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Chapter 1

Introduction

1.1 Free boundary problems

For the last three decades, the subject of free boundary problems (FBP) has attracted increasing at-
tention because of its theoretical interest and its numerous applications in physics and engineering.
Typically, a free boundary problem consists of one or more partial differential equations (PDE) or
systems of PDE with corresponding initial and boundary conditions which are supposed to hold
on an a priori unknown domain. Hence, solving an FBP consists not only of finding the unknown
functions that (in an appropriate sense) solve the given equations but also in determining and char-
acterizing these unknown domains. Quite often this is the most mterestmg part of the problem but
also its main difficulty.

Even this rather unprecise characterization of FBP can provide an idea of how huge the field
of applications in modeling various physical phenomena is. Without any attempt to be complete
we mention

+ deformation of rigid bodies, including fracture,
+ liquid and gas flow with free boundaries, including reactive flows,
» phase transition processes.

It is not surprising that to this variety of applications corresponds a variety of theoretical methods
for their treatment, and that lots of challenging problems have emerged from them. In many cases,
they have even determined the direction of development of the theories and they continue to do
so. Obviously, the theory of PDE with all its aspects plays the most prominent role in this, but
also tools from other areas as functional analysis or complex function theory have been applied
successfully to FBP.

Motivated by the applications and supported by the theory, the treatment of FBP also forms
a field of rapidly growing interest in numerical mathematics and scientific computing.

1.2 Existence and uniqueness results in modeling

A main objective of this thesis is to obtain existence and uniqueness results for certain FBP that
oceur as models for physical processes. Clearly, the main interest from a practical point of view is

3



4 ' CHAPTER 1. INTRODUCTION

in the prediction of qualitative properties and behavior of the solution and in efficient calculation
of approximations rather than in such propositions. It is not exceptional that one encounters the
(more or less explicitly expressed or tacitly assumed) belief that a “reasonablé” model of a “real-
world” physical problem will always automatically have precisely one solution. This reasoning
is erroneous because it neglects the crucial simplifications that have been made by replacing the
physical problem by its model. On the contrary, only the knowledge about existence and unigue-
ness of the solution will tell whether the chosen model can be “reasonable”. Thus, existence and -
uniqueness theorems are not only of theoretical interest but in the context of modeling they give
important information on the quality of the model. ,

To illustrate this, suppose that a certain model yields no solution, as for example in the Stokes
paradoxon of two-dimensional hydrodynamics [57]. This means that conflicting assumptions
have been made in the process of modeling, even if this is not obvious at all. On the other hand, a
model can admit more than one solution. This is the case, for instance, for certain one-dimensio-
nal conservation laws which can be formulated mathematically as Cauchy problems for first-order
quasilinear hyperbolic PDE (see e.g. {74] for an introduction to this). Such a situation gives rise
to the conclusion that the model does not contain enough information to describe the reality and
has therefore to be supplemented with additional conditions for the choice of one of the solutions
as the “correct” one. On this issue, see also the remarks in the classical work of Lichtenstein {58],
especially Section 7.9.1

Moreover, in many cases the theoretical effort that has been made in order to give an existence
and uniqueness proof will also provide more insight into the structure of the problem and the qual-
itative behavior of solutions as well as hints on effective numerical methods and their properties
for the problem in question.

With regard to the FBPs which are considered here, we will briefly return to this point in
Chapter 6. B

1.3 The models

This thesis is concerned with two instationary free boundary problems in fluid mechanics, namely
the problems of so-called Stokes flow and Hele-Shaw flow. In both cases, the driving mechanism
which will be mainly considered is the influence of surface tension, hence the concept of mean
curvature of a surface will play an prominent role. Let I be a twice differentiable, (N — 1)-di-
mensional hypersurface in R™ . Its mean curvature & is usually defined as the sum of the principal
curvatures divided by (N — 1). For our purposes it will be convenient to call £ = &(N — 1) the
mean curvature (in short: curvature) of I'. We will always consider « as a real-valued function on
T. If T bounds a domain in R™, we will choose the sign of « such that it is negative where the
domain is convex. V

1.3.1 Viscous sintering

Before we formulate the models in mathematical terms, let us have a brief ook at the technological
process of viscous sintering whose theoretical investigation is a main motivation of this thesis, For
amore detailed description the reader is referred to [36, 53, 54, 91] and the reférences given there.

In the preface of [$8] there is even a striking reference to FBP: “Gleichfalls ein Desideratum bilden heute Exis-
tenzsiitze inkompressibler Fliissigkeiten, sobald eine freie Oberfliche vorliegt.” (“Today, existence theorems for incom-
pressible fluids are also a desideratum whenever there is a free surface.”) This has been written already in 1929
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In the production of high-quality glasses, itis sometimes preferable to work at lower tempera-
tures than usually in glass technology. This renders the possibility to avoid impurities induced by
chemical reactions with the container walls and to use components which are too volatile at higher
temperatures. The primary product of the viscous sintering technology to be discussed here is a
so-called acrogel, a porous glass substance of low density that can be described as a mass of mi-
croscopically small droplets which are only loosely connected to each other.? At temperatures of
500-700 °C, the glass is in the state of a highly viscous liquid (comparable to heavy oil or syrup)
which can be deformed by the forces arising from surface tension. These forces are acting normal
on the surface of the glass droplets and their amount is proportional to the curvature of the sur-
face. This leads to the coalescence of adjacent droplets. In this way, larger clusters are formed,
which macroscopically results in an increasing density of the glass. Ideally, the process yields
eventually a homogeneous glass body without pores and inclusions.

The viscous sintering process will be modeled in two steps: At first, a general model which
leads to an FBP for the full Navier-Stokes equations is given, and afterwards some simplifications
are made which are possible due to the high viscosity.

1.3.2 The full Navier-Stokes equations

We start with the consideration of the following physical situation: A liquid drop moves freely
under the influence of an exterior force and of surface tension. {As usual at this stage of the dis-
cussion, we will assume that all occurring derivatives exist.) At time ¢ > 0 the drop occupies the
domain §2(¢) having the boundary I'(¢). The liquid is assumed to be Newtonian and incompress-
ible with constant positive density p and viscosity v. The velocity and pressure fields v(-, ¢) and
p(-, 1) are defined on (¢} and satisfy the Navier-Stokes equations

P (61} + (v - V)v) —vAu+ Vp

at F ol Qft), (1.0

dive = 0

where f = f(x,1) is the density field of the volume forces.
The boundary condition expresses the equilibrium between the normal forces onto the surface
of the liquid and the normal component of the stress tensor 7 given by

T(v,p) = v(Vo+ (Vo)T) - pZ,

where Vv denotes the velocity gradient and 7 is the identity tensor. As mentioned earlier, this
normal force is proportional to the mean curvature £(¢} of I'(t), hence

T (v, p)n(t) = yr(t)n(t), (1.2)

where n{t) denotes the outer normal vector on (1}, and 7 is a positive real proportionality factor.
the surface tension coefficient, which is a material parameter depending only on the liquid and its
environment. For a derivation of (1.2) from physical reasonings see [56]. At initial time ¢ = 0
the velocity field inside the liquid is prescribed as

o(,0)=1ve  inQO). (1.3)

21t is beyond the scope of this thesis to take into account the highly complex topology of the glass body in this process,
instead, we will restrict ourselves to the investigation of simple topologies wherever this will be necessary,
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As usual in continuum mechanics, a parametrization of Q(t) by Lagrangian coordinates
£ € Q(0) is introduced where the parameter functions x = (-, ?) satisfy the Volterra integral
equation

£ |
z(f, ) = S—i—f v(z(€, ), 8) ds. . (1.4)
0
The equations (1.1), (1.2), (1.3) together with (1.4) and

Q(2) = 2[Q(0),1] (1.5

constitute an instationary free boundary problem. Appendix A gives a brief account of the results
concerning its solvability, mainly for the purpose of comparison to the results to be obtained for
the model of Stokes flow which is introduced next.

1.3.3 Stokes flow

- In order to make use of more detailed information of the physical properties of viscous sintering let
us make equations (1.1), (1.2) dimensionless. Following [53], we choose a characteristic length
z. resembling the spatial extent of the liquid domain and characteristic velocity, pressure, and
time accordingly as

|
|
I

UC:-s_ De =

Furthermore, we assume [ to be given by the gravity, ie. f = pge; where g is the gravity ac-
celeration and e, a dimensionless fixed unit vector. Rewriting (1.1), (1.2) inithe dimensionless
variables

%:‘U, ﬁ:-g-’ 53_—_—.3’..’ f:i
Ye Pe Ze t;
yields
9% . . .
Re ﬁ—{—(v-V)v -~ AD4+Vp = Bey
divi = 0
T(w,pn(t) = «(t)n(d),

where all spatial derivatives have to be taken with respect to %,
Ti(5,5) = (Vi +(VO)T) - 5L
and

Re= PEVe _ PEY g pEeg
v v ¥

These dimensionless numbers, characterizing the respective influence of convective and gravita-

tional effects compared to viscosity, are the well-known Reynolds number and the Bond number.

(The name Suratman number instead of Reynolds number is also used in our special situation

where v, = g— is chosen [43]. Note, moreover, that B = R:f where Fr is the Froude number.)
For a typical viscous sintering problem, the values of these numbers are [53, 91]

Re=10"1°...10"2, B=10"%...10"%.
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Hence it is justified to neglect both the convective and the gravitational terms and to replace (1.1)
by the equations for incompressible “creeping flow™:

—Av zgf - 8 } in Q). (1.6)
T (v, pin(t) = x()n(t) on I'(¢). (1.7

(Here and in the sequel, the tilde is suppressed, we write 7 for 71, and we will refer to » and p as
velocity and pressure field as before.)

Complemented by (1.4) and (1.5}, the equations (1.6), (1.7) form another free boundary prob-
lem which will be discussed in detail in this thesis. At the moment, we only want to direct the at-
tention to the crucial changes in the character of the problem that results from replacing (1.1) by
(1.6). For Q(¢) known, the latter form an elliptic system in the sense of Agmon-Douglis-Niren-
berg [3] with complementing boundary condition {1.7) (see Chapter 3). Therefore u(-, 1), p(-, 1)
depend only on €2(t) but not on its evolution in time. In particular, this holds for the initial time
i = 0, i.e. there is no initial velocity to be prescribed for the creeping flow FBP. Consequently,
the evolution of the domain as well as the velocity and pressure fields at any time are essentially”
determined by §2(0).

This fact can be clarified by the following intuitive reasoning: In a nonstationary initial-
boundary value problem for the full Navier-Stokes equations, the initial momentum of the liquid
is dissipated by inner friction due to the viscosity. For higher viscosities, i.e. smaller Reynolds
numbers, the characteristic time of this dissipation process becomes shorter, and “in the limit” the
influence of the initial velocity vanishes for all positive times ¢.

For a discussion of the solvability of the corresponding two-phase problem with N = 2and a
special geometry see [10]. The approach used there is based on Fourier analysis and a contraction
argument in a scale of Banach spaces.

1.3.4 Hele-Shaw flow

Besides Stokes flow and in many respects parallel to it, so-called Hele-Shaw flow will be con-
sidered. We will restrict our attention to the one-phase problem. Back in 1898, this model was
introduced to describe the motion of a thin layer of liquid confined in a so-called Hele-Shaw cell,
a narrow interstice between two parallel plates [28, 40]. Let Q(¢) be the domain occupied by the
liquid again. (In this original problem, we have N = 2.) The liquid is supposed to be incom-
pressible and its velocity v is proportional to the gradient of the pressure p. Thus, we have in

dimensionless form

divz - OW’ } in Q(1). (1.8)
These equations are also encountered as the simplest model of groundwater flow when the soil
is supposed to be homogeneous [90]. In this case, v is the so-called specific discharge vector,
describing the flux through an oriented area element per unit of time, and the first cquation is
called Darcy’s law. Tt is known [12] that the equations (1.8) are consistent with the Navier-Stokes
equations if the inertial effects are disregarded and a certain averaging procedure is applied.
Based on (1.8) and depending on the applications, various driving mechanisms that induce a
motion of the liquid can be considered. The most usual ones are gravity and injection or suction

?In fact, the velocity fields as well as the evolution of the domain are determined only up to rigid body motions. This
will be discussed in Chapter 3.
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of liquid at point sources or sinks, at some parts of the boundary of (¢) or, if Q(¢) is unbounded,
at infinity. (If point sources or sinks are included, the equations hold only in the liquid domain
with the source/sink points removed.) :

Describing the evolution of the domain by (1 4) {(1.5) again, it is not hard to derive the ex-.
pressxon

Va(t) = v(-,t)|r@y - n(t)  onT(t) (1.9)

for the normat velocity V;, of the boundary I'(1). More precisely, V,, = V;,(t) isafunction, defined
on ['(¢), which assigns to each point of T'() the component of its velocity that is normal to T'(¢)
in this point (see Chapter 3).

Writing u = —p we find from (1.8), (1.9) the equations

Au 0 , in (1) } E
B (1.10)
Vo = Inll) on I'(¢)

(or modifications of them including source terms.) For these equations to constitute a “well-
defined” free boundary problem, a boundary condition for u at T'(¢) has to be added. This can
be done in different ways. The simplest one is the homogeneous Dirichlet condition

It

u=0 onl{)

corresponding to continuity of the pressure across the free boundary I'(t) and constant pressure
outside 2(¢). Other boundary conditions that are encountered in literature are the homogencous
Robin condition

u-&-s(9 (t) onI‘(t) (1.11)
and the inhomogeneous Dirichlet condition
u="vk(t) onl{{), : (1.12)

where ¢ and 7 are positive constants. Both conditions have first been applied to the closely related

famous Stefan problem

ca—u—Au = 0 inQ(t)

ot du
Vn = M on F(i)

describing phase change processes where u represents the temperature and ¢ is the specific heat.
(Note that we recover (1.10) by setting ¢ = 0.) Referring to this context, (1.11) is called kinetic
undercooling regularization and accounts for certain nonequilibrium thermodynamic effects. The
condition (1.12) arises if a surface energy term is included in the model and is called Gibbs-
Thomson relation. In the original Hele-Shaw problem, itis a rough approximation of the influence
of surface tension forces on the free surface of the liquid. For more details on the modeling as-
pects and for results concerning solvability and properties of the various FBP mentioned here we
refer to the survey article [46], where special emphasis is laid on the case N = 2 and the complex
variable methods applicable there.

In this thesis, we will exclusively deal with the boundary condition (1.12). Due to its inhomo-
geneity, it represents a driving mechanism, and for the main part of this thesis we will not include
other ones. As in the case of the Stokes flow FBP described above, the evolution of the liquid
domain is then completely determined by £2(0).
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We remark that the FBP (1.10), (1.12} is also obtained in the description of the motion of
phase boundaries by capillarity and volume diffusion in metallurgy {64].

In the sequel, unless stated otherwise, we will refer to the FBP (1.4)—-(1.7) by the name
“Stokes flow” and to the FBP (1.10), (1.12) by the name “Hele-Shaw flow™ without explicitly
mentioning surface tension as the (only}) driving mechanism considered.

1.4 Basic ideas and properties

Let us outline now some essential points of the following investigations, in a way that is aimed at
clarifying the crucial concepts by deliberately skipping technicalities as far as possible.

1.4.1 Quasistationary approximation and surface motion laws

We recall that equations (1.4}, (1.5) imply (1.9}, hence the latter equation holds both for Stokes
flow and for Hele-Shaw flow. Comparing ¢1.6) and {(1.7) on one hand and the inhomogeneous
Dirichlet problem

Au = 0 in Q1) }

u = yk(t) onl{t) (1.13)

on the other, we see that both the vector-valued function v and the scalar function u satisfy ¢l-
liptic boundary value problems in Q(¢) with inhomogeneous boundary conditions involving the
curvature. We will call them fixed-time problems in the sequel.

Roughly speaking, elliptic BVP typically occur as models for stationary processes. Accord-
ingly, in our case they result from omitting the “nonstationary” inertiaterms. The FBPs under con-
sideration are, however, obviously nonstationary. This apparently contradictory approach is used
guite often (e.g. in thermodynamics) to model processes where the considered system, within the
given precision, can be seen as evolving along a trajectory of equilibrium states. This is called
quasistationary (or quasistatic) approximation,

As a consequence of this approach for our problems, we find the following structure of the
FBPs: The evolution of the domain is given by

Vi, = F(Q(1)) = F(T(1), (1.14)

where F involves the solution of the corresponding fixed-time problem. Equations of the form
(1.14), with F a given operator which assigns to any sufficiently smooth surface I' a real-valued
function on it, are called surface motion laws: the motion of I'(¢) is completely determined by
['(t) itself. The most extensively studied example of such a surface motion law is the so-called
mean curvature flow:

F(I) = &.

A survey on surface motion laws based on the curvature is given in Appendix B. Here we want to
point out one important difference between mean curvature flow and the FBPs considered here:
they are nonlocal, i.e. the value of F(I') atapointx € I' does notonly depend on the behavior of I'
near ¢ but on I" as a global object. Nevertheless, the identification of our FBPs as surface motion
laws does not only help to understand their nature but also provides hints as to what methods
should be chosen for their treatment and what results can be expected.
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14.2 The direct mapping method

The most obvious difficulty in the mathematical treatment of FBPs is the unknown or changing
domain. A widely used method to overcome this problem is to choose a fixed reference domain
{1y and to introduce an unknown diffeomorphism mapping 2o onto £2(¢). This approach is called
direct mapping method. As we consider moving domains, we will have to work with (sufficiently
smooth) time-dependent diffeomorphisms z = z(-,1). The treatment of an FBP by the direct
mapping method proceeds then by transforming it to a system of equations (nonlinear at least in
:) and boundary and initial conditions from which both the (transformed) solution and the diffeo-
morphism z have to be determined.

Of course, a major obstacle in this approach is the fact that Q(¢) does by no means determine
z{-,1) uniquely. In fact, if a diffeomorphism z satisfies z[{2o, f] = §2(%), then the same holds for
% = z o { where ¢ is any diffeomorphism of {2 onto itself. Therefore the freedom in the choice
of z has to be removed which can (for instance) be done by the following means:

o Choose {2y = (2(0) and let z be the parametrization of Q{t) given by Lagrangian coordi-
nates. This approach is the most well-known in continuum mechanics. The treatment of
the FBP for the full Navier-Stokes equations as described in appendix A is based on it.

o If N = 2, let Qg be a suitable standard domain (e.g. the unitdisk) and let z be the conformal
mapping of g onto §(¢). This approach will be used in Chapter 2.

o I 3Q{= I'y) and T'() are in a suitable sense close to each other, it is possible to fix in a ge-
ometrically determined way a diffeomorphism from I'g onto I'(t) and to extend it uniquely
to a diffeomorphism from {25 onto Q(?). This will be done in Section 3.1 and applied in
the subsequent parts of this thesis. :

Once (essentially) uniqueness of z is enforced, the special character of surface motion laws im-
plies a special structure for the problem on {2, namely a (nonlinear) evolution equation

dz
& = F(:()

with an initial condition given by 2(0). (Note that this is not the case e.g. for the FBP in appendix
A.) For technical reasons it will be convenient to consider the evolution equation for z on I'g
rather than on §y. The nonlocal character of the surface motion laws yields also nonlocality of
the operator F. :

Hence, our quasistationary FBPs will be reformulated as nonlinear, nonlocal evolution equa-
tions on a (compact) manifold without boundary. The study of these equations is the core of this
thesis, and most of the results on the FBPs will be obtained by investigation of these evolution
equations.

1.5 Contents of the thesis

There is a great variety of methods in the study of nonlinear evolution equations whose applica-
bility depends on the special situation. In this thesis, we will use the following three methods in
order to obtain results.on existence, uniqueness, and regularity of solutions:

e abstract Cauchy-Kovalevskaya theorems,
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« an abstract approach to fully nonlinear parabolic equations,

» quasilinearization and a priori estimates.

Other methods, such as hard implicit function theorems of Nash-Moser type, which also have
been successfully used for FBP, are not considered here.

The properties of analytic functions and conformal mappings are favorable for the descrip-
tion of Stokes flow. From a functional analytic point of view, they lend themselves in a natural
way to the construction of scales of Banach spaces. Such scales, together with the concept of
quasidifferential operators, form the framework for the abstract Cauchy-Kovalevskaya theorem.
It will be applied to an evolution equation arising from the reformulation of the Stokes flow FBP
in Chapter 2. Due to the use of conformal mappings, this technique is restricted to the case N = 2.
On the other hand, short-time existence can be proved (for analytic initial data) even “backward
in time”, and no detailed knowledge about the type of the evolution equation is needed. More-
over, exponential stability of the equilibrium is proved. (The reason why parallel results for the
Hele-Shaw problem cannot be obtained by the same methods will be given in Section 3.5).

The further chapters are devoted to the Stokes and Hele-Shaw flow problems in arbitrary
space dimensions. The approach chosen there is by the direct mapping method with £ near Q2{¢),
i.e. we consider small perturbations of ¢, represented by real-valued functions » on I'y, for which
an initial value problem (IVP)

or

o = p(?‘),

at (1.15)
r(O) = rg,

ro sufficiently small, is derived and its investigation is started. This is done in Chapter 3 by first
studying the fixed-time problems and then investigating their dependence on the perturbation ».

A main tool in the analysis is the linearization of (1.15), i.e. the determination and investiga-
tion of the operator p'(0), the Fréchet derivative of p at # = 0. Roughly speaking, the “leading
term” in this linear operator turns out to be the composition of the Laplace-Beltrami operator on
['(0) with the Neumann-to-Dirichlet operator for the Stokes equations in the Stokes flow FBP and
the composition of the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator for the
Laplacian in the Hele-Shaw FBP.

The crucial result is that, in appropriate function spaces, —p/(0) generates an analytic semi-
group, i.e. the IVP (1.15) is (abstract) parabolic. This fact makes it possible to apply general
results on nonlinear problems of this type in order to obtain existence and uniqueness results for
the solution of (1.15).

In Chapter 3 the investigation is continued by choosing a different approach to (1.15). Instead
of working with analytic semigroups, sharper statements concerning the solvability of (1.15) can
be derived using the téchnique of a priori estimates and Galerkin approximations. The basis for
this as well as for the proof of additional smoothness properties is a generalized chain rule which is
derived from the invariance of the fixed time problems with respect to rotations. For this technique
to be applicable, however, an additional restriction on the geometry of £2; has to be imposed.

All results in Chapters 4 and 5 are local in time, i.e. they ensure the existence of a solution
to (1.15) on a short time interval [0, 7). Section 6.1 is devoted to the analysis of our FBPs near
equilibrium states, i.e. where (0) is a slightly perturbed ball. In such cases it is possible to prove
solvability of (1.15) for all positive times and to show that the solution exponentially decays to
the equilibrium state.
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Finally, some extensions and variations of the FBPs considered so far aré indicated together
with the necessary modifications in their treatment. Some remarks, results and references con-
cerning the numerical treatment of the Stokes flow problem are also given. |



Chapter 2

A complex analysis approach to
plane Stokes flow

The Stokes flow problem (1.6), (1.7), (1.9} has been approached by several authors since 1990 for
N = 2 by means of complex function theory. The strategy which is common in their papers can
roughly be described as follows:

¢ Representation of the fixed-time problem as a BVP for (bi-)analytic functions in Q(#)

« Transformation by conformal mapping to a BVP for analytic functions on the unit circle
(or another fixed standard domain). The crucial ingredients here are the Riemann mapping
theorem and the fact that the composition of two analytic mappings is analytic.

e Derivation of an evolution equation for the conformal mapping from (1.9)

Depending on the purpose, this evolution equation can be in implicit or explicit forms. In the
former case, it is called Hoppers equation and can be used to construct explicit solutions of the
Stokes flow FBP [43, 44, 45, 51, 75]. In explicit form, the evolution equation can be considered
as a nonlinear Lowner-Kufarev equation [51]. This form is more suited for numerical treatment
as well as for obtaining existence and uniqueness results by means of a Cauchy-Kovalevskaya
theorem [5, 6, 8].

Since 1970, such theorems have been applied to instationary free boundary flow problems in
various geometries, for various driving mechanisms, and for various governing equations. With-
out attempting to be complete, we mention potential flow of a free liquid drop [68} and of a liquid
layer above a fixed bottom [69], two-phase flow in porous media [25], coupled flow of surface
and ground water [80], and Hele-Shaw flow [42, 72, 73].

In the derivation of the evolution equation as well as in the choice of the function spaces we
follow {5, 8]. As our main interest is in the existence and uniqueness proof, for some details in
the derivation of the evolution equation we will refer to the original papers. The main results of
this chapter have been published in [71].

2.1 Preliminaries

The basis for the formulation of abstract Cauchy-Kovalevskaya theorems is the following concept:

13



14 CHAPTER 2. A COMPLEX ANALYSIS APPROACHTO PLANE STOKES FLOW

Definition (Scale of Banach spaces): Let 7 be an open interval of R and {X,, p € T} an in-
dexed family of Banach spaces (X, || - ||,). {X,] is called a scale of Banach spaces iff, for all
r,p € T withr < p, X, is continuously embedded in X, and the correspondmg (linear) embed-
ding operator is injective and has an operator norm < 1.

We will use the following special scale: Let G be the unit disk of the complex plane C, p 2> 0,
consider the spaces B, of (complex-valued) functions on 8G having a Fourier series

(=3 A T€dG, | Q.1
keZ
for which the expression
71, =D 1 felel? ‘ 22
kEZ

is finite. (The Weierstrass criterion ensures that for any p > 0 all such f are continuous.)
Moreover, for p > 0 we will consider the spaces B consisting of equivalence classes of
functions in B, which differ only by a constant and for whlch the expression

I!fH =3 Ik|lfele!*l?

ken
is finite.
Lemma 1 (The scale B,)

(i) The spaces { B,, || {[ } form a scale of Banach spaces withT = (0, +00).

(ii) The spaces {B,, & 55 |||, } form a scale of Banach spaces with T = (0, +oc).
(iii) The embedding B, «—— B, is compact forr < p.
(iv) Each space B, with p > 0 is a Banach algebra, i.e. if f,g € B,, tkerz their product fyg,

defined by
o (fo)(r) = f(r)g(r)  Vr€OG,

isin B,, and
Wfall, < 11511, el -
) Ifp >0, f € By, then f can be analytically extended into the annulus

Ap={¢le™” < ¢ < e}

On the other hand, if w is an analytic function in A, then its restriction to 8G belongs to all B,
withr < p.

Proof: (i) It is straightforward to check that B, is a Banach space under the norm ||||,. Nat-
urally, the identity is chosen as embedding operator hence the scale properties follow from the
monotonicity of the mapping p + ||f{| , in its domain of definition.

(i1) It is straightforward to check that B,, is a Banach space under the norm [| ll,- Again
one chooses the identity as embedding operator, and the scale property follows from the convexuy
~ of the mapping p — || f] .

