", the mixed graph is cyclic. However, by replacing undirected edge (a, b) by 
directed edge (a, b), the cycle is avoided. Heuristics can avoid these simple cycles by invoking the 
cycle remover directly after an edge (a, b) is added to the mixed graph. The cycle remover uses depth 
first search (DFS) [26] to find these implicitly directed edges and replace them. 

DFS{v,a) 
I visited[ v] :=true 
2 if (v, a) E E" then 
3 E"- = (v,a) 
4 Ed+ (a, v) 

5 foreach (v, v') e Ed: --.visited[v'] do DFS(v', a) 

cycleRemover((a. b)) 
1 foreach v E V do visited[v]:= false 
2 DFS(b, a) 

Algorithm 7.10: CYCLE REMOVER 



120 CHAPTER 7. OFF-LINE DATABASE SCHEDULING 

1 TPC' := TPC 
2foreacha. bE OPS: conflict(a, b) 1\ (a, b) e Ed do 
3 T PC'+ = (a, W x(a), oo, b) 

Algorithm 7.11: T PC' CONSTRUCTOR 

Algorithm 7.10 shows the modified DFS and the main algorithm. The DFS traverses the graph 
along directed edges only, and starts in node b. At each node, it is checked whether undirected edges 
connect to vertex a. Such undirected edges are replaced by correctly oriented directed edges. The 
time complexity of a DFS traversal is 0(1 Vi+ IP +Ed I). 

7.3.2 T PC' Constructor 

The T PC' constructor translates precedences between transactions (directed edges in the mixed 
graph) to time precedence constraints on conflicting access operations. Therefore, even if transac­
tion t precedes transaction q in the accompanying data access order, part of the execution of t and q 
can occur in parallel: only the conflicting data accesses are ordered. Algorithm 7.11 describes how 
the translation is performed. 

7.4 Conclusions 

In this chapter, database functionality is added to DEDOS. DEDOS is a hard real-time scheduling 
system that uses time precedence constraints to specify timing behavior of non-interruptible execution 
units. Conflict serializability is enforced by adding a pre-processor to the system. This pre-processor 
(the transaction serializer} does not use any information about the DEDOS scheduler other than the 
interface. Therefore, the preprocessor can be used in other contexts as well. The transaction serializer 
can add database functionality to any hard real-time scheduler that specifies timing behavior with time 
precedence constraints on execution units. 

By taking advantage of the hard real-time functionality of the DEDOS platform, several optimiza­
tions are possible. These optimizations considerably enhance possible parallelism within a single 
transaction. Since on-line read-requests are superfluous in a hard real-time environment (the request 
is known off-line, and the read operation can be scheduled without on-line request), all read operations 
of a transaction can occur in paralleL Since DEDOS offers a dependable platform, writes never fail. 
No two phase commit protocol is required. This reduces the time that a transaction needs to commit. 

The chapter primarily focuses on the definition of the interfaces of the transaction serializer, and 
the identification of the remaining scheduling problem. A number of algorithms construct an abstract 
representation of the scheduling input, denoted as a mixed graph. Proposals are made to solve the 
remaining scheduling problem with either CSP solvers, genetic algorithms or other variants of local 
search methods. 



Chapter 8 

Temporal consistency in hard real-time 
databases 

Real-time systems that directly interact with their environment through sensors and actuators maintain 
a "view" of the environment. This view should be consistent and relevant, i.e. the data used to build the 
view should be measured recently. We observe that maintaining a consistent model is not a purpose 
in itself: these "temporal consistency" requirements only need to hold when the model is accessed 
by decision-taking procedures. In this chapter we investigate what new requirements arise in these 
systems, and we propose a way to implement these requirements in hard real-time databases. 

The structure of this chapter is as follows. In the next section, we show how databases can help 
in maintaining a model of the environment, and we investigate how temporal requirements can be 
specified. Section 8.2 gives a problem specification that expresses these new requirements. The 
scheduler design is explained in section 8.3, resulting in the scheduler that is presented in section 
8.4. The results of applying the scheduler to an example system are given in section 8.5. Finally, in 
section 8.6 the benefits and problems of our new specification method and scheduler implementation 
are discussed. 

8.1 Environment study 

The database should store data that is received from sensors (sensor data), and data that is derived 
from sensor data (derived data). Data that is received from sensors describes the environment at a 
certain point in time. Data items that describe the continuously changing environment are called tem­
poral data items. Non-temporal data do not directly reflect the environment. and they are treated in 
the normal way. The traditional seria:lizability requirement does not suffice for temporal data items, 
since it does not consider the passage of time. In this chapter, so-called transaction-based temporal 
consistency is introduced, which replaces serializability for temporal data items. This is a general­
ization of a previously introduced temporal consistency concept, that is best described as item-based 
temporal consistency, see [8]. 

Often, applications require sensor data or derived data of a certain age. Such age requirements 
can be satisfied by implementing a set of refresh transactions: transactions that write new values 
into the database. When these refresh transactions are executed depends on the age requirements of 
transactions. We define temporal requirements that transactions place on the temporal data that they 
read in the database. 

121 



122 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

Refresh transactions 

All database accesses are made by application software that issues transactions. More than one ap­
plication can make use of the same real-time database. The database fulfills a supporting role: it 
provides up-to-date data to the applications, and ensures that concurrent data access does not lead to 
perceived system states that violate consistency requirements. Applications supply the database with 
a set of transaction/refresh. The real-time database can execute these whenever temporal data has to 
be refreshed. Three transaction categories describe what transactions can be executed. 

Sensor transactions. These refresh transactions read out sensors, and store the results in the 
database. They do not read temporal data, and the temporal data items they write are called sen­
sor items. The database can execute sensor transactions when necessary. 

Derive transactions. These refresh transactions use information already present in the database to 
derive new information (draw conclusions). They read temporal data and the temporal data items they 
write are called derived items. The database can execute derive transactions when necessary. A good 
example of a derive transaction is the correlation of results from multiple sensors, to obtain a complete 
view of the environment. 

User transactions. These transactions are issued by the applications directly, and do not write 
temporal data items. They either control actuators, write to screens or write to non-temporal parts of 
the database. The database ensures that temporal requirements of these transactions are satisfied. 

To eliminate confusion, we explicitly state the difference between transactions and transaction 
types. A transaction refers to an actual execution, in which the database is accessed. Each transaction 
has a transaction type that defines what algorithm the transaction executes, and what requirements 
have to be fulfilled. In this chapter we focus on the temporal requirements that are specified by 
transaction types. If transaction tis of transaction type TT, we say tis an invocation of TT. Function 
Ttype(t) returns the transaction type of transaction t. Exactly one refresh transaction type is provided 
for each temporal data item (note that one refresh transaction can refresh more than one item). 

Definition 8.1 Each temporal item X is refreshed by transactions of type TTx. 

Due to this single-writer property, and since the database itself can determine when refresh trans­
actions are executed, serializing refresh transactions is easy. This removes the need for complex 
serializability constraints [100]. Furthermore, we assume that there exists a global clock !now that 
applications use to specify their real-time requirements, and that the database can use to satisfy them. 

Temporal data items 

Temporal data reflects (part of) the environment at a certain point in time. When a temporal data item 
is updated, this point in time changes. We make this mechanism explicit by introducing instances of 
temporal items. 

Definition 8.2 Instance 
Instance x of temporal item X consists of a value x. v, and a time of measurement x. r. 

Intuitively, x. r is the moment that x.v accurately reflects the state of the environment. x.v can reflect 
other moments as well, but this is not ensured. Each time a new value is written to a data item, a 
new instance is created. When instances are no longer useful, they can be destroyed or archived. To 



8.1. ENVIRONMENTSTUDY 123 

facilitate the specification, we assume that the set of instances at moment <now is given by function 
lnsts(<now). and that instances are never destroyed: lnsts(-r) is monotone increasing in -r according 
to subset ordering. Often, requirements are specified on the age of instances, instead of on the time of 
measurement. The age of an instance x at time -r is defined as follows. 

age(x, r) = r- x.-r 

Time of measurements. The time of measurement x. -r is defined by the transaction t that writes 
x. For sensor items, x.r can be directly related to the moment that the sensor was read. For derived 
items Y, y. r is not exactly defined, because the item is never measured! Since it is necessary to reason 
about the age of derived items, the transaction t that writes y should define an approximative time of 
measurement y.-r (see section 8.1). 

Data access of transactions. Multiple instances x of the same data item X can be present in the 
database at the same time. We allow transactions to read more than one instance of the same data 
item (necessary if the transaction wants to extrapolate the value of the item in time). For each trans­
action type TT, we define the sets I N(TT) and OUT(TT) that contain the data items accessed 
by invocations of TT, as well as the number of instances accessed from these items. We assume 
that transactions write at most one instance of each data item. The type of one tuple in I N(TT) is 
Dtup = DataSet x N+. 

Definition 8.3 Transaction input 
I N(TT} ={(X, n) I invocation t ofTT reads n instances of X) 

Definition 8.4 Transaction output 
OUT(TT) ={X I invocation t ofTT writes to X] 

As an abbreviation X is equivalent to (X, 1). For example, suppose invocations of transaction type 
T T access one instance of items X, Y, and 3 instances of item Z. The invocations write to data items 
P, Q. This is specified by: 

I N(TT) ={X, Y, (Z, 3)} 
OUT(TT) = {P, Q} 

Since it is possible that a transaction invocation reads more than one instance of the same data 
item X, we identify the read instances with an additional number I to /c. Read instance i of item X is 
denoted x;. To avoid confusion, we require that this ordering reflects the time of measurements of the 
instances: Vi, j E [1, k] : i < j => x;.r <xi .-r. 

Definition 8.5 Identifying instances 
The 1cth instance of data item X read l7y a transaction t is denoted Xk. 

Absolute temporal requirements 

Each transaction type specifies properties of the instances that are read by its invocations. For each 
instance the minimum and maximum allowed age of that instance can be specified as well. If the 
database satisfies maximum age requirements, it is ensured that transactions read significant, fresh 
data. Freshness of data is not the only thing that counts. Information about the future can be stored 
in the database, and certain data should not be read before a certain time. If the database satisfies 
minimum age requirements, it is ensured that transactions do not read data that is not yet valid. This 



124 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

® TT;_ ® _T_T---:::>j!llloo-

Figure 8.1: A DERIVATION PATH 

prevents transactions from acting too soon. Suppose (X, n) E I N(TT). For each instance X; (i E 

[1, n]), transaction type TT can specify that the age of X; should be in some interval [a, b]. 

Definition 8.6 Absolute requirements 
The absolute temporal requirement TT.abs(xt) =[a, b] specifies that the age of instance x;. read by 
an invocation t ofTT, should lie in interval [a, b]. 

It is allowed to use oo and -oo if upper or lower bounds need not be specified. As an abbreviation, 

is equivalent to k separate absolute temporal requirements for instances x 1 •• xk. 
The set of all absolute temporal requirements of a transaction type TT is denoted ABS(TT). A 

single absolute temporal requirement is denoted as a four-tuple (x, n, a, b), which is equivalent to 
TT.abs(xn) [a, b). The type of an absolute temporal requirement is 

Tabs= DataSet x N+ x R x R 

Relative temporal requirements 

To get a consistent view of the environment, a transaction needs to read instances with bounded 
age-differences. To extrapolate the value of a data item, a transaction needs to read instances of the 
same data item that are representative for the item's evolution: age differences need to be significant. 
Transaction type TT can specify upper and lower bounds on the age difference between instances that 
are read by its invocations. Suppose (X, n), (Y, m) E I N(TT). For each pair x;, Yj (i E [1, n]. j E 

[1, m]) transaction type TT can specify that the difference in age should lie within an interval [a, b]. 

Definition 8.7 Relative requirements 
The relative temporal requirement TT.rel(x;,Yj) = [a. b) specifies that the difference in age of 
instances x; and Yj read by an invocation t should lie within interval [a, b]. 

The set of all relative temporal requirements of a transaction type TT is denoted REL(TT). A 
single relative temporal requirement is denoted as a six-tuple (x, n, y, m, a, b), which is equivalent to 
TT.rel(xn, Ym) =[a, b]. The type of a relative temporal requirement is called 

Trel = DataSet x N+ x DataSet x N+ x R x R 

Specifying requirements on intermediate instances 

In figure 8.1, invocations of transaction type TT read derived data item Y, and TT can specify tem­
poral requirements on instances of Y. Whenever a transaction t of type T T reads an instance y, the 



8.1. ENVIRONMENT STUDY 125 

time of measurement y. r is used to check these requirements. Since Y is a derived data item, y. T is 
an approximation. If the approximation does not suffice for transaction type T T, we allow that T T 
specifies temporal requirements on the data items that are used to derive Y. Therefore, T T can specify 
temporal requirements on instances x, read by invocations of TT' that write Y. To avoid aliasing and 
naming problems, xis identified by explicitly naming the derivation path: x ~ y. We allow transac­
tions to specify absolute and relative temporal requirements on intermediate instances (like x in our 
example). However, as we will find out in 8.1, extra restrictions will be placed on these specifications. 

Temporal correctness 

Now all the temporal requirements of transactions have been specified, we define the temporal cor­
rectness properties of the real-time database. We assume that a selection mechanism exists, such that 
transactions read a correct set of instances, if this set exists. The temporal requirements of a trans­
action t that is an invocation of TT should hold at the start oft: St(t). We define two predicates 
that specify whether the set of available instances at time r satisfies the absolute and relative temporal 
requirements of transaction type TT. These predicates are then used to define temporal correctness. 

absolute(TT, T) s V(x, k, a, b) E ABS(TT): 3xk E lnsts(r): a~ T- x,.r ~ b 

relative(TT, r) = V(x, k, y,l, a, b) E REL(TT): 3xk, y1 E Jnsts(r) :a~ x •. r- Yl·r ~ b 

Definition 8.8 Temporal correctness The database (represented by function I nsts) has the temporal 
correctness property, if each executed transaction t reads instances x that satisfy the absolute and 
relative temporal requirements of the transaction type Ttype(t) oft. 

temporallycorrect(T) = 
Vt E T: absolute(Ttype(t), St(t)) 1\ relative(Ttype(t), St(t)) 

Intermediate instances 

Suppose in figure 8.1 T T needs to specify an absolute time constraint on x ~ y, 

TT.abs(x ~ y) =[a, b] 

According to the semantics of absolute temporal requirements, this means 

(St(t)- (x ~ y).r) E [a, b] for all invocations t 

So when invocation t starts execution, it reads an instance y. Instance y is created from an instance x 
that satisfies an additional temporal requirement. It is not clear if this requirement conflicts with an 
absolute temporal constraint on x that is specified by TT': 

TT'.abs(x) = [c, d] and TT.abs(x ~ y) =[a, b] 
mean 
St(t')- x.T E [c, d] and St(t)- x ~ y.T E [a, b]. 

