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Summary 

fn thls thesis, modifications and cxtena)ons of cdl ma.pping (eM) rndhods 
<nc presented. eM methods a.re tools for the global. investigation of the long 
term behaviour of nonlinear dynamic :=.ystems. By means of eM, periodic 
as well <.tS chaotir solutions of the p.(juations of motion can be determined. 
Additionally, application of eM enables the dderminatlon of th0. basins of 
attr<LctioH of t he stable solu tiow::;. 

Fin:t, an overview is ~iven of exIsting eM methods. The simple cell 
rnapp.ing (SCM) method if:; based on a discretization of tll(.~ ~taU' space in 
cdb:, followed by a determination-by rneMls of numerical iutegration--·-of 
corr(~sponding irnag\~ cellR. Groups of periodic cells represent the system's 
long U~rm behaviour. The generalized cell rH(I.pping (GeM) rncth()d is a gCIl-

0.ra.li7.ation of SCM, Rer.a.IIse of the probabilistic appro<.tch involved, GeM 
is particularly :suited for the description of chaotic behiwiollt. Under in­
terpolated ndl mapping (reM), ;~.pproximatiolls of tlt.ate spaC€l t.ntjcdorit·s 
arc created by mea.ns of interpolation. Finally, Tfl.1Lltiple m appillg (M M) is 
<t Illodifica.t.ion to reM, yielding more accura.te results in calSc of high state 
space distortions. 

Next) some modifica.tions are presented which inc[(~a.se th(~ au.ura.cy and 
ei1icicn(~y of the existing eM HId-hods. For aukHlornOllS systemH, a diHl(~rl­

sion reduction method is given. Subsequently, modificatioIl!:> a.re given which 
;V(' necefisary to rn(l.ke cell mapping mdhods applic<1ble to discontinuoulS 
SYSt;fll1l8. For reM, a. modifica.tion is introduced which speeds IIp the in­
terpolation IHOCCSS. Further, it comhination of ICM aud M M is discussed, 
termed 'mi:1:r:r/ cell mapping (MCM ).ft'inally, the ;;\dva.nta.Refi arc ~hown of 
using an extendt>d i ntegratioll interv(I.I under SCM. 

f n addi L10Il to 1I10.S(· modifications, two fiU hstantbl extension s of the eX' 

istill!!; eM methods are presf.~ntcd. The first extcIltl.ion conta.ins a IHtra.Jnct.N 
va.riation teclilli<jlj(', suited for tlw s(~lIsitivitY-<l.nalysis of eM rosults with r()­
sped to system pa.l'uHI d(~rs. With this tech Hiq 11(') the cvollll. ion of 1. ho ba.s.in 
bOLLndarie~ dllP to a parameter va.ria.tiorl can be obtair)(~d in relatively li1.tI(~ 

x 



Summary Xl 

CPU-time. In this way, global bifurcations can easily be predicted. The 
introduced concept has been elaborated for both SCM and ICM. 

The second extension is a new CM method, termed multi-DOF celi map­
ping (MDCM), which can be applied to systems of many degrees of free­
dom. Since the number of celis-and hence the CPU-time and storage 
requirements-grows exponentially with the state space dimension, appli­
cation of conventional eM methods to these systems is very impractical. 
Under MDCM~ the CPU·time grows only linearly with the gygtern dirnen" 
sion while the order of the storage requirements remains constant. 

For illustration purposes, application of eM methods is performed to 
two practical nonlinear dynamic systems. First, the global beha.viour of a 
rotor with rubbing is investigated. Here, emphasis is put on the basins of 
attraction of a coexisting quasi-periodic and chaotic attractoI, which cor­
respond to a motion of roli and slip, respectively. Second, the 'joggability' 
of a portable CD player is studied. By means of MDCM, the response of 
the player to a periodic excitation is determined for a set of relevant initial 
conditions. 

It is concluded that the presented modifications and extensions have 
merit. Further, the additional value of eM methods is emphasized with 
respect to morC established methods of investigation, such as periodic solvers 
and regular numerical integration. Finally, general guidelines are given for 
the investigation of nonlinear dynamic systems as well as for the application 
of eM methods. 
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Chapter 1 

Introduction 

In engineering practice, there is a great need for efficient, powerful, and ac­
curate methods to predict the long term dynamic behaviour of nonlinear 
mechanical structures. As important examples, one can think of rotordy­
namic systems, such as pumps and generators, or systems with nonlinear 
supports. In this thesis, a promising dynamic system investigation method 
is d.iscllssed in detaiL 

A theoretical approach in the prediction of dynamic behaviour is given 
by the procedure of mathematical modelling of the mechanical structure one 
is investigating. In this thesis) mechanical systems are considered which are 
discretized with respect to space. This approach results in a set of second 
order ordinary differential equations (ODE's): 

q == F(q, q, t, IL). (1.1 ) 

Here, q == [ql(t) .. qdt)jT is the column containing the system's generalized 
coordinates, with l the number of degrees of freedom (DOF) of the system. 
Further, it and q are the columns containing the velocities 4i and the accel­
erations qi, respectively (i = 1, .. , l)- The column IL = [ttl .. ttkjT contains the 
system parameters, such as the system frequency, the system damping, and 
so on. Finally, (') stands for differentiation with respect to time t. Defining 
the state of the system as x = [qI .. ql 41 .. 4!]T, (1.1) can be written as a set 
of N first order ODE's: 

(1.2) 

Here) N = 2l is the dimension of the state space. Both (1.1) and (1.2) are 
used in this thesis for the mathematical description of dynamic systems. 

1 



2 Chapter 1 

Tn most cases, the dynamic response of a mechanical structure results 
from excitation through Ml exteo.la.l force. In (1.1), t.h is force is represented 
by means of the explicit dependence of the right-hand side P on time t. The 
study of the long term beha,vjour of a mechanical system is in particular rel­
t~vant when the externallorce has a deterministic character, especially when 
it is pt~Tiodk. For this reason, only periodic external forces a,re considered 
in this thesis. Hence, F satisfies 

F(q,q,i. + T,It) c::: F(q,q,t,J.t-), Vt?:.o, (1..3) 

w IH~re '/' is the period time of the external force. When t he external force­
and hrnce V--is tirne-imkpendent, the system is caJled autonomous. 

flaYing modelled the mecha.nlca.l system by a set of ODE's, the next step 
is the determination of its long term behaviour, represented by thc 8t.).ble 
solutions. Finding tlw stable solutions of (1.1), also called attmctor'8, has 
nOw become the first t<.tt;k for the investigator. Besides stable wlntions, 
also unstabk~ solutions of (1.1) may cxist. These solu tion8 rI:~presont saddle 
solution~ .tnd T'(,w~llors of the rnecha,nical system (see e.g. Thompson and 
Stewart [29]). Localization of these solution::: may provide important i.vldi­
tiona! informa,tion for the system behaviour and can be viewed a.s a second 
task for the in vl?stigator. 

Whf~n a model is created for the relevant phenomena, of thfl dynamic be­
kwiOllr of a real mechanical t>ydem, two main features should be included 
in general. Fir:::t, 1.111' model should be di!:i$ipative. in every reaJ IH<xhan­
ira'! system, energy it> l)(~ing dissipated in a certain way, e.g. by dmnpillg, 
friction, or nonelastic collisions. This <tspect should also be rcprcrscnted by 
t Iw model. Spcond, the mod rl should be nonlinear'. A It hough linear mode.!s 
may b~~ suited to obtain a first impression of thA behaviour of a mednnical 
system, they will Hot Mr0.RSarily be able to predict real characteristics oi" the 
behaviour. Tknr(', an accurate mathcUl(l,tical model of a mecb,wical system 
will [nostly contain om~ or more nonUnear ODE's. This has some important 
C()lls{'quAnces for the solution strategy of (1.1). 

Whetht~r ':\, dit>Ripative system is llne;tr or nonLinear 11<\.s gn~;lt influence 
on the deV~rrnination of its long tenn behaviour. In a di::;sipatlve linear sys­
tem, only one steady-sta.te long term solution for the generalized coordill;-],tt's 
t~xistf;, This solution has (h~~ same frequency <.tS tlH~ ('xternal force, whik its 
a.mplitude i:s proporLioTl<d to the amplitude of til£' external force. Each ini­
tial state of the io:'yio:1.(~rn leads to this wlution. The behaviour of 1.11(' system 
before ~cttlillg on the steady-stat~~ sollltion is called h·(1,n.~i(-:'ftt b~)havio\lr. 
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In contrast to linear systems which are rdativdy simple, a nonlinear 
system may reveal a broad spectrum of strange phenomena.. In this, it is 
useful to note two important characteristics of a nonlinear system: 

• Coexistence of attractors. Even when th<:.~ system is dissipaJive, more 
than one attractor may ex.ist for the same set of system parameters. 
To which one the system is attracted depends on its initial state-

• Occurrence of chaotic behaviour. Although being excited in a periodic' 
way, the systern may respond in a chaotic) Le. non periodic way. When 
this chaotic behaviour is stable, one speaks of a chaotic attractoL In 
spite of the deterministic equations tha.t describe the behaviour of the 
system, a chaotic motion is so extremely sensitive to changes in the 
initial state that it can be called ·unpredictable. 