{iii) We approximate the embedding operator I, , by a sequence of ﬁmte-rank operators
I, € L(B,, B,) defined by truncation of the Fourier series:

(Lf)r)y= Y fir*

]§:1<n 7
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For the difference, one gets

W(Lor = L)fllr = Z | filel¥ = Z | fi|el*lee=RIGe=r) < ||f||p e=nr=r).

|k|>n |kl>n

hence I,, — I, , in £L(B,, B;) and therefore I, , is compact.
(iv) By direct calculation, we find

Hfg“p = ZZflgm—I
1§

m

= D 1Allgrle 1 <3 fillgrle®HD = |1 711,119,
k1l k!

e < 37 fullgmlel™le
m,l

where all summations have to be carried out over Z.
(v) follows from standard results on the convergence, analyticity, and uniqueness of the Lau-

rent series
F(C)=§ il m
kez

If we introduce the arc argument 8 by 7 = ¢*® and consider f as a function of 8, we find for
allp>0andall f € B,

o, . _|of
i, = |5 p

and from this and Lemma 1 (iv) it‘ follows that

0 0 d
ER Ifall, = Ep 1711, lgll, + 11£1L, ER llgll,,-

In order to apply complex analysis to the Stokes equations in two dimensions we identify as
usual (z,y) € R? withz+iy € C. Inthe sequel, we will not indicate in the notation the difference
between points, domains, and functions that correspond to each other via this identification. Let
U be a domain in R?, We introduce the Cauchy-Riemann operators

2_L(2_30), 2L(2,:0)
9z 2\0x Oy)' 9z 2\0z Oy

7] 0 .
and note that —E = —u-, where the bar denotes the complex conjugate. We recall that

0z 0Oz
w: U —C
1s analytic in I/ iff
o,
0z
there, and in this case
ow
Fri w'.
Hence
6_u =0 2.3)
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iff @ is analytic in /.
A function u : Y — C is called bianalytic iff

(2) =22 |
o) YT T |

Lemma 2 (Representation of homogeneous Stokes flow in 2D, [5])
Let (v, p) solve the equations

-vAv+Vp = 0
divv = 0 } 24
in the domain Q@ C R%.
(i) There are analytic functions wo, wy in S such that
v o= wp— zw_’l - w_6
p = —4vReuw)
The bianalytic stress-stream function
w = Zw; + wo = @ + i
(0, ¥ real-valued) satisfies .
v=1Vy, p=—vAep. 2.5)

(ii) Among all bianalytic functions w : Q — C, w is determined for given (v, p) by (2.5)
up to a linear function Re(az) + b, a,b € C P

Proof: Using the Cauchy-Riemann operators, we can rewrite (2.4) as

4] v
e = 0. ‘ 2.7
Oz !
dv . L |
From (2.6) we conclude that p — 2V6_ is analytic in §2, hence
. 0z
v ’
p—- 21/5 = —4vu) (2.8)

for a certain analytic function w;. Using now (2.7) and the fact that p is real-valued, we can give
a decomposition of (2.8) into its real and imaginary part:

p = —4vReuw;
v
Oz

- R e
= 2Imw; = wi — wj.

This impfies, by the above remark on the solvability of (2.3),

v =w, - 2w — wh
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with some analytic function wyg. Using

., G*w ’ dw dw 8 ( )
Wy == IR e e e I o (W W,
7T 9207 gz 9z 0%
the representation formulas (2.5) are obtained straightforwardly.
(ii) We have to find all solution of the system of equations

V¢ = 0,

Ap = 0,
G v _ 0
az? 9yt " Ozoy’
v _Pv Py
oz?  Qy?r dady’

17

where the third and fourth equation are consequences (actually, an equivalent formulation) of the

bianalyticity of w. From the first equation we see that 1 is a constant, and from this and the other

equations one concludes that all second partial derivatives of ¢ vanish, hence it is a linear function

in 2 and y. This completes the proof. ®

Remarks: If  is not simply-connected, w will in general not be single-valued. For a detailed
discussion of this see [5]. The above representation method, originally developed for two-dimen-
sional problems in elasticity [52, 66], has been applied to the Stokes equations since the 1960s

(e.g. [35, 57], for more references see [8].) O

The following standard results will play an essential role in the derivation of an explicit evo-
lution equation involving the solution of the Stokes equations. For the proof we refer to [33, 81].

Lemma 3 (Schwarz integral and Hilbert transform)
Let f . 0G — R be Hilder-continuous.
(i) The complex singular integral

2m

SO =52 [ SOQIMdn, 50,6 =35 A=

is an analytic function in G. Moreover, S[f](0) € R.
(ii) For the limit of S[f] on OG from the interior, the Plemelj formula

dimS[A10) = () + HIf()

holds, where

2%
Hifl(r) = 51;;/0 H{r,\3f(A)dr, H{(7,X) =iS(r,A) = cot

and the integral is to be understood as Cauchy principal value.
(i) If f is given by (2.1), then

H[f] = iy sga(k)fer".

kEL

g —v
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Remarks: S[f] and H{f] are called the Schwarz integral of f and the Hilbert transform of f
(on the unit circle), respectively. Note that H{[f] is real, hence we have that if F" is any analytic
function in G which is continuous on G and Re F' = f on 8G, then ! :

ImF=H[fl+i{  ondG,

where iC is an imaginary constant. The definition of H can be extended to complex-valued func-
tions in an obvious way. If this is done it is not hard to see that f = {H[f] iff f has an analytic
extension into (7 that vanishes at 0. O

2.2 The evolution equation

We consider the following slightly modified Stokes flow FBP describing the quasistationary ther-
mocapillary motion of a bubble [8]:

Let €2(Z) be the outer domain bounded by the bounded simple curve I'(). The velocity and
pressure field in it satisfy the Stokes equations

—vAv+Vpi = 0 ].
dive = 0 } m}’l(t) o (2.9}

Near infinity, velocity and pressure are assumed to approach constant values:
U= Vsg, P~ Poo as || — oo, 2.10)

where ¢ € R? denotes the space variable. These constants are time-dependent and a priori un-
known. Moreover, incompressibility of the bubble has to be demanded:

/R’ dz = const = 7a®. 21D
\¥(1)

i
|
i

This is an equivalent formulation for the condition that no fluid is injected or extracted at infinity.
The evolution of £2(¢) is determined by -

Vi = v]r(,) - n(t), (2.12)

and for the normal component of the stress tensor we have, by the action of surface tension forces,

d dz
T(v,pin = o (oa) , (2.13)

where s is the arclength parameter along I'(?), taken clockwise as $3(¢) is an outer domain, and ¢
is the surface tension coefficient. Note that for constant o this is identical with (1.2). In order to
consider thermocapillary motion, the dependence of ¢ on the temperature T has to be taken into
- account. For our purpose it is sufficient to take the simplest case of linear dependence:

o=a,+7T. ' (2.14)
The temperature field is given as the solution of the auxiliary elliptic boundary value problem
AT = 0 inQ)

ar @I
—a; 0 at I\(t} ’

il
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with the asymptotic condition
T s Cop - 2 as |z] — oo, (2.16)
where C,, can be interpreted as temperature gradient at infinity.

To rewrite the equations (2.9)-(2.13) in terms of the functions i, ¥, wp, and wy as defined in
Lemma 2 we note that, in {z, y}-coordinates,

T(o,p)=2w| ¥w ~¥o
(v.p) L’( —Pry Prz )

and if I‘{i) is parameterized by z = z(s,t), thenn = ~—z¥6~z—. Using this and (2.5) one straight-

ds
forwardly calculates on I'(¢)
Tlpn = —wie(Vy)
v,p)n = V'ds Ll
87 Oz
Vn = -Im (5;?}7) s
_
vinE T
hence by (2.12)
dzdz\ _ Oy

and by (2.13)
d d dz
vy =4 (Ua) ,

which yields by integration
2wVyp = —on

and splitting this into two scalar equations corresponding to the tangential and normal components
gives, after another integration for the tangential component,

Op
= —g onT(t), (2.18)
¢ = 0 onT(t). (2.19)

We have omitted the integration constants here because, according to Lemma 2 (i1), ¢ is deter-
mined only up to a linear function, i.¢. taking the integration constants to be 0 has no influence
on (v, p) but enforces uniqueness of . Furthermore we used the fact that w = ¢ + 4 is single-
valued due to (2.10), (2.11). For a proof of this see Theorem 2 in [5] and the corresponding remark
in [8]). To eliminate ¢ = Re{Zw + wq) we use that on I'(¢)

55
2Im (£w1>

b7 dw 8z ,
2Re (-—z-é}— d“) = Re (za—s(Vga + 1V¢)>

= kel nves Tgy) o 02 00w
= Re (—nV@Jrast)— I +6 —0+85 (2.20)
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by (2.18). With an appropriate choice of a moving coordinate system we get from (2.10) the
asymptotic conditions [8] :

wg = O(1), wy = oo, + v + 0 (l) as |z| — oo (2.21)
4y : z \

To transform our moving boundary problem to the unit disk G, one intiroduces now atime-
dependent conformal mapping z(¢,t) from G onto the flow domain Q(t).' From the Riemann
mapping theorem it follows that such a conformal mapping exists, and it is of the form

o

§(¢t) = Y z(t)ch,

k=-1

where z_; € R, z_; > 0 without loss of generality. We assume, moreover, that z’ does not
vanish on 8G. By Kellogg’s theorem [38], Q(¢) € C1:@ is sufficient for this. In the following,
all variables will be considered as functions of  but the same notation as before will be used.
Obviously, the functions wg and w; are analytic in G\ {0} for any ¢. We will denote the complex
variable along G by 7 and its argument by 6.

Note that on G
?E = __L—?z— _Lzla_r = _.1_%— _,-z = _iﬂ
ds ~ |2'106 T |Z'|” 86 |2 T T T
hence v
9z 8z _ , 0z/0t

fpamt

3
7~
Q.)l D
& | &f

g
~—

1]

|| Re (%) .

Thus we get from (2.17), (2.19), (2.20)

8j_/z o 4+u = 0 ondG (2.22)
Re(wo+zw1) = 0 ondG (2.23)
2Re:1—z1,+u+A = 0 ondG, (2.24)
where T(:(1))
_ 0w +7T(2(r,
A=l
v /06
u(rt) = ———- (2.25)
9= Limop
From (2.21) we get asymptotic conditions now for { — 0:
dz/0t d
= el +0()
wo = O(1) (2.26)

w = —%(Z—1C_1+Zo)+voo+0(0.
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Moreover, the conformal mapping introduced above enables one to solve the problem (2.15),
{2.16) explicitly. For the values of T at the unit circle one gets

T(r,t) = Re(Coo (22_1 ()77 + 25(1))).

2va

) . . T . . o
By introducing the scaling factors ¢ for length, 5 for velocity, for time, and — for pressure,
v ' a

*

all equations can be made dimensionless. One thus obtains

1+ Re(e(2z_1(t) 7! + 2(1)))

Amo = Eren) /

(2.27)

YCooti .

where, again, the same notation as before is used and the dimensionless constant ¢ = is

*

the so-called crispation number.
Let us have a look at the equations (2.22)-(2.26) (in dimensionless form): Applying Lemnma
3to -‘9—25?—’ we find from (2.22) and the first equation in (2.26) that

bz _
at
For given z, on the other hand, it is possible to determine u from (2.23), (2.24) and the asymp-
totic conditions on wy and wy. This will be done below. Hence the complex partial differential

equation (2.28) is the explicit evolution equation for z that had to be derived. We remark again
that it has the form of a (nonlinear) Lowner-Kufarev equation [51}

9:
Ezfzf

('S inG. ‘ (2.28)

where f depends on z.

It remains to describe how to obtain u for given z which is equivalent to the solution of the
fixed-time problem. From the asymptotics of w; near ¢ = 0 it follows that %% has a remov-
able singulanty at 0 and approaches a real value there. Moreover, we can demand without loss
of generality that w(0) € R because up to now w has been determined only up to an imaginary
constant. Hence on 8G

wp - Re w1z — ZH[RG wﬁ],
o
w, = —%—(u + A + iH[u + 4}).
Let us define the functions ® : G — Cand g: G x G — Chy

®(r)
g(A,7)

H

r{u-+ A+ Hu+ A4]), (2.29)
A (N=0) = (7))

For later use we note that, according to the remark after Lemma 3, & = ¢H[®] and by straight-
forward calculation in terms of Fourier coefficients of z

/“ AT drER (A =eY). (2.30)
0
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Now we are able to obtain

"

: =,/
Im(wp + Zw;) = Im (— Re w7 — iH[Re(w 1 Z)] — z—;—@)

~ReH[w;7] - Im (i%—'n[@]) - %Rc(H[Ez@] _z/H[®) (231
or
27

¥(r) = 5 ReH[(u+ A+ iHlu+ ADg( I](7) = /0 L, M)A + AQN) dv (2.32)

with
1 27
Li(mA) = -—Re (H(T Ag(A, ) + —/0 tH(r,Q)H(¢, Ng(¢, 7) dd)) , (2.33)

X = e, ( = e'®. Using that

H(r,(H((,A) = H(r, \)(H(r,¢) — H(\, () - 1

and (2.30) one calculates
Ii(r, A) = H(r, A)(Z(1) - Z(})),

where
Z(r)= = Re ( 77 — o / H(r, C)z(()dz(()) (2.34)
Gathering the results, we find that « satisfies the boundary integral equation -
u=K(u+A4) ondG
with
K(f)
L(z,f)

#1782, ),
Sz -zl .35

We recall that solving this integral equation is equivalent to the determination of V,, at ['(¢) for
fixed t. Under the conditions imposed here, existence and uniqueness of the solution of this prob-
lem can be shown (see [S]). Hence, it is justified to consider u as a function of z.

It will be convenient to work with a real-valued function h on 0G instead of z whose relation
with z is given by

h(z,t) = Re(rz(r,t)-1),
¢ = Z(L+h+iHR). (2.36)

Note that h = 0 corresponds to a circular bubble with unit radius. Moreover, the conservation of
the (dlmensmnless) bubble area

1 27
W:——Re/ ZzT db
2 0
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yields a prioni

i
3

ho(t) = (1 +4) (k- 1)|hk(f)|2) -1, (2.37)
k=2

where h; are the Fourler coefficients of h.
From (2.28) we find

Gh .
T u-+ B(h,u),

where 3HIh oh
Blhu) = ( ) ——5@[—]) u — (-8—6- + H[h]) Hu]. (2.38)

2.3 Existence of solutions

Summarizing, we consider the following nonlocal Cauchy problem for a real function
h: 0G xJ— R,

where J is a time interval containing 0:

-‘;—‘;‘ F(h) = U[h] + B(h, U[h)) (2.39)

h(’f‘ 0) - h*(?'),
where B is defined by (2.38), U is the solution operator of the integral equation
w = K[hl(u+ A4), (2.40)
K[R(f) = |Z17°L(Z. f),
and A, z, L, and Z are given by (2.27),(2.36), (2.35), and (2.34), respectively. h, is the function
corresponding to the initial domain {g. Without loss of generality we demand (2.37) to hold for
the solution A. This equation enables us to recover A from an element of B, in an unique way.
Therefore, in the sequel we will use the notation A for elements of B, as well, and the Fourier
coefficient hy will be considered as a function on B,.
The crucial step in the existence proof will be an inequality which ensures that I is a quasid-

ifferential operator in the scale of spaces ép (cf. Lemma 1 (ii)) in the sense of Ovsiannikov [68].
As a preparation for this, we introduce the notation

-9
Up(hy,T) = {h €8, : 3 llh = hall, < r}

for all p for which h, € B,.

Lemmad Assume h, € Bp, for a certain p. > 0 and let Qy be a CH%-domain with o« > (.
Then there are constants p € (0, p.], v > O and ' > 0 such that for all p € (0, p) and all
hy, hy € U,(hy, 1) the inequalities

2Pty = Pk, < € (s s = hal,+

ap poo= ap? )

e (ol Zoid,) 2w -, ) 2o
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and )
9 Fh)| <c(-—3inf: I,+1 (.42
dp e = \gp2 1 o
hold, ‘

Proof: The assertions of the lemma will be proved by a sequence of inequalities which are ob-
tained from working with the Fourier coefficients in a manner similar to [8]. Furthermore, per-
turbation arguments are used to ensure the boundedness of certain expressions. The smoothing
property of the operator K [h]{-) is used to apply a compactness argument and to ensure the uni-
formity of some estimates with respect to p.

At first, a suitable p has to be determined. Let z. denote the initial conformal map corre-
sponding to A,. By the smoothness presumption on £y and Kellogg’s theorem [38], =, may be_
extended continuously to 8G, and it is not vanishing there, i.e.

Z2P>y>0  ondG (2.43)

due to a compactness argument. An easy calculation analogously to the derivation of inequality
(2.49) below shows that z, € B,, and hence |2.|? = 2.z € B,, from the Banach algebra
property. Hence by Lemma 1 (v) there is a function w that is analytic in A,, whose restriction to
AG is |z, |%. From (2.43) and continuity and compactness arguments it follows that we can choose
ap € (0, &]such thatRew > 7 > 0in.Ajy;. In this smaller annulus, the functions w? and w ¥

are analytic. (Here and in the sequel, we preserve single-valuedness by choosing the branch of
the square root which maps posxtwe real numbers to positive real numbers.) Resmcuon of these

functions to 8G yields |z, |2.|~! € B; by Lemma 1 (v).

Let p € (0, p) be arbitrary, » > 0 small. (The upper bounds that are to be imposed on r will
become clear from the arguments used within the proof.) Let & hl, ha € Up(h.,r) be arbitrary,
having the Fourier coefficients hy, 11(1} &{ ), respectively.

It is clear that the functions A, z, and Z have to be considered now as functions of A with
values in B,,. Throughout the proof, the index 1 or 2 will indicate the values of them at Ay and
ha, respectively. If no index is used, the value of these functions at A is meant. Furthermore, all
occurring constants will be denoted by C' if their actual value is of no interest. Without explicit
statemerit in every single case, all inequalities are to be understood in the sense that they hold with
the same constant(s) C forall h, hy, hy € U,,(h*, r)and for all p € (0, §).

It is immediately clear that

]
@ Il < 5 Il +7 < C. (2.44)

From this and (2.37) one obtains (cf. [8])

8 2 |
il < (i, ) <C 2.45)
With the notation

o3
ni=4Y (k=D >0, j=1,2
. k=2
one can write

11" = B = VT = VTl = | e

VIidn 4+
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and thus

Vl(“ _ }Z{O)P

IA

?i(fc — 1[I - e
< z}jac DAY+ IBETDIAY = )

ﬁ {th1 — holl,.  (2.46)

L0
< %(}|h1}|p+l|h2|lp) dp

< 5;(1&1 - hofl, <C

The Fourier coefficients of Z; are (cf. {8])

o J—
Z;(;]) - "‘flg})hi}) _ h;é]) +92 Z(m” _ I}h%)h(])

m4k
m=2
Therefore (n = 1,2),
"o
5;,; 121 = 2ol <
< 43 S K m = I D, — DAL — A Ik
kel m=2
aﬂ :
+ ~hall 42 3 R~ K 4 KD — O
k=1
o0 o0
< 43 STtk + mytm(aY) — A2 |
k=1m=2
HIR G = B et mre
1
+5—,,,|m1—hgnp+|h§ W 5 kel +th‘”| by~ Bl
g ' 2‘;3"
< gl hall| gk, 2wl gl e
2 ar
+ g b = hall, + lﬁ%” ~ A ’L—, el + 155”1l = all,
87}.
< (g =l + gzl g s =l ). @am

where (2.45) and {2.46) have been used. For n = 1, this may be estimated further by
a
% [lh1 = hall,

using (2.44) again.
Replacing hy by h and ks by 0 in the estimate (2.47) yields

an

HZ I, < (2.48)

8
L
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which for n = 1 reduces to 3 HZ]{

Because of (2.36) and
g L0z

T Of

one finds

' 1 .
Y o= 288(h+zH[ ])—T—2(1+ﬁ+zH{h])

a, 3

57 = ——-;559—2(h+iﬂ[}z])-— q;(m iH[A }}+ 214 b+ iHA)).

Taking the norms |- || of these expressions and applying the properties mtroduced above, one

getsforn =0,1
a o, g+l
6—pgllz I, <C T llAll, +1

oo / gntt
£ |2y — 28I, < CW Ay = hal|,

In an analogous way,

may be obtained. An immediate consequence is

1417 = 12502,

I R
nglzl - 2222"9

IA

A series expansion for the square root gives

12| = |4l = VIZ]* = V]2 wizlzlz’lz" (1= 121",

where all the coefficients a, satisfy |an| < 1. Hence, using (2.51),

Nt =10, < e, o (et e - lzll“’l[‘,)vn

n=l
CZ b - hdl,
= 1-CElh-hl, T

A

C«—]lh hdl,

U=l + Nzl Mz = zll, < C{% k= kol

(2.49

(2.50)

2.5

(2.52)

if r is small. This yields, moreover, |||2'|||, < C, and by repeating the above a;rgument we get

, 0
I“Zi[ - }z%mp & Ca_p “hl - h?“p .
Furthermore, using (2.52), '

~1H2
Izt~ =1 =1l
L=zl =i, =] = =2,

0. :
Clil="l = =l < Cap lih = hell,

Bt =1, <

IA

(2.53)

(2.54)
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for sufficiently small », hence
”\z’|‘1”p <. (2.55)

With the use of (2.55), one obtains analogously to (2.52)
. - J
| St AR Cé; llhy = hall, (2.56)
and from this and (2.55)

472 = 1172

(Hizﬂ'lﬂp + |l Hp) {E e A

a
Cg, lIhs = hall, 257

IA

IA

As a next step, some derivatives with respect to p have to be estimated. We find

Il o

S, = | ?<u| (W TR e
< Y, 5| I, < (Wnknm) s
from (2.55) and (2.49), and
2 s 1, =
= i E - 22 <l b -,
11~ [ggtet - i, 41 - =

< o im- znp+(%aiwp+gggr|hz\lp)8—pnm-hz||,,), (2.59)

where (2.49), (2.50), (2.55), and (2.56) have been used. Moreover, using (2.49), (2.57), and
(2.59),

55 N = 2, = et Gt = e |
< Hl%!'zll,)g;lilzit—szgHi,ﬁr g, =2l e~ —\zgl"**ll,.
< 6'(§£glth1—hzx|,,
+ (ol + sl ) gl bl ) 2.60)

In a similar way,

(E}% ”’Eﬂ_lnp + %H]z;l‘lnp) l“z“-x _ Iz{“){_iuf)

a e
%lel‘ 2"‘13
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t]—- £ jom a - ¥ jo
(WA, + 114171, ) 5 M1 =10
< ¢ (o b hal, |

(Sl e S g7 ) g5l = bl ) .60

applying (2.55), (2.58}, (2.56), and (2.60).
The estimates concerning the operator L have already been given in [8]. We repeat them here
only for the sake of completeness. For the Fourier coefficients g;, of L{Z, f) one easily calculates

ge =k Y (sgn(k) —sgn(m))Zxomfm,  g-k = 7
meL .

and therefore (n = 0,1)

an =
37 IHZ D)l = 22&”@“ <

22&"“ (2 > mllZesm| + Ifallel)

kl m=1

IN

< 4 Z | Fm IE'"’”ch"’“IZM Jelk+me 4 lfola v IIZII

m=1 k=1 .
gn+l ‘
< IIfIIoW!lle, < C”f”OW lIall, (2.62)

because of p > 0 and (2.48).
Now we are able to investigate the crucial question of dependence of the operator K on h.
Applying the linearity of L in the first argument, (2.47), (2.48), (2.57), and (2.55), we find

(K [pa] = KR (DI, < , :
|||21|”2[| 1L{21 = Z2, i, + [|I117% = lz'ZI’ZH 12¢Z2: )],

<
< 3 1131 Za|l, ”fUO"ng A1 - h2||p3 1221, llf”o
< _||h1'~hzll 1£lo- (2.63)

For the derivative one obtains
J . .
7 (K [A:] = KR, €

< % N14172L(2: — 22, 7)), + z?- [(E 1z;r2>L<Zz, Ol

A

S M2, 12021 = 2o, + 14172, 55 12 - zz,f)n

+5—i-l[lzii'2~I%l“zll,,HL(Zz,f)llpl]lzil" lzZl""Il IIL(Z M
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< c(gz—gnm—hznp
ik a
(il + oz el ) o s = sl ) 11 264

where (2.55), (2.58), (2.62), (2.48), (2.47), and (2.57) have been used.
By help of (2.36) we may rewrite (2.27) as

1+ 2Re(z((ho(t) + 1)7=1 + hy(t)))
/(7 1)

A(r, ) =

and using (2.55) and (2.56) it is straightforward to prove
Al <C (2.65)

and 2
|41 = Aql; < Cé‘; llh1 = Ral, - (2.66)

For estimates concerning the solution operator I/ of {2.40) it is important to remark that

KA,

I

172 N2, < C}% 1211, 171l

IN

¢, 11 < sl 2.67)

for all f € Bp because of (2.55), (2.62), and (2.48), therefore K [h] is continuous from By in B,,.
Together with the compactness of the embedding B, «— By this ensures compactness of K[h] in
Bo. Hence, the Fredholm alternative holds for the operator I — R[] in this space. According to
the above remark, the integral equation {2.40), which may be written as

(I — K[h]){(u) = K[h}(A),

has a unique solution. Therefore I — K'[k] is a homeomorphism of Bo. This means, in particular,
(I — K[h )™ € L(Bg, Bg).

In the following, if ||-]|, is apphed to an operator instead of a function on 3G, it will denotc
the usual norm in £{ By, Bg). Note that from (2.63) it follows that

< Th] = Khally < o e = Bl

Thus, applying a standard perturbation result concerning the inverse of regular linear operators,

g (2 = KA~ [ 1K [ = K[l

1—[|K[h] - [ Ao 1L = KAu]) =g
< Cr

(T = K[AD ™ = (I = K[h]))™

IA

and therefore ||(1 — K[h])7"||, < C (with C independent of &) if 7 is chosen small enough.
Consequently,

(7= KhD)™! = (I = K[haD)7, < CUR ] = K [Ra]lly < C% s ~ holf, .
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Moreover,

A

SIKBON, < 5 =20, 14z, 2, + 111 Szl

IA

62
c (aglléllﬁ 1) [ fllo, (2.68)

where (2.58), (2.55), (2.62), and (2.48) have been used..
After these preparations, the necessary estimates for I can be given. Indeed,

Ulh] = (I — K[R])"1K[R)(A) = K[R](I — K[h])~*(A)

- and therefore .
UTR, < ¢ = KD (A, < C Al < €, (2.69)

az : ] _ 32
SN0, < © (357l +1) 2 = W), < € (Wllhilp+ . em

W] =Ulkalll, < K] = K[maD) ™} Ay = A2)],
' + | K[R)((T = K[pa])™" = (I = K[Ra]) " )(As)|,
+ [ (K] = KTha])(I = K[h2]) ™' (42},
cC (]1(1 - K]~ A - 42)]|,
(7 = K[rY)t = (1 = KTRa)) ) (A2,
e 8
1= K)ol 5 - )

IA

IA

b .
Cr b~ hll @7

63,0 “U[h1] - U[hZ]”p < z;% ”I{[hl](l _ 'K[hll);l(fll _ Ag)”p
e T = K™ = (1= KD ) (2),

L (K Th - Kl - KT (40

IN

82 : ;
c (372 lhall, + 1) (ItI = KhaD) (AL — A2)],
+[(( - K™ = (1 - Klhs])"1)(A2)| )
2 2 2
+C (gﬁ lJhy = hznp + (% "h1l]p + 'é% nhznp)‘

. é% {1y — hﬁ”p) ”([ - K[}zg])—l(Az)l[O

IA

62
¢ (5—,32 1Ry hzl[p‘
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+ (%5 th”p + g;g Bhi’“p> ;9% llh: = hg]b) - @272

using the above estimates concerning K, (I — K[h])™!, and A.
For arbitrary u, h € B, the estimate

2 oo,

%H% filu ‘p+§51$zu;\p+ 0

2 (% 3]t + % ”"‘Hp% [l

e N AN en

holds. Using the bilinearity of B, we find

9
dp

2 it

oh
14

IA

a
HB(}M s ul) — B{hg,i&z)”p S 8—1) ”B(}M — hg, ul)”p -+ % HB(hz Uy u;g)l!f, (274)

for arbitrary uy, up € B,. The lemma follows now from the subsequent application of the in-
equalities (2.69)—(2.74). (Note that

7]
R, <€ b~ hofl, 05; [lh1 = hafl,
as a consequence of (2.45), (2.46)). B

The inequalities (2.41) and(2.42) may be written as

Zpe - rol, < 02 (Lt Ll 1) 2 -na

g I3}
ZIEG, < O [5—;1|m|\p+p].

