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Chapter 1 

Introduetion 

1.1 Free boundary problems 

Forthelast three decades, the subject of free boundary problems (FBP) bas attracted increasing at­
tention because ofits theoretica! interestand its numerous applîcations in physics and engineering. 
Typically, a free boundary problem consistsof one or more partial differentlal equations (PDE) or 
systems of PDE with corresponding initia! and boundary conditions which are supposed to hold 
on an a priori unknown domain. Hence, solving an FBP consistsnot only of finding the unknown 
functions that (in an appropriate sen se) solve the given equations but also in determining and char­
acterizing these unknown domains. Quite often this is the most interesting part of the problem but 
also its main difficulty. 

Even this rather unprecise characterization ofFBP can provide an idea of how hu ge the field 
of applicatîons in modeling various physical phenomena is. Without any attempt to be complete 
we mention 

• de formation of rigid bodies, including fracture, 

• liquid and gas flow with free boundaries, including reactive flows, 

• phase transition processes. 

It is not surprising that to this variety of applications corresponds a variety of theoretica! methods 
fortheir treatment, and that lotsof challenging problems have emerged from them. In many cases, 
they have even determined the direction of development of the theories and they continue to do 
so. Obviously, the theory of PDE withall its aspects plays the most prominent role in this, but 
also tools from other areas as functional analysis or complex tunetion theory have been apphed 
successfully to FBP. 

Motivated by the applications and supported by the theory, the treatment of FBP also forms 
a field of rapidly growing interest in numerical mathernaties and scientîfic computing. 

1.2 Existence and uniqueness results in modeling 

A main objective of this thesis is to obtain existcnce and uniqueness results for certain FBP that 
occur as models for physical processes. Clearly, the main interest from a practical point of view is 

3 



4 CHAPTBR I. INTRODUCTION 

in the preelietion of qualitative properties and behavior of the solution and in efficient calculation 
of approximations rather than in such propositions. It is not exceptional that one en counters the 
(more or less explicitly expressedor tacitly assumed) belief that a "reasonable" model of a "real­
world" physical problem will always automatically have precisely one solution. This reasoning 
is erroneous because it neglects the crucial simplifications that have been made by replacing the 
physical problem by its model. On the contrary, only the knowledge about ex~stence and unique­
ness of the solution will teil whether the chosen model can be "reasonable". Thus, existence and 
uniqueness theorems are not only of theoretica) interest but in the context of modeling they give 
important information on the quality of the model. 

To illustrate this, suppose that a certain model yields no solution, as for example in the Stokes 
paradoxon of two-dimensional hydrodynamics [57]. This means that conflicting assumptions 
have been made in the processof modeling, even if this is not obvious at all. On the other hand, a 
model can admit more than one solution. This is the case, for instance, for certain one-dimensio­
nal conservation laws which can be formulated mathematically as Cauchy problems for first-order 
quasilinear hyperbolic PDE (see e.g. [74] for an introduetion to this). Such a.situation gives rise 
to the condusion that the model does not contain enough information to describe the reality and 
has therefore to be supplemented with additional conditions for the choice of one of the solutions 
as the "correct" one. On this issue, see also the remarksin the classical workofLichtenstein [58], 
especially Section 7.9.1 ; 

Moreover, in many cases the theoretica) effort that has been made in order to give an existence 
and uniqueness proof will also provide more insight into the structure of the problem and the qual­
itatlve behavior of solutions as well as hints on effective numerical methods and their properties 
for the problem in question. 

With regard to the FBPs which are considered here, we wiJl briefty return to this point in 
Chapter6. 

1.3 The roodels 

This thesis is concerned with two instationary free boundary problems in Huid mechanics, namely 
the problems of so-called Stokes flow and Hele-Shaw flow. In both cases, the driving mechanism 
which will be mainly considered is the influence of surface tension, hence the concept of mean 
curvature of a surface will play an prominent role. Let r be a twice differentiable, ( N - 1 )-di­
mensional hypersurface in RN. lts mean curvature K. is usually defined as the sum of the principal 
curvatures divided by ( N - 1 ). For our purposes it will be convenient to call K. = i\:( N - 1) the 
mean curvature (in short: curvature) off. Wewill alwaysconsider K. as areal-valued functioó on 
r. If r bounds a domain in RN' we will choose the sign of K. such that it is ;negative where the 
domain is convex. 

1.3.1 Viscous sintering 

Before we formulate the modelsin mathematica! terms, let us have a brieflook at the technological 
processof viscous sintering whose theoretical investigation is a main motivatiqn of this thesis. For 
a more detailed description the reader is referred to [36, 53, 54, 91] and the references given there. 

1 In the preface of [58] there is even a strikîng reference to FBP: "Gleichfalls ein Desideratum bilden heute Exis­
tenzsätze inkompressibler Flüssigkeiten. sobald eine freie Oberfläche vorliegt:' ("Today, existence theorems for incom­
pressible fluids are also a desideratum whenever there is a free surface.") This has been written already in 1929! 
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In the production ofhigh-quality glasses, it is sametimes preferabie to workat Iower tempera­
tures than usuallyin glass technology. This renders the possibility to avoid impurities induced by 
chemica! reaelions with the container walls and to u se components which are too volatile at higher 
temperatures. The primary product of the viscous sintering technology to be discussed here is a 
so-called aerogel, aporous glass substance of low density that can bedescribed as a mass of mi­
croscopically small dropiets which are only loosely conneeled toeach other.2 At temperatures of 
500-700 °C, the glassis in the state of a highly viseaus liquid ( camparabie to heavy oil or syrup) 
which can be deformed by the forces arising from surface tension. These farces are acting normal 
on the surface of the glass dropiets and their amount is proportional to the curvature of the sur­
face. This leads to the coalescence of adjacent droplets. In this way, large; clusters are formed, 
which macroscopically results in an increasing density of the glass. Ideally, the process yields 
eventually a homogeneaus glass body without pores and inclusions. 

The viseaus sintering process wiJl be modeled in two steps: At first, a general model which 
leads to an FBP for the full Navier-Stokes equations is given, and afterwards some simplifications 
are made which are possible due to the high viscosity. 

1.3.2 The fuiJ Navier-Stokes equations 

We start with the consideration of the following physical situation: A liquid drop moves freely 
under the intluence of an exterior force and of surface tension. (As usual at this stage of the dis­
cussion, we will assume that all occurring derivatives exist.) At timet 2: 0 the drop occupies the 
domaio 11(t) having the boundary f(t). The liquid is assumed to be Newtonian and incompress­
ible with constant positive density pand viscosity v. The velocity and pressure fields t) and 
p( ·, t) are defined on 11( t) and satisfy the Navier-Stokes equations 

( av ) p at + (v. v)v - v.ó.v + vp 
(1.1) 

divv 

where f = f( x, t) is the density field of the volume farces. 
The boundary condition expresses the equilibrium between the normal forces onto the surface 

of the liquid and the normal component of the stress tensor T given by 

T(v,p) = v(\iv + (vvf) pi, 

where vv denotes the velocity gradient and I is the identity tensor. As mentioned earlier, this 
normal force is proportional to the meao curvature ~(t) of f(t), hence 

T(v,p)n(t) l~(t)n(t), ( 1.2) 

where n(t) denotes the outer normal vector on I'( t), and 1 is a positive rea\ proportionality factor, 
the surface tension coefficient, which is a material parameter depending only on the liquid and its 
environment. For a derivation of ( 1.2) from physical reasonings see [ 56]. At initia\ time t = 0 
the velocity field inside the liquid is prescribed as 

v(·,O) = Vo in 11(0). (1.3) 

2 tt is beyond the scope of this thesis to take into account the highly complex topology of the glass body in this process. 
lnstead. we will restriet ourselves to the investigation of simp Ie topologies whereverthis wil! be necessary. 
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As usual in continuurn mechanics, a parametrization of ü(t) by Lagrangian coordinates 
{ E ü(O) is introduced where the parameter functions x x(·, t) satisfy the Volterra integral 
equation 

x(Ç,t) = Ç + 1t v(x(Ç,s),s)ds. (1.4) 

The equations (1.1), (1.2), (1.3) logether with (1.4) and 

û(t) = x[û(O), t] (1.5) 

constitute an instationary free boundary problem. Appendix A gives a brief account of the results 
conceming its solvability, mainly for the purpose of comparison to the results to be obtained for 
the model of Stokes flow which is introduced next. 

1.3.3 Stokes flow 

In order to make u se of more detailed information ofthe physical properties of viscous sintering let 
us make equations (1.1 ), ( 1.2) dimensionless. Following [53}, we choose a characteristic length 
Xe resembling the spatial extent of the liquid domaio and characteristic velocity, pressure, and 
time accordingly as 

I 
Vc = -, Pc= 

V·· Xe Vc 

Furthermore, we assume f to be given by the gravity, Le. f = pge9 where gis the gravity ac­
celeration and eg a dimensionless fixed unit vector. Rewriting ( 1.1), (1.2) in: the dimensionless 
variables 

yields 

- V v=-, 
Vc 

- p p=-, 
Pc 

- t 
t=­

te 

Re (: + (v · V')v) .ó.v +\lp Beg 

divii = 0 

1i(v,p)n(t) = x:(t)n(t), 

where all spatial derivatives have tobetaken with respect to i:, 

and 

Re= 
2 

B= pxcg 
I 

These dimensionless numbers, characterizing the respective influence of convective and gravita­
tional effects compared to viscosity, are the well-known Reynolds number and the Bond immber. 
(The name Suratman number instead of Reynolds number is also used in our special situation 

where Ve = ?; is chosen [43]. Note, moreover, that B = ~ where Fr is the Froude number.) 
Fora typical viscous sintering problem, the values offhese numbers are [53, 91] 

Re= 10-19 ... 10-21' B = 10-6 ••• 10-8 • 
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Hence it is justified to neglect both the conveelive and the gravitational terms and to rcplace (I. I) 
by the equations for incompressible "creeping flow": 

-~v+ \lp 
divv 

T(v,p)n(t) 

~ } 
~>:(t)n(t) 

in O(t), 

on f(t). 

( 1.6) 

(1.7) 

(Here and in the sequel, the tilde is suppressed, we write T for ~, and we will refer to v and pas 
velocity and pressure field as before.) 

Compiemenled by (1.4) and (1.5), the equations (1.6), (1.7) formanother free boundary prob­
I cm which wiJl be discussed in detail in this thesis. At the moment, we only want to direct the at­
tention to the crucial changes in the character of the problem that resu1ts from replacing ( 1.1) by 
(1.6). For O(t) known, the latterfarm an elliptic system in the sense of Agmon-Douglis-Niren­
berg [3] with complementing boundary condition ( 1.7) (sec Chapter 3). Therefore v( , t), p( ·, t) 
depend only on O(t) but not on its evolution in time. In particular, this holds for the initia! time 
f 0, i.e. there is no initia! velocity to be prescribed for the creeping flow FBP. Consequently, 
the evalulion of the domain as wel! as the velocity and pressure fields at any time are essentially3 

determined by 0(0). 
This fact can be clarified by the following intuitive reasoning: In a nonstationary initial­

boundary value problem for the full Navier-Stokes equations, the initia! momenturn of the Iiquid 
is dissipated by inner friction due to the viscosity. For higher viscosities, i.e. smaller Reynolds 
numbers, the characteristic time ofthis dissipation process becomes shorter, and "in thc limit" the 
intlucnee of the initia! velocity vanishes for all positive times t. 

Foradiscussion of the solvability of the corresponding two-phase problem with N = 2 and a 
special geometry see [ 1 0]. The approach used there is based on Fourier analysis and a contraction 
argument in a scale of Banach spaces. 

1.3.4 Hele-Shaw flow 

Besides Stokes flow and in many respects parallel to it, so-called Hele-Shaw flow will be con­
sidered. We will restriet our attention to the one-phase problem. Back in 1898, this model was 
introduced to describe the motion of a thin layer ofliquid confined in aso-called Hele-Shaw cel!, 
a narrow interslice between two parallel plates [28, 40]. Let O(t) be the domain occupied by the 
liquid again. (In this original problem, we have N = 2.) The liquid is supposed to be incom­
pressible and its velocity v is proportional to the gradient of the pressure p. Thus, we have in 
dimensionless form 

V 

divv 
~'Vp } in ü(t). ( 1.8) 

These equations are also encountered as the simplest model of groundwater flow whcn the soil 
is supposed to be homogeneaus [90]. In this case, v is the so-called specific discharge vector, 
descrihing the flux through an oriented area element per unit of time, and the first cquation is 
called Darcy's law. It is known [12] that the equations (1.8) are consistent with the Navier-Stokes 
equations if the inertlal effects are disregarded and a certain averaging procedure is applied. 

Based on ( 1.8) and depending on the applications, various driving mechanisms that in duce a 
motion of the liquid can be considered. The most usual ones are gravity and injection or suction 

"·In fact. the velocity fields as well as the evolution of the domain are determined only up to rigid body motions. Th is 
wiJl be discussed in Chapter 3. 
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of liquid at pointsourees orsinks, at some parts ofthe boundary ofQ{t) or, ifQ(t) is unbounded, 
at infinity. (If point sourees or sinks are included, the equations hold only in the liquid domain 
with the source/sink points removed.) 

Descrihing the evolution of the domain by ( 1.4), (1.5) again, it is nothard to derive the ex­
pression 

Vn(t) = v(·,t)lr(t) · n(t) on r(t) (1.9) 

for the normal velocity Vn of the boundary r( t ). More precisely, Vn = Vn ( t) is a function, defined · 
on r(t), which assigns toeach point of r(t) the component of its velocity that is normalto r(t) 
in this point (see Chapter 3). 

Writing u = -p we find from (1.8), (1.9) the equations 

= 0 au 
an(t) 

in Q(t) } 

on r(t) (1.10) 

(or modifications of them including souree terms.) Forthese equations to constitute a "well­
defined" free boundary problem, a boundary condition for u at r(t) has to be added. This can 
be done in different ways. The simplest one is the homogeneaus Dirichlet condition 

u 0 on f(t) 

corresponding to continuity of the pressure across the free boundary f( t) and constant pressure 
outside Q(t). Other boundary conditions that are encountered in literature are the homogeneaus 
Robin condition au 

u+ ê an(t) = 0 on r(t) (1.11) 

and the inhomogeneous Dirichlet condition 

u -ytc( t) on r( t), (1.12) 

where e: and 1 are positîve constants. Both conditions have first been applied t~ the closely related 
famous Stefan problem · 

au 
c-- Llu 

8t 
0 

au 
an(t) 

in Q(t) 

on f(t) 

descrihing phase change processes where u represents the temperature and cis the specific heat. 
(Note that we reeover (1.10) by setting c = 0.) Referring to this context, (1.11) is called kinetic 
undercooling regularization and accounts for certain nonequilibrium thermadynamie effects. The 
condition (l.l2) arises if a surface energy term is included in the modeland is called G.ibbs­
Thomson relation. In the original Hele-Shaw problem, it is a rough approximation ofthe infiuence 
of surface tension forces on the free surface of the liquid. Por more details on the rnadeling as­
pects and for results conceming solvability and properties of the various FBPmentioned here we 
refer to the survey artiele [ 46], where special emphasis is laid on the case N :::i 2 and the complex 
variabie methods applicable there. 

In this thesis, we will exclusively deal with the boundary condition ( 1.12). Due to its inhomo­
geneity, it represents a driving mechanism, and for the main part of this thesis we will not include 
other ones. As in the case of the Stokes flow FBP described above, the evölution of the liquid 
domain is then c<;>mpletely determined by Q(O). 
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We remark that the FBP (1.10), (1.12) is also obtained in the description of the motion of 
phase boundaries by capillarity and volume ditJusion in mctallurgy [64]. 

In the sequcl, unless stated otherwise, we will refer to the FBP (1.4)-(1.7) by the name 
"Stokes flow" and to the FBP ( 1.1 0), ( 1.12) by the name "Hele-Shaw flow" without explicitly 
mentioning surface lension as the (only) driving mechanism considered. 

1.4 Basic ideas and properties 

Let us outline now some essen ti al points of the following investigations, in a way that is aimed at 
clarifying the crucial concepts by deliberately skipping technicalities as far as possible. 

1.4.1 Quasistationary approximation and surface motion laws 

We reeall that equations (I .4), (1.5) imply (1 .9), hence the latter equation holds both for Stokes 
flow and for Hcle-Shaw flow. Camparing ( 1.6) and ( 1.7) on one hand and the inhomogeneous 
Dirichlet problcm 

u 
0 
/K:(t) 

in !.1(t) } 
on r(t) 

(Ll3) 

on the other, we see that both the vector-valued function v and the scalar function u satisfy el­
liptic boundary value problems in Sl(t) with inhomogeneous boundary conditions involving the 
curvature. We will call them fixcd-time problems in the sequel. 

Roughly speaking, elliptic BVP typically occur as models for stationary processes. Accord­
ingly, in our case they result from omitting the "nonstationary" inertia terms. The FBPs under con­
sideration are, however, obviously nonstationary. This apparently contradictory approach is used 
quite often (e.g. in thermodynamics) to model processes where the considered system, within the 
given precision, can heseen asevolving along a Irajeetory of equilibrium states. This is called 
quasistationary (or quasistatic) approximation. 

As a consequence of this approach for our problems, we find the following structure of the 
FBPs: The evaJution of the domain is given by 

Vn i(n(t)) .F(f(t)), (1.14) 

where j involves the salution of the corresponding fixcd-time problem. Equations of the form 
(I .14 ), with .F a given operator which assigns to any sufficiently smooth surface r a real-valued 
function on it, are called surface motion laws: the motion of f(t) is completely determined by 
r(t) itself. The most extensively studied example of such a surface motion law is the so-called 
mean curvature flow: 

.F(f) n;, 

A survey on surface motion laws basedon the curvature is given in Appendix B. Here we want to 
point out one important difference between mean curvature flow and the FBPs considered here: 
they are nonlocal, i.e. the value of .F(r) at a point x E r does notonly depend on the behavior ofr 
near x but on r as a global object. Nevertheless, the identification of our FBPs as surface motion 
laws does not only help to understand their nature but also provides hints as to what methods 
should be chosen fortheir treatment and what results can be expected. 
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1.4.2 The direct mapping metbod 

The most obvious difficulty in the mathematica! treatment of FBPs is the unknown or changing 
domain. A widely used metbod to overcome this problem is to choose a fixed teference domaio 
na and to introduce an unknown diffeomorphism mapping no onto n(t). This approach is called 
direct mapping method. As we consider moving domains, we wil I have to work with (sufficiently 
smooth) time-dependent diffeomorphisms z z( ·, t). The treatment of an FBP by the direct 
mapping metbod proceeds then by transforming it toa system of equations (nQnlinear at least in 
z) and boundary and initia! conditions from which both the (transformed) solution and the diffeo­
morphism z have to be determined. 

Of course, a major obstacle in this approach is the fact that n(t) does by no means determine 
z( ·, t) uniquely. In fact, if a diffeomorphism z satisfies z[n0 , t] = n(t), then tjle same holds for 
z = z 0 ( where ( is any diffeomorphism of no onto itself. Therefore the freeaom in the choice 
of z bas to be removed which can (for instance) be done by the following means: 

• Choose no = n(O) and let z be the parametrization of n(t) given by Lagrangîan coordi­
nates. This approach is the most well-known in continuurn mechanics. The treatment of 
the FBP for the full Navier-Stokes equations as described in appendix A is basedon it. 

• If N = 2, let no be a suitable standard domaio (e.g. the unit disk) and let z be the conformat 
mapping ofno onto n(t). This approach wiJl be used in Chapter 2. 

• If ano( = fo) and f(t) are in a suitablesense closetoeach other, itis possible to fix in a ge­
ometrically determined way a diffeomorphism from r 0 onto f(t) and to extend it uniquely 
toa diffeomorphism from no onto n(t). This will be done inSection 3.1 and applied in 
the subsequent parts of this thesis. 

Once (essentially) uniqueness of z is enforced, the special character of surface motion laws im­
plies a special structure for the problem on n 0 , namely a (nonlinear) evolution equation 

az = F(z(t)) 

with an initia! condition given by n(O). (Note that this is oot thecase e.g. forthe FBP in appendix 
A.) For technica! reasoos it will be convenient to consider the evolution equation for z on fo 
rather than on na. The nonlocal character of the surface motion laws yields also nonlocality of 
the operator F. 

Hence, our quasistationary FBPs will be reformulated as nonlinear, nonlocal evolution equa­
tions on a (compact) manifold without boundary. The study of these equations is the core of this 
thesis, and most of the results on the FBPs will be obtained by investigation of these evolution 
equations. 

1.5 Contents of the thesis 

There is a great variety of methods in the study of nonlinear evolution equations whose applica­
bility depends on the special situation. In this thesis, we will use the following three methods in 
order to obtain results on existence, uniqueness, and regularity of solutions: 

• abstract Cauchy-Kovalevskaya theorems, 
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• an abstract approach to fully nonlinear parabalie equatîons, 

• quasîlinearization and a priori estimates. 

Other methods, such as hard implicit function theorems of Nash-Moser type, which also have 
been successfully used for FBP, are not considered here. 

The properties of analytic functions and conformal mappings are favorable for the descrip­
tion of Stokes flow. From a functional analytic point of view, they !end themselves in a natura! 
way to the construction of scales of Banach spaces. Such scales, logether with the concept of 
quasidifferential operators, form the framework for the abstract Cauchy-Kovalevskaya theorem. 
It will be applied to an evolution equation arising from the reformulation of the Stok es flow FBP 
in Chapter 2. Due totheuse of conformal mappings, this technique is restricted to the case N = 2. 
On the other hand, short-time existence can be proved (for analytic initia] data) even "backward 
in time", and no detailed knowied ge about the type of the evolution equation is needed. More­
over, exponential stability of the equilibrium is proved. (The reason why parallel results for the 
Hele-Shaw problem cannot be obtained by the same methods will be given inSection 3.5). 

The further chapters are devoted to the Stokes and Hele-Shaw flow problems in arbitrary 
space dimensions. The approach chosen there is by the direct mapping method with 0 0 near Q( t ), 
i.e. we consicter small perturbations of Oo, represented by real-valued functions r on r n for which 
an initia! value problem (IVP) 

ar 
&t 

r(O) 

p(r), } 

ro, 

(1.15) 

r0 sufficiently smal!, is derived and its investigation is started. This is done in Chapter 3 by first 
studying the fixed-time problems and then investigating their dependenee on the perturbation r. 

A main tooi in the analysis is the linearization of (1.15), i.e. the determination and investiga­
tion of the operator p' (0), the Fréchet derivative of p at r 0. Roughly speaking, the "leading 
term" in this linear operator turns out to be the composition of the Laplace-Beltrami operator on 
f(O) with the Neumann-to-Dirichletoperator for the Stokes equations in the Stokes flow FBP and 
the composition of the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator for the 
Laplacian in the Hele-Shaw FBP. 

The cru ei al re sult is that, in appropriate function spaces, - p' ( 0) generales an anal ytic semi­
group, i.e. the IVP (l.l5) is (abstract) parabolic. This fact makes it possible to apply general 
results on nonlinear problems of this type in order to obtain existence and uniqueness results for 
the solution of ( 1.15). 

In Chapter 5 the investigation is continued by choosing a different approach to ( 1.15). Inslead 
of working with analytic semigroups, sharper statements concerning the solvability of ( 1.15) can 
be derived using the tèchnique of a priori estimates and Galerkin approximations. Thc basis for 
this as wel! as for the proof of additional smoothness properties is a generalized chain rulc which is 
derived from the invariance ofthe fixed time problems with respect to rotations. For this techniquc 
to be applicable, however, an additional restrietion on the geometry of 0 0 has to be imposed. 

All results in Chapters 4 and 5 are local in time, i.e. they ensure the existence of' a solution 
to (1.15) on a short time interval [0, T]. Section 6.1 is devoted to the analysis of our FBPs near 
equilibrium states, i.e. where Q(O) is a slightly pertorbed hall. In such cases it is possihle to prove 
solvability of (1.15) for all positive times and to show that the solution exponentially decays to 
the equilibrium state. 
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Finally, sorne extensions and variations of the FBPs considered sofarare indicated together 
with the necessary rnodifications in their treatrnent. Sorne rernarks, results jl.l1d references con­
cerning the numerical treatrnent of the Stokes flow problern are also given. ! 



Chapter 2 

A complex analysis approach to 
plane Stokes flow 

The Stokes flow problem (1.6), (1.7), (1.9) has been approached by several authors since 1990 for 
N = 2 by means of complex function theory. The strategy which is common in theîr papers can 
roughly bedescribed as follows: 

• Representation of the fixcd-time problem as a BVP for (bi-)analytic functions in n(t) 

• Transformation by con forma! mapping to a BVP for analytic functions on the unit circle 
( or another fixed standard domain). The crucial ingredients hereare the Riemann mapping 
theorem and the fact that the composition of two analytic mappings is analytic. 

• Derîvation of an evolution equation for the confonnal mapping from ( 1.9) 

Depending on the purpose, this evolution equation can be in implicit or explicit forms. In the 
former case, it is called Hoppers equation and can be used to construct explicit solutions of the 
Stokes flow FBP [ 43, 44, 45, 51, 75]. In explicit form, the evolution equation can be considered 
as a nonlinear Löwner-Kufarev equation [SI]. Th is form is more suited for numerical treatment 
as well as for obtaining existence and uniqueness results by means of a Cauchy-Kovalevskaya 
theorem [5, 6, 8]. 

Since 1970, such theorems have been applied to instationary free boundary flow problems in 
various geometries, for various driving mechanisms, and for various governing equations. With­
out attempting to be complete, we mention poten ti al flow of a free liquid drop [681 and of a liquid 
layer above a fixed bottorn [69], two-phase flow in porous media [25], coupled flow of surface 
and ground water [80], and Hele-Shaw flow [42, 72, 73]. 

In the derivation of the evolution equation as well as in the choice of the function spaces we 
follow [5, 8]. As our main interest is in the existence and uniqueness proof, forsome details in 
the derivation of the evolution equation we wiJl refer to the original papers. The main results of 
this chapter have been publisbed in [71]. 

2.1 Preliminaries 

The basis for the formulation of abstract Cauchy-Kovalevskaya theorems is the following concept: 

13 
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Definition (Scale of Banach spaces): Let I be an open interval of R and {XP, p E I} an in­
dexed family of Banach spaces (Xp, 11 ·lip)· {Xp} is called a scale of Banach spaces iff, for all 
1', p EI with r < p, Xp is continuously embedded in Xr and the corresponding (linear) embed­
ding operator is injective and has an operator norm ::::; 1. 

We will use the following special scale: Let G be the unit disk of the complex plane C, p 2:: 0, 
consider the spaces Bp of (complex-valued) functions on 8G having a FouTierseries 

f(r) = L,!kr", rE EJG, (2.1) 
kEZ 

for which the expression 

lilliP 2:, lf1,1elklp (2.2) 
kEZ 

is finite. (The Weierstrass criterion ensures that for any p 2:: 0 all such f are continuous.) 
Moreover, for p > 0 we will consider the spaces Bp consisting of equivalence classes of 

functions in Bp which differ only by a constant and for which the expression 

is finite. 

Lemma 1 (Thescale Bp) 
(i) The spaces {Bp, ll·llp} forma scale of Banach spaces withi (0, +oo ). 
(ii) The spaces {Bp, :P ll·llp} forma scale of Banach spaces with I::: (0, +oo). 
(iii) The embedding Bp <--+<--+ Br iscompactforr < p. . , 
(iv) Each space Bp with p 2:: 0 is a Banach algebra, i.e. if f, g E Bp, then their product fg, 

definedby 
(fg)(r) = f(r)g(r) Vr E 80, 

is in Bp, and 

litolip ::::; liJliP IloliP · 
(v) Ij p > 0, f E Bp, then f can be analytically extended into the annulus 

Ap::: {(le-P< 1(1 < eP}. 

On the other hand, ifw is an analyticfunction in Ap then its restrietion to 8G belongs to all Br 
with r < p. 

Proof: (i) It is straightforward to check that Bp_ is a Banach space under tre norm ll·llp· Nat­
urally, the identity is chosen as embedding operator, hence the scale properties follöw from the 
monotonicity of the mapping p ~--> 11/ll P in its domaio of definition. 