Additionally, many types of bifurcations may occur in nonlinear systems­
Bifurcations are sudden cha.nges of the solutions in multiplicity, form, type, 
magnitud~~, or stability, caused by a variatIon of a system parameter. For 
more information about nonlinear systems, chaos, and conesponding phe· 
namena, the reader is referred to Thompson and Stewart [29J. 

To illustrate the two main features of a nonlinear system, the modified Duff­
ing equation [29, page 101] is considered: 

q + dq - q + q3 ~ acos(wt). (1.4 ) 

This equation models a verticaJ Elllet support column, loaded beyond its 
buckling point, additionally harmonically excited with amplitude a and pe­
riod 2Jr/w (see Fig. 1.1a). In the unforced case, this system has two stable 
equilibrium points at q == 1 and q = -1 (buckled states) and an unstable 
equilibrium point at q = O. A small external harmonic force converts the sta­
ble equilibrium states to periodic attractors. For larger driving amplitudes, 
competing periodic and chaotic attractors may come into existence [29]. 

For d = 0.15, a = 0.3, W == LO, a periodic and a chaotic attractor coexist 
(Kreuzer [20]). This can be shown by Ulea.n$ of numerical methods. Taking 
q(O) = q(O) = 1.0, numerical integration yields a trajectory that converges 
to a periodic motion. On the other hand, an initial state of q(O) = q(O) = 0.0 
produces a trajectory that settles on a chaotic attrador _ In Fig- L 1, a time­
history and a state space plot arc shown for the periodic and the chaotic 
motion for t = 0 .. 100. 
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Figllr~~ 1.1: Attt"actors of t.he modified Dutnng equation (1.4) for d = 0.15, a = 
0.3, w = 1.0: periodic a.ttrad.or (t.hin line) and (:haotic attrador (t.hick 
linf!). (a) Corrc!Sponding system; Euler support column. (h) cl'ime­
histmy plot. (c.) State spa.ce plot. 

To get a better insight in the ch<.-l.Otic. motion of lhe Ult1 sidercd sy::>lern) 

it is useful to inspect the :slale (q,q) of the sy~tem at discrete equidistant 

times I. = to + nCj\ n = 0, J., ._, where T = 27!' /w is the syslem's forcing 

prriod and to C [0, T)- The collection of states obtained ill this way is caJkd 

;-L Foincarc section_ Fig. 1.2 show~ ,t Poincare section of the periodic ;uld 

chaotic attl',td()l~ for tn = 0 <tnt! n == 0) 1) ") 5000-

With this example in miIld, the question ar.ises how to inve~tiga.te a nonlinear 

RyRtem. For thi~ P!lrpORe) one can moke lJse of several kinds of methods and 

tools. NurnericaJ integration can be applied) in tht:..~ for!O of variou:s ~ch(~mes, 
as wa.s dOflP in the. cx<.trnpk rnNltioncd <tbovc_ However) difr(~r()nt initial 

stat.es may btd to diffenmt a.ttradors. l-lence, the <>.qllations of IlIo1.ioll ma.y 

luwc I.() h(~ inte~ratcd for T1umerOIl.S initial f)La.Le~ to locate ;dl a,ttrd,ctors. 
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Figure 1.2: Poincare section of coexisting periodic (0) and chaotic (-) attractors of 
t.he modified Duffing equation (lA) for d = 0.15, a = 0.3, w = 1.0. 

For the determination of periodic behaviour in nonlinear dynamic sys­
tems, several methods exist, of which the time discretization method and 
the shooting method are most known (Van de Varst [37J, Crooijmans [3)' 
Fey [8], Meija.a.rd [24])_ For a. u~rt.a.in initial approximation l thesc mcthods 
provide a. periodic solution (if there exists one) in most cases. By means of 
a path-following method, the evolution of this periodic solution can be fol­
lowed when a particular system parameter is varied, Inclllding the passage of 
bifurcation points. However, no information can be obtained about possible 
chaotic at.tractors or other, coexisting, periodic attractors. 

The feature of coexistence of attractors gives rise to an extra task in the 
investigation of nonlinear systems. Besides locating a specific attractor and 
studying the influence of system parameters (bifurcation research) on this 
attractor, an additional subject of investigation is found in the determina­
tion of ;j. global overview of attractors and b(L-9in-9 of o.ttro.ction- A basin of 
attraction is the set of all initial states leading to a particular attract Or . In 
Fig. 1.3, the basins of attraction are shown for the two attractors ofthe mod-
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q 

q 

Figufe 1.3: Attrar.tors and basins of at.traction of Lhe modifi~d Duffi!lg equation 
(1.1) fOf d = 0.15, a = ().:I, W = 1.0: P(~riodi(: atLractol' (0) :l.nd ha~in of 
attradion (::); chaotic aLtl"<1ctnr C) and ba .. ,in of a.ttr;'l.C.tiOll (left, bla!lk). 

ificd Duffing ('(jtlat.ion (1/1) in the region -2 ::; q, i; S 2. This picture was 

obtaincd by !lumerical integration of (1.4) with (q(O),(/(O)) :-::; (ih,jh), 11. :::::: 

0.04, i,j = -!'iO, '" fi(L Trajectories that showed no convergencc to UH~ p~'­

rind i" attract or in h~:;8 than 40 excitation periods were con8id(~n~d to set t18 

nn the chaotic attra.ct.OL This way of determining the basini:i of attradion ii:i 
very timc-coW?:lurling. 

Knowledge abollt the basins of iI.t.1:ra.ctIon can he importa.nt from (I,.n 
ellginr~Ning point of view_ These basins give au idea. of the robustJl(~::;::; of the 

exist.ing solutions with rcsp(~d to changes in th(~ initia.l condition:;. When a 
spec.ific solution b desired, it can be invcstigated for which sy:;tcm para.meter 

valiles the COlTc:;poniling bafiin of aLLr<tct.ion iF; optlmaJ ill tll!~ ::;H1S~' that 1t 
covers all (.b(~ rdeva.nt initial shk~ of the mechanical t"lystem. Detcrm.ina.tion 

of the ba::;iut\ of attraction c<tn therefore be of great IIF;e in the de(;ign of 
rneckw icrd st tllctUfCS. 
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A new approach jn the dynamic behaviour investigation of a. nonline<'l.r sys­
tem was introduced with the cell mapping method (Hsu [12j 14]). The cell 
mapping method is based on a discretizat.ion of the state space in so-called 
cells_ This spedal approach makes it possible to find all attractors···'periodk 
and chaotic-of the system, as well as their corresponding basins of attrac­
tion, in a bounded subset of the state space. 

Thn:~c rnajn types of cell mavping (CM) can be distingu.ishe(\: simple 
cell mapping (SCM)j generalized cell mapping (GCM)j and interpolated cell 
mapping (IeM). The SCM method is a robust and effident tool for the detec­
tion of at tractors and the detennin3tjon of basin~ of attnu.:tion_ Tll(~ GeM 
method is more suited when dealing with chaotic behaviour or with basins of 
attraction with fractal basin boundaries. The reM method is a sophisticated 
dedudion of SCM, in which the original concept of cells is combined with 
interpolation methods, yielding more accurate results (Tongue [30 j 31]). 

The eM method is the subject of research presented in this thesis- In Chap· 
ter 2, the existing cell mapping methods are presented. This includes SCM) 
GCM, as well as ICM- i"urther, a variation on {CM termed multiple mapping 
(MM) (Tongue [32]) is dIscussed. The above-mentioned modified Dllffing 
equation is used as example of application for all methods. 

Modifications to the existing CM methods in order to get more accurate 
results Or a more efficient algorithm are presented in Chapter 3. Especially, 
a. strategy is shown for applying CM methods to discontinuous dynamlc 
systems, which are frequently met in engineering practice [24]. 

In Chapter 1, two main extensions of the existing methodology are pre­
sented and discussed. The first extension contalns a parameter variation 
technique for eM. This technique enables the determination of the basins 
of ;~.ttrM:tion, initially obtaJned by SCM or rCM, for a vaded system para­
meter value in relatively little CPU-time_ The second extension deaJs with 
the tackling of systems of many DOF's. Since the number of cells grows ex­
ponentially with the system dimension, regular application of CM method~ 
will cause computational problems for systems with state space dimension 
N > 4. 

Part of the methods, modifications) and extensions discussed in Chapters 
2, 3, and 1 are applied to two practical dynamic systems in Chapter 5. The 
global behaviour of a rotor with rubbing as well as the motion of a portable 
CD player during jogging are investigated. Both applications are modelled 
by 2-DOF models. 

This thesis is finished with conclusions and guidelines in Chapter 6. 