The expressions in square brackets are positive convex functions of the real parameter p, hence
for arbitrary p, p’ € (0, p) with p’ < p:

(Bl + gy Wl 1) &5 — e

g
G IF ()= Flll| < p—
¢ 0
<& e e - .
< g, b= bl (2.75)

a ~
Gllnliley+o  C
pP—p p—p
because of the usual estimate of the derivative by a difference quotient. According to the abstract
Cauchy-Kovalevskaya theorem proved by Nishida [67], the inequalities (2.75) (holding uniformly
for all hy, hy € Uy(hy, 7)) and (2.76) ensure the existence of a solution to (2.39) locally in time.

0]
5, IF (R, < C (2.76)
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Proposition 1 Forarbitrary h, € Bp, with p. > Othereisa 8 > 0anda f > 0 such that (2.39)
has a unique solution h(t) in the time interval (-—f;i, %) with h(t) € B;.. plt)- The number 3 is
completely determined by r and C in Lemma 4. 5

For the proof, see, for examp]e, [89]. The results for the problem "backward in time”, ie. for
t < 0, are an immediate consequence of the autonomous character of (2.39){ The function

h.(t) = h(=t)
is described by the initial value problem
Sh-
el —F(h.}, h_(0)="r

for which existence, uniqueness, and smoothness properties of the solution for ¢ > 0 can be ob-
tained as in the original problem without any changes.

Remark: For the results obtained in this section, it is not necessary to demand positivity of the
surface tension coefficient . O

2.4 Near equilibrium

Because of U[0] = 0 itis clear that b = 0 is a stationary solution of (2. 39) 1t describes the
uniform thermocapillary drift of a circular bubble.

To investigate the behavior of solutions near this equilibrium state, we calculate the Fréchet
derivative of F at 0 and find

F'(0)[h]
AQ(T)

If [e| < 1 it can easily be shown that the spectrum of the operator L(-, Ag) in the spaces B,
p > 0, consists precisely of all nonnegative integers, hence (2 39) is linearly stable at b = 0.
This is in accordance with the physical expectations as |¢| < 3 1f_f the surface tension coefficient
is strictly positive on I'{(¢). The further considerations are restricted to this case.

Remark: The operator L(-, Ay) generates a semigroup which is smoothing in the scale {B,} in
the sense that there is an & > 0 depending only on |c| < 1 such that

i

~L(h, Ao),
1+ 2Re(cr), T €0G.

H

]

lle= FCAD B o < IRl -

This result, together with an estimate on the nonlinear remainder term F'(h) + L(h, Ap), is the
basis of the following proposition. For an abstract setting describing such a situation see {24]. O
In [8] the following a priori estimate is shown:

Proposition 2 (L.K. Antanovskii) (A priori estimate near equilibrium)
Letle] < L, a € (0,1 - 2|c]), p« > 0 be given. There is a q, > 0 such that for all solutions
h of (2.39) with h., € U, (0, q1) and for all t > 0 for which h exists in [0, 1] the estimate

oh
Y

2.7

petatl

holds.
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An immediate consequence of (2.77) is

dh
55(0)

dh —at
l %—(t)llp‘ <e (2.78)

223

and hence (see (2.45)) [|h(1)]],, < Ce~*', ie. small perturbations of the equilibrium are
“smoothed out” exponentially in the considered norm.

By help of this a priori estimate it is possible to globalize the existence result of the previous
section in the case of such small perturbations:

Proposition 3 (Global existence and exponential stability of solutions near equilibrium)
Let |c] < %, ps» > 0 be given. Then there is a ¢ > 0 such that all solutions of (2.39) for which
he € U, (0,q) exist forallt > 0.

Proof: The idea of the proof is to show that for a certain ¢ € (0,¢;) thereisaZ" > 0 such that
all solutions of (2.39) with h. € U, (0, ¢) exist on the interval [0, T]. The estimate (2.78) with
arbitrary & € (0,1 — 2|c}) ensures then R(T) € U, (0, ¢), and a simple induction argument will
finally prove the existence of h on the interval [0, nT] forall n € N.

In other words, it is sufficient to find a uniform lower bound for the length of the existence
intervals of the solutions of (2.39) with , € U,, (0, ¢). This can be done by proving that Lemma
4 holds with the same constants », C, and g forall h, € U,_{0, ¢} if ¢ > 0 is chosen small enough.

At first we repeat the arguments for the proofs of (2.52) and (2.54) with z, in place of z and
¢! in place of z.. We can replace p by p. here because no smoothness is lost when taking the

square root of |( 1| = 1 or its reciprocal. Hence we find

Nt =1L, <Ca. It =1]| < Ca. 2.79)

Hence |z,} and |2/|~! are in B,, with uniformly bounded norms, and we can choose p = p,.
A reexamination of the proof of Lemma 4 in this situation shows that for all h, that satisfy

-

the inequality (2.41) holds with C and r only depending on M. It it easily seen that A'[0] is the
zero operator, and an estimate analogously to (2.63) with h, in place of hy and 0 in place of A+
shows that || K [h.]||y < Cq, hence ||(I — K[h,])™! Ho < 2 for sufficiently small q.

From this and {(2.79) it follows now that if g is chosen sufficiently small, then (2.80) holds for
all hy € U, (0, q) with a certain fixed M . This completes the proof. #

Gh.
bel
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o= f\"[ﬁ*]}_llla} <M (2.80)

2.5 Bounded flow domains

We will conclude the discussion of the complex analysis approach to the Stokes flow problem by
giving a brief account of the necessary changes that have to be made if instead of a bubble one
considers a simply-connected, bounded flow domain, i.e. a liquid drop. It is based on [6]. Our
main interest is in the short-time existence theorem for general initial domains again, therefore
we restrict ourselves to the case of a constant surface tension coefficient o > 0.

The solution of (2.9) can be represented by the functions , ¥, wy, and w; in the same way
as described above. The fixed time problem (2.9), (2.13} determines the velocity field v only up
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to rigid-body motions. {We postpone a detailed discussion of this in arbitrary space dimension to
Section 3.2.) However, it is shown in [6] that if one demands 0 € {(0),

wy (0) - 05
Imwi(0) = 0,
(which corresponds to the choice of a suitable moving coordinate system) these degrees of free-
dom are removed and, moreover, 0 € Q(t) for all ¢ for which the solution of the FBP exists.

Thus, the unit disk G has to be mapped onto a bounded flow domain containing 0, hence it is
natural to normalize

(2o
2(¢,t) = sz(t)(;k, n€eR, 2 >0.
k=1

Differing from the case of the bubble, w; (pulled back to G) is analytic in the whole of G, i.e.
wy =-iH[w;] and instead of (2.31) we obtain

¢ = —~ReH[Zwr]+ Im(Fuw) = ~ ReH[Zw;] + Im(ZiH[w,])
Re(ZH[w;] — H[Fun]) = = Re("‘H[z @] — H[’Ez’d}) |

with ® st111 being defined by (2.29). We replace g in the following calculatlons by
' | §X ) = A )N - 2(r)

and take into account that also

In
/ A, T)dvER
0

and . on
— | HEOANdv=r12(r).  (A=é")
2?7' 0

In the same way as in Section 2.3, this leads to the equations (2.32) with g replaced by g, (2.33),
and (2.34). The latter can be rewritten now as

Z2(r) = —1-Re / H(r, Wz(r) — z(3) dz(X)
— l(l N

with¢( =&+ in &, 7€ R.
Finally, we introduce h by -

h(r):lie(z—(?—-l), T € 0G
which leads to
' Zr)=r(l+h(r)+ iH{h](r})
and the evolution equation ’

o vl - (h + ax;{gh]) Ulh] (%g - H[h]) H[U[A]).
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L
Lo

The condition on the volume of the drop is now

ho(t) = (1 —4Y (k+ J)Vzk(m?) -1

k=1

e

Based on these equations, analogous results as in Sections 2.2 and 2.4 can be obtaincd without
significant changes in the proofs.



Chapter 3

Derivation of the evolution
equations

This chapter is devoted to the reformulation of the Stokes flow FBP (1.4)—(1.7) and the Hele-Shaw
flow FBP (1.10), (1.12) as nonlocal evolution equations for a real-valued function on a smooth,
compact reference manifold without boundary. Due to the special structure of the considered
FBPs (cf. Section 1.4) this can be done along the following steps:

e Construction of a correspondence between perturbations of a fixed reference domain and
real-valued functions defined on its boundary; these functions will be called perturbation
functions

+ Representation of the fixed-time problems on the reference domain as operator equations
and investigation of existence, uniqueness, and regularity of their solutions '

o Investigation of the dependence of these operator equations on the perturbation functions

o Reformulation of the surface motion law as an evolution equation for the perturbation func-
tion

This approach is rather straightforward and essentially of geometric nature. Basically, the tech-
nique of perturbation functions is a widely used tool in the analysis of FBP and other surface
motion laws, both instationary (e.g. [17, 27, 30]) and stationary {e.g. [1, 2, 13]). {(In the case of
stationary problems, one of course obtains a time-independent equation determining the pertur-
bation function instead of an evolution equation.) It has to be pointed out that the choice of this
method already limits the scope of the results which can be expected: By perturbation functions
it is in general only possible to describe domains that are close to the reference domain, hence
“global” results concerning domain evolutions over “large” distances cannot be obtained.

Moreover, the investigation of (weak formulations of) the fixed-time problems will imme-
diately yield some results on stationary solutions and the global behavior of the corresponding
moving boundary problems.

37
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3.1 Preliminaries

Let Qo € RY, N > 2, be a simply-connected bounded domain with C®~boupdmy I'y and outer
normal vector field n. On 2y we define the Sobolev spaces H&(£2s), s > 0, in the usual way [59]:

For m € N one defines

olod

- 603:81,...,8‘7'”%}\{1

lullfz@ey = 2 I0%ullzs 8%
lal<m

where u is, in general, complex-valued, and the partial derivatives 8% are taken in distributional
sense. For noninteger s we define

. &
HE(S0) = [H), HE ()], m=[s]+1,0=—,

where [X,¥]s denotes the complex interpolation space between the Hilbert spaces X and
Y - X corresponding to the parameter 6 € (0, 1), and [s] denotes the largest integer not larger
than s.

It will be convenient to work with spaces of real-valued functions in the sequel, so we define

H*{(Q) = {u € HE(S) |ureal}, | 3.0

which obviously is a real Banach space and for integer s also a real Hilbert space.

On Ty we introduce the Sobolev spaces HE(I'o), s € R, by defining their scalar products (-, -)
with the help of the operator (I — Ay, ), where I and Ay, denote the identity and the Laplace-
Beltrami operator of I'g, respectively. We recall that in arbitrary regular local coordinates we have

1 9 o O
A = e Wt .
6= Ze e (VI ). (32)
. . -1 a& 8& i
where g% are the mairix elements of G~ = 7w ) B and ¢ = det G. Here and in

the sequel, unless stated otherwise, summation has to be performed over indices that occur twice
in the same term. An alternative way of defining Ar, is given in equation (3.12) below.

The operator (I — Ar,) is L}-self-adjoint and has a purely discrete spectrum consisting
of positive eigenvalues, hence it has a complete orthonormal system {4y} of eigenfunctions in
L%(To) = HZ(To). For any s € R we set

(u,v}p = fﬁi}‘df',
o

Au o= 3 AT de)othe, 33)
2 |

(u,v); = (A’uw,A%0),,

I

where )y is the eigenvalue corresponding to ¥ It is well-known [59, 87] that the norms gener-
ated by the scalar products (-, ) are equivalent to the ones obtained using local charts, partitions
of unity, and the standard norms of the spaces HL(R™~'). As Ar, maps real-valued functions
to real-valued functions it is not hard to check that the ¢, can be chosen to be real. Therefore A®
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maps real-valued functions to real-valued functions, hence we can define the real Sobolev spaces
H*(Ty) analogously to (3.1), retaining the same scalar products,

Let us fix some notation for the remaining part of this thesis. We will use the letters C and
e for “large™ and “small” positive constants, respectively, if their actual value is of no interest.
Sometimes an index is used to indicate their dependence on parameters.

A function that is given on Qg and its restriction or trace at the boundary I'y are sometimes
denoted by the same symbol.

Let M be an arbitrary metric space. Forz € M, r > 0, we denote by B;(p, M) the open
ball of radius p centered at x in M.

If X is a normed space, we denote by X its dual and by X'* the product space of k copies of
X, equipped with the usnal norm (and the usual scalar product if X isa Hllbert space).

The norms in H*($2y) and H*(To) will be denoted by ||- HQ" and ||- H respecuvely, and the
same notation will be used for the norms of the product spaces (H’(Qo) ,(H? (I‘g))k. Analo-
gous notation will be used for the corresponding spaces on other domains and manifolds.

We denote the kernel of a linear map A by A’ A) and its range by R(4).

For bounded domains §2 and bounded surfaces I' we will denote by |Q] and |T'{ their volume
and area, respectively.

To be able to describe perturbed domains, we choose a fixed C®-function{ : Ty — RY
satisfying

(&) -n(€) >0 VEeT,. (3.4)

Lemma § (Perturbed domains and perturbation functions)

Lets > 2+ % There is a 6o > 0 depending enly on Qu, (, and s such that the following
holds:

(i) Forall v € By(bo, H*(Ty)}), the set

Ir ={{+{(Er(€) 1€ € To}

is homeomorphic to Tg.
(ii) There is a mapping z : Bo(8o, H*(To)) — (C*Qo))N such that z( 7} is a global
diffeomorphism of Qg onto §), = 2[8] and
Iz = Hlczaonn < clirlly
with C independent of r, and T = z[T'¢].
Proof: Let 7 be a (small) open interval containing ( and consider the C'°°-mapping
¢: ToxZ— R

defined by
$(&,n) =&+ (3.5)

Pick a fixed &g € I'p and let £ = £(u) be a regular local parametrizatibn of I'y near &. The
differential map of ¢ in (&,,0)
$(€0,0) : Tg,(To) x R — RY

is given by

D(Es, )t = ot + 7((o),
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where T¢,(To) denotes the tangential space of I'y in &g and ¢ = t’% its elements. Due to (3.4),

Dé{€q, 0) is surjective, hence by the local diffeomorphism theorem there is a neighborhood of
{&5,0)inT'g x T such that ¢ acts as a C*°-diffeomorphism of I/ into RY.

By a compactness argument we can conclude that there is a §; > 0 such that ¢ acts as a
(global) C*° -diffeomorphism of 'y x {48, 6;) onto some neighborhood of I'y C RY in RV,
Taking into account the continuous embedding H?*(T'g) < C%(§2) and the fact that the submani-
fold I, C T x (—61,8;) consisting of the points (€, r(&)) is homeomorphic to Ty if
r € By(81, C{(L)) we can conclude that (i) holds.

To show (ii) we need some preparations. It is easily seen from the assumptions of compact-
ness and smoothness of I'y that there is a 63 > 0 depending only on £ and having the property’
that if forany z,y € €

max{dist(z, I'y), dist(y, [o), |2 — y|} < 63,

then there are an open set i C €2 and a diffeomorphism &y : U — RY such thatz,y € U,
@y [U] convex, and ¥y and ®;;" are Lipschitz-continuous with constants that do not depend on /.
Using this and the mean value theorem, the following estimate can be shown: Let g be a Fréchet-
differentiable mapping from q into some normed space F. Then for [z — y| < &,

llg(w) — 9(2)lle < C sup llg'(w)li ly = =| (3.6)
wéﬂoﬂax(ciy—flﬁ) ‘

holds, which in particular implies Lipschitz-continuity of g if g and ¢’ are bbunded
We construct the mapping z by choosing an arbitrary but fixed linear commuous ri ght inverse
T=1 of the trace operator T : H*+3(() — H*(T') and setting

z(r) = T7Hr¢) + 1,

where 7! has to be applied separately (o the components of »{. This yields immediately
T'; = 2[To], and the estimate for ||2(r) — id|(c2(a,)yv is a consequence of the continuity of the
embedding H*+3(g) « C?(Q). This estimate ensures for sufficiently small 6, and all z €

92(r)

tl
hat E

phism, it remains to show that it is globally injective, i.e. that z(z,) = z(z¢) implies 1 = 2,
for all 2o, 2; € £2. For this purpose, the equation z{z) = z(zg) is rewritien equivalently as

= S(z) =2 — (zp) " Hz(z) — 2(z0)) (3.7
The mapping S is differentiable in all x € €y and has the derivative |
§'(2) = T — 2 (20) 2 (2) = #(20) " (#'(20) - # (&),
~ According to the above remark, z € (CQ(QG})N implies Lipschitz-continuity of z’, hence

IS @ < Clie'(zo) — &' ()| < Cle — 2o,

(2) is near the identity and hence nonsingular. Therefore z(r) is a local diffeomor-

where || - || denotes an arbitrary operator norm on £ (RY,R"). Consequeétiy,
Sup ‘ “S’(.‘L‘)[] S C SUP |.’B bl ;lf()(
xEQonB,B(Clxl—xO],RN) xennﬂon(Clm—xo],RN)
< Clzy - 2ol
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Moreover, assuming z{z1) = z{zo),
|2y — w0l < fz1 — 2(@1)] + |2(z0) — 20| < Cdy, (3.8)
hence, for sufficiently small 8q, (3.6) may be applied to S and this yields
|21 = zo] = |S(21) = S(z0)] < Clay — z0]*,

e xg=xyor|ay ~aol > €', but the latter of these two possibilities is in contradiction with
(3.8) for small é. B
Remark: It is clear from the proof that I, is actually “as smooth as ", i.e. ifr € O Tp), then
T, belongs to the same smoothness class, O

In the following investigations the concept of (locally) analytic operators will be useful.
Definition (Analytic operators in Banach spaces): Let X and Y be Banach spaces. A mapping
F defined on B (¢, X') with positive € and values in Y is called analytic near z¢ (from X to )
iff F' has a series representation

OQ
F(a:):ZFk(z—xgt..,;r-—xo) Yz € Bpo(e, X), 3G9
k=0

where the F, are bounded k-linear symmetric operators from X* to Y for which the majorant
series

oo

Z\Wkilz(xk,y’)fk (3.10)

k=0
converges, which implies the absolute convergence of the series in (3.9) and the boundedness of
F. As usual, we will call F analytic in the open set I/ C X iff F is analytic near any pointof /.

Obviously, the series (3.9) represents a generalization of the concept of a power series. The

rules for calculations with them can also be generalized to our situation, more precisely, we will
use the following results concerning local analyticity, differentiability, derivatives, “comparison
of coefficients”, composition, pointwise products, and the Implicit Function theorem:

Lemma 6 (Properties of analytic operators)

Let F' be given by (3.9) and suppose (3.10) converges. Then:

(i) F is analytic in By, {¢, X).

(ii) For any m € N, the m-th Fréchet derivative of F' exists and is an analytic function in
Byole, X) valued in L{X™ YY) given by

o0

m -+ k) .
F(m)(;r)[hl, vy b = Z (——k!—)—ﬂ“*k('ﬁ - Egy .. = 2 Ry, B )
k=0 ’

Furthermore:

(iii) If ' is an analytic function near xo valued in'Y, then F = F near xq iff Fr = Fy for
allk € N.

(iv) If G is analytic near F{xg) from Y to the Banach space 7, then the composition G o F
is analytic near xo from X to 2.

(v} IfY is a Banach algebraand H is analytic near x from X to'Y', then the pointwise prod-
uct F H is analytic near zy from X to Y.
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(vi) Suppose the mapping F © X x Y — Z is analytic near {zo, yo), F{zo, %) =0,
Fy(0,90) = F'(20,30)0, ] '

is bijective fromY to Z, and let U be a sufficiently small neighborhood of é«'o in X. Then the
uniquely defined continuous functiony : U — Y satisfying y(xe) = yo and F(z, y(z)) = 0
forallz € U is analytic near zg.

Proof: (i}-(iv)are straightforward generalizations of the corresponding standard results for power
series (see e.g. [22] Ch. IX). To indicate the proof of (v) it is sufficient to remark that

(FH)i[hi,...,h ] Z ZFi(ho{l)sw~>ha(l))Hk—l(ha(l+1)3---aho(k))s
cES, I=0

where S; denotes the set of all permutations of { 1, ..., k}. By the Banach algebra property of Y
this implies '

k
NFH)illexr,yy € C YW Flleex vyl He-illcoxs-t,y)
‘ i=0
with C independent of k. For the proof of (vi) we referto [93],Ch. §.2. ®m
In particular, the following result will be applied:

Lemma 7 (“Square roots” and inverses as analytic operations)

Let X be a Banach algebra and let xg,uo € X be such that 3 = g and zy and uy are
invertible. There exist functions u v+ \/u and « — u™! defined in a neighborhood of uo which
are analytic near up with values in X such that {ﬂ = wand u~u = e, where e denotes the
unit element of X.

Remark: Note that the symbol “/" ” is used here in a sense depending on a:o |
Proof: The lemma follows from applying Lemma 6 (v) and (vi} to the equations

f(u,r):s:gwu:‘O, Glu,zy=zu—e=0,

respectively. ®

Let us conclude this preliminary section with a well-known result concerning a natural rep-
resentation of the curvature of a surface in terms of its Laplace-Beltrami operator. Its importance
for the analysis of the FBPs considered here can hardly be overestimated.

Lemma 8 (Curvature and the lapiace-Beitramz operator)
Let Tg be as before and z € (C""(I‘o)) be the mapping that assigns to each pomt of Tp its
(cartesian) coordinates in RY. Then

Ap e = kn,
where A, has to be applied to every component of © separately.
Proof: For N = 3 the lemma is proved in [21] (Section 2.5, Theorem 1). We prefer to give

an alternative proof based on some remarks in [37], Section 15.1, that can also provide a more
intuitive idea about the Laplace-Beltrami operator.
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Let ¢ be a smooth function on 'y and ® a smooth extension of it into a neighborhood of
Ty € RY. The vector-valued operator ¢ — & defined on I'y by

66 =V — (V® n)n

1s called the surface gradient of ¢ and is easily seen to be independent of the values of ® outside
Fo. Writing &8¢0 = 8¢ - €5, m; = n e, withi = 1,..., N and ¢; denoting the -th unit vector we
have by definition

¢ -n=b;¢6n; = 0. (3.11)

The components &; of & are first-order differential operators on I'y for which we have ([37], Sec-
tion 15.1)

§:6;¢ = Ar,e, 3.12)

(Sg ng = K.
Using this and (3.11) and writing as usual é;; for the Kronecker symbol we calculate

5,‘333' = 5,*1—??,@'?%:;,

5gt§g$5 - —(5,‘nj)rz,~ - (&n,»)ni = Knyj,

which proves the lemma. B

3.2 The fixed-time problems

A thorough understanding of the-'properties of the fixed-time problems (cf. (1.6}, (1.7), (1.10),
(1.12)

~Au+Vp = 0 .
dive = o [ B (3.13)
T(u,p}n = kn onTy
and A 0 ingQ
u = in Qg
u = x onTy (3.14)

is a necessary prerequisite for the study of the corresponding moving boundary problems. {x and
1 denote the curvature and the outer normal vector of I'g). Essentially, this understanding is pro-
vided by the theory of elliptic boundary value problems. For the Stokes equations, however, some
care has to be taken of certain technical details.

3.2.1 The fixed-time problem for Stokes flow
We will discuss the fixed-time problem for the Stokes flow problem in three steps:
e investigation of the weak formulation, based on a Green formula for the Stokes operator,

» obtaining of regularity results in Sobolev spaces, based on the theory of hydrodynamic
Lorentz-Ladyshenskaya potentials ([55], [60]),

e proof of a commutator property for the Neumann-to-Dirichlet operator of the Stokes equa-
tions.
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The main idea in this is to use the strong resemblance of the properties of the Stokes operator
to the Laplacian. In the Stokes equations, the normal component of the stress tensor 7 (u, p)n
plays the same role that is played by the normal derivative 8—“ for the Lapla%:e equation. Hehce,

(3.13) is a Neumann boundary value problem, and we will re&ver a nontrivial space of solutions

for the homogeneous problem and necessary solvability conditions in strict analogy to the second

BVP for the Laplacian. Moreover, the hydrodynamic potentials as well as the singular integral
operators arising from them have properties that correspond to the well-known ones in potential

theory.

Weak formulation

To conveniently deal with the N-dimensional problem, we generalize some notions of vector al-
gebra and analysis to RY. Let K be an arbitrary but fixed bijection from the set

{(i,)11<i<j< N}
totheset {1,..., () }. We define the bilinear mappings

A: RV xRV . R()
J: RED xRN — RY

by
(aAb)guy = abj —aib; - (1<i<j<N)
and ' 3
i1 N ‘ |
{c]a); = ZCK(j'i)aj - Z CR (i, )% (i=1,...,N).
j=1 Femigl
It is easy to check that
c-(anby=b-(c]a) VabeRY,ceRE) (3.15)

We define, moreover, the differential operator
! N
rot: (Hl(Qg))N — (Lz(Qo))(2 )

by 8 a9
Vs e
(I‘Ot?))K(i’j) = —3—3- v

-2 1<i<j<N
s oz, (1<i<j<N)

" which yields the integral theorem

/rotvdm:f n/\v&l‘. 3.16)

Note that if N = 3, then the usual definitions of the outer product and the curl (rotation) of a
vector figld can be obtained, up to the sign of the second component, by choosing the suitable
bijection K. : ’

The basis for the weak formulation is the following integral identity:
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Lemma 9 (First Stokes-Green formula [55])
Forallu,v € (CB(QQ})A ., p € CYQp) we have

1 Ou;  Ouy dv; By /- -
2/(;0 (8“31' + 3$£> (01‘]' + ('):ci) dr — QGP divedz

= {(—Au+ Vp - V({dive)) vdz + / T{u,pin-vdl.
$ig o

Proof: The identity follows easily from applyihg the Gauss integral theorem to the vector-valued
function 7 {(u,pjv.
We introduce the space

Vo = {v € (H'()" |ui(z) = sijz; + ¢, sijyci ER, sij = —Sa‘i}

of the velocity fields corresponding to rigid body motions in RY. Clearly Av = 0, dive = 0,
T{v,0) = 0 forall v € V{, and thus (u, p} = (v, 0) is a solution of the homogeneous problem

—Au+Vp = 0 .
divu = 0} in €2
T{u,p)n= 90 on I'o.

Hence, the velocity component in a sclution of (3.13) is defined only up to an element of V4. To
enforce uniqueness of the solution it is natural to demand

/ uwdzr = 0, / rotudz = 0. G.17
{1 RN ‘

We proceed now by discussing a variational problem which is a weak formulation of a gen-
eralization of (3.13), (3.17). For this purpose we introduce the Hilbert spaces

X = (HY(Q)N x L*($0) x (RN x R(?’)) ,
Y o= (' @)Y) x (L3@0) x RY x RE))
and the (bi-)lincar operators
L. X —Y
A (i) — (@)Y,
B: (HY(Q0)Y — L2(Q0) x (RN x R(‘z")) ,
a: (HYQ)Y x (H'(20)" — R,

w1 (Hl(QQ))N P — RN,
oo (HU(Q)Y — RE),

defined by
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{Aw)r = a(y,v),

—divuy

Bu = ei{u) |,
pa(u) ‘
= L (Qu Qu) (0w  OuY

alwv) = 3 /,,0 (axj + 3x,') (axj + 593,:) dz,
/ud:c, .
Qo

po{u) = /rotudm,
2

p1(u)

where B’ : L2($2) x (RN x R(?Y)) — ((H'(Q0))™)' is the operator dual to B.

Lemma 10 (Weak formulation)
(i) The operator L is a homeomorphism between X andY .
(ii) Suppose Llu p \)T = [f 0)T with

f(v):/r sn-vdl Vo e (HY(Q)"

Then A = O and (u, p) is a weak solution of (3.13), (3.17).
Proof: (i) The equation
LupAT =F (3.18)

is a variational problem with linear restrictions to which the usual existence results apply (see e. g
[15}). In order to establish (i} it is therefore sufficient to show that a is elhpnc on (ker B, ||- [[1 )
and B is surjective.