. (ii) It is straightforward to check that Bp is a Banach space under the norm ;P ll·llp· Again 
one chooses the identityas embedding operator, and the scale property follows' from the convexity 
ofthe mapping p ~--> 11/llp· 

(iii) We approximate the embedding operator lp,r by a .sequence of finite-rank operators 
In E L( B P, Br) defined by truncation ofthe Fourier series: 

(Inf)(r)::: 2:, fkrk. 

lkl~n 
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For the difference, one gets 

II(Ip.r- In)JIIr = L IJklelkir = L IJklelklpe-lkl(p-r) :=:;; liJliP e-n(r-r), 

lkl>n lkl>n 

hence In ~ Ip,r in f-(Bp, B,.) and therefore Ip,r is compact. 
(iv) By direct calculation, we find 

liJgliP = LIL Jz9m-11 el'nlp :=:;; L 1Jzll9m-zlelmlp 
m I m,l 

k,l k,l 

where all summations have to be carried out over Z:. 
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(v) follows from standard results on the convergence, analyticity, and uniqueness of the Lau-
rent series 

F(() = L Jk(k. • 
kEZ 

If we introduce the are argument() by r = ei 9 and consider Jas a function of 0, we find for 
all p > 0 and all J E Bp 

and from this and Lemma 1 (iv) it follows that 

In order to apply complex analysis to the Stokes equations in two dimensions we identify as 
usual (x, y) E R 2 with x+iy E C In the sequel, we will not indicate in the notation thedifference 
between points, domains, and functions that correspond toeach other via this identification. Let 
U be a domain in R 2

. We introduce the Cauchy-Riemann operators 

a 1 (a .a) --- --l-
f}z - 2 ox oy , 

OU OU . 
and note that f}z = f}z, where the bar denotes the complex conJugate. We reeall that 

is analytic in U iff 

there, and in this case 

He nee 

w: U--+C 

OW = 0 
oz 

OW I az=w. 
OU = 0 
Öz 

(2.3) 
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iff u is analytic in U. 
A function u : U ----> C is called bianalytic iff 

(! r w = ~:~ = 0. 

Lemma 2 (Representation of homogeneaus Stokesflow in 2D, [5]) 
Let (v,p) solve the equations 

in the domain Q C R 2
. 

-v!lv + 'ïlp 
divv 

= 0} 
= 0 

(i) There are analytie Junelions Wo, Wl in n sueh that 

V 

p = 
The bianalytie stress-stream funetion 

I I w1 - zw1 - w0 

-4vRew~ 

w = zw1 + w0 = <p + i'!j; 
(<p, 'Ij; real-valued) satisfies 

(2.4) 

v = i'ïl'I/J, p = -v!l<p. (2.5) 

( ii) Among all bianalytie Junelions w : n ----> c. w is determined for given (V' p) by (2.5) 
up toa linear funetion Re( az) + b, a, b E C. 

Proof: Using the Cauchy-Riemann operators, we can rewrite (2.4) as 

2 a_ (p- 2v OV) = 0, 
oz oz 

(2.6) 

2Re ov 
oz o. (2.7) 

From (2.6) we conclude that p- 2v ~~ is analytic in Q, hence 

OV I 
p- 2v oz = -4vw1 (2.8) 

fora certain analytic function w1. Using now (2.7) and the fact that pis real-valued, we can give 
a decomposition of (2.8) into its real and imaginary part: · 

p 

ov 
oz 

-4vRew~ 

= 2 Im w~ = w~ - w~. 

This impfies, by the above remark on the solvability of (2.3), 
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with some analytic function w0 . Using 

v= 
àw 8 - = -(w­Dz az 

the representation formulas (2.5) are obtained straightforwardly. 
(i i) We have to find all salution of the system of equations 

\7'1/J 

D.<p 

()2'P f)2'P 
ax2 - ()y2 

()2'1/J ()2'1/J 

0, 

0, 
()21}) 

2 
axfly' 

-2 a2<p 
Dxûy' 
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where the thîrd and fourth equation are consequences (actually, an equivalent formulation) of the 
bianalyticity of w. From the first equation we see that ~~is a constant, and from this and the other 
equations one concludes that all second partial derivatives of 'P vanish, hence it is a linear function 
in x and y. This completes the proof. • 
Remarks: If Q is not simply-connected, w wiJl in general not be single-valued. Fora detailed 
discussion of this see [5]. The above representation method, originally developed for two-dimen­
sional problems in elasticity [52, 66], has been applied to the Stokes equations since the 1960s 
(e.g. [35, 57], for more references see [8].) D 

The followîng standard results will play an essential role in the derivation of an explicit eva­
Jution equation involving the solution of the Stokes equations. For the proof we refer to [33, 81]. 

Lemma 3 (Schwarz integral and Hithert transform) 
Let f : DG R be Hölder-continuous. 
(i) The complex singular integral 

S[f](() = ?l {
2

" S(>., ()!(>..) dv, 
-11' Jo 

is an analyticfunction inG. Moreover, S[f](O) ER 

>..+ 
S(>..,()= >..-(' 

(ii) For the limit ofS[f] on aG from the interior, the Plemelj formula 

holds, where 

H[/](r) 

. lim S[f](() = f(r) + iH[f](r) 
~EG-r 

1 {21( 
Jo H(r,>..)J(>..)diJ, H(r, >..) 

0 IJ 
iS(r, >..)::::: cot -

2
-. 

(.lfld the int eg ral is to be understood as Cauchy principal value. 
( iii) lf f is given by (2.1 ), then 

H[/]::::: -i L sgn(k)/krk 
kE:i:l 
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Remarks: S[f] and H[fl are called the Schwarz integral of f and the Hilbert transfarm of f 
(on the unit circle), respectively. Note that H[f] is real, hence we have that i~ F is any analytic 
function in G which is continuous on G and Re F = f on l)G, then 

ImF = H[/] + iC on &G, 

where iC is an imaginary constant. The definition ofH can be extended to corriplex-valued func­
tions in an obvious way. If this is done it is not hard to see that f = iH[f] iff f has an analytic 
extension into G that vanishes at 0. o 

2.2 The evolution equation 

We consicter the following slightly modified Stokes flow FBP descrihing the quasistationary ther­
mocapillary motion of a bubble [8]: 

Let O(t) be the outer domain bounded by the bounded simple curve f(t). The velocity and 
pressure field in it satisfy the Stokes equations 

-li.Ó.V +\lp 
divv ~ } in O(t) 

Near infinity, velocity and pressure are assumed to approach constant values: 

V-+ Voo, P-+ Poo as lxl-> oo, 

(2.9) 

(2.10) 

where x E R 2 denotes the space variable. These constants are time-dependent and a priori un­
known. Moreover, incompressibilityofthe bubble bas to be demanded: 

f dz const = 1ra2 • 
}R2

\fl(t) 
(2.11) 

This is an equivalent formu1ation for the condition that no ftuid is injected or ettracted at infinity. 
The evolution of Q(t) is determined by 

Vn = vlr(t) · n(t), (2.12) 

and for the normal component of the stress tensor we have, by the action of surface tension forces, 

T(v,p)n 18 (u~:). (2.13) 

where sis the arclength parameter along f(t), taken clockwise as O(t) is an outer domain, and u 
is the surface tension coefficient. Note that for constant u this is identical with (1.2). In order to 
consicter therrnocapillary motion, the dependenee of u on the temperature T has to he taken into 
account. For our purpose it is sufficient to take the simplest case of linear dependencc: 

(2.14) 

The temperature field is given as the salution of the auxiliary elliptic boundary value prob1em 

.ó.T = 0 
l)T 0 
&n 

in O(t) 

at r(t) 
(2.15) 
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with the asymptotic condition 

T C00 ·a: as I x I --> oo, (2.16) 

where Coo can be interpreted as temperature gradient at infinity. 
To rewrite the equations (2.9)-(2.13) in terms of the functions ip, w0 , and w1 as defined in 

Lemma 2 we note that, in (x, y )-coordinates, 

T(v,p)=2v( ipyy 
-ip;ry 

and if f(t) is parameterized by z z(s, t), then n = -i~:. Using this and (2.5) one straight-

forwardly calculates on r(t) 

hence by (2.12) 

and by (2.13) 

which yields by integration 

T(v,p)n 

v·n 

Im (l}z dz) 
os dt 

d 
-2v-(\7ip) 

ds 

{h/J os on r(t) 

d ( dz) 
ds (]' ds ' 

2v\7ip = -un 

(2.17) 

and splitting this into two se al ar equations corresponding to the tangential and normal components 
gives, after another integration for the tangential component, 

-u on r(t), 

0 on r(t). 

(2.18) 

(2.19) 

We have omitted the inlegration constants here because, according to Lemma 2 (ii), ip is deter­
mined only up toa Iinear function, i.e. taking the inlegration constants to be 0 has no intlucnee 
on ( v, p) but enforces uniqueness of ip. Furtherrnore we used the fact that w = ip + is single­
valued due to (2.1 0), (2.11 ). Fora proof ofthis see Theorem 2 in [5] and the corresponding remark 
in [8]. To eliminate ip = Re(zw1 + w0 ) we use that on f(t) 

2Re 

( 
·) Gif ol/; Re -Ti.'\7ip + -\71p = --+-as on os (2.20) 
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by (2.18). With an appropriate choice of a moving coordinate system we get from (2.1 0) the 
asymptotic conditions [8] 

Poo ( 1) 
1 

wo=0(1),w1=--
4 

z+voo+O- aslzl-+oq. 
V . Z I 

! 

(2.21) 

To transfarm our inoving boundary problem to the unit disk G, one int~oduces now a time­
dependent conformat mapping z((, t) from G onto the flow domain O(t).' From the Riemann 
mapping theorem it follows that such a conformat mapping exists, and it is of the form 

00 

z((, t) = .L: zk(t)(k, 
k=-1 

where z_ 1 E R, z_ 1 > 0 withoutlossof generality. We assume, moreover, that z' does not 
vanish on aG. By Keilogg's theorem [38], O(t) E C 1·"' is suftkient for this. In the following, 
all variables will be considered as functions of ( but the same notation as before will be used. 
Obviously, the functions w0 and w1 are analytic in G\ {0} for any t. We will denote the complex 
variabie along oG by Tand its argument by B. 

Note that on oG 

he nee 

az 1 7fi 1 ,ar 1 -,-. . ? .lz'l - = -- = -z- = -z tT = -t- = -t-, as lz'l {)(} lz'l a(} lz'l TZ
1 

TZ
1 

Im (~:~;) 
lm (~: W1) 

= lz'l Re (ozjat) ' 
TZ1 

= lz'l Re(~) . 
TZ 1 

Thus we get from (2.17), (2.19), (2.20) 

where 

R 
azjat 

e--,- +u 
TZ 

Re( wo+ zw1) 
W1 

2Re-, +u+A 
TZ 

0 on oG 

0 on oG 

0 on aG, 

A( ) 
_u. +-yT(z(r,t)) 

T, t - I )I ' 2v z'(r, t 

al/JfaB 
u( T, t) = lz'( T, t)12. 

Fro}ll (2.21) we get asymptotic conditions now for ( -+ 0: 

azfat 
(z' 

d 
= - dt log lz-1l + 0(() 

wo = 0(1) 

-~: (z_1C1 +zo)+ Voo + 0((). 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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Moreover, the conformal mapping introduced above enables one to solve the problem (2.15). 
(2.16) explicitly. For the values of T at the unit ei rele one gets 

T(r, t) Re(Cco(2z_t(t)r- 1 + zo(t))). 

. d . h 1· f f I h er* f I . 2va f · d er* B y mtro ucmg t e sca mg actors a or engt , - or ve oc1ty, or time, an - for pressure, 
2v er. a 

all equations can be made dimensionless. One thus obtains 

A( r, t) 
1 + Re(c(2z_ 1(t)r- 1 + z0 (t))) 

lz'(r,t)i 
(2.27) 

where, again, the same notation as before is used and the dimensionless constant c = ÎCooa is 
er. 

the so-called crispation number. 
Let us have a look at the equations (2.22)-(2.26) (in dimensionless form): Applying Lemma 

3 to 8(i~t we find from (2.22) and the first equation in (2.26) that 

{)z 
(z'S[tt] inG. (2.28) 

For given z, on the other hand, it is possible todetermine u from (2.23), (2.24) and the asymp­
totic conditions on w0 and w 1 . This will be done below. Hence the complex partial differential 
equation (2.28) is the explicit evolution equation for z that had to be derived. We remark again 
that it has the form of a (nonlinear) Löwner-Kufarev equation [51} 

áz = (z' f 

where f depends on z. 
It remains to describe how to obtain u for given z which is equivalent to the salution of the 

fixed-time problem. From the asymptotics of w1 near ( = 0 it follows that has a remov­
able singularity at 0 and approaches a real value there. Moreover, we can demand without loss 
of generality that w0 (0) ER because up to now w has been determined only up to an imaginary 
constant. Hence on {)G 

Let US define the functions <P : oG 

<P(r) = 
g(À,r) 

rz' 
+A+ iH[u +A]). 

C and g : 8G x oG ---+ C by 

r(tt +A+ iH[u +A]), 

À(z1(À)z(..\) z'(;)z(r)). 

(2.29) 

For later use we note that, according totheremark after Lemma 3, <P = iH[<P] and by straight­
forward calculation in terms of Fourier coefficients of z 

(2.30) 
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Now we are ahle to ohtain 

( 
zz' ) Im(wa + zwi) = Im - Rew1z- iH[Re(w1z)]- Tf 

( 
zz' ) 1 - ReH[w1z]- Im iTH[<I>] = 2 Re(H[zz<I>]- zz'H[<I>]) (2.31) 

or 

1 1 [ 211' 
1P(r) = 2ReH[(u+A+iH[u+A])g(·,r)](r) = 

2
11' la h(r,.X)(u(.X)+A(.X))dv (2.32) 

with 

1 ( 1 {211' ) . h(r,.X) = 2Re H(r,.X)g(.X,r) + 
2

11' la iH(r,()H((,À)g((,r)d<jJ , (2.33) 

À = eiv, ( = eit/>. Using that 

H( T, ()H((, .X) = H( T, .X)(H( T, ()- H(.X, ())- 1 

and (2.30) one calculates 
h(r,.X) = H(r,.X)(Z(r)- Z(.X)), 

where 

Z( r) = ~Re ( rzz'- 2~ laa H( r, ()z(()dz(()) . (2.34) 

Gatbering the results, we find that u satisfies the houndary integral equation 

u=k(u+A) onäG 

with 

k(f) = lz'l- 2 L(Z, f), 

L(Z,f) = :
0

(H[Zf]-ZH[f]). (2.35) 

We reeall that solving this integral equation is equivalent to the determination of Vn at f(t) for 
fixed t. Under the conditions imposed here, existence and uniqueness of the solution of this proh­
lem can he shown (see [5]). Hence, it is justified to consider u as a function of z. 

It will he convenient to work with a real-valued function h on ac instead qf z whose relation 
with z is given hy 

h(z,t) = 
z 

Re(rz(r,t) -1), 

!(1 + h + iH[h]). 
T 

(2.36) 

Note that h = 0 corresponds toa circular huhhle with unit radius. Moreover, the conservation of 
the (dimensionless) huhble area 

1 1211' 11'=--Re zzrdB 
2 a 
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yields a priori 

ho(l) = ( 1 +4 {.;Ik - l)(h c(t)(' r -I, 

where h k are the Fourier coefficients of h. 
From (2.28) we find 

oh h , 
at=u+B( ,u), 

where 
. ( oH[hJ\ 

B(h,u) = h- (j(}) u- oh+ H[hJ) H[u]. 

2.3 Existence of solutions 

Summarizing, we consicter the following nonlocal Cauchy problem fora real function 

h : oe x 1 ___,. R, 

where J is a time interval containing 0: 

oh 
F(h) U[h] + B(h, U[h]) 

h(r,O) h. ( T), 

where B is defined by (2.38), U is the salution operator of the integral equation 

u 

J<[h](f) 
I<[h](u+ A), 

iz'i- 2 L(Z, f), 

23 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

and A, z, L, and Z are given by (2.27), (2.36), (2.35), and (2.34), respectively. h. is the function 
corresponding to the initia! domain f:l 0 . Withoutlossof generality wedemand (2.37) to hold tor 
the salution h. This equation enables us to reeover h from an element of Bp in an unique way. 
Therefore, in the sequel we will use the notation h for elements of Bp as we!l, and the Fourier 
coefficient ho wil! be considered as a function on Èp. 

The crucial step in the existence proof will be an inequality which ensures that Fis a quasid­
ifferential operator in the scale of spaces Èp (cf. Lemma 1 (ii)) in the sense ofüvsiannikov [68]. 
As a preparation for this, we introduce the notation 

for all p for which h. E 

Lemma 4 Assume h. E È p. fora certain p. > 0 and let Q 0 be a C 1 
·"' -domain with n > 0. 

Thenthereareconstantsp E (O,p.],r > OandC > Osuchthatforallp E (O,p)andall 
h 1 , h2 E UP ( h. , r) the inequalities 

< c 
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and 

(2.42) 

hold. 

Proof: The assertions of the lemma will be proved by a sequence of inequalities which are ob· 
tained from working with the Fourier coefficients in a manner similar to [8]. Furthermore, per­
turbation arguments are used to ensure the boundedness of certain expressions. The smoothing 
property of the operator I<[h]c.) is used to apply a compactness argument and to ensure the uni­
formity of some estimates with respect to p. 

At first, a suitable p has to be determined. Let z. denote the initial conformal map eerre­
sponding to h •. By the smoothness presumption on Oo and Keilogg's theo~m [38], z~ may be 
extended continuously to fJG, and it is not vanishing there, i.e. 

onaG (2.43) 

due to a compactness argument. An easy calculation analogously to the derivation of inequality 
(2.49) below shows that < E Bp. and hence lz~l 2 = z~z~ E Bp. from the Banach algebra 
property. Hence by Lemma 1 (v) there is a function w that is analytic in Ap. whose restrietion to 
aG is lz~ 12 • From (2.43) and continuity and compactness arguments it follows that we can choose 
a p E (0, T] such that Re w > 7 > 0 in A2p· In this smaller annulus, the functions and w- ~ 
are analytic. (Here and in the sequel, we preserve single-valuedness by choosing the branch of 
the square root which maps positive real numbers to positive real numbers.) Restrietion of these 
functions to aG yields lz~l, lz~l- 1 E Bp by Lemma l (v). 

Let p E (0, p) be arbitrary, r > 0 smalL (The upper bounds that are to be imposèd on r wil! 
become clear from the arguments used within the proof.) Let h, h1, h2 E Up:(h., r) be arbitrary, 
having the Fourier coefficients hk, h~1 ), h~2), respectively. 

lt is clear that the functions A, z, and Z have to be considered now as functions of h with 
values in Bp. Throughout the proof, the index 1 or 2 will indicate the values of them at h1 and 
h2 , respectively. If no index is used, the value of these functions at h is meant. Furthermote, all 
occurring constants will be denoted by C if their actual value is of no interest. Without explicit 
statement in every single case, all inequalities are to be understood in the sense that they hold with 
the same constant(s) C for all h, h1, h2 E Up(h~, r) and for all p E (0, p). 

It is immediately clear that 

a a 
llhiiP $ f:Jp llh.IIP + r $ C. (2.44) 

From this and (2.37) one obtains (cf. [8]) 

lhol $ ( :p llhiiP) 
2 

$ C. (2.45) 

With the notation 
00 

1/j 4 ~)k l)lh1!)12 > 0, j = 1,2 
k=2 

one can write 
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and thus 

00 

/hi/)- h~2)' < 2 l)k- 1) ,,h~lil2- lh~2)'2' 
k=2 

k=2 

a a a 
< -;:;-(//hJ//p + 1/h:i//p);:;--//hl- hz/lP:::; //h1- h2//,.. (2.46) 

op up 

The Fourier coefficients of Zj are (cf. (8]) 

h(j) + 2 "'"'(.m- l)h(j)h(j) 
k L.t m m+k" 

Therefore ( n 1, 2), 

k=l m=2 

+ 
00 

k=lm=2 

00 

h21/p + 2 L kn/(h~21 
k=l 

m=2 

'

(2l )/ kr 
lm+k. e 

where (2.45) and (2.46) have been used. Por n = 1, this may be estimated further by 

using (2.44) again. 
Replacing h 1 by hand h2 by 0 in the estimate (2.47) yields 

(2.47) 

(2.48) 
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which for n 1 reduces to :" IIZIIP :5 C. 
Because of (2.36) and 

one finds 

z' = 
0 I 

or/' = 

z' 
i oz 

--;:oe 

-i :e(h+iH[h))- : 2 (1+h+iH[h]) 

-:2 ::2 (h + iH(h])-
3 

:e (h + iH[h]) + ~~ (1 + h + iH[h]). 

Taking the norros 11·11 P of these expressions and applying the properties introduced above, one 
gets for n = 0, 1 · 

(2.49) 

In an analogous way, 
on on+l 
opn llz~- z~llp :5 c opn+l llht- h211p (2.50) 

may be óbtained. An immediate consequence is 

lllz~l 2 lz~I 2 IIP = llziz~- z~z~~~P 

< (llziiiP + llz;llp) llzi- z~IIP < C! llh1- hziiP · (2.51) - vp 

A series expansion for the square root gives 

co 

lz'l lz~l = - vfziT2 lz~l ~ lz~Ïzn (lz'l2 -lz~l 2f, 

where all the coefficients a,.. satisfy la,.. I < 1. Hence, using (2.51 ), 

< c~p llh- h.ilp < clL llh- h.!l 
1- c :p llh- h.llp - op p 

(2.52) 

if ris small. This yields, moreover, lllz'IIIP :5 C, and by repeating the above argument we get 

lllzU -lz~IIIP :5 C :p llh1- h2IIP · 

Furthermöre, using (2.52), 

lllz~J- 1 11! lllz'i-lz~IIIP 
< 

1-lllz~J- 1 11PIIIz'l-lz~IIIP 

< C lllz'l- iz~ I liP :5 C :p llh h.IIP 

(2.53) 

(2.54) 
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for sufficiently smal11', hence 

lliz'i- 1 IIP ~ C. (2.55) 

With the use of (2.55), one obtains analogously to (2.52) 

(2.56) 

and from this and (2.55) 

(2.57) 

As a next step, some derivatives with respect top have to be estimated. We find 

8 
lliz'I-

1
IIP = i\t0 1z'i-

1L ~ lliz'I-
211P\\tolz't ~c\\ 8 Jh7\\P 

< C lliz'I- 1 IIP 11°
21 

liP llz'IIP ~ C ( ::2 llhiiP + 1) (2.58) 

from (2.55) and (2.49), and 

:p lllz~l lz~IIIP = 

= 1\lz~l- ~jz~ lz~I- 1 ~2Jz~~~P~IIIz;I- 1 IIP\I~dtllz; z~IIP 

+ lllz; I- 1 IIP 1\ te( z; z~) liP llz~IIP + ll!z; 1- 1 
- lz~l- 1 11 P 11 ~~ 1\fi llz~IIP 

< C ( :;2 liht- hziiP + ( :;2 !ihdiP + :;2 llh2llp) :p !iht h2llp) , (2.59) 

where (2.49), (2.50), (2.55), and (2.56) have been used. Moreover, using (2.49), (2.57), and 
(2.59), 

(2.60) 

In a similar way, 
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+ (lliz~l- 1 11" + lliz~l- 1 11") :p lllzil-1 -lz;l- 1 11" 

< C ( :;2 llht - hzll" 

+ (:;2 llhtll" + :;2llhzll") :P llht- h2IIP) ,(2.61) 

applying (2.55), (2.58), (2.56), and (2.60). 
The estimates concerning the operator L have already been given in [8]. We repeat them bere 

only for the sake of completeness. Por the Pourier coefficients Uk of L(Z, f) qne easily calculates 

Uk k ,l)sgn(k)- sgn(m))Zk-mfm, U-k= Uk 
mEZ 

and therefore (n = 0, 1) 

an 00 

opn IIL(Z, !)11" 2 L.>niUk I::.::; 
k=l 

< 2 ~kn+I (2 ~ lfmiiZk+ml + 1/oiiZ~cl) ekp 

< 4 f l/m ie-mp f kn+liZk+m ieC"+m)p + l/ol :;n:l IIZIIP 
m=l k=l 

an+l an+l 
< 11/llo {)pn+l IIZII" :5 Cll/llo opn+l llhll" (2.62) 

because of p > 0 and (2.48). 
Now we are able to investigate the crucial question of dependenee of the operator K on h. 

Applying the linearity of L in the first argument, (2.47), (2.48), (2.57), and (2.55), we find 

II(K[hd- K(hz])(/)11":5 
:5 lliz~l- 2 11" IIL(Zt- Zz,J)II" + llfz~l- 2 -lz'2 1-2 ll" IIL(,'if2, f)llr 

a a a 
< c fJp IIZt Z211" 11/llo + c op liht - h2iip op IIZ2IIp 11/llo 

fJ 
:5 C àp llht - hzliP 11/llo· (2.63) 

Por the derivative one obtains 

: II(J<(ht]- K[hz])(f)IIP :5 
p . 

:5 :)11zii-2L(Zt ZzJ)IIP + :p l!(lz~l- 2 lz~I- 2)L(Zz,f)ll" 

:5 :p llizil- 2 llp IIL(Zt z2,f)llp + llizil-2 llp :p IIL(Zt- Zz,f)ilp 

+ :p llizil-2 -lz~r2 IL, IIL(Zz, !)lip llizi r 2 -lz;l- 2 11" :p IIL(Z2, !)lip 
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(2.64) 

where (2.55), (2.58), (2.62), (2.48), (2.47), and (2.57) have been used. 
By help of (2.36) we may rewrite (2.27) as 

A( T, t) 
1 + 2 Re(ë({ h0 ( t) + 1 )r- 1 + h 1 (t))) 

/z'(r,t)/ 

and using (2.55) and (2.56) it is straightforward to prove 

IIA/Io:::; C (2.65) 

and 

(2.66) 

For estimates concerning the solution operator U of (2.40) it is important to remark that 

//K[h](f)//P < JJiz'/- 2 11~' //L(Z, f)//P:::; C :P //Z//p 1/J/Io 

< C :P 1/hiiP llfllo :::; Cllfllo (2.67) 

for all f E Bo because of (2.55), (2.62), and (2.48), therefore I< [ h] is continuous from Bo in B11 • 

Together with the compactnessof the embedding Bp '--' B0 this ensures compactness of K [ h] in 
B0 . Hence, the Fredholm alternative holds for the operator I- R'[h] in this space. According to 
the above remark, the integral equation (2.40), which may be written as 

(I- Ii[h])(u) K[h](A), 

has a unique solution. Therefore I- K[h] is a homeomorphism of B0 . This means, in particular, 
(1- K[h.])- 1 E C(Bo, Ba). 

In the following, if ll·llo is applied to an operator instead of a function on àG, it wil! denote 
the usual norm in C( B0 , Bo). Note that from (2.63) it follows that 

Thus, applying a standard perturbation result concerning the inverse of regular linear operators, 

IIU- I{[h])-l- (I 
JJ(l- K[h.])- 1 1!~ 1/K[h]- K[h.]i/ 0 

1-IIK[h]- K[h.]// 0 II(I- J\'[h.])- 1 11 0 

< Cr 

and therefore 11 (I - K[h])- 1 11
0 

:::; C (with C independent of h) if r is chosen small enough. 
Consequently, 
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Moreover, 

:p IIK[h](f)JIP S :p 1\lz'I-2 \\P IJL(Z,f)IIP + lllz'l- 1 11~ :p IIL(Z, 1)11" 

< C (:;2 1Jhll" + 1) llfllo, (2.68) 

where (2.58), (2.55), (2.62), and (2.48) have been used. 
After these preparations, the necessary estimates for U can be given. lndeed, 

U[h] (I- K(h])- 1 K(h](A) = K[h](I- K[h])- 1(A) 

and therefore 
JJU[h]ll" S I! U- K[h])-\A)\\ 0 S C JtAIIo SC, (2.69) 

:p JIU[h]JIP SC ( :;2 ilh\!P + 1) \\(I- I\[h])- 1(A)II 0 SC (:;2 llh\JP + 1), (2.70) 

IJU[h1] U[h2]1Jp S jjK[hi](I I<[h1])-1(A1 - A2)jjP 

+ i!I<[hl]((l- K[h1])- 1 (I K[h2])- 1)(A2)11" 

+IIU<[hl] -K[h2])(I- K[h2])- 1(A2)11p 

S C (!i (I- K[h1])-1(A1 A2)\\o 

+\\((I- K[ht])- 1- (I- K[h2])- 1)(A2)jj 0 

+I! U- K[h2])- 1(A2)jj 0 :P Jlh1- h21lp) 
a 

< c 8p ilh1- h2\\p, (2.71) 

:p IJU[hl] U[hz]JIP < :p i!I<[hl](I- K[ht])"'' 1(A1 - A2)IIP 

+ :p i1K[h1]((I K[h1])- 1 (I- K[h2])- 1)(A2 )\\" 

+ :p \\(I<[ hl] K[h2])(I- K[h2])-1 (A2)1i" 

< C ( :;2 llhl\J; + 1) (jj(I K[h1])- 1(A1 - Aû\\ 0 

+ jj((J K[ht])- 1
- (I K[h2])- 1)(A2)1! 0) 

+C ( :;2 ilht h2\\" + ( :;2 IJh1JI" + ::2 IJh2ll") · 

· :p 1\ht- h2IJ") \\(I- K[h2])- 1(A2)1i 0 

s c (;;2 Jlh1- h2llp 
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using the above estimates concernîng ]{, (I I\[h])- 1, and A. 
For arbitrary u, hE Bp, the estimate 

:P lln(h,u)t::; 
< :P ll:eH[h]uL + :P llhullr + :P ~~~;H[u]IIP + ~ IIH[h]H[u]t 
< 2 (:;2 11htlluiiP + :p lliit:p lluiiP 
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0 
lliiiiP lluiiP + llht :p lluiiP) (2.73) 

holds. Using the bilinearity of B, we find 

for arbitrary u 1 , u2 E B P. The lemma follows now from the subsequent applîcation of the in­
equalities (2.69)-(2.74). (Note that 

as a consequence of (2.45), (2.46)). • 
The inequalities (2.41) and(2.42) may be written as 

:p IIF(hl)- F(h2)IIP < C :p [ (:p llh1llr + :p llh2IIP + 1) :p llh1- h2llr] 

:p IIF(h.)llp < c :p [:p llh•llp + p]. 
The expressions in square brackets are positive convex functions of the real parameter p, hence 
for arbitrary p, p' E (0, p) with p' < p: 

< c !!_ llhl h 11 
P- P' op 2 p, 

(2.75) 

(2.76) 

because of the usual estimate of the derivative by a difference quotient. According to the abstract 
Cauchy-Kovalevskaya theorem proved by Nishida [67], the inequalities (2.75) (holding uniformly 
for all h 1 , h2 E Up( h., r)) and (2.76) ensure the existence of a salution to (2.39) locallyin time. 
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Proposition 1 Forarbitrary h .. E Èp. with p* > 0 there is a f3 > 0 and a p > 0 such that(2.39) 

has a unique salution h(t) in the time interval ( -~, ~) with h(t) E ÈP-PI,tl· The number f3 is 
completely determined by r and C in Lemma 4. ' 

For the proof, see, for example, [89]. The results for the problem "backward in time", i.e. for 
t < 0, are an immediate consequence of the autonomous character of (2.39)! The function 

h_(t) h(-t) 

is described by the initial value problem 

àh_ - -F(h ) 
àt - - ) h_(O) = h .. 

for which existence, uniqueness, and smoothness properties of the solution for t > 0 can be ob­
tained as in the original problem without any changes. 
Remark: For the results obtained in this section, it is not necessary to demand positîvity of the 
surface tension coefficient u. o 

2.4 Near equilibrium 

Because of U[O] = 0 it is clear that h = 0 is a stationary solution of (2.39). It describes the 
uniform thermocapillary drift of a circular bubble. 