The time of measurement x.r is now dependent on both St(t'), and St(t). Since St(t') and St(t) 
are defined by the scheduling system, it is hard to determine beforehand whether the two specifications 
contradict each other. Therefore, it is hard to write good specifications that involve intermediate 



126 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL· TIME DATABASES 

instances. Two alternatives were suggested to circumvent this problems. The first alternative is to 
remove temporal requirements on intermediate instances altogether. If the temporal requirements of 
a deriving transaction type TT need to be modified, a new transaction type TTm can be constructed. 
TTm is executed with the new temporal requirements. This leads to a lot of double work, and high 
processor loads. 

Instead, we choose to allow strengthening of temporal requirements. The semantics of temporal 
requirements on intermediate instances have to be modified. The rationale is that these modified 
semantics have a clearer meaning. Better specifications and implementations are the result 

Definition 8.9 Absolute temporal consistency requirements on intermediate instances 
Let x _,.. ... _,.. y be a derivation path ofy, let Y E I N(TT), X E I N(TT'). The absolute temporal 
requirement TT.abs(x _,.. ... _,.. y) =[a, b] meansVt': TT' = Ttype(t'):::::} (St(t')-x:r) E [a, b]. 

If a transaction type TT specifies temporal requirements on an intermediate instance x, read by 
transaction type TT', it can be seen as strengthening the temporal requirements of invocations of 
transaction type T T'. So the combination 

can be interpreted as 

TT.abs(x _,.. ... _,.. y) = [a, bJ 

TT'.abs(x) = [c,d] 

TT'.abs(x) = [c, dJ n [a, b] 

Temporal requirements on intermediate instances can be treated as normal temporal requirements. The 
source of the temporal requirements of TT' is traceable, since the strengthened temporal requirements 
are specified separately. In the remainder of this chapter, we do not consider temporal requirements on 
intermediate instances. Relative temporal requirements are restricted to instances, read by the same 
transaction. Since relative temporal requirements are not related to the start-time of a transaction, no 
further change of semantics is necessary. 

Time of measurement functions 

Temporal correctness is defined on the age of instances, accessed by transactions. Transactions that 
write instances of temporal items use a time of measurement function (tom-function) to define the 
time of measurement of these instances. Transactions can write multiple data items, each with their 
separate time of measurement. Therefore, tom-functions are specified for each data item separately. 
The tom-function of data item X can be denoted tom(X). The tom-function of data item X, which is 
written by invocations t of TT can use information about the t.o.m. of instances read by t, as well as 
start time St(t) and finishing time Ft(t) to determine its result. The specific function depends on the 
semantics of TT. A number of typical tom-functions are given in the following list. 

Sensor items. If the precise moment of measurement of a sensor is unknown, the time of measure­
ment of instance x of sensor item X is assumed to be the start of the invocation of sensor transaction 
t of type TT: 
x.r = St(t) 

Derived items: one critical input. Transactions t of type T T derive item Y, using a number of data 
items. One data item X is time-critical: it is very important that instances x, read by tare fresh. The 
t.o.m. of the time-critical item determines the t.o.m. of the derived item: 
y.r = x.r 



8.2. SPECIFICATION 127 

Derived items: extrapolation of data. Transactions t of type T T extrapolate item X, and write the 
future value of X in data item F. The transactions t useiinear extrapolation, and access two instances 
of X. To bound the error in the extrapolation, the time of measurement of the future value equals the 
t.o.m. of the most recent instance of X that is read, plus a constant: 
f.t = max(xt.t, x2.r) + c 

Multiple output instances. If transactions of type T T write to more than one data item, the t.o.m. 
of the corresponding instances need not be equal. The previous example is extended; transactions of 
type T T result in three different extrapolations F, G, H. Each instance extrapolates X to a different 
point in the future, and has a different error margin: 

j.r: = max(XJ."C, X2.r:) + CJ 

g.r: = max(xJ.t,x2.r:) + c2 
h.t = max(x1.t,x2.r) +c3 

No general rules exist for the tom-function of derive transactions. Tom-functions need to be 
specified carefully for each derived data item. Since the transaction programmer can specify the value 
of the derivation, it should also be possible to specify the tom-function. For sensor items, specifying 
the tom-function is easy if the actual time of measurement can be read from the global clock. Still, 
since sensory data is often pre-processed before it is entered into the database, some offsets can be 
necessary. 

Removing instan~ 

To keep the memory requirements of the database low, instances should be removed as soon as pos­
sible. The maximal useful age MU Ax can be computed from the upperbounds of absolute temporal 
requirements that are specified on X. This is not further described in this chapter. 

8.2 Specification 

The main contribution of this chapter is the precise specification method of temporal requirements 
that have been discussed in the previous section. To show that these specifications describe imple· 
mentable systems, we test them on a well-understood platform. It is assumed that user transactions 
are scheduled on a centralized architecture using rate-monotonic scheduling [59]. Refresh transac­
tions are executed on the same platform: each refresh transaction type is executed periodically. Since 
this chapter introduces new concepts that deal with temporal requirements of transactions, the basic 
specification does not specify a complete scheduling problem, since all goal-constraints are explicitly 
specified below. 

Basic specification. 

• platform: centralized page 21 
data: temporal see below 
transactions: hard real-time*, user+refresh page 24, see below 
objective function: minimize refresh overhead see below 

* The real-time scheduling of user transactions is not part of the scheduling problem, the emphasis 
is on the satisfaction of temporal requirements. Instead of goal constraints, the real-time requirements 
on user transactions are presented as fact constraints. 



128 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

Additional specification. Off-line, a set of transaction-types TTs of both user and refresh transac­
tions is offered to the scheduler. A number of functions specify for each transaction-type the input, 
output, and temporal requirements. Two functions miniage(X) and maxiage(X) are provided for each 
data item X. If transaction t writes instance X, these functions provide an upper bound and a lower 
bound on the range of St(t) x.r (this is called the "initial age" of x): 

miniage(X) :::5 St(t)- x.r :::5 maxiage(X) 

Since x. r is computed by tom(X), the miniage and maxiage functions replace the tom-functions. 
These bounds on the tom-functions are necessary to provide hard real-time guarantees. The miniage 
and maxiage functions use information about the t.o.m. of the instances that are read by refresh 
transaction t to compute their result. All information about transaction-types is available off-line. 

Refresh transactions are scheduled using rate-monotonic scheduling [59]. Rate-monotonic 
scheduling expects as input a set of requirements on the period PTT and deadline Drr of periodic 
transactions of type T T: 

Prr + Drr :::5 Arr· 

A common assumption in rate-monotonic scheduling is Prr = DTT. Therefore, the remainder of 
the chapter only refers to Arr. Temporal requirements are mapped to rate-monotonic requirements. 
This means that Arr has to be computed for each refresh transaction type T T. The scheduler should 
minimize the load that results from executing refresh transactions. In [59], an expression for the load 
is derived. We apply this to the load, generated by refresh transactions. If the worst-case execution 
time Wx(TT) of transactions of type TT is known, this load is given by (remember that the period 
of TT is :::5 0.5Arr ): 

L 2Wx(TT)/Arr 
TTeTTs 

User transaction-types TT can be identified by the fact that they do not write temporal data items: 
OUT(TT) = 0. Since this chapter focuses on the execution of refresh transactions, the set of ex­
ecuted user-transactions Tu is a fixed problem variable that is not used during scheduling of refresh 
transactions. 

Fixed Variable Domain Description 
TTs :J> (identities) The set of all possible transaction-types. 
IN TTs...,.. :J>(Dtup) Defines the input of a transaction-type. 
OUT TTs...,.. :J>(Dtup) Defines the output of a transaction-type. 
ABS TTs...,.. :J>(Tabs) Defines the absolute temporal requirements of 

a transaction-type. 
REL TTs...,.. :J>(Trel) 

1 

Defines t~e relative temporal requirements of 
a transaction-type. 

miniage DataSet...,.. R · Defines a lower-bound on the range of tom-
i functions. 

• maxiage DataSet...,.. R Defines an upper-bound on the range of tom- • 
functions. 

T" :J> (identities) The set of executed user transactions. 
Ttype T"...,.. TTs j The ~saction-type of each executed user 

transaction. 

Refresh transactions are executed by the database. Therefore the set of refresh transactions T' is 
a free problem variable. Together, they create the set of available instances I nsts. For each instance 
x free problem variable x. r defines its time of measurement (unannounced information). 



8.3. SCHEDULER DESIGN 129 

Free Variable Domain ! Description 
T' :P (identities) 'Jlle set of executed refresh transactions. 
Ttype T'- TTs The transaction-type of each executed refresh 

transaction. 
lnsts : R- /P(DataSet x R) Returns the set of available instances at a spe- . 

I cific time. 
r DataSet x R - R Defines the time of measurement of instances. 

We intentionally used the same identifier for the Ttype function for both user transactions and 
refresh transactions, such that T = ru U T' can be used as a shorthand. Strictly speaking, Tis a free 
problem variable, since the database designer can influence T'. A fact-constraint specifies how I nsts 
relates to the execution of refresh transactions in T'. Each refresh transaction t of type TT writes 
a set of instances that is available after t has finished execution. This is expressed by the following 
predicate, which also states that the time of measurements of these instances are in accordance with 
the miniage and maxiage functions. 

haswritten(t, TT) = 
VX E OUT(TT): Vr E [Ft(t), oo)3x E /nsts(r): 

miniage(X) ::S St(t) x.r ::S maxiage(X) 

i Fact constraint 
I Vt E T' : haswritten(t, Ttype(t)) 

Description 
Refresh transactions add instances to the 
database. 

For all transaction invocations, we require that their temporal requirements are satisfied. The 
following predicates specify absolute and relative temporal correctness. Together with the haswritten 
property, it proves that the execution of refresh transactions ensures that the database is temporally 
correct. 

Goal constraint 
Vt E T : temporallycorrect(t) 

Description I 
Transaction invocations are temporally 1. 

consistent. 

The objective function minimizes the load of refresh transactions. Transaction type TT specifies 
refresh transactions is OUT(TT) :f: 0. Therefore, the load of refresh transactions is given by the 
following function. 

Objective function: minimize LTTeTTsAOUT(TT),pro2Wx(TT)/ t!..rr 

8.3 Scheduler design 

A straightforward "always-fresh" approach is used to ensure that all temporal requirements of all 
transactions can always be met. This means that at all moments, all temporal requirements of all 
transaction-types are met. In effect, we strengthen the temporal correctness requirement to: 

alwaysfresh(T) = 
Vr E [0, oo), t E T: absolute(Ttype(t), r) 1\ relative(Ttype(t}, r) 



130 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

Together with the haswritten property of refresh transactions, bounds on the refresh rates of data 
items can be derived. A refresh transaction type TT can write several data items X. For each data 
item X, a required refresh rate Ax is computed. By taking the minimum of all required refresh rates 
Ax, Arr can be computed: 

Arr = minxeoUT(TT)Ax 

Required refresh rates 

When a transaction t oftype TT reads an instance x;, it requires that St(t) x;.r is contained in a 
certain age interval [a, b]. This age interval is defined by absolute and relative temporal requirements 
(see below). Due to the always-fresh approach, this is strengthened to 

Vr E [0, oo): 3x E lnsts(r): r x.r E [a, b] 

Therefore, the maximal allowed age difference between two successive updates of X is equal to 
the minimal width b- a of any age interval [a, b]. Let x' be the instance, written after instance x. 
Suppose the refresh rate of X is Ax. With the haswritten property, bounds on the age-difference 
x'.r x.r can be found. 

x'. r - x. r :::; Ax + maxiage(X) - miniage(X) 

If ox b- a is the width of an age interval {a, b], then the maximal allowed age difference 
between successive instances of data item X is at most ox. By combining this with the bound on the 
age difference that is derived above, the following requirement on the refresh rate of X is obtained. 

6-x :::; ox - maxiage(X) + miniage(X) 

Computing age intervals. Relative temporal requirements can be translated to absolute temporal 
requirements. These absolute temporal requirements then specify age intervals, that can be used 
to derive bounds on Ax. An example, suppose (x, k, y, j, a, b) E REL(TT). By placing abso­
lute temporal requirements on both Xk and Yi• the relative temporal requirement can be satisfied: 
(x, k, 10, 20), (y, j, 10- a, 20- b) E ABS(TT). We calculate: 10- (10- a) :::;: Xk.r - Yi·• :::; 
20- (20- b), therefore Xk.r - Yi·• E [a, b]): the relative temporal requirement is satisfied. This 
transformation is presented below in its generalized form. 

Unrealistic absolute temporal requirements can be specified that require special attention. Suppose 
that data item X is used to store information from a remote sensor. The initial age of all instances x is 
at least 10: miniage(X)=IO. An absolute temporal requirement (x, k, 0, 8) is unrealistic: the database 
can never provide instances of X with x.r :::; 8. To express this, the lower bound of all absolute 
temporal requirements on X is strengthened to at least miniage(X). 

The set of absolute temporal requirements that results from these transformations is called the set 
of [l, l +8] intervals. For each instance Xi, read by invocations oftransaction type TT, an age interval 
[lx1, lx1 + ox11 is defined. If the database scheduler ensures that at all moments r, at least one instance 
x satisfies r - x. r E [lx, .lx, + ox1 ], the database satisfies the always-fresh property. We add the 
requirement that all age intervals of k instances of the same data item, read by the same transaction, 
have the same width: Vi, j E [1, k]: lix1 lixr Instead of writing ox1, we write 8x. This reduces the 
complexity of determining [l,l + o] intervals, and does not result in higher refresh rates Ax (since 
6-x depends on the smallest Bx1). The age intervals are constructed by applying the following rules. 