Chapter 1 

All llumerkal re~ulJs in this thesis were prod nced on a Silicon C raphics IRIS 
1l,400() ;32 Mb workstation, unless :;tat,ed elsewisc. N u.merical intcgmtion 
was carried out by means of a fourth-order six-stage Runge·-Kntta scheme 
(England [6]) with variable time step. The applied scll<..'nH.' is especially suited 
for the integration of sets of non1inear ODE's (England [7], Lunhert [21, page 
la:3]). In practicc, tbe choice of thc iutegration scheme shoul.d b(l adjusted 
to the characteristic:: of the considered ODE's. 



Chapter 2 

Cell Mapping Methods 

Tn this chapter, an overview is given of existing cell mapping methods. In 
Section 2.1, an outllne is given of the simple cell mapping (SCM) method. 
'rhe generalized cell mapping (GeM) method, i:; discussed in Section 2.2. In 
Section 2.3, the interpolated cell mapping (rCM) method is treated. Addi­
tionally, a variation on reM, termed multiple mapping (MM), is presented 
in Section 2.4. The modified Duffing equation, discussed in Chapter 1, is 
used as example of application. Chapter 2 is dosed with ~. discussion on the 
existing cell mapping methods. 

2.1 Simple cell mapping 

2.1.1 Introduction 

When using numerical techniques to solve (dynamic) problems, roundoff 
enors (I.re introduced due to the computer's limited precision. Moreover, in 
experimental methods a limited measurement accuracy exists. This means 
that in both numerical and experimental methods physical quantities cannot 
be obtained exactly. A state variable, describing part of the state of a 
dynamic system, should therefore not be regarded as a continuous variable, 
which can assume every possible value j; E JR, hut as a discrete quantity. 

This motivation was used by Hsu to defend the concept of the SCM 
method [12J. Under SCM, the state space IRN or part of it is divided into 
(I. discrete collection of N-dimensional cells, where N is the state space di­
mension. Restricting the state of the system to this set of cells enables 
the efficient determination of all at tractors and basins of attraction. The 
discretized state space is called cell state space. 

9 
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2.1.2 Cell state space 

1\ dyna.mic system with Eudidia.n ~ta.te space m.N is com:idcn.~d (N ;::: 2). 
Generally, the sLate of <t. dynamic system is restricted to a bounded subset 
of the state spacc. For coIlvo:.mieoce, this subset, do:.~no1.('(j by n, is taken to 
be recta.ngula.I". Lt't x = [x! .. XNV be the Hta1.e vector, then foJ' ca.ch H1.a.te 

v .. tria.blc :Ci <I. h)w~\r and upper bounda.ry x)l) and x~u) exist: 

To create a. cdl :;tatc spare, D is divided into (:f>lIs. In principle, the ceUs 
cut be of arbitrary form) a.:; long as they fill up n. Pnu:tically; the choice of 
recta.n~ldar cells is pn.Jer<.tbk The division of n in rer.ta.ngular cells c<tn be 

realized by dividing each interval [x~l), x~u)l into Mi intervals of equal length 

hi. lIenee, 

:r:(lL) _ :r\l) 
hi = -'--"'~"<"-', i = 1, .. , N. 

MI 

In this wa.y, n i:; divided into M rectangular cells, with 

N 

M ;-: IT MI' 
i=! 

(2.1 ) 

(2.2) 

F~a.ch cell is denoted by a.n index j E {I, .. , M}. The region rnN\H j~ called 
the ,'link (~(·:ll a.nd is d~motcd by imi<'x: O. The cells in n a.n~ cal1(,d regular 
cdl.~. In Fig. 2.1, a cell state ~pa.(:(.~ is shown for N = 2. 

'flte f"n nda.mental st(~P in the SCM theory is the IdJowing: The state of 
the system at time t is nO longer described by the tit;·l.te vector xU), but by 

the inil('x ~(t) E {O, "J M} of the u:dl containing the t;t,a.1;(~ vector. lIcnec, 

~(l) = j -<==> x(t) E cell j. 

All pOHsible states within OIlo:..~ cdl are denoted by th{~ same index and ME' 

tb(~rd()rE~ trea.ted as one and th(~ same state. lIenee, a. c~\ll can be I'cg(\TdNJ 
as an indivisibk (~Htity of the state of the system. 

2.1.3 System evolution 

Next, the descript.ion of the system evolution in time in term::; of C(~lls is 
cO!H;iderod. By in:-:>pN:ting the state of (.h(~ system at discrdp ~~qllidifitant 
times, (h.~ (~v()lutioIl of the system is given by a. sequenc(~ of positive integers 
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regular cells 

X
(u) 

'I 

sink 
cell 

Figure 2.1: Discretization of a two-dimensional state space. 

11 

~(O), {(I), t(2), .... Here, ~(n) corresponds to the cell containing the state 
of the system at t ;;; nD..t, (n ;;:;; 0, 1,2, .. ) j with .6.t the time between two 
state inspections. 

In this thesis, only evolutions are consldered which satisfy 

t(n + 1) ::::; C(E(n)). (2.3) 

The mapping C : IN -4 IN is called a SCM. By (2.3), it is implied that the 
next state of the system is completely determined by its current state and 
.is explidtly independent of the mapping step n. In the next subsection, it 
is shown how to create such a mapping C for a system governed by a set of 
ODE's. 

When the system enters the sink cell, its evolution is no longer followed. 
By definition, the system stays there forever. Hem:e 

C(O) ::::; O. 

Under SCM, two kinds of regular cells are distinguished: periodic and tran­
sient cells. A cell ~ satisfying 
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for SOllH~ Tn E IN) l~ ca.u(~d a periodic cdl with period 'In, Or simply) .1 F -- ·m. 
(:(~!1. Here, em. dellotes the cell ma.pping (.' appli(~d m. times. If a cdl ~ is 
a p-.. Tn. cell, then the cell::: C(Ol ") Cm.-l(O axe also P -- TrI. cdls. Such ,l, 

group of p(~Tiodlc cells is ('aJl(~d <I. pe?'iodic gro1lp of m ceils, or P - m group. 

By definitionj the sink cell is (I P - 1 cell. Periodic group~ H~pfr.F;ent the long 
t(~rm behaviour of Ul(~ investigated systt>m. 

;\ rell f which lS not periodic is called a. transient celL Since the Ilund)er 

of r<..~gula.r cells is nniV~J only two possibilities exist for (I. trans.icnt cdl; it 

is mapped onto <.1., rcgula.r periodic cdl in a finite number of steps) or it is 

mapped into t.he sink cdl in a. finite number of st.eps. Transient. cells of the 

fonnN kind represent the basins of attraction of the pNiodic groups, 

From the a.bove possibilities it is evident that in the context of simple 
cdl ma.pping only periodic motions occur. Due to th(~ finite numbcr or (:(~lIs) 
the system ::;oonN or later will en tt>r the sink cell Or a previously (~ntenid cell. 
Yd) the cell mapping a.pproach is <tppjica.hle to systcm::; which exhibit ella.ot.ic 

beha.viour when ta.kinK the following assumptions fur granted (Kf(~u;(,er [20]): 

• Chaotic motions are reprcsent<..~d hy periodic groups of relatively .long 

period. 

• A "ha.otic attractor is represented by it set of cells cov(~ring part of the 
a.t.trador ill ::;t.tk spa"e. 

Con corning the stability of a p<..~riod ic group) the followi ng con vcntiulLfi 
are made: A pNiodic group is ::;ta.ble when it, is ~urrollnded by tra.n::;icll1. rells 
lcading 1.0 this g;roup. WheTi a periodic group bas no corf(~spondiflg transient 

c('lls, it is a repeJlol'. In all other cases, the group i:; ,t s(l£ldle solution. 
When for all cells in the region of interest the irnag<~ cell ha.s been ('ouTHl j 

it ca.n l)(~ determined to wbirb periodic group e.~.(:h "eU belong:::, ;IS <l. periodic 
or as a. l.["(l.nsi£lnt cell. In the context of SCM, (.b0. dynamic bch(l.viollr in the 

region of interest ha::; completely been determined th<"~IL, In HSl1 lH], <tIl al­

gorithm is given for the determination of periodic grollpS and corrcsponding 

tra.nsif'nt cells. III Appendix A) this <tlgorithm i~ briefly discussed. 

2.1.4 Center point method 

For a system gov(~rTJ(~d by a set of ODE'sj a. SCM can be croated by 1Tl(~;tnS 

of th~l center p01;'r~" method ([14, l)Q .. g(~ 153]). According to this Inethod, the 

image cdl (.'(0 of a regular cdl ~ is determined as follows: 

• Ca.Icl1late the cen(.N point of cell ( 
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C(~) 

numerical integration 

Figure 2.2; Center point method in a. two-dimensional state spa.ce, 

• Integrate the set of ODE's over a period 6.t using the center point as 
initial sta.te_ Here, 6.t 1s the tjme between two state inspections . 