To investigate the behavior of solutions near this equilibrium state, we calculate the Fréchet 
derivative of F at 0 and find 

F'(O)[h] = -L(h, Ao), 

Ao(r) = 1 + 2Re(cr), TE àG. 

If lel < ~ it can easily be shown that the spectrum of the operator L(·, Ao) inthespaces Bp, 
p > 0, consists precisely of all nonnegative integers, hence (2.39) is linearly stabie at h = 0. 
This is in accordance with the physical expectations as lel < t iffthe surfacç tension coefficient 
is strictly positive on f(t). The further considerations are restricted to this case. 
Remark: The operator L( ·, A0 ) generates a semigroup which is smoothing in the scale { Bp} in 
the sense that there is an a> 0 depending only on lel< ~ such that 

lle-tLC,Ao)hllp+at $ llhllp · 

This result, together with an estimate on the nonlinear remalnder term F( h) + L( h, .-10 ), is the 
basis of the following proposition. For an abstract setting descrihing such a situation see [24]. 0 

In [8] the following a priori estimate is shown: 

Proposition 2 (L.K. Antanovskii) (A priori estimate near equilibrium) 
Let lel < t. a E (0, 1- 2icl), p. > 0 be given. There is a q1 > 0 such thatforall solutions 

h o/(2.39) with h. E Up. (0, q1) andforall t > Oforwhich h exists in [0, t] the estimate 

(2.77) 

holds. 
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An immediate consequence of (2.77) is 

(2.78) 

and hence (sec (2.45)) llh(t)llp. :S , i.e. small perturbations of the equilibrium are 
"smoothed out" exponentially in the considered norm. 

By help of this a priori estimate it is possible to globalize the existence result of the previous 
section in the case of such small perturbations: 

Proposition 3 (Global existence and exponential stability of solutions near equilibrium) 
Let iel < l· P• > 0 be given. Then there is a q > 0 such that all solutions of(2.39)forwhich 

h. E U P• ( 0, q) exist for all t > 0. 

Proof: The idea of the proof is to show that fora certain q E (0, q1 ) there is aT > 0 such that 
all solutions of (2.39) with h. E Up. (0, q) ex i st on the interval [0, T]. The estimate (2.78) with 
arbitrary a E (0, 1 2lcl) ensures then h(T) E Up. (0, q), and a simple induction argument will 
finally prove the existence of h on the interval nT] for all n E N. 

In other words, it is sufficient to find a uniform lower bound for the length of the existence 
intervals of the solutions of (2.39) with h. E Up. (0, q). This can be done by proving that Lemma 
4 holds with the same constantsr, C, and p for all h. E Up. (0, q) if q > 0 is chosen small enough. 

At first we repeat the arguments for the proofs of (2.52) and (2.54) with z. in place of z and 
(- 1 in place of z •. We can replace p by p. here because no smoothness is lost when taking the 
square root of 1(- 112 1 or its reciprocal. Hence we find 

(2.79) 

Hence lz~ I and iz: l-1 are in Bp. with uniformly bounded norms, and we can choose p = p •. 
A reexamination of the proof of Lemma 4 in this situation shows that for all h. that satisfy 

(2.80) 

the inequality (2.41) holds with C and 7' only depending on Af. It it easily seen that !\ [0] is the 
zero operator, and an estimate analogously to (2.63) with h. in place of h1 and 0 in place of h2 

shows that IIK[h.JIIo :S Cq, hence II(I K[h.])- 1 llo :S 2 for sufficiently small q. 
From this and (2.79) it follows now that if q is chosen sufficiently small, then (2.80) holds for 

all h. E Up. (0, q) with a cerlain fixed NI. This compieles the proof. • 

2.5 Bounded flow domains 

We will conclude the discussion of the complex analysis approach to the Stokes flow problem by 
giving a brief account of the necessary changes that have lo be made if inslead of a bubble one 
considers a simply-connected, bounded flow domain, i.e. a Iiquid drop. It is based on [6]. Our 
main interest is in the short-time existence theorem for general initia! domains again, therefore 
we restriet ourselves to the case of a constant surface lension coefficient fJ' > 0. 

The salution of (2.9) can be represented by the functions ;p, 1/J, w0 , and w1 in the same way 
as described above. The fixed time problem (2.9), (2.13) delermines the velocity field u only up 
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to rigid-body motions. (We postpone a detailed discussion ofthis in arbitrary space di mension to 
Section 3.2.) However, it is shown in [6] that if one demands 0 E f!(O), 

Wt(O) = 0, 

ImwHO) = 0, 

( which corresponds to the choice of a suitable moving coordinate system) these degrees of free­
dom are removed and, moreover, 0 E f!( t) for all t for which the solution of the FBP exists. 

Thus, the unit disk G bas to be mapped onto a bounded flow domain containing 0, hence it is 
natura! to normalize 

00 

z((,t) = L::Zk(t)(k, Zt ER, Zt > 0. 
k=l 

Differing from the case of the bubble, w1 (pulled back to G) is analytic in the whole of G, i.e. 
w1 = iH[w1] and instead of(2.31) we obtain 

tiJ = ReH["zw1] + Im(zw1) ReH[zwl] + Im(ziH[wt]) 
1 = Re(ZH[wd- H[zwl]) = 2 Re(ZH[z'<.P]- H[zz'<.P) 

with <.P still being defined by (2.29). We rep! ace g in the followîng calculations by 

g(X, r) Xz'(.~)(z(X)- z(r) 

and take into account that also 
121f 

Jo g(X, r) dv ER 

and . r .. 
2~ Jo H(r,X)Xz'(X)dv = rz'(r). 

In the sarne way as inSection 2.3, this leads to the equations (2.32) with g replaced by g, (2.33), 
and (2.34). The latter can be rewritten now as 

Z(r) = 1 
Re f H(r,X)(z(r)-z(..\)dz(X) laa 

1 la 1 lz'(()l2 dÇdTJ 

with ( = Ç + iTJ, Ç, 'f/ ER 
Finally, we introduce h by 

h(r) Re c~) 1), re ac 

which leads to 
z(r) r(l+h(r)+iH[h](r)) 

and the evolution equation 

~~ = -U[h] ( h + 
0~!h]) U[h]- ( ~: - H[h]) H[U[h]]. 
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The condition on the volurne of the drop is now 

Based on these equations, analogous results as in Sections 2.3 and 2.4 can be obtaincd without 
significant changes in the proofs. 



Chapter 3 

Derivation of the evolution 
equations 

This chapter is devoted to the reformulation ofthe Stokes ftow FBP (1.4)-(l .7) and the Hele-Shaw 
flow FBP (1.10), (1.12) as nonlocal evaJution equations fora real-valued function on a smooth, 
compact reference manifold without boundary. Due to the special structure of the considered 
FBPs (cf. Section 1.4) this can be done along the following steps: 

• Construction of a correspondence between perturbations of a fixed reference domain and 
real-valued functions defined on its boundary; these functions will be called perturbalion 
functions 

• Representation of the fixed-time problems on the reference domain as operator equations 
and investigation of existence, uniqueness, and regularity of their solutions 

• lnvestigatîon of the dependenee of these operator equations on the perturbation functions 

• Reformulation of the surface motion law as an evolution equation for the perturbation func­
tion 

This approach is rather straightforward and esscntially of geometrie nature. Basically, thc tech­
nique of perturbation functions is a widely used tooi in the analysis of FBP and other surface 
motion laws, both instationary (e.g. [17, 27, 30]) and stationary (e.g. [1, 2, 13]). (In the case of 
stationary problems, one of course obtains a time-independent equation determining the pertur­
bation function inslead of an evolution equation.) It has to be pointed out that the choice of this 
methad al ready limits the scope of the results which can be expected: By perturbation functions 
it is in general only possible to describe dornains that are close to the reference domain, hence 
"global" results concerning domain evolutions over "large" di stances cannot be obtaincd. 

Moreovcr, the investigation of (weak formulations of) the fixed-time problems wil\ imme­
diately yield some results on stationary solutions and the global behavior of thc con·esponding 
moving boundary problems. 

37 
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3.1 Preliminaries 

Let no E RN' N ~ 2, be a simply-connected bounded domain with coo -boupdary r 0 and outer 
normal vector field n. On no wedefine theSobolev spaces Hê(Qo), 8 ~ 0, in the usual way [59]: 
For m E N one defines 

llull~f"(Oo) = 2: llo"ullh· 
Jal:;;m 

where u is, in genera], complex-valued, and the partial derivatives o" are taken in distributional 
sense. For noninteger 8 we define 

m=l"8]+1,(}=.!!..., . m 

where [X, Y]e denotes the complex interpolation space between the Hilbert spaces X and 
Y "--+ X corresponding to the parameter 8 E (0, 1 ), and [8] denotes the largest integer not larger 
than 8. 

lt will be convenient to work with spaces of real-valued functions in the sequel, so wedefine 

(3.1) 

whîch obviously is a real Banach space and for integer 8 also a real Hilbert space. 
On fo we introducethe Sobolev spaces H,f(f 0 ), 8 E R, by defining theirscalar products (-, ·) 

with the help of the operator (I - Är0 ), where I and Är0 denote the identity and the Laplace­
Beltrami operator of r 0 , respectively. We reeall that in arbitrary regular local coordinates we have 

À ,.~. - _1 a ( rn ij oifJ ) 
ro'f'- lfl ygg "' , 

y9 UWj 
(3.2) 

.. ae ae 
( 

T ) -1 
where g'J are the matrix elements of a- 1 = (OW) OW and g = det G. Here and in 

the sequel, unless stated otherwise, summation has to be performed over indices that occur twice 
in the same term. An alternative way of defining Llr0 is given in equation (3.p) below. 

The operator (I - Llr0 ) is Lt-self-adjoint and bas a purely discrete spectrum consisting 
of positive eigenvalues, hence it has a complete orthonormal system {'Ij!;,} of eigenfunctions in 
L~(fo) = HS(fo). For any sE R we set 

(u, v )o = 1 uvdf, 
I'o 

A"u = 2: .>..~(u, '!j!;.,)o'!j!k, (3.3) 
k 

(u, v). = (A'u, A'v) 0 , 

where À~: is the eigenvalue corresponding to '!j!k. lt is well-known [59, 87] that the norms gener­
ated by the scalar products ( ·, ·) are equivalent to the ones obtained using local charts, partitions 
of unity, and the standard norms of the spaces H(;(RN -l ). As Àr0 maps real-valued functions 
to real-valued functions it is nothard to check that the 'Ij!~.: can be chosen to be real. Therefore A • 
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maps real-valued functions to real-valued functions, hence we can define the real Sobolev spaces 
H' ( r 0 ) analogously to (3.1 ), retaining the same scalar products. 

Let us fix sorne notalion for the remaining part of this thesis. We wîll use the letters C and 
c for "large" and "small" positive constants, respectively, if !heir actual value is of no interest. 
Somelimes an index is used to indicate their dependenee on parameters. 

A tunetion that is given on f2o and its restrietion ortrace at the boundary I'o are somelimes 
denoted by the same symbol. 

Let lvf be an arbitrary metric space. For x E M, r > 0, we denote by Bx(P, Af) the open 
ball of radius p centered at x in M. 

If X is a normed space, we denote by X' its dual and by Xk the product space of k copies of 
X, equipped with the usual norm (and the usual scalar product if X is a Hilbert space). 

The normsin H 5 (f2o) and H'(fo) will be denoted by ll·ll~o and 11·11~\ respectively, and the 
k À' same notation will be used for the normsof the product spaces (H' (f20 )) , (H• (fo)) . Analo-

gous notation will be used for the corresponding spaces on other domains and manifolds. 
We denote the kernel of a linear map A by N(l1) and its range by R.(A). 
For bounded domains n and bounded surfaces r we wiJl denote by IDI and lfl their volume 

and area, respectively. 
To be able to describe perturbed domains, we choose a fixed C 00 -function ( : fo ~ IRN 

satisfying 
((Ç) · n(Ç) > 0 VÇ E fo. (3.4) 

Lemma 5 ( Perturb_ed domains and perturbation junctions) 
Let 8 > 2 + lf. There is a 50 > 0 depending only on 0 0, (, and 8 such that the following 

holds: 
(i) For all rE Bo(óo, H•(fo)), the set 

fr = {Ç +((Ç)r(Ç) IÇ E fo} 

is homeomorphic to fo. 
(ii) There is a mapping z : Bo(óo, H'(fo)) 

diffeomorphism of !Jo onto !:lr = z[f2o] and 
(C2(f20))N such that z(r) is a global 

llz Ili(c2(n0 ))N S Cllrll:o 

with c independent of r, and r r = z[r o]. 

Proof: Let I be a (small) open interval containing 0 and consider the coo-mapping 

defined by 
(3.5) 

Piek a fixed Ç0 E l'o and let Ç = Ç(u) be a regular local parametrization of fo near {o. The 
differential map of tf; in (Ç0 , 0) 

is given by 

D</l({o, O)[t, r] 
óf, . 
Óu; t• + r((Ço ), 
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where Tç-0 (f o) denotes the tangential space of f o in Ço and t = ti !'>() its elements. Due to (3.4 ), 
u U; 

Difo(Ç0 , 0) is surjective, hence by the local diffeomorphism theorem there is a neighborhoodU of 
(Ço, 0) info x 7 such that <P acts as a C 00 -diffeomorphism of U into RN. ! 

By a compactness argument we can conclude that there is a li1 > 0 such that <P acts as a 
(global) coo -diffeomorphism of r 0 x (-lil ' lit) onto some neighborhood of r 0 c RN in RN. 
Tak.ing into account the continuous embedding H 8 (f 0 ) <-+ C 2(Q0 ) and the fact thatthe submani­
fold Ï'r C f 0 x (-ó1 ,ó!) consisting of the points ({,r({)) is homeomorphic to f 0 if 
rE B0 (ti1 , C(f0 )) we can conclude that (i) holds. 

To show (ii) weneed some preparations. It is easily seen from the assumptions of compact­
ness and smoothness of r0 that there is a ti2 > 0 depending only on no and having the property 
that iffor any x, y E f2o 

max{dist(x, fo), dist(y, fo ), I x- Yl} < li2, 

then there are an open set U C Q 0 and a diffeomorphism <flu : U ---. RN such that x, y E U, 
<flu [U) convex, and <flu and <Pü 1 are Lipschitz-continuous with constauts that do notdepend on U. 
Using this and the meao value theorem, the following estimate can be shown: Let g be a Fréchet­
differentiablemapping from f2o into some normed space E. Then for lx- Yi < ti2 

llu(y)- g(x)IIE ::; C sup llu'(w)IIIY- xl (3.6) 
wEflofiB.,(Giy-xi,E) 

holds, which in particular implies Lipschitz-continuity of g îfg and g' are bounded. 
We construct the mapping z by choosing an arbitrary but fixed linear con,~inuous right inverse 
of the trace operator T: H'+~(Qo) ---> H' (fo) and setting 

z(r) = r- 1(r() +I, 

where r-1 has to be applied separately to the components of r(. This yields immediately 
r r = z[f0], and the estimate for llz(r) - idllcc,(no)}N is a consequence cifthe continuity of the 

embedding H•+!(Q0 ) '-+ C 2 (Q). This estimate ensures for sufficiently small60 and all x E Q0 

that a~~) (x) is near the identity and hence nonsingular. Therefore z( r) is alocal diffeomor­

phism, it remains to show that it is globally injective, i.e. that z(xl) = z(x0 ) implies x 1 = x0 

for all x 0 , x 1 E Q0 • For this purpose, the equation z( x) = z( x0 ) is rewritten equivalently as 

x= S(x) :=x z'(x0 )-
1(z(x)- z(xo)) (3.7) 

The mapping S is differentiable in all x E Q 0 and has the derivative 

S'(x) I z'(xo)- 1z'(x) z'(xo)- 1(z'(xo)- z'(x)). 

According to the above remark, z E ( C 2(Q0 )) N implies Lipschitz-continuity of z', hence 

· IIS'(x)ll::; Cllz'(xo)- z'(x)ll::; Glx- xol, 

where 11 · 11 denotes an arbitrary operator norm on C (RN, RN). Consequetiltly, 

sup IIS'(x)ll < C sup lx-
xEflonB.,0 ( Clx,-xol ,RN) :rE!1onB.,0 ( Clx,-xol ,RN) 
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Moreover, assuming z(xl) = z(x0 ), 

(3.8) 

hence, for sufficiently small 60 , (3.6) may be applied toS and this yields 

i.e. Xo = X1 Or lx1 xol :2: c-l, but the Jatter Of these tWO püSSÎbiJitieS lS in eon tradietiOn With 
(3.8) for small 60 . • 

Remark: It is clear from the proofthat r r is actually "as smooth as r", i.e. if r E Ck,a(r 0 ), then 
f'r belongs to the same smoothness class. 0 

In the following investigations the concept of (locally) analytic operators will be useful. 
Definition (Analytic operators in Banach spaces): Let X and Y be Banach spaces. A mapping 
F defined on Bx0 ( f:, X) with positive E and values in Y is called analytic near x 0 (from X toY) 
iff F has a series representation 

00 

F(x) l:::Fk(x-xo, ... ,x-xa) (3.9) 
k=O 

where the Fk are bounded k-linear symmetrie operators from Xk toY for which the majorant 
series 

co 

L IIFkiictx•y)Ek (3.1 0) 
k;O 

converges, which implies the absolute convergence of the series in (3 .9) and the boundedness of 
F. As usual, we will call F analytic in the open set U C X iff F is analytic near any point of U. 

Obviously, the series (3.9) represents a generalization of the concept of a power series. The 
rules for calculations with them can also be generalized to our situation, more precisely, we will 
use the following results concerning Jocal analyticity, differentiability, derivatives, "comparison 
of coefficients", composition, pointwise products, and the Implicit Function theorem: 

Lemma 6 ( Properties of analytic operators) 
Let F be given by (3.9) and suppose (3.10) converges. Then: 
(i) Fis analytic in Bx0 (E, X). 
(i i) For any m E N, the m-th Fréchet derivative of F exists and is an analytic jimction in 

B,.
0

(E, X) valued in l.(Xm, Y) given by 

(m)(. )[ ] ~ (m + k)! F x h1, ... ,hm =L....., kl Fm+k(x x 0 , ... ,x x 0 ,h1 , ... ,h",). 
k=O 

Furthermore: 
( iii) Ij F is an analytic function near xo valued in Y, then F :::= F near xo iff Fk = Fk for 

all kEN. 
(iv) lfG is analytic near F(xo)from Y to the Banach space Z, then the composition Go F 

is analytic near x 0 from X to Z. 
(v) IJY is a Banach algebra and H is analytic near xofrom X toY, then the poillfwise prod­

uct F H is analytic near xofrom X toY. 
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(vi)Supposethenwpping:F: X x Y- Z isanalyticnear(xo,Yo), :F(xo,yo) = 0, 

:F11 (xo, Yo) = :F'(xo, Yo)[O, ·] 

is bijective from Y to Z, and let U be a sujficiently s~t~all neighborhood of :r0 in X. Then the 
uniquelydefinedcontinuousfunctiony: U---+ Y satisfyingy(xo) = Yo and:F(x,y(x)) 0 
for all x E U is analytic near xo. 

Proof: (i)-(iv) are straightforward generalizations of the corresponding standard results for power 
series (see e.g. [22] Ch. IX). To indicate the proof of (v) it is suftkient to remark that 

where S~c denotes thesetof all permutations of { 1, ... , k}. By the Banach algebra property of Y 
this implies 

k 

II(F H)kll.qxk,Y) :5 cL: IIFdi.C(xr,Y)i!Hk-di.C(x•-I,Y) 
1=0 

with C independent of k. For the proof of (vi) we refer to [93], Ch. 8.2. • 
In particular,the following result will be applied: 

Lemma 7 ("Square roots" and inversesas analytic operations) 
Let X be a Banach algebra and let oro, uo E X be such that x5 = uo and xo and uo are 

invertible. There exist functions u ~-"'+ Jïi and 11 ~-"'+ u- 1 defined in a neighborhood of uo which 
are analytic near u0 with values in X such that ( Jïi) 2 = u and u- 1u = e, ~here e denotes the 
unit element of X. 

' Remark: Note that the symbol "v" is used bere in a sense depending on x0. o 
Proof: The lemma follows from applying Lemma 6 (v) and (vi) to the equations 

:F(u,x)=x2 u=O, Ç(u,x)=xu-e=O, 

respectively. • 
Let us conclude this preliminary section with a well-known result concerninga natura! rep­

resentation of the curvature of a surface in termsof its Laplace-Beltrami operator. lts importance 
for the analysis of the FBPs considered here can hardly be overestimated. 

Lemma 8 (Curvature and the Laplace-Beltrami .operator) 
Let f 0 be as before andx E (C00 (f o))N be the mapping thatassigns toeach point offo its 

(cartesian) coordinates in RN. Then 

where ~ro has to he applied to every component of x separately. 

Proof: For N = 3 the lemma is proved in [21] (Section 2.5, Theorem 1). We preter to give 
an alternative proof based on some remarks in [37], Section 15.1, that can also provide a more 
intuitive idea about the Laplace-Beltrami operator. 
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Let tP be a smooth function on r o and ili a smooth extension of it into a neighborhood of 
r 0 C RN. 1l1e vector-valued operator 4;......,. bili defined on f 0 by 

!Jifo = vili- (vili . n )n 

is called the surface gradient of 4; and is easily seen to be independent of the values of <I> outside 
r 0 . Writing 8; tjJ = tirp · e;, n; n · e;, with i = 1, ... , N and e; denoting the i-th unit vector we 
have by definition 

(3.11) 

The components Ó; of fJ are first-order differential operators on fo for which we have (l37], Sec­
tionl5.1) 

(3.12) 

Using this and (3.11) and writing as usual for the Kronecker symbol we calculate 

Ó;j n;nj, 

-(b;nj)n; (fJ;n,)nj = Knj, 

which proves the lemma. • 

3.2 The fixed-time probieros 

A thorough understanding of the properties of the fixed-time probierus (cf. (1.6), ( 1.7), (1.10), 
(1.12)) 

-.ó.u+ \7p ~ } in go 
divu (3.13) 

T(u,p)n Kn on fo 

and 
.Ó.1l = 0 in go 

u = K on fo 
(3.14) 

is a necessary prerequisite for the study of the corresponding moving boundary problems. ( K and 
n denote the curvature and the outer normal vector of r 0 ). Essentially, this understanding is pro­
vided by the theory of elliptic boundary value problems. For the Stokes equations, however, some 
care has to betaken of eertaio technica! details. 

3.2.1 The fixed-time problem for Stokes flow 

We will discuss the fixed-time problem for the Stokes flow problem in three steps: 

• investigation of the weak formulation, based on a Green formula for the Stokes operator, 

• obtaining of regularity results in Sobolev spaces, based on the theory of hydrodynamic 
Lorentz-Ladyshenskaya potentials ([55], [60]), 

• proof of a commutator property for the Neumann-to-Dirichlet operator of the Stokes equa­
tions. 
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The main idea in this is to use the strong resemblance of the properties of the Stokes operator 
to the Laplacian. In the Stokes equations, the normal component of the stress tensor T( u, p )n 

plays the same role that is played by the normal derivative ~: for the Laplape equation. Hence, 

(3.13) is a Neumann boundary value problem, and we will reeover a nontrivial space of solutions 
for the homogeneous problem and necessary solvability conditions in strict analogy to the second 
BVP for the Laplacian. Moreover, the hydrodynamic potentials as well as the singular integral 
operators arising from them have properties that correspond to the well-known ones in potential 
theory. 

Weak formulation 

To conveniently deal with the N -dimensional problem, we generalize some notions of vector al­
gebra and analysis to RN. Let K be an arbitrary but fixed bijeetion from the set 

{(i, j) ll ~ i < j ~ N} 

to the set { 1, ... , ('f) } . We define the bilinear mappings 

by 

1\ : RN x RN R(n 
j : R(f) x RN --> RN 

(1 ~i< j ~ N) 

and 
i-1 

(cj a);= L:CK(j,i)aj 
j:l 

It is easy to check that 

N 

2::: CK(i,j)aj 
J=i+l 

We define, moreover, the differential operator 

by 

(i=1, ... ,N). 

8vj 8v; 
(rotv)K(i,j) = lJx;- (1 ~i< j ~ N), 

which yields the integral theorem 

f rot v dx = 1 n 1\ v df. 
lno ro 

(3.15) 

(3.16) 

Note that if N = 3, then the usual definitions of the outer product and the curl (rotation) of a 
vector fièld can be obtained, up to the sign of the second component. by choosing the suitable 
bijeetion I<. 

The basis for the weak formulation is the following integral identity: 
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Lemma 9 (First Stokes-Greenformula [55]) 
Forall u, v E (C2(Q0)(, p E C 1(Q0 ) we have 

;- ' + _J + - 3 dx - p div v dx 11 àu àu · ) àv ) 1 
2 f!o àx; àx; flo 

f (-~u+V'p-v(divtt))·vdx+ f T(u,p)n·vdr. 
Jno Jro 

Proof: The identity follows easily from applying the Gauss integral theorem to the vector-valued 
function T( u, p)v. • 

We introduce the space 

Vo = V E H ( no)) I v; (x) { ( 
1 N 

SijXJ +c;, Sij,Ci ER, Sij -Sji} 
of the velocity fields corresponding to rigid body motionsin RN. Clearly ~v = 0, div v = 0, 
T( v, 0) = 0 for all v E V0 , and thus (u, p) = (v, 0) is a salution of the homogeneaus problem 

-~u+ vp 00 } in no 
divu 

T(u,p)n = 0 on fo. 

Hence, the velocity component in a salution of (3.13) is defined only up to an element of V0 . To 
en force uniqueness of the salution it is natura! to demand 

r udx = 0, 
Jno 

r rotudx = 0. 
Jno · 

(3.17) 

We proceed now by discussing a variational problem which is a weak formulation of a gen­
eralization of (3.13), (3. t 7). For this purpose we introduce the Hilbert spaces 

X (H1(s.lo))N x L2{Qo) x (RN x R(n), 

Y ((H 1(üo))JV)' x ( L2(s.to) x RJV x R<n) 

and the (bi-)linear operators 

defined by 

L: X---+Y 

A: (H 1(S1o))N _. ( (H 1(D0))N)', 

B: (H 1(Do))JV ~. L2(Do) x (RJV x R<n), 

a: (H 1 (Do))N x (H 1(D0 ))JV -- R, 
'P1 : (H1(Do)( RJV, 
'P2: (H 1(Do))N JR(n, 
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(Au)v :::::: a( u, v), 

[ - ru, u l Bu <J't(u) , 
<p2( u) 

a(u,v) 1 1 ( ou; OUj) ( ov; ovi) d - -+- -+- x, 
2 no ox i ox; ox i ox; 

<i'l (u) 1 udx, 
!lo 

<J'2( u) :::::: 1 rotudx, 
!lo 

where B1
: L2(00) x (RN x RU'))-----+ ((H 1(00))N)' is theoperatordual toB. 