The first statement follows from Poincarés inequality (e.g. [93] Vol. II/B,! Appendix, (53a))

2
|Vw|?dz + U wd:c) > cllwl[®® Vw e HY(Q0)
Qo o

and Korns second inequality (e.g. [93] Vol. IV Theorem 62.F)

a(v, v)>cZ/ (g;’]) dz vpe{ve(Hl(Qe})“lgag@:o}.

£,j=1

To show the surjectivity of B we note that ¢ = [p; 2]7 is surjective from V, onto
R x R(Z). The equation

Bu= [ i } € L* () x (RN xR(ﬁ’))

has a solutionu = ug + u; with ug € Vg, w{ue) = g, ug = VO, where de H¥Qp) N HAMG0)
solves ~A® = g in Q.
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(ii) The equation (3.18) with F' = [f 0] can be written as

a(u,v) = fo pdivodz+ A @i(v) + A2 p2(v) = f(v) Vo€ (H1(Q))"
divu = 0, (3.19)
pu) = 0

Using Lemma 8 and the Green formula for closed surfaces we find
/ kn-v dl = Apow-z)dF:—/ bz; - bv; dT
Ty To 'y
and from this it is easy to see that f vanishes on V5. Choosing v € Vj in (3.19) yields
/\1'(,01(1))-}-/\2‘4,02(0):0 Yv € V.

We use again the surjectivity of ¢ from V; onto RY x R() to conclude that A = 0. From this
we see by Lemma 9 that (3.19) is a weak formulation of (3.13), (3.17). &

Regularity

For later use we introduce on V; the basis {v;; } by

1

v = |Q_0|€]‘ (G=1,...,N),
1 . 1 . .
Vo K(ij) = M(:cjei - xiej) — m no(zjei - l’iej)dl‘ (1 <i1<j3< N)

which is dual to the functionals {;; }, i.e.
wi; (V1) = bikbj1. (3.20
For fixed s > 2 we introduce the spaces

X, (H* (Q0))N x H*™1(Q0) x (RN x R(f))

Il

Y (H°=2(Q0)) ™ x H*=1(Q) x (H’_%(I‘o))N x RN x R

and the operator

L: X, —Y,
defined by
—Au+Vp+ XM
—divu
=| T(u,p)n+ Az |n
e1(u)
p2(u)

=~
>3

Lemma 11 (Regularity of the Stokes fixed-time problem)
(i) The operator L is a homeomorphism between the spaces X ; and Y.
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(ii) Suppose L[u p A]T = [0.0 Fp 0 0]7. Then

r
”}‘”RNxR@') < Cvllf'-’B”o'3

forallo € R and o ) .
llelie® < ClIFB| -

Proof; Note that, according to (3.15), (3.16),

/ v-{A2] n)d[‘:/ Az - (nAv)dl = Ay / rotvdz = AL pe(v).
To Te Qo

Using this and Lemma 9 we find from
Liup AT =[Fr g Fp hy hy)T

the variational formulation

a{u,v) — /n pdivedz + )\?tpl(v) + X‘;gag(*v}
. (1]

—~divey = g,
p1(u) = by,
pa(u) = ho.

/(F1+Vg)-vda:+/ Fg odl V*UE(H‘(QO))N,
ﬂo FO

(3.21)

(3.22)

(323)

(3.24)

Lemma 10 yields that this problem has a unique solution [u p A]¥ € X, and from the fact that

a(w, -) and div vanish on V; we find

Aij = ] (Fr +Vyg)- Vi) dz+/ Fg v dl,
S0 Lo
All v;; are smooth, hence
Q Q ‘
Mgy < Ce (IFEIIT, + lglify +11FBI 5 )
and (3.21) follow. We will determine « and p by setting

ug + Uy + Uz,

= M + P2,
where
-AwAVn = BoM) o
—divy; = ¢ ,
ulzwm%rfﬂogdxm on Ty,
Jq,prde=0,
“ug € Vg such that 305(250) = -goi(ul) +h;i=1,2,and
—-Aus+ Vps = .
_divuy, = o [ n¥o

T(uz,pa)n = =T(uy,pi)n+Fp— A jn=9 on Ty,

plu) =0 (=12

(3.25)

(3.26)
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The regularity results for the Dirichlet problem of the Stokes eqv uations ([34], Theorem 1V.6.1)
yield that (3.25) has precisely one solution (u1, p1) € (H*(Q0))" x H*~1() and an estimate

el + paliSey < G0 (UEIE, + Il + [lal19, )
3 N
holds. Thus we have ¢ € (Hs'ﬁ(l‘g)) and

1o, < O (laall + Upalf, + allgeyy + 1F517°,)

Ce (12, + Mgl + IFaI2 5 + Nl gz ) -

sm2
It remains to show that (3.26) has a unique solution (uy, ps) € (H* (Q(}))N % H*~HQy) satisfying
an estimate

IN

i+ llpalley < Call@ll2 5 (3:27)

Note that due to Lemma 9 and (3.23)
/ $.v=10 Yv € V. (3.28)
I's

From the discussion of the weak formulation as in Lemma 10 with kn replaced by ¢ we find that
this condition is necessary and sufficient for the existence of a unique weak solution
{uz,pz) € (Hl(QO_))N x L%(€29). A density argument shows that we can assume & € (C(I'))".

To show (3.27) we will apply representation formulas and weakly singular integral equations
from the theory of hydrodynamic potentials. For N = 3 this theory can be found in [55], Ch.
111, the generalization to arbitrary N is straightforward. For the sake of brevity, we will describe
the details here only for N ¢ {2, 4} because of the logarithmic terms entering the representation
formulas in these cases.

For # € {2 we use the ansatz

Il

uz(z) V(z,¥)

; _ { (z -z -y’
Vie.¥) = 2wy ] ((N -—2}‘&‘ - yl¥-2 + {z — gV ) Wy )QTE”

1 r-y

I

pa(z)

where ¢ isa RY -valued {measurable) function on 'y and

3.29)

denotes the N — 1-dimensional surface area of the unit sphere in RY.
It can be shown as in {55] that (uy, p) satisfies the first three equations in (3.26) if ¥ is con-
tinuous and satisfies

(%1 + 1() = {3.30)
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with

?

The operator K is a weakly singular integral operator, hence it is compéct on (H 0(Fo)}N and

continuity of ® implies continuity for all ¢ € (H°(Tq)) N that satisfy (3.30) (sec e.g. [88], theo-
rems 12.1.,12.7., 12.8.) Moreover, K is a pseudodifferential operator [78], hence it is compact on

i
500 = [ (@) S ygyar, et

N
(H -4 (Fo)) and therefore (1 + K) is a Fredholm operator of index 0 onthis space. Taking
into account that N'( 31+ K) consists of continuous functions, one can conclude, usmg the results
about the weak formulanon that V(-,9) € Vg forally € N(3I + K). ¢ € N(3I + K) and
V(-,4) = 0 implies ¢ = 0 [55], hence dim N (1] + K) < N + (). The necessary solvability
conditions (3.28) imply codimR(31 + K) > N+ ('), hence

dim N ( I+ A) = codimR (314»1{) =N+(),

ie. the solvabihty conditions (3.28) are also sufficient and the mapping ¥~ V(- %) maps
N ( I + K) onto V. Thus we can conclude that (3.30) has precisely one solution such that
fpg(V(', ¢ =0,i=1,2 satisfying an estimate

lllbl\s-; <Gl s

Finally, we use the fact that the singular integral operator that maps 9 to V (-, ¥)|r, is a pseudo-
N

differential operator of order — 1 [?8}, hence we find that the trace of us on T’ isin (H 5% (I‘o))

and o
lluzll;2 y < CllBl52 5 < CUBIL 5.

The proof of (3.27) is completed now by another application of the regularity result on the Dirich-

tet problem.
To show (3.22), consider the “adjoint” problem

—Av+Vg = u
dive = 0
T{v,g)n=—p]n onTly,

in Qg

with 2 € RG') given by
,t,:/nu.oz_,-dm, 1<i<®))
) 0

which implies ||p|[R(£y) < CHqu‘“. By examining the variational formulation of this problem
in the same way as in Lemma 10 we find the existence of a weak solution of it that satisfies

301(?}) =0, (v)=0.

By the above regularity results we get

Ioli5® < € (lull§e + ] mlly") < Clullfe.
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With this, we find by the second Green formula for the Stokes eguations

| g"? {u, —Av + Vq)g + / (T{u,pyn-v—T(v,q)n-u)dl'
I'y

i

/(FBAv—%-pjn)dF:] Fpg-vdl — p - pa(u)
Te Uy

ClIFs||ZlIoll3° < CHEBIZY Illy® < CIEBI s lullg".

IA

which proves (3.22). &

The Neumann-to-Dirichlet operator

We will conclude the discussion of the fixed-time problem with the proof of a commutator prop-
erty for the operator that describes the correspondence between the Neumann and Dirichlet
boundary data for the Stokes equations. More precisely, we consider for f € (H “(I‘o))‘N,
s > —31, the problem

Liup N =[f 0] | (3.31)
with
fwy= [ fvdr
Ty
and define
Sf = ulp,. (3.32)

Combining the results about the weak and strong formulations for the fixed-time problem with an
interpolation argument we get that S is a well-defined operator in

e (o (o))

foralls > m%.
We recall the definition of the operators A7 from (3.3) and note the fact that they are pseu-
dodifferential operators of order o [87].

Lemma 12 (Commutator property)
Forany s,o € Rsuch thats + o > —% the operator SA” — A’ S isin

- N
c ((remo)™, (He=o+3(ro))")
Proof: Even for s < § it is enough to show the inequality

(SA” = A7S) fII1% 4 yz S Caoll 11}

N
forall f € (H 5( PQ)) , hence we are allowed to work with the strong formulation of the problem

(3.31).
Based on the above discussion of the regularity properties of our boundary value problem we
find that

3
0

Sf= ('llg - /\lk(f)u(k)J
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where (u(¥), p(*)) are the solution of the Dirichlet problems

—Au®) 4 vp*) &

= e .
dive®) = 0 in Qo,
ulk) =0 on Ty,
fﬂo p®) de =0,
(ug, p2) is the solution of
—Aus+Vpy = L
diva, = 0 f " o,
T (uz,p2)n = /\lk(f)'f(u(k),p(k))n - X(f)n+f=Pf on I'g,

ei(u) = A(Nei(v®) = hi(f)  (1=1,2),
and

/\ij(f)z/rf-v,:de‘. (i=1,2).

Note that for all € R

A

b (H)llrm + 2 Hllgery < CollFll5",
(AP — PA) fIIi° < Cooullflls° (3.33)

Using hydrodynamic potentials as above and writing (V¢)(z) = V(z, ) forz € T'q one finds
Sf =V = Ap(HHu®,
where 1 i$ the (unique) solution of
1I + K|y
2 4%
ei(V) = hi(f).

From the above discussion of this problem we recall-

Pf (3.34)

l4lI5e < ClIfII5e. o (3.35)

In the same way we get

SAF= V(= k(A% fu®,
k

where ¢ is the (unique) solution of

1 .

wi(V¢)

PA°f (3.36)
hi(A°f).

Applying A% to (3.34) yields

(%I+ K) AP =APf+ (KA —A°K)y
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and after subtracting (3.36)

(%1 + K) (A% —¢) = (AP = PA)f + (KA° — A°K )i,

hence, using (3.33), (3.35), and the fact that K is a pseudodifferential operator of order 0,
4 Iy r
||A 1/) - C||sr+1—c7 S C”f“so
and from this, using that V is a pseudodifferential operator of order —1,

|A°Sf — SATf||Le

s+2—0
- HA”Vw = Me(NA7u® = V4 Mp(A7 fHul® Fiz
= vy -0+ (@ nu® - xu(paru®) + 4y —vany

IN

Callfllse.

Remark: It is clear from the proof that the same commutation relation holds with A” replaced
by an arbitrary pseudodifferential operator of order . O

3.2.2 The fixed-time problem for Hele-Shaw flow

For the discussion of the fixed-time problem (3.14) it is sufficient to invoke standard results from
the theory of elliptic boundary value problems. Moreover, there is no need for an explicit discus-
sion of the weak formulation.

Lemma 13 (The fixed-time problem for Hele-Shaw flow)
(i) (Existence, uniqueness, and regularity)
Forall s > 2, the mapping

L: H Q) — H*" %) x H*"3(Iy)

defined by
Lu = [ Au ]

u|I‘0

is a homeomorphism.
(ii) (The Dirichlet-to-Neumann operator)
The operator S : H*=%(D'y) — H*~3(['y) defined by

S¢ = 6% <L-1 [ g D (3.37

is a pseudodifferential operator of order 1 in the manifold T'q.

Proofs of (i) and (ii) can be found e.g. in [59] and [87], respectively.
Remark: It follows from (ii) that S can be extended to H 2 (T'g) with values in #~(T'p). O
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3.3 Some elementary consequences

Even in this stadium of the discussion it is possible to give some qualitative properties of the evo-
lution problems we are interested in. This will be done under the assumption of existence of (suf-
ficiently smooth) solutions of the FBPs under consideration. In particular, we will find that the
surface motions corresponding to them conserve the enclosed volume and diminish the area of
the surface, and that all stationary solutions are given by those domains whose boundaries have
constant curvature, i.e. by the circles for N = 2 and the balls for N = 3 (see [14] §100).
As we are dealing in this section with domains that are not necessarily infinitely smooth, we
modify the definitions of the norms in the spaces H 3(T'(t)) and H~%(I'(t)). Given a norm on
H3(I(t)), we choose on H~#(T'(t)) the dual norm given (for sufficiently smooth v) by

nvnf_‘;)z sup / v® dL'(t).
o)) O=1 T
3.3.1 Stokes flow

Let us assume in this subsection that u(-, 1), p(-, 1), Qt), ¢t € [0,7) where T = +oo0 is allowed,
are parametrized families of sufficiently smooth functions and domains such that (1.4)-(1.7) are

satisfied,
f udz =0, / rotude = 0,
() 0

Alt) = fI“(t) dr(1),
V() = [oq de, (3.38)
M@ = de

“and the functions

(1)
representing the surface area, volume, and center of gravity of 2(¢), respectively, are differen-
tiable with respect to {. (Here and in the following, we suppress the variable { in the notation of
u.) Let the bilinear form a, be defined as a in Section 3.2 with € replaced by $3({). We recall
that
2

ay(u,u) > o|ul[H, (339)
where ¢; depends on the domain Q(2) only. Moreover, a standard result from the theory of elliptic
boundary value problems ensures that if g € H2(I'(¢)) and fI‘(t) gdz = 0, then the Neumann
problem

A® = 0inQ(),
o9
T = gonI(t), ’ (3.40)
/ Pde = 0
a(t)

has a solution ® € H?(Q(t)) for which an estimate
9115 < Cillgll} (3.41)

holds with C; depending only on ().
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Lemma 14 (Global properties of Stokes flow)
(i) {Conserved quantities and surface diminishing)
The functions V' and M are constant. The function A is nonincreasing in t.
(ii} {Asympiotic behavmr)
Suppose T = +ox, A= dt is uniformly Lipschitz-continuous and

méx{ . Cy, 1|1||“(“ I 11“‘?} <K V>0, (3.42)

where ¢, and Cy are the constants from (3.39) and (3.41), respectively, and 1 denotes the constant
function mapping U(t) to L. Then [|(t) — E(Z)HI};) — 0 ast — +oo with
2

1

= F00 Sy

k(1) dT(t). (3.43)

(iii) (Stationary solutions)
The function A is constant in time only at stationary solutions, and if a domain ) yields a
stationary solution, then 0X) has constant curvature.

Proof: Lett € [0, T') be fixed. We find from the fixed-time problems

av = divedr =0,
dt (1)
- _ / a(tin(t) - udl(t) = —ay(u,u) <0,
dt r()
dM - / udx+/ zdivudz = 0.
dt () 1)

This implies (i) and, for T = +o0 and A uniformly Lipschitz-continuous,
A(t) » 0 ast— +oo (3.44)

as A is obviously bounded from below.
Due to the duality between the spaces H =3 (£(1)) and H % (Q(1)) there isa ¢ € H 7(Q(t))
such that ||¢]]§(t) = land

et) - =P = /F RCUR O

Let ¢ = TI_‘(lt_JI frm 6 dl(t) and set v = V&, where & is the solution of (3.40) withg = ¢ — ¢.
From (3.41) and (3.42) we get

£t
135" = oty = = | édl“(z)<cuug,f‘>;11n"<”||¢[|”*><(1\
I < Ke-3]L" <ok

with C' independent of 1.



¢
H

56 , CHAPTER 3. DERIVATION OF THE EVOLUTION EQUATIONS |

Using this we find from (3.39) and (3.42)

/ w(t)n(t) -vdl'(t) — R(Y) %E dI'{t) = ay(u,v)
r(1) HORGE

it

lIs(t) = #OIZY

CIIf® < CKEafu,w} = CKF (—A)”.

IN

This implies (ii) because of (3.44) and (iii) because for stationary solutions A is obviously con-

stant. (On the other hand, if k() = & is constant on ['(¢}, then v = 0, p = —&, hence we have a

stationary solution.) B

Remarks: The mathematical content of this lemma is limited because of the strong and hardly
verifiable assumptions in (ii). However, it provides a mathematical formulation for the conse-

quences of the energy balance considerations familiar in physics. In particular, the equation

ar(u,u)+ A(t) =0

has an explicit interpretation in physical terms: At any instant of time, the amount of energy “pro-
duced” by area diminishing is dissipated by inner friction. This observation is the basis for the
viscous sintering models that are used in material science [31, 77]. It is noteworthy that in these
models neither the Stokes equations nor the curvature of the boundary occurexplicitly. O

3.3.2 Hele-Shaw flow

By parallel reasonings we can obtain very similar results on Hele-Shaw flow. Let u(-, t) and §2(1)
be families of sufficiently smooth functions and domains parametrized by £ € [0, T) and satisfy-

ing

Au = 0 in Q(t),
u = k(1) on I'(%),
Vo = 5% on I'(1),

recall that the velocity field inside the liquid domain is given by v = Vu and define A, V, M,
and ®(1) as in (3.38) and in (3.43), respectively. As in the case of Stokes flow, we assume differ-
entiability of V', A, and M with respect to ¢. Recall that the trace theorem yields

lell} < Coallwllf© vwe BY Q@) (3.45)

]| < Gyt (uvwnff(” +

and we have, as a consequence of the Bramble-Hilbert lemina, the Poincaré-type inequality ([93]
Vol 1I/B, Appendix, (53a)) ‘

/ udl(t) ) (3.46)

O]
Lemma 15 (Global properties of Hele-Shaw flow)
(i) (Conserved quantities and surface diminishing)

The functions V and M are constant. The function A is nonincreasing in t.
(ii) (Asymptotic behavior)
Suppose T = 400, A = fg—‘? is uniformly Lipschitz-continuous and

max {Cy,,Cos} <K ¥E>0 ‘ (347
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for the constants in the inequalities (3.45) and (3.46). Then ||x(t) — E(tmzm — O ast — 4o,
’ . 2
(iii} {Stationary solutions)
The function A is constant in time only at stationary solutions, and if a domain 2 yields a
stationary solution, then 02 has constant curvature.

Proof: (i) can be shown directly by calculating, using integration by parts,

ﬂ = / divvdr = 0,

gl}i = / vdx—i—f zdive dz =] Vude

dt at) 1) (1)

= / rn{t)dl'(t) = / Appyzdl(t) =0
I'(t) I'(t)

dA(t) / / du
= e &(tyn(t) - vdl() = — u dr(t

& [ om0 vl == | ugedr

= - ()1%12@30. (3.48)
(1)

As in the Stokes flow case this implies (3.44). Furthermore, using (3.45), (3.46), and (3.47),

IA

Kl — /(O

K* (nvw ~ RN + / (K(t) —ﬁ(t))drm)
r(t)

1

k(@) = "D

IA

K (/m W»al?dz) ok (A,

and (i1) and (ii1) follow from this as in the proof of Lemma 14. ®

il

3.4 Dependence on perturbations

In our case, the application of the d!rect mapping method proceeds as follows: A given pertur-
bationr € H*(T'g), s > 2+ QI Il H ¢ small, defines by Lemma 5 a domain {2, on which we
consider the fixed-time problems. Using the diffeomorphism z(r), these problems can be “pulled
back” to the fixed domain §2p and written as operator equations in which r occurs as a parameter.
For r = 0 we recover the fixed-time problems on 2y that have been discussed in Section 3.2.
Near r = (), the investigation of the dependence of all occurring operators and functions on r will
yield the necessary information about the solutions of the fixed-time problems as functions of »,
i.e. “of the domain”.

Suppose s > 2+ —;— and let Q, and z = z(r) be defined by Lemma 5. We denote by &(»)
and P(r) the curvature and the outer normal vector of §1,., respectively, considered as functions
onI'y. On 'y we define

w{r) R{r)oz,

v{iry = rjoz.
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Lemma 16 {Perturbation of outer normal and curvature)
(i) The mapping r — v(r) is analytic near 0 from H*(To) to (H 5“3(1‘0))1\(
(ii)The mapping v +— k(r} is analytic near 0 from H*(Tg) to H*~2(T).

Proof: (i) Let To = |J,, I‘gm) be a finite covering of I'p by coordinate patchles Ts)m) and {y}
a smooth partition of unity subordinate to it. Let £0) = ¢(™)(w), w € W,,, be smooth regular
parametrizations of rg'”). Let W,,, C W,, be a domain such that

Supp xm © €™ C W, C Wi C Win.

Without loss of generality one can assume that the W, are bounded and have smooth boundary.
Moreover, for all m we choose functions ¢, € C§° (rE;”) such that ¢, = 1 insupp x. Note

that ’ »
= (e (em) ™),

where v = v{™)(r) is the solution of

0
B (%™ + (¢r¢) 0 £\ T '

Fm)(p vy = ) dw v— =0 (3.49)
VT 1

and v(™)(0) = n 0 £07) = n(™),
Due to the well-known results concerning equivalence of norms for Sobolev spaces on man-
ifolds it is sufficient to show that the mapping » +— v(™)(r) is analytic near 0 from H*(I'y) to

(H "I{Wm))N for any m. Let m be fixed and note that F(™) maps
(r,v) € H*(To) x (H* 7 (W)™

analytic near (0, (™) into (H*~1(W))" because H*~1(W,,) is a Banach algebra. Further-
more, for the Fréchet derivative of F(™) at (0, n("™)) with respect to the second argument we gt

dglm)
Dy F™(0, n™)h = (—aw) h.
2n(m)

Due to the regularity of the parametrization EM) the mamx defining
Do F(m)(0, n0™)) is nonsingular on W, and all its e]ements are smooth functions, hence
Dy Fm)(0, n(™) is an homeomorphism of (H*~1(W,,))" . By Lemma 6 this implies the ana-
lyticity of »(™)(r) as a function of r near 0.

(ii) Suppressmg for the sake of brevity the composition with £} and the dependence of G,
g, and g¥ on m in the notation we have, for any fixed m, on Wy, (cf. (3.2))

)W) i)

_ Xm a i
xmk(r) = \/T(%’)—mj)-%: ( 9(Umr)g" (Ym
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with

b=
3
i

det G(R),
gIR) = [G(R)™y,

cry - (a(é(m;l:r R())T (6(5(?’”(;5 RC)) ‘

It is clear that the mapping r ~ t,,7 is analytic from H*(I'y) to H*(W,,) and the mappings
R v g{ R} and R — G(R) are analytic near 0 from H*(W,,,) to the Banach algebras /= (W,,,)
1irar W INXN

and (H*~HW,.))
vertible on I/’if’m, hence its restriction to W, is invertible in (B S'I(I’Vm . It follows from
Lemmas 6 and 7 together with (i) and the facts that both H*~1(I¥,,) and H*~2(I¥,,,) are Ba-
nach algebras that (x.,&(r)) o €™ depends analytically on » € H*(I's) near 0 with values in
H®=*(W,,), and the assertion follows from this.

‘We recall the definitions of the spaces X, X, ¥, from Section 3.2. As announced, we have
to investigate the solution (&, 5, A) € X of the fixed-time problem

. The regularity of the parametrization implies that G(0} is smooth and in-
NxN
)

—Au+Ve+ A = 0 .
—divi = 0 } tn &2,
T (@, PY(r) + Az | 0(r) = &(r)p(r) onT,,
o, U dr =0,
Jo rotde = 0.
Transformation to Qg using the diffeomorphism z yields
0
~ u(r) 0
Ly { p(r) | = | k(r)v(r) |, (3.50)
Alr) 0 '
0

where .
ury=1H%oz, p(r)y=poz, Ar)=Aoz,

—Aru+V,op+ A
u —div,u
Lir)| p = To(u,p)v(r)+ Ao jvir) |,
A Jq, udet Ade
0
fno rot,u det Adz
9
(Vep)i = a“é?i,
divyu = aji%,
Oxj
_ o oudy 0
(rot,.u)K(i)j) = a -a;;_afga,
g 0 Quy
- Y ki VR
(Au)y, = « 72 (a 3.2:;;)’
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0u,
(Veupij = a5,
Tr(u,p) = (Vr?‘)“}‘(vr“)T-
83 .
a? = [‘A-l]ij‘

Lemma 17 (Perturbation of the Stokes equations)

(i) The mapping v — L(r) is analync near 0 from H“?(I‘o) to L(X,,Ys).

(ii) For sufficiently small v € H*+3(T), u(r) € (H* (Qo)) is well-defined. The mapping
v+ u(r) is analytic near 0 from H**+%(T) to (H*(Q0))" .

Proof: (i) The mapping r — z(r) is linear and continuous, hence analytic from H 5'%(1‘0) to
(H*($2))" . Consequently, r — A(r) is analytic from H*~¥(T') to (I—I"‘l(ﬂo))NXN which is
a Banach algebra. Note that A(0) is the identity, hence by Lemma 7 the mappings » ++ A(r)™!
and r — a'(r) are analytic near 0 from H*~3(Tp) to (H*Y( ))NXN and H*~ (), re-
spectively. The assertion follows now straightforwardly from the Banach algebra properties of
H"—E(Qg). H’_I(Qo), and H"__(I‘o)

(ii) For any sufficiently small r € H*+3(Ty), u(r) is the first component in the solution
v € X, of the equation

0
0
F(r,v)=L(rjv = | s(r)v(r)
0
0
According to Lemma 16 and (i) together with the Banach algebra property of H*~ %(I‘o ), Fis an-
Uy
alyticnear 1 0, | po into Y, where ug and po denote the velocity and pressure components
0

of the solution of the fixed-time problem on €. Clearly the Fréchet derivative of F' with respect
to v at this point is L(0) which is a homeomorphism by Lemma 11. Hence by Lemma 6 (vi), v
depends analytically near O onr € H “’“%(Fg) with values in X, which implies the assertion. W

In an analogous way, for the Hele-Shaw flow problem we have to discuss the Dirichlet bound-
ary value problem for the Laplacian

A 0 in€,

E(ry onT,

o

[~ I~

which is, after transformation by z to Qg,

L)) = | 0 |
‘with
ulr) = oz,

L(r)u [ j}r“ ] ,
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g 0 du
A = a0 2
¢ 8133' (a 8;13;; ’

where the ¢ are defined as in the Stokes flow problem.

Lemma 18 (Perturbation of the Laplace equation)
(i) The mapping v — L{r) is analytic near 0 from H*~3(T) to

£ (H5(90), H*"2(90) % HH(T0))

(i) For sufficiently small r € H”%(I‘g), u{r) € H*(Qy) is well-defined. The mapping
v+ w(r) is analytic near 0 from H*+3(Dg) to H* ().