• Determine the image cell C(~) which contains the end point of the 
calculated trajectory. 

Hence, the (cnter point is used as a reference point for each cell. In Fig. 2.2, 
the center point method is illustrated for a system with two-dimensional 
r::tate space. 

When the system is explicitly dependent on time in a periodic' way, the 
interval 6.t between the state inspections should be chosen equal to the cor­
responding period T. In doing so, a SCM is obtained that is independent of 
the mapping step n. ]:<"01' autonomous systems, 6.t can be chosen arbitrarily, 
provided that it is not too small (Section 3.2, Hsu[14, page 154]). 

2.1.5 Example 

As an example, the modified Duffing equation (1.4) is considered. Defining 
Xl == q, X2 == 1, (1.4) is transformed into 

:(2, 

-dX2 + Xl - xf + a cos(wt). 
(2.4) 



14 

-I 

-1.5 

-1.5 -I 
.----' ___ -'--__ -'--___ •. _ .. J 

-0.5 o 

Xl 

0,5 

Chapter 2 

1.5 2 

Figur/~ L.:C SCM results for Ow modified Duffing equa.tion (2,1) for d = 0.15, a. = 
0.3, w = 1.0: Stable P - 1 group (0) a,nd t.ransient eells (-); stable 
periodic groupo (,.) and t.ransi~nt. c.~lb (left blank); r - t gt'I)UP (+) a,n d 
tra.nsient. cdls (x); (:dls mapped into the sink cell (0, IOWN IPoft. corner), 

The ]"(\gion of interest n is defined as -2.02 :::; :1;1, :1:2 ::; 2.02. T<tking 11,[ ::::.: 

"''2 .::.:.: 0.04, whir.h impli~)s MI = M'2 = 101, tIlE' total number of regular cdls 
is given by M = 10201. ily means of the r.enter point mdhod, the imaw' cell 

of r.a.c.h regular cell is determined. The integration interval is cho::;en equal 
to the excitation period: 6.t :::: 211" /w. 

In Fig. 2.~l, the l'ctmlts are shown for d = 0.1.5, a = 0.:3, w ~ ., ,0: 

• A F -1 cell (0) (center point (0,6, 1.32)) with a large basin of a,1.t.ra,ction 

(.). The cell rcprctlcnts the stable periodic solution with JH~['iod ill. 

• A I' - 19, a P - IG, and 0" r - 10 group (*), togethcr )'(~pr(~fi('nting 

the eita,otic (l,1.1: ractM. The corresponding ha,sins of at traction are lert 
blank, 
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• A P - 1 cell (+) (center point (-0.8,1.28)) with a basin of attraction 
consisting of 13 cells (x)~ positioned at the boundary separating the 
basins of attraction of the periodic and the chaotic attractor. Hence, 
this cell represents a saddle solution . 

• 11 Cells (0) which are mapped into to the sink cell. 

Comparing these results with the results obtained by numerica.I integra­
tion in Chapter 1, it can be concluded that the periodic attract or as well 
as its basin of attraction are determined quite accurately. The chaotic at­
tractor is represented by three periodic groups of relatively long period. The 
basins of attraction of these groups give a good approximation of the chaotic 
a.tt.ractor\ actual basin of attraction as determined in Chapter 1. Addition­
ally, the saddle solution, whose stable manifolds separate the two basins of 
attraction, is found under SCM. The position of the saddle solution with 
respect to the attractors plays an important role in bifurcation research. Fi­
nally, it should be noted that the CPU·time needed for SCM is only 1.5% of 
the reqllired CPU·time for numedcal integration (sec Table 2.1 at the end 
of this chapter). 

2.1.6 Remarks 

The SCM method is a robust tool for obtaining a global impression of the 
dynamic behaviour of a nonlinear system. Attractors and basins of attrac­
tion can be determined quite accurately. Periodic groups of relatively long 
period inditate the possible existence of chaotic behaviour. The capability 
of determining repellors and saddle solutions depends on the cell size and 
the position of the actual soltltjon with respect to the cell boundary. 

For mOre detailed information about a determined periodic group, a reg­
ular numerical integration may be performed, taking the center point of One 
of the periodic cells as initial state. In this way, the type and position of the 
attractor are easily obtained. This was done for the periodic groups in the 
considered example, thus obtaining the relation between the P - 19, P - 16, 
and P - 10 group. To determine the type of a solution, also the Liapunov 
exponents can be calculated (see e.g. [29]). 

When the basin boundaries arc fractal, the SCM method does not deter­
mine them very precisely. In particular, this holds when the fractal boundary 
layers are small with respect to the applied cell size. For those cases, the 
GeM method will produce more accurate results. This method is trea.ted in 
the nE)xt section. 



16 Chapter 2 

2.2 Generalized cell mapping 

2.2.1 Introduction 

Under SCM, each regula.r n~ll is ma.pped onto a single image cell. 1.11 n'a.lity, 
th<~ ilnag(' of a. cell will. be given by some buunded r!'glon, covering more 
tkw OIHl cell, as shown in Fig. 2.4. Thit:: TrI<"illS that for each l'cgular cell 
the nurnlwr of ima.ge tells should not be rest rieL cd to OTJ(~. This is the idea 
behind the concept of GeM (IIsu [1:3], TTSll et al. [15]). 

-----

---_ ..... 

tt 
L-____________ . __ ,."" ...... ---

Fip;lIr~ LA: Real image of a cell, covering :,;ev~ral ce.lls. 

Under GeM, <I rcgub.r cell can have several image celb, e.u:h with a 
f'mdion of UH~ tota.l pfoha,bi]ity. The state of the syd('m a.t t = n6.t, with 
i1t tlH! time between two state inspcction8, is (](~tlOted by the cell probability 
vector p(n) = [pl(n) "PM(n)]T. HOf£" M is the totalnurnbcr orn~gllla,r u~lIs 
,wd 

Pi(n) :::: Prah[ ~(n) = i], n E IN, i = 1, .. , M. (2.5) 

In words, pi(n) d<'~Ilot<~~ the proba.bility of the staic of the $ys1;(ml being in 
celli at t = n6. t. 

1'0 dct-:(Ti Iw til!' sy:=>t0.tn ('volll tion, the lruTl-8ilion pm{m/)ility matrix, or 
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simply tryw .. 9ition matrix, P(n) = (piJ(n)) is introduced, with 

Pij(n)=Prob[~(n+l)=iIE(n)=jJ, nEIN" i,j=l, .. ,M. (2.6) 

Here, Pij (n) is the tran$ition probability from cell j at t = n6.t to cell i at 
t = (n + 1 )b..t. For a periodically excited system, the time step 6t between 
two sta.tc iUf:\pediol\:; ca,n be chosen equaJ to the system period, in which 
case Pij, a,nd hence 1\ are independent of the mapping step n. For the sink 
cell (index 0) l the following holds by definition: 

PiO = { 
1 i = a 
o otherwise. 

(2.7) 

By means of the introduced definitions, the evolution of the system can 
be put in the following form: 

p(n + 1) = Pp(n). (2.8) 

By (2.8), a [mite, discrete, stationary Markov chain is defined (see e.g., 
Tsa.a.c:;on a,nd Madsen [16]). 

The transition matrix P fully determines the dynamk behaviour of the 
system. The at tractors and basins of attraction may be found by examining 
the properties of P by means of the theory of Markov chains. First, some 
definitions of this theory are introduced. 

2.2.2 Classification of cells 

According to the theory of Markov chains, two types of cells can be distin· 
gu.1shed under GeM: persistent and transient cells. A persistent cell i ha,s 
the property that when the system is in i at a certain moment, it will return 
to i at some time in the future. Following the Markov theory, persistent 
cells can he formed into persistent groups (PG's)) which are dosed. Wh~n 
the system enters a persistent cell, it will stay in the PC to which this cell 
belong:;. The PG'::: of a Markov chain, deduced froIn a dynamic system, 
correspond to the attractors of that system. By definition, the sink cdl is fl, 

persistent gronp by itself. 
When a .ce11 Is not persistent, it is transient by definition. For finite 

Markov chains, the system will leave the transient cells with probability one 
and will settle on a PG. Transient cells can be divided in single-domicile (SD) 
<md multiple-domicile (MD) cells, according to the number of domiciles (one 
or more than one, respectively). Starting in a SD cell, the system will lead 



18 Chapte:"":' 

to a particular PG with proba.bJlity one. Hcnce, the collection of SD cells 
of a PC represents tht~ corresponding basin of <tttra.(tion. Starting in a. MD 
cell, the system can lead to several PG's with corresponding: probabilities, 
the SIl m of which of course cqu.us one. The MD cells reprElSent the basin 
boundaries, abo caJINI sepamtrices. 

2.2.3 Limiting probability 

For each cell i of a PG one can determine the limiting probability (LP) pi, 
which is the proba.biHty of the system being in i at t ;;::: 00 under condition 
that it ever entered the PO to which i belongs. In H.su ["14], algorithms are 
given for the determina.tion of the LP distribution of a persistent. grollp. 