8.3. SCHEDULER DESIGN 

• Absolute temporal requirements 
If (x, i, a, b) E ABS(TT) 
then a:::; lx1 

lx1 +~x:::; b. 

• Relative temporal requirements 
If (x, i, y, j, e, f) E REL(TT) 
then lyj + oy - f :::; lx1 

lx1 + lix :::: lyj - e 

• Minimal instance age 

131 

The haswritten property specifies that the age of an instance x is at any time at least miniage(X). 
Therefore, we require that lx1 ::: miniage(X). 

A set of [l, I + ~] intervals that satisfies these equations can be found using some search strategy, 
as is explained in section 8.3. A straightforward selection mechanism can use the age intervals at 
run-time to decide which instances transactions should read. 

Finding good solutions 

The miniage(X) and maxiage(X) function use the [/,I+~] intervals of the transaction type TTx as 
input. Furthermore, the results of the miniage(X) and maxiage(X) function are used in the computa­
tion of[/, l +li] intervals of transaction types TT', whose invocations read X. This suggests that there 
is an order in which transaction types should be processed. If transaction type TT reads X, which is 
written by TT', then TT' should be processed before TT. However, cyclic dependencies are allowed 
in the specification of refresh transactions. For example, a transaction that writes to X is allowed to 

read X as well. In these cases, an (possibly too large) approximation of the [I, l +~]intervals is used 
for the determination of miniage(X), maxiage(X). We will not consider cyclic dependencies in the 
remainder of this chapter. 

The set of [l, l + o] intervals that belongs to a transaction type should maximize the Ax values. 
High l::.x values result in high I::.TT values, which in turn minimize the objective function: 

L 2Wx(TT)/Arr 
TTeTTsi\OUT(TT)#IJ 

The objective function cannot be evaluated before all An values have been defined. Instead 
of directly evaluating the objective function, we use an optimization function f (defined below). 
Function f only considers the local problem of constructing [l, l + o] intervals for a single transaction 
type. It is constructed such that an optimal solution to the sub-problem can be found with non-linear 
programming techniques (see section 8.4). However, the resulting solution is not necessarily optimal 
for the global problem of minimizing the load that is generated by refresh transactions. Different 
heuristics that directly optimize the entire system load, instead of considering one transaction at a 
time, can lead to better results (at the costs of increased computational costs). 

Optimization function f. The optimization function only considers the construction of [/,/ + o] 
intervals for a single transaction type TT. Function f is chosen such that the product of all l::.x 
values ((X, k) E I N(TT)) is maximized. This ensures that solutions are found that have large l::.rrx 
values, and no extremely small 1::. values are found. In order to maximize n(X,<)etN(rT)Ax, the size 
of the [l, l + o] intervals should be as large as possible. Therefore, the optimization function of the 



132 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

1 foreach X E DataSet do llx := oo 
2 G:=constructDependencyGraph(TTs) 
3 topOrder:=topologicalSort(G) 
4 fori:= 1 to ITTsl do 
5 TT := topOrder[iJ 
6 Intervals=analyzeTransactionType(TT. ll) 
7 foreach [lx. lx +Ox] Elntervals do llx := min(llx, Ox- maxiage(X) + miniage(X)) 
8 foreach TT E TTs : OUT(TT) :F 0 do llrr := minreOUT(TT)flY 

Algorithm 8.2: MAIN ALGORITHM 

transaction type analysis can be described as a product of all o variables. As a first attempt, function 
f' is defined as follows. 

f' = fi(X,k)elN(TT)(ox - maxiage(X) + miniage(i)) 

Undesired anomalies appear, if term ox - maxiage(X) + miniage(i) is smaller than 0. The additional 
constraint V(X, k) e I N(TT) :ox 2:: maxiage(i)- miniage(i) prevents them from occurring. Func­
tion f' is monotone increasing in each of the Oi variables. We modify it to make it strict monotone 
increasing. Let e be an infinitely small, positive constant. The optimization function f is defined as 
follows. 

f = fi(X,k)elN(TT)(ox - maxiage(X) + miniage(i) + €) 

An optimization that is not computationally expensive is applied to the heuristic. If consideration 
of previous transactions established the requirement Ax 5 c (for some constant c), increasing ox 

beyond c+maxiage(X)- miniage(X) does not improve the final solution. Therefore, the requirement 
ox 5 c+maxiage(X)-miniage(X) is added to the set of constraints that have to be satisfied. Note that 
shrinking ox can lead to an increase of oy, if the transaction type under consideration has specified 
a relative temporal requirement between X and Y. Therefore, better solutions can result if ox is 
bounded. 

8.4 Algorithm 

Algorithm 8.2 shows the main algorithm that translates temporal requirements to rate-monotonic re­
quirements. The refresh rates Ax are defined incrementally, at each moment maintaining an optimistic 
approximation of the final value. 

Lines 2 and 3, define the order in which transaction types are processed. The function "construct­
DependencyGraph" in line 2 constructs a directed graph G = (V, E) that represents the reads-from 
dependencies between transaction types. The setofvertices V represent transaction types (V = TTs). 
A directed edge (TT, TT') exists in E, if and only if3X, k :X E OUT(TT) A (X, k) e I N(TT'). 
Function "constructDependencyGraph" is straightforward and not further described. If the transaction 
types are processed according to a topological order of G, all [l, l + o] intervals of TTx are defined, 
before either miniage(X) or maxiage(X) is computed. Function "topologicaJSort" in line 3 returns an 
ordered array of transaction types (for an efficient topological sort algorithm, see [26)). 

Lines 4-7 process transaction types according to the topological order. The analysis of a single 
transaction type TT is handled by procedure "analyzeTransactionType" (line 6), which is treated in 



8.4. ALGORITHM 

analyzeTransactionType(TT, A) 
I Cset := constructLinearConstraints{TT, A) 
2 s•tart := simplex-phase-I(Cset) 
3 DD := constructDeltaDependencies(Cset) 
4 Cset' := 0 
5 foreach (X, Y) E DD do 
6 Cset' + = "ox - maxiage(X) + miniage(X) = oy maxiage(Y) + miniage(Y}" 
7 snearopt := simplex-phase-II(Cset U Cset', I:(X.k)elN(TT) ox, s•tart) 

8 s 0P' :=gradient-projection-method( Cset, f, 'il f, snearopr) 

Algorithm 8.3: ANALYSIS PROCEDURE 

133 

section 8.4. It returns a set of [lx.lx + ~xl intervals for instances x, read by invocations of TT. Line 7 
adapts Ax such that Ax ::: ~x - maxiage(X) + miniage(X) is satisfied. Finally, line 8 computes the 
ATT values from the Ax values. 

Thansaction type analysis 

The transaction type analysis in algorithm 8.3 considers one transaction type TT in isolation. Line 
1 defines the boundary conditions of the solution space, by invoking procedure "constructLinearCon­
straints". This procedure translates all temporal requirements and boundary conditions to a set of 
linear constraints Cset. The following rules are applied by the procedure to construct Cset. 

• Avoid anomalies in optimization function, no negative values 
V(X, n) E I N(TT) : 0 ::5 ox maxiage(X) + tniniage(X) 

• Use optimistic approximation as upper bound on ~ values 
V(X, n) E I N(TT) : ~x::: Ax+ maxiage(X)- miniage(X) 

• Absolute temporal constraints 
V(x, i, a, b) e ABS(TT): 

lx1 2: a 
lx1 +~X ::5 b 

• Relative temporal constraints 
V(x, i, y, j, a, b) E REL(TT): 

lx1 2: 1,.1 + tSy - f 
lx; +~X ::5 ly1 - e 

• Least initial age requirement 
V(X, n) e I N(TT), i E [1, n]: lx1 2: miniage(X) 

To find a feasible solution s510
'

1
, phase I of the simplex method [60] is executed in line 2. An 

optimization problem is obtained, which has a non-linear optimization function f, a set Cset of linear 
constraints on the solution space, and a feasible solution s•tart. Several solution methods exist for 
such problems. We use the gradient-projection method from [60]. The gradient of f in any solution 
vector x (denoted V f(x)) is defined as follows. Let X 1 to xn be the Jist of data items accessed by 



134 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

invocations of T T. 

\l f(x) = ( 
n(X,k)e/N(TT),X;"Xl (ox maxiage(X) + miniage(X) + 

n(X.k)elN(TT).X;OX"(8x- maxiage(X) + miniage(X) + €)) 

The gradient projection method requires a feasible solution (a solution that satisfies all constraints) 
as a starting point. Instead of using the arbitrary starting point sst art, we find a feasible solution that 
is already near the optimum in line 3-7. 

In line 3, procedure "constructDeltaDependencies" determines which 8's are dependent. 1\vo 
variables C.x, 8r are dependent, if they both appear in the same constraint, or if they are constrained 
by variables that are dependent (i.e. 8x :::; a, a:::; b, b:::; 8r implies that 8x. 8r are dependent). If 8x 
and 8r are dependent, tuple (X, Y) appears in result DD. The dependencies amongst 8 variables can 
be computed efficiently by using a union-find algorithm [26]. 

We find a good feasible solution snearopt, by using the simplex method (line 7) on the following 
adapted problem. The simplex method can only optimize linear functions, so instead of f, function 
g L(X,k)elN(TTJ 8x is chosen as the optimization function. Maximization of the linear optimization 
function g also maximizes f, if all 8x variables are independent. If a set of 8 variables is dependent, 
g does not give satisfactory results. For example, if 8x + oy = 10, an optimal solution for g is 
8x = 0, 8r = 10, which results in a very poor value for f. Suppose miniage(X)=maxiage(X) and 
miniage(Y)=maxiage(Y). Function f is optimal if 8x = 8y = 5. A set of additional linear constraints 
Cset' is added to (partly) remedy the shortcomings of g. For each dependent pair (X, Y) E DD, a 
linear constraint is added in line 6: 8x - maxiage(X) + miniage(X) 8y - maxiage(Y) + miniage(Y) 
This ensures that the poor solution that was found in the previous example cannot occur. Although a 
heuristic, in many cases the solution snearopt, found by phase II of the simplex method (line 7) will be 
on (some of) the surfaces where the maximum is found. 

Finally, the optimal solution sopt is found by invoking the gradient projection method in line 8, 
with s•earopt as a starting point. Since the optimization function f is strict monotone increasing in 
each of the 8 dimensions, and linear equations bound a convex domain, there are no local maxima 
in which the gradient projection method can get stuck. Invoking the gradient projection method with 
sstart as starting point also results in an optimal solution. However, the gradient projection method 
can be computationally expensive, which motivates our two step approach. 

8.5 Complete example: air traffic control 

We look at a small part of an air traffic control system. The positions P 1, P2 of two planes are 
measured by sensor transactions radl, rad2. User transaction ipw checks PI, P2 for proximity, and 
issues an immediate proximity warning if necessary. Flight information is received from the planes 
by sensor transactions infl, inf2, and stored in Fl, F2. 1\vo derive transactions extra I, extra2 use 
the position and flight information to extrapolate the future plane positions, stored in El, E2. Finally, 
user transaction nupw checks the future plane positions E 1, E2, and gives a non-urgent proximity 
warning if necessary. 

Transactions radl, rad2 produce instances of PI, P2 that are between 0 and 20 milliseconds 
old. Transactions infl, inf2 produce instances that are between 10 and 20 milliseconds old. User 
transaction i pw requires that it receives instances of P 1, P2 that are between 0 and 50 milliseconds 



8.5. COMPLETE EXAMPLE: AIR TRAFFIC CONTROL 135 

extra I 

ipw 
nupw 

extra2 

Figure 8.4: AIR TRAFFIC EXAMPLE 

old. The derive transactions extra I, extral read three instances of PI, Pl and three instances of 
F 1, Fl. The age of these instances should be 50, 250 and 450 milliseconds, where and imprecision 
of 50 milliseconds is allowed. The time of measurement of derived data items E1, El depends on the 
input: 

El.r = l L (Pl;.r + Fl1.r)/6J 5000 
ie!l.31 

E2.r = L L (P2;.r + F2;.r)/6J- 5000 
iell.3l 

Usertransaction nupw requires instances of El, El that lie between 4000 and 5000 milliseconds in 
the future. Furthermore, the difference between the t.o.m. of El and E2 should be less than 200 mil­
liseconds. A graphical representation of the system is shown in figure 8.4. In the corresponding speci­
fications, we leave out transactions rad2, inf2, extra2, as they are equivalent toradl, infl, extra I. 