Proof: (i) can be proved in complete analogy to the proof of Lemma 17 {i). The assertion of
(i1) follows from Lemma 16 (ii) together with the application of the Implicit Function theorem
(Lemma 6 (vi)) to the equation

0
Fr,v)= L{rjv — [ K(r) }
near (0, uo), where ug is the solution of the fixed-time problem on £y. The nondegeneracy con-
dition is the bijectivity of L{0). Itis satisfied due to Lemma 13 (i). m

3.5 Evolution of the perturbation function

We are able now to formulate the moving boundary problem in terms of an evolution equation for
the perturbation functions r by allowing it to depend on time. With a slight change of notation,
from now on we consider r as a function from a time interval {0, 7 into By (89, H*(Ty)) , where
&y is given by Lemma 5. Fort € [0,T), £ € Ty, we will write (¢, £) instead of (r(1))(£). Let
£2(¢), t € [0,T) be a given family of domains evolving according to (1.4), (1.5), such that for all
t there is an r{t} € By (&, H*(I'y)) with

Q) = Qe ' 3.51)

where the right side is defined as in Lemma 5. Our aim 1s to express the time derivative of » in
terms of v and geometric quantities. (We will assume the existence of all occurring derivatives.)
Introducing Lagrangian coordinates p € I'(0) for the parametrization of I'(t) we have

I(t) = {x(p.t)|p € T(0)}

with
z(0,p) = p,
a.
-5%(13,0 = w{x(pt),1). (3.52)

On the other hand, we get from Lemma 5 and (3.51) another parametrization, namely

P@t) ={{+ 7t [€ € Lo}
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Due to the globality of both parametrizations and the differentiability assumptions there is a dif-
ferentiable function ¢(-, ) from I'p to I'(0) such that

z(q(€,8),1) = £+ r(t, £)C(8)-

Differentiating this equation with respect to ¢ and using (3.52) yields

dx Oq . or

ga + v(§ "f' r(t,£)C(6)) = a(tm £)(€)-
The first term on the left side represents a vector tangential to I'{(t) at £ + »{t, ) (£), hence mul-
tiplication with »(r(1)}(£), the outer normal of I'(¢) in this point, yields (on I'p)

Or _ (voz(r(t))lr, - ¥(r(t)
ot ¢ v(r(t))

where the argument £ € T'p has been suppressed.
This evolution equation for the perturbation function r has been derived exclusively from
(1.4), (1.5), and (3.51), i.e. it is a purely kinematic relation. It will yield the evolution equations
both for Stokes flow and for Hele-Shaw flow by making the appropriate choices for ». In both
cdases, the study of the FBPs is reduced to the thorough investéi)gation of the operator p.
T

ot

= p(r(t)), (3.53

Remark: If we set, in particular, { = n and » = 0, we have

= V,, and recover the kinematic
boundary condition ‘

Visven

that has been announced earlier (cf, 1.9)). O

Stokes flow

For Stokes flow we have to set vo z(r(t)) = u(r(t)), where u is defined by Lemma 17 (ii). Hence
we get, suppressing the time argument, '

or _ (u(r)lrs - v(r)
==

Lemma 19 {Analyticity of the Stokes evolution operator)
The operator p defined by (3.54) is analytic near 0 from H**+ () to H*=3(Ty).

(3.54)

Proof: The result follows, by the Banach algebra property of H*~% (T'o) and the fact that, due to
(3.4), ¢ - v(0) is a strictly positive C*-function on I'g, hence an invertible element of H*™ 3 (Ts),
from Lemmas 6, 7, 16 (i), and 17 (ii). ®

Hele-Shaw flow

For Hele-Shaw flow we have to set v o z(r(t)) = V,,yu(r(t)) with u defined by Lemma 18 (ii)
and ’

(Veu); = ajf(,»)g—; ( (3.55)

Hence we get
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Lemma 20 (Analyticity of the Hele-Shaw evolution operator)
The operator p defined by (3.56) is analytic near () from ffs“’”%(rg} to H*=3(Ty).

Proof: Note that the mappings » — (V,u(»))|r, and r — v(r) are analytic from H*+3(To) to
H<=%(Iy), respectively. The assertion follows from this by the same arguments as in the proof
of Lemma 19. B

Remark: From the point of view of the mapping properties in the scale of Sobolev spaces
{HY(T'9)}. the operators on the right side of the evolution equations for Stokes flow and Hele-
Shaw flow behave as differential operators of first and of third order, respectively. This explains
why the methods that have been used in Chapter 2 for the treatment of the Stokes flow problem in
2D cannot be used for plane Hele-Shaw flow: Operators of higher than first order are in general
not quasidifferential in scales of Banach spaces like { B, }, so the abstract Cauchy-Kovalevskaya
theorem is not applicable. O



Chapter 4

Existence results via linearization

The most important tool in the analysis of the equations (3.54), (3.56) is the determination and
investigation of the linear operator p;, representing the Fréchet derivative of p at 0. More pre-
cisely, the procedure for obtaining short-time existence and uniqueness results for the evolution
equations will be as follows:

o Identification of p; in terms of the corresponding fixed-time problem and differential oper-
ators on I'y

o Proof of coercivity estimates for —p;
o Proof that py generates an analytic semigroup
o Application of a general theorem on fully nonlinear parabolic equations to (3.54), (3.56)

In order to clarify the concepts and ideas of this approach before giving the technical details let
us start with the following outline:

Ina very informal way, the problems we consider can be characterized by the scheme in Table
4.1. Taking into account, moreover, that the linearization of the mapping » ~ (7} is in highest
order essentially given by the Laplace-Beltrami operator Ay, we find, for the leading-order terms
of p1, astructure that strictly resembles the scheme in Table 4.1. Namely, for the Stokes flow prob-
lem, we get the composition of Ap, with the (normal component of) the Neumann-to-Dirichlet
operator of the Stokes equations. On the other hand, for Hele-Shaw flow, we get the composition
of Ap, with the Dirichlet-to-Neumann operator of the Laplacian. The general theory of elliptic
boundary value problems shows that in these problems the operators on the boundary manifold
that assign to each other the Dirichlet and Neumann boundary data are elliptic pseudodifferential
operators of the “expected” order [87].

Thus, in both cases, the operator g; is (at least in highest order) an elliptic pseudodifferential
operator of order 1 or 3, respectively. It should be noted that for our purposes there is no need to
explicitly calculate their principal symbols because the coercivity estimates can be obtained in a
straightforward way from the coercivity of the underlying fixed time problems,

This discussion makes also clear in which (abstract) sense the equations (3.54) and (3.56) are
parabolic (although they are not even differential equations): The linearization of the right-hand
side generates an analytic semigroup (on suitable spaces). The equations are fully nonlinear (as
opposed to semnilinear, cf. [61]) in the sense that the nonlinear remainder term p — p; has the samce

65
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Stokes flow Hele-Shaw flow
Ay
. L . ‘. v
governing elliptic operator . A
N ‘
div )
Type of boundary condition ‘
in the fixed-time problem Neumann (7 (u, p)n) Dirichlet
Type of boundary data i ou
prescribing Vi, Dirichlet Neumann (5{{)

-Table 4.1: schematic comparison of Stokes flow and Hele-Shaw flow

properties as p with respect to “differentiation order”, i.e. concerning continuity properties in the
scale { H%(Tg)}.

4.1 Calculation of the linearizations

In the sequel we will use the term “first-order differential operator on I'y” for linear differential
operators { that are of the form | = (D + uh, where g € C°(T) and IV) corresponds to a
(*°-smooth tangential vector field on I'g, i.e. differential operators having smooth coefﬁc:ents
in any smooth local coordinate system. A linear operator mapping C>(T'g) to (C’“’(Fo)) will
be called vector-valued first-order differential operator on Iy iff all its companents are first-order
differential operators on ['g. :

‘We recall from Lemmas 6 (ii) and 16 that

v(r)= z ve(r,...,r), &k(r)= chk(r, ce )
k=0 k=0

and the Fréchet derivatives atof vand k at r = { are
v € £ (H'(To), (H*"'(To))™), 1 € £ (H*(To), H*~*(To)),
respectively.

Lemma 21 ( Lmearzzatwn of geometric quantities)
(i) The operator vy is a vector-valued ﬁrst—order differential operator on I‘g
(ii} We have

£1(r) = vArp,r + U(r),

where 1 is a first-order differential operator onT'y.
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Proof: (i) We use the same notation as in the proof of Lemma 16 and note that it is sufficient
10 show that the Fréchet derivative of the mapping r — v("™)(r) at r = 0 is a vector-valued
differential operator with smooth coefficients on W,,,. Differentiation of (3.49) with respect to r
at r = 0 yields, with obvious notation,

(m) : (aﬁ(m))T ) (P hC) 0 €M) T
v [h] = — ow —621;——-—) (™)
2n(m) 0

which proves the assertion due to the invertibility of

ag(m) T
( dw )
2n(m)

and the smoothness of £0™), ¢ 0 £(™} and n{™). ;

(it) Without loss of generality we can assume that r is smooth and small in C'(I'g). It will
be convenient to work with perturbations of I'y in normal direction, therefore we introduce on a
small neighborhood of T'g in RY the functions B and Z by

Bz} = *dist(z,I'g)

with positive sign for z ¢ Qg and negative sign for & € €g, and Z(z) € [y as the (unique)
solution of the minimization problem

| — 2| — min, ¢els.
Then clearly
z = E(z) + B(z)n(E(x))

and for sufficiently small » € C{T's) we have a parametrization of ', by

z=§+b:(En(f), £eTo,

where
b (2(€ +r(§)¢(8))) = B(E + r(€)$(8)). (4.D)

Note that (4.1) defines b, at all points of ['g, b, is smooth and small in C(T).
On the other hand, replacing the vector field { by n we can describe domains near I as

Ty: z=E+b(E)n@)

(cf. Lemma 5) and define £(6){£) for all § € Ty as the curvature of T in the point £ + b(E)n(&).
It is clear that the mapping b — &(b) enjoys the same local analyticity properties as the mapping
r + k(r). Denoting for the moment the Fréchet derivatives with respect to  and & at 0 with D,
and Dy, respectively, we find from

w(r) = R(b,)

by the chain rule
kilh] = Dyklh] = Dy&[D,b.[h]]. 4.2)
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In order to calculate the “inner” derivative we introduce the smooth function
O Pl
given by E, = E(€ + r{£)¢(£)). Using that = = I, is the identityon T'g and by = 0 we find
Db, = D,.(b,. 0Zg) = Dp(b, 0 E,) — Dp(bp 0 E,) = Dp(by 0 E,)
and from this with VB = n on I'p and (4.1) »
Db, [h] =

It remains to calculate Dy&. To simplify the notation we set for the rest of the proof { = n
which implies » = b, and the tilde can be omitted. Working with local parametrizations as in the
proof of Lemma 16 and taking into account that, in the notation used there,

onetn = (%) (%520)  (502) (%52,
- () (hri) (o) (%)
el s ! RN 4 (non agtm |
Dr(G™)[h] = EG%‘?DR(G?]()(O)-(’ w ) (aw )

we find that D,.g[h] and D,g*/[h] are computed by pointwise multiplication of # with a fixed
smooth function. :
The assertion follows from this by straightforward calculation, using (4.2) and the facts that

h — Ap,(hn) — (Ap,h)n
is a vector-valued first-order differential operator on I'y and
h— Ary(vh) —yArh

is a first-order differential operatoron . M :

After this preparation we can describe the structure of the linearization both for Stokes flow
and for Hele-Shaw flow.
Stokes flow ;

In the notation of Lemma 17 we find from (3.54)

( e -um)) )+ 20w (o),
0

pi(r)

B 0 ‘ _ u(0)
u(r) = p—ﬂlg(g}-l gy {r)n +G’€(G)V1(") — Ly(r) | p(0)
° 0

0
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writing I1; for the canonical projection of X, onto its first component (H* (Qo)) " and using the
fact that A vanishes for the solution of the fixed-time problem. Hence, using Lemma 21 (ii) and
the operator S as defined in (3.31), (3.32)

pr=pi+h+1, (4.3)
where
pilr) = n-S(Ap,rn),
b = (<1520 L) ni,
0
1 ~ 0 u{0)
lo(r) = -n-|Trl;L(0)"! k(0)wi(r) | = Li(r) | p(0)
LA 0 0
0

+;71~n -S(yAp,rn)—n- S(Ar,rn).

From the regularity results on the fixed time problem (Lemma 11) and the smoothness of Ty it
follows that 4{0}|r, is smooth, hence we find from Lemma 21 (i) that [ is a first-order differential
operator on Tp. Furthermore, the commutator property of S (Lemma 12 and the remark after its
proof) together with Lemma 21 (i), Lemma 17 (i) and the fact that p(0) is also smooth yields

lo € £ (H*=#(To), H*3 (') (4.4)
forall s > 2+ %

Hele-Shaw flow

In the notation of Lemma 18, we find from (3.56)

pin= (- 5Bk 4 27u0) ) i+ (d0 5|

1
1+ —-é}-ui ) (4.5)
ro 7 dn

with
A (T1(r¢))

a{i(r} = al'i

. . N
where 77 € £ ((HQ(I‘Q)}N ) (H"+5(QO)) ) (o > 0)is the fixed inverse of the trace oper-

ator that has been introduced in the proof of Lemma 5, and

=207 ([ 0 ] - Biow).

Summarizing and using the operator S defined in (3.37) we get from the Lemmas 13, 18 (i), and
21 that

7= Sarp, + b (4.6)
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withl; € £ (H“‘z(rg) H*~ 2(I‘g)) foralls > 24 5 £ Here we have used the fact that the
operator

b ;S’yApoh — SAr.h

is a pseudodifferential operator of order 2 because of the commutator properties of S.

4.2 Coercivity and generation results

As we are exclusively concerned with linear operators in this section, we will follow the usual
notational conventions and omit the brackets around the arguments of linear operators like py, [,
{5 etc.

Lemma 22 (Coercivity of —p; for Stokes ﬁow )
Let py be gzven by (4.3). Forall s > 5 + & there are positive constants ¢ and C, such that

2 2 :
(pir, e 2 il = G e € H(Dy).

Proof: Using the decomposition in (4.3) we will give the proof by showing the inequalities

. o2
@ Gorrl < Gl
(ii) (e, msl < Csnru“ )
(i) (—ptr,r)s 2 clhllw — Clfrllfe”.

(i) is immediate from (4.4) and the Schwarz inequality. To show (ii) we recall that /y is a linear
first-order differential operator on 'y due to Lemma 21 (i) and denote its adjoint in H%(T'g) by ;.
Partial integration on I'y shows that the operator [, + I is given by multiplication with a smooth
function. Using this, from j

(hryryo = ~(lir,r)o+ (L + 1), 7)g

we can conclude 1
[(tr,rYol = 5 (5 + )7 7)ol < Clrle”

and further, using that A*l; — [} A* € £ (H%(To), H*(To))
e, 7)s] = (A%l — DA%, Ar)o] + (11 AP, APr)ol| < C,llr[|r°2.

To show (iii) we recall that p r = u-n, where (4, p, A) is the solution of the varlauonal problem
(see Section 3.2)

alt, v) — fn pdivvcix-t—,\Tgol(v)

M pa(v) = fo, Aryrn-vdl Voe (H{Q)Y
divu = 0 “.7
g&l(’&) = 0.
tpg(’t},)' = 0.
From (3.21) we find ] :
IMlgn v < Cllﬁrn?‘ nllZ% < Clirllye. (4.8)
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Setting v = w in the first equation of (4.7) and applying the ellipticity of a we find

(=eirrhi = (pir, Arer)o — (pi7, 7)o 2 / i-n Ap,rdl = Clrlf}*"

To
. I'p? L5t ? re?
= afu, @) - Cllr|l," 2 dlally* = Cllrll;" (4.9
On the other hand,
s < (hanr + i)
< C  sup (/ Arorgodf~+-|]r[|g°) 4.10)
peH3 () 1o
lelly*=1 -

and we proceed by estimating the integral in the last expression for arbitrary ¢ € H B (To) with

ll||5° = 1. At first we define the mean value

1
= e wdl’
ITol Jr,

and note that

Ill}* < Clel < Clielly® < C.
We consider the Neumann problem
e _ L
[ @.11)

/@d:{: = 0
o

and set v, = V®. We get v, € (H())" and
lealiy® < i@l < Clle -1y < €.
Setting now v = vy, in the first equation of (4.7) yields

f Ap,redl = Ar,rle—3ydl = | Apgrn-v,dl
To Ty To

alu, vy) + )\{\Pl(l‘@) + A§¢2(W¢)
C (e + Nlgw, g <€ (Il +1r115°) . @12y

where (4.8) has been used. Hence, together with (4.10),

f

i

IA

ry? A 2 I'g?
Il < ¢ (I + 1el5e)

and with (4.9) )
2
(pir, > ellrll3 = Cllrlly”
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The inequality (iii) follows from this, using the commutator property
PINT! — A*TYpt € £ (H'(To), H'(To))
as in the proof of (ii). B

Lemma 23 (Coercivity of —py for Hele-Shaw flow)
Let py be given by (4.5), s > 2 + L. There are positive constants ¢ and C, such that -

2 2
(=prrir)s 2 ellrlls s = Collrllsy,  Vr € H¥3(To)
Proof: Because of (4.6) and

2
(tar, sl < arly2lIrilyS < Collrllss,

it is sufficient to show the above coercivity estimate for —SAr,. As a first step, we give an ele-
mentary H°(Tg)-coercivity estimate for S, Forany ¢ € H H (Ta), let @ be the solution of

A = 0inQo,
&lro = g
and set '
u_u-——lm— tdz
Q0] Ja,

Then S¢ = % and by the well-known “dual estimate”

lallS* < Cllel,
{see e.g. [59]) we have

~ 1182
fladly®

IA

02 . €02 002 Qe
C (e’ + i - wlf*”) < € (i’ +Hayge")
€202 I'e 2
G (Iulf” + el ") -
Hence, \jsing the trace theorem,
02 PN 4 3 e 2 I'e? r
llly® 2 ellall,® —llelZy = elelly” —llell

and by the Green formula and the Poincaré inequality

IA

2

- 02 1,2 02 2
(Se.@)o = [ Vill® = Vully” 2 cllull*” 2 ellelly"” - Cliell™,
Using this, we can conclude

{(=SAr,r, 7)o

—(Sr, 7)o + (SA%r, 1Yo !
= —{Sr, r)o + ((SA — AS)Ar 7)o+ (SAr Ar)o
> dar - cprf”

and from this we get the assertion, using the fact that S is a pseudodifferential operator and the
same arguments as in the proof of Lemma 22. &

The assertions on the generator properties for the operator j; follow from the coercivity es-
timates by standard arguments.
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Lemma 24 {Parabolic character of Stokes flow)

Lets > 2+ % and consider py given by (4.3) as an unbounded operator on H*(I'y).

o
541"

(i) D(py) = H*¥YTy), and the graph norm on D(p;) is equivalent to ||-||
(ii) The operator py generates an analytic semigroup on H*(I'p).

Proof: We observe that due to the identity
(w0, v)s41 = (A%G,A%U)s-r% = (A™5(Au), A%”)sﬁ Vu,v € HFH(Ty)
the spaces H**1(T'g) and H*(I'p) are in duality with respect to the bilinear form

(,-): H*(Tg) x H*(Ty) — R

defined by
~1i L
{u,v) = (A77u, A%v) 40
Note that
{u, v} = (u,v)41 Vu € H't3(Ty). 4.13)
From Lemma 22 we have that for all sufficiently large real w
2
{—p1 +wr,r)3+% > c][rﬂfil VYr ¢ H""%(I‘g) (4.14)

and from this and (4.13) we get by a continuity and density argument
.2
(=1 4wy 2 crlly,”  ¥re HPY(T)
Hence, by the Lax-Milgram lemma, —py +w/ is an homeomorphism from H*+1(T) to H*(Ty).

If we suppose now r € H*{T'g) and pyr € H*(Ty), then (—py +wl)r € H*(T;) and thus
r € H**Y{T) and

155 < G (ol + 1) < CalleliTs
This proves (i).

To show (i) we complexify the space H?(I'y) and the operator p; in the usual way, with the
scalar product in the complexified space H*(I's )¢ given by

[ + fug, vy +iva]s = (ug, v0)s + (12, v2)e + 1 ((uz, v1)s — (1, v2)s)
(u;,v; € H*(I'g)). Itis sufficient to establish that for a certain real w > 0 the operator
A=p ~wl

generates an analytic semigroup on H*{T'y), the result for py = A + wI follows from this by a
well-known perturbation result (e.g. [74] Theorem 11.37). We choose w to be large enough to
ensure (4.14) with s replaced by s — 3. Then

Ty 2 V?‘G H3+l(r\0)

{(Ar,r); < —e||r] a4l
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and, by arguments analogous to the ones in the proof of (i), the positive real axis belongs to the
resolvent set of A. Furthermore, we find forall z = u + iv € H*(To)g, u, v € H*(Ty),

Re[Az, 2], = (Au,u); +(Av, v}, € —¢ (Huﬂﬂ.x + lh’”s-&-é ) €0,
fimfAz el < [ 0]+ A0 )] < w2l + 40162l
2
< O, 0l < © (i’ +10l,) < ~CRelaz. 4],

i.e. the numerical range of A
{[Az,z]s I ZE H"H(I'o)@}

is contained in a sector of the left half complex plane whose opening angle is smaller than =. By
Proposition VI1.3.2 in [62], this implies the generation result for A. ®

- Lemma 25 ( Parabalic character of Hele-Shaw flow)
Lets > 2+ 5 X and consider p; given by (4.5) as an unbounded operator on H*(I'p).

()D(p1) = H‘+3(Pg) and the graph norm on D{p,) is equivalent to ||- Hs+3
(ii) The operator py generates an analytic semigroup on H*(T'p).

Proof: The proof can essentially be given in analogy to the proof of Lemma 24, so we restrict
ourselves to the indication of the necessary changes.
Due to the interpolation inequality

iir[lm <ellrllys Gl

holding for all positive ¢ we can infer from Lemma 23 |

2 ? -
(o) 2 il - Clirllet vre BT, @.15)
(i) can be proved now using the duality between H*+3(T'g) and H*(T's) given by the bilinear form
{-,): H*(Do) x H**3(Ty) — R

defined by
{u,v) = (A~ 7w, A%”)s-ﬁ»

The estimate (4.15) with s replaced bys+ 3 3 vields D(p1) = H**3(Tq) inthe same way as in
Lemma 24.

To show (ii) weyconmder again an operator A = py — wli with sufﬁcxently large w € R and
estimate, based on (4.15),

2
Re[dz,2l, <~ (|ull}2y +llelllss ")
1Az, 2Ll < (4wl lleTs + A0l s ll52 5 < Ul s el T

IA

3'{'3

and the generator property of A follows as above. B
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4.3 Existence results I

The favorable properties of the linearization p) obtained in the previous section enable us to obtain
(short-time) existence and uniqueness results on the initial value problem

or

% = pr)

ot (4.16)
r(0) = o,

both for Stokes flow and for Hele-Shaw flow, by invoking a corresponding theorem on abstract
fully nonlinear parabolic equations [61].
We start with a preparatory lemma that generalizes the previously obtained results on

p1 = p'(0) to p’(r) for all sufficiently small r.

Lemma 26 (Generation properties of p'(r) for smallr)

Lets > 2+ %’—

(i) (Stokes flow)

Let p be given by (3.54), D) = H**1(T'y). Thereisa § > 0 such that for all ¥ € Bo(6, D)
the operator p'(r} € L (D, H*(T4)), considered as an unbounded operator on H*(T')}, satisfies
D (r)) = D, the graphnormonD{p'(r)} is equivalent to ||-|| p, and p'(v) generates an analytic
semigroup on H*(T'g).

(ii} (Hele-Shaw flow)

Let p be given by (3.56), D = H**3(Tq). Then the same assertions as in (i) hold.

Proof: (i) We recall that p'(0) = p; and that the mapping » — ¢'(r) is continuous near 0 from
D = H**+ (To)to L (H**+(To), H*(To)). Hence, forany fixed 7 € By(6, H*+*(Tq)) we have,
using the same notation as in the proof of Lemma 24,

(=p'(r)[h], Ay = (=pih, k) + {=('(r) — p1)h, h)
2 2 ; ) o 2
> Rl = Gl = 116 (r) = pulleqa s+ ooy aeronl LS,
> Sl - Cellnle” (417

for sufficiently small 8, where Lemma 22 has been used. Based on this estimate the assertions on
the domain of definition and the generation of an analytic semigroup can be shown as for py in
Lemma 24.

The proof of (ii) proceeds analogously, based on Lemma 23. &

Following [61], we introduce weighted Holder spaces of functions of a real variable with val-
ues in a Banach space X. These spaces are designed to handle the singular behavior of the func-
tiont — e’z mapping an interval (0,77 into D(A) fort | 0, z ¢ D(A), where {e'4} is an
analytic semigroup.

Fora € (0,1),a,b € R, e < b,1et C% ((a, b], X ) be the linear space of all bounded functions
f: (a,b] —> X for which

Flesiap.x) = S £ floatlate ), x) < 20,
where t
[.ﬂC‘*([c,b],X} — sup Mll ((l e < b)

cLs<tLd (t - S)a
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C% ({a,b], X) is a Banach space under the norm given by

I fllesta,n.x) = Sup IF®lx + Seganx)- |

Proposition 4 (Existence theorem I)

Lets>2+ %
(A) (Stokes flow)

Let p be given by (3.54), D = H**+Y(Ty).

(i} (Existence)

There are positive real constants 6, T depending only on s and Uy such that for all
re € By(6, D) the problem (4 16) has a solution

reC(0,7),D)nC' ([0,T), H*(To))n ] Ca((o, T] D).

0<a<l

(ii) (Unigueness}
This solution is unique in

|J ¢, 1, Dync(o,7), D).

O0<ai

(iii) (Time regularity)

The mapping t — r{t) is analytic from (0, T) into D.

{iv) (Dependence on the initial value)

For all o € (0,1) the mapping rq — r is analytic from Bgy{é, D) into C2 {(0, T, D)
(B) (Hele-Shaw flow)

Let p be given by (3.56), D = H**3(T'g). Then (i)~(iv) also hold,

Proof: The assertions (i) and (ii) follow from Theorem 8.1.1. in {61]; the assertions (iii) and (iv)
follow from Theorem 8.3.9, in [61]. To see this, we have to set X = H*(T'g), O a sufficiently
small neighborhood of 0 in D, @ = 0,7 = 0, F(u,t) = p(«) which yields A = p;. The smooth-
ness of F' in u follows from Lemma 19 in case (A) and from Lemma 20 in case (B). Our evolu-
tion problems are autonomous, hence the assumptions on Holder continuity of F' and its Fréchet
derivative with respect to u in ¢ are trivially satisfied with any & € (0, 1). The compatibility con-
dition F(@,f) € D is clearly valid because in our cases D is dense in X . The crucial assumptlon
on the parabolic character ((8.0.3) in [61]) is satisfied due to Lemma 26.