Especially for PG's consi:::ting of many cells, t.he LP distribution can give 
some useful illfonnatioo. Such PG's usually t'epresent chaotic aHractol's. 
The LP distribution then gives an idea. of which parts of the a.ttl'actor are 
'visited j very frequently by the system and which parts very rarely. Thus, ,l 
better pidun:~ is ohtained of the chaotic attndor as a whole. 

2.2.4 Sampling met.hod 

The main part of constructing a GeM is the determination of the cdl tran­
sition probabilities. When applying the GeM method to a system governed 
by a. set of ODE'::;, the transition probabilities ean be determined by mNns 
of the sampling method [14, page 268]: 

• Choose for a regular cdl j /, points) in some way distributed over j. 

• Integrato:..~ the set of ODEjs over a period b.t, using these point::: as 
initial statNL Again, llt is the time bdwN~n two state inspections_ 

• Determine the cells which contain the end poiHts of the caJcubtcd 
trajectoric!:', Th(~~·w ce]ls are taken to be 1,}1(~ image cells of cell j, 

Let I be the n\Unh!~r of image cells, with index iJ j '" ii, containing J~il , --j /'i l 

(lIld points, rcsp(~ct.ively. The cell lnl.nt>itioll probabilities PijJ i = 0, __ , M j 
arc !IOW rldl n('d as follows: 

'). = { Ld LiE {. /11 --, it}, 
! I) () ot herwisc_ (2.9) 

Doing this for each rcgul<.l,r cdl j yields the transition lli.,l.trix r. 
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2.2.5 Example 

The GCM method is applied to the modified Duffing equation (2.4) with 
d = 0.15, a = 0.3, w = 1.0. The same region of interest n is used as under 
SCM (Ixil :s; 2.02, i = 1,2). Again, D. is divided into 101 x 101 cells. The 
transition proba.biUties are calculated with the sampling mdhod, using 9 
integration points for each cell. Algorithms given by Hsu [14] are used to 
determine the PG's, the SD and MD celis, and the LP distribution. In 
Fig- 2-5, the results of this simulation are shown: 

• A PG consisting of 10 cells (x) corresponding to the periodic attractor. 
The basin of attraction of this PG is given by its SD cells O. 

• A PG consisting of 966 cells (0) corresponding to the chaotic attractor. 
The basin of attraction (the SD cells) is given by the white area in 
Fig. 2.5. 

• 6 Cells (+) which are mapped into the sink ceIL 

• A large number of MD cells (: .. :). 

Fig. 2.6 shows the LP distribution for both PG's. For each persistent 
cell, the LP is expressed in the mean value (MV) which equals 1/10 for the 
PG representing the periodic attractor and 1/966 for the PG representing 
the cha.otic attractor. Cells denoted by 'x', have a LP value of !*MV, with 
f ~ 1.5. For cells denoted by '+' and '." we have f E [0.5,1.5) and f E 
[0.0,0.5), respectivciy. 

Finally, to obtain a better picture of the basins of attraction 1 the M D 
cells have been divided in two groups: cells leading to the periodic solution 
with probability p > 0.5 (0), and cells leading to the chaotic attractor with 
probability p > 0.5 (*) (Fig. 2.6). This information has been obtained by 
determining the group absorption probabilities for the MD cells (see e.g. 
[14]). For this purpose, use has been made of an algorithmic approach given 
by Bestk and Kreuzer [1]. 

Compared to SCM, the chaotic attractor has been determined more ac­
curately under GeM (several periodic groups versus one PO). The periodic 
attract or is represented by a small PG, which is not as accurate as the P - 1 
cell found with SCM. The domains of attraction have been determined just 
(l.S <tccura.te as under SCM. The saddle solution has not been found under 
GeM. 
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Xz 

Figure 2.,5: GeM results for the modified Dulling ~quation (2.4): PC; (x), represent­
ing the periodic attractor, and transient cells 0; PG (0), rcprcs~nting 
the cha,otic atLractor, and transient (dis (left hlank); MD cdls C+:); cells 
mapped into th~ sin k cell (+), 

2.2.5 Remarks 

The GeM w(~thod is very ~uited for the dcr:;cription of chaotic hehaviour. 

Th(~ PC tl1<.1,t represents a chowLic attractor giv('s a good piet.ll{"p of this 

attractor in gen0ra.l. Further, ;1,dditional propPrties of cli;:\,otic attmctors 

can be d(~V~rTllined, such a~ the LP di~t)'jhlJtion or the largefit Liapunov 

exponent (KiJrl a.nd Hsu [18]). Under GeM, tho basin:-:: of attraction of ,l,1l 
sta.ble tlol.utions are det<"TUl i ned more a,cell rat ely tha.n till dol' SCM i II geTH~ra.1. 
When two basi n s of altradinn a.r<l separated by a thick Ia.YN of MD v~lIs, 

a,dditiolla.l rescotl'ch ha,f; to bo done to obtain ::tIl aeCll rah~ sep<tra,1.rix. 

011 the other lia,lId, periodic wllltions a.rc no! f()lJnd as <\.C(,llra.t(~ as with 
S(; M. Hllpdlol's ;~n d saddle ~olu tion s arc genera.lly not fo\l nd at all. There­

forc, 1.11(' GeM method lllay be con~jd(>["ed as a. vel'.y useful additioTl to SCM, 
el'l)<.~ci a,lly if one i:-:: i nkr(~sted in chaotic aU ractor~ ;:l,nd t heir prop(~rt.l('fi. 
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Figure 2-6: Probabilistic properties of the PG's and the MD cells. 

2.3 Interpolated cell mapping 

2.3.1 Introduction 

In spite of the satisfying results found with the cell ma.pping methods dis­
cussed so far, two important drawbacks of these methods need to be stressed. 
First, because of the finite number of cells, a restriction is placed on the pe­
riod length of a solution. Hence, chaotic behaviour is always represented by 
a finite number of cells. Second, due to the discretization of the state space, 
errors have to be taken into aCcollnt when determining the system's dynamic 
behaviour. Especially for systems with fradal basins of attraction, the SCM 
a,nd GeM methods may produce spu60us results. 

'these drawbacks motivated Tongue to introduce the IeM method [30, 
31J, The concept of IeM is actually very different from SCM a,nd GeM. 
Under the latter ones, cells are being mapped onto image cells. By repeated 
mapping application, structures of cells are found which show some kind 
of recurrent character. Additional research is required to obtain the actual 
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type of behaviour (periodic, qua~i"periodlc, or chaotic). 
Compared with SCM and GeM, ICM is a more straightforward V~clUliqlJe 

which <'l,pprOxim'i.tes numerical integration. For a.u arbitra.ry initial state, 
an approximate trajectory can be created. After tr<'l,Ilsient beha.violl r has 
va.ni~hcd, this tr<'tjettory will settle on an attmctor. Tlw initial state can 
then be added to tilE' r.orresponding basin of attraction. Doing this for a. 
huge number of initial states in a region of int(~rest fl, the attractors and 
basins of attraction in fl can be obtMned. 

2.3.2 'l\-ajectory approxima.tion 

In the N-dimensional state space, the region of interest n is uniformly cov­
ered with M grid pointsl, denoted by xi, i ::::: 1, .. ; M. Here; M is given 
by (2.2) with Mi the number of grid points in x;-direction (i = 1, ." N). The 
r.orresponding distance hi between two neighbouring grid points satisfies 

a/u ) - :1,,(1) 
hi = I " i = 1, .. , N, (2.10) 

Mi - 1 

whNe :I;~u) and a;~I) denote the upper and lower boundary, respectively, of 
:I; I' In Fig. 2.7, an rCM grid is shown for (I, two-dimensional state sp<tCt~. 

J"or each grid point xi, a sequenc~ of image points ,pi,l, q,1,2,,, is con­
struckd. HNe; (pi,n represents the approxlm(:l.t;e state of the system at 
t = nflt, n = 1,2,., corrcspondillg 1.0 an initial state Xi. lkne<.\ 

I i Oi . 1 M ()' = x, '1:;::: '''' • 

Ag;.lin, l:!,.t eCjllals the excitation period of the system. For autonomous ::>ys­
krn~, 6.t if:; arbitrary but fixed. For each grid point ;x'i, the first image point 
(jJi,t is obtained by numerical integration and denoted by yi. Hence, 

.~il i' '! M (v' = y, 1, = ; ,., ., 

The ::;ccond image point 4).'1 is determined by meanS of inkrpolation, To 
thi~ end, the 2N grid points which surround 4i,1 arr. used as intmpohttioll 
points. Let 11,,,,12N be the ind.i.(.cs of the interpolation pointii, 1.h~~n 

2N 

<//,2 ~ I:: r~Jyj) ylJ, i = 1, '" M. 
.1=1 

-------- _ .... , ... ,,,._---

(2,11) 

ITll the original reM concept, 0 i~ divid(:d illto eells of which the C!?Jlkr points snve as 
initial sl.a.ks for appr()xirnate trajectories. Since cdls do llOt pli1y an actual rolf': in [eM, 
they ~\re n0t. nwnt.ioncd here. 
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Figure 2,7: ICM grid for a two-dimensional state space. 