Lemma 10 (Weakfonnulation) 
(i) The operator L is a homeomorphism between X and Y. 
(ii} Suppose L[u p ..\]T = [f OjT with 

f(v)::::: r Kn·vdf 
lro 

Then À= 0 and (u,p) is a weak salution of(3. 13), (3.17). 

Proof: (i) The equation 
(3.18) 

is a variational problem with linear restrictions to which the usual existence results apply (see e.g. 
[ 15]). In order to establish (i) it is therefore sufficient to show that a is elliptic on (ker B, 11·11?0

) 

and B is surjective. ' 
The first statement follows from Poincarés inequality (e.g. [93] Vol. II!B,IAppendix, (53a)) 

and Koms second inequality (e.g. [93] VoL IV Theorem 62.F) 

a(v, v);:: ct 1 (;v;.) 2 

dx 
i,j=l llo XJ 

To show the surjectivity of B we note that <p = [<p1 <p2f is surjective from Vo onto 

RN x R(:i). The equation 

has a solution u u0 + u 1 with uo E Vo, <p(u0 ) = p, u 1 =V <I>, where <I> E H 2 (flo) n HJ(f!0 ) 

solves -Ll<I> = q in Oo. 
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(ii) The equation (3.18) with F =[!Of can be written as 

a ( ll, V) - f I:! a p di V V d X + À 1 · 'P 1 (V) + À 2 · 'P2 (V) 
divu 
'P(u) 

f(v) Vv E (H 1 (S1a))N 
0, 
0. 

Using Lemma 8 and the Green formula for closed surfaces we find 

r lW . V df = r Órox . V df = - r Dx; . Dv; df 
Jro Jro Jro 

and from this it is easy to see that f vanishes on Va. Choosing v E Va in (3.19) yields 

Vv EVa. 

47 

} (3.19) 

We use again the surjectivity of 'P from Va onto RN x R(n to conclude that À = 0. From this 
we see by Lemma 9 that (3.19) is a weak formulation of (3.13), (3.17). • 

Regularity 

For later u se we introduce on V0 the basis {V ij} by 

which is dual to the functionals {'Pij}, i.e. 

'Pij(vkz) = D;kDjl· 

For fixed s 2: 2 we introduce the spaces 

Xs (W(Sla))N x w- 1(S1a) x (RN x R(n) 

Ys (W- 2 (S1a)t x W- 1(S1a) x ( w-~(fa)) N x RN x R(n 

and the operator 

defined by 

L: Xs--+ Ys 

-óu +\lp+ À1 

-divu 
T(u,p)n+ À2J n 

'Pl (u) 
'P2( u) 

Lemma 11 ( Regularity ofthe Stokes fixed-time problem) 
(i) The operatorLis a homeomorphism between the spaces Xs and Y5 • 

(3.20) 
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(ii)Suppose .Î[u p -\jT = [0 0 Fs 0 O]T. Then 

11-\IIRN xR<~) ::; CuiiFsll;o (3.21) 

forall u E Rand 
(3.22) 

Proof: Note that, according to (3.15), (3.16), 

f v·("2Jn)dr= f À2·(nt\v)dr="2· f rotvdx=ÀI'P2(v). (3.23> 
lr. lr. lno 

Using this and Lemma 9 we find from 

.Î[u p -\f [F1 g Fs h1 haf 

the variational formulation 

a(u,v) { pdivvdx+Àf'Pl(v)+ÀI'P2(v) 
ln. 

= { (FI+\lg)·vdx+ f Fs·vdf VvE(H 1(f2o)t, 
lno lro 

-divu = g, 

';?1(u) h1, 

';?2(u) = h2. (3.24) 

Lemma 10 yields that this problem bas a unique solution [u p -\]T E X, and from the fact that 
a( u, ·) and div vanish on V0 we find 

Àij { (FI + \lg). Vij dx + r Fs. Vij df. 
lno lro 

All v;i are smooth, hence 

11.:\fiJRNxR(~)::; C. (11FIII?~2 + IIYII?~l +IIFsll~~i) 
and (3.21) follow. We will determine u and p by setting 

where 

U Uo + U1 + U2, 

P = P1 + P2, 

-divu1 g 
in flo, -Ó.Ul + \lpl = FI- Àl } 

u1 = -JfoT J00 gdx · n on f 0, 

. fno Pl dx = 0, 

tto E Vo such that 'Pi( uo) = -';?;( u1) + h;, i = 1, 2, and 

-ó.u2 + \1p2 = 0 } 
-divu2 = 0 

T(u2,p2)n = -T(ul,Pl)n + FB- -\2j n = <li 
';?;(u2) = 0 

in flo. 

onfo, 
(i= l; 2). 

(3.25) 

{3.26) 
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The regularity results fo~ the Dirichlet problem of the Stokes ~~ations ([34], Theorem 1~.6.!) 
y1eld that (3.25) has precJsely one solut1on ( u1 , p1) E ( H'(rlo)) x H'- 1(Q0 ) and an est1mate 

( 

3 )N holds. Thus we have <I> E I:f•-:;(fo) and 

11<~'>11~~~ < C., (11u1ll~o + IIPIII~~~ + 11-XziiJR(~) + IIFBII~~~) 

< C's (11FIII~~2 + llgll~o 1 + IIFBII~~ ~ + ll-\lllRN xJR(~)) · 

It remains to show that (3.26) has a uniquesolution ( u 2 , p2 ) E ( H'(rlo) )N x I:f•- 1(Q0 ) satisfying 
an estimate 

(3.27) 

Note that due to Lemma 9 and (3.23) 

Vv E Vo. (3.28) 

From the discussion ofthe weak formulation as in Lemma lO with "'n replaced by <I> we find that 
this condition is necessary and suftkient for the existence of a unique weak salution 

( u2 , p2 ) E ( I:f1(Q0 ) )N x L2(Q0 ). A densily argument shows that we can assume <I> E ( C(r) yv. 
To show (3.27) we wil! apply representation forrnulas and weakly singular inlegral equations 

from the theory of hydrodynamic potentials. For N 3 this theory can be found in [55], Ch. 
III, the generalization to arbitrary N is straightforward. For the sake of brevity, we wil! describe 
the details here only for N tf. {2, 4} because of the logarithmic teems entering the representation 
forrnulas in these cases. 

Por x E Q we use the ansatz 

V(x, V') 

2~N lo 
P2(x) 

where 'Ij; is a RN -valued (measurable) function on ro and 

(3.29) 

denotes the N - 1-dimensiona\ surface area of the unit sphere in RN. 
It can be shown as in [55] that ( u2 , p2 ) satisfies the first three equations in (3.26) if ~, is con­

tinuous and satisfies 

(3.30) 
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with 

. N lr (x- y)(x- y)T 
(I\1/;)(x)=-- ((x-y)·n(x)) I IN+2 1/;(y)dfy 

WN ra X-y 
. (x E fo). 

The operator I<. is a weakly singular integral operator, hence it is compact on (H0(ro))N and 

continuity of <P implies continuity for all'~/? E ( H 0 (f 0)) N that satisfy (3.30) (see e.g. [88], theo­
rems 12.1., 12.7., 12.8.) Moreover, I< is a pseudodifferential operator [78], hence it is compact on 

( H$-~(fo)) N and therefore ( tr +I<) is a Fredholm operator of index 0 on this space. Taking 

into account that N (~I+ K) consistsof continuous functions, one can conclude, using the results 
about the weak formulation, that V(·, 1/;) E V0 for all'~/? EN( tJ + K). 1/; E N(ti +I<.) and 
V(·, 1/?) 0 implies 1/; = 0 (55], hence dimN( ~I+ K) :::; N + (f). The necessary solvability 
conditions (3.28) imply codim 'R( tI + K) ~ N + (f), hence 

dimN (~I+ K) = codim'R GI + K) = N + (f), 

i.e. the solvability conditions (3.28) are also suftkient and the mapping 1/; ,...... V ( ·, 1/;) maps 
N(ti + K) onto Vo. Thus we can conclude that (3.30) bas precisely one solution such that 
~~(V(-, 1/;)) = 0, i= 1, 2, satisfying an estimate 

111/?11;~}. S Csll<flii;~Z!· 
2 2 

Finally, we use the fact that the singular integral operator that maps 1,& to V(·, 1/?)lro is a pseudo­

differential operator of order -1 [78], hence we find that the trace of U2 on ris in ( H•-!(ro)) N 

and 

llu2ll;~! :S Cll'l/?11;~ ~ S Cll<llll;~ ~ · 
The proof of (3.27) is completed now by another application of the regularity result on the Dirich­
let problem. 

To show (3.22), consicter the "adjoint" problem 

with p E R(f> given by 

-6.v + 'Vq u } in Do 
divv 0 

T(v,q)n=-pJn onro, 

Pi = f u· v2,j dx, Jno 
:-'hich implies llttll~(~) :S Cllull~o. By exami.ning the variational fo~ulat~on of thi~ problem 
m the same way as m Lemma 10 we find the ex1stence of a weak solut10n of 1t that sat1sfies 

~1(v) = 0, ~2(v) = 0. 

By the above regularity results we get 
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With this, we find by the second Green forrnula for the Stokes equations 

n 2 
llullo 0 = (u,-~v+Vq)0 + f (T(u,p)n·v-T(v,q)n·u)df 

lro 
r ( FB . V + p J n) d[ r F B . V df - IJ . t.p2 (u) 

lro lro 
< CI!FBII~o~llvllio :S CIIFB llvll~" :S CIIFBII~0ó!llttll~o · 

2 2 2 

which proves (3.22). • 

The Neumann-to-Dirichlet operator 

51 

We wiJl conclude the discussion of the fixed-time problem with the proof of a commutator prop­
erty for the operator that describes the correspondence between the Neumann and Dirichlet 
boundary data for the Stokes equations. More precisely, we consicter for f E ( H s (f 0 )) N, 

s ?. ~, the problem 

with 

and define 

L[up,\f [ÎO] 

Î(v) = r fv d[ 
lro 

SJ= ulro· 

(3.3 I) 

(3.32) 

Combining the results about the weak and strong forrnulations for the fixed-time problem with an 
interpolation argument we get that S is a well-defined operator in 

forall s?. -!. 
We reeall the definition of the operators A (J from (3.3) and note the fact that they are pseu­

dodifferential operators of order (J' [87]. 

Lemma 12 (Commutatorproperty) 
For any s, (J' E R such that s + (J' ?. - ~ the operator SA (J - A (J Sis in 

Proof: Even fors < ! it is enough to show the inequality 

for all f E ( H ~ (f 0 )) N, hence we are allowed to work with the strong forrnulation of the problem 

(3.31). 
Based on the above discussion of the regularity properties of our boundary value problem we 

find that 
Sf 
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where ( u(k), p(k)) are the solution of the Dirichlet problems 

-~u(k) + "ilp(k) = ek } 
divu(kJ = 0 inOa, 

u(k) = 0 on fa, 
fno p(k) dx = 0, 

( u2, P2) is the solution of 

and 

-~U2 + '\lp2 = 0 } 
divu2 = 0 

T( u2, P2)n = Àlk(J)T(u(k) ,p(k))n- À2(J) J n + f = P f 
<,o;(u) = Àlk(J)<,o;(u(k)) = h;(J) 

(i=1,2). 

Note that for all B E JR. 

llht(J)IIIRN + llh2(J)IIIRc~J < Cellfll~o, 

II(A"P-PA")JII~o < Ce,u,sllfll~0 • 

inOa, 
I 
I 

oo fa, 
(i=l,2), 

(3.33) 

Using hydrodynamic potentials as above and writing (V tfi)(x) = V(x, t/1) for x E fa one finds 

SJ= Vt/1- Àlk(f)u(k), 

where t/1 is the (unique) solution of 

GJ+K)t/1 = PJ 

<,o;(V t/1) = h;(J). 

From the above discussion of this problem we reeall 

In the same way we get 

SA"f= V(- LÀtk(A"J)u(k), 
k 

where ( is the (unique) solution of 

(~J+K)( = PA"J 

<,o;(V() = h;(A" J). 

Applying A" to (3.34) yields 

GI + J{) A"t/1 =A" Pf +(KA"- A" K)t/1 

(3.34) 

(3.35) 

(3.36) 
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and after subtracting (3.36) 

GI + f{) (A"l/J- ()=(A"' p- PA")!+ (KA"- A" K)l/J, 

hence, using (3.33), (3.35), and the fact that I< is a pseudodifferential operator of order 0, 

and from this, using that V is a pseudodifferential operator of order -1, 

I IA" SJ- SA" !11~~2-a 

II
A"Vl/J- >.lk(f)A"u(k)- V(+ >..lk(A" f)u(k)llro 

s+2-a 

IIV(A"l/J- () + ( >..lk(A"' f)u(k)- >.1k(f)A"u(k)) + (A"V- VA")1/Jr:
2
_" 

< Csllfll~". • 

Remark: It is clear from the proof that the same commutation relation holds with A" replaced 
by an arbitrary pseudodifferential operator of order 0'. D 

3.2.2 The fixed-time problem for Hele-Shaw flow 

For the discussion of the fixed-time problem (3.14) it is sufficient to invoke standard results from 
the theory of elliptic boundary value problems. Moreover, there is noneed for an explicit discus­
si on of the weak formulation. 

Lemma 13 (The fixed-time problem for Hele-Shaw flow) 
(i) (Existence, uniqueness, and regularity) 
For all s ~ 2, the mapping 

defined by 

[ 
~u 

Lu = ulro 

is a homeomorphism. 
(i i) (The Dirichlet-to-Neumann operator) 
The operatorS : Hs- ~(ra) ----+ Hs-% (ra) defined by 

is a pseudodifferential operator of order 1 in the manifold r 0 . 

Proofs of (i) and (ii) can be found e.g. in [59] and [87], respectively. 

(3.37) 

Remark: It follows from (i i) that Scan be extended to H ~ (r 0 ) with values in H- ~ ( r 0 ). o 
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3.3 Some elementary consequences 

Even in this stadium of the discussion it is possible to give some qualitative properties of the evo­
lution problems we are interested in. This will be done under the assumption of existence of (suf­
ficiently smooth) solutions of the FBPs. under consideration. In particular, we wil! find that the 
surface motions corresponding to them conserve the enclosed volume and diminish the area of 
the surface, and that all stationary solutions are given by those domains whose boundaries have 
constant curvature, i.e. by the circles for N = 2 and the balls for N = 3 (see [ 14] § 100). 

As we are dealing in this sectien with domains that are not necessarily infinitely smooth, we 
modify the definitions ofthe normsin the spaces Ht(r(t)) and H-î(r(t)). Given a norm on 
H!(r(t)), we choose on H-!(r(t)) the dual norm given (for sufficiently smooth v) by 

llvll~(!) = sup f v~ dr(t). 
II<I>II~<•l=l Jr(t) 

2 

3.3.1 Stokes flow 

Let us assume in this subsection that u(·, t), p(·, t), Q(t), tE [0, T) where T = +oo is allowed, 
are parametrized families of sufficiently smooth functions and domains such that (1.4)-(1.7) are 
satisfied, i udx 0, i rotudx = 0, 

O(t) O(t) 

and the functions 
A(t) fq,, df(t), } 
V(t) = fn(t) dx, (3.38) 
M(t) = fn(t) dx 

representing the surface area, volume, and center of gravity of Q(t), respectively, are differen­
tiable with respeèt tot. (Here and in the following, we suppress the variabiet in the notation of 
u.) Let the bilinear form a1 bedefinedas a in Section 3.2 with !.1o replaced by Q(t). We reeall 
that 

(3.39) 

where c1 depends on the domain Q( t) only. Moreover, a standard result from the theory of elliptic 
boundary value problems ensures that if g E H!(r(t)) and fr(t) g dx 0, then the Neumann 
problem 

0 in Q(t), 

g on r(t), 

f ~d;c 0 
ln(t) 

has a solution <P E H 2(Q(t)) for which an estimate 

ll~ll~(t) :5 Ctllgll~(t) 

holds with C1 depending only on Q(t). 

(3.40) 

(3.4 I) 
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Lemma 14 (Global properties of Stokes flow) 
(i) ( Conserved quantities and surface diminishing) 
The functions V and 111 are constant. The jimction A is nonincreasing int. 
(ii) (Asymptotic behavior) 
Suppose T +oo, À == ~~ is uniformly Lipschitz-continuous and 

ss 

(3.42) 

where Ct and C1 are the constantsfrom (3.39) and (3.41 ), respectively, and 1 denotes the constant 

f!mction mapping f(t) to 1. Then ll~~:(t) h:(t)11~(2--+ 0 ast--+ +oo with 

( iii) ( Stationary solutions) 

2 

R:(t):::: _l_. { ~~:(t) df(t). 
if(t)i lr(t) 

(3.43) 

The function A is constant in time only at stationary solutions, and if a domain S1 yields a 
stationary solution, then an has constant curvature. 

Proof: Let t E [0, T) be fixed. We find from the fixcd-time problems 

dV 1 
dt fl(t) 

divudx 0, 

dA 1 dt == x:(t)n(t)·udf(t) -a1(u,u)SO, 
r(t) 

d]Vf 

dt 

This implies (i) and, forT 

f u dx + f x div u dx == 0. 
ln(t) lnrt) 

+oo and A uniformly Lipschitz-continuous, 

À(t) 0 ast -. +oo 

as A is obviously bounded from below. 

(3.44) 

Due to the duality between the spaces H- ~ (S1(t)) and H~ (S1(t)) there is a q) E H ~ (S1(t)) 
l'(t) 

such that llrPIIl. :::= 1 and 
2 

{ (~~:(t)- R(t)}q) df(t). 
lrrt) 

Let J, :::= JrftJI fret) q)df(t) and set v ==V' <I>, where <I> is the solution of (3.40) with r1:::: q) q>. 
From (3.41) and (3.42) we get 

with C independent oft. 
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Using this we find from (3.39) and (3.42) 

R'(t)11~(2 = { K(t)n(t) · v df(t)- R'(t) { 8
8

4)? df(t) at( u, v) 
2 lr(t) lr(t) n 

1 

< CK3IIujj~(tJ $ CK~at(u, u)t = CK~ ( -À(t))". 

This implies (ii) because of (3.44) and (iii) because for stationary solutions A is obviously con­
stant. (On the other hand, if K(t) =Ris constant on f(t), then u 0, p -R', hence we have a 
stationary solution.) • 
Remarks: The mathematica! content of this lemma is limited because of the strong and hardly · 
verifiable assumptions in (ii). However, it provides a mathematica! formulation for the conse­
quences of the energy balance considerations familiar in physics. In particular, the equation 

at(u, u)+ À(t) = 0 

has an explicit interpretation in physical terms: At any instant of time, the amÖunt of energy "pro­
duced" by area diminishing is dissipated by inner friction. This observation is the basis for the 
viscous sintering models that are used in material science [31, 77]. It is noteworthy that in these 
models neither the Stokes equations nor the cuevature ofthe boundary occurexplicitly. D 

3.3.2 Hele-Shaw flow 

By parallel reasonings we can obtain very similarresultson Heie-Shaw flow. Let u(·, t) and û(t) 
be families of sufficiently smooth functions and domains parametrized by t E [0, T) and satisfy-
ing 

du = 0 in !.1(t), 
u = K(f) on f(t), 

Vn 
OU 

on f(t), 
on(t) 

reeall that the velocity field inside the liquid domain is given by v = \1 u and de fine A., V, lvf, 
and R(t) as in (3.38) and in (3.43), respectively. As in the case of Stokes flow, we assume differ­
entiability of V, A, and M with respect tot. Reeall that the trace theorem yields 

(3.45) 

and we have, as a consequence of the Bramble-Hilbert lemma, the Poincaré-type inequality ([93] 
Vol lUB, Appendix, (53a)) 

llwll~(t) :s; c2,t (u\lwll~l(t) + lt(t) udf(t)l) 

Lemma 15 (Global properties of Hele-Shaw flow) 
(i) (Conserved quantities and surface diminishing) 
The functions V and M are constant. The function A is nonincreasing in t. 
(ii) (Asymptotic behavior) 
Suppose T = +oo. Á = ~1 is uniformly Lipschitz-continuous and 

(3.46) 

(3.47) 
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for the constantsin the inequalities (3.45) and (3.46). Then ll~~:(t) Oast ~+x. 

( iii) ( Stationary solutions) 
The function A is constant in time only at stationary solutions, and if a domain n yields a 

stationary solution, then on has constant curvature. 

Proof: (i) can be shown directly by calculating, using integration by parts, 

r divv dx = 0, 
ln(t) 

dV 

dt 

dM 

dt 
= r V dx + r x div 1J dx r V u dx 

ln(t) lnctJ lnrt) 

dA(t) = 
dt 

r rm(t)df(t) r Llqt)xdf(t) 0, 
lqt) lï(t) 

r n:(t)n(t) ·vdf(t) =- r u"
8

u() df(t) 
lrcn lr(t) un t 

- f 1Vul2 dx ::; 0. 
ln(t) 

(3.48) 

As in the Stokes flow case this implies (3.44). Furthermore, using (3.45), (3.46), and (3.47), 

ll~~:(t) K'(t)lli(t) < Kil u- ll~(t) 
2 

< K 2 (IIV(u- ï;;(t))ll~(t) + r (~~:(t)- R(t)) df(t)) 
lrctl 

K 2 
( f 1Vttl2 dx) t K 2 

( -A(t))t), 
lnct l 

and (ii) and (iiî) follow from this as in the proof of Lemma 14. • 

3.4 Dependenee on perturbations 

In our case, the application of the direct mapping method proceeds as follows: A given pertur­
bation r E H'(fo), s > 2 + llrll~o small, defines by Lemma 5 a domain rl,. on which we 
consider the fixed-time problems. Using the diffeomorphism z( r ), these problems can be "pulled 
back" to the fixed domain rl 0 and written as operatorequations in which r occurs as a parameter. 
For r 0 we reeover the fixed-time problems on rl0 that have been discussed in Section 3.2. 
Near r 0, the investigation of the dependenee of all occurring operators and functions on 1' wil! 
yield the necessary information about the solutions of the fixed-time problems as functions of r, 
i.e. "of the domain". 

Suppose s > 2 + lf and let 0,. and z ::(r) be defined by Lemma 5. We denote by i;:(1·) 
and iJ( 1·) the curvature and the outer normal vector of Or, respectively, considered as functions 
on f r· On f o wedefine 

n:(1·) li:(r) o z, 

v(r) i!(r)oz. 
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Lemma 16 ( Perturbation of outer normal and curvature) 

(i) The mapping r ~--> v(r) isanalyticnearOfrom H"(ro) to (H•- 1(r0))N. 

( ii )The mapping r ..... ~>:( r) is analytic near 0 from H • (r 0 ) to H •-2(r 0 ). 

Proof: (i) Let ra Um r~m) be a finite covering ofro by coordinate patchbs r~n) and {xm} 
a smooth partition of unity subordinate to it. Let çCml = çCml(w), wE Wm, be smooth regular 

parametrizations ofr~m). Let Wm C Wm be a domain such that 

Without loss of generality one can assume that the W m are bounded and have smooth boundary. 

Moreover, for all m we choose functions tPm E Cf{' (r~m)) such that t/>m 1 in supp Xm· Note 

that 

v(r) = L Xm (v(m}(r) o ( ëm)) -l) , 
m 

where v.= vCm)(r) is the salution of 

m=O (3.49) 

and vCm)(O) n o çCm) = nCm). 
Due to the well-known results concerning equivalence of norms for Sobolev spaces on man­

ifolds it is sufficient to show that the mapping r ~--> vCml(r) is analytic near 0 from H•(r0 ) to 

(H•- 1(Wm))N for any m. Let m be fixed and note that F(m) maps 

analytic near (0, nCm)) into (H'- 1(Wm))N because H'- 1(Wm) is a Banach algebra. Further­
more, for the Fréchet derivative of F(m) at (0, n(m)) with respect to the second argument we get 

Due to the regularity of the parametrization çCm), the matrix defining 
D2 F{ml(O, nCml) is nonsingular on Wm and all its elements are smooth' functions, hence 

D 2 F(ml(O, nCm)) is an homeomorphism of (H•- 1(Wm))N. By Lemma 6 this implies the ana­

lyticity of v<ml(r) as a function of r near 0. 
(ii) Suppressing for the sake of brevity the composition with çc m l and the dependenee of G, 

g, and gii onmin the notation we have, for any fixed m, on Wm (cf. (3.2)) 
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with 

g(R) 

(R) 

G(R) 

detG(R), 

[G(R)-

(
8(ç<ml + R())T (8(Ç(m) + R()). 

&w &w 
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It is clear that the mapping r >---+ 1/Jmr is analytic from H'(fo) to H'(Wm) and the mappings 
R g(R) and R >-+ G(R) are analytic nearO from H'(Wm) to theBanach algebras H'- 1 (W",) 
and ( H s -l ( W",)) N x N The regularity of the parametrization implies that G( 0) is smooth and in­

vertible on l•Vm' hence its restrietion to w", is invertible in ( 11 s -l ( w m)) N x N. lt follows from 
Lemmas 6 and 7 logether with (i) and the facts that both H'- 1(Wm) and H'- 2 (Wm) are Ba­
naeh algebras that (XmK(r)) o ç(m) depends analytically on r E H'(fo) near 0 with values in 
H s- 2 ( lt'm), and the assertion fo\lows from this. • 

We reeall the definitions of the spaces X, X,, Y~, from Section 3.2. As announced, we have 
to investigate the salution ( fi, p, ~) E X of the fixed-time problem 

_ in Or, -~u+V'r+.~l = o} 
dlVU = 0 

T(ü,p)v(r) + ~ 2 J it(r) = X:(r)v(r) on fr, 
In, u dx 0, 

In, rot u dx 0. 

Transformation to 0 0 using the diffeomorphism :: yie\ds 

where 

[ 

0 j u(r) 0 
l(r) [ p(r) ] = K(r)v(r) , 

À(r) 0 
0 

u(r)=uoz, p(r) poz, À(r)=~oz, 

(rotru) K(i,j) 

(~r1t)i 

Ij 8u; 
a -:n-• 

UX/ 

(aki àu; 

(3.50) 
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Lemma 17 ( Perturbation of the Stokes equations) 
(i) The mapping r >--+ L(r) is analytic near Ofrom n•-!(ro) to C(X,, Y,). 

(ii)Forsufficientlysmallr E w+!(fo), u(r) E (W(Qo))N iswell-defined. Themapping 
r >--+ u(r) is analytic near Ofrom n•+!(ro) to (H'(Q0))N. 

Proof: (i) The mapping r >--+ z(r) is linearand continuous, hence analytic from n•-!(ro) to 

(H'(f2o)t. Consequently, r >-+ A(r) is analyticfrom H•-t(ro) to (n•-1(Q0))NxN which is 
a Banach algebra. Note thatA(O) is the identity, hence by Lemma 7 the mappings r >--+ A(r)- 1 

and r >-+ aii(r) are analytic near 0 from H•-!(ro) to (n•- 1(Q0)txN and H'- 1(Q0), re­
spectively. The assertion follows now straightforwardly from the Banach algebra properties of 
w- 2(f2o), w- 1(f2o), and n•-!(ro). 

(iî) For any sufficiently smal! r E H•+! (f 0 ), u( r) is the first component in the solution 
v E X, of the equation 

F(•,•)=l(•)•- [ •+•) ]· 
Accordingto Lemma 16 and (i)togetherwith the Banach algebrapropertyof H•-i(f0 ), Fis an­

alytic """' ( 0, [ ~ ]) into Y" whore uo ond Po denote the velocity Md pressure componen" 

of the solution of the fixed-time problem on f2 0 • Clearly the Fréchet derivative of F with respect 
to vat this point is L(O) which is a homeomorphism by Lemma 11. Hence by Lemma 6 (vi), v 

depends analytically near 0 on r E H•+! (f 0 ) with values in X, which implies the assertion. • 
In an analogous way, for the Hele-Shaw flow problem we have to discuss the Dirichlet bound­

ary value problem for the Laplacian 

Llû = 0 inQr 
u = ii:(1•) on fr 

which is, after transformation by z to f20 , 

with 

L(r)u(r) = [ x~r) ] 

u(r) = 
L(r)u = 

uo z, 

[ 
Ll,:u] 
ulro ' 
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where the rii are defined as in the Stokes flow problem. 

Lemma 18 ( Perturbation of the Laptace equation) 
(i) The mapping r >-+ L( r) is analytic near 0 from H •- & (r 0 ) to 

(ii) For sufficiently smalt r E H•+~(fo), u(r) E H 8 (0o) is well-defined. The mapping 
r· u( r) is analytic near 0 from H •+ ~(fo) to H'(00 ). 