We will confine ourselves here to a sketch of the basic approach vsed for the proof: Any so-
lution of (4.16) is a fixed point of the operator I' defined by ‘

(Tr)(#) = e*Pry +f0 =71 (p(r(5)) — p1(r(s))) ds.ﬁ

Based on a detailed study of the operator

[ /03 et~ f(s) ds

in the weighted Holder spaces defined above it is possible to show that I' is a contraction on the
metric space

Y = {u € Bo(,C2 ((0,T], D)) N C([0, T}, D) | u(0) = ro}
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if ¢ and T are chosen small enough, and the existence follows from the Banach fixed point theo-
rem. Very loosely speaking, the assertions (ii)~(iv) are proved analogously to the corresponding
results for ordinary differential equations, based on the analyticity of p. W



Chapter 5

Further results via
quasilinearization

The results on the solution of (4.16) obtained in the previous chapter appear to be not quite satis-
factory in a number of respects. The analytical tools are relatively complicated, uniform estimates
To . . . X .
for ||r(t)||,© are not easily available, and no results on higher space regularity could be obtained
although we expect r(t) € C°{Tg) for all t > 0 due to the parabolic character of the evolution
equations under consideration, even if o has finite smoothness only.
These drawbacks can be overcome for evolution equations

& = F(w)

where F is a quasilinear operator. {The restriction to autonomous problems in this informal dis-
cussion is just for simplicity of notation.) In an abstract setting, the quasilinearity of ¥ can be
described in the following way (cf. e.g. [30, 49]): Let Xy < X < X be three Banach spaces
with continuous and dense embeddings, X; <& X». F 1 X2 — X iscalled quasilinear iff there
are continuous operators

A X1 — ﬁ(XQ,X)

G: X1 et X

such that
F(u) = A(w)u + G(u). (5.1

{Depending on the situation, stronger smoothness assumptions on A and G have to be made in
~many cases. Moreover, A and G may be defined only on some open set in X;.) The parabolic
character can be characterized here by the demand that A(u) generates an analytic semigroup on
X, at least for all « in some open set of X,

Our approach does not provide a decomposition of the form (5.1) for the operator p.! To take
advantage of a quasilinear structure in spite of this, we will use a quasilinearization technique, i.e.
we will replace the original equation by a system of equations for r and spatial derivatives of »
up to a certain order. This system is quasilinear, and a priori estimates, solvability, and regularity

11t has to be mentioned here, however, that for Hele-Shaw flow the very similar approach in [30] actually leads to a
quasilinear evolution equation. This is due to the guasilinearity of the operator 7 + k(r).

79
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of the solution can be shown in the usual way. This method was introduced by Eidel'man ([26],
L.4). ;
In the actual considerations below, the quasilinear system will not occur explicitly. In order

to clarify the basic idea as well as an important difficulty that we encounter let us first ook in an.
informal way at the following model problem: Consider the fully nonlinearievolution equation

Cug = f(x, uge) onR
with smooth f : R? — R. Differentiating this equation with respect to"the space variable z
and writing v = u, we get the equation ‘ 7
vy = 01 f(z,0:) + 02 f(2, Vs ) Ve 5.2y

which is quasilinear (in appropriate function spaces) because v, occurs only linear on the right-
side. , .

Needless to say that the chain rule has been used to find (5.2). Note, however, that its appli-
cability depends on the special structure of the operator u ~— f{-, uz.(-)) while in the case of
general (nonlocal) operators u +— F(u) there is no obvious link between (F'(u)), and u.. Such
a link can be established, however, if F' is Fréchet-differentiable and satisfies the assumption

ThoF =FoTy vheR, (5.3)
where T}, is the translation operator on R defined by '
Thu(z) = u(z + h),

i.e. F is equivariant with respect to translations. Differentiating the equation

ThF(u) = F(Thu) ‘

with respect to h at A = 0 we find |
(F(u))s = F'(u)[us], (54)

i.e. a “generalized chain rule”. This name is justified by the fact that (5.3) is a weakening of the
assumption made for the usual chain rule, namely that F(u)(z) = f(u(z)), and (5.4) specializes
to (F(u))z{x) = f'(u(z))uz () in this case. V '

The crucial idea for the application of this approach to the operator p is to use the rotational
invariance of the fixed time problems for the derivation of an equivariance relation analogous to
(5.3). Consequently, the corresponding generalized chain rule holds for the differential operators
generated by “infinitesimal rotations”. The estimates that are made possible by the quasilineariza-
tion rely on the fact that these differential operators can be used to define equivalent norms on the
spaces H*(I'g).

Hence, the program to be carried out in this chapter is the following:

o Proof of a generalized chain rule in an abstract context

» Application of this to the operator p; note that here an additional assumption (Assumption
1) on the geometry of I'y has to be made

s A priori estimates in the norms of H°(Tg)
o Existence proof based on Galerkin approximations

» Proof of the smoothing property, based on 2 bootstrapping argument.
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5.1 A chain rule for equivariant operators

As we are concerned here with invariance and equivariance with respect to a group of motions, it
is natural to formulate the abstract result in the context of Lie groups and their representations on
Banach spaces. .

Let G be a finite-dimensional Lie group, G its Lie algebra, ay, ..., a; a basis of G and for
i=1,...,dlett — e~ ' he the one-parameter subgroup of G generated by a;. Let X and Y be
Banach spaces and let

U: G — LX)
Vi G — L(Y)

be strongly continuous representations of (¢ on X and Y, respectively. We denote by DE %) and
Dgy} the generators of the strongly continuous semigroups of operators ¢ =+ [/{e~!®) and
t e+ V(e ') on X and Y, respectively. For the sake of brevity we will suppress the indica-
tion of the spaces X and Y in the notation for the generators.

For any multiindex o = (a; ... a4) € N? we define || = oy + ...+ a4 and

D% = D ... DY
Note that due to the structure equations of G we have
DiD; = D;D; =Dy d,5=1,....d,

and this implies
D*DP =D 4 3" CapyD” (5.5
rl<la+sl

for arbitrary multiindices o, 3.
By the Hille-Yosida theorem, the operators D; are closed, hence for all n € N the spaces

XM= () DD
laign

normed by

llullxen = 3 11D

laj<n

3%

are Banach spaces, and Banach spaces Y (%) are defined analogously. It is a routine task to check
that the spaces X (™), Y{") are, up to equivalence of norms, independent of the basis choice in G.
(See [76], Section 1.1.) From (5.5) it follows that if || < n, then D* maps X*) continuously
into X(®~1eD_ corresponding results hold for the Y (%),

We will consider a situation in which X and Y are spaces of real-valued functions on a man-
ifold on which the Lie group G is acting as a group of diffeomorphisms. In this case, the spaces
X and Y ) can be seen as subspaces of X and Y containing the functions which are *“n times
differentiable” with respect to the differential operators that constitute G. The following lemma
will make this idea more precise in the case where we will need it. We will work with Sobolev
spaces H*(SN 1) whose norms are defined as described in Section 3.1.
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Lemma 27 (A characterization for H* (S’N -1y

Let the Lie group G = SO{N) be represented by the rotations of RY around the origin.
For arbitrary s € Rset X = H*(SN- 1) U(g)u = uog. Then X(®) = Hs"'"(SN 1Y with
equivalent norms.

Proof: Let H = L?(SV~!) and note that U acts on  in a natural way as a umtary representation.
If we choose the basis in g such that (formally)

9 8
Dxigy = " Ga; i Gy

then we have ([92] p.13)

()
Y Dip=Asw-1p  Vpe (SN (5.6)
k=1

© Set )
A=3"Di DA)=HD.
k=1

Theorem 1.6.1 in [76] shows that the operator A is self- -adjoint. On the other hand, the restriction
of Agw-1 to the dense subspace C°(S¥ ~1) is essentially self- -adjoint (cf. theorem 31.1 of [88]).
Denoting this restriction by Ay we find from (5.6) that Ay C A. This implies Agn-: = A with
equality of the domains, and from Theorem 1.6.1. in [76] we find

H™ =D (Z\.%) =D (AEN,l)
with equivalent norms. The lemma follows from this by Theorem 3.17 in [29éﬂ. ]

Lemma 28 ( Regularzfy and a chain rule for equivariant operators} |
(JLetd C X beopen, F : U — Y K times Frechet-dgﬁ”erenttable n < K. If the
equivariance relation
V(g)F(u) = F(U(g)u) (5.7
holds forall v € U and all g near the unit element in G, then the restriction of F toUN X ™ maps
UN X" K — n times Fréchet-differentiable into Y, and for all o € N® and u € U N XD
one has the chain rule

ol

D Fwy=Y Y. Cp s FP)[DPu,..., D], (5.8)

k=1p1+ A Bk =

where only By # 0 occur and C, = 1.
(i) If, in particular, F is analytic nearug € U, then :}xere isan e > 0 such that the restriction
of F to By, (g, X) N X") is analytic and bounded into Y™ forall n € N.

Proof: (i} The proof of (i) will be given by induction over [a( Suppose u € U N X, By
assumption, we have for sufficiently small |¢t| and alli = 1,...,d

V(e " )F(u) = F({f(g'“‘)u).
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The right side is differentiable with respect to ¢ at ¢ = 0, hence the same holds for the expression
on the left, therefore F(u) € Y1), Carrying out the differentiation yields

D, F(u) = F'{u){Diu], i=1,...,d 59
The expression on the right is a K — 1 times differentiable function from &/ N X (1) into ¥, hence
all assertions are proved for |o| = 1. Inparticular, if k < K —land hy,... . hy € XU, then

FEu)lhy, ..., ki) € Y, and calculating the k-th-order Fréchet derivative on both sides of
(5.9) yields

(D; FYB )k, .. k) = DFE (W), .. ., ki)
k

= > F® [k, kg, Dby g, ]
i=1

+ FC+D Q) Dy, by, by (5.10)

forall Ay, ... ki € X which is easily proved by induction.

Suppose the assertions hold for all o’ with |o/| < m < K ~ 1, consider @ with jo} = m + 1,
w e UN XM+ We can write D¥ = D D* and apply the induction assumption to D"'F(u)é
Due to Dfu € XU for all 8 with |8] < |o’| we have D* F(u) € Y and (5.10) may be
applied. Rearranging the terms according to the order of the Fréchet derivatives and noting that
the expressions on the right are K — m — 1 times Fréchet-differentiable from & N X("+1 to
y (m+1) completes the proof of (5.8).

(i1) In view of the definition of the space Y(*) it is sufficient to show that the mappings
w > D% F(u) are analytic and bounded from B, (¢, X{™)N X (") to Y. The analyticity follows
immediately from the above remark on the analyticity of the Fréchet derivatives. The bounded-
ness of the F*) implies

IFS ()l cxryy < Ce Yu € Byg(e, X)
and if we demand {|u|lx iy < M, then
D ullx <CpnM  V¥B: |B]<n

and hence by (5.8) .
|D*Flu)lly € CR(CoM)* <C,M™ m

To apply Lemma 28 to our operators p, we have to show an equivariance relation (5.7). As
announced above, this will be based on the invariance of the fixed time problems under rotations,
i.e. we will choose G. = SO{N). Here, however, we encounter the following difficulty: Our
problem can be put in the framework considered above only if it can be formulated in terms of
functions on the unit sphere. Hence we have to make the following assumption:

Assumption 1 The reference domain Qy is strictly star-shaped, i.e. there is a constant zo € RN
and a strictly positive function Ry € C® (SN 1) such that

Ty = {Ro(0)0 + 0|0 € SV

We will assume that z¢ = 0. In this chapter, this can be done without loss of generality.
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In view of the rotational symmetry it is natural to choose

This obviously meets the demands on ¢ that have ‘been made in Section 3.1

Remark: It is enlightening to consider the meaning of the Assumptions 1 and (5.11) from a
geometrical point of view: From the proof of lemma 5 we recall that, in the general situation .
considered there, there is a small § > 0 and a C®-diffeomorphism ¢ given by (3.5) that maps
'y x (—6,8) onto some neighborhood V of I'y in R”. We introduce the smooth mapping

2V —1Ty

by £ = II; o ¢~1, where II; is the canonical projection of I'y x (~6, 6) onto I'y. Pick now
an arbitrary ¢ € V and an arbitrary skew-symmetric matrix €. For ¢ ranging in a sufficiently
small interval around 0, we have ¢!? € V. It is easily seen that the choice (5.11) ensures for
all possible z, @, and ¢ that Z(e*@z) depends only on Z(z) but not on the second component of
¢~ *(z). Consequently, a (small) rotation of I', around 0 generates a (local) flow on I'y which does
not depend on r. In the general case, this flow and the vector field generating it are depending on
7, and so the corresponding chain rule will involve nonlinear differential operators. Therefore we
will not investigate this general case but accept the geometrical restriction given by Assumption
1.0

The mapping @ : SV~! — Ty defined by ®(8) = (Ry(8) is a C*- diffeomorphism
between SV—! and T'g, hence the direct image map ®* defined by ($*)(8) = (®(6)) is an
homeomorphism from C™(L'g)} to C®°(SY¥~1) and from H?(To) to H(S¥~!) forall o € R.
Due to (5.11), we have for any sufficiently small r € H*(T'p)

T, = {6R(8)|6 € SN~} =T,

‘where R = ®*r + Rq. Moreover, we define differential operators f)j by tfansferﬁng the Dj; to
Fo:

{5.11)

Dij=0""'D;®*, j=1...(}).
Their compositions D are defined analogously to D, ' :
We are ready now to show some important properties of the nonlinear operator p-

Lemma 29 (Smoothness and a chain rule for p)

Suppose Assumption 1 and (5.11) hold, let n be a positive integer.
(A) (Stokes flow)

Let p be defined by (3.54), d = 1,s > 2+ -‘2,’— - %. Then there is an € > 0 such that the
Sollowing holds: ’

(i} p is analytic and bounded from

Bo(e, H*4(Tp)) N HH4(Ty)

1o H**™(Ty) foralln € N,
(ii) p is weakly sequentially continuous from Bo(e, H**4(To) )N H stntd (Fg) to H*+7(Ty)
for all integern > 1.
(iii) For alln € N, r € Bo(e, H*+4(Do)) N H*+"*+4(Ty), and o € NG with |a| < n we
have
lo) ~ )
Dep(ry=3 Z Coy,.pu PV (D° (4 Ro),..., DM (r +Ro)]  (5.12)
k=1 gy 4B =a '



5.1. A CHAIN RULE FOR EQUIVARIANT OPERATORS 85

with the same constants Cp, g, as in Lemma 28 and Ro = ®* ™' Ry,
(B) (Hele-Shaw flow)

Let p be defined by (3.56), d = 3. Then the same assertions as in (A) hold.

,,,,,

Proof: On a ball By, (6, H*+t4(SN 1)) with sufficiently small § > 0 we define the operators j
and v by

F(R) = @ p(r)=pod (R- Ry (5.13)
HR) = ®v(r)=®rod  '(R- Ry).

These operators are obviously analytic near Ry from H*+4(SM-1) to H*(SV-!) and
(Ho+d-1(gN -1 ))N, respectively. Taking the k-th Frechet derivative of (5.13) yields

FO(R)A, .. he] = @ p B ()@ T hy, ..., @ Ry (5.14)

forall hy,..., hy € H*T(SN-1),

As in Lemma 27, we consider the Lie group G and the same representation [/ of it on
H*(SN=1) as introduced there. The restriction of U to H**+4(SN -1} is strongly continuous due
to Lemma 27 and theorem 3.17 in [29]. Consequently, for any fixed R € Bg, (6, H*t4(SN-1))
there is a neighborhood V of the identity in SO({N) (represented as group of orthogonal matrices)
such that R o Q € Bg, (6, H*+3(§¥-1)) for all Q € V. Picking an arbitrary Q@ € V, we find
T'Rog = @ '['r] and hence .

HRoQ)=Q 'U(R)oQ.
We write

rq=®"""(RoQ— Ro)

and from the rotational invariance of the Stokes equations, together with the boundary conditions
and auxiliary conditions, we have in case (A)

@ (u(rg)lr, = Q7' (u(r)lr,) 0 Q (5.15)
with u defined by Lemma 17 (ii). Using this and (5.11), we get

p(Ro@) = @*p(rg) = hd (uétcé)_%g,;(fql;(m)
Q1o (u(r)|r) 0 Q - PR Q)
&*¢ - v(Ro Q)

Q7O (u(P)ry) o Q- Q7 IHR) 0 Q

Q71O CoQ - QH(R)eQ

- {u(r)ir, - v(r)

- o (M) -0
= " p(®* (R~ Ro))oQ=pR)oQ. (5.16)

The equality between the first and the last term of (5.16) holds also in case (B), and the proof is
analogous; we have to use

P* ({\7?@ u("Q)){Fo) = Q~lq)* {(V,ru(r)ir,) o Q
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instead of (5.15), with v and V,. defined by by Lemma 18 (ii) and (3.55), respectively. Setting
X = HH(SN-1) Y = H*(SN-1), U(g)u = V(g)u = uog, F = j and applying Lemmas
27 and 28 (ii) we find analyticity and boundedness of p from

380(6) Hs-kd(s;N-l)) N Hs+d+n(sN-1)

to H**+7(SN-1), and (i) follows from this because of p(r) &*~15(9*r + Ro).
Lemma 28 (i) yields :

lof |
paR)=Y. Y o shP(RDR,...,D*R]
: k=184 +Px=a

for all R € Bp,(6, H**4(To)) N H*¥4+7(Ty). This implies (iii) as can be seen by setting
R = ®*r 4+ Ry, applying ® ~' on both sides and using (5.14) and @*"Dﬁ = D?®*~! for
arbitrary multiindices 5.~ j

In the sequel we will use the notations r, 2 z fornorm convergence and ZTn X & for weak
convergence in the (Banach) space X.

In order to prove (ii), consider an arbitrary sequence

{ra} C Bole, H*+4(To)) N H*+"+4(Ty)

‘ Fets
such that r,, . (To)

r*. We chooseao € (2+ & — £, 5). Due to the compactness of the
embedding «

H:{-n-{-d(rg) Gy H”’”“i(l‘g)

HOT)

this implies ry, and thus by (i)

p(ra) T 0y, G

On the other hand, {r,} is bounded in H*+"+4(T'g) and thus by (i) {p(rs)} is bounded in
H**"(Tp). Consider now an arbitrary subsequence {p(rn+)} of {p(rn)} such that

Hs+n(r .
p(rar) = — 0)9 : j

This implies, by compactness of the embedding H*+"*(D'¢} —seus HoH ('),

Ha+n(r» *
plrar) 2

and thus by (5.17) p* = p(r*). Hence we can conclude ([93), Proposition 10.13 (4))
HoP™(T .
p(ra) T2 ). m

5.2 Existence results I1

In view of the chain rule which has been proved in the previous section, it will be advantageous
to work with norms which are generated by the differential operators I);. As we are dealing only
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with the manifold [y in the sequel, the tilde will be omitted. In order to avail ourselves of an
Hilbert space structure, for fixed ¢ € R we define for n € N Hilbert spaces H%™(I'y) by the
scalar product

(4, V)00 = Z (D%u, D*v) ge(py)-
lalgn

By Lemma 27, we clearly have H*™(T) = (HS(I‘O))(”) = H**¥"(Ty) with equivalence of
norms. Note that
(uyi’)a,n = (Sa,nu; U)o,
where
Son = X (0 420D 519
lat<n
is an elliptic pseudodifferential operator of order 2{c + n).

In the following lemnma we take advantage of the chain rule: Although our approach has not
provided a decomposition of p as a quasilinear operator, we obtain one for the operators D% o p.

Lemma 30 (Quasilinearity of D% o p)

Suppose Assumption 1 and (5.11) hold, let o be a multiindex with 0 < |a} < n.
(A) (Stokes flow)

Let p be given by (3.54), d = 1. Supposes > 2+ %,_ - %.

(i) We have the decomposition

Dep(r) = p'(r)[Dr]+ Galr), 7€ Bole, H** (L)) N H (T

for sufficiently small > 0, where G maps Bo(c, H*+4(o)) N H*+4410=1(T) analytically into
H*(T) and

. 2
1Ga(M;® < CoalllFlsjapea: + 1)

(it} If, furthermore, H"”i\id-;-l < K, then for all § > Q there is a constant Cy o 5 such that
2

IGa(r)I;® < 8lIrls2 aga + Crranktos:

(iti) If r, w € Bo(e, H*+4(To))N Bo( K, HH4+121=Y(T)), then there is a constant Cy o i
such that - r
Galr) = Ga(w)l,* < Cs o rllr = Wl a410)-1-

(B) (Hele-Shaw flow)
Let p be given by (3.56), d = 3. Then the same assertions as in (A) hold.

Proof: The chain rule in Lemma 29 (iii) yields

Golry = p(r)[D°Ro)

|
+Y Y G mAPODA(r + Ro), -, D (r 4 R
k=251 4. +fe=a

We recall from Lemma 6 (ii) that the mappings r — p(¥)(r) are analytic from By(e, [1°t%4(T))
into £ ((H**4(Tp))*, H*(To)), hence G maps Bo(r, H*+4(T))NH*+4+7=1(T) analytically
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into H*(T'y), and

la]
[Ga(MI}° < Cia (1+Z > HD”'(MRo)IIM

k=284 4fp=a
”Dﬁk("'*'RO [Is+d) S ‘ (5'19)

To obtain () we estimate

|07 (r + Ro) 34 < Cuvallr + Roll L agerrs

where we used that [3;] < |a] — 1. On the other hand, we also have

k
h=3 18 < ol - 1.
i=2
.Taking into account that ‘
S+d+|ﬂj|=(3+d+h)@+(s+d)(1*@), J=2,...,k,
we find by an interpolation inequality

r r
” DP(r + 'R'O)"s:»d < Cialr+ R‘)”sidﬂﬂ,l

et L1l
A
Cs a”"'*’RDHHda»h ||7‘+7€0H5+d

<
‘and hence from (5.19)
¥
G2 < Coo (14 1Ir + RollF2apporr Nir +Rolll2s )
< Coa (IM2apiars +1)5

‘where we have used that R is a fixed smooth function and ]]r][s 1a <&
To obtain (ii) we note that |§;] < |a| for j = 1..., k and hence

s+l <o+ a+jahiEl e (s+d+%) (-,

from which we can conclude that there is 2 ¢ >  depending only on « such that

S+d+l,8jl$(8+d+la‘[-6)'lﬂ—jl+ (s+é+%> (1»133Ll>

le| i

Hence, by an interpolation inequality as in the proof of (i),

IGa(lls®

IA

k-1
Cua (1411 + Roll S aypapoolir + RollTars )

Coa (IIr + Rolll2uspat—o +1)

IA

I

Gt (1 ar1e0ce +1) < Bl ay + Co s
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for arbitrary 6 > 0, where in the last step another interpolation inequality has been used.
Assertion (iii) follows in a straightforward manner from

Gal(r) — Galw) = (p'(r) — p'(w))[D*Ry]
il

2 Y Com M) o @)D (w+ Ro), ., D (w+ Ro)]
k=28:1+.. +Pfx=c

i

k .
+ 3 DT Co 3 PPDP(r 4 Re), ., DO (4 Ry),
k=2081+.. +f8r= i=1

DPi(r — w), DP+1 (w + Ra), ..., D™ (w + Ro)]
and the Lipschitz continuity of the mappings pt*) from By(e, H*14(T'g)) to
L ((H*H4(To))F, H*(To)) .

The quasilinearity of the D”p enables us to give energy estimates for solutions of (4.16) in
the usual way.

Lemma 31 (Local a priori estimate)
Suppose Assumption | and (5.11) hold, s > 2 + % ¥

{A) (Stokes flow)
Let p be defined by (3.54), d = 1. There is an € > ( such that
(i) for all integer n > d we have an estimate

A 2 : 1
(P(),oim < Con (11155 +1) ¥ € Bo(e, B+ 3(Tg)) 0 Ho+7+4(T),
{ii) for all v, w € Bygle, H“"'%(I‘o)) N By(K, H""*“%d(ro)) we have an estimate

(p(r) — p(w), P — w)sa < Coxcllr — wlT%,.

(B) (Hele-Shaw flow)
Let p be defined by (3.56), d = 3. Then the same assertions as in (A) hold.

Remark: In view of the application given later, we emphasize that € can be chosen independently
of n. I
Proof: (i) By Lemma 30, we have

(p(r)mhom = Y (Dp(r), Dr)
fal<n

(p(r), s+ 3 (P (D), D7r)s 4 (Ga(r). D))

1<faf<n

I

and estimate the terms on the right hand side separately. Due to the analyticity of p near 0 on
H*+%(T'y), we immediately have

(A7), 7)e < I Il g < ColrllF s
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From the proof of Lemma 26 we recall (cf. “.17m

(¢'(n[D*r], D7), < —CsIlD“?’IIHe +ClIDrll S gy

and from Lemma 30 (ii) with s replaced by s — £, using that Irife ..y <eé,

s+5+3

(Galr), D7)s < IIGa(rE L ID°FIS 4 < (Bl 4 10y + Coos) IS 1

for any positive §. Carrying out the summation over «, we obtain
T 2 re 2 r
(P Phom < =iy )+ CollrlS gy + CablFIT2,y g + Comallrl T g 1
and after choosing a sufficiently small §

r 2 r
(p(r)dom < —elirlfey + Ol gyt Conlril g

"+ Gl

2
< —c[]r|| ot din—i + Cs .

s+ +n

In case (A) the assertion is immediate now, in case (B) it follows from the interpolation inequality

2 2 o2
1P gy < BT 4+ Comllrll
with sufficiently small 8.
(ii) We have, using Lemma 30 again,
(p(r) = p(w), 7 — w)s,a = (p(r) — p(w), ™ — w);
+ > () = A @)[Dw], D (r — w))s

1€|afgn
+(p'(N[D*(r — w)], D*(r = w))s + (Ga(r) = Ga(w), D°(r — w)),}

and estlmate the terms on the right separately. Using the analyticity of p and p' near 0 on
By(e, H*+%(I)) and ||w|| $3q < K weget

(p(r) = p(w),r —w)s < lo(r) = p(wN; allr = wll}3 4
< Glr-wll,’,
((¢'(r) = A @)[D*w], D(r —w)), < Cillr = wll]3 41D wll[24
| x [[D%(r - w)llg3

< CKlir =l 4llr - w2

s+3a

and using the coercivity of p/(r) and Lemma 30 (iii) (with 5 replaced by s — Q +3)

PP -0, D —w)s < == ulley + Cullr =l
(Ga(r) = Ga(@), D*(r=w))s < [[Galr) = Galw)lF% 4, 1D (r = w)lIFs4_,
< Coxllr=wlifge "
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Summing up and using an interpolation inequality in case (B), we get

T 2 2
(p(r) = p(w),r —w)ea < =cllr—wlya, +Corllr—wll}§s, .
2
< Coxlr—wlsy . m

Remark: In the Stokes flow case (A), the fact that p is a first-order operator has an interesting
consequence: Using Lemma 30 (i), we can estimate (under the same assumptions as in Lemma
31

(Ga(r),Do‘r),

IN

r r r 2 r
IGa(rIE DI < Coa (Il 0y +1) 1T

T 3
Coa (Il +1)

IN

Consequently, we get an estimate

(o), P)sn < Con (W17 4 1)

just by using
2
(o' (r)[R), h)s < GBI,

i.e. withoutusing the coercivity of the linearization. This indicates the possibility of applying our
method to related nonlinear first-order hyperbolic evolution problems. In case (B), however, the
coercivity of the linearization is needed to keep the nonlinearity under control. O

The a priori estimates given in Lemma 31 strongly suggest the application of Galerkin ap-
proximations for the existence proof, proceeding essentially as in the proof of the of the abstract
Theorem A in [50]. However, due to the local character of all our considerations, the operator p
is defined and has the necessary properties only for arguments which are small in a fixed Hilbert
space. Hence, we will have to control the growth of the Galerkin approximations not only in one
fixed space but in two different spaces of the scale { H?(I'g)}. The following lemma which gen-
eralizes the idea of diagonalizing the Gram matrix provides a preparation for this.

Lemma 32 (Orthogonal basis for a pair of Sobolev spaces)

Let 01,02 € R, ny,ny nonnegative integers such that no + 09 > n1 + 1. There is an
orthonormal basis of H7+"1(T'y), consisting of smooth functions, which is an orthogonal basis
for Ho2"2(Ty).