Here, Pj : lR N ---* [0,1] is an interpolation function satisfying 

23 

where bij is the Kronecker delta. In Appendix B, general expressions are 
given for the interpolation point indices and the interpolation func.tions. For 
N =: 2, the following holds; 

¢i,2 (1 - 6)(1- 6)yll + 6(1- 6)y12 

+ (1 - 6)6y 1
3 + 66yl\ i = 1, '" M, (2.12) 

with, 

and hk given by (2,10). In Fig. 2.8, the integration and first interpolation 
step are illustrated for a two· dimensional state space. 

The trajectory points ¢i,n, n = 3,1, '" are obtained by application of 
the interpolation formula (2.11) replacing yi by 4>i,n-l, for i = 1, '" M. By 
repeated application of (2.11), an approximate trajectory of desired length 
is obtained. 
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t = 0 t = tl.l t = 26.t 

Figure 2.8: ICM procedure for a two-dimensional state space; Integration step and 
first interpolation step. 

2.3.3 IeM criteria 

For the classification of an approxima.te trajectory, two criteria. are int.ro­
duced. A sequence tfi,,"', n = 0,1,2, '" is considen~d periodic at :,;Lep l if 

for some j E {O, 1,.,,1- l} and a beforehand chosen accuracy EPS. The 
ineq uality (2.13) is (.(lJled the periodicity criterion. A sequence which satisfies 
(2,l:~) corresponds to a periodic aitractor with pcriod (1- j)6.t. Whenever 
a nf~W point in the sequence has been determined, the most efficient way of 
chccking the periodicity criterion is downwa,rdfi from j = l - 1 to 0, since 
low order subh<tnnnnic behaviour is more likely to O(:tUI' than high order in 
practice. To sa.ve CPU-time, it deserves rccoInu((mdation to stop checking 
(2.13) when c.g . .i < l - 10. 

To Limit the-ma.ylH' never ending-f;{'afch for periodic. behaviour, the 

number of itcr.ttiull steps in the ICM procedure by definition is bounded 
by the integer IMAX. When no Iwriodic behaviour ha.f; been found within 
1M AX iterations, t he sequence is considered to Iw chaotic. Thi~ is called the 
chaos criterion. It is not very obvioUf; how to dLOOf;f. [MAX. If IMAX is too 
small, a spuriOllf; rhaotic attrador may be found; jf (MAX i~ too 1arw\ the 
C P l! -time rrw.y becomo lmIlcc<..~ssa.ry lar~e. Th(~ optimal choic(~ for 1M AX 
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depends on the required accuracy EPS and the amount of damping in the 
system. 

A third criterion, not discussed by Tongue, is especia.lly important in the 
programming context. When two initial states both lead to the sa.me periodic 
attrador) the corresponding trajectory end points will still differ. To obtain 
correct basins of attraction, it is important to know that both trajectories 
lead to one and the same attractor. Therefore, when a trajectory satisfies 
the periodicity criterion, it should be checked whether the latest determined 
image point is not too close to an already existing periodic attractor. This 
also holds for regular numerical integration as was applied in Chapter L 

2.3.4 Example 

As an example, again the modified Duffing equation (2.4) is considered, 
with d = 0.15, a = 0.3, w == LO. Th(:~ region of interest n is defined as -2 ::; 
:1:1,:1:2 S 2. Gdd points a.re given by (ih.1,jh2), with i,j == -50, .. ,50, hI == 
h2 = 0.04 (notice that these points correspond to the cell center points of 
the examples in Sections 2.1 and 2.2). Application of IeM with EPS = 10-3 

and IMAX == 20 yields the following results (see Fig. 2.9): 

• A periodic attractor (*) at (0.638,1.341) with a large basin of attra.c· 
tion (::). 

• A chaotic attractor C)J formed by the end points of trajectories that. 
did not show any periodicity within 20 interpolation steps. The white 
area contains the corresponding initial conditions. 

• Some periodic groups (not shown in Fig. 2.9), lying on the chaotic 
attractor with only a few transient points. These groups are artifacts 
of the ICM method, caused by the periodicity criterion. Since a chaotic 
attractor is 'dense', some chaotic trajectories can be regarded as being 
periodic, due to this criterion. 

• 17 Points (0) which are mapped into the sink cell. 

Comparing these results with those obtained by SCM and GeM, the 
following may be concluded: The periodic attractor has been localized mOrt~ 
precisely now. The chaotic attractor looks mOre like the real attractor, shown 
in Chapter 1, than the One produced by GeM. However, part of the dots 
forming the chaotic attractor are not lying on the real attractor (compare 
Fig. 1.3); in fact, some of them are lying close to the P - 1 solution. These 
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Figu,~ 2.9: lCM results for the modified Duffing equation (2.4): P~riodic attrac­
tor (ot) and basin of ;j,tt,actioll (::); chaotic attractor (-) and basin of 
at.trac.tion (I~ft blank); cells mapped into th~ sink cell (0), 

so-called transient dots reprc:scnt end points of trajectories that have not 

settled on one of the attractortl yd. A larger value for IMAX will reduce 
the number of transient dots. Further) it should lw noted that the saddle 
solution ha.s not been found under IeM. 

2.3.5 Remarks 

The lCM method is an attractive tool for investigating nonlillc,tl" dynamic 

sy:stcm~- With respect to SCM and GeM, the main advantagcs are listed 
bdow_ 

• The discretizat.ion {,fror is replaced by a :sma.ller interpolation error. 

• No restriction is pi;1,(ed on the period length of a periodic rtloLioIl. 

• Chaotic motion is rept(~8t'nted by nonp€riod.i!'. Tnot.ion (as it should be)-
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• The interpolation grid can be chosen finer than the integration grid: 
For instance, when tackling a problem with 101 :x 101 integration 
points, afterwards a 1001 X 100l interpolation resolution may be used 
to obtain the bMins of attraction. This is an interesting aspect of 
ICM, keeping in mind that the interpolation part requires much less 
CPU·time than the integration part. Here, it should be noted that the 
a.ccuracy of the results is defined by the integration grid. Use of an 
extended interpolation grid only produces a higher resolution plot of 
the basins of attraction. 

However, the following critical remarks have to be made as well: 

• Rcpcllors and saddle solutions will not be found in generaL 

• When a trajectory is found not to repeat itself within the maximum 
number of interpolation steps, it is regarded as being chaotic. The ini­
t.i<'ll values of all chaotic trajectories are now asrmrncd to form the ba.sin 
of attraction of a chaotic attractor. This however, may not always be 
trw', for instance when more than one chaotic at tractor exist. Plotting 
the end points of all chaotic trajectories gives an idea of the form of 
the chaotic attractor, and also (the only) information with respect to 
its uniqueness. 

• When the maximum number of interpolation steps is chosen too small, 
a spurious chaotic attractor will be found. In general, the choice of the 
criteria rnaoy be of great influence on the results. It is not very obvious 
which criteria are the optimal ones; this may depend on the system 
characteristics. 

• A pplication of IeM is not very suited for systems with large state space 
dimension N. For one interpolation step? 2N interpolation points have 
to be determined and 2N interpolation functions have to be evaluated. 
For large N, the CPU . profit with respect to regular numerical integra­
tion will vanish. 

Concluding, the ICM method may be considered as an efficient addition 
to SCM j takingonly a small amount of additional CPU-time- The method's 
drawbacks require some improvisation and ad-hoc thinking of the user. 
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2.4 Multiple mapping 

2.4.1 Introduction 

In recent years, a, number of modifkatlonr; on leM hawl been presented. 
In [33], (l, hight'.( order method of [eM is shown termed ten80r prodw~t in­
te?polated cdl mopping (I'PICM). Under 1'PICM, the hi-linear mapping is 
replaced by a, more sophisticated mapping which pr<..~serves all the qU(j.litative 
dynamic pfop(~rties of tlHl system. Although the results are mor~l accurate 
than under regular lCM, the costs are 60 high that the TPICM method is 
not very recommendable. In this thesis, no attention is paid to the TPICM 
mdhod, 

A second modification on IeM, called multiple mapping (MM), is of more 
practical importance [;~2J. With respect to reM, MM is said to produc(~ more 
accura.t<..' results for slightly more cpu· time. Under MM, the ff~glllar map 
over one period is repLaced by two maps, each covering half a period. This 
i~ done to diminish the state space distortion. 