Proof: (i) can be proved in complete analogy to the proof of Lemma 17 (i). The assertion of 
(ii) follows from Lemma 16 (i i) logether with the application of the Impheit Function theorem 
(Lemma 6 (vi)) to the equation 

F(r,v)=L(r·)v [ O ] 
~~:(r) 

near (0, where u0 is the salution of the fixed-time problem on 0 0 • The nondegeneracy con-
dition is the bijectivity of L( 0). lt is satisfied due to Lemma l3 (i). • 

3.5 Evolution of the perturbation function 

We are able now to formulate the moving boundary problem in termsof an evolution equation for 
the perturbation functions r by allowingit to depend on time. With a slight change of notation, 
rrom now on we consicter r as a function from a time interval [0, T) into Ba ( lio, H s ( r 0 )) , where 
!Îo isgivenbyLemma5. FortE [0, Ç E fo,wewillwriter(t,Ç)insteadof(r(t))(Ç). Let 
0( t), t E [0, T) be a given family of domains evolving according to (1.4), (I .5), such that for all 
t there is an r·(t) E Ba (lio, H'(fo)) with 

(3.51) 

where the right side is delined as in Lemma 5. Our aim is to express the time derivative of r in 
termsof v and geometrie quantities. (We will assume the existence of all occurring derivatives.) 

Introducing Lagrangian coordinates p E f(O) for the parametrization of f(t) we have 

with 

r(t) = {x(p,t) IPE I'(O)} 

:r:(O, p) 
äx 
Ft(p, t) 

p, 

u(x(p, t), t). 

On the other hand, we get from Lemma 5 and (3.51) another parametrization, namely 

r(t) = {Ç + r(t,Ç) IÇ E ro}. 

(3.52) 
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Due to the globality of both parametrizations and the differentiability assumptions there is a dif­
ferentiable function q(·, t) from f 0 to f(O) such that 

x(q(Ç, t), t) == e + r(t, e)((Ç). 

Differentiating this equation with respect tot and using (3.52) yields 

8x {Jq • &r 
{Jp {Jt + v(Ç + r(t, Ç)c,(Ç)) == at (t, Ç)((Ç). 

The first term on the left si de represents a vector tangen ti alto r(t) at Ç + r(t, Ç)((Ç), hence mul­
tipheation with v(r(t))(Ç), the outer normal of r(t) in this point, yields (on f 0 ) 

àr _ (v o z(r(t)))lro ·v(r·(t)) _ ( ( )) 
- -prt, 

( · v(1·(t)) 
(3.53) 

wherti the argument Ç E f o bas been suppressed. 
This evolution equation for the perturbation function r has been derived exclusively from 

(1.4), (1.5), and (3.51), i.e. it is a purely kinematic relation. It will yield the evolution equations 
both for Stokes flow and for Hele-Shaw flow by making the appropriate choices for v. In both 
cases, the study of the FBPs is reduced to the thorough investigation of the operator p. 

Remark: If we set, in particular, ( == n and r 0, we have ~; == Vn and reeover the kinematic 

boundary condition 
V,,=v·n 

that bas been announced earlier (cf. 1.9)). D 

Stokesflow 

For Stokes flow we have to set voz(r(t)) = u(r(t)), where u isdefined by Lemma 17 (ii). Hence 
we get, soppressing the time argument, 

ar 
at ( ) 

_ (u(r))lro ·v(r) 
p r - (- v( r) · 

Lemma 19 (Analyticity ofthe Stokes evolution operator) 
The operator p defined by (3.54) is analytic near Ofrom H$+!(ro) to H$-!(ro). 

(3.54) 

Proof: The result follows, by the Banach algebra property of H$-!(ro) and the fact that, due to 
(3.4), ( · v(O) is a strictly positive C 00 -function on r 0 , hence an invertibleelement of H$-! (r0 ), 

from Lemmas 6, 7, 16 (i), and 17 (ii). • 

Hele-Shaw flow 

F.or Hele-Shaw flow we have to set v o z(r(t)) = Y'r(t)U(r(t)) with u defined by Lemma 18 (ii) 
and -

'' OU 
(V'ru); = a3'(r) OXj. (3.55) 

Hence we get 
ar== p(r) = (V'ru(r))lr •. v(r). 
at (. v(r) 

(3.56) 
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Lemma 20 (Analyticity ofthe Hele-Shaw eva/ution operator) 
The operator p defined by (3.56) is analytic near 0 from Hs+~ (f 0 ) to H'- ~ (r u). 

Proof: Note that the mappings 1' ,_. (Vru(1'))lro and r,...... v(r) are analytic from H"+~(fo) to 

H'- ~ ( r 0 ), respectively. The assertion follows from this by the same arguments as in the pro of 
ofLemma 19. • 
Remark: From the point of view of the mapping properties in the scale of Sabalev spaces 
{ H 8(fo)}, the operators on the right side of the evolution equations for Stokes flow and Hele­
Shaw flow bchave as differential operators of first and of third order, respectively. Th is explains 
why the methods that have been used in Chapter 2 for the treatment of the Stokes llow problem in 
2D cannot be used for plane Hele-Shaw flow: Operators of higher than first order are in general 
not quasidifferential in scales of Banach spaces I ike { Br}, so the abstract Cauchy-Kovalevskaya 
theorem is not applicable. o 



Chapter4 

Existence results via linearization 

The most important tooi in the analysis of the equations (3.54), (3.56) is the determination and 
investigation of the linear operator p1, representing the Fréchet derivative of pat 0. More pre­
cisely, the procedure for obtaining short-time existence and uniqueness results for the evaJution 
equations will be as follows: 

• Identification of p1 in termsof the corresponding fixed-time problem and differential oper­
ators on fo 

• Proof of coercivity estirnates for- p1 

• Proof that p1 generales an analytic sernigroup 

• Application of a general theorern on fully nonlinear parabol ie equations to (3.54), (3.56) 

In order to clarify the concepts and ideas of this approach befare giving the technica] details let 
us start with the following outline: 

In a veryin forma! way, the probierus we consicter can be characteri7,ed by the scheme in Table 
4.1. Taking into account, rnoreover, that the hnearization of the mapping r ~--+ h:( r) is in highest 
order essentially given by the Laplace-Beltrarni operator .6.r0 we find, for the Ieading-order terms 
of p1 , a structure thatstrictly resembles the scherne in Table 4.1. Narnely, forthe Stokes flow prob­
I cm, we get the cornposition of Är0 with the (norrnal component of) the Neurnann-to-Dirichlet 
operator of the Stokes equations. On the other hand, for Hele-Shaw flow, we get the cornposition 
of Är0 with the Dirichlet-to-Neumann operator of the Laplacian. The general theory of elliptic 
boundary value problerns shows that in these problerns the operators on the boundary rnanifold 
that assign toeach other the Dirichlet and Neumann boundary data are elliptic pseudodifferential 
operators of the "expected" order [87}. 

Thus, in both cases, the operator p1 is (at least in highest order) an elliptic pseudodifferential 
operator of order 1 or 3, respectively. It should be noted that for our purposes there is no need to 
explicitly calculate their principal symbols because the coercivity estirnates can be obtained in a 
straightforward way frorn the coercivity of the underlying fixed time problerns. 

Th is discussionmakes also clear in which (abstract) sense the equations (3.54) and (3.56) are 
parabolic (although they are noteven differential equations): The linearization of thc right-hand 
side generales an analytic sernigroup (on suitable spaces). The equations are fully nonlinear (as 
opposed to sernilinear, cf. [61]) in the sense that the nonlinearrernainder term p- p1 has the samc 
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• 

governing elliptic operator 

Type of boundary condition 
in the fixcd-time problem 

Type ofboundary data 
prescrihing Vn 

CHAPTER 4. EXISTENCE RESULTS VIA LINEARIZATION 

Stokes flow Hele-Shaw flow 

[ -A 

-l:J. :] div 

Neumann (7(u,p)n) Dirichlet 

Dirichlet ·(au) Neumann àn 

Table 4.1: schematic comparison of Stokes flow and Hele-Shaw flow 

properties as p with respect to "differentiation order", i.e. conceming continuity properties in the 
scale {H9(fo)}. 

4.1 Calculation of the linearizations 

In the sequel we will use the term "first-order differential operator on fo" for linear differential 
operators 1 that are of the form l = t( 1)h + p.h, where p. E C 00(fo) and f(l) corresponds toa 
C 00 -srnooth tangential vector field on ro, i.e. differential operators having smooth coefficients 
in any smooth local coordinate system. A linear operatormapping C 00 (fo) to (C00 (f0))N wil I 
be called vector-valued first -order differential operator on r 0 iff all its components are first-order 
differential operators on ro. 

We reeall from Lemmas 6 (ii) and 16 that 

co 00 

v(r) = L Vk(r, ... , r), 
k=O 

~~:(r) = LKk(r, ... ,r), 
k=O 

and the Fréchet derivatives at of v and 11: at r = 0 are 

respectively. 

Lemma 21 (Linearization of geometrie quantities) 
(i) The operator 111 is a vector-valued first-order differential operator on f o. 
(ii) We have 

where l is a first-order differential operator on r 0· 
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Proof: (i) We use the same notation as in the proof of Lemma 16 and note that it is sufficient 
to show that the Fréchet derivative of the mapping r >-+ vCml(r) at r = 0 is a vector-valued 
differentîal operator with smooth coefficients on Wm. Differentiation of (3.49) with respect to 1' 

at r 0 yields, with obvious notation, 

m) ·[ (éJÇ(m))T l-l [ (8((1/•mh() oÇ(m)))T l vi [h] = - Öw fJw T!(m) 

2n(m) 0 

which proves the assertion due to the invertibility of 

[ 
(

fJÇ(m)) T l 
f)w 

2n(m) 

and the smoothness of çC m), ( o çC m), and 
(ii) Without loss of generality we can assume that r is smooth and small in C( r 0 ). It wiJl 

be convenient to work with perturbations of r 0 in normal direction, therefore we introduce on a 
small neighborhood of r 0 in RN the functions B and:::: by 

B(x) = ± dist(x, f 0 ) 

with positive sign for x rt Do and negative sign for x E D0 , and S(x) E f 0 as the (unique) 
solution of the minimization problem 

IÇ- xl min, Ç E fo. 

Then clearly 
x= S(x) + B(x)n(S(x)) 

and for sufficiently small rE C(fo) we have a parametrization of r r by 

x= Ç + b,.(Ç)n(Ç), Ç E fo, 

where 
br(B(Ç + r(Ç)((Ç))) = B(Ç + r(Ç)((Ç)). (4.1) 

Note that (4.1) defines brat all pointsoff0 , b,. is smooth and smal! in C(f0 ). 

On the other hand, replacing the vector field ( by n we can describe domains near 1'0 as 

f'b : x= Ç + b(Ç)n(Ç) 

(cf. Lemma 5) and define K{b)(Ç) forallÇ E 1'0 as thecurvatureoffb in the pointÇ + b(Ç)n(Ç). 
It is clear that the mapping b >-+ ii:( b) enjoys the same local analyticity properties as thc mapping 
r ~-+ K( r ). Denoting for thc moment the Fréchet derivatives with respecttor and bat 0 with D,. 
and Db, respectively, we find from 

by the chain rule 
(4.2) 
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In order to calculate the "inner" derivative we introduce the smooth function 

given by Sr = S(Ç + r(Ç)Ç(Ç) ). Using that S = S0 is the identity on r 0 and b0 ;::: 0 we find 

Drbr = D,.(br 0 So) = Dr(br o Sr)- Dr(bo 0 Sr) = Dr(br 0 Sr) 

and from this with 'ïl B =non f 0 and (4.1) 

lt remains to calculateDbk. To simplify the notation we set fortherest of the proof ( = n 
which implies r = b, and the tilde can be omitted. Working with local para.nletrizations as in the 
proof of Lemma 16 and taking into account that, in the notation used there, 

DnG[h] (
f)Ç(m))T (f)(hn)) + (f)(hn))T (f)Ç(m)) 

&w &w &w &w I 

= 

= 

we find that Drg[h] and Drg1i[h] are computed by pointwise multiplication of h with a fixed 
smooth function. 

The assertion follows from this by straightforward calculation, using (4.2) and the facts that 

is a vector-valued first-orderdifferential operator on f 0 and 

is a tirst-order differential operator on r 0· • 

After this preparation we can describe the structure of the linearization both for Stokes flow 
and for Hele-Shaw flow. 

Stokes flow 

In the notation of Lemma 17 we find from (3.54) 

p1 (r) == (- u(O) · n ( + .!..u(o)) · v1(r) + .!..n · u1(r), 
/2 / / 

u, (•) = R n,i(W' ( [ <• ( •)n +O)v, (d ]- i,(•) [ ;~~~ ] J 



4.1. CALCULATION OF THE LINEAR!ZATIONS 69 

writing II 1 for the canonical projection of X, onto its first component ( H • ( !.10 )) N and using the 
fact that À vanishes for the salution of the fixed-time problem. Hence, using Lemma 21 (i i) and 
the operatorS as defined in (3.31), (3.32) 

P1 = PÎ + ft + lo, (4.3) 

where 

lo(r) 

From the regularity results on the fixed time problem (Lemma 11) and the smoothness of r 0 it 
follows that u(O)Iro is smooth, hence we find from Lemma 21 (i) that h is a tirst-order differential 
operator on r 0 . Furtherrnore, the commutator property of S (Lemma 12 and the remark afterits 
proof) logether with Lemma 21 (i), Lemma 17 (i) and the fact that p(O) is also smooth yields 

(4.4) 

for all s > 2 + 

Hele·Shaw flow 

In the notation of Lemma 18, we find from (3.56) 

Pl (r) = (- 1 0~~0\ + ~ vu(O)) . v1 (1·) + ~ ( a{i(1·/~·;~)) lro ni + ~ :nu!(r) (4.5) 

with 

where y-l E C (H"(f0 ))
1 

, H"+ï(f20 ) (a-> 0) is the fixed inverse ofthe trace oper-
( 

!V ( 
1

. )N) 
ator that has been introduced in the proof of Lemma 5, and 

Summarizing and using the operatorS defined in (3.37) we get from the Lemmas 13, 18 (i), and 
21 that 

(4.6) 
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with l2 E C ( H•+~(fo), w-t(ro)) for all s > 2 + !f. Here we have used the fact that the 
operator 

1 
h ~--> -S-y.dr0 h S.dr0 h 

I 
is a pseudodifferential operator of order 2 because of the commutator properties of S. 

4.2 Coercivity and generation results 

As we are exclusively concemed with linear operators in this section, we will follow the usual 
notational conventions and omit the brackets around the arguments of linear operators like p1, !1, 

lo etc. 

Lemma 22 (Coercivity of -p1 forStokesflow) 
Let Pl be given by ( 4.3). For all s > ~ + lf there are positive constanis c and C, such that 

Proof: Using the decomposition in (4.3) we wi\1 give the proof by showing tqe inequalities 

(i) 1(/or, r).j < C,llrll;02 

(ii) 1(/tr,r).l ::; Csllrll;02 

(iii) (-ptr, r), ~ clldl;~t 2 - C.llrll;o
2

• 

(i) is immediate from (4.4) and the Schwarz inequality. To show (ii) we reeall that 11 is a linear 
first-orderdifferential operator on fo due to Lemma 21 (i) and denote its ad joint in H 0(fo) by li. 
Partial inlegration on r 0 shows that the operator /1 + li is given by multiplication with a smooth 
function. Using this, from 

we can conclude 

1(11 r, r)ol = ~ l((/1 + 17)r, r)0 1 :::; Cllrll~02 

and further, using that A • 1t /1A • E C ( H 0(f 0 ), H'(fo)) 

l(l1r,r),l = I((A•tl l1A')r,A"r)ol + l(hA"r,A"r)ol:::; C,llrll;02
. 

To show (iii) we reeall that p*r = û · n, where ( i.t, p, ~) is the solution of the variational problem 
(see Section 3.2) 

a(i.t, v)- f00 pdivvdx + ~I<i>I(v) 
+.\r<p2(v) = 

divi.t 
~PI( u) 
c,o2( u) 

From (3.21) we find 

fro .Ó.r0 r n · v df 
0 
0 
0. 

(4.7) 

(4.8) 
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Setting v = û in the first equation of (4.7) and applying the ellipticity of a we find 

(-ptr,r)l (ptr,Llror)o-(Pt1·,r)o?: f it·nLlr0 1'df Cll1'llio 2 

lro 
= a( it, Û)- Cllrlli'"

2 
?: cjjûll~02 Cllrllf"

2 
· (4.9) 

On the other hand, 

llrll~o < C (il.:lrol'll~"~ + llrll~") 

< C sup . (l Llr0r 'P df + llrll~") 
<PEH•(fo) fo 

(4.10) 

II<PII~" =1 
2 

and we praeeed by estimating the integral in the last expression for arbitrary 'P E Hl (f 0 ) with 

II'PII~" = 1. At first wedefine the mean value 
2 

and note that 

We consider the Neumann problem 

0 
in Oo } 

'fi 'P on ro (4.11) 

0 

N 
and set v<P = 'V <I>. We get v'+' E (H 1(!10 )) and 

"S:C. 

Setting now v = v'P in the first equation of (4.7) yields 

(4.12) 

where (4.8) has been used. Hence, tagether with (4.10), 

and with (4.9) 
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The inequality (iii) follows from this, using the commutator property 

p~A•-l A'- 1p~ E C (H1(fo),H8 (fo)) 

as in the proof of (ii). • 

Lemma.23 (Coercivity of -pl for Hele-Shaw flow) 
Let p1 begiven by (4.5), s > Ï + !f. There are positive constants c and Cs such that 

(-p1r, r), ~ cllrll~~! 2 - C,llrll;~ 1
2 

Vr E H"+3 (fo) 

Proof: Because of (4.6) and 

l(l2r, r),l :S lll2rll;~1llrll;~ 1 :S Csllrll;~ 1 
2 

it is suftkient to show the above coercivity estimate for -S.ó..r0 • As a first step, we give an ele­
mentary H 0(f0 )-coercivity estimate forS. For any <p E H!(r0),let û be the salution of 

.ó.ü 0 in no, 

ulro = 'P 

and set 

u - 1 f -d 
u- lOoi lno u x. 

Then S<p = ~: and by the well-known "dual estimate" 

llûll~o ::;; CII'PII~o! 
2 

(see e.g. [59]) we have 

llull~" 2 ::;; C (11ull~" 2 + llît ull~02) :SC (11ull~" 2 

+ llull~02) 
< c (iiull~o 2 

+ II'PII~o! 2) . 

Hence, using the trace theorem, 

llull~02 ~ cllûll~02 - II'PII~"t 2 ~ cii'PIIt"
2 
-II'PII~"t 

2
. 

and by the Green formula and the Poincaré inequality 

0 2 0 2 0 2 r2 r2 
(S<p,<p)o = ll\7üllo 

0 = ll\7ullo 
0 ~ cllulll 0 ~ cii'PII!0 - CII'PIL

0
! · 

2 2 

Using this, we can conclude 

( -S.ó..r0 r, r)o -(Sr, r)o + (SA2 r, r)o 

-(Sr, r)o + ((SA- AS)Ar, r )o +(SAr, Ar)o 

> c11Arlli
02

- CllriiÎ
02 

2 

and from this we get the assertion, using the fact that S is a pseudodifferential operator and the 
same arguments as in the pröof of Lemma 22. • 

The assertions on the generator properties for the operator p1 follow from the coercivity es­
timates by stand!lfd arguments. 
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Lemma 24 ( Parabalie character of Stokes flow) 
Lets > 2 + ~ and consider p1 given by ( 4.3) as an unbounded operator on H • (f 0 ). 

(i) V(pJ) = H'+l(f0 ), and the graph norm on V(pl) is equivalent to 11·11~+ 1 • 
(i i). The operator p1 generales an analytic semigroup on H' (f 0 ). 

Proof: We observe that due to the identity 

(u,v)s+1 = (Atu, v),H (A-~(Au),A!v),+~ Vu,v E w+ 1 (1'0 ) 

the spaces H•+1(f 0 ) and H' (fo) are in duality with respect to the bilinear fonn 

defined by 

(u, v) 

Note that 
(4.13) 

From Lemma 22 we have that for all sufficiently large real w 

(4.14) 

and from this and (4.13) we get by a continuity and density argument 

Hence, by theLax-Milgram lemma, -p1 +wlis an homeomorphism fromH'+ 1 (f0 ) to H'(f0 ). 

If we suppose now rE H' (fo) and Pl1' E H• (fo), then ( -p1 + wl)r E H'(f 0 ) and thus 
rE H'+1(f0 ) and 

This proves (i). 
To show (i i) we complexify the space H 8 (f 0 ) and the operator p1 in the usual way, with the 

scalar product in the complexified space H'(I'0 )c given by 

( Uj , Vj E H s ( r 0 ) ). lt is suftleient to establish that for a certain real w > 0 the operator 

A= P1 wl 

generales an analytic semigroup on H' (f 0 ), the result for p1 A + w I follows from this by a 
well-known perturbation result (e.g. [74] Theorem 11.37). We choose w to be large enough to 
ensure (4.14) with s replaced by s- ~· Then 
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and, by arguments analogous to the ones in the proof of (i), the positive real axis belongs to the 
resolvent set of A. Furthermore, we find for all z =u+ iv E H'(fo)c, u, v E JI'(f0 ), 

Re[Az, z], = (Au, u),+ (Av, t•). $ -c (llull~~! 2 
+ llvll~~! 2) ~ 0, 

IIm[Az, z]sl < I( Au, tl)sl + !(At•, u),l $ IIAull~~! llvll~~! + IIAvlf~tllull~~! 

< Cllull~~tllvll~~! $ C (ilull~~·t 2 
+ llvll~~t 2) $ -'CRe[A::, z]., 

i.e. the numerical range of A 

{ [Az, z]. I zE JI'+1(fo)c} 

is contained in a sector ofthe left half complex plane whose openingangleis smaller than 1r. By 
Proposition VII.3.2 in [62], this implies the generation result forA. • 

Lemma 25 ( Parabalie character of Hele-Shaw flow) 
Lets > 2 + lf and consider p1 given by (4.5) as an unbounded operator on H'(r0 ). 

(i) V(pt) = JI•+3(f0), and the graph norm on V(pt) is equivalent to IHI!'~a· 
(ii) The operator Pl generates an analytic semigroup on H'(fo). 

Proof: The proof can essentially be given in analogy to the proof of Lemma 24, so we restriet 
ourselves to the indication of the necessary changes. 

Due to the interpolation inequality 

holding for all positive e we can infer from Lemma 23 

(4.15) 

(i)can beproved nowusingtheduality between JI•+3(f0) and H'(fo) given by the bilinearform 

defined by 

(u,v)=(A- AÎv)•H· 

The estimate (4.15) with s replaced by s + ~ yields V(pt) = Jl8 +3(f0 ) in the same way as in 
Lemma24. 

To show (ii) we consicter again an operator A = Pl - wl with sufficiently large w E Rand 
estimate, basedon (4.15), 

Re[Az, z]s < -c (lluii!'~Ï 
2 
+ llvll;;~ 

2
) , 

I lm[Az, z]sl $ I!Aull;~~llvll;~~ + IIAvii;~ÏIIull~~~ $ Cllull!'~~llvll~~~ 

and the generator property of A follows as above. • 



4.3. EXJSTENCE RESULTS J 75 

4.3 Existence results I 

The favorable properties ofthe linearization p1 obtained in the previous section enablc us to obtain 
(short-time) existence and uniqueness results on the initia! value problem 

(4.16) 

1'(0) = 
both for Stokes flow and for Hele-Shaw flow, by invoking a eorresponding theerem on abstract 
fully nonlinear parabalie equations [61]. 

We start with a preparatory lemma that generalizes the previously obtained results on 
Pl p' ( 0) to p' ( r) for all sufficiently smal! r. 

Lemma 26 ( Generation properties of p' ( r) forsmalt r) 

Lets>2+Jt. 
(i) (Stokesflow) 
Let p be given by (3.54), D H 8 +1 (I'0 ). There is a 15 > 0 such thatfor all r E B 0 (b, D) 

the operator p' ( r) E .C (D, H' (r o)), considered as an unbounded operator on H'(fn }, satisfies 
V(p1 

( r )) = D, the graph norm on V(p1 (1·)) is equivalentto ll·llv. and p1(r) generat es an analytic 
semigroup on H'(fo). 

(ii) (Hele-Shaw flow) 
Let p be given by (3.56), D H'+3(r o). Then the same assertions as in (i) ho id. 

Proof: (i) We reeall that p1(0) p1 and that the mapping r >-+ p'(r) is eontinuous near 0 from 
D = H'+1 (fo) to .C (H•+l (f 0 ), H 8 (fo)). Hence, for any fixed r E B0 ( 15, H•+l (f 0 )) we have, 
using the same notatien as in the proof of Lemma 24, 

(-p'(r)[h], h/ (-p1h, h/ + (-(p'(r)- pl)h, h) 

> ciihll;~l 2 - Csllhll;o
2 
-IIP'(r)- PI!Lc(H'+ 1 (ro),li'(ro))ll1111;~1

2 

> ~llhll;~1 2 

Cs llhll;"
2 

(4.17) 

for sufficiently small b, where Lemma 22 has been uscd. Basedon this estimate the assertions on 
the domain of definition and the generation of an analytic semigroup can be shown as for p1 in 
Lcmma24. 

The proof of (ii) proceeds analogously, basedon Lemma 23. • 
Following [61 ], we introduce weighted Hölder spaces of functions of a real variabie with val­

ues in a Banach space X. These spaces are designed to handle the singul ar behavior of the func­
tion t >-+ et A x mapping an interval (0, T] into V( A) fort J 0, x 'i, 'D(A), where { e1A} is an 
analytic semigroup. 

For o: E (0, 1 ), a, b E R, a < b, let c;: ( (a, b], X) be the lincar space of all boundcd functions 
f: (a,b]---->Xforwhich 

where 

(f]c;:((a,b],X) = sup E"'[f]c"([a+<,b],X) < oo, 
D<<<b-a 

[f]c"([c,b],X J 
llf(l)- f(s)lix 

(t- s)a 
(a<c<b). 
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C~ ((a, b], X) is a Banach space under the norm given by 

11/llcg((a,b],X) = sup 11/(t)llx + [Jlcg((a,b].X)· 
tE( a,b] 

Proposition 4 (Existence theorem I) 
Lets> 2 + lf. 

(A) (Stokes flow) 
Let p be given by (3.54), D H 3 +1(f0 ). 

(i) ( Existence) 
There are positive real constants 6, T depending only on s and fo such that for all 

r0 E B0 (6,D) theproblem(4.16)hasasolution 

rE C([O, T], D) n C1 ([0, T], H'(fo)) n n C~ ((0, T], D). 
O<a<l 

(ii) (Uniqueness) 
This solution is unique in 

U C~ ((0, T], D) n C([O, T], D). 
O<a<l 

(iii) (Time regularity) 
The mapping t ~--+ r(t) is analyticfrom (0, T) into D. 
(iv) ( Dependenee on the initial value) 
Forall a E (0, 1) the mapping ro >-+ris analyticfrom Bo(6, D) into c: ((0, T], D). 

(B) (Hele-Shaw flow) 
Let p be given by (3.56), D = H 8 +3(f0 ). Then (i)-(iv) also hold. 

Proof: The assertions (i) and (ii) follow from Theorem 8.1.1. in [61]; the assertions (iii) and (iv) 
follow from Theorem 8.3.9. in [61]. To see this, we have to set X = H 3 (f0), 0 a sufficiently 
smalt neighborhood of 0 in D, u= 0, t = 0, F( u, t) = p( u) whicb yields A = p1• The smooth­
ness of Fin u follows from Lemma 19 in case (A) and from Lemma 20 in 6ase (B). Our evolu­
tion problems are autónomous, hence the assumptions on Hölder continuity of F and its Fréchet 
derivative with respect to u int are trivially satisfied with any a E (0, 1 ). The compatibility con­
dition F(u, t) E Dis clearly valid because in our cases Disdensein X. The crucial assumption 
on the parabolic character ((8.0.3) in [61]) is satisfied due to Lemma 26. 

We will confine ourselves bere to a sketch of the basic approach used for the proof: Any so-
lution of ( 4.16) is a fixed point of the operator r defined by . 

(fr)(t) = et~' 1 ro +fot e(t-•)P1 (p(r(s)) Pl(r(s))) ds: 

Based on a detailed study of the operator 

f ,_.fot e(t-s)A f(s) ds 

in the wei~hted Hölder spaces defined above it is possible to show that f is a contraction on the 
metric space 

y = {u E Bo (t:, c;: ((0, T], D)) n C([O, T], D) I u(O) = ro} 
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if t: and T are chosen smal! enough, and the existence follows from the Banach fixed point theo­
rem. Very loosely speaking, the assertions (ii)-(iv) are proved analogously to the corresponding 
results for ordinary differential equations, based on the analyticity of p. • 



Chapter 5 

Forther results via 
quasilinearization 

The results on the salution of (4.16) obtained in the previous chapter appear to be not quite satis­
factory in a number of respects. The analytica! tools are relatively complicated, uniform estimates 
for llr(t)ll;" are not easily available, and no results on higherspace regularity could be obtained 
although we expect r(t) E C'x'(fo) for all t > 0 due to the parabalie character ofthe evolution 
equations under cortsideration, even if r 0 has fini te smoothness only. 