Proof: We recall the definition of the operators S, ,, as given in (5.18). The unbounded linear
operator S on H?1"1(T), defined by

D(S) — H2(r/z+nz)—01—n1(ro)}
S = S8

g1,m1~02,N2

is easily seen to be symmetric on H?*"!(T'g) and it is an elliptic pseudodifferential operator of
order 2(oy + n2 — o1 — n1). Hence R(S) = H?"1(I'g) and thus (cf. e.g. [88], Satz 17.6(b)) S
is self-adjoint. By Rellich’s theorem, the compactness of the embedding

H02,n2(F0) ey Hvl,nl(r‘o)
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implies that S has a purely discrete spectrum and thus a complete orthonormal system of eigen-
functions {e; } which is obviously an orthogonal basis of H?2"2(T;). The smoothness of the e;
follows from elliptic regularity theory. ®

As in [50], we will use the notations I'T" for the interval [0, T] and C\, (IT', X), C»'j,( IT.X)
for the space of weakly continuous and weakly (continuously} differentiable functions from IT'
into the Banach space X, i.e. g € CL(IT, X) iff the mappmgt = {p, g(t)) isin C( IT) for all
pe X,

Proposition § (Existence theorem I}

Suppose Assumption 1 and (5.11) hold, let s > 2 + 5 a
(A) (Stokes flow)

Let p be defined by (3.54), d = 1. There are positive constants € and T dependmg onlyons
and Uy such that:

(i) Forany integern > dandanyrq € Bo(e, H>HTo))NH**"(T) the m:tralvalue problem
(4.16) has a solution

r € Co(IT, H**"(To)) N Cy,(IT, H**"~%(T))
H:+n(r\o)

withr(l) = — " rpast— 0.
(ii) For any ro € By(e, Hs’d(l"o)), (4.16) has at most one solution in

CHIT, H+4(To)) N L=(IT, H*+#4(Ly)).

(B) (Hele-Shaw flow)
Let p be given by (3.56), d = 3. Then the same assertions hold.

Proof: (i) The proof of (i) can be given as a modification of the proof of theorem A in [S0]. The
correspondence with the notation that is used there is as follows:

A(”t) = P

(VH XY = (HF™(00), (L), HH=9(To)}
stntdd gdn~d

{u, v} (S’ﬁﬁ,{*"s u,Sfﬁ,i“j v) .

0

Hence {u,v) = (u,v);,0 forall u,v € H*™(Ty), ie. the triplet {V, H, X} is admissible. To
avoid ambiguity, we will keep the notation as it has been used previously.
By Lemmas 31 and 29 (ii) we can choose ¢ small enough to ensure that

(p(r)mea < Cr(L+IFIES), (5.20)
(p(r);7)sn £ Com (1+ilrll§;2), ' (521

(p(r) — p(w),r —w)sa < C,

IA

A

_ Do ?
S5 S, lIr — wll,% (5.22)

for all r,w € Bo(2e, H*4(y)) N H*I™([o) and p is weakly sequentially continuous on
Bo(2e, H*4(Ty)) 0 H*+™(To) into H*+7~4(Ty).

By Lemma 32 there is an orthonormal basis of H*4(T'g) which is also an orthogonal basis
{e;} of H*™(I'p). Let P; be the orthogonal projection in H*4(T'o) onto M; = span{er, ..., ¢;}.
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Clearly the restriction of P; to H*"*(T) is the orthogonal projection onto M; in H*"(Ty). For
all positive j € IN we define the Galerkin approximations r; as usual by

% = Pip(r;),  ri(0) = Pjmo. (5.23)

We have to prove now that there is a T' > 0 independent of n and a constant K~ such that
()l < 2 WeITYjEN, (5.24)
Iri@I:% < K VteITVj€N, (5.25)

the assertion (i) will follow then by the arguments given in [50]. Consider the unique solution m
of the initial value problem

3]

o sciiem. 0=
where C7 is the constant from (5.20) and choose T to be the (uniquely defined) positive number
for which m(T) = 4¢%. At first we will show (5.24). Suppose the opposite: This would imply

that for some j there is a 7™ € (0, T") such that
TS o
I (T)s5 =26, Mr(@)ll,5 <26Vt e0,T).
On IT* we get from (5.20) the differential inequality

d o 2 . r, 2
= (I @Is") < c; (1 oIy
and integrating it and using the strict monotonicity of m we find
2
i (Tl < m(T") < 4¢?

in contradiction to the definition of 7. Hence (5.24) holds, and on the basis of this (5.25) can be
proved analogously to (5.24), using (5.21) instead of (5.20).

(i) Suppose r1, 7y € CH(IT, H*+4(Tg))N L (IT, H*+%4(Ty)) are two solutions of (4.16).
From (5.20) one concludes ||7’1(t)||£,°d: ||rg(t)||50d < 2¢forallt € IT withacertain T > 0 in the

same way as (5.24) was proved above. Thus, (5.22) together with ry, 7o € L (IT, H5+%d(1“0])
yield

d o 2 ry 2

= () = r2IET) < Crvaslirs(6) = a1
for almost all ¢ € IT', and from the Gronwall inequality follows r(t) = v(¢) forallt € IT. ®m
Remarks:

1. We want to emphasize that the initial value 7 is not assumed to be small in H*"(I'g) and
that no smoothness is lost on the whole existence interval 7. Such results are not easily
obtained by the methods for fully nonlinear equations that have been used in Section 4.3,

2. Taking into account that Cy, (IT, H*(Io)) C C'(IT, H? (o)) for s > o due to the com-
pactness of the embedding H*(I'g} —— H?([g) and C, (IT,X) C LT, X) for
any Banach space X due to the Uniform Boundedness principle we find uniqueness for the
solution of (4.16) obtained in the proof of (i) if rp € HH'%d(Fg).

3. If the initial values are supposed to be bounded in a slightly higher Sobolev norm, then, for
fixed t € IT, Lipschitz-continuous dependence of r(t) on the initial value ¢ in a lower
norm can be shown in a similar way as in the proof of (ii). O
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5.3 Smoothness of the boundary

The quasilinear structure of the evolution problem (4.16) and its parabolic character enable us to
give a proof for the smoothing property of the surface motion laws we cons:der The basis for this
is the following abstract result:

Proposition 6 (Spatial smoothness for nonautonomous linear parabolic evolution equations)
Let D and X be Banach spaces, let D be densely and continuously embedded in X. For
to,t1 € R, tg < ty, consider mappings

A: [tOxtll_*s(DﬂX))
‘ f: [tu,h] . ¢
which are Holder-continuous with exponent v € (0,1). Assume that for alit € [to,1;] the norm

| - gy defined by ,
, llellagey = lAM=2llx +l=llx  Vz€D

is an equivalent norm on D, and A(l) generates an analytic semigroup on X.
Then, for any ug € X, the initial value problem

du
= Al f0

il

u(to) = g
has a unique solutionu € C"([to, 1], X) which for any § € (14,11) satisfies
u € CY([5,t1], X) N C7(6,T], D).

Proof: The proposition is an easy consequence of Theorem 6.1.4. in [61]. &
Remark: Proposition 6 is by no means an optimal result. For our purposes, however, it will be
“sufficient. O ‘
Using the chain rule and a bootstrapping argument, we can conclude from this that for positive
times the solution of our initial value problems are C°° -smooth: i

Proposition 7 (Smoothing property of the evolution)

Suppose Assumption 1 and (5.11) hold, let 5 > 3 + %
(A) (Stokes flow)

Let p be defined by (3.54), d = 1. There are positive numbers € and T, such that for any
solution of (4.16) which satisfies

o € Bq (¢, H*+4(T)) N By (¢, H*+1~1(Ty))

and ’
r e CHIT, H*+4(Ty)), (5.26)
we have
r € C}([6,T],C(T0))
foranyé > 0.
{B) (Hele-Shaw flow)

Let p be given by (3.56), d = 3. Then the same assertion holds.
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Remarks: The assertion is to be understood in the sense that the time derivative of r, taken in the
fixed space H**4¢(Tp), maps [6, 7] continuously into C*(Tp).

From Proposition 5 and the remark after it it is clear that assumption (5.26) is satisfied if a
slightly higher smoothness for »¢ is demanded. O
Proof: By the assumptions together with Lemmas 26 and 29, we can choose ¢ and 7" such that
the following properties hold:

e < 26 IOl G0y <26 VEEIT,

the mappings
pi Bo(2e, H*YH(Dg)) — HTH(To),
p:. Bo(2e, H*t4To)) n HFH (D) — H (1)

are analytic foralln € N, and forall r € Bo(2¢, H*+41(Ty))NBy(2e, H*+4(Ty)) we have that
p'(r) generates analytic semigroups both on H* “YTy) and on H*(Tg). Moreover, for
J=0,1,D(p'(r)) = HF4=I(Tq) if p'(r) is considered as unbounded operator on H*~7(T'y)
with equivalence of the graph norm and the original norm on H*7(T'g).

We arbitrarily choose v € (0, 1) and a strictly increasing sequence {6, } C (0, 4). Dueto the
Sobolev embedding theorems and Lemma 27, we have

C™(To) =[] CH(To) =[] H*(To)

with equivalent topologies, where the intersections are endowed with the projective limit topolo-
gies. Hence it is sufficient to show

DPr e CY([6,T), H(Do)) N C” ([6, 7], H'Y4(Lo))  ¥B: |8 <k (527

for all ¥ € IN. This will be done inductively. For k = 0, (5.27) is ensured by (5.26). Suppose
now (5.27) holds for £ = n. This implies

r € C ([6n, T), H*™(Lo)) N CY ([6,,T], HTH(Ty)) .

We pick an arbitrary o with o] = n + 1 and set u = D%r. By Lemma 30 we get that
u € CH([6,, T}, H*~}(To)) satisfies
d
-dﬁ = Alt)u+ f(t)
t (5.28)
u(by) = Dr(6n)

where, by our assumpﬁons, ;
At) = P(r(t) € C7 ([6,,T), £ (H***1(To), H*7'(To)))
NC7 ([6a, T}, £ (H* (L), H*(T0)))
flt) = Galr(t)) € C" ([6n,T], H'(Tq)).

Applying Proposition 6 withtg = 6,,¢; = T, X = H*"}(To), D = H***1(T) to (5.28)
yields D°r (6"_'*'56.’*_‘&) € H*(l'g). Hence, applying now Proposition 6 withig = 6n+2*5ﬂil ’
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ty=T,X = H*(To), D= H*F4(Ty) to
du

T = Alu+f)
u(éﬁ;nil) - D"‘r (6,.+§,.il)

yields
D?r € C* ([6n+1,T], H*(To)) N C7 ([6n41, T], H*+4(To))

which completes the induction proof.



Chapter 6

Extensions and remarks

6.1 Near equilibrium

We recall from Lemmas 14 and 15 that both for Stokes flow and for Hele-Shaw flow the stationary
solutions are given by balls of liquid at rest. These equilibrium states are, moreover, expected to
be stable and to occur as limit states of the evolution. This has a physical reason: they correspond
to the global minimum of the free energy. The aim of this section is to give a strict verification of
these expectations.

More precisely, we will show that if {(in an appropriate sense) (0} is near a ball, then the
solutions of our FBPs exist for all positive times and decay exponentially fast to the corresponding
equilibrium state. Results of this type have been obtained previously for Hele-Shaw flow with
N = 2in[20]. The approach via complex function theory and spaces of analytic functions which
is used in that paper is comparable to the one in Chapter 2 of this thesis.

‘The key idea in our discussion is to split the space H* (I'y) into eigenspaces of the operator py
that correspond to its negative and nonnegative cigenvalues, respectively. Working with a semi-
norm adapted to this decomposition and taking advantage of the fact that we linearize around a
stationary point will lead to estimates in which no lower order terms occur. On the other hand,
the a priori valid conservation of volume and of the center of gravity will be used to keep control
over the full norm in H*¥(I'g).

We recall the definition of wy from (3.29). Lemma 14 and 15 yield that the quantities
V = V({)and M = M(1) as defined by (3.38) are constant in time for any solution of the Stokes
flow or the Hele-Shaw flow FBP. By appropriate shifting and scaling we can assume without loss
of generality V = % and M = 0, i.e. the volume and the center of gravity of Q2(t) arc the same
as for the unit ball. To consider small perturbations of the unit ball, it is natural to set

Io=8Y"1 (=mn, (6.1)

i.e. we have y = 1, Assumption | holds with Rp = 1, and, with the notations of Section 5.1, we
have that @ and ®* are the identity, and Ry = 0. Therefore, taking the Fréchet derivative with
respect to v at 7 = 0 on both sides of (5.12) yields the exact commutation relation

D¥p1r = py D™r vr e Hetdtlelry), 6.2
In the special situation given by (6.1}, g1 has a simpler structure than in the general case:

97
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Lemma 33 (Linearization around the equilibrium)
Suppose (6.1) holds.
(A) (Stokes flow)
Let p and S be defined by (3.54) and (3.31), (3.32), respectively. Then

pir=n-S((Ar, + (N = )I)rn).

(B) (Hele-Shaw flow) )
Let p and S be defined by (3.56) and (3.37), respectively. Then

p1r = S{{Ap, + (N = D)Dr.

Proof: (A) It is easy to see that adding a fixed multiple of the normal vector to the right hand
~ side of the boundary condition in the fixed-time problem will only change the pressure but not
the velocity field. Hence we have, using the same notation as in Section 4.1,

0
0
u(r) = 'rrgﬂli(r)'l n(r)ov(r)

0

i 0

= ’I[rﬂli(r)'l (6(m)+ N = Dw(r) |. (6.3)
¢ 0
0

i

Fromx(0) = —(N - 1), v

1, and u{0) = 0 we find by calculating the Fviéchet derivative of
6.3) '

mr= n~S(x1m)

It remains to caleulate x;. We proceed as in the proof of Lemma 21 (ii) and denote by DF the
derivative of a quantity F with respect to r at r=0.Dueton = £ = ( we ﬁnd

DGR} = 2G(0)h,
D(G™H[A] = -2G(0)"'h.

Moreover, we will use the facts that x(0) is constant, Dv[h] is a vector field tangential to ' for

all h and, as before,
D(/D)H] = ~+(0)v/3(0)h.

Working with an arbitrary local parametrization, we obtain

D = 0 ()l (VIO Oz

i
e (PO 5 ) o
+\/{:—((—}§3wi (\/ng [ ];:,) "
e o (Ve wm?‘”) n+ Aryn - Dv[H].
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i on
Hence, writing Vr, (h, n) = ¢ ( e and using that this is a vector field tangential to Iy,

0) 3w

Dxlh] &(QhApr,n-n

200 (o)

s (VIO b

FAr A+ 2V (b, n) -4 Apgn - hn 4 Apgn - Du(A]
£(0)%h — 6(0)*h — kgViy(h,n) - n — 26(0)h

—2Vro(h,n) - n+ Ap,h + &(0)h = Ap,h + (N — DA,

(B) Using analogous arguments, the assertion follows straightforwardly from the calculation
of 1 and the fact that u(0) = 0. W
Let {Yi |l € N, 1 < k < K(I, N)} be an L%-orthonormal basis of the spherical harmonics
such that Yy, is an eigenfunction of Ap, belonging to the eigenvalue —{{/ + N — 2}. Using the
expansion coefficients ‘
wg = (4, Yar)o

we will work with the scalar product

oc
(’tﬁ,'b‘}s = %10¥i0 + Uk1Vr1 + Z(I(l + N — 2) - (N — 1))‘ukwk1
C =2

for all s € R. These scalar products are obviously equivalent to the usual ones. Note that
K(0,N)=1, K(1,N) = N, Yy is constant, and

span{Yz; |k =1.. . N} = span{z:...,z2n}.

Both for Stokes flow and for Hele-Shaw flow, the linearizations p; vanish on the subspace
{Yer|! < 1}. This follows from Ar Yy, = —~(N — 1)¥}, and the facts that the operator S
defined by (3.31}, (3.32) maps the normal vector field to 0 while the operator § defined by (3.37)
vanishes on constants. Hence, it is natural to introduce the projection operator P by

Pu = Z Ukt Y1

I>2

which is orthogonal in all spaces H*(I'g) and commutes with p;.
Using spherical coordinates, one straightforwardly obtains

V(r) }i, (1 + 7)YV dr,

1
M(ry = i (1+ ¥ +indr
o

N+1

for the volume and the center of gravity of the domain Q,, respectively. On H*([y), s > i;—l
we define the analytic function

F: H*(Tg) — Rx RY
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by

ror=[ "G |

and the submanifold _
M, ={re H(Ty) |F(r)=0}.

Lemma 34 (Norms and seminorms on H*(T'q) and M,) o
Let s > va;l There are positive constants C and € depending only on s such that

r
lI~(l,°

T
Il °

IA

CIPrls® + IF(r)llg, RY) ¥ € Boe, H*(To)), (6.4)
(1+ClPrl;)IPrll®  Vr € Bo(e, H*(To)) N M,. (6.5)

A

Proof: Consider the mapping
®: H*(To) — P[H*(To)] x (R x RY)
defined by
w0=[ 7o |
Note that (0) = 0,

Ph
@mm=[[&wﬂ]l.

fro hndl

@'(0) is a bijection from H*(T'y) onto P[H*(I'o)] x (R x RY), hence (6.4) follows as a conse-
quence of the Local Diffeomorphism theorem applied to @ in the neighborhood of 0.
Furthermore, we define the function

F: PIH o) x (I -~ P)[H*To)) — Rx RY |

by _

F(ri,re) = F(r1 +rq).
For the Fréchet derivatives D; " and Do F' of F' at (0, 0) with respect to the first and second ar-
gument, respectively, we find the formally identical expressions

DzF(()’O) = [ f{:nhhndjr ] (Z = 1,2)

Note that D; F(0, 0) is the zero operator while D2 F'(0, 0) is invertible. Due to the orthogonality
. of P we have 2 o2 ro2
lIll,° = 11Prlls® + 17l °

with7 = (I — P)r. If we assume r € M, 7 satisfies the equation
F(Pr,7) = F(r) =0.

By the Implicit Function theorem, this implies that 7 can be interpreted as a function of Pr and

- o2
I7l,° < CliPell,®
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if ||’Pr{[f° is sufficiently small. Assertion (6.5) follows easily from this,
On H*(Do) we introduce the degenerate bilinear forms

[, 2], = (Pu, Pv),

and, forany n € N,

[w,0)sn = Y [D%u, D%},

la]<n
Moreover, we define corresponding seminorms | - [, » by

]ﬁ'lf,n = [u, “]wv

Using these notations, the necessary estimates for the linearization can be given:

Lemma 35 (Coercivity estimate for —p; near equilibrium)
Suppose (6.1} holds.

(A) (Stokes flow)
Let p be defined by (3.54). There is a constant ¢ > 0 such that

=lpirrh zelrly W€ H¥(To).

(B) (Hele-Shaw flow)
Let p be defined by (3.56). There is a constant ¢ > O such that

~lpir,rls > c|r|§+% Yr € Hs+3(1‘0).
Proof: (A) We introduce the notation
0
u* ~ 0
p* | = L) | (Ap,r+ (N = r)n
A* 0 ‘
0

which implies g1 = ™ - n and (cf. the proof of Lemma 11)

(A = —]X- {(Ap,r + (N - Dy -¢;dl = N / (Apgr + (N — )r)e; dT
WN . s WN | Y
N
= e (AI‘OQZ}' + (N — D;)dl =0,
Wy o
(M) = (Ap,r+ (N = Dr)n-ve 1 dl = 0,
T .
where we used that Ap,z; = —(N — 1)z; and that the vector fields v, . describing rigid body

rotations around the origin are tangential to the unit sphere. Taking into account that

~1 -1 _
(p1r)oo=wN2/ wondl=wy? [ divu*de=0
Fo [y
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we find
s = =3 YU+ D) = (N = 1D))prr)wrn
=2 k
= - Z Z(l(l + 1) = (N = D)p1r)ure
1=0 &
o .
= - ZZ(pIT)M(“AFOT - (N - l)r)kl
=0 k
= / p17(Ap,r + (N — 1)r)dl
To ‘
- / W (Ar,r+ (¥ = D) dl = a(u’, 0*) 2 [
.Fo
~ On the other hand,
|7'|2% = (Ap,r + (N = D)r,¢)o
with
(o]
o = Y > euYu,
=0 &%
((I+N=2)=(N=1))"%ru (1>2)
i 0 1<2).

Note that ¢ € H3(Tp), ||¢||g° = |rls.
Considering the Neumann problem (4.11) with this ¢ and taking into account that = 0 due
to ¢10 = 0 we can show

: |
* 15 * T Qo)
I3 < C (w12 + 1NNl gy ) llell5 < Cllu [if21rlg

in the same way as in (4.12). This implies the assertion.

(B) The basis {Y};} of the spherical harmonics is a complete system of eigenfunctions also
for the operator S defined by (3.37); the corresponding eigenvalue is [. Hence we can prove the
assumption by straightforward calculation with

¢ = inf : 1-
22 (14 N —2)— (N —1))%

Based on this estimate for the linearization, the following new a priori estimate can be given:

Lemma 36 (A priori estimate near equilibrium)
" Suppose (6.1) holds.
(A) (Stokes flow)
Let p be given by (3.54). For any integern > % + 1 there are positive numbers c,,, Cy,, and
£, Such that i
[p(r), Tlin < "Cn|7'|f,n + Cn”F(r)”iszN (6.6)

forallr € By (en, H*1(T0)) N H™*%(Ty).
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(B) (Hele-Shaw flow)
Let p be given by (3.56). Forany s > 2+ & Y there are positive numbers c,, Cy, and ¢, such
that

[o(r). 1]s8 < =alrls 5 + CollF ()R, m~ ©.7)
forallr € By (e,, H*t3(Lg)) N H*+5(Ty).
Proof: (A) Calculating the Fréchet derivatives of D%p atr = Q using (5.12) and Ry = 1 yields
Dpi(r,.. )= Y oy pepe(DPr, ., D), (6.8)
Bi+. 4Br=o

where, in contrast to the original chain rule, also multiindices 3; = 0 are allowed. Together with
the estimates for the py, this yields

D% pi(r, ., IS < CallrllySy ||T||n+3'

Using this, together with (6.2) and p(0) = 0 we obtain

D%%(ry, D%}y = [D%ur, D%y + Y [D%(r,...,0), D%}

NgE

bl

=2

k—
—c|D%pl} + Ca D ME|Irln5 I HW -
k=2

8

A

Carrying out the summation over all & with o] < n we find from (6.4) and the fact that P and
D¥ commute

fee

[o(r), Tlin < =ealrl? s +C‘n§: [ o (l?’li+% + HF(?‘)”?RXRN)’

and the assertion follows by choosing ¢, sufficiently small.
{B) The assertion can be shown in an essentially analogous way, using the estimate
[, vl < Collully® 3 llvll52 s
and (6.8) forall o withjo| > 0. ®
Using this a priori estimate, we can show now the following result which gives a justification

for the expectations from physical reasonings that were mentioned above. By R, we denote the
infinite time interval [0, +00).

- Proposition 8 (Global existence of solutions and exponential stability near equilibrium)
Suppose (6.1) holds.
(A) (Stokes flow)
Let p be given by (3.54), n > % + 2. There are positive constants €, and c,, such that for
any
rg € Myuy1 0 Bole,, Hl‘"’(ﬂ))}

the initial value problem (4.16) has a solution

r € Cu(Ry, ™' (T0)) N C(Ry, H(Fo)
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Sfor which an estimate - .
@I, < e 4rall5? 69

holds for all sufficiently large t. |
(B) (Hele-Shaw flow) '
Let p be given by (3.56), s > = N + 2. There are posmve constants €, and ¢, such that for any

ro € Myy3 0 Bole,, H*3(To))

the initial value problem (4.16) has a solution

r € Cy(Ry, H*T3(I4)) N CL(Ry, H* (o))
for which an estimate . - |
lr@ll 5 < e lrolls : (6.10)
holds for all sufficiently large t.
Proof: (A) By Proposition 5 (i) we find that for sufficiently small ¢, there is a solution

re Cw(IT, Hrtl (Fg)) N C&;(IT, H” (Fo))

of (4.16) for small T. From the conservation of volume and center of gravity we conclude
#(t}) € M4 forall t € IT. According to the proof of Proposition 5 (i), #(%) is given by

r{t) = wlimr; (1) ¥Vt elT,
oo

where w-lim denotes the weak limitin H7+1(Tg), the r; € CY(IT, H**? (1‘3)) are the solutions

of the Galerkin equations (5.23), and the convergence is uniform in ¢. Hence r; (t) (F°) r(t)
uniformly in ¢t and thus

IF(riyOllg, gy — 0 uniformlyint € IT 6.11)

because, as remarked above, r(t) € M,4,. We choose the finite-dimensional subspaces M; in
such a way that P and P; commute for all j. Thus we have forall { € IT

55 (5012,

[Pip(ri (@), 7 ()15
(PPip(ri(1)), Pri(t)h,n = (Pp(r; (), PP r;(i))l n
[p(r; (8)), ri ()10 < ‘clrj(t)h,n + CIIF(V’:(i))HRme

because of (6.6), if £, is chosen sufficiently small. Hence

I

t .
I (1T < € rali + C/O NP (ri () ligxmn 4T,

and thus, using (6.11),

To s

()13 »

!

IPr)li, =

hm H'Prg(i)lll w = lim [ri(O)1n < e Irolrn.
J=rco

P w-limr;(t)
j—oo

= “w-lim Pri(t)
J—oo

in in

IA
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Finally, 7(t) € My » N Bo(2e,, HY™(Ty)) implies for small &, by (6.4)

DN < 1+ CIHD L)l {THhn < (14 CllrolF2)e T flrol 32,

< e #ng|l}Y <. . 6.12)

Therefore we can continue the solution to [T, 2T and by induction to [mT, {m + 1)77] for alt
m & N. The estimate {6.9) can be shown for all ¢t > T in the same way as fort = T in (6.12).
. . R L
(B) The assertion can be proved analogously, using the norm |}-|] + 3 and the a priori estimate
(6.7). m

6.2 Point sources as additional driving force

In this section, we will briefly describe the necessary generalizations that occur if, additionally
to the surface tension force, the flow is driven by a point source or sink of prescribed strength
in the interior of the liquid domain. We will give the explicit calculations only for the case of
Stokes flow and one point source; the generalization to more than one source and the parallel
treatment of Hele-Shaw flow are straightforward. As far as short-time existence is concerned,
the results remain essentially unchanged. (Of course, in order to generalize the considerations
involving rotational symmetry of the equations we cannot have more than one point source, and
we have to assume star-shapedness with respect to the source point.) This is due to the fact that the
inclusion of a point source in the interior of the liquid domain preserves the analytic dependence
of all occurring functions and operators on r, contributes only a lower-order term to the modified
fixed time problem (6.13} below, and does not essentially change the structure of the evolution
equation for 7.

It is clear that one cannot expect a generalization of the global existence result near equilib-
rium in such an easy way.

The fixed-time problem

Let us adopt the notation of Section 3.2 and assume without loss of generality 0 € 5. If we
include a source or sink of strength @ at 0, the governing equations of the flow, described by its
velocity field T and pressure field p, become

-AT+Yp = 0 .
dvi = Qb } in £
T(@, p)n = &n on g,

where & denotes the Dirac distributionin 0.
We split the velocity field T in a singular and a regular part by setting

T o= u-+ug,
_ Q
ug(z) = on o (z £0).

Note that, in the sense of distributions,

I

divus Q8,
Aus = QV&
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Thus, setting p = 7 — Qé we obtain the modified fixed time problem

il

—Au+Vp 0
divyu = 0

T{u,pn = &n—T{us,On : s 6.13)

X 2Q ziz; on 'y,
= RNl - (lﬁclN Nw> nie; i

where 8;; is the Kronecker symbol and e; denotes the i-th unit vector.
In order to establish the existence of solutions of (6.13) one has to show (additionally to the

considerations in Section 3.2) that

in Qo

T(ug,0n-vdl =0
I's
* for arbxtrary v € Vy. This can be done by applying the first Stokes-Green formula (Lemma 9) on
_the domain €2, = Qo\Bo(e, RY) with ¢ small enough to ensure By(2, RY) " C S, 4 = u,, and
p = 0. Using that

Ou | Oy _
83:3- 333,‘ - ’
’ Aus = 0,
divus = 0 :
in §2, one finds
T(ug,0n-vdl' = — T(ug,0)n-vdl
o 9Bo(z,RY) },
_ QQ TiZj E:L’j )
- [ (=) e
6Bo(€ RY)
2Q1—
= w_NW / z-vdl = 0.