I N(radi) = {} I N(infl) = {} 
OUT(radl) ={PI} OUT(infl) = {Fl} 
maxtom(Pl) = 20 maxtom(Fl) = 20 
mintom(PI) = 0 mintom(Fl) = 10 
I N(nupw) = {El, El} I N(ipw) ={PI, P2} 
OUT(nupw) = {) OUT(ipw) = {} 
REL(nupw) = {(El, 1, El, 1, -200, 200)} ABS(ipw) ={(PI, I, 0, 50), (P2, 1, 0, 50)} 
ABS(nupw) = {(El, I, -5000, -4000), (E2, 1, -5000, -4000)} 
I N(extrai) ={PI : 3, Fl : 3} OUT(extral) = {El} 
ABS(extral) ={(PI, 1, 0, 100), (Pl. 2, 200, 300), (Pl. 3, 400, 500), 

(Fl, I, 0, 100), (Fl, 2, 200, 300), (Fl. 3, 400, 500)} 
maxtom(El) = LL:ie[!,JJ(H I Ap11 +HI AFt1)/6J 5000 
mintom(El) = lLiE[I,3J(L/ Ap11 + Ll AFI)/6J -5000 



136 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 

Implementation 

Algorithm 8.2 constructs a topological order that is in accordance with the dependency graph, as 
depicted in figure 8.4. Since the dependency graph does not enforce a total order, more than one 
topological order is possible, and the algorithm selects an arbitrary one: 

radl; rad2; infl; inf2; ipw; extra I; extra2; nupw 

The analysis of the sensor transactions is straightforward, since they do not read temporal data. The 
analysis procedure for ipw first constructs the following constraint-set: 

20:::; op1 
0::::: [p] 

lp1 +op1::::: 50 

20:::; 8P2 
0::::: lpJ 

lP2 + 8P2:::; 50 

The union-find loop determines that opJ. op2 are independent, therefore, solution snearopt is optimal: 

In the main algorithm, Ap1 = AP2 50-20 = 30 is defined. Analysis of extra I, extra2 is similar 
to the analysis of ipw, except that Ap1 = 30 is used to add constraint 8p1 :::; 30 + 20. Again, since 
extral, extra2 specify no relative requirements, snearopt is an optimal solution, resulting in: 

[pJ2 = 200 
lpJ2 = 200 

IP23 = 400 
lF23 = 400 

8Pl =50 
op1 = 90 

In the main algorithm Ap 1 30 and A.Fl = 90- 10 = &0. Furthermore, since the[/, I +o] intervals 
are defined for extral, miniage(El) and maxiage(El) can now be computed: 

miniage(El) = l(50 + 250 + 450 + 100 + 290 + 490)/6J - 5000 = -4729 
maxiage(El) = L(O+ 200+400+ 10+ 200 +400)/6J- 5000 = -4799 

The analysis of extra2 is similar to the analysis of extral. Finally, nupw is analyzed. Although 
nupw specified a relative requirement on its two inputs, snearopt is optimal, due to the symmetry of 
our example. 

i£1 lE2 = -4799 
AEJ = AE2 = 200- (-4729 -4799) = 130. 

We show that although the transaction analysis method finds optimal solutions for each separate 
transaction, the topological order can influence the final result. Suppose the following topological 
order was selected: 

radl; rad2; infl; inf2; extra I; extra2; nupw; ipw 

In the analysis of extra], extra2, the result of the analysis of ipw (A.p1 = A.P2 = 30) is not yet 
available. Therefore, maxiage(El)=maxiage(E2)= -4700, instead of -4729. Finally, this results in 
a higher refresh rate for extra 1, extra2: AE1 = AE2 = 101, instead of 130! As a first heuristic 
in selecting the best topological order, user transactions should appear as early as possible in the 
topological order, since they do not influence tom-functions. 

The algorithm generates rate-monotonic requirements from the computed A values. In the table 
below these requirements are summarized, together with the age at which instances can be removed. 



8.6. CONCLUSIONS 137 

This can be computed by considering the upper and lower bounds of age intervals, together with the 
update frequencies. For example: instances of data item PI can be removed if age( PI) 2:: 430, since 
the highest lower bound on PI is 400, and the update frequency is 30. Therefore, if the age of an 
instance of Pl is 430, it is ensured that a second instance of Pi, with age 2:: 400 exists: the oldest 
instance can be removed. 

Requirement Description 
Pradl + Dradl ~ 30 Poll sensor 

Prad2 + Drad2 ~ 30 Poll sensor 

Pinfl + D;nf! ~ 80 Poll sensor 

P;n{2 + D;nf2 < 80 Poll sensor I 

Pextra! +Dextral < 130 Extrapolation 

Pextra2 + Dextra2 < 130 Extrapolation 
age(Pl) > 430 Remove old instance PI 
age(P2) 2:: 430 Remove old instance P2 
age(Fl) 2:: 490 Remove old instance F I 
age(F2) 2:: 490 Remove old instance F2 
age(El) > -4599 Remove old instance E l 
age(E2) > -4599 Remove old instance £2 

8.6 Conclusions 

The model presented in this chapter allows for a precise specification of temporal constraints of trans­
actions. It is sufficiently powerful to support prediction models that require multiple instances of the 
same data item. Other issues related to prediction are treated as well: instances can have time of mea­
surements that lie "in the future". Since their values are predicted, the age of these predicted instances 
is essentially negative when they are first created. Therefore, it might be possible that instances "are 
not yet valid". Minimum age requirements are introduced to deal with these cases. 

The always-fresh algorithm that accompanies the model shows that efficient implementations of 
systems, specified in the model, actually exist. The always-fresh approach is not efficient in systems 
where temporal data is rarely accessed, and the algorithm should be modified to handle such systems. 
Less computation-intensive "on demand" approaches can reduce the refresh overhead (see [2]), Fur­
thermore, the algorithm finds local optima for each separate transaction, instead of optimizing the 
entire system at once. Whether such a global approach is feasible (from a computational point of 
view) should be investigated. 

Specification of intermediate instances have a separate semantics, something that is not very ele­
gant. A semantics that encompasses both normal temporal requirements and temporal requirements 
on intermediate instances can simplify the modeL This new semantics should lead to clear system 
specifications, and should be implementable. 

The model can fully specify hard real-time databases, where all requirements are always met by 
the system. In soft real-time and firm real-time databases, the database is allowed to violate temporal 
requirements, although it does degrade performance of the database. Penalty-functions and alternative 
actions have to be incorporated in the model, to support such systems. 



138 CHAPTER 8. TEMPORAL CONSISTENCY IN HARD REAL-TIME DATABASES 



Chapter 9 

Conclusions 

The topic of this thesis is optimization of real-time database schedulers. Since the problem specifi­
cation is the starting point for any design, specification ofreal-time database scheduling problems is 
treated in depth. The boundary conditions of the design are described by so-called fact constraints. 
These express important characteristics of the scheduler input and the platform on which the sched­
uler operates. The objectives of the design are given by so-called goal constraints and the objective 
function. The goal constraints specify requirements that have to be satisfied by the scheduler. The 
performance of the scheduler is measured by the objective function. This is described in chapter 2. 

The remainder of the thesis deals with the design of real-time database schedulers. Chapters 
4 to 6 describe the design of soft and firm real-time schedulers. These schedulers either optimize 
performance, or ensure that the scheduler is analyzable. Chapters 7 and 8 deal with hard real-time 
schedulers. These chapters focus on the identification of new concepts and problem recognition. 

9.1 Performance 

Many of the applications that are described in chapter 1 push the capabilities of databases to their 
limits. Telecommunication systems provide communication channels with extremely large capacity 
demands. High-energy physics experiments generate unimaginable amounts of data in milliseconds, 
and banking systems serve millions of customers. All applications have real-time requirements, either 
dictated by demands of impatient customers, by available buffer space or by physical limitations. 
Independent of the underlying reasons, these systems have one thing in common: satisfying the real­
time requirements they pose on databases is only possible by efficient use of a high-performance 
platform. 

Performance in real-time databases is defined differently for soft. firm and hard real-time. How­
ever, their performance measures all depend on the response times of transactions. The response time 
is the time between the request for execution of the transaction and the completion of the execution. 
Reducing the transaction response times increases the performance of soft, firm and hard real-time 
databases. Therefore, the response time of a transaction is one of the most important performance 
measures in this thesis. 

The approach of this thesis is to increase the performance of the database by optimizing the real­
time database scheduler. The scheduler determines the order in which transactions are allowed to 
execute. This has a direct impact on the performance of the database: transactions can be delayed 
considerably (which results in poor response times), if the scheduler does not allow a high degree 
of concurrency. Furthermore, the overhead of the scheduler also increases the response times of 

139 



140 CHAPTER 9. CONCLUSIONS 

transactions. Both scheduler overhead and the degree of concurrency offered by the scheduler have to 
be optimized. 

There is a relation between the degree of concurrency that is offered by the scheduler and the 
overhead that the scheduler imposes on transactions. This relation is complex, and requires more 
research, for a better understanding of the performance of real-time database schedulers. In this 
thesis, a number of observations are made that indicate that schedulers that offer a high degree of 
concurrency impose more scheduler overhead on transactions. To arrive at this result, we investigate 
the sources of scheduler overhead. 

The scheduler fulfills two tasks: computing and enforcing the schedule. Note that on-line sched­
ulers perform both tasks at the same time, such that the distinction is not always clear. For example: 
when a transaction is blocked on a lock request, two phase locking both enforces and decides on the 
schedule. To compute the schedule, the schedule requires information about the execution of trans­
actions (such as data access patterns and execution durations). Collecting this information introduces 
overhead, especially if the required information is distributed over multiple sites. Using the infor­
mation to decide on a schedule also introduces overhead. Generally, a scheduler that offers a high 
degree of concurrency requires detailed information about transactions. This can require inter-site 
communication. Furthermore, the decision procedures that are used by these schedulers require more 
internal computation. This sounds straightforward, but it is not trivial. The exact relation between the 
information and computation time that is needed by a scheduler and the degree of concurrency that it 
can offer is unknown. 

To enforce the schedule, the scheduler has to synchronize transactions (for example, by using 
a locking strategy) according to the schedule. A direct relation exists between the number of syn­
chronization points within transactions and the number of different schedules that can be enforced by 
the scheduler. If a scheduler offers a high degree of concurrency, it can generate a large number of 
schedules. Therefore, it will require a large number of synchronization points within each transaction. 
Summarizing, scheduler overhead consists of internal computation (to compute the schedule), local 
synchronization (to enforce the schedule) and inter-site communication (to gather information and to 
enforce the schedule). 

9.2 Targeted design 

In certain environments, the transaction response time is mainly determined by the scheduler over­
head. The Telecom environment in chapter 4 is a typical example of such an environment. In other 
environments, the scheduler overhead is negligible compared to the computational requirements of 
transactions. It stands to reason that these different environments require a different scheduler. The 
Telecom environment benefits from a lightweight scheduler that adds little overhead. If overhead is 
negligible, a high degree of concurrency is more important than little overhead. Indeed, the exper­
iment in chapter 5 shows that OCC-light outperforms DOCC-BF if transaction executions are short 
(overhead is not negligible), while DOCC-BF performs much better if transaction executions are long 
(overhead is less important). 

We conclude that scheduler performance is highly dependent on the environment in which the 
scheduler operates. With this observation in mind, it seems logical to design the scheduler espe­
cially for the environment it will operate in. This requires a more detailed description of the database 
scheduling problem. We propose a two-level problem specification. The first part of the problem 
specification contains the abstract problem specification, without detailed information about the envi­
ronment in which the scheduler will operate. It allows the database designer to use existing solutions 



9.3. ANALYSIS AND DESIGN 141 

from literature. The second part of the problem specification contains application-specific details. It 
allows the database designer to optimize its design to the actual application that will use the sched­
uler. This targeted problem specification allows for the design of high performance schedulers. For 
example, chapter 4 and 5 specify the same abstract problem, but the application-specific details differ. 
This explains the different designs of OCC-light and DOCC-BF. 

9.3 Analysis and design 

Chapter 6 takes the idea of targeted scheduler design one step further. It is observed that the real-time 
performance of database schedulers is often hard to analyze. Schedulers are optimized for high per­
formance, and these optimizations can complicate the analysis. Two alternatives to analysis are sim­
ulation studies and measuring the performance in actual systems. These alternatives have drawbacks 
too: getting results from simulations or prototypes is often time-consuming and costly. In chapter 6 
a third alternative is presented: designing the scheduler such that its analysis is straightforward. By 
avoiding constructs in the scheduler that are hard to analyze, it proves possible to create an analyzable 
database scheduler and to give a Markov analysis of its performance in a number of environments. 
The SQSL scheduler demonstrates the feasibility of the approach. Further work in this area should 
investigate more closely the relation between the analyzability of a scheduler, and the way that it is 
designed. The design of the SQSL scheduler is based on the requirement that the performance can be 
analyzed with Markov models as the only analysis tool. This places strong restrictions on the types 
of schedulers that can be analyzed. This range of analysis tools can be extended to avoid some of 
these restrictions. Probably, the analysis and design of more generic and more powerful schedulers is 
possible if clear relations between analysis and design are established. 

9.4 OtT-line database scheduling 

In chapter 7, the off-line scheduler of the hard real-time DEDOS system is extended with database 
functionality. A pre-processor (the transaction serializer) is added to the DEDOS scheduler. It trans­
lates database requirements into hard real-time requirements. Duplicated functionality in the DEDOS 
scheduler and the transaction serializer is avoided. Therefore, the transaction serializer focuses on 
satisfying conflict serializability. All real-time constraints and reliability constraints are satisfied by 
the DEDOS scheduler. As a result, the standard database protocols of reading and writing data can 
be simplified considerably, which increases the concurrency that is allowed by the system. The sim­
plified scheduling problem is still NP-hard. It can be approximated with a number of techniques like 
constraint satisfaction, or genetic algorithms. Chapter 7 shows that databases can be added to exist­
ing hard real-time scheduling systems, without requiring an entirely new scheduler. The transaction 
serializer does not use any information about the internal structure of the DEDOS scheduler, or the 
platform on which the DEDOS scheduler executes the applications. Therefore, the transaction seri­
alizer can be added to other hard real-time schedulers that offer a similar interface as the DEDOS 
scheduler. Chapter 7 identifies the scheduling problem and gives an initial solution for the transaction 
serializer. Further research should try different approaches to the scheduling problem, and experiment 
with test applications, to investigate the performance of the transaction serializer. 



142 CHAPTER 9. CONCLUSIONS 

9.5 Temporal consistency 

The classic database paradigm of reading and writing according to a serializable schedule does not 
suffice for all real-time applications. Applications that directly interact with a continuously changing 
outside world need to store data that describes this environment. This temporal data grows old as 
time passes and it loses its value to the application. Since serializability is a consistency requirement 
that does not have a notion of time, traditional databases do not support such temporal data. The 
application has to ensure that temporal data is refreshed. To relieve the application programmer of 
the burden of refreshing temporal data, the functionality of the database is extended. In chapter 8 we 
introduce the notion of transaction-based temporal consistency. Each transaction can specify a time 
interval for each data item that it reads. The database ensures that the values that are actually read 
describe the state of the environment during these time intervals. 