These drawbacks can be overcome for evolution equations 

{ht = F(u) 

where F is a quasilinear operator. (The restrietion to autonomous problems in this in forma! dis­
cussion is just for simplicity of notation.) In an abstract setting, the quasilinearity of F can be 
described in the following way (cf. e.g. [30, 49]): Let X2 <-----+ X1 <-----+X be three Banach spaces 
withcontinuousanddenseembeddings,X1 cf.X2. F: X2--+ X iscalledquasilineariffthere 
are continuous operators 

A : X1 ___,. C(X2, X) 
G: Xt X 

such that 

F(u) = A(tt)u + G(u). (5. I) 

(Depending on the situation, stronger smoothness assumptions on A and G have to be made in 
many cases. Moreovet:, A and G may be defined only onsome open set in Xt-) The parabalie 
character can be characterized here by the demand that A( u) generales an analytic semigroup on 
X, at least for all u in some open set of X 1 . 

Our approach does notprovide a decomposition of the form (5.1) for the operator p. 1 To take 
advantage of a quasilinear structure in spite of this, we will use a quasilinearization technique, i.e. 
we wiJl replace the original equation by a system of equations for rand spatial derivatives of 1' 

up toa eertaio order. This system is quasilinear, and a priori estimates, solvability, and regularity 

1 Jt has to be mentioned here, however, that for Hele-Shaw flow the very similar approach in [30] actually leadstoa 
quasilinear evolution equation. Th is is due to the quasilinearity ofthe operator r ,_. t>( r ). 

79 
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ofthe solution can be shown in the usual way. This metbod was introduced by Eidel'man ([26], 
III.4). 

In the actual considerations below, the quasilinear system wil! not occu,r explicitly. In order 
to clarify the basic idea as well as an important difficulty that we encounter let us first look in an. 
in forma! way at the following model problem: Cónsider the fully nonlinearlevolution equation 

Ut=f(x,ux:c) onR 

with smooth f : R2 
---> R. Differentiating this equation with respect to the space variabie x 

and writing v = u., we get the equation 

(5.2) 

which is quasilinear (in appropriate function spaces) because Vxx occurs only linear on the right · 
si de. 

Needless to say that the chain rule bas been used to find (5.2). Note, however, that its appli­
cability depends on the special structure of the operator u ,..... /(·, U:cx(·)) while in the case of 
general (nonlocal) operators u ...... F( u) there is no obvious link between ( F( u ))x and u.,. Such 
a link can be established, however, if F is Fréchet-differentiable and satisfies the assumption 

Th oF= FoTh 

where Th is the translation operator on R defined by 

VhER, 

Thu(x) = u(x + h), 

i.e. Fis equivariant with respect to translations. Differentiating the equation 

ThF(u) = F(Thu) 

with respect to h at h = 0 we find 

(F(u)):c F'(u)[ux], 

(5.3) 

(5.4) 

i.e. a "generalized chain rule". This name is justified by the fact that (5.3) is a weakening ofthe 
assumption made forthe usual chain rule, namely that F( u)(x) = f( u(x )), and (5.4) specializes 
to (F(u))",(x) = f'(u(x))ux(x) in thiscase. 

The crucial idea for the application of this approach to the operator p is to use the rotational 
invariance of the fixed time problems for the derivation of an equivariance relation analogous to 
(5.3). Consequently, the corresponding generalized chain rule holds for the differential operators 
generated by "infinitesimal rotations". The estimates that are made possible by the quasilineariza­
tion rely on the fact that these differential operatorscan be used to define equivalent norms on the 
spaces H•(ro). 

Hence, the program to be carried out in this chapter is the following: 

• Proof of a generalized chain rule in an abstract context 

• Application of this to the operator p; note that bere an additional assumption (Assumption 
I) on the geometry of f o has to be made 

• A priori estimates in the normsof H•(r0 ) 

• Exlstence proof based on Galerkin approximations 

• Proof of the smoothing property, based on a bootstrapping argument. 
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5.1 A chain rule for equivariant operators 

As we are concerned here with invariance and equivariance with respect toa group of motions, it 
is natura! to formulate the abstract result in the context ofLie groups and their representations on 
Banach spaces. 

Let G be a finite-dimensional Lie group, g its Lie algebra, a 1 , ... , a a. a basis of Ç and for 
1, ... , d let t ~--+ e-ta, be the one-parameter subgroup of G generated by a;. Let X and Y be 

Banach spaces and let 

U : G---. .C(X) 

V : G ---. .c(Y) 

be strongly continuous representations of G on X and Y, respectively. We denote by D~X) and 
(Yl D; · the generators of the strongly continuous semigroups of operators t ......,. U( e-ta,) and 

t ......,. V( e-ta,) on X and Y, respectively. For the sake of brevity we will suppress the indica­
tion of the spaces X and Y in the notation for the generators. 

For any multiindex a = ( a 1 ... ad) E Nd wedefine lal a1 + ... +ad and 

Note that due to the structure equations of Ç we have 

i, j 1, ... ' d, 

and this implies 

D aDf3 = Da+f3 + ""' C D"~ L...." a/3-y (5.5) 

hl<la+f31 

for arbitrary multiindices a, {3. 
By the Hille-Yosida theorem, the operators Di are closed, hence for all n E N the spaces 

x<nl = n V(Da) 

l<>l$n 

normed by 

llullx<nl = L IIDaullx 
l<>l$n 

are Banach spaces, and Banach spaces y( n l are defined analogously. It is a routine task to check 
that the spaces x<n), y(n) are, up to equivalence of norms, independent of the basis choice in Ç. 
(See [76], Section l.I.) From (5.5) it follows that if lal :S: n, then DCI' maps X(nl continuously 
into x<n-lal), corresponding results hold for the y(n). 

We wil! consider a situation in which X and Y are spaces ofreal-valued functions on a man­
ifold on which the Lie group G is acting as a group of diffeomorphisms. In this case, the spaces 
X(n) and yt n) can beseen as subspaces of X and Y containîng the functîons which are "n times 
differentiable" with respect to the dîfferential operators that constitute Ç. The following lemma 
will make this idea more precise in the case where we wîll need it. We wiJl work with Sobolev 
spaces H' (SN -l) whose norms are defined as described inSection 3.1. 
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Lemma 27 (A characterizationfor H'(SN- 1 )) 

Let the Lie group G = SO(N) be represented by the rotations ofRN around the origin. 
For arbitrary s E R set X = H•(sN-l ), U(g)u = u o g. Then X(n) = H•+n(sN-l) with 
equivalent norms. 

Proof: Let 1i = L 2(sN-l) and notethat U acts on 1l in a natura! way as a uni~aryrepresentation. 
lf we choose the basis in Ç such that (forrnally) · 

then we have ([92] p.l3) 

Set 

<n 

{) 
DK(i,j) = Xj 

L D~tp = AsN-1 tp 
k=1· 

<n 
- ""' 2 A= L....iDk, 

k=1 

(5.6) 

Theorem 1.6.1 in [76] shows that the. operator~ is self-adjoint. On the other hand, the restrietion 
of ÀsN-1 tO the dense subspace C00 (SN - 1 ) ÎS essentially self-adjoint (Cf. theorem 31.1 of [88]). 
Denoting this restrietion by 6.0 we find from (5.6) that 6.0 C ~. This implies ÀsN-1 = ~ with 
equality of the domains, and from Theorem 1.6.1. in [76] we find 

with equivalent norrns. The lemma follows from this by Theorem 3.17 in [29~. • 

Lemma 28 ( Regularity and a chain rule for equivariant operators) 
(i) Let U C X be open, F U --+ Y K times Fréchet-differentiable, n :5 I<. Ij the 

equivariance relation 
V(g)F(u) = F(U(g)u) (5.7) 

holdsforall u EU andall g nearthe unitelement in G, thenthe restrietion ofF toUnX(n) maps 
U n x<nJ K n times Fréchet-differentiable into y(n), andforall a: ENd and u EU n XCI"'!) 
one has the chain rule 

(5.8) 

where only !31 f:: 0 occur and Ca = 1. 
( ii) IJ, in particular, F is analytic near u0 E U, then there is an <: > 0 such that the restrietion 

of F toBu
0

(<:, X) n x<nJ is analyticand bounded into y(n) forall n EN. 

Proof: (i) The proof of (i) will be given by induction over lal. Suppose u E U n x(lJ. By 
assumption, we have for sufficiently smallltl and all i= 1, ... , d 
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The right side is differentiable with respect tot at t 0, hence the same holds for the cxpression 
on the left, therefore F(u) E y(l). Carrying out the differentiation yields 

D;F(u) = F'(u)[D;u], 1, .. 'd. (5.9) 

The expression on the right is af{ - 1 times differentiable function from u n x< 1) into y. hence 
all assertions are proved for lal = 1. In particular, if k :S K 1 and h 1 , ... , hk E xUJ, then 
F(k}( u )[h 1 , .•. , hk] E y(ll, and calculating the k-th-order Fréchet derivative on both sides of 
(5.9) yields 

(Dj F)(kl( u )[ht, ... , h1,] Di ( F(k)( u)[h1, ... , hk]) 
k 

L F(k)(u)[h1, ... , h1-1, Dj hl, hl+t, ... , hk] 
1=1 

+F(k+l)(u)[Dju, h1, ... , hk] (5.10) 

for all h 1, ... , hk E X(l) which is easily proved by induction. 
Suppose the assertions hold for all a 1 with la' I :Sm :S f{ l, consicter a with lal= m+ 1, 

u EU n xCm+l). We can write D"' =Di D"'' and apply the induction assumption toD"'' F(u). 
Due to D 8 u E X(l) for all ,B with 1/31 :S Iu' I we have D"'' F(u) E y(t) and (5.10) may be 
applied. Rearranging the terms according to the order of the Fréchet derivatives and noting that 
the expressions on the right are K - m - 1 times Fréchet-differentiable from U n x<m+l) to 
y(m+l) completes the proof of (5.8). 

(ii) In view of the definition of the space y(n) it is sufficient to show that the mappings 
u,....... D"' F( u) are analytic and boundedfrom Bu 0 (é, xCnl) n toY. The analyticity follows 
immediately from the above remark on the analyticity of the Fréchet derivatives. Thc bounded­
ness ofthe F(k) implies 

IIF(kl(u)ll.ccx•,Y) :S G\ 

and if wedemand llullx<n) :S M, then 

and hence by (5.8) 

To apply Lemma 28 to our operators p, we have to show an equivariance relation (5.7). As 
announced above, this will be basedon the i ovarianee of the fixed time problems under rotations, 
i.e. we wil! choose G. SO( N). Here, however, we encounter the following difficulty: Our 
problem can be put in the framework considered above only if it can be formulated in termsof 
functions on the unit sphere. Hence we have to make the following assumption: 

Assumption 1 The reference dornain !:10 is strictly star-shaped, i.e. there is a constant x 0 E RJV 
and a strictly positive function Ro E C 00 (SN -l) such that 

ro = {Ro(O)e + Xo I() E sN-l }. 

We will assume that x0 0. In this chapter, this can be done withoutlossof generality. 
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In view of the rotational symmetry it is natura! to choose 

e 
((Ç) == 0' 

This obviously meets the demands on ( that have been madeinSection 3.1; 

(5.11) 

Remark: lt is enlightening to consider the meaning of the Assumptions 1 and (5.11) from a 
geometrical point of view: From the proof of lemma 5 we reeall that, in the general situation . 
considered there, there is a small ó > 0 and a C 00-diffeomorphism .P given by (3.5) that maps 
fo x ( -6, 8) onto some neighborhood V of r 0 in RN. We introduce the smooth mapping 

2: V--+ fo 

by 2 = II 1 o .p- 1 , where II1 is the canonical projection of fo x ( -6, 6) onto r 0 . Piek now 
an arbitrary x E V and an arbitrary skew-symmetric matrix Q. For t ranging in a sufficiently 
smallinterval around 0, we have etQ E V. lt is easily seen that the choice (5.11) ensures for 
all possible x, Q, and t that 3( etQ x) depends only on 3(x) but not on the second component of 
.p- 1(x ). Consequently, a (small) rotation off r around 0 generates a(local) flow on fo whichdoes 
notdepend on r. In the general case, this flow and the vector field generatingit are depending on 
r, and so the corresponding chain rule will involve nonlinear differential operators. Therefore we 
will not investigate this general case but accept the geometrical restrietion given by Assumption 
I.D 

The mapping ~ : sN- 1 --+ fo defined by ct>(B) = (Ro(B) is a C00
- diffeomorphism 

between SN -l and f g, hence the direct image map cl>* defined by (cl>* ip )( 9) = ip( cl>( 9)) is an 
homeomorphism from C00 (fo) to C00 (SN-l) and from H"(fo) to H"(SN-t) for all u E R. 
Due to (5.11), we have for any sufficiently small rE H'(fo) 

fr = {9R(9) Ie E sN-
1

} = Î'R, 

where R = ~·r + R0 • Moreover, wedefine differential operators Dj by transferring the Dj to 
fo: 

Dj = ct>•-l Dj~·' j = 1. .. (f). 
Their compositions jyx are defined analogously to na. 

We are ready now to show some important properties of the nonlinear operator p. 

Lemma 29 (Smoothness and a chain rule for p) 
Suppose Assumption 1 and (5.1 I) hold, let n be a positive integer. 

(A) (Stokesjlow) 
Let p be dejined by (3.54), d = l,s > 2 + ~ - ~· Then there is an e; > 0 such that the 

following holds: 
(i) pis analytic and boundedfrom 

Bo(e:, H*1(fo)) n H•+n+d(fo) 

to H 8 +n(fo)forall n EN. 
(ii) pis weakly sequentiallycontinuousfrom Bo(e, H•+d(fo)) n H•+n+d(fo) to H'+"(fo) 

for all integer n ?: 1. 
(iii) Forall n EN, rE Bo(ê, w+&(r0)) n w+n+d(f0 ), and a E N(f) with lal :s; n we 

have 

lal 
Dcxp(r) l: (5.12) 
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with the same constants as in Lemma 28 and Ro = <I>* - 1 R0. 
(B) (Hele~Shaw flow) 

Let p be defined by (3.56), d = 3. Then the same assertions as in (A) hold. 

Proof: On a ball BRo (tJ, H•+á( SN -l)) with sufficiently small 8 > 0 wedefine the operators/i 
and v by 

jj(R) 

v(R) 

= <I>*p(r) 

<I>*v(r) 

<I>* po <I>* -\R- Ro) 

<I>*v o <I>*- 1(R- Ro). 

(5.13) 

These operators are obviously analytic near Ro from H•+d(sN-!) to Hs(sN- 1) and 

( Hs+d-l (SN -l ))N, respectively. Taking the k-th Frechet derivative of (5.13) yields 

(5.14) 

for all h1, ... , hk E Hs+d(SN - 1 ). 
As in Lemma 27, we consider the Lie group G and the same representation U of it on 

H' (SN -l) as introduced there. The restrietion of U to Hs+d(SN -l) is strongly continuous due 
to Lemma 27 and theorem 3.17 in [29]. Consequently, forany fixed RE BR0 (8, J!'+d(sN-l )) 
there is a neighborhood V of the identity in SO( N) (represented as group of orthogonal matrices) 
such that R o Q E BR0 (8, Hs+d(sN- 1 )) for all Q E V. Picking an arbitrary Q E V, we find 
f'RoQ = Q-1[fR] and hence 

v(R o Q) = Q- 1v(R) o Q. 

We write 
rq = <I>*- 1 (R o Q Ro) 

and from the rotational invariance of the Stokes equations, logether with the boundary conditions 
and auxiliary conditions, we have in case (A) 

with u defined by Lemma 17 (ii). Using this and (5.11 ), we get 

jj(RoQ) = 

= 

<I>* l(r ) = <I>*(u(rq)lro) · <I>*v(rq) 
{ Q <!>*(- <l>*v(rq) 

Q- 1<I>*(u(r)lro) o Q · v(R o Q) 
<I>*(·v(RoQ) 

Q- 1<I>*(tt(r)lro) o Q · Q- 1v(R) o Q 
Q-l<t>•( o Q. Q-liJ(R) o Q 

q,~ (u(r!lro · v(r)) 
0 

Q 
t;, · 11(r) 

q,~ p(<I>*- 1(R- R0 )) o Q = p(R) o Q. 

(5.15) 

(5.16) 

The equality between the first and the Jast term of (5.16) holds also in case (B), and the proof is 
analogous; we have to use 
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inslead of (5.15), with u and 'Vr defined by by Lemma 18 (ii) and (3.55), respectively. Setting 
X= H•+d(sN-1), Y = H•(sN-1),U(g)tt = V(g)tt = uog, F ,OandapplyingLemmas 
27 and 28 (ii) we find analyticity and boundedness of p from 

BRo(fJ, H•+d(sN-1 )) n w+d+n(sN-1) 

to H•+n(sN-l ), and (i) follows from this because of p(r) = 4)*- 1 ,0(4)*r + R0 ). 

Lemma 28 (i) yields 

I al 
D"',O(R)) = L 

for all R E BRa(6, fl•+d(fo)) n n•+d+n(r0). This implies (iii) as can beseen by setting 
R = 4)*r + Ro, applying 4)*- 1 on both sides and using (5.14) and 4)*- 1 Di3 = fJtJ4)•-t for 
arbitrary multiindices {3. 

: x 
In the sequel, we will use the notations x n x for norm convergence and x,.. ~ x for weak 

convergence in the (Banach) space X. 
In order to prove (ii), consider an arbitrary sequence 

n•+nH(r ) 
such that r n - o r*. We choose a u E ( 2 + ~ ~, s). Due to the compactness of the 
embedding 

nv+n+dcr) 
this implies rn ........ 0 r* and thus by (i) 

w+"(r) 
p(r,..) ........ 0 p(r*). (5.17) 

On the other hand, {r,..} is bounded in fls+n+d(fo) and thus by (i) {p(r,..)} is bounded in 
H•+"(f0). Consicter now an arbitrary subsequence {p(r,..,)} of {p(r,..)} suc~ that 

( ) 
n•+n(ro) * 

p r,.., ~ p. 

Th is implies, by compactness of the embedding H • +n ( r o) <---+<---> H cr+n ( r o), 

and thus by (5.17) p* = p(r*). Hence we can conclude ([93], Proposition 10.l3 (4)) 

( ) n•+"(ro) ( *) • p rn ~ p r . 

5.2 Existence results 11 

In view of the chain rule which has been proved in the previous section, it wiJl be advantageous 
to work with norms which are generaled by the differential operators Dj. As we are dealing only 
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with the manifold fo in the sequel, the tilde wiJl be omitted. In order to avail ourselves of an 
Hilbert space structure, for fixed o- E R we de fine for n E N Hithert spaces H"·" ( f u) by the 
scalar product 

(u, v)",n = L (Dau, D"'v)H~(ro)· 
l<>l~n 

By Lemma 27, we clearly have H'·"(fo) = (H'(fo))(n) 
norn'ls. Note that 

J[•+n(ro) with equivalence of 

where 

(u,v)O',n = (So,nu,v)o, 

S",n = L (Der)* A2
" Do: 

lal~n 

is an elliptic pseudodifferential operator of order 2( o- + n ). 

(5.18) 

In the following lemma we take advantage of the chain rule: Although our approach has not 
provided a decomposition of p as a quasilinear operator, we obtain one for the operators Da op. 

Lemma 30 (Quasilinearityof Do: op) 
Suppose Assumption I and (5.11) hold, let a be a multiindex with 0 < lal ::;; n. 

(A) (Stokesjlow) 
Let p be given by (3.54), d = 1. Suppose s > 2 + lf - ~· 
(i) We have the decomposition 

for sufficiently smalt r:: > 0, where Ga maps B 0 (r::, J[•+d(fo)) nH•+d+n-l (f 0) analytically into 
H'(fo) and 

r r 2 
IIGa(r)ll. 0 

::;; c.,a(llrll.~l<>l+d-1 + 1). 

(ii) IJ,furthermore, llrll;~d+! < K, thenfor all b > 0 there is a constant such that 

IIGa(r)ll~o::;; óllrll;~l<>l+d + Cs,a,K,b· 

(iii) lfr, w E Bo(€, J[•+d(fo)) n Bo( K, J[•+d+!al-l(fo) ), then there is a constante • . !a!,K 
such that 

(B) (Hele-Shaw flow) 
Let p be given by (3.56), d 3. Then the same assertions as in (A) hold. 

Proof: The chain rule in Lemma 29 (iii) yields 

We reeall from Lemma 6 (i i) that the mappings r >-+ p(kl(r) are analytic from Bo(ê, 1! s+d(f 0 )) 

into .C ( ( H s+d(f 0) )k, H• (f o)), hence Ga maps Ba( r, Hs+d(f o) )nJls+d+n-l (f o) analytically 
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( 

I~ T 
IIG<>(r)ll!'o < c.,a 1+L: L lllf'(r+'Ro)lll.:d''' 

k=2 /3• + ... +J3k =a 

· 11 D"• (H l<o) 11;~,) · (5.19) 

To obtain (i) we estimate 

IID11'(r + 'Ro)ll~:d ::; c.,allr + 'Roll!'~d+l<>l-1, 
where we used that 1.811 ::; lal- 1. On the other hand, we also have 

k 

h =I: 1.ej1::; lo:l-1. 
i=2 

Taking into account that 

s + d + 1.8i I = (s + d + h) I~ I + (s + d) ( 1- I~ I) , 
we find by an interpolation inequality 

IID13'(r + 'Ro)ll~:d < Cs,allr +'Roll!'.f.d+l/3;1 

j = 2, .. . ,k, 

r !!i! r 1-
::; Cs,allr + 'Roll • .f.d+h h I Ir+ 'Rolla.f.d 

and hence from (5.19) 

r ( ro 2 ro k-2) IIGa(r)ll/ < c.,a l+llr+'Roll.+d+lal-1 llr+'Roll.+d 

< c.,a (llrll!'+d+l<>l-1
2 

+ 1) , 
where we have used that 'Ro is a fixed smooth function and llrll!'.f.d < ê. 

To obtain (ii) we note that l.8i I < lo:l for j = 1 ... , k and hence 

8 + d + I.Bi 1 < (8 + d +lal) 1~i + (s + d + ~) ( 1-
1~i) , 

from which we can conclude that there is a u > 0 depending only on a such that 

8 + d + 1.8i I $ (s + d + lo:l- u)~~~~ + (s + d + D ( 1- ~~D . 
Hence, by an interpolation inequality as in the proof of (i), 

IIGa(r)ll!'o ::; c.,a ( 1 + llr + 'Roll!'+d+lal-ullr + 'Roll;+d+! k-l) 
< C,,a,K (llr + 'Roll!'+d+lal-u + 1) 
< c.,a,K (llrll;+d+lal-0' + 1) ::; óllrll;+d+a + Cs,a,K,ó 
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for arbitrary 6 > 0, where in the last step another interpolation inequality has been used. 
Assertion (iii) follows in a straightforward manner from 

Ga(r)- Ga(w) = (p'(r)- p'(w))[D"Ro] 
lal 

+ L L Ce,, .,ih(P(k)(r) p(k!(w))[D8'(w+Ro), ... ,D1h(w+Ro)] 
k=2 B1 + ... +!h=a 
lal k 

+ L L Ce,, ,ekLP(kl[D8'(r+Ro), ... ,DBH(r+Ro), 
k=2iJ,+ ... +e•="' i=I 

D13i(r- w), DBj+l (w + Ro), ... , (w + Ro)] 

and the Lipschitz continuity of the mappings 

89 

The quasilinearity of the Da p enables us to give energy estimates for solutions of (4.16) in 
the usual way. 

Lemma 31 (Local a priori estimate) 
Suppose Assumption 1 and (5.11) hold, s > 2 + 

(A) (Stokesftow) 
Let p be defined by (3.54), d = 1. There is an E: > 0 such that 
(i) for all integer n 2: d we have an estimate 

(p(r),r)s,n $ Cs,n (11rll~.~ 2 

+ 1) 1:./r E 

(ii)forall r, wE Bo(E:, w+~(fo)) n Bo(l\, we have an estimate 

(p(r)- p(w), 1"- w),,d $ 

(B) (Hele-Shaw flow) 
Let p be defined by (3.56), d = 3. Then the same assertions as in (A) hold. 

Remark: In view of the application given later, we emphasize that é can be chosen independently 
ofn. D 
Proof: (i) By Lemma 30, we have 

(p(1·), r),,n = L (Do: p(r), Dar)., 

= (p(r), r)s + L ((p1(1·)[D"'1·], D"'1·) 8 + (Go:(t), D"r)s) 
1 :Sio:I:Sn 

and estimate the terrus on the right hand side separately. Due to the analyticity of p near 0 on 
H•+~(r0 ), we immediately have 
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From the proof of Lemma 26 we reeall (cf. (4.17)) 

(p'(r)[D"'r], D"'r), ::; -c.IID"'rll:~! 
2 
+ C.IID"'rll:~~-t 

2 

and from Lemma 30 (ii) with 8 replaced by s- ~. using that llrll~~!+! < e, 

(G"(r), D"'r). ::; I!Ga(r)II;~~~~D"'rll:~! ::; . (óllrll;:~+lal + Cs,a,6) llrll::!+la] 

for any positive ó. Carrying out the summation over a:, we obtain 

(p(r), r)s,n::; -cllrll;h,n 
2 
+ Csllrll::~+n-! 

2 
+ Cnóllrlf:n+~ 

2 
+ Cs,n,6llrll;:~+n 

and after éhoosing a sufficiently small ó 

(p(r), r),,n < -cllrll;~f,n 
2 
+ C,llrll;~!+n-! 

2 
+ Cs,n,611ril;~~+n 

< -cllrll;:!+n 
2 

+ Csllrll;~f+n-/ + Cs,n· 

In case (A) the assertion is immediate now, in case (B) it follows from the interpolation inequality 

llrll;:f+n- t 
2 

::; 6llrll::f+n 
2 
+ Cs,n,éllrll;o

2 

with sufficiently small ó. 
(ii) We have, using Lemma 30 again, 

(p(r)- p(w), r w)s,d = (p(r)- p( w), r- w)8 

+ L {((p'(r)- p1(w))[D"'w], D"'(r- w)), 
tsla]sn 

+(p'(r)[D"'(r w)], D"'(r- w)) 8 + (G"(r)- Ga(w), D<:r(r- w)) 8 } 

and estimate the terms on the right separately. Using the analyticity of p and p1 near 0 on 
Bo(e, H•+f(ro)) and llwll;:~d < K we get 

(p(r)- p(w),r w), < llp(r)- p(w)ll;~,dlr- wil;+• !l. 
2 2 

< Csllr-wll;~/. 
::; C,llr- wii;: 4 11D"'wll;~4 x 

x IID"'(r- w)ll;~! 

< c.KIIr- wll;:tllr- wll;~id' 

and using the coercivity of p1(r) and Lemma 30 (iii) (with s replaced by 8 i+ ~) 
(p'(r)[D"'(r- w)],D"'(r- w)). ::; -cllr- wll;:i 

2 + Csllr- wi!;~~d-/• 
(Ga(r)- Ga(w), D"'(r- w)). < IIG"(r)- G"(w)ll;~i+!IID"'(r- w)ll;:!-t 

< Cs,KIIr- wll;~!d-! 
2

. 
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Summing up and using an interpolation inequality in case (B), we get 

(p(1')-p(w),1'-w)s,d < r 2 r " -cllr- wlls~%,d + Cs,KIIr- wlls~%d- ~ 

< Cs,KIIr- wll~.~
2

. • 

Remark: In the Stokes flow case (A), the fact that p is a first-order operator has an interesting 
consequence: Using Lemma 30 (i), we can estimate (under the same assumptions as in Lemma 
31) 

(Ga(r), D"'r)s < IIGa(r)ll~oiiD"'rll~o :::; Cs,a (llrll~~lal-~ 
2 
+ 1) llrll~~lal 

< Cs,a (11rll~~lal
3 

+ 1). 
Consequently, we get an estimate 

just by using 

i.e. without using the coercivity ofthe linearization. This indicates the possibility of applying our 
metbod to related nonlinear first-order hyperbalie evaJution problems. In case (B), however, the 
coercivity of the linearization is needed to keep the nonlinearity under con trol. D 

The a priori estimates given in Lemma 31 strongly suggest the application of Galerkin ap­
proximations for the existence proof, proceeding essentially as in the proof of the of the abstract 
TheoremA in [50]. However, due to the local character of all our considerations, the operator p 
is defined and has the necessary properties only for arguments which are smal! in a fixed Hilbert 
space. Hence, we wil! have to control the growth of the Galerkin approximations not only in one 
fixed space but in two different spaces ofthe scale { H" (f 0 )}. The following lemma which gen­
eralizes the idea of diagonalizing the Gram matrix provides a preparation for this. 

Lemma 32 ( Orthogonal basisfora pair of Sobolev spaces) 
Let O'J, 0'2 E R, n1, n2 nonnegative integers such that n2 + 0'2 > n1 + O'J. There is an 

orthonormal basis of H" 1 'n 1 (f0 ), consisting of smoothfunctions, which is an orthoRonaf basis 
for H"2 'n 2 (fo). 