8Bo(e RV}

Perturbations, evolution equation, and linearization

We adopt the notation of Section 3.4. Starting from (6.13) and carrying out the perturbations we
find, instead of (3.50), )

o 0
~ u(r) 0
Liry| p(r) | = | ¢(r) |,
Alr) 0
0
¢(r) = «(r)v(r)

_& ’5:3 __ (gi -+ rCi)(fj -+ rC})) .‘P.
wN (IE 4|V N € + r¢|V+2 {v(r)ijes.
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To establish the assertions of Lemma 17 in this more general situation, it is sufficient to remark
that the mappings z — |2|" are analytic near zq for all 2y # 0 and all integer n.
The evolution equation for » reads now

or o) = {u{r) + us(é + 1)) - v(r).

A e
= Jur L &+ . v(r)
= ( ( )+WN ]f.{._?.‘;'lh') ¢ o(r) (6.14)

and the assertions of Lemnma 19 can be proved as above.
Lincarization of p as given in (6.14) yields, in the notation of Section 4.1,

pl) = ( - ((“m” N > )“7 ( w0+ 2w ) ) i)
#m (e 2 (i - ¥t ).
0
w(r) = Tl L(0)™ m?r) ~ Li(r) ZE3§ ,
o 0 0

b(r) = m(r)n+n;(0 vi(r) — 2Q(|2:‘§+§)(,,1(r))jei

20N ( ¢ & G + &gy _ (N—%—?}M) n;ie;r.

ton e T T e e[

The terms in py that contain {) represent a differential operator (“with smooth coefficients™) and
the same is true for the terms in ¢,. Hence, also for p given by (6.14) we get a decomposition like
{(4.3) and find identical results on coercivity and generation of analytic semigroups.

Results
In this way, we arrive at the following result:

Proposition 9 (Existence results for Stokes flow with a point source I}
Let p be given by (6.14). Then the same assertions as in Proposition 4 (A} hold.

To generalize the results of Chapter 5, we have to demand the validity of Assumption 1 again.
In our new context, however, after choosing the source point to be 0, the choice zg = 0 is no
longer without loss of generality. As announced above, this means that we have to demand now
strict star-shapedness of the liquid domain with respect to the source point. Taking into account
that ug is an invariant vector field with respect to rotations around the origin, the equivariance
property (5.16) can be shown also for p given by (6.14).

This implies the following result:

Proposition 10 (Existence results for Stokes flow with a point source Il)
Let p be given by (6.14), suppose Assumption | with zq = 0 and (5.11) hold. Then the same
assertions as in Propositions 5 (A) and 7 (A) hold.



108 CHAPTER 6. EXTENSIONS AND REMARKS

Remark: If we consider a time-dependent. source strength @ = Q(¢), the operator p will de-

pend explicitly on ¢, i.e. the evolution problem is not longer autonomous. Even in this case, if @

depends continuously differentiable on ¢, the results on existence, uniqueness, and spatial smooth-

ness of the solution are still valid. It is clear, however, that the solution  will only be “as smooth.
as () as a function of t. O

6.3 Further remarks

6.3.1 Other geometries

The approaches which are chosen in this thesis are not essentially restricted to the geometry of a
bounded, simply-connected domain. The results of Chapters 3 and 4 are valid, for example, also
for multiply-connected domains with smooth compact boundary. The assumption of bounded-
ness, however, is essential because analytic difficulties occur if I'g is not compact: Lemma § is
not valid in this case, and the embeddings in the scale H*(T'o) are not compact. Qualitatively,
one expects that holes in the liquid domain shrink and eventually vanish in finite time (cf. [18]
for plane Stokes flow). Of course, the actual closing of a hole cannot be described by our meth-
ods. For a generalization of the approach in Chapter 2 to multiply-connected domains see [5] and
also [7], where Dirichlet boundary conditions on one connected component of the boundary are
considered.

Other geometric settings that are considered both for theoretical and for practical purposes
are (infinite) liquid layers above a fixed bottom and domains given by

Q={e|zny <(z1,...,2N8-1), (1?1, s BN-1) € RN_l}. 6.15)

Such geometries have been treated, for example, in [23] and [69]. It is expected that, by imposing
suitable asymptotic conditions at infinity and boundary conditions at the fixed bottom, an analo-
gous treatment of our moving boundary problems can be carried out if periodicity assumptions are
made, i.e. if we can reformulate the problem on the compact manifold 7% =! (or a topologically
equivalent one) rather than on the noncompact manifold R¥ 1. In this geo}netry, it is natural to
use for the quasilinearization the invariance of the governing equations with respect to transla-
tions, and the assumption of strict star-shapedness has to be replaced by the demand that all lines
zn = const have precisely one point in common with the free boundary. (If Q is given by (6.15),

this assumption is obviously satisfied.) |

6.3.2  Numerical aspects of the Stokes flow FBP

Three different approaches for the numerical treatment of the Stokes flow FBP are listed in Table
6.1, together with their analytic background and some references to the literature. (We do not
attempt to give an exhaustive literature review, more references can be found e.g. in [91].) The
so-called level set method [79] which has been successfully applied to e.g. mean curvature flow
does not seem to be promising due to the nonlocal character of the surface motion law considered
here. ;

The aim of this subsection is to make some remarks on the three methods mentioned above
that at the same time illustrate the interplay between analysis and numerical mathematics.

The method based on conformal mappings can briefly be described in the following way:
An ansatz with a finite number of free parameters is chosen for the conformal mapping, e.g. one
assumes that z(-,t) is a polynomial of fixed degree or a rational function of prescribed form in
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Analytic approach Numerical method | References
Evolution equation Solving ODEs [8,9]
for a conformal map for coefficients
Weak formulation of the FEM [41,48)
fixed-time problem + time integration
Hydrodynamic potentials BEM [53,91]
for the fixed-time problem | +time integration

Table 6.1: Numerical methods for Stokes flow driven by surface tension

the first argument, The evolution equation (in explicit or implicit form) is used to derive a system
of ordinary differential equations for the free parameters which can be solved numerically. This
method is advantageous if the initial shapes {2(0) can be described exactly by a conformal map
of the type used in the ansatz. Otherwise, the necessary approximation procedure for the initial
domain will demand a considerable computational effort; moreover, the stability properties of the
method with respect to the approximation error are in general unclear.

1t is beyond our aims to give a complete discussion of all advantages and disadvantages of
FEM versus BEM in the case of the simulation of Stokes flow. For this, we refer to the cited
literature. We only remark that the use of the boundary element method is natural in the sense
that only the velocity field at the boundary is computed. This is sufficient for the determination
of its motion.

In [91], Ch. 5.1, the behavior of a semi-discretized problem (Eqn. (5.1) there) is investigated
by means of an eigenvalue analysis of its linearization. The result obtained there is that, in gen-
eral, the system of ordinary differential equations describing the motion of material points on the
boundary is stiff. From an analytic point of view, this can be straightforwardly explained by the
fact that solving the discretized integral equations that arise in the numerical treatment of the fixed-
time problem is actually an approximate computation of a pseudodifferential operator of order 1.
The unboundedness of this operator in the continuous problem corresponds to the occurrence of
eigenvalues with large absolute values in the discretized problem. From this point of view, the
situation is in strict analogy with the numerical analysis of parabolic differential equations.

In [91], the difficulties of solving a stiff system of ODEs are overcome by using an implicit
backward difference method. However, if the Euler-forward method is used for the time inte-
gration as in [41], a stability bound for the timestep At depending on the spatial discretization

parameter Az of the form
At
e 6.16
A = (6.16)
is expected, in accordance with the order 1 of the pseudodifferential operator in the linearized
continuous problem. This bound has also been found in computational experiments [82] for a
closely related problem [83].
The bound (6.16) is less restrictive than analogous bounds on (7‘}# that occur in the stability
anaiysis of discretizations of second-order parabolic differential equations like the heat equation.
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This explains why the Euler-forward method could be used in [41] without stability problems.

6.3.3 Open problems

As pointed out earlier, for general initial domains the methods that have been used in Chapters
3-5 can only yield local existence results. The length of the time interval on which existence
of the solution is ensured depends on the reference domain, hence no answers can be found to
the interesting questions about (non-) development of singularities (e.g. cusps or corners) in the
boundary of the liquid domain. As we have shown above, the influence of surface tension leads
in general to a smoothing of the boundary. However, in special examples the development of a
cusp for a single moment of time has been found by Howison e.a. as a limiting case between a
smooth evolution and an evolution in which the connectivity of the liquid domain changes.

As a first step towards global existence results, it seems reasonable to look for global geomet-
ric properties of the liquid domain that are preserved by the evolution under a given surface motion
law. Apparently, the only cases for which such questions have been studied thoroughly by now
_ are mean curvature flow and related problems [27, 32, 47, 79]. For instance, it can be shown that
convexity of the domain enclosed by the moving surface is preserved by mean curvature flow [47].
An analogous result has been obtained in the case N = 2 for so-called area-preserving mean cur-
vature flow [32]. On the basis of this, global existence of a solution for convex initial domains can
be proved in both cases. A crucial tool in this, however, is the application of maximum principles
for elliptic second-order differential operators. Therefore, it is not possible to prove correspond-
ing results along the same lines for evolution problems that involve the solutions of elliptic BVP,
i.e. where elliptic pseudodifferential operators occur instead of second-order elliptic operators.

For Stokes flow, Hopper [44] conjectures that convexity and star-shapedness are preserved
by the evolution, to prove this, however, seems to be a rather difficult problem. Apparently, the
only strict result in this direction is the following theorem by Plotnikov [70]: For Stokes flow with
N = 2 and a connected inital domain, the liquid domain will be connected for all times for which
the solution exists. , )

_ Finally, we want to remark that the analysis given in the preceding chapters does not rely too
strongly on special properties of the Stokes operator or the Laplacian: We only use coercivity
and regularity of standard boundary value problems associated with them and; in Chapter 5, their
rotational invariance. Hence, it is expected that an analogous approach can be used for a much
wider class of free boundary problems, even in cases where the governing equations are nonlinear.
In this respect, see [1, 2].



Appendix A

A free boundary problem for the
Navier-Stokes equations

We assume without loss of generality p = 1 and restrict our attention to the case N = 3. In order
to transform the equations (1.1), (1.2} to the fixed domain §2(0) we introduce the functions

u(€,t) = v(z(€,1),1),
g&,t) = plz(€1).1)

representing the velocity and pressure fields in Lagrangian coordinates. They satisfy the nonlinear
initial-boundary value problem

%~VAuu—qu = flzu,t)
div,u = 0 in Q(0) (A1)
u(') 0) = Y
/I‘I(u>q)nu,! = YRy, tNu on F(O),

where Ay, V4, 7, denote the differential operators A, V, and 7 with respect to the £-coordinates,

1
sul€0) =6+ [ u(e9)ds
0
and n,,; and £, ; are the outer normal vector and the mean curvature of the surface
Fu,t = :cu[l“(O)‘ i],

respectively. For a given domain 2 in R and », 7 > 0, 7 # N we introduce the notation
Qr = Q% (0,T) and the Sobolev spaces of noninteger order WJ (Q), W/ (0,T), W, 2(Qr) by
Hilbert norms whose squares are

O%ulz maoeu(y 2
Z ljo* u”z,e(g)+ Z / ' |$_(“1313+2(7_[r]))’ dady,

w:u J=(r] XS

I

HUH%/Vg(Q)

r

. 5 u(t) - 3[5}21(?) ?
‘Iu|1;2§(03} = Z}]@"u] 730 T)+/ f 11+2 G dtdr,

i1t
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T
- N P .
“ ” "g(Q , /0 ||u(, )*lwg(ﬂ) t+‘/§;”u(x) )“WQZ(O,T) d&fs

where the usual multiindex notation is applied, [s] denotes the largest integer inot larger than s, and |
all differentiations are to be understood in generalized sense. Using local chbﬁs and partitions of
unity subordinate to them, one can define analogous function spaces on manifolds. For r large
enough, the spaces W can also be used to characterize the smoothness of surfaces. In the fol- .
lowing theorem we will write S? for the unit ball in R?, Q(0) = Q,T(0) = I, Gz = I' x (0, T),

R* = {/38 and p* = ZL. Note that R* is the radius of a ball of volume |©2] and p* is the
constant pressure inside a ball of this radius, consisting of resting liquid governed by (1.1}, (1.2). .

Proposition 11 (V.A. Solonnikov [84, 85 86])
(i) (Short-time existence and uniqueness)

Suppose QU is bounded, | € (},1), T is of class Wit v € (if’i"zl‘”(ﬂ))3 satisfies the com-
patibility conditions

divyp = 0 inf,
(Voo + (Vva))n(0) || n(0) onT,

and | has szschztz-contmaoas first derivatives in the space variables and is Holder-continuous
with exponent 2 in time. Then there is a constant Ty > 0 suciz that (A.1) has a unique solution
{u, q) such that

L 3 Lo \3
“E(W22+2‘1+2(QT1)) ) qu(Wé’Z(QT,)) , qIGT1€W2+I’d+2(GTL)'

(ii) (Global existence near equilibrium)
Additionally to the assumptions of (i), suppose [ = 0 and there is a function Ry such that

I = {Ro(w)w [w € $%},

and ||Ry - R*” 3+ and ||vo}| (Wi (o) @re suﬁ?aen:!y small. Then the fofiowmg statements
hold: !

o The assertion of (i} holds withany T} > 0,
s Foranyt > 0, Q(t) is such that there is a function R, € WQ%H with

I'(t) = {Ryw)w |w € §%}.

o Let (v(-,t},p(-, 1)) be the solution of the original problem (., (1.2j, (1.3). The norms

5|
ot Nwicaeny?

, ||v(-,f)[[(wé+2(n(c)))5’

llp( ) = P llwi+r ey IR — R ”wﬁ“‘ma»

are uniformly bounded with respect to t > t5 > 0.
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The crucial part in the proof of (i) is the investigation of a linear problem

%?—VAU,U—VU;QA = f(£,t)
divyu = 0 in £(0)
u(+,0) = g

T, ¢) Nyt = YRy Nyt on I'(0),

for which a priori estimates depending on w € (W, (Q( 2)))3 are derived which can be used to
prove the short-time solvability of (A.1) by a fixed point argument.

For estimates of u and 4 in the appropriate norms as well as an “intermediate” result concern-
ing the unlimited growth of 7} if the data approach the situation of (ii) the reader is referred to the
original articles. Furthermore, a generalization of the FBP discussed here is treated in [63] using
Holder function spaces instead of Sobolev spaces. Similar result can be obtained for N = 2.

Corresponding results concerning a layer of viscous liquid above a fixed bottom under the
influence of gravity and surface tension are obtained in [4] and [11].



Appendix B

Surface motion by curvature: an
overview

In this appendix, a brief survey on surface motion laws governed by curvature is given. In table
B.1 the surface motion laws that are discussed in the literature are listed together with the fixed-
time problems and/or the normal velocities that define them. The notation is essentially as in the

introduction, [5“3%‘;3] . denotes the jump of the normal derivative of v across ['(¢) and Z is a
t

domain containing T'(t). (If Z is unbounded then the boundary condition at 3= has to be supple-
mented or replaced by an appropriate asymptotic condition on «.) No attempt is made to give a
complete list of literature references, instead we restrict ourselves to some references that deal
with existence and uniqueness results.

It is a typical property of surface motion laws by curvature that they occur, at least formally,
as limiting cases of other well-known FBP or nonlinear PDE that describe phase changes. The
corresponding problems are listed in the last column of table B.1. Note, however, that in order
to obtain Stokes flow or one-phase Hele-Shaw flow from the FBP for the Navier-Stokes equa-
tions or from the Stefan problem one has to impose boundary conditions which already involve
the curvature while in the other cases the surface I'(2) is the zero-level set of the solution of the
corresponding equations. For details of this we refer to the original articles, see also [27].

; Finally, we remark that all surface motion laws considered here, except for the mean cur-
vature flow V,, = &(t}, are surface-diminishing and volume-preserving, i.e. if I'{#} is a closed

- surface (curve) evolving according to one of these laws, having area (length) A(t} and enclosing
the volume (area) V(1) then

dA

—
. — 0
dv

w -0
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116 APPENDIX B.
Name Fixed-time problem v (formal) limit of-
A Vp = 0
dive =0
Stokes flow in 3(t) Navier-Stokes eq.
v - u(t) (Re=0)
[6, 8, 43, 51} T(v,p)n(t) .
= &(t)n(t)
onT'(t)
(one-phase) Au=0
in () :
Hele-Shaw flow ____aaut Stef?: Er(())}))lem
u = &(t) n(?) -
{19, 20, 23, 30] on I'(t)
Du=10
Mullins-Sekerka in E\I'(t)
or two-phase u =P'~é§) [ ou ] Cahn-Hilliard eq.
on IR 3
Hele-Shaw flow In(#) I r ) €10
v du 6 ‘
[17,30] on
on =
Allen-Cahn eq.
e 1 0)

. Mean curvature

and

related flows

k(%) [47]

(1) — k(1) [32]

Arys(t) [16, 65]

Cahn-Hilliard eq.
(CHR)]

Arg;)A‘l &(3)
A= 5Aren - 51

(siee 27D

Table B.1: Laws of surface motion by curvature
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Summary

This thesis is devoted to the mathematical investigation of certain free boundary value problems
that arise from the description of liquid flows for which inertia effects are negligible, i.e. where a
quasistastionary approximation can be applied. Two problems of this type are studied here which
describe the change of shape of a freely moving drop or blob of liquid. The underlying models are
known as Stokes flow and Hele-Shaw flow, respectively. In both cases, the governing equations
are elliptic (Stokes equations and Laplace equation, respectively), and the forces arising from sur-
face tension are considered as driving mechanism. This leads to inhomogeneous boundary con-
ditions in which the curvature of the boundary occurs.

The most interesting aspect of these free boundary problems is the evolution of the domain in
which the equations are defined. The direct mapping method is applied for its description, i.e. the
liquid domain is represented as the image of a time-dependent diffeomorphism which is defined
on a fixed reference domain. Such diffeomorphisms can be constructed by conformal mapping or
from small perturbations of the boundary of the reference domain. The free boundary problems
are reformulated as nonlinear, nonlocal evolution equations for these time-dependent diffeomor-
phisms.

The investigation of the evolution equations obtained in this way forms the core of the thesis.
Existence, uniqueness, and smoothness properties of solutions to them are established using var-
ious methods from functional analysis and the theory of partial differential equations. In the case
of Stokes flow in two dimensions, short-time existence and uniqueness results (both forward and
backward in time) can be derived for domains with analytic boundary using an abstract Cauchy-
Kovalevskaya theorem in a scale of Banach spaces of analytic functions.

Both for Stokes flow and for Hele-Shaw fiow in arbitrary space dimensions, the underlym0
boundary value problems are discussed, and their dependence on small perturbations of the do-
main in appropriate function spaces is considered. It is shown by the investigation of a linearized
problem that the discussed evolution equations are parabolic. Accordingly, short-time existence
and uniqueness of solutions (under appropriate assumptions on the smoothness of the initial con-
dition) can be obtained using results from the theory of fully nonlinear parabolic equations. Under
an additional assumption on the geometry of the liquid domain, stronger results including C°-
smoothness of the boundary of the liquid domain can be shown, using Galerkin approximations
and a chain rule which is derived from the invariance of the problem with respect to rigid body
rotations.

Moreover, it is proved that both for Stokes flow and Hele-Shaw flow driven by surface tension
in arbitrary dimension the balls of liquid at rest are exponentially stable equilibria. Finally, the
essential results are extended to the case where sources or sinks are present in the liquid domain,
and some remarks are made on numerical aspects and open theoretical questions.
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Samenvatting

Dit proefschrift is gewijd aan wiskundig onderzoek aan zekere vrije rand problemen die optreden
bij de beschrijving van vloeistofstromingen waar traagheidseffecten verwaarloosbaar zijn, d.w.z.
waar een quasistationaire benadering toegepast kan worden. De twee problemen van deze aard die
hier centraal staan beschrijven de gedaanteverandering van een vrij bewegende vioeistofdruppel
en staan bekend onder de namen Stokes flow en Hele-Shaw flow. In beide gevallen worden de stro-
mingen bepaald door eiliptische vergelijkingen (Stokes-vergelijkingen of Laplace-vergelijking),
de capillaire krachten vormen het aandrijvende mechanisme. Dit leidt tof inhomogene randvoor-
waarden waarin de kromming van de rand optreedt.

Het meest interessante aspect van deze vrije rand problemen is de evolutie van het gebied
waarop de vergelijkingen gedefinieerd zijn. Voor de beschrijving hiervan wordt de directe afbeel-
dingsmethode toegepast, d.w.z. het vloeistofgebied wordt voorgesteld als beeld van een tijdsaf-
hankelijk diffeomorfisme dat op een vast referentiegebied gedefinicerd is. Zulke diffeomorfismen
kunnen geconstrueerd worden door conforme afbeelding of via kleine verstoringen van de rand
van het referentiegebied. De vrije rand problemen worden geherformuleerd als niet-lineaire, niet-
lokale evolutievergelijkingen voor deze tijdsafhankelijke diffeomorfismen.

De analyse van de op deze manier verkregen evolutievergelijkingen vormt de kern van dit
proefschrift. Existentie, eenduidigheid en gladheidseigenschappen van hun oplossingen worden
met behulp van verschillende methoden uit de functionaalanalyse en de theorie van partiéle dif-
ferentiaalvergelijkingen aangetoond. In het geval van twee-dimensionale Stokes flow met analy-
tisch begingebied kunnen, door de toepassing van de abstracte stelling van Cauchy-Kovalevskaya
in een schaal van Banachruimten van analytische functies, existentie- en eenduidigheidsresultaten
voor korte tijd (voorwaarts en achterwaarts) afgeleid worden.

Voor Stokes flow en Hele-Shaw flow, in willekeurige ruimtelijke dimensies, worden de onder-
liggende randwaardeproblemen beschouwd. Hun afhankelijkheid van kleine verstoringen van het
gebied wordt onderzocht in geschikte functieruimten. Het parabolische karakter van de evolutie-
vergelijkingen wordt aangetoond door de analyse van een gelineariseerd probleem. Op basis daar-
van worden existentie- en eenduidigheidsresultaten (onder geschikte condities aan de gladheid
van de beginvoorwaarde) uit algemene stellingen uit de theorie van volledig niet-lineaire parabo-
lische vergelijkingen verkregen. Onder een verdere voorwaarde aan de geometrie van het vloei-
stofgebied kunnen sterkere resultaten bewezen worden, waaronder C™ -gladheid van de rand. De
belangrijkste methoden hierbij zijn Galerkin approximaties en de toepassing van een kettingregel,
die met de invariantie van het probleem onder starre lichaamsrotaties samenhangt.

Verder wordt aangetoond dat, in willekeurige dimensies, voor Stokes flow en Hele-Shaw flow
aangedreven door oppervlaktespanning de bollen van vioeistof in rust exponentiéel stabiele even-
wichtstoestanden zijn. Tenslotte worden de belangrijkste resultaten uitgebreid tot het geval van
bronnen en putten in het vioeistofgebied en er worden enkele opmerkingen over numerieke as-
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STELLINGEN
behorende bij het proefschrift

Parabolic evolution equations
for quasistationary free boundary problems
in capillary fluid mechanics

door G. Prokert

. De vrije-rand problemen voor Stokes-stromingen en Hele-Shaw-stromingen aan-
gedreven door oppervlaktespanning kunnen geherformuleerd worden als niet-lo-
kale, niet-lineaire parabolische evolutievergelijkingen op een vaste referentieva-
riéteit. Onder geschikte voorwaarden hebben deze vergelijkingen voor korte tijd
precies één oplossing.

Hoofdstukken 3—5 van dit proefschrift

. De geldigheid van de kettingregel is niet beperkt tot functies die verkregen worden
door compositie. In een algemener kader kunnen kettingregels opgevat worden als
infinitesimale formuleringen van equivariantie-eigenschappen met betrekking tot
fluxen. '

¢f. Hoofdstuk 5.1 van dit proefschrift

. Het karakter van Hoppers vergelijking [6] als impliciete evolutievergelijking komt
duidelijker naar voren als zij met behulp van de Hilberttranformatie H op de een-
heidscirkel in het complexe viak op de volgende manier geschreven wordt:

) d = d [ .~ 1

I—iH)|—=(Q ——(QQ’I }{\[—D} = 0.
(1= it [0 - & (@ im [ )] =0
. De bewijzen van de existentiestellingen voor Stokes flow met vrije rand aangedre-
ven door oppervlaktespanning in de omgeving van het evenwicht in [1] en [2] zijn
onvolledig omdat de theorie van semilineaire vergelijkingen op dit probleem niet
van toepassing is.

. De beweringen in [4] over Hele-Shaw flow aangedreven door oppervlaktespanning
voor algemene begingebieden worden in dit artikel niet bewezen.

. De in [8] geintroduceerde vierde-orde opperviaktebewegingswet is geen geschikt
model voor viskeus sinteren omdat de niet-lokaliteit van het probleem verwaar-
loosd wordt.



7.

Gegeven een rooster 0 = zg < @1 < ... < &, = 1 en een functie f € c4o, 1].
Beschouw de differentiaaloperator 5 gedefinieerd door

Sv =" —why, w > 0.
Dan geldt:
(i) Er is precies één interpolerende exponentiéle spline u € C?[0, 1] zodanig dat
S%u = 0 in (2i-1,2:) (1= 1,...,n),
u(zi) = f(z:) (i=0,...,n),
Su(0) = S(0), |
Su{l) =

SF(1),

- (i) voor deze u geldt

10.

“u - fi[G'j[O,l] < Ii'jh4_j (.7 =0,1,2)

met h = max{z; - z;—1|i = 1,...,n}. Deconstanten K ; zijn onafhankelijk van
het rooster. [7}

Bij de numerieke oplossing van het niet-lineaire slecht gestelde parametendennﬁ-
catieprobleem voor het randwaardeprobleem

O-(a(2)0,u)
u(0) = u(1)}

li

Jin (0,1}, %
0, '

il

waarbij @ moet worden bepaald uit f en u levert regularisatie met behulp van de
discrete H'-norm vaak duidelijk betere resultaten op dan regularisatie met behulp
van de discrete L?-norm.

Zie [5].
De vooruitgang op het gebied van hard- en software voor numerieke simulatie en
visualisatie is van het grootste belang voor de toepasbaarheid en de uitstraling van

de wiskunde. Deze voomitgang dient echter niet verward te worden met vooruit-
gang bij het begrijpen en oplossen van de onderliggende wiskundige problemen.

“In mathematics as elsewhere close attention to immediately useful ends is not al-
ways the most effective way of being practical.”

“Curiosity may be idle if allowed its own way too ldng; but without it, little of even
the lowest practical value has been achieved.”

E. T Bell[3]



. De onjuiste bewering dat communisme en fascisme min of meer als twee vormen
van hetzelfde verschijnsel gezien moeten worden geeft blijk van een gevaarlijke
ignorantie ten opzichte van de wortels en drijfveren van beide bewegingen.

12. “Het gelijk van rechts” berust op optisch bedrog.

13. Om het leggen van een onbedoeld verband te voorkomen dienen op spoorwegstati-

ons plakkaten met het opschrift “Vloek niet !” niet te dicht naast de dienstregeling
te worden opgehangen.

14. Onze maatschappij moet zich onthaasten, en wel zo spoedig mogelijk.
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