Transaction-based temporal consistency is a concept that closely reflects the real needs of ap­
plications. Different processes within an application can use the same data for different purposes. 
Understandably, the timing requirements that belong to those different processes can differ as well. 
This is reflected by transaction-based temporal consistency: each transaction can specify indepen­
dent time intervals for each data item that it reads. Transactions can require more than one value 
of the same data item, corresponding to different time intervals. This can be useful to interpolate or 
extrapolate values. Therefore, the specification method is suitable for systems that use prediction. 

There are still extensions necessary before transaction-based temporal consistency can be applied 
in a general setting. Transactions can specify their temporal requirements. However, it is unclear 
what should happen if the database cannot fulfill these requirements. Further research should extend 
transaction-based temporal consistency to deal with soft- and firm real-time systems. 

9.6 A final word 

Over thirty years of research into real-time scheduling and database scheduling has resulted in a large 
number of scheduling algorithms. Real-time, distributed database scheduling can use results from 
both fields as sources of inspiration. To effectively use these results, the relations between real-time 
algorithms and database algorithms have to be investigated more closely. The concept of concurrency 
is not directly related to real-time performance measures. The degree of concurrency that is offered 
by a scheduler is measured in the number of different schedules that can be generated. Real-time 
performance measures refer to start and finishing times of transactions. That there is a relation between 
the degree of concurrency and the real-time performance has been shown in this thesis. However, the 
exact relation is complex and not known. Better understanding is required before a unified theory of 
real-time, distributed database scheduling can emerge. 



Appendix A 

List of symbols 

Variable Domain Description 
Cpower work/second Amount of work that a processor can process 

in one time unit. 
Cswitch seconds Overhead caused by a context switch. 
SiteSet 9' (identities) The set of processors. 
Ncpus N+ The number of processing units. 
Mlatency seconds • Latency of the shared memory 
Mthoughput bytes/second Throughput of the shared memory 
Msync seconds Overhead caused by the synchronization 

primitive 
Nlatency seconds Latency of the network. 
Nthoughput bytes/second Throughput of the network. 
DataSize bytes The size of a data item. 
DataSet 9' (identifiers) The set of data items that is sto 

database. 
OPS 9' (identifiers) The set of all access operations. 
OPtypes 9' (identifiers) The set of possible operations. 
Am ode OPS __.. OPtypes Function that defines access mode of each op- ! 

eration. 
Daccess 0 P S __.. DataSet Function that defines which item an operation 

accesses. 
ConfRel 0 Ptypes x 0 Ptypes ..... The conflict relation on 0 Ptypes. 

Boot 
JnterRel OPtypes x OPtypes -The interterence relation on OPtypes. 

Bool 
Data Place Items ..... SiteSet A function that assigns data items to sites. 
T :J'(identifiers) The set of transactions that is executed by the 

scheduler. 
St T ..... seconds The start time of transactions. 
Ft T ..... seconds The finish time of transactions. 

143 



144 APPENDIX A. LIST OF SYMBOLS 

• Variable Domain .. Description i 

w T--+ work The amount of work of transaction. 
X T--+ seconds The total execution time of a transaction. 
Arr T--+ seconds The moment of arrival of transactions. 
Dl T--+ seconds The deadline of transactions. 
Est T-+ seconds Earliest start time of a transaction. 
tr ! OPS-+ T Function that defines to which transaction an 

belongs. 
Aorder OPSxOPS-+ Bool The sequence of all database accesses. 
Exp 0 P S --+ inconsistency • The amount of inconsistency that is exported 

! by an access operation. 
Imp 0 P S --+ inconsistency The amount of inconsistency that can be im-

ported by an access operation. 
Trans Place T-+ SiteSet This function identifies the site on which a 

transaction executes. 
Pdatalocal [0, 1] The probability that a data access is local. 



AppendixB 

Pseudo-code conventions 

The algorithms that are described in this thesis are presented in pseudo-code. Pseudo-code cannot be 
directly compiled, but focuses on the algorithmic aspects, rather than on organizational aspects Oike 
historically the case for object orientation). Furthermore, it contains mathematical formulas, which are 
usually expressed much more verbose in traditional programming languages. It provides a powerful 
way to describe algorithms. This appendix describes the most important language conventions that 
have been used. 

B.l Expressions 

Expressions. can be simple constants (numeric, boolean or strings), variables, or functions applied 
to expressions ('3+5' ,'not true', 'f(x)', etc.). Such expressions are found in most programming lan­
guages. In addition, an object-oriented style of function invocations (for example "Q.empty()") is 
allowed. A number of expressions are used that are not commonly supported by current programming 
languages: 

• X E Y, X c Y, 0, etc. Sets are treated as type constructors, and are treated as is usual in 
mathematics. 

• IX I Returus the cardinality of set X. 

• (X, Y) Tuples are treated as type-constructors, as is often found in functional languages. They 
are similar to Pascal and C records, but the fields are nameless, and specified by the order of their 
appearance. We allow tuples with two or more fields of arbitrary types, i.e. (3,' a'. [I, 3], A) is 
allowed. 

• a[X],b[Y,Z] As any self-respecting programming environment, multi-dimensional arrays are 
valid expressions. 

• doit(X,Y) Function invocations and procedure calls are denoted as is common in most third 
generation programming languages. 

• [ XI EXPRESS/ 0 N ] This notation is called list-comprehension. It generates a set of ele­
ments that match X, and for which EXPRESSION evaluates to true. For example [(a, b)la E 

[1, 3, S]Ab E [2, 4]Aa < b] generates set {(1, 2), (1, 4), (3, 4)}. Note that the order is arbitrary. 

145 



146 APPENDIX B. PSEUDO-CODE CONVENTIONS 

• { acknowledge, t, X } Messages between processes consist of an identifier ("acknowledge"), 
and a list of parameters, similar to tuples. 

B.2 Statements 

Pseudocode consists of statements that are executed in a sequential fashion. Sequences of statements 
are either separated by ';', or each statement is written on a separate line. Many statements are similar 
to Pascal, Basic, or C statements: 

• X :=EXPRESSION; The assignment statement, the variable X is assigned the value that is 
defined by the expression. 

• (X,Y) :=EXPRESSION; Assignments to tuples are allowed. In this particular example, the 
expression has to result in a two-tuple. The first field is assigned to X, the second field is 
assigned to Y. 

• VARIABLELIST := EXPRESSIONLIST; This is a multi-assignment statement. It is assumed 
that assignments are evaluated from left to right. Example: X, Y := 1 ,2; is equivalent to X:= I; 
Y:=2; 

• X ®= EXPRESSION; Here, ®can be any arbitrary operator. This is also an assignment 
statement, and is functionally equivalent to X := X ® (EXPRESSION). 

• for X:= EXPRESSION to EXPRESSION2 do STATEMENTLIST; This statement is the 
standard for-loop, as is found in Pascal. 

• while (EXPRESSION) do STATEMENTLIST; This statement is similar to the while­
statement of Pascal and C. 

• foreach VARIABLELISTe X: EXPRESSION do STATEMENTLIST; The statementlist is 
executed for each possible combination of assignments to values in the variable-list, for which 
the expression evaluates to true. The order of execution is left unspecified. Example: "foreach 
p, q E [1, 2, 3] : p < q do print p,q;" will print 3 pairs of numbers, but the order in which they 
are printed is not specified, i.e. " l ,3 2,3 1 ,2" is a possible output. 

• process ! message This statement specifies the asynchronous sending of a message to other 
processes. The ! statement is non-blocking. 

• receive MATCHEXPRESSION ~ STATEMENTLIST end A match-expression is a nor­
mal expression that contains unbound variables. When a message arrives, it is checked 
against the match-expression. If a variable-binding can be found, the corresponding state­
mentlist is executed. One receive statement can actually have multiple MATCHEXPRES­
SION/STATEMENTLJST pairs. The first match is selected. The receive statement is blocking, 
as long as no matching message arrives, the process waits. This notation is very similar to the 
Erlang language [7]. 



B.3. CONCURRENT PROGRAMS 

TwoPhaseCommitCoordinator(t) 
foreach p E Participants[!] do p! {prepare, t l 
state:= ok 
foreach p E Participantsltl do 

receive {ok,t) ~ skip 
{ abort,t l ~ state:=abort 

end 
if state=ok then commit else abort 
foreach p E Participants[t] do p ! {state,t) 
foreach p E Participants[t j do receive {finished,t} ~ skip end 

Algorithm B.l: TWO PHASE COMMIT COORDINATOR, PROCEDURAL STYLE 

B.3 Concurrent programs 

147 

A concurrent program consists of a set of processes. The code of a process can be represented by a 
normal imperative program (similar to a pascal procedure), or a set of responses to message arrivals. 
A response to a message arrival is denoted by the message, followed by the code that is executed when 
the message arrives. If a process can be described in this representation it is called a reactive process. 
We give an example for each style of representation. 

The code of algorithm B. I specifies the behavior of the coordinating process in the Two Phase 
Commit protocol (further explained in appendix C) in an imperative style. The code of algorithm B.2 
specifies the behavior of participating processes in the Two Phase Commit protocol, in a reactive style. 
Which style is used for which algorithms depends on the type of algorithm, and personal taste. The 
main scheduler protocols in this thesis are presented as reactive servers, as they manage more than 
one transaction in an interleaved fashion. This is more easily expressed in the reactive style, than in 
the imperative style. 

I prepare, t I 
coordinator ! {localstate(t), t} 

I ok,t l 
committ 
coordinator ! { finished,t} 

{ abort,t} 
abort t 
coordinator! {finished,t} 

Algorithm B.2: TWO PHASE COMMIT PARTICIPANT, REACTIVE STYLE 



148 APPENDIX B. PSEUDO-CODE CONVENTIONS 



Appendix C 

Basic algorithms 

A number of aJgorithms have been so inftuentiaJ that they are found in aJmost every database sched­
uler. This appendix presents some of the most common aJgorithms that are used in this thesis. 

C.l Locking 

Binary semaphores [29] were introduced in the late sixties, but are better known as "locks". A lock 
has two access methods, caJied "lock" and "unlock''. The first process p that invokes the lock method 
continues execution as normaJ. Process p is said to be holding the lock. When process p invokes the 
unlock method, process p frees the lock. Whenever a process q invokes the lock method while the 
lock is held by another process p, q's execution is suspended until p frees the lock. If more than one 
process is suspended when p frees the lock, only one process can resume execution (FIFO order). 

In databases, locks have more functionaJity than standard binary semaphores. They differentiate 
between read-locks and write-locks. Read-locks can be shared: more than one transaction can hold a 
read-lock at the same time. To avoid starvation of transactions that place write-locks, aJllock requests 
are treated in FIFO order. I.e. if a transaction is blocked on a write-lock, all subsequent read-lock 
requests are blocked as well. 

Algorithm C.l specifies the lock and unlock procedures for a single lock. Processes that requests 
locks send lock-requests to a so-caJled lock server, and wait for a return message, the lock-grant. The 
lock server maintains the following datastructures. 

• Number of placed read-locks nR Locks. This counts the number of read locks that are set. 

• Number of requested&held write-locks n W Locks. This counts the number of write locks that 
are set, plus the number of blocked write lock invocations. If n Rl ocks = 0 A n W Locks > 0, a 
write lock is currently placed. If n W Locks > 0, incoming read-lock requests are not granted. 
If nRLocks + n W Locks > 0, incoming write--lock requests are not granted. 

• Lock queue Q. This queue stores the lock-requests that have not yet been granted. 

Whenever the unlock method is invoked, either nRLocks or nWLocks is decremented. If 
n W Locks is decremented, possibly more than one read-lock request is granted, if there are a number 
of read lock requests at the head of the lock queue. 

149 



150 

lock-request(t,mode) 
lockserver ! {lock, t, mode J 
receive { grant, t I ~ skip end 

unlock-request(t) 
lockserver ! { unlock, t l 
receive { ack, t } ~ skip end 

{ lock, t, mode } 
if mode=read then 

if n W Locks > 0 then Q.enqueue({t,read}) 
elsenRLocks+ =I 

t!{grant,t) 

else n W Locks+ 

APPENDIX C. BASIC ALGORITHMS 

ifnWLocks >I vnRLocks > OthenQ.enqueue({t,write}) 
else t ! { grant, t } 

{unlock, t I 
ifnRlocks > 0 thennRlocks- =I 
elsenWlocks- =I 
if nRlocks = 0 1\ ~Q.empty() then 

(Next,Mode) := Q.dequeue() 
Next ! { grant, Next } 
if Mode= write then nWlocks+ 
else nRlocks+ = I 

while ~Q.empty()l\ Mode=readdo 
(Next,Mode) := Q.first() 

t!{ack,t} 

ifMode=read then (Next, Mode):= Q.dequeue() 
Next ! {grant, Next} 
nRlocks+ =I 

Algorithm C.l: A LOCK IMPLEMENTATION 

C.2 Wait-die deadlock breaking 

The wait-die procedure is used as a straight-forward deadlock breaking mechanism. It assumes that 
a total order < is defined on the set of transactions. Whenever a transaction t requests a lock on data 
item X in a certain mode tm, it is only allowed to wait if all conflicting, preceding transactions q in 

wait-die(t,X,tm) 
if3(q, qm) E LockSet[X] U toset(Q[Xl): Conf Rel(tm, qm) 1\ q < t then restart t 

Algorithm C.2: WAIT-DIE PROCEDURE 



C.3. TWO PHASE LOCKING 151 

the lock queue satisfy q > t. Otherwise, t is restarted ("die"), and releases all its locks. 
In algorithm C.2, we have assumed that LockSet[X] contains tuples (t, tm), of transaction iden­

tities t, and their locking mode tm. These transactions hold locks on X. Furthermore, we assume that 
function "toset(Q[XJ)" returns the set of (t, tm) pairs of transactions t that are waiting for a lock on 
X, and are stored in locking queue Q[X]. The wait-die procedure checks these data structures and 
restarts the transaction if necessary. 

C.3 Two phase locking 

The two phase locking protocol (2PL) is the dominant database scheduler in industry. Developed in 
the seventies [30}, it is the first database scheduler that provided conflict serializable schedules that 
allowed for a reasonable amount of concurrency. Its computational overhead is negligible, but its 
synchronization overhead is linear in the number of accessed data items. 