Proof: We reeall the definition of the operators Sa,n as given in (5.18). The unbounded linear 
operatorS on H"' ,n, (f0 ), defined by 

D(S) H2(a2+n,)-a,-n1(fo), 

s s:;,1
,n 1 8"2 ,n2 

is easily seen to be symmetrie on H" 1 ,n 1 (r 0 ) and it is an elliptic pseudodifferential operator of 
order 2( 0'2 + n 2 - 0' 1 - n 1 ). Hence R(S) = H" 1 ,n 1 (fo) and thus (cf. e.g. [88], Satz 17.6(b)) S 
is self-adjoint. By Rellich's theorem, the compactnessof the embedding 
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implies that S has a purely discrete spectrum and thus a complete orthonormal system of eigen­
functions {ei} which is obviously an orthogonal basis of Hq2 ,n 2 (f0 ). The smoothness ofthe ei 
follows from elliptic regularity theory. • 

As in [50], we will use the notations IT for the interval [0, T] and Cw(IT, X), C~(IT, X) 
forthespace of weakly continuous and weakly (continuously) differentiable functions from IT 
into the Banach space X, i.e. gE C!(IT, X) iffthe mappingt ~--> {r,o, g(t)} is in C 1(JT) for all 
r,oEX'. ' 

Proposition 5 (Existence theorem //) 
Suppose Assumption I and (5.11) hold, let s > 2 + lf. 

(A) (Stokesjlow) 
Let p he defined by (3.54 ), d = 1. There are positive constanis é and T depending only ons 

and r 0 such that: 
(i)Foranyintegern :=:: dandanyr0 E B0 (e, H•·d(f0 ))nH•+n(r0 )theinitialvalueproblem 

(4.16) has a salution 

w+"(r) 
withr(t) ..... o r0 ast ..... 0. 

(i i) For any r0 E B0 (e, H'·d(fo)), (4.16) has at most one salution in 

C 1(IT, H•+d(ro)) n L00 (IT, w+!d(ro)). 

(B) (Hele·Shaw flow) 
Let p be given by (3.56), d = 3. Then the same assertions hold. 

Proof: (i) The proof of (i) can be given as a modification ofthe proof oftheorem A in [50]. The 
correspondence with the notation that is used there is as follows: 

A(·,t) = 
{V,H,X} 

{u, v} = 

-p, 

{ H•+n+d(r o ), H' ,n(r o ), H•+n-d(r o)} 

(s ;t'+'tî S ;t+:î v) s,n u, s 1n • 
0 

Hence (u, v) = (u, v)s,n for all u, v E H'•n(ro), i.e. the triplet {V, H, X} is admissible. To 
avoid ambiguity, we will keep the notation as it has been used previously. · 

By Lemmas 31 and 29 (ii) we can choose e small enough to eosure that 

(p(r), r)s,d < c; (I + llrll;.~ 
2

) , (5.20) 

(p(r), r)s,n :S Cs,n (1 + llrll;,~ 2), (5.21) 

(p(r) p(w), r- w)s,d $ c •. llrll~!~«'llwll~!~dllr 
wllro2 s,d (5.22) 

for all r, w E Bo(2e:, Ha,d(f0 )) n Hs+n(ro) and p is weakly sequentially continuous on 
Bo(2t, H 8 •a(fo)) n Hs+n(ro) into H•+n-d(fo). 

By Lemma 32 there is an orthonorrnal basis of H8 •d(fo) which is also an orthogönal basis 
{ ej} of H•·n(r0 ). Let Pj be theorthogonal projection in H•·d(fo) onto M; :;::: span{ f 1, ... , ei}. 
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Clearly the restrietion of Pj to H'·n(ro) is the orthogonal projection onto Mi in Hs·"(f 0 ). For 
all positive j E N we define the Galerkin approximations ri as usual by 

or· a: =Pi Ph), rj(O) = Pjro. (5.23) 

We have to prove now that there is aT > 0 independent of n and a constant !{ such that 

llrj(t)ll~.~ < 2E 

llri(t)ll~.~ < !{ 

'it E IT 'ij EN, 

'it E IT 'ij EN, 

(5.24) 

(5.25) 

the assertion (i) will follow then by the arguments given in [50]. Consider the unique solution m 
of the initia! value problem 

8a7 = 2C;(l + m), m(O) = E2
, 

where c; is the constant from (5.20) and choose T to be the (uniquely defined) positive number 
for which m(T) = 4E2. At first we will show (5.24). Suppose the opposite: This would imply 
that forsome j there is aT* E (0, T) such that 

llr(T*)II~.~ = 2E, llr(t)ll~.~ < 2E 'it E [0, T). 

On IT* we get from (5.20) the differential inequality 

~ (1h(t)11~.~2 ):::; c; (1 + llri(t)11~.~ 2 ) 
and integrating it and using the strict monotonicity of m we find 

lh(T')II~.~2:::; m(T*) < 4f2 

in contradiction to the definition of T*. Hence (5.24) holds, and on the basis of this (5.25) can be 
proved analogously to (5.24), using (5.21) insteadof (5.20). 

(i i) Suppose r 1, r 2 E C 1 (IT, Hs+d(r 0 )) n L00 (IT, H•+ ~d(fo)) are two solutions of (4.16). 

From (5.20) one concludes I h (t)ll:.~, llr2(t)ll:.~ < 2E for all t E IT with a certain T > 0 in the 

same way as (5.24) was proved above. Thus, (5.22) together with r 1, r 2 E L00 (IT, H'+ ~d (f 0 )) 

yield 

:t (11r1(t) -1'2(t)11:.~ 2 ) :::; Cr 1 ,r 2 ,slh(t)- r2(t)11:.~ 2 

for almost all t E IT, and from the Gronwall inequality follows r(t) = v(t) for all t E IT. • 
Remarks: 

I. We want to emphasize that the initia! value 1·0 is not assumed to be small in H' ·" (r 0 ) and 
that no smoothness is lost on the whole existence interval IT. Such results are not easily 
obtained by the methods for fully nonlinear equations that have been used inSection 4.3. 

2. Taking into account that C,~ (IT, H s (r 0 )) C C 1 (IT, H" (r 0 )) for s > (]' due to the com­
pactnessof the embedding H 3 (fo) ~<.......;. H"(fo) and Cw(IT, X) C L00 (IT, X) for 
any Banach space X due to the Uniform Boundedness principle we find uniqueness for the 
solution of (4.16) obtained in the proof of (i) if r0 E Hs+~d(fo ). 

3. If the initia! values are supposed to be bounded in a slightly higher Sobolev norm, then, for 
fixed t E IT, Lipschitz-continuous dependenee of r(t) on the initia! value r 0 in a lower 
norm can be shown in a similar way as in the proof of (ii). o 
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5.3 Smoothness of the boundary 

The quasilinear structure of the evolution problem ( 4.16) and its parabolic character enable us to 
give a proof for the smoothing property of the surface motion laws we consider. The basis for this 
is the following abstract result: ' 

Proposition 6 (Spatial smoothnessfor nonautonomous linear paraho/ie evolution equations) 
Let D and X be Banach spaces, let D be densely and continuously eti'tbedded in X. For 

to, t1 ER, to < t1, consider mappings 

A: 

f: 

C(D,X), 

x 
which are Hölder-continuouswith exponent ï E (0, 1). Assume thatforall tE [t0 , tt] the norm 

11 ·IIA(t) defined by 
llxiiA(t) = IIA(t)xllx + llxllx VxE D 

is an equivalent norm on D, and A(t) generafes an analytic semigroup on X. 
Then, for any u 0 E X, the initia! value problem 

du 

dt 

u(to) 

A(t)u + f(t) } 

UQ 

has a unique salution u E C'l' ([to, t1], X) whichfor any 8 E (to, t1) satisfies 

Proof: The proposition is an easy consequence ofTheorem 6.1.4. in [61]. • 
Remark: Proposition 6 is by no means an optima! result. For our purposes, however, it will be 
suftleient D 

Using the chain rule and a bootstrapping argument, we can conclude from this that for positive 
times the solution of our initia! value problems are C00 -smooth: 

Proposition 7 (Smoothingproperty ofthe evolution) 
Suppose Assumption 1 and (5.11) hold, let s > 3 + !f. 

(A) (Stokesjlow) 
Let p be defined by (3.54), d = 1. There are positive numbers ê and T, such that for any 

salution of ( 4.16) which satisfies 

and 
(5.26) 

we have 

foranyé > 0. 
(B) (Hele·Shaw JWw) 

Let p he given by (3.56), d = 3. Then the same assertion holds. 
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Remarks: The assertion is to be understood in thesen se that the time derivative of 1', taken in the 
fixed spaee H•+d(f0), maps [ó, T] eontinuously into eoo(r0). 

From Proposition 5 and the remark afterit it is clear that assumption (5.26) is satisfied if a 
slightly higher smoothness for r0 is demanded. D 

Proof: By the assumptions tagether with Lemmas 26 and 29, we ean choose e: and T sueh that 
the following properties hold: 

'rit IT, 

the mappings 

p: Bo(2ê, H'+d- 1(fo))---+ w- 1(fo), 

p: Bo(2ê, w+d(fo)) n Hs+d+n(fo)--+ Hs+n(fo) 

are analyticfor all n E N, and for allr E B0 (2e, 1(f 0 ) )nB0 (2ê, H•+d(r 0 )) we have that 
p'(r) generales analytie semigroups both on H'- 1(f0 ) and on H'(f0 ). Moreover, for 
j = 0, 1, V(p' (r)) = Hs+d-,i (r 0 ) if p'(r) is eonsidered as unbounded operator on Hs-j (fo) 
with equîvalenee of the graph normand the original norm on (1'0 ). 

We arbitrarily ehoose 1 E (0, 1) and a strictly inereasing sequenee { Ók} C (0, ó). Due to the 
Sobolev embedding theorems and Lemma 27, we have 

00 00 

e=(ro) = n ek(fo) n W·k(fo) 
k=O k=O 

with equivalent topologies, where the interseetions are endowed with the projeelive limit topolo­
gies. Henee it is suftleient to show 

V,B: IPI::; k (5.27) 

for all k E N. This will be done induetively. Por k 0, (5.27) is ensured by (5.26). Suppose 
now (5.27) holds for k :::: n. This implies 

We piek an arbitrary a with Jal = n + 1 and set u 
u E e1 ([5n, Tj, w- 1(I'o)) satisfies 

D 0 r. By Lemma 30 we get that 

where, by our assumptions, 

du 
dt A(t)u + f(t) } , 

D"'r(5n) 

A(t) p'(r(t)) Ee-r ([6n, T].C (W+d- 1(I'o), w- 1(I'o))) 

n e-r ([6n, T], C (w+d(I'o), W(I'o))) 

f(t) = Ga(r(t)) Ee-r ([5n, T], IJ'(fo)). 

(5.28) 

Applying Proposition 6 with to = 6n, t1 T, X = H'-1(I'o), D = 1(I'o) to (5.28) 

yields Dar ( bn+~ntt) E H•(I'o). Henee, applying now Proposition 6 with to = 
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t1 = T, X = H'(f0 ), D = H•+d(fo) to 

du 

dt 

yields 

A(t)u + f(t) } 

D"'r ( 6n+~n±l) 

D"'r E C1 ([8n+l• T], W(fo)) n C"~ ([8n+b T], w+d(fo)) 

which completes the induction proof. • 



Chapter 6 

Extensions and remarks 

6.1 Near equilibrium 

We reeall from Lemmas 14 and 15 that both for Stokes flow and for Hele-Shaw flow the stationary 
solutions are given by balls of lîquid at rest. These equilibrium states are, moreover, expected to 
bestabie and to occur as limitstatesof the evolution. This has a physical reason: they correspond 
to the global minimum of the free energy. The aim of this sectionis to gîve a strîct verification of 
these expectations. 

More precisely, we will show that if (in an appropriate sense) 0(0) is near a ball, then the 
solutions of our FBPs exist for all positive times and decay exponentially fast to the corresponding 
equilibrium state. Results of this type have been obtained previously for Hele-Shaw flow with 
N 2 in [20]. The approach via complex function theory and spaces of analytic functions which 
is used in that paper is comparable to the one in Chapter 2 of this thesis. 

The key idea in ourdiscussion is to split the space Hs (fa) into eigenspaces ofthe operator p 1 

that correspond to its negative and nonnegative eigenvalues, respectively. Working with a semi­
norm adapted to this decomposition and taking advantage of the fact that we linearize around a 
stationary point wil! lead to estimates in which no lower order terrus occur. On the other hand, 
the a priori valid conservalion of volume and of the center of gravity will be used to keep control 
over the full norm in H 8 (f0 ). 

We reeall the definition of WN from (3.29). Lemma 14 and 15 yield that the quantities 
V V(t) and M = M(t) as defined by (3.38) are constant in time for any solution of the Stokes 
flow or the Hele-Shaw flow FBP. By appropriate shifting and sealing we can assume without loss 
of generality V= 7f and M 0, i.e. the volume and the center of gravity ofO(t) are the same 
as for the unit hall. To consîdcr small perturbations of the unit ball, it is natura! to set 

fo=sN- 1, (=n, (6.1) 

i.e. we have 1 = 1, Assumptîon I holds with Ro = 1, and, with the notalions of Section 5.1, we 
have that IJ> and IJ>* are the identity, and R.0 = 0. Therefore, taking the Fréchet derivatîve with 
respect to 1' at r = 0 on both sides of (5.12) yields the exact commutation relation 

(6.2) 

In the special situation given by (6.1 ), p1 has a simpler structure than in the general case: 

97 
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Lemma 33 ( Linearization around the equilibrium) 
Suppose (6.1) holds. 

(A) (Stokesftow) 
Letpand S be dejined by (3.54) and (3.31 ), (3.32), respectively. Then 

Pl r = n · S((.:lr0 + (N- 1)I)r n). 

(B) (Hele-Shaw flow) 
Letpand S be defined by (3.56) and (3.37). respectively. Then 

Plr = S((.:lr0 + (N- 1)I)r. 

Proof: (A) lt is easy to see that adding a fixed multiple of the nonnal vector to the right hand 
side of the boundary condition in the fixed-time problem will only change tlte pressure but not 
the velocity field. Hence we have, using the same notation as in Section 4.1, ' 

u(r) 

(6.3) 

From n(O) ;; -(N- 1), 1 ;; 1, and u(O) ;; 0 we find by calculating the Fréchet derivative of 
~~ ! 

p1r = n · S(~e1rn). 

It remains to calculate ~e 1 . We proceed as in· the proof of Lemma 21 (i i) and ~enote by D F the 
derivative of a quantity F with respect to rat r = 0. Due ton Ç = ( we firid 

DG[hJ = 2G(O)h, 
D(G-1)[h] = -2G(o)- 1h. 

Moreover, we will use the facts that ~e(O) is constant, Dv[h] is a vector field tangential to f 0 for 
all h and, as before, 

D( v'ü)[h] -~~:(O)v'Y(O)h. 
Working with an arbitrary local parametrization, we obtain 

D~~:[h] .= ( 1) a ( r::iï\\ .. 8n) D - [h]- v g(O)g'3(0)- · n 
v'ü 8w; 8wi 

1 8(· .. 8n) +---- D(v'ü) [h]g'J(O).- · n JY(ö) 8w; 8w1 

1 8 ( r:::1i\\ . .. 8n ) +---- yg(O)Dg'1 [h]- ·n 
Jg(ö) 8w; 8wi 

+---- yg(O)g'1(0)- ·n+.lr0 n·Dv[h]. 1 8 ( r:::1i\\ . . 8hn) 
Jg(ö) 8w; 8wi 
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. . ..( . 8h 8n 
Hence, wntmg Vr0 (h, n) = g'1 0)-

8 
and using that this is a vector field tangetitial to 1'0 , 

Wj 

(B) Using analogous arguments, the assertion follows straightforwardly from the calculation 
of ~~: 1 and the fact that u(O) = 0. • 

Let {Yk 1 1 l EN, 1 ~ k ~ K(l, N)} be an L2-orthonormal basis ofthe spherical harmonies 
such that Ykl is an eigenfunction of .1.r0 belonging to the eigenvalue -l(l + N 2). Using the 
expansion coefficients 

we will work with the scalar product 

x 

(u, v)s = u1 oVI o + UkJVkl + L(l(l + N- 2)- (N- l))'ukiVki 
1=2 

for all s E R. These scalar produels are obviously equivalent to the usual ones. Note that 
K(O, N) 1, K(l, N) = N, Y1 0 is constant, and 

span{Ykll k = 1 ... N} span{x1 ... , XN }. 

Both for Stokes flow and for Hele-Shaw flow, the linearizations p1 vanish on the subspace 
{Yk1ll ~ 1}. This follows from .1.r0 Ykl l)Ykl and the facts that the operatorS 
defined by (3.31), (3.32) maps the normal vector field to 0 while the operatorS defined by (3.37) 
vanishes on constants. Hence, it is natura! to introduce the projection operator P by 

which is orthogonal in all spaces H s (I' 0 ) and commutes with p1 . 

Using spherical coordinates, one straightforwardly obtains 

V(r) 

M(r) 

for the volume and the center of gravity of the domain Dr, respectively. On Hs (1'0 ), s > 
wedefine the analytic function 

F: H'(l'o) 
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by 

and the submanifold 
M, ={rE W(fo) IF(r) = 0}. 

Lemma 34 (Norms andseminorms on H'(fo) and M,) 
Let 8 > N 21 

. There are positive constants C and t: depending only on 8 such that 

llrll:o < C(IIPrll:o + IIF(r)IIRxRN) 'Vr E Bo(t:, H'(ro)), (6.4) 

llrll:o < (1 + CIIPrii:0 )IIPrll;o 'Vr E Bo(t:, W(fo)) n M.. (6.5) 

Proof: Consider the mapping 

cl>: H'(fo)----+ P[H'(fo)] x (R x RN) 

defined by 

Note that ci>(O) = 0, 

ci>'(O)[h] = [ [ Ir~:dr ] ·]· 
fro hndf 

ci>'(O) is a bijeetion from n• (fo) onto P[H 8 (fo)] x (R x RN), hence (6.4) follows as a conse­
quence of the Local Diffeomorphism theorem applied to cl> in the neighborhood of 0. 

Furthermore, we define the function 

F : P[H'(fo)] x (I- P)[W(fo)] ----+ R x RN 

by 
F(r1, r2) = F(r1 + r2). 

Por the Fréchet derivatives D 1 F and D2F of F at (0, 0) with respect to the first and second ar­
gument, respectively, we find the formally identical expressions 

- [ Ir h df ] 
D;F(O, 0) = froohn df (i= 1, 2). 

Note that D 1F(O, 0) is the zero operator while D 2 F(O, 0) is invertible. Due to the orthogonality 
ofP we have 

with r = (I- P)r. If we assume rEM,, r satisfies the equation 

F(Pr, r) = F(r) = 0. 

By the Implicit Function theorem, this implies that r can be interpreted as a function of Pr and 
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if IIPrll;" is sufficiently small. Assertion (6.5) follows easily from this. • 
On H 8 (r 0 ) we introduce the degenerate bilinear forms 

and, for any n E N, 

[u, (Pu, Pv)s 

[u,v]s,n = L [D 0 u,D"'v] 5 . 

jaj~n 

Moreover, wedefine corresponding seminorms l·ls,n by 

= [u, u]s,n· 

Using these notations, the necessary estimates for the linearization can be given: 

Lemma 35 (Coercivity estimatefor -p1 near equilibrium) 
Suppose (6.1) holds. 

(A) (Stokesflow) 
Let p be defined by (3.54). There is a constant c > 0 such that 

(B) (Hele-Shaw flow) 
Let p be defined by (3.56). There is a constant c > 0 such that 

Proof: (A) We introduce the notation 

[ u~:.] = L(o)- 1 

0 
0 

(~r0 r + (N- l)r)n 
0 
0 

which implies p1 1· = u· · n and ( cf. the proof of Lemma I!) 

JO] 

where we used that ~r0 Xj = -(N- l)xj and that the vector fields v2 ,k descrihing rigid body 
rotations around the origin are tangential to the unit sphere. Taking into account that 
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we find 

On the other hand, 

with 

00 

- 2:L)l(l + 1)- (N -1))(ptr)ktrkl 
1=2 k 
00 

1=0 k 
00 

= -2: 2:(Pt r)kt( -~r0r- (N- 1)r)kl 

it'kl = 

1=0 k 

{ Ptr(~r0 1'+(N-1)r)df 
lro 

{ u*(~ror + (N- 1)r) df =a( u*, u*) 2:: cilu*ll?o
2

. 
lro 

lrli = (~ror + (N- 1)r, ~P)o 
2 

00 

2:2: it'klykl, 
1=0 k 

{ 
(l(l + N- 2) -

0
(N- 1))-hkl (/;?: 2) 

(/ < 2). 

, r 
Note that ip E H>(fo), II~PII~o = lri~-

Considering the Neumann problem ( 4.11) with this lP and taking into account that ïp = 0 due 
to 1p1 0 = 0 we can show 

I 

lrl~ :SC (llu*ll?o + IIÀ*IIRNxRC~J) II~PII~o :S Cllu*ll?ol~l~ 
in the same way as in (4.12). This implies the assertion. 

(B) The basis {Ykt} of the sphericäl harmonies is a complete system of eigenfunctions also 
for the operatorS defined by (3.37); the corresponding eigenvalue is l. Henc~ we can prove the 
assumption by straightforward calculation with 

. f I c= m ,. • 
1~2 (l(l + N- 2)-:- (N- 1))> 

Basedon this estimate for the linearization, the following new a priori estimate can be given: 

Lemma 36 (A priori estimate near equilibrium) 
· Suppose (6.1) holds. 

(A) (Stokesjlow) 
Let p be given by (3.54). For any integer n > ~ + 1 there are positive numbers c", Cn, and 

én such that 
[p(r), r]t,n :S -cnlriÎ,n + CniiF(r)IIRxRN 

forall rE Bo (én, Hn+1(fo)) n H"+2(f0 ). 

(6.6) 
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(B) (Hele-Shaw flow) 
Let p be given by (3.56). For any s > 2 + lf there are positive numbers c5 , C,, and Es such 

that 

[p(1·), 7']s,3::; -c, 11·1;,3 + C.iiF(r)llkxRN 

for all r E Ba (Es, J!B+3 (fo)) n fl8+ 6 (fo). 

(6.7) 

Proof: (A) Calculating the Fréchet derivatives of Da pat 1· = 0 using (5.12) and 'Ro 1 yields 

(6.8) 

where, in contrast to the original chain rule, also multiindices ,Bj = 0 are allowed. Together with 
the estîmates for the Pk, this yields 

Using this, logether with (6.2) and p(O) = 0 we obtain 

00 

[Dap(r), D"'rh [D"p1r,Darh + L:[D"pk(r, . .. ,r),D"rh 
k=2 
00 

a 2 ~ k I'o k-l I'o 2 
< -ciD PI~+ Ca L.t Af llrlln+l llrlln+~ · 

k=2 

Carrying out the summation over all a with lal ::; n we find from (6.4) and the fact that Pand 
D" commute 

and the assertion follows by choosing En sufficiently smal I. 
(B) The assertien can be shown in an essentially analogous way, using the estimate 

[u, v], S C,llull;~~ llvll;~~ 

and (6.8) for all a with lal > 0. • 
Using this a priori estimate, we can show now the following result which gives a justifîcation 

for the expectations from physical reasonings that were mentioned above. By R+ we denote the 
infinite time interval [0, +oo ). 

Proposition 8 (Global existence of solutions and exponential stability near equilibrium) 
Suppose (6.1) holds. 

(A) (Stokesflow) 
Let p be given by (3.54), n > lf + 2. There are positive constantsEn and en such thatfor 

any 
1'o E Mn+l n Bo(é;n, H 1,n(r0)) 

the initial value problem ( 4.16) has a salution 
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for which an estimate 

holds for all sufficiently large t. 
(B) (Hele-Shawftow) 

(6.9) 

Let p be given by (3.56), s > lf + 2. Th ere are positive constants e. and c, such that for any 

roE Ms+3 () Bo(e,, H"·3 (ro)) 

the initia[ value problem (4.16) has a salution 

rE Cw(R+, w+3(ro)) () C~(R+, H"(ro)) 

for which an estimate 

holds for all sufficiently large t. 

Proof: (A) By Proposition 5 (i) we find that for sufficiently small en there is a solution 

rE Cw(IT, Hn+l(ro)) n C~(IT, Hn(ro)) 

(6.10) 

of (4.16) forsmalt T. From the conservation of volume and center of gravity we conclude 
r(t) E Mn+l for all tE IT. According to the proof ofProposition5 (i), r~t) is given by 

\:ft E fT, 

where w-lim denotes the weak limit in nn+ 1 (r 0 ), the rj E C 1 ( IT, H •+2 (r 0 )) are th~ solutions 
' H+l( 

ofthe Galerkin equations (5.23), and the convergence is uniform int. Hence rj(t) H 
2
-> ro) r(t) 

uniformly int and thus 

IIF(rj(t))IIRxRN-> 0 uniformlyin tE IT (6.11) 

because, as remarked above, r(t) E M•+l· We choose the finite-dimensio'nal subspaces Mj in 
such a way that P and Pj commute for all j. Thus we have for all t E IT 

= (PPjp(ri(t)), P1'j(t)h,n = (Pp(ri(t)), PPiri(t)h,n 

= [p(rj(t)),rj(t)h,n:::; -clrJ(t)IÎ,n + CIIF(rj(t))ll~xiRN 
because of (6.6), if en is chosen sufficiently smalt. Hence 

lrj(t)IÎ,n:::; e-ctlroiÎ,n + C 1t ec(r-t)IIF(rj(r))ll~xRN dr, 

and thus, using (6.11), 

lr(t)IÎ n = IIPr(t)IIÎ,"n = IIPj:~rj(t)[: = IIJ:~Prj(t)ICn 
< II'Prj(t)IIÎ~t = lim lrJ(t)II,n:::; e-ctlrokn· 

J-00 
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Finally, r(t) E lvh,n n B0 (2en, H 1•n(ro)) implies for smal! En by (6.4) 

llr(T)IIÎ.~ < (1 + Clr(T)h,n)ir(T)h,n:::; (1 + CllroiiÎ.~)e-cTIIroiiÎ,'~ 
< e-FIIrolli.~:::; e. (6.12) 

Therefore we can continue the solution to [T, 2T] and by induction to [mT, ( m + 1 )T) for all 
mEN. The estimate (6.9) can be shown for all t >Tin the same way as fort= Tin (6.12). 

(B) The assertion can be proved analogously, using the norm 11·11;~ and the a priori estimate 
(6.7).. ' 

6.2 Point sourees as additional driving force 

In this section, we will briefty describe the necessary generalizations that occur if, additionally 
to the surface lension force, the flow is driven by a point souree or sink of prescribed strength 
in the interlor of the liquid domain. We will give the explicit calculations only for the case of 
Stokes flow and one point source; the generalization to more than one souree and the parallel 
treatment of Hele-Shaw flow are straightforward. As far as short-time existence is concerned, 
the results remain essentially unchanged. (Of course, in order to generalize the considerations 
involving rotational symmetry of the equations we cannot have more than one point source, and 
we have to assume star-shapedness with respect to the souree point.) This is due tothefact that the 
inclusion of a point souree in the interlor of the liquid domain preserves the analytic dependenee 
of all occurring functions and operators on r, contributes only a lower-order term to the modified 
fixed time problem (6.13) below, and does not essentially change the structure of the evolution 
equation for r. 

It is clear that one cannot expect a generalization of the global existence result near equilib­
rium in such an easy way. 

The fixed-time problem 

Let us adopt the notation of Section 3.2 and assume without toss of generality 0 Q 0 • If we 
include a souree or sinkof strength Qat 0, the governing equations of the flow, described by its 
velocity field u and pressure field p, become 

-~u+ '\lp 
divu 

T(u, p)n 

~b } in D0 

lW onro, 

where b denotes the Dirac distribution in 0. 
We split the velocity field u in a singular and a regular part by setting 

u u+us, 

tts (x) (x ;i 0). 

Note that, in the sense of distributions, 

divus Qb, 

~us Q'\lb. 
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Thus, setting p = p - QD we obtain the modified fixed time problem 

-~u+ \lp 
divu 

T(u,p)n 

=O}·n .} = 0 m o • 
"n- T(us, O)n , 
~~:n 2Q ( Dij - N XiXj ) . . on ro. 

WN lxiN !xiN+2 nJe, 

where Dij is the Kronecker symbol and e; denotes the i-th unit vector. 