2.4.2 State space distortion 

The state space of a nonlinear dynamic system is being distorted during time. 
As a result, trajectories starting from dose initittl :)t(tte~ w<:ty lw sepMatl"d 
after only <t ~horl while. For chaotic systems, th(~ stat(~ space distortion 
may be very h1gh. AccordIng to Tongue, the state space distortion can be 
represented by means of the divergence of neighbouring trajectoric~. For (l, 

two··dirnensioll(lJ system, the following definition is given for the state space 
distortiOIl din x = (Xl, :1:2) after 7' seconds [32]: 

(2.14) 

Here, 6.xi is the initial distance between the trajectory sUttting from x a,nd 
the neighbouring trajectory in the positive xi·direction (i = '1,2); d; denotfls 
the distance between the trajectories after a, fix<..~d t.inH~ T (SH' Vig. 2.'10). 

To illllstrat0 th(·' r.ollr.ept of state space distortion, the modified DuHing 
(~qlla.tion (2.4) is considered. For this system, the state spacc distortio\l 
dafter onc period T = 27r /w is ddenniJl(-~d. Grid points l1srd for leM 
in the previous section arc chosen ,:I,fj initia,l states. FlI rt hoI', 6:c, =-= hi = 
(UM (i = ",2) hi taken, which implies that neighbouring grid poi.nt::; (l,re 11S(-,(j 

to rrprl"s('nt the initial points of neighbouring trajectories, 
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t=O t=T 

Figure 2.10: Definitions of llx; and di, (i = 1,2), 

In Fig. 2,11, regions of high (d> 5) aud low (0 < d < 1) distortion are 
shown. As expected) high distortion is found on the chaotic attractor and 
its corresponding domain of attraction. Since a. chaotic attractor undergoes 
stT'etching as well as folding during time, also reg.ions of low distortion arc 
found on the chaotic attract or. 

2.4.3 Multiple mapping concept 

In the previous subsection, the occurrence of high state space distortiou8 is 
shown to be very well possible. When applying reM to a state space wit.h 
these types of distortions, large interpolation errors are introduced. After 
all) when at t = T the integrated trajectories have already diverged very 
severely, the mapping image determined by interpolation carl not b(~ very 
accurate, 

Since the divergence of neighbourIng trajectories increases with time, it 
is preferable to use two interpolation' mappings instead of one, each covering 
half of the total integration time T (Tongue [32]). ]"lor this purpor;e, two 
integrations have to be carried ont for each grid point Xi, i == 1, ,.,M: aIle for 
o $ t $ T /2 1 and one for T /2 s: t s: T. Both interpolation map pJ ngs shonld 
be rep€atedly appHed one after the other to obtain an approximate trajectory 
of de$ired length. The region of interest n for the second integration ma.y 
differ from the O'le for the first integration. 

The total costs for the MM IIlt~thod are slightly higher than for IeM. The 
numerical integration costs are equal in both methodR (an integration over T 
seconds for an equal number of initial states). Under MM however, twice as 
rna,ny interpolation steps need to be made as under ICM to obtain the same 
nnmher of mapping points- Since the numerical costs for interpolation are 
much smaller than for integration, the total difference in CPU-time between 
both methods is very small. 
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r"igure 2.11: Regiotl8 of high C) a.nd low (0) distortion for the modified l)llffing 
equation (2.4). 

2.4.4 Example 

[n Fig. 2.12) the results a.re shown obtained by MM application Lo the mod­
ified DufIing equation (2.1). The same criteria a.nJ parameters a.re llsed .tS 

nuder [eM. The fotlowing results are found: 

• A periodic attmctor (*) at (0.6:38,1.341). 

• A chaotic attractor (.). 

• Some periodic groups (not L::l,gged .in Fig. 2.12)) lying on the d"tot.ic at­

tractor with only a few transient points (a,rtifacts of the MM method). 

• 13S Points (0) which arc mapped into the sink cell. 

COmpaJ.·ed to Ow [eM results} the chaotic altntctor is d('t(~rminf)d much 

mort' accurate under MM. B<csins of attcar.tion and the posiLion of the Pf'­
riodie solution are deLcrrnincd jllst ;-)'R a.cclJrate as under reM. Sillc(~ two 
iId.(~rpola.ti(l1l maps a.re used instead of one, nH .. m~ grid points are mapped 

into the s.ink (:fdL Still} of almost 99 % of the grid points in n the a.ttrado!" 

h<'ls lW(,[l d(·'tel'milwd. In Table 2.1) the CPU-times an) ~ivcn for aU eM 
,tppliGl.tioIlS performed in this chapter. 
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.0.5 0.5 1.5 2 

Figure 2,12: MM results for the modified Dulling equation (2,1); Periodic attrac­
tor (*) and basin of attraction (::); chaotic att.ractor (.) and basin of 
attra.ction (left blank); cells leading to the sink cdl (0), 

2.4.5 Remarks 

The most obvious difference between the reM and the MM res1l1ts is the 
form of the chaotic attractor. Though the maximum number of interpola­
tion steps IMAX equals 20 for both methods, no transient dots are found 
under MM. Hence, the large number of transient dotr; found under ICM 
cannot be explained by the small value of IMAX. Apparently, the mapping 
time T is too larg(~ to obtain a,C(;luate results in the region occupied by the 
chaotic attractor. The use of two maps of mapping timc T /2 (a,~ nnder MM) 
produces a 'elea!"!' chaotic attractor without tranr;ient dot::;. 

In [32], the MM method was applied to a different modified Dnffing equa­
tion. For the considered ca.se, two periodic attractors coexisted. The MM 
method waS used to determine the basin boundaries and their dimension, 
neci.tuse of the ffacta.! structure of the basin boundaries, the state r;pace 
distortion waS locally very high. The use of MM yielded a much better 
<tpproximation of the boundaries than ICM. So, whcnever high sta.te space 
distortions ocnn, MM is to be preferred to ICM. 
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Table 2.1: CPU-tjmes for the modified Dulliug equa.t.ion (2.4). 

Method 

SCM 
GeM 
ICM 
MM 
Num. int. 

2.5 Recapitulation 

CPU-time (s) 
21.3 

222.1 
31..9 
38.a 

1432.2 

This cha,pter (onr.illdes with a short recapitulation of the com:idered er.t! 
ma.pping mp.thods. 

'I'll(' SCM method gives a global overview of the dynamic bdl;'t.viOllr in 
a nonlinear system. Periodic ctttradors are fonnd, ch ;wtic. att ractors are 
represented by periodic groups of relatively long period. Bafiins of attrac­
timl Cl.lI IH~ determ i ned qUite accurately, provided that they hav(~ .110 f'ra.ctaJ 
boundaries. The capability of finding repdlor::; ;md Kiuldle solutions depends 
on th(~ ;t.c1.ua.1 position of these solutions with respect to the cell hOUIl(lal'i(~H. 

ThE' GeM method ifi particularly suited for Lhe deLennin<ttion of chaotic 
attractors and their properties. When dealing with h<tctaJ b(\'Hin bounila.ries, 
the basins of attraction are determined morc accurately compa.red to SCM. 
'l'he required CPU-time for GCM is much larger than for SCM. 

The ICM method yieldfi a precise location of periodic a.ttradon:. Ch,t,Otic 
attrar.tors r.a.n be determined very accurately, under condition that the U);i,X­

i m 11 m n 11 mber of in terpolation steps is large enough. WhfOf.Wr large state 
space distortions occur, the MM method is (.0 he pn~rE'YTNI to tho ICM 
mdhod. Tlv~ CPU-time rf)qllired for both methods is almost equal, but 
larger than for SCM. 

The considered eM mdhod" ::;hou1d not. be seen as competitors. Depend­
ing OIl the tiyt>tern chotract.I'.riRt.ics a.nd the tlser's interests, a certain method 
Kbould bE' chosen. A combination of methods is also possible, taking ;vlv,w­
ta.ge of each nwthod's fipecific strong points. Starting with SCM, Uw main 
pa.rt or lGM (tlH' int.egration part) has already been ca.rried. out, ;:~H well a.S 
pa.rt of tll(~ work for CCM and MM. With the SCM re£)lIlts iTI hand, one can 
decid(1 wlwtlH~r to do an additiona.l GeM, ICM, or MM. 
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Modifications of Cell 
Mapping Methods 

In the previous chapter, a,n overview of the existing CM methods has been 
given. In this chapter, a number of modifications of these methods is pre­
sented. First, modifications dealing with special types of dynamic systems 
are introduced. Second, two improvements on ICM are shown. Finally, SCM 
is applied to a beam system with nonlinear support to show the effect of an 
extended integration interval 

3.1 Overview of modifications 

In Section 3.2, an alternative approach for autonomous systems is presented, 
termed ASCM. This <,t,pproa,ch enables c, substantial reduction of the neces­
sary CPU-time. Application of the ASCM method to a Van del' Pol equation 
and to a nonlinear aeroelastic oscillator is performed. 