Each transaction t executes according to the protocol that consists (as the name implies) of two 
phases. In the locking phase (or growing phase) transaction t is not allowed to unlock any locks. 
Before t accesses a data item X, it has to request an appropriate lock (read or write) on X. In the un­
locking phase (or shrinking phase) tis not allowed to lock new data items. Before t finishes execution, 
it has to unlock all its locked data items. 

The 2PL scheduler has two functions. First, it maintains a Jock for each data item X, stored in 
the database. Second, without extensions, the 2PL protocol can suffer from deadlocks. One possible 
solution is to have a separate process check for deadlocks, and break them (see for an overview [48]). 

At the start of the unlocking phase, transaction t holds locks to all data items that it accesses. By 
ordering transactions according to the start of their unlocking phase, a conflict-equivalent sequential 
schedule can be found easily. This straight-forward correctness, combined with a simple implemen­
tation is one of the reasons that 2PL is the defacto industry standard. 

C.4 Two phase commit 

The two phase commit protocol is used to reliably commit distributed transactions t. The algorithm 
is initiated by the coordinating site, named the coordinator. The sites on which the transaction t 

that is committing has executed are called participants and are stored in set Participants[!]. We 
have assumed that each participant can invoke a function "localstate(t)" that determines whether t is 
allowed to commit at the participant, it results in either "ok" or "abort". Furthermore, the algorithm 
does not contain the code that is executed when a transaction is actually committed to the database, or 
aborted. 

Basically, the execution consists of two phases. In the first phase, the coordinator asks the par­
ticipants whether everything is ok, and if the participants are ready to commit. If all participants are 
ready to commit, the coordinator decides to go ahead, commits, and notifies all participants that they 
can commit the results of the transaction to the database. Finally, the coordinator terminates once it 
has received acknowledgments of all participants. 

If errors occur (for example, one participant has crashed and does not respond), several possible 
scenario's exist. These are further described in database textbooks like [51], we limit ourselves to the 
normal two phase commit execution. The algorithms for both the coordinator and the participants are 
described in appendix B, algorithms B.l and B.2. 



152 APPENDIX C. BASIC ALGORITHMS 



Bibliography 

[1] E. Aarts and J. Lenstra, editors. Local Search in Combinatorial Optimization. Discrete Math­
ematics and Optimization. John Wiley & Sons, Baffins Lane, Chichester, England, 1997. 

[2] B. Ade1berg, B. Kao, and H. Garcia-Molina. Database support for efficiently maintaining 
derived data. Proc. of the 5th Int. Conf on Extending Database Technology, pages 223--240, 
1996. 

[3] D. Agrawal and A. El Abbadi. Locks with constrained sharing. ACM 089791-352-
31901000410085, pages 85-93, 1990. 

[4) D. Agrawal, A. E1 Abbadi, and R. Jeffers. An approach to eliminate transaction blocking in 
locking protocols. Proc. of the 11th conf on Principles of Database Systems, pages 223-235, 
1992. 

[5] P. Apers. Query processing and data allocation in distributed database systems. PhD thesis, 
Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands, 1983. 

[6] E. Argante. CoCa: a model for parallelization of high energy physics software. PhD thesis, 
Eindhoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands, 1998. 

[7] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming in ER­
I.ANG. Prentice Hall, Campus 400, May lands Avenue, Heme! Hempstead, Hertfordshire, Eng­
land, 1996. 

[8] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Absolute and relative temporal con­
straints in hard real-time databases. Proc. of the Fourth Euromicro Workshop on Real-time 
systems, pages 148-153, 1992. 

[9] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Data consistency in hard real-time 
systems. Informatica, (19):223-234, 1995. 

[10] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, C. Spaccamela, A. Mar, and M. Protasi. 
Approximate solution of NP-hard optimization problems. Springer-Verlag, 1998. 

[11] E. Bakker and J. van Leeuwen. The optimal placement of replicated items in distributed 
databases on tree-like networks. Technical Report RUU CS91c23, Utrecht University, P.O. 
Box 80.089, Utrecht, The Netherlands, 1991. 

[12] D. Bell and J. Grimson. Distributed Database Systems. International computer science. 
Addison-Wesley, Wokingham, England, 1992. 

153 



154 BIBLIOGRAPHY 

[13] P. Bernstein and N. Goodman. Concurrency control in distributed database systems. ACM 
Computing Surveys, pages 185-221, 1981. 

[14] A. Bestavros. Speculative concurrency control. Tech. Report BUCS-TR-93-002, Computer 
Science Department, Boston University, MA, 1993. 

[15] A. Bestavros. Multi-version speculative concurrency control with delayed commit. Proc. of 
the 19941nt. Symposium on Computers and their Applications, 1994. 

[16] M. Bodlaender. Scheduler optimization in real-time distributed databases. PhD thesis, Eind­
hoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands, 1999. 

[17] M. Bodlaender, S. Sassen, P. van der Stok, and J. van der Wal. The response time distribution 
in a multi-processor database with single queue static locking. In Proceedings of the 4th Int. 
Workshop on Parallel and Distributed Real-Time Systems, pages 118-121, 1996. 

[18] M. Bodlaender and P. van der Stok. Design issues of an efficient distributed database scheduler 
for telecom. In Proceedings of the 7th Int. Conf on Computer Communications and Networks, 
pages 897-904. IEEE, 1998. 

[19] M. Bodlaender and P. van der Stok. A transaction-based temporal data model that supports 
prediction in real-time databases. In Proc. of the lOth Euromicro Workshop on Real Time 
Systems, pages 197-203. IEEE, 1998. 

[20] M. Bodlaender, P. van der Stok, and S. Son. A transaction-based temporal data model for real­
time databases. Proc. of the Joint Workshop on Parallel and Distributed Real-Time Systems, 
pages 149-158, 1997. 

[21] C. Boksenbaum, M. Cart, J. Ferrie, and J. Pons. Concurrent certifications by intervals of times­
tamps in distributed database systems. IEEE Transactions on Software Engineering, pages 
409-419, 1987. 

[22] G. Buckley and A. Silberschatz. Beyond two-phase locking. Journal of the ACM, 32(2):314-
326, April 1985. 

[23] R. Chandra and A. Segev. Managing temporal financial data in an extensible database. Proc. 
of the 19th VLDB Conference, pages 302-313, 1993. 

[24] M. Chen and K. Lin. Dynamic priority ceilings: A concurrency control protocol for real-time 
systems. IEEE Transactions on Parallel and Distributed Computing, 1(2):184-194, 1990. 

[25] M. Cochinwala and J. Bradley. A multidatabase system for tracking and retrieval of financial 
data. Proc. of the 20th VLDB Conference, pages 714-721, 1994. 

[26] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Electrical Engi­
neering and Computer Science Series. MIT press, McGraw-Hill Book Company, Cambridge, 
Massachusetts, 1990. 

[27] S. Dasgupta. Design Theory and Computer Science. Processes and Methodology of Computer 
Systems Design. Cambridge University Press, Trumpingtom street, Cambridge, England, 1991. 

[28] A. Datta and I. Viguier. Providing real-time response, state recency and temporal consistency 
in databases for rapidly changing environments. Information Systems, 22(4):171-198, 1997. 



BIBUOGRAPHY 155 

[29] E. Dijkstra. The structure of "the" -multiprogramming system. Communications of the ACM, 
11(5):341-346, May 1968. 

[30] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of consistency and predicate locks in 
a database system. Communications of the ACM, 19(11):624-633, November 1976. 

[31] P. Franaszek, J. Haritsa, J. Robinson, and A. Thomasian. Distributed concurrency control with 
limited wait-depth. In Int. Conf. on Distributed Computing Systems, pages 160-167. IEEE, 
1992. 

[32] P. Franaszek, J. Haritsa, J. Robinson, and A. Thomasian. Distributed concurrency control based 
on limited wait-depth. In Transactions on Parallel and Distributed Systems, pages 1246-1264. 
IEEE, 1993. 

[33] J. Freytag, D. Maier, and G. Vossen, editors. Query Processing for Advanced Database Systems. 
Data Management Systems. Morgan Kaufmann Publishers, San Mateo, California, 1994. 

[34] H. Garcia-Molina. Peifonnance of Update Algorithms for Replicated Data. Computer Science: 
Distributed Database Systems. UMI Research Press, Ann Arbor, Michigan 48106, 1981. 

[35] L. George and P. Minet. Condition de faisabilit'e et temps de r'eponse maximum pour un 
syst'eme transactionnel r'eparti temps r'eel. In Proceedings of the Real-time Systems Confer· 
ence, 1995. 

[36] R. Golsteijn. A database extension for dedos. Master's thesis, Eindhoven University of Tech­
nology, Den Dolech 2, Eindhoven, The Netherlands, 1997. 

[37] V. Gottemukkala and T. Lehman. Locking and latching in a memory-resident database system. 
Proc. of the 18th VLDB Conference, pages 533-544, 1992. 

[38] G. Grimmett and D. Stirzaker. Probability and Random Processes. Clarendon Press, Oxford, 
1989. 

[39] D. Hammer, E. Luit, 0. van Roosmalen, P. van der Stok, and J. Verhoorsel. Dedos: A dis­
tributed real-time environment. IEEE Journal of Parallel and Distributed Technology, 2(4):32-
47, 1994. 

[40] J. Haritsa, M. Carey, and M. Livny. Dynamic real-time optimistic concurrency control. In 
Proceedings of the 11th Real· Time Systems Symposium, pages 94-103, 1990. 

[41] J. Huang, J. Stankovic, K. Ramamritham, and D. Towsley. Experimental evaluation of real­
time optimistic concurrency control schemes. In Proceedings of the Very Large Databases 
COiiference, pages 35-46, 1991. 

[42] P. Jansen and E. Wijgerink. Flexible scheduling by deadline inheritance in soft real-time ker­
nels. In Multimedia 96 Conference, pages 323--330, 1996. 

[43] W. Jonker and L. Nieuwenhuis. Overview of databases requirements for intelligent networks. 
Proc. of the 3rd Joint Workshop on Parallel and Distributed Real· Time Systems, pages 160-161, 
1995. 

[44] A. Kiigi, D. Burger, and l. Goodman. Efficient synchronization: Let them eat qolb. In 24th 
Ann. Int. Symposium on Computer Architecture, pages 170-179. ACM, 1997. 



156 BIBLIOGRAPHY 

[45] W. Kim, D. Reiner, and D. Batory. editors. Query Processing in Database Systems. Springer­
Verlag, Berlin, 1985. 

[46] Y. Kim and S. Son. Supporting predictability in real-time database systems. IEEE Real-Time 
Technology and Applications Symposium, pages 38-48, 1996. 

[47] L. Kleinrock. Queueing Systems, volume I. John Wiley & Sons, 1975. 

[48] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys, 19(4):303-
328, 1987. 

[49] H. Kopetz. Design Principles for Distributed Embedded Applications. Real-time Systems. 
Kluwer Academic Publishers, Boston, 1997. 

[50] H. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55-79, Januari 
1983. 

[51] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, 1991. 

[52] V. Kumar, editor. Concurrency Control Mechanisms in Centralized Database Systems. Prentice 
Hall, Englewood Cliffs, 1996. 

[53] H. Kunf! and J. Robinson. On optimistic methods for concurrency control. ACM Transactions 
on Dawbase Systems, 6(2):213-226, june 1981. 

[54] T. Kuo and A. Mok. Ssp: a semantics-based protocol for real-time data access. Proceedings 
14th real-time systems symposium, pages 76-86, 1993. 

[55] K.w. Lam, V. Lee, K.y. Lam, and S. Hung. Distributed real-time optimistic concurrency control 
protocol. Proc. of the 4th Joint Workshop on Distributed and Real-Time Systems, pages 122-
125, 1996. 

[56] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. Sequencing and scheduling: Al­
gorithms and complexity. Logistics of Production and Inventory, Handbooks in Operations 
Research and Management Science(4):445-522, 1993. 

[57] J. Lee and S. Son. Using dynamic adjustment of serialization order for real-time database 
systems. Proc. of the 14th Real-Time Systems Symposium, pages 66-75, 1993. 

[58] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact charac­
terization and average case behavior. Proceedings of the IEEE Real-time Systems Symposium, 
pages 166-171, 1989. 

[59] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time envi­
ronment. Journal of the ACM, 20:46-61, 1973. 

[60) D. Luenberger. Linear and nonlinear programming. Addison-Wesley Publishing Company, 
Amsterdam, The Netherlands, 2 edition, 1989. 

[61] D. Mandrioli and C. Ghezzi. Theoretical Foundations of Computer Science. John Wiley & 
Sons, New York, 1987. 



BIBUOGRAPHY 157 

[62] H. Mattsson, H. Nilsson, and C. Wikstrom. Mnesia- a distributed robust dbms for telecommu­
nications applications. Lecture Notes in Computer Science, 1551:152-163, January 1999. 

[63] S. Mauw. The formalization of message sequence charts. Computer Networks and ISDN 
Systems, (28):1643-1657, 1996. 

[64] S. Mauw and M. Reniers. An algebraic semantics of basic message sequence charts. The 
Computer Journal, 37(4):269-277, 1994. 

[65] D. Menasc'e and T. Nakanishi. Optimistic versus pessimistic concurrency control mechanisms 
in database management systems. Information Systems, 7(1):13-27, 1982. 

[66] M. Michell. An Introduction to Genetic Algorithms. Complex Adaptive Systems. The MIT 
Press, Cambridge, Massachusetts, 1996. 

[67] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Envi­
ronments. PhD thesis, MIT, Cambridge, Mass., 1983. 

[68] B. Moret and H. Shapiro. Algorithms from P to NP. The Benjamin/Cummings Publishing 
Company, Redwood city, 1991. 

[69] R. Morris and W. Wong. Performance analysis of locking and optimistic concurrency control 
algorithms. Performance Evaluation, (5): 105-118, 1985. 

[70] Neuts. Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University Press, 
Baltimore, 1981. 

[71] H. Nilsson and C. Wikstrom. Mnesia- and industrial dbms with transactions, distribution and 
a logical query language. In Proceedings of the Int. Symposium on Cooperative Database 
Systems for Advanced Applications, 1996. 