(6.13) 

In order to establish the existence of solutions of (6.13) one has to show (additionally to the 
considerations inSection 3.2) that 

r T(us, O)n. V dr = 0 
lro 

for arbitrary v E Vo. This can be done by applying the first Stokes-Green formula (Lemma 9) on 
the domain n., = 110 \B0 (e:, RN) with s small enough to ensure :Bo(2s, RN) 1c 110 , u= u., and 
p = 0. · Using that 

in n., one finds 

{ T(u5 ,0)n·vdf = 
lro 

av· av. 
-· +-J = 0, 
OXj 8x; 

~us 0, 
divus 0 

j T(us,O)n·vdf 

&Bo(e,JR.N) 

2Q J 
WN 

&Bo(e,JR.N) 

2Q l- N J x· vdf = 0. 
WN gN+l 

&Bo(e,IRN) 

Perturbations, evolution equation, and linearization 

We adopt the notation of Section 3.4. Starting from (6.13) and carrying out the perturbations we 
find, insteadof (3.50), 

[ 
u(r) l Î(r) · p(r) 
.:\(r) 
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To establish the assertions of Lemma 17 in this more general situation, it is suftleient to remark 
that the mappings x>-+ !x!n are analytic near x0 for all x0 f:. 0 and all integer n. 

The evaJution equatîon for 1' reads now 

8r p(r) (u(1·) + us(e + r()). v(1·) 
( · v(r) 

( tt(r) + __2_ Ç + r( ) · _:1:1_ 
WN Ie+ rÇ!N (. v(l·) 

and the assertions of Lemma 19 can be proved as above. 
Linearization of pas given in (6.14) yields, in the notation of Section 4.1, 

p1(r) (-
1 

((u(O)+ w~ IÇ~N) ·n)(+ ~ (u(O)+ w~IÇ1N )) ·llJ(r) 

+~n· (ut(r)+ wN CeiN -N 1e~~i2 e) ~·), 

.,(,) t-: n,i(W' ( [ •}l j L, (') [ ;~i l) , 

(6.14) 

The terrns in p1 that contain Q represent a differentia1 operator ("with smooth coeflicients") and 
the same is true for the terrns in </> 1. Hence, also for p given by (6.14) we get a decomposition like 
(4.3) and find identica1 results on coercivity and generation of analytic semigroups. 

Results 

In this way, we arrive at the following result: 

Proposition 9 (Existence results for Stokes flow with a point souree I) 
Let p be given by (6.14). Then the same assertions as in Proposition 4 (A) hold. 

To generalize the results of Chapter 5, we have to demand the validity of Assumption I again. 
In our new context, however, after choosing the souree point to be 0, the choice x 0 = 0 is no 
Jonger without loss of generality. As announced above, this means that we have to dcnmnd now 
strict star-shapedness of the liquid domain with respect to the souree point. Taking into account 
that us is an invariant vector field with respect to rotations around the origin, the equivariance 
property (5.16) can be shown also for p given by (6.14). 

This implies the following result: 

Proposition 10 ( Existence results for Stokes flow with a point souree !I) 
Let p be given by (6.14), suppose Assumption 1 with xo = 0 and (5.11) hold. Then the sa me 

assertions as in Propositions 5 (A) and 7 (A) hold. 
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Remark: If we consider a time-dependent souree strength Q = Q(t), the operator p wiJl de­
pend explicitly on t, i.e. the evolution problem is notJonger autonomous. Even in this case, if Q 
depends continuouslydifferentiable on t, the results on existence, uniquenes~. and spatial smooth­
ness of the solution are still val id. lt is clear, ho wever, .that the solution r will only he "as smooth 
as Q" as a function of t. D 

6.3 Forther remarks 

6.3.1 Other geometries 

The approaches which are chosen in this thesis are not essentially restricted to the geometry of a 
bounded, simply-connected domain. The results of Chapters 3 and 4 are valid, for example, also 
for multiply-connected domains with smooth compact boundary. The assumption of bounded­
ness, however, is essential because analytic difficulties occur if f 0 is not compact: Lemma 5 is 
not valid in this case, and the embeddings in the scale H'(fo) are not compact. Qualitatively, 
one expects that holes in the liquid domain shrink and eventually vanish ini finite time (cf. [18] 
for plane Stokes flow). Of course, the actual closing of a hole cannot he described by our meth­
ods. Fora gerieralization ofthe approach in Chapter 2 to multiply-connected domains see [5] and 
also [7], where Dirichlet boundary conditions on one connected component ofthe boundary are 
considered. 

Other geometrie settings that are considered both for theoretica! and for practical purposes 
are (infinite) liquid layers above a fixed bottorn and domains given by 

(6.15) 

Such geometries have been treated, for example, in [23] and [69]. lt is expected that, by imposing 
suitable asymptotic conditions at infinity and boundary conditions at the fixed bottom, an analo­
gous treatment of our moving boundary problems can he carried out if periodicity assumptions are 
made, i.e. ifwe can reformulate the problem on the compact manifold rN-11 (or a topologically 
equivalent one) rather than on the noncompact manifold RN- 1

. In this geometry, it is natura! to 
use for the quasilinearization the invariance of the governing equations with respect to transla­
ti ons, and the assumption of strict star-shapedness has to he replaced by the demand that alllines 
XN = const have precisely one point in common with the free boundary. (IH"l is given by (6.15), 
this assumption is obviously satisfied.) 

6.3.2 Numerical aspects of the Stokes flow FBP 

Three different approaches for the numerical treatment of the Stokes flow FEW are listed in Table 
6.1, together with their analytic background and some references to the literature. (We do not 
attempt to give an exhaustive literature review, more references can be found e.g. in [91].) The 
so-called level set metbod [79] which has been successfully applied to e.g. mean curvature flow 
does not seem to he promising due to the nonlocal character of the surface motion law considered 
here. 

The aim of this subsection is to make some remarks on the three methods mentioned above 
that at the same time illustrate the interplay between analysis and numerical mathematics. 

The method based on conformal mappings can briefly he described in the following way: 
An ansatz with a fini te number of free parameters is chosen for the conform!il mapping, e.g. one 
assumes that z( ·, t) is a polynomial of fixed degree or a rational function of prescribed form in 
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Analytic approach Numerical methad References 

Evolution equation Solving ODEs [8, 9] 
fora con forma! map for coefficients 

Weak formulation of the FEM [41, 48] 
fixcd-time problem + time inlegration 

Hydrodynamic potentials BEM [53, 91] 
for the fixed-time problem +time inlegration 

Table 6.1: Numerical methods for Stokes flow driven by surface ten si on 

the first argument. The evolution equation (in explicit or impheit form) is used to derive a system 
of ordinary differentlal equations forthefree parameters which can be solved numerically. This 
method is advantageous ifthe initia! shapes Q(O) can bedescribed exactly by a conformal map 
of the type used in the ansatz. Otherwise, the necessary approximation procedure for the initia! 
domain will demand a considerable computational effort; moreover, the stability properties of the 
method with respect to the approximation error are in general unclear. 

It is beyond our aims to give a complete discussion of all advantages and disadvantages of 
FEM versus BEM in the case of the simulation of Stokes flow. For this, we refer to the cited 
literature. We only remark that the use of the boundary element methad is natura! in the sense 
that only the velocity field at the boundary is computed. This is sufficient for the determination 
of its motion. 

In [91], Ch. 5.1., the behavîor of a semi-discretized problem (Eqn. (5.1) there) is investigated 
by means of an eigenvalue analysis of its linearization. The result obtained there is that, in gen­
era!, the system of ordinary differentlal equations descrihing the motion of material points on the 
boundary is stiff. From an analytic point of view, this can be straightforwardly explained by the 
fact that solving the discretized integral equations that arise in the numerical treatment of the fixcd­
time problem is actually an approximate computation of a pseudodifferentlal operator of order 1. 
The unboundedness of this operator in the continuous problem corresponds to the occurrence of 
eigenvalues with large absolute values in the discretized problem. From this point of view, the 
situation is in strict analogy with the numerical ana\ysis of parabalie differentlal equations. 

In [91], the difficulties of solving a stiff system of ODEs are overcome by using an impheit 
backward difference method. However, if the Buler-forward method is used for the time inle­
gration as in [ 41], a stability bound for the timestep Át depending on the spatial discretization 
parameter Áx of the form 

(6.16) 

is expected, in accordance with the order 1 of the pseudodifferentlal operator in the linearized 
continuous problem. This bound has also been found in computational experiments [82] fora 
closely related problem [83]. 

The bound (6.16) is less restrictive than analogous bounds on (:;)2 that occur in !he stability 

anaîysis of discretizations of second-order parabol ie differential equations like the heat equation. 
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This explains why the Buler-forward method could be used in [41] without stability problems. 

6.3.3 Open problems 

As pointed out earlier, for general initial domains the methods that have been used in Chapters 
3-5 can only yield local existence results. The length of the time interval on which existence 
of the solution is ensured depends on the reference domain, hence no answers can be found to 
the interesting questions about (non-) development of singularities (e.g. cusps or corners) in the 
boundary of the liquid domain. As we have shown above, the influence of surface tension leads 
in general to a smoothing of the boundary. However, in special examples th~ development of a 
cusp for a single moment of time has been found by Howison e.a. as a limi~ing case between a 
smooth evolution and an evolution in which the connectivity of the liquid domain changes. 

As a first step towards global existence results, it seems reasonable tolook for global geomet­
ric properties of the liquid domain that are preserved by the evolution under a given surface motion 
law. Apparently, the only cases for which such questions have been studied thoroughly by now 
are mean curvature flow and related problems [27, 32, 47, 79]. For instance, it can be shown that 
convexity ofthe domain enclosed by the moving surface is preserved by mean curvature flow [ 4 7]. 
An analogous result has been obtained in the case N = 2 for so-called area-p(eserving mean cur­
vature flow [32]. On the basis ofthis, global existence of a solution for convex initia! domains can 
be proved in both cases. A crucial tooi in this, however, is the application of maximum principles 
for elliptic second-order differential.operators. Therefore, it is not possible to prove correspond­
ing results along the same lines for evolution problems that involve the solutions of elliptic BVP, 
i.e. where elliptic pseudodifferential operators occur insteadof second-order elliptic operators. 

For Stokes flow, Hopper [44] conjectures that convexity and star-shapedness are preserved 
by the evolution, to prove this, however, seems to be a rather difficult problep1. Apparently, the 
only strict result in this direction is the following theorem by Plotnikov [70]: ~or Stokes flow with 
N = 2 and a connected inital domain, the Iiquid domain will be connected for all times for which 
the solution exists. 

Finally, we want to remark that the analysis given in the preceding chapters does not rely too 
strongly on special properties of the Stokes operator or the Laplacian: We only use coercivity 
and regularity of standard boundary value problems associated with them and; in Chapter 5, their 
rotational invariance. Hence, it is expected that an analogous approach can be used for a much 
wider class of free boundary problems, even in cases where the governing equ~tions are nonlinear. 
In this respect, see [1, 2]. 



Appendix A 

A free boundary problem for the 
Navier-Stokes equations 

We assume withoutlossof generality p = 1 and restriet our attention to the case N = 3. In order 
to transform the equations (1.1 ), (1.2) to the fixed domain Q(O) we introduce the functîons 

u(Ç, t) = v(x(Ç, t), t), 
q(Ç, t) = p(x(Ç, t), t) 

representing the velocity and pressure fieldsin Lagrangian coordinates. They satisfy thc nonlinear 
initial-boundary value problem 

OU V~uU .V'uq = f(x.,,t) } 
dJVu U = 0 
u(-, 0) = vo 

Tu(u,q)nu,t = "(Ku,tnu,t 

in Q(O) 
(A. I) 

on f(O), 

where D.,., V' u• Tu denote the differential operators~. V', and T with respect to theÇ-coordinates, 

x,.(Ç, t) = Ç + 1t u(Ç, s) ds 

and nu,t and Ku,t are the outer normal vector and the mean curvature of the surface 

r u,t = X u (r(O), t], 

respectively. For a given domain Q in R 3 and r, T > 0, r =f N we introduce the notation 

Qy = Q x (0, T) and the Sobolev spaces of noninteger order W2 (Q), w}: (0, T), w~·· ~ ( Qy) by 
Hilbert norms whose squares are 

"' o 2 ' f l8o:u(x)- ao:u(y)i 2 

L....t 118 ulbrnJ + L....t }, ix _ i3+2(r-[r]l d.rdy, 
Jol;:>[r] l<>l=[r] nxn y 

llull~,~ (O,T) 

[fi] . 
2 

lr lr la[~lu(t)- alÜu(T)I
2 

"'IIOJ uiiL>(o T) + ( r [ ']) dlfh, ~ · ' o o !t rii+2 ,- 2 

lil 
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llull2 
r; = ( llu(·, t)ll~i-"(O) dt + { llu(x, ·)112 

r. dx, w;' 2(<JT) la 2 ln Wl(O,T) 

where the usual mu1tiindex notation is applied, [s] denotes the largest integer bot larger thans, and . 
all differentiations are to be understood in genera1ized sense. Using local ch~s and partitions of 
unity subordinate to them, one can define analogous function spaces on manifolds. Por r large 
enough, the spaces w; can also be used to characterize the smoothness of surfaces. In the fo1-
1owingtheoremwe will writeS2 fortheunitball in R3 ,Q(O) = n. r(O) = r. GT = r x (0, T), 

R* = \(iijf. and p* = :fi1-. Note that R* is the radius of a ballof volume 101 and p* is the 
constant pressure inside a hall ofthis radius, consisting of resting liquidgovrrned by (1.1), (1.2). 

Proposition l1 (V.A. Solonnikov [84, 85, 86]) 
(i) (Short-timeexistence and uniqueness) 

Suppose 0 is bounded, l E ( !, 1), ris of class W2~+l, vo E (Wi+1(0))
3 

satisfies the com­
patibility conditions 

divvo 

(Vvo + (\7vo?) n(O) 

0 

11 n(O) 

in 0, 

onr, 

and f has Lipschitz-continuousfirst derivatives inthespace variables and is Hölder-continuous 
with exponent ! in time. Then there is a constant T1 > 0 such that (A.I) has a unique solution 
(u, q) such that · 

u E ( w;+z.H~(QTJ) 
3

, Vq E ( w~·~(QT,)f, qiGT, E W2t+z.t+t(cT.). 

(ii) (Global existence near equilibrium) 
Additionallyto theassumptions of(i), suppose f = 0 and there is ajunetion R0 such that 

r = {Ro(w)w Iw E S2
}, 

and liRa- R*llw.~+1 and llvoll(w,;+I(OJ)" are sufficiently small. Then thefollowing statements 

hold: i 

• The assenion of (i) holds with any T1 > 0, 

• Foranyt 2: 0, Q(t) is such that there is ajunetion Rt E wj+l with 

r(t) == {Rt(w)w Iw E S2
}. 

• Let (v(·, t),p(·, t)) be the solutionofthe originalproblem (Ll), (1.2), (1.3). The norms 

ll
&v 11 -(· t) at ' {WJ(O(t)))" 

1 

llv(-, t) p*llw;+•(n(t))• IIRt- R*llw}+l(n(t)) 

are uniformly bounded with respect to t ;::: t0 > 0. 



The crucial part in the proof of (i) is the investigation of a linear problem 

au 
divw tL 
u(-, 0) 

Tw(tL, q)nu,t = Î"w,tnw,t 

in Q(O) 

on f(O), 

113 

for which a priori estimates depending on w E (w~+2 (!t( t))) 
3 

are derived which can be used to 
prove the short-time solvability of (A. I) by a fixed point argument 

For estimates of u and q in the appropriate normsas wel! as an "intermediate" result concern­
ing the unlimited growth of T1 ifthe data approach the situation of (i i) the reader is referred to the 
original artiel es. Furthermore, a generalization of the FBP discussed hereis treated in [63] using 
Hölder function spaces insteadof Sobolev spaces. Similar result can be obtained for N = 2. 

Cortesponding results concerning a layer of viscous liquid above a fixed bottorn under the 
influence of gravity and surface tension are obtained in [ 4] and [ 11]. 
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Surface motion by curvature: an 
• overview 

In this appendix, a brief survey on surface motion laws governed by cuevature is given. In table 
B.l the surface motion laws that are discussed in the lirerature are listed together with the fixcd­
time problems and/or the normal veloeities that define them. The notation is essentially as in the 

introduction, [ c/(t)] denotes the jump of the normal derivative of u. across f( t) and 3 is a 
n r(t) 

domain containing I'(t). (If 3 is unbounded then the boundary condition at 83 has to be supple­
mented or replaced by an approprîate asymptotic condition on u.) No attempt is made to give a 
complete list of Jiterature referentes, instead we restriet ourselves tosome references that deal 
with existence and uniqueness results. 

It is a typical property of surface motion laws by cuevature that they occur, at least formally, 
as limiting cases of other well-known FBP or nonlinear PDE that describe phase changes. The 
cortesponding problems are Jisted inthelast column of table B.l. Note, however, that in order 
to obtain Stokes flow or one-phase Hele-Shaw flow from the FBP for the Navier-Stokes equa­
tions or from the Stefan problem one has to impose boundary conditions which already învolve 
the curvature while in the other cases the surface r(t) is the zero-Jevel set of the salution of the 
cortesponding equations. For details of this we refer to the original artiel es, see also [27]. 

Finally, we remark that all surface motion laws considered here, except for the mean cur­
vature flow Vn ~~:(t), are surface-dîminishing and volume-preserving, i.e. if f(t) is a closed 
surface (curve) evolving according to one of these laws, having area (length) A( t) and enclosing 
the volume (area) V(t) then 

dA 
< 0, 

dV 
0. 
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116 APPENDIX B. SURFACE MOTION BY CURVATURE: AN OVERVIEW 

Name Fixed-time Vn iformal) limit of' 

-Ë>.v +\lp 0 
divv 0 

Stokes flow in O(t) 
Navier-Stokes eq. 

v · n(t) 
(Re=O) 

[6, 8, 43, 51] T(v,p)n(t) 
= ~>(t)n(t) 

on f(t) 

(one-phase) Ê>.U 0 
in O(t) 

&u Stefan problem 
Hele-Shaw flow 

&n(t) (c = 0) 
u ,.;(t) 

[19, 20, 23, 30] on r(t) 

Ê>.U 0 
Mullins-Sekerka in B\f(t) 

or two-phase u= ~~:(t) [ 
)kt) 

Cahn-Hilliard eq. 
on r(t) (e ~ 0) Hele-Shaw flow 
&u 

0 [17, 30] &n 
oniJB 

,.;( t) [47] 
Allen-Cahn eq. 

(e! 0) 

Mean curvature 

,.;(t)- ,.;(t) [32] 
and 

-
related flows Ê>.r(t)~~:(t) [16, 65] 

Cahn~Hilliard eq. 
(e 1 0) 

Ë>.rlt)A-1 ~>(t) 
A= JilÊ>.r(t)- iJl 

(see [27]) 

• 

Table B.l: Laws of surface motion by curvature 
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Summary 

This thesis is devoted to the mathematica! investigation of certain free boundary value problems 
that arise from the description ofliquid flows for which inertia effects are negligible, i.e. where a 
quasistastionary approximation can be applied. Two problems of this type are studied here which 
describe the change of shape of a freely moving drop or bi ob of liquid. The underlying models are 
known as Stokes flow and Hele-Shaw flow, respectively. In both cases, the governing equations 
are el liptic (Stokes equations and Laplace equation, respectively), and the forces arising from sur­
face tension are considered as driving mechanism. This leads to inhomogeneous boundary con­
ditionsin which the curvature of the boundary occurs. 

The most interesting aspect of these free boundary problems is the evolution of the domain in 
which the equations are defined. The direct mapping method is applied for its description, i.e. the 
liquid domain is represented as the image of a time-dependent diffeomorphism which is defined 
on a fixed reference domain. Such diffeomorphisms can be constructed by conformal mappingor 
from small perturbations of the boundary of the reference domain. The free boundary problems 
are reformulated as nonlinear, nonlocal evolution equations forthese time-dependent diffeomor­
phisms. 

The investigation of the evolution equations obtained in this way forms the core of the thesis. 
Existence, uniqueness, and smoothness properties of solutions tothem are established using var­
ious methods from functional analysis and the theory of partial differential equations. In the case 
of Stokes flow in two dimensions, short-time existence and uniqueness results (both forward and 
backward in time) can be derived fordomains with analytic boundary using an abstract Cauchy­
Kovalevskaya theorem in a scale of Banach spaces of analytic functions. 

Both for Stokes flow and for Hele-Shaw flow in arbitrary space dimensions, the underlying 
boundary value problems are discussed, and their dependenee on small perturbations of the do­
main in appropriate function spaces is considered. It is shown by the investigation of a linearized 
problem that the discussed evolution equations are parabolic. Accordingly, short-time existence 
and uniqueness of solutions (under appropriate assumptions on the smoothness of the initia! con­
dition) can be obtained using results from the theory offully nonlinearparabolic equations. Under 
an additional assumption on the geometry of the liquid domain, stronger results including ccv­
smoothness of the boundary of the liquid domain can be shown, using Galerkin approximations 
and a chain rule which is derived from the invariance of the problem with respect to rigid body 
rotations. 

Moreover, it is proved that both for Stokes flow and Hele-Shaw flow driven by surface tension 
in arbitrary dimension the balls of liquidatrest are exponentially stabie equilibria. Finally, the 
essential results are extended to the case where sourees or sinks are present in the liquid domain, 
and some remarks are made on numerical aspects and open theoretica! questions. 
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Samenvatting 

Dit proefschrift is gewijd aan wiskundig onderzoek aan zekere vrije rand problemen die optreden 
bij de beschrijving van vloeistofstromingen waar traagheidseffecten verwaarloosbaar zijn, d.w.z. 
waar een quasistationaire benadering toegepast kan worden. De twee problemen van deze aard die 
hier centraal staan beschrijven de gedaanteverandering van een vrij bewegende vloeistofdruppel 
en staan bekend onder de namen Stok es flow en Hele-Shaw flow. In beide gevallen worden de stro­
mingen bepaald door elliptische vergelijkingen ( Stokes-vergelijkingen of Laplace-vergelijking), 
de capillaire krachten vormen het aandrijvende mechanisme. Dit leidt tot inhomogene randvoor­
waarden waarin de kromming van de rand optreedt. 

Het meest interessante aspect van deze vrije rand problemen is de evolutie van het gebied 
waarop de vergelijkingen gedefinieerd zijn. Voorde beschrijving hiervan wordt de directe afbeel­
dingsmetbode toegepast, d.w.z. het vloeistofgebied wordt voorgesteld als beeld van een tijdsaf­
hankelijk diffeomorfisme dat op een vast referentiegebied gedefinieerd is. Zulke diffeomorfismen 
kunnen geconstrueerd worden door conforme afbeelding of via kleine verstoringen van de rand 
van het referentiegebied. De vrije rand problemen worden geherformuleerd als niet -I ineaire, niet­
lokale evolutievergelijkingen voor deze tijdsafhankelijke diffeomorfismen. 

De analyse van de op deze manier verkregen evolutievergelijkingen vormt de kern van dit 
proefschrift. Existentie, eenduidigheid en gladheidseigenschappen van hun oplossingen worden 
met behulp van verschillende methoden uit de functionaalanalyse en de theorie van partiële dif­
ferentiaalvergelijkingen aangetoond. In het geval van twee-dimensionale Stokes flow met analy­
tisch begingebied kunnen, door de toepassing van de abstracte stelling van Cauchy-Kovalevskaya 
in een schaal van Banachruimten van analytische functies, existentie- en eenduidigheidsresultaten 
voor korte tijd (voorwaarts en achterwaarts) afgeleid worden. 

Voor Stokes flow en Hele-Shaw flow, in willekeurige ruimtelijke dimensies, worden de onder­
liggende randwaardeproblemen beschouwd. Hun afhankelijkheid van kleine verstoringen van het 
gebied wordt onderzocht in geschikte functieruimten. Het parabolische karakter van de evolutie­
vergelijkingen wordt aangetoond door de analyse van een gelineariseerd probleem. Op basis daar­
van worden existentie- en eenduidigheidsresultaten (onder geschikte condities aan de gladheid 
van de beginvoorwaarde) uit algemene stellingen uit de theorie van volledig niet-lineaire parabo­
lische vergelijkingen verkregen. Onder een verdere voorwaarde aan de geometrie van het vloei­
stofgebied kunnen sterkere resultaten bewezen worden, waaronder C 00 -gladheid van de rand. De 
belangrijkste methoden hierbij zijn Galerkin approximaties en de toepassing van een kettingregel, 
die met de invariantie van het probleem onder starre Jichaamsrotaties samenhangt. 

Verder wordt aangetoond dat, in willekeurige dimensies, voor Stokes flow en Hele-Shaw flow 
aangedreven door oppervlaktespanning de bollen van vloeistof in rust exponentiëel stabiele even­
wiehtstoestanden zijn. Tenslotte worden de belangrijkste resultaten uitgebreid tot het geval van 
bronnen en putten in het vloeistofgebied en er worden enkele opmerkingen over numerieke as-
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STELLINGEN 

behorende bij het proefschrift 

Parabolic evolution equations 
for quasistationary free boundary problems 

in capillary fluid mechanics 

door G. Prokert 

1. De vrije-rand problemen voor Stokes-stromingen en Hele-Shaw-stromingen aan­
gedreven door oppervlaktespanning kunnen geherformuleerd worden als niet-lo­
kale, niet-lineaire parabolische evolutievergelijkingen op een vaste referentieva­
riëteit Onder geschikte voorwaarden hebben deze vergelijkingen voor korte tijd 
precies één oplossing. 

Hoofdstukken 3~5 van dit proef~chrift 

2. De geldigheid van de kettingregel is niet beperkt tot functies die verkregen worden 
door compositie. In een algemener kader kunnen kettingregels opgevat worden als 
infinitesimale formuleringen van equivariantie-eigenschappen met betrekking tot 
flux en. 

cf Hoofdstuk 5.1 van dit proefschrift 

3. Het karakter van Hoppers vergelijking [6] als impliciete evolutievergelijking komt 
duidelijker naar voren als zij met behulp van de Hilberttranformatie IJ op de een­
heidscirkel in het complexe vlak op de volgende manier geschreven wordt: 

. [d - 1 d (- 1 • [ 1 ])] (J ~H) clt ( QQ ) - d( (QQ (I+ til) 21!1'1 = 0. 

4. De bewijzen van de existentiestellingen voor Stokes flow met vrije rand aangedre­
ven door oppervlaktespanning in de omgeving van het evenwicht in [ 1] en [2] zijn 
onvolledig omdat de theorie van semilineaire vergelijkingen op dit probleem niet 
van toepassing is. 

5. De beweringen in [ 4] over Hele-Shaw flow aangedreven door oppervlaktespanning 
voor algemene begingebieden worden in dit artikel niet bewezen. 

6. De in [8] geïntroduceerde vierde-orde oppervlaktebewegingswet is geen geschikt 
model voor viskeus sinteren omdat de niet-lokaliteit van het probleem verwaar­
loosd wordt. 



7. Gegeven een rooster 0 xo < x1 < ... < Xn = 1 en een functie f E C 4 [0, 1]. 
Beschouw de differentiaaloperator S gedefinieerd door 

w > 0. 

Dan geldt: 

(i) Er is precies één interpolerende exponentiële spline u E C2[0, 1] zodanig dat 

S2u = 0 in (xi-t. x;) (i= 1, ... ,n),, 
u( x;) = f(x;) (i= O, ... ,n),l 

Su(O) = Sf(O), 
Su(1) Sj(l), 

(ii) voor deze u geldt 

llu flbro,tJ $ Kih4-i (j = 0,1,2) 

met h = max{ x;- x;_1 I i = 1, ... , n }. De constanten Kj zijn onafhankelijk van 
het rooster. [7] 

8. Bij de numerieke oplossing van het niet-lineaire slecht gestelde paranteteridentifi­
catieprobleem voor het randwaardeprobleem 

8x(a(x)8xu) fin (0, 1), 

u(O) u(l) = 0, 

waarbij a moet worden bepaald uitfen u levert regularisatie met behulp van de 
discrete H 1-norm vaak duidelijk betere resultaten op dan regularisatie met behulp 
van de discrete L2-norm. 

Zie [5]. 

9. De vooruitgang op het gebied van hard- en software voor numerieke simulatie en 
visualisatie is van het grootste belang voor de toepasbaarheid en de uitstraling van 
de wiskunde. Deze vooruitgang dient echter niet verward te worden met vooruit­
gang bij het begrijpen en oplossen van de onderliggende wiskundige problemen. 

10. "In ma~hematics as elsewhere close attention to immediately useful ends is not al­
ways the most effective way of being practical." 

.. Curiosity may be idle if allowed its own way too long; but without it, little of even 
the lowest practical value has been achieved." 

E. T. Bell [3] 



11. De onjuiste bewering dat communisme en fascisme min of meer als twee vormen 
van hetzelfde verschijnsel gezien moeten worden geeft blijk van een gevaarlijke 
ignorantie ten opzichte van de wortels en drijfveren van beide bewegingen. 

12. "Het gelijk van rechts" berust op optisch bedrog. 

13. Om het leggen van een onbedoeld verband te voorkomen dienen op spoorwegstati­
ons plakkaten met het opschrift "Vloek niet !" niet te dichtnaast de dienstregeling 
te worden opgehangen. 

14. Onze maatschappij moet zich onthaasten, en wel zo spoedig mogelijk. 
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