When investiga.ting a discontinuous dynamic system by means of eM, 
the original methods have to be modified in some way. This is shown in 
Section 3.3. As an example, a forced zero-stiffness impact oscillator 1s con· 
sidered, 

In Section 3.4, a new critl~rion in the ICM procedure is proposed. As a 
result, a trajectory can be classified at an earlier stage than nnder regular 
ICM. This modified IeM method (MICM) yields equal results in 1<.'$$ CPU­
tIme. MICM is applied to a. modified Dnfflng equa.tion a,nd to an impart 
o5cillator. 

A combina.tion of ICM a,ltd MM, termed mixed cell mapping (MCM), 1S 

33 
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prescnted in Sedion 3 .. 5. Application of MCM to a. modified Duffing equation 
is perfomwd. It is shown that MCM is mOre accurate than ICM <tIld MM 
but also more time-com:urniug. 

This thapter is concluded with th(' application of SCM to a. be<-lTO with 
nOJdiTH~ar support in Section 3.6. Tt. is shown that system ch;l,Y-'l,(:i.('ristics 
ur~e the user to c);'knd the integration intervaJ [or determining; the ima.ge 
cells. As a result, th(~ nlllnber of cells leading to l.h(~ sink cell as well as the 
number of spuriOtlS periodic group~ arC reduced. 

3.2 CPU-time reduction for autonomous systerns 

a.2.1 Introduction 

A [J autonomOllS systcm is a. tlystem of which thc equa,tjons of motion have 

the following form: 

x = V(x). (3.1 ) 

Her0., x = [x((t) .. :rN(t)V is the state of tl1fl system. In (3.1), time does 
not explicitly occur. Hcncc, ht each possible state x E IRN the system's 
accE.'leration h<t~ a. sp(~ciflr. time-independent value. Periodic solutions of 

eU) are c<\llcd lindt cych.'.'i. 
When applying eM methods to autonomotls systems, initially the ::;a.HW 

procedure Hl<-l.y !w followed as for non-autonomous systems. However, a.rkr 
choosing a region of interest n a,nd dividing it into cells, th<..~ quc:-;tiol) arises 
how to dderrnine a cell's image cell. For Q, 1I011-3,utonomous system which 
is periodically forced, the ild,erval 6.t, over which the cqU;t,1.jor\s of motion 
(I,H~ integra.ted to obtain the image cdl, has to be equal to (a multiple of) 
the forcing pNiod to obtain a eM which dOt's not explicitly depend on timE'. 
Sine(' ty definition time does not explicitly occur in autonornOUi:i equa.t.ions, 
'lolly possible va.llle for 6.t is allowed. 

Although for a.n autonomOllS system any value of the integra.tion interval 
6.l produces a, eM which is independ(~nt of tim.e, the choice for 6.l i~ far 
from trivi<d. When !:!..t is chosen too small, spurious results may be found. 
In (.hat C,l,St\ ma.ny cells may be mappcd onto itself, since 6.t is (.00 ~J(1all 

to reach <I Kt;t,V~ outside the cell when starting ill the center point. A la.rge 
value of 6.t is also not very ::;,ttisfying, since this would imply ,I,ll !Inn(~(:essary 

large compu(.'tLlon timE'. 
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Figure 3.1; SCM results for the Van der Pol eqll(l.t,ion (3.2) for f1. = 1.0: Two P -
41 groups (*) x) representing the stable limit cycle; P - 1 group (0) 
representing the unstable equilibrium point; cells leading to the sink 
cell (l 

3.2.2 Van der Pol equation 

One of the best known autonomous equations is probably the Van der Pol 
equation: 

(3-2) 

For J.l < 0, the stable equilibrium point (q, q) = (0,0) is the only attractor. 
For j.t > 0, this equilibrium point loses its stability while a stable limit cycle 
comes into existence (see e.g. Crooijmans [a, page 104]). 

SCM is applied to (3.2) [or p = LO. For discretization, 201 X 201 cells 
are us(~d of size 0-025 X 0.03, covering Iql :$ 2.5125, 141 :$ 3.015. For 6.t, a 
value of 1.3 is chosen.1 The results are shown in Fig. 3.1. The stable limit 
cycle is represented by two periodic groups of 41 cells each. The unstable 

11n [14J, the same system is investigated with t:.t "" 1.3 using 101 x 101 cells. 
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equilibrium point is represented by one periudic cd!. I'll ("ther) S:P (ells are 

mapped into the sink cdL The remaining cells in n are mapped onto one of 
the jJ - 4'J groups and hence represent the basin of attraction of the limit 

"y"le. 
The results obt<.tlncd in this (~XMnp](~ mntajn an approximation of tlH~ 

cornpl0.t0. limit "yr.it' in state space. When a nOll-autonomous system is in­

vestigated by means of eM, only Poinca.re sections of solutions an) obtained. 

IIcnce, for (l.utunumous systems more information is obtained under SCM 
th<LIl for nOH-<.tutonOJ(J(llIS systems, in the Rame order of computation time. 
This implies that th(~ same amount ofinformation--intersection of a.ttra.ct.ors 

cwd ba.sins of attradion with a. Poincare section-may be obt<tined in kss 
computation tirnt~. 

3.2.3 Alternative approach 

By introducing <L Poinc<.Lr(~ section 2:: in the a.utonornOllS state space) an al­
terna.Uv€ SCM appro,tch (ASCM) may be a.pplled. On 2:, a rf~gion of interest 

0' is "hosen, e.g. the intersection of n with 2::. Next, n' h di$creti%~~d into 
cellR and a cell mapping C : 2:: ---.) 2:: is created. Theim(l.g(· (ell of (>a.ch cell 

~ E nl is determined by the "enter point method. The integration inLerv<.tl 
!:!..t is chosen such t hat the terminate point of the integrated t.rajectory lips 

in L:. Hence) for each cell a different value of 6.t is used, which is aJlow(:~d for 
<l.lltmIOIrlOllS SystNrLS. Since the dimension of the investigated Hlgion is re­
duced with one, an obvious gain in computation 1.irli(~ is (!.chi(~w~d with respect 
to SCM. In Fig- :3.2, th(~ ASCM procedure is shown for a two-dimensjonal 

autonomous state space. 

r--------------"~""'~-----

numerica.l int.egration 
..------_._--- '-~ 

C(~) 

Figure 3.2: Alternative SCM (ASCM) approach for a.uton0n101ll'; syst.ems. 
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"'he choice of a Poincare section in an autonomous state space is not 
trivial. Starting from a point in E, it is neces8ary to return to I; within a 
finite time interval. This is achieved by choosing ~ : q := 0 for (t, system of 
one OOF q, since every generalized velocity of every attractor equal:) zero 
infinitely many times (or is constantly zero for an equilibrium point).;) For 
a general autonomous system of l DOP's, qj = 0 is a correct choice for I;, 

for any j E {I, .. , l}. 
The ASCM method is applied to the Van der Pol equation (3.2), ta.king 

E ; q = 0; [2' : Iql ~ 2.5125. n' is divided into 201 cells of length 0.025_ 
For each cell in 5.1', integration is performed until E is intersected again. 
The cell whkh contains the end point is the image cell by definition. The 
exact intersection of a trajectory with :E is obtained by means of the Henon 
method, which is explained in Section 3.3. In Fig- 3.3, the results are shown; 
The limit cycle is represented by two cells with center points q = 2.02.) 
a.nd q == - 2-025 respectively (4 == 0). The unstable equilibrium point is 
l'epn~sented by a P - 1 cell with center point q = O. All other cells are 
mapped onto the P - 2 group. 

* 

-2.5 -2 -1.5 -1 -0.5 

o 

o 
q 

0.5 

* 

1 1.5 2 2_5 

Figure 3-3: ASCM results for the Van der Pol equation (3.2) for f-! = 1.0: P-2 group 
(*) representing; the stable limit cycle; P - 1 group (0) representing the 
unstable equilibrium point. 

The SCM and ASCM applications to the Van der Pol equation required 
a CPU-time of 16.1 sand 0.1 s, respectively. The extra infonnatjou given by 
SCM -the form of the limit cycle-can be obtained by numerical integration 
over a very short interva.l taking the center point of one of the P - 2 cells 

~For a chaotic attractor, this can be proven by using the fact th<J.t it i~ bounded and 
recurrent. 
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as initi.d conditi()[L Further j for each of thc l.nulsient cells the numbcr of 

rnapping ::itep::> nec.essary to end IIp on the limit (:y<.l(' is given (transient 
hcli,wiollr informat.ion). lIenee, under regular SCM more iuform<l.tinn is 
obta.im~d ;1bout t lH~ glo bal transk~n t lwh;)viou r. If one 1::; only inter('stNI in 
dd(~ctillg tIll' (l.ttractors and t.he dOTII<l.ins of ::d:tractioI1, the ;\SCM a.ppro::tch 
d(-'s(~ rW'S recommendation. 

3.2.4 Aeroelastic nonlinear oscillator 

The Van der Pol (~qllation treated in the prcvious subsection is .t relatively 

simple example since only one steady-