[72] 6. Ulusoy and G. Belford. Real-time lock-based concurrency control in distributed database 
systems. Proc. of the IEEE Conf on Distributed Computing Systems, pages 136-143, 1992. 

[73] M. Ozsu and P. Valduriez. Principles of distributed database systems. Prentice-Hall Interna­
tional Editions, Englewood Cliffs, 1991. 

[74] S. Panwar, D. Towsley, and J. Wolf. Optimal scheduling policies for a class of queues with 
customer deadlines to the beginning of service. Journal of the Association for Computing 
Machinery, 35(4):832-844, October 1988. 

[75] C. Papadimitriou. The serializability of concurrent database updates. Journal of the Association 
for Computing Machinery, 26(4):631-653, october 1979. 

[76] M. Pinedo. Scheduling, Theory, Algorithms and Systems. Industrial and Systems Engineering. 
Prentice Hall, Englewood Cliffs, 1995. 

[77] P. Pratt and J. Adamski. Database Systems Management and Design. Boyd & Fraser publishing 
company, 3 edition, 1994. 

[78] K. Ramamritham and C. Pu. A formal characterization of epsilon serializability. IEEE Trans. 
on Knowledge and Data Engineering, 7(6):997-1007, 1995. 



!58 BIBLIOGRAPHY 

[79] M. Reniers. Message Sequence Chart Syntax and Semantics. PhD thesis, Eindhoven University 
of Technology, Den Dolech 2, Eindhoven, The Netherlands, 1999. 

[80] S. Ross. A first Course in Probability. Macmillan Publishing Company, 1988. 

[81] K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Transactions on Database 
Systems, 19(1):117-165, 1994. 

[82] S. Sassen. Multi-server feedback queues for optimistic concurrency control. PhD thesis, Eind­
hoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands, 1998. 

[83] S. Sassen and J. van der Wal. The response-time distribution in a real-time database with 
optimistic concurrency control and exponential execution times. In Proceedings of the 15th 
International Teletraffic Congress, pages 145-156, 1997. 

[84] G. Schlageter. Optimistic methods for concurrency control in distributed database systems. 
Proceedings of the 7th Conference on Very Large Databases, pages 125-130, 1981. 

[85] L Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: An approach to real-time 
synchronization. IEEE Transactions on Computers, 39(9): 1175-1185, 1990. 

[86] A. Sheth and M. Liu. Integrating locking and optimistic concurrency control in distributed 
database systems. Proceedings of the IEEE Conf. on Distributed Computing Systems, pages 
89-99, 1986. 

[87] J. Stankovic, M. Spuri, M. Di Natale, and G. Buttazzo. Implications of classical scheduling 
results for real-time systems. Computer, june 1995. 

[88] T. Harder. Observations on optimistic concurrency control schemes. lnfomwtion Systems, 
9(2):111-120, 1984. 

[89] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal 
Databases, Theory, Design and Implementation. Database Systems Applications. The Ben­
jamin/Cummings Publishing Company, Inc., Redwood City, California, 1993. 

[90] A. Thomasian. Performance evaluation of centralized databases with static locking. IEEE 
Transactions on Software Engineering, pages 346-355, 1985. 

[91) A. Thomasian. Performance analysis oflocking policies with limited wait depth. Perjomwnce 
Evaluation Review, 20(1):115-127, 1992. 

[92] A. Thomasian. Distributed optimistic concurrency control methods for high-performance trans­
action processing. Transactions on Knowledge and Data Engineering, 10(1):173-189, 1998. 

[93] A. Thomasian and E. Rahm. A new distributed optimistic concurrency control method and a 
comparison of its performance with two-phase locking. Proc. of the Int. Conf on Distributed 
Computing Systems, pages 294--301, 1990. 

[94] H. Tijms. Stochastic Models, an Algorithmic Approach. John Wiley & Sons, Chichester, 1994. 

[95] V. Timkovsky. Is a unit-time job shop not easier than identical parallel machines? Discrete 
Applied Mathematics, 85:149-162, 1998. 



BIBLIOGRAPHY 159 

[96] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, Harcourt & Company, 
London, 1993. 

[97] J. van de Pol, J. Hooman, and E. de Jong. Formal requirements specification for command 
and control systems. In Proc. of the Conf on Engineering of Computer Based Systems, pages 
37-44, 1998. 

[98] P. van Gorp and A. Gouder de Beauregard. Resource assignment in hierarchical multiple re­
source systems. In Proceedings of the Conf on Parallel and Distributed Processing Techniques 
and Applications, pages 1008-1014, 1998. 

[99] J. Verhoorsel. Pre-Run-Tune Scheduling of Distributed Real-Time Systems. PhD thesis, Eind­
hoven University of Technology, Den Dolech 2, Eindhoven, The Netherlands, 1995. 

[100] K. Vidyasankar. Unified theory of database serializability. Fundamenta Informaticae, 14:147-
183, 1991. 

[101] R. Wolff. Poisson arrivals see time averages. Operations Research, 30:223-231, 1982. 

[102] M. Xiong, J. Stankovic, K. Ramamritham, D. Towsley, and R. Sivasankaran. Maintaining 
temporal consistency: Issues and algorithms. Proc. of the First International Workshop on 
Real-Tzme Databases: Issues and Applications, pages 2-7, 1996. 

[103] P. Yu and D. Dias. Analysis of hybrid concurrency control schemes for a high data contention 
environment. IEEE Transactions on Software Engineering, 18(2):118-129, 1992. 

[104] P. Yu and D. Dias. Performance analysis of concurrency control using locking with deferred 
blocking. IEEE Transactions on Software Engineering, 19(10):982-996, 1993. 

[105] P. Yu, D. Dias, and S. Lavenberg. On the analytical modeling of database concurrency control. 
Journal of the ACM, 40(4):831-872, 1993. 



160 BIBLIOGRAPHY 



Index 

2PC, see two phase commit 
2PL, see two phase locking 

abstraction mechanism, 33 
access mode, 23 
access operation, 23 
access pattern, 34 
addition operation, 23 
age interval, 130 
AGV, see automatic guided vehicle 
allowed data access orders, 39 
always-fresh, 129 
announced, 20,45 
application precedence constraint extractor, 

ll6 
architecture 

centralized, 21 
distributed, 2, 22 
shared-memory, 2, 21, 89 

arrival time, 26 
assignment moment, 17 
ATM, see automatic teller machine 
automatic guided vehicle, 6 
automatic teller machine, 6 

basic priority inheritance, 10 
belongs to, 77 
BFS, see breadth first search 
BPI, see basic priority inheritance 
breadth first search, 119 

C&C, see command and control system 
command and control system, 7 
commit rule, 7 4 
communication, 22, 42 
communication pattern, 42, 52 
concurrency 

bounded,40 
theoretically optimal, 40 
trivial, 41, 42, 51 

161 

two phase locking, 40 
concurrency control, 2 

optimistic, 11, 45, 51 
pessimistic, 10 
speculative, 11 

conflict, 9 
shared, 69 
unshared, 69 

conflict detector, 115 
conflict probability, 44 
conflict relation, 23 
conflict serializability, 27 
conflict-graph, 112 
consistency, 1 

temporal, 9 
data-based, 9 
transaction-based, 9 

constraint, 15 
fact, 17 
goal, 17 

constraint satisfaction problem, 17, 118 
context switch, 21 
coordinator, 53, 68, 151 
CSP, see constraint satisfaction problem 
cycle remover, 119 

data allocation, 8, 24 
data item, 22 

non-temporal, 22 
temporal, 121 

database, 1 
centralized,9 
disk-based, 9 
distributed, 2, 9 
main-memory, 9 
real-time, 1, 2 
shared-memory, 2 

database management system, 3 
database queries, 3 



162 

dataset, 3, 22 
DBMS, see database management system 
deadline, 26 
deadlock, 43, 52, 68 
deadlock avoidance rule, 70 
decision overhead, 41 
DEDOS, see mine pump 
delayed lock, 69 
delayed unlock rule, 37 
depth first search, 119 
derived data, 121 
derived item, 122 
design problem, 15 
DFS, see depth first search 
dispatcher, 45 
DOCC-BF,68 
DOCC-DASO, 65 

earliest deadline first, 1 0 
earliest start time, 26 
EDF, see earliest deadline first 
enabled, 72 
enforce, 19 
enforcing overhead, 41 
epsilon serializability, 28 
event, 56, 72 
execution time, 25 
execution units, 11 0 

fait accompli, 20 
FCFS, see first-come, first-served 
FIFO, see first-in, first-out 
financial trading application, 6 
finish time, 25 
first-come, first-served, 91 
first-in, first-out, 71 
fitness function, 118 
fiat database management system, 4 
FIA, see financial trading application 

genetic algorithms, 118 
gradient projection method, 133 
graph orientation problem, 114 
growing phase, 151 

haswritten, 129 
HEP, see high energy physics 
high energy physics, 5 

instance, 122 
intermediate, 124 

instrument, 6 
interference relation, 23 
internal computation, 42 
invocation, 122 
IPA, ii 

job-shop problem, 118 

life lock, 52, 81 
local-write property, 35 
lock, 149 

read, 149 
write, 149 

locking phase, 151 

manipulation options, 20 
Markov model, 90 
Markov property, 90 
matrix geometric approach, 101 
merge rule, 74 
message sequence chart, Ill 
minimum laxity first, 94 
mixed graph, ll2 
MLF, see minimum laxity first 
Mnesia, 49 
MSC, see message sequence chart 

notification rule, 70, 74 

objective function, 16, 30 
observation, 15 
OCC-Iight, 52 
OCC-TI,67 
off-line, 19, 109 
on-line, 19 
owned by, 69 
owns, 69 

INDEX 

PABX, see private automatic branch exchange 
participant, 53, 68, 151 
PCP, see priority ceiling protocol 
performance measure, 30 
piggy backing, 42 
pork bellies, 7 
pre-emption point, 11 0 
pre-runtime, 19 



INDEX 

priority ceiling protocol, 10 
private automatic branch exchange, 5 
problem statement, 18 
problem variable, 16 

fixed, 16 
free, 16 

process farming, 92 
processor speed, 21 
pseudo-code, 145 

query optimization, 4 
query optimizer, 4 

racing condition, 20 
rate-monotonic, 10, 128 
read operation, 23 
reads-from relation, 28 
real-time 

firm, 31,90 
hard, 31, 109 
soft, 30 

refresh transaction, 122 
requirement 

firm real-time, 3 
hard real-time, 2 
soft real-time, 3 

response time, 25 
response time distribution, 90 
restart rule, 52 
reverse rule, 75 
RMS, see rate-monotonic 

schedule, 4, 19 
conflict serializable, 112 
serializable, 8 
two phase locking, 38 

scheduler, 18 
scheduler overhead, 41 , 51 
scheduler processor, 92 
scheduling decision, 45 

off-line, 45 
on-line, 45 

scheduling problem, 18 
sensor data, 121 
sensor item, 122 
serializability, 9, 27 

conflict, 9 
epsilon, 9 

view, 9 
shortest time to extinction, 94 
shrinking phase, 151 
simplex method, 133 
single-write property, 35 
single-writer property, 122 
site, 24 
SQSL-firm, 93 
SQSL-MLF, 94 
SQSL-soft, 92 
start time, 25 
state, 90 
static locking, 45, 91 
STE, see shortest time to extinction 
steady state, 102 
synchronization, 42 
synchronization point, 20, 42, 51 

t-maximal, 77 
telecom, 5, 49 
temporal consistency 

item-based, 121 
transaction-based, 121 

temporal correctness, 125 
temporal requirement 

absolute, I 23 
relative, 124 

Thomas' write rule, 82 
thrashing, 37 
time of measurement, 123 
time of measurement function, I 26 
time precedence constraint, ll 0 
timer, 93 

163 

tom-function, see time of measurement func-
tion 

topological sort, 132 
total conflict probability, 44 
transaction, I, 122 

characteristics, 24 
derive, 122 
sensor, 122 
user, 122 

transaction manager, 4 
transaction serializer, 110 
transaction type, 122 
trashing, 11 
two phase commit, 42, 151 



164 

two phase locking, 10, 151 

unannounced,20 
unlock, 149 
unlocking phase, 151 
user interface, 3 
user request, 3 

validation 
backward, 68 
forward, 68 

view serializability, 27 
view-D. similarity, 9 

wait-die, 150 
work, 21, 25 
worker processor, 92 
worst-case execution time, 30 
write operation, 23 

Xuemei, i 

INDEX 



Summary 

Database systems maintain a set of data and regulate access to that data. The task of the database 
scheduler is to determine the (partial) order in which transactions are allowed to read and write the 
database. This order has to satisfy certain correctness criteria. The most common requirement is 
serializability: the order of reading and writing is functionally equivalent to a sequential order. 

This thesis investigates how the real-time performance of database schedulers can be optimized. 
Real-time performance is a function of the response times of transactions: the time between arrival of 
the transaction in the database, and the return of the result. We observe that the transaction response 
time depends on the environment in which the scheduler operates. Both the platform on which trans­
actions are executed, and the applications that generate the transactions are important. For example, 
if the applications generate computationally demanding transactions, restarting a transaction substan­
tially increases the transaction response time. Several existing schedulers restart the execution of a 
transaction to break deadlocks. This suggests that such schedulers are not suitable in the described 
environment. With a number of examples it is shown that a detailed description of the environment 
can be used to optimize the scheduler. 

We determine what characteristics of a database scheduler most influence its performance. Tra­
ditionally, the emphasis is on efficient processor utilization. This is accomplished by maximizing the 
amount of parallelism allowed by the scheduler. We show that in several environments the overhead 
generated by the scheduler is more important than parallelism. In these environments maximizing the 
amount of parallelism will result in less performance gains than minimizing the scheduler overhead. 

The sources of overhead are investigated. Since we limit ourselves to main-memory databases, 
three parts are distinguished: communication between computers, synchronization of local processes 
and internal scheduler computation. It seems that there is a relationship between scheduler overhead 
and the amount of parallelism that is allowed by the scheduler. Schedulers that offer a lot of parallelism 
have to synchronize more often between concurrently executing transactions to avoid non-serializable 
schedules, than schedulers that offer less parallelism. To decide whether transactions can execute 
concurrently, schedulers that offer a lot of parallelism require a large amount of information about 
transactions at an early stage. 

These concepts are applied in a number of environments. The OCC-Iight scheduler is designed 
to function in a typical Telecom environment. Both synchronization overhead and communication 
overhead is minimized in the OCC-light scheduler. OCC-light is an adaptation of the classical opti­
mistic concurrency control algorithm. The adaptations simplify the algorithm such that the overhead 
that is imposed on transactions is reduced. It turns out that OCC-Iight performs well in low-conflict 
environments. 

The DOCC-BF scheduling algorithm is designed to function in high-conflict environments, by 
maximizing the offered parallelism. To achieve this, DOCC-BF uses the popular dynamic time-stamp 
mechanism that became famous in the centralized OCC-TI scheduler [57]. Since DOCC-BF operates 
on a distributed platform, OCC-TI has been extended with a distributed validation protocol. This pro-

165 



166 SUMMARY 

tocol ensures that the validation is consistent, deadlock free and it minimizes the number of required 
sequential communications. 

A totally different environment is given by the hard real-time scheduling system DEDOS [39J. 
Hard real-time scheduling systems are usually not flexible, and hence hard to program. To extend 
the expressiveness of the DEDOS programming environment, a pre-processor is created. This pre­
processor adds database functionality to the DEDOS system. Several optimizations to the database 
protocols can be realized, since real-time functionality and reliability are already features of the DE­
DOS system. Hence, the database protocols can be streamlined considerably. 

The thesis finishes with the introduction of temporal consistency for real-time databases. In several 
environments, databases are used to store information about continuously changing objects. This 
information becomes old and loses its value as time passes. The database should ensure that old data 
is refreshed when necessary. We intrnduce new concepts, give a specification method that can be used 
to design systems that use temporal consistency, and show that implementations of specified systems 
are possible. 



Samenvatting 

Database systemen beheren een set data en controleren de toegang tot die data. De taak van de 
database scheduler is de (partiele) volgorde te bepalen waarin de transacties de database mogen lezen 
en schrijven. Die volgorde moet aan bepaalde consistentie-eisen voldoen. De meest gebruikelijke els 
is serialiseerbaarheid: de volgorde van lezen en schrijven is functioneel equivalent met een sequentiele 
volgorde. 

In dit proefschrift wordt onderzocht hoe de real-time performance van database schedulers kan 
worden geoptimaliseerd. Dit houdt in dat de reactietijd van transacties (de tijd tussen het arriveren 
van de transactie in de database, en het teruggeven van het resultaat) aan bepaalde voorwaarden moet 
voldoen. We observeren dat de performance van een scheduler voor een belangrijk dee! afhangt van 
de omgeving van de scheduler. Zowel het platform waarop de scheduler de transacties uitvoert, als 
de applicaties die transacties genereren zijn van belang. Bijvoorbeeld, als applicaties zeer reken­
intensieve transacties genereren, moet de scheduler ervoor zorgen dat de executie van een transactie 
altijd succesvol is. Verscheidene schedulers herstarten de executle van een transactie als geen geschikt 
schedule gevonden kan worden. Met behulp van een aantal voorbeelden Iaten we zien dat een nauw­
keurige beschrijving van de omgeving van de scheduler aanknopingspunten biedt die gebruikt kunnen 
worden om de scheduler te optimaliseren. 

Daamaast wordt onderzocht welke kenmerken van een database scheduler de meeste invloed heb­
ben op de performance. Traditioneel ligt de nadruk sterk op efficient processor-gebruik. Dit wordt 
bereikt door de hoeveelheid parallellisme die wordt toegestaan door de scheduler te maximaliseren. 
We Iaten zien dat in bepaalde omgevingen de overhead van de scheduler meer van belang is dan paral­
lellisme. In deze omgevingen Ievert maximalisering van dehoeveelheid geboden parallellisme minder 
performance-winst op dan minimalisering van de scheduler overhead. 

We onderzoeken waaruit scheduler overhead bestaat. Omdat we ons beperken tot main-memory 
databases, onderscheiden we drie onderdelen: communicatie tussen computers, synchronisatie tussen 
locale processen en interne scheduler berekeningen. Het blijkt dat er een relatie is tussen scheduler 
overhead en geboden parallellisme. Schedulers die vee! parallellisme bieden moeten vaker synchroni­
seren tussen gelijktijdig executerende transacties dan schedulers die weinig parallellisme bieden. Dit 
is noodzakelijk om niet-serialiseerbare executie-volgordes te voorkomen. Om te beslissen oftransac­
ties gelijktijdig kunnen executeren moet schedulers die vee! parallellisme bieden, relatief veel infor­
matie over transacties hebben. Daarnaast is bet belangrijk dat deze informatie op een vroeg tijdstip 
beschikbaar komt, zodat de scheduler voldoende tijd heeft om de juiste beslissingen te nemen. 

Deze concepten worden in een aantal omgevingen toegepast. Na onderzoek van een typische 
Telecom omgeving ontwerpen we de OCC-Iight scheduler. Communicatie- en synchronisatie over­
head zijn geminimaliseerd in de OCC-light scheduler. OCC-light is een aanpassing van het klassieke 
Optimistisch Concurrency Control mechanisme. De aanpassingen simplificeren het algoritme zoda­
nig dat de overhead op transacties wordt teruggebracht. Hierdoor presteert OCC-light goed in een 
conflict-arme omgeving met kort executerende transactles. 

167 



168 SAMENVAITING 

Het OOCC-BF scheduling mechanisme is ontworpen om in conflict-rijke omgevingen goede pres­
taties te leveren. Daarom biedt OOCC-BF vee! para1lellisme. Hiervoor maakt DOCC-BF gebruik van 
het populaire dynamische time-stamp mechanisme dat bekend werd door OCC-Tl (zie [57]). Aange­
zien DOCC-BF werkt op een platform dat bestaat uit meerdere machines, is OCC-TI uitgebreid met 
een gedistribueerd va1idatie-protocol. Dit protocol zorgt voor consistentie van de va1idatie, deadlock 
preventie en minimaliseert het aantal communicatie stappen dat nodig is. 

Weer een geheel andere omgeving vormt bet hard real-time scheduling systeem DEDOS [39]. 
Hard real-time schedule systemen zijn niet flexibel en daarom moeilijk te programmeren. Om de 
uitdrukkingskracht van het DEDOS scheduling systeem te vergroten construeren we een pre-processor 
voor de DEDOS scheduler. De pre-processOt voegt database functiona1iteit toe aan het scheduling 
systeem. Aanzienlijke optima1isaties van de database protocollen kunnen gerealiseerd worden daar 
het bard real-time schedu1ing systeem reeds real-time en reliability eigenschappen heeft. 

Het proefschrift sluit af met de introductie van temporele consistentie. In veel gevallen worden 
databases gebruikt om informatie over een continu veranderende omgeving op te slaan. Deze infor­
matie wordt oud en verliest zijn waarde naarmate de tijd verstrijkt. Het is de taak van de database om 
ervoor te zorgen dat oude informatie ververst wordt. We introduceren nieuwe concepten, geven een 
specificatie-methode en Iaten zien dat implementaties van zodanig gespecificeerde systemen mogelijk 
zijn. 



Curriculum Vitre 

Maarten Bodlaender werd op 24 mei 1970 geboren in Bennekom., gemeente Ede. Reeds op jeugdige 
leeftijd begon hij aan zijn informatica-opleiding, zodat hij naast de Atheneum B opleiding op het 
Marnix college te Ede, 's avonds zijn eerste Basic programmaatjes schreef. 

Na de middelbare school volgde informatica aan de rijksuniversiteit Utrecht. In eerste instantie 
specialiseerde Maarten zich in kunstmatige intelligentie, expertsystemen en neurale netwerken. Uit­
eindelijk maakte hij toch de ommezwaai naar de afstudeerrichting algoritmiek, met als specialisatie 
gedistriboeerde systemen. Onder begeleiding van afstudeerdocent dr. Gerard Tel verrichtte hij onder­
zoek naar bet uitbreiden van de toepassingsmogelijkheden van wave algoritmen. Een wave algoritme 
is in essentie een communicatie-protocol in een netwerk van computers. Zijn afstuderen werd in 
augustus 1994 voltooid. 

Van oktober 1994 tot februari 1999 verrichtte hij zijn promotie-onderzoek aan de Technische Uni­
versiteit Eindhoven, onder begeleiding van dr. Peter van der Stok. De titel van het STW-project waar 
dit onderzoek dee! van uitrnaakte "Construction and performance of real-time transactions" geeft een 
aardige indicatie van het onderzoek dat verricht werd. Maarten verdeelde zijn tijd tussen constructie 
van real-time distributed database schedulers, en het analyseren of meten van hun performance. 

Tegenwoordig werkt Maarten bij het Philips natuurkundig laboratorium, in Eindhoven. 

169 



170 

Titles in the IPA Dissertation Series 

The State Operator in Process Algebra 
J. 0. Blanco 
Faculty of Mathematics and Computing Science, TUE, 1996-1 

Transformational Development of Data-Parallel Algorithms 
A. M. Geerling 
Faculty of Mathematics and Computer Science, KUN, 1996-2 

JPA DISSERTATION SERIES 

Interactive Functional Programs: Models, Methods, and Implementation 
P.M.Achten 
Faculty of Mathematics and Computer Science, KUN, 1996-3 

Parallel Local Search 
M. G. A. Verhoeven 
Faculty of Mathematics and Computing Science, TUE, 1996-4 

The Implementation of Functional Languages on Parallel Machines with Distrib. Memory 
M. H. G. K. Kesseler 
Faculty of Mathematics and Computer Science, KUN, 1996-5 

Distributed Algorithms for Hard Real-Time Systems 
D. Alstein 
Faculty of Mathematics and Computing Science, TUE, 1996-6 

Communication, Synchronization, and Fault-Tolerance 
J. H. Hoepman 
Faculty of Mathematics and Computer Science, UvA, 1996-7 

Reductivity Arguments and Program Construction 
H. Doornbos 
Faculty of Mathematics and Computing Science, TUE, 1996-8 

Functorial Operational Semantics and its Denotational Dual 
D. Tori 
Faculty of Mathematics and Computer Science, VUA, 1996-9 

Single-Rail Handshake Circuits 
A. M. G. Peeters 
Faculty of Mathematics and Computing Science, TUE, 1996-10 

A Systems Engineering Specification Formalism 
N. W. A. Arends 
Faculty of Mechanical Engineering, TUE, 1996-11 



Normalisation in Lambda Calculus and its Relation to Type Inference 
P. Severi de Santiago 
Faculty of Mathematics and Computing Science, TUE, 1996-12 

Abstract Interpretation and Partition Refinement for Model Checking 
D.R.Dams 
Faculty of Mathematics and Computing Science, TUE, 1996-13 

Topological Dualities in Semantics 
M. M. Bonsangue 
Faculty of Mathematics and Computer Science, VUA, 19%-14 

Algorithms for Graphs of Small Treewidth 
B. L. E. de Fluiter 
Faculty of Mathematics and Computer Science, UU, 1997-01 

Process-algebraic Transformations in Context 
W. T.M.Kars 
Faculty of Computer Science, UT, 1997-02 

A Generic Theory of Data Types 
P. F. Hoogendijk 
Faculty of Mathematics and Computing Science, TUE, 1997-03 

The Evolution of Type Theory in Logic and Mathematics 
T.D.L.Laan 
Faculty of Mathematics and Computing Science, TUE, 1997-04 

Preservation of Termination for Explicit Substitution 
C.J.Bloo 
Faculty of Mathematics and Computing Science, TUE, 1997-05 

Discrete-Time Process Algebra 
J. J, Vereijken 
Faculty of Mathematics and Computing Science, TUE, 1997-06 

A Functional Approach to Syntax and Typing 
F. A.M. van den Beuken 
Faculty of Mathematics and Informatics, KUN, 1997-07 

Ins and Outs in Refusal Testing 
A. W. Heerink 
Faculty of Computer Science, UT, 1998-0 l 

A Discrete-Event Simulator for Syste1ns Engineering 
G. Naumoski and W. Alberts 
Faculty of Mechanical Engineering, TUE, 1998-02 

l7l 



172 

Scheduling with Communication for Multiprocessor Computation 
J. Verriet 
Faculty of Mathematics and Computer Science, UU, 1998-03 

An Asynchronous Low-Power 80C51 Microcontroller 
J. S. H. van Gageldonk 
Faculty of Mathematics and Computing Science, TUE, 1998-04 

In Terms of Nets: System Design with Petri Nets and Process Algebra 
A. A. Basten 
Faculty of Mathematics and Computing Science, TUE, 1998-05 

Inductive Datatypes with Laws and Subtyping -A Relational Model 
E. Voermans 
Faculty of Mathematics and Computing Science, TUE, 1999-01 

Towards Probabilistic Unification-based Parsing 
H. terDoest 
Faculty of Computer Science, UT, 1999-02 

Algorithms for the Simulation of Surface Processes 
J.P.L. Segers 
Faculty of Mathematics and Computing Science, TUE, 1999-03 

IPA DISSERTATION SERIES 



Stellingen 

bij het proefschrift 

Scheduler Optimization in 
Real-Time Distributed Databases 

van 

MAARTEN PETER BODLAENDER 



-9-

Nederlands wordt steeds minder geschikt om als voertaal te dienen in een 
wetenschappelijke omgeving. De eis dat een proefschrift een Nederlandse 
samenvatting bevat dient daarom te vervallen. 

-10--

In veel communicatie media is het medium zelf het onderwerp van een 
significant percentage van aile gecommuniceerde berichten. Deze obser­
vatie kan gebruikt worden om dit soort berichten effectief te comprimeren. 

-11-

De primaire bron van frustratie is onvermogen. 

Corollary: als je niet gefrustreerd bent, kan je kennelijk nog beter preste­
ren. 

-12-

De verbetering van communicatiemedia heeft het aantal tragische liefdes 
sterk doen toenemen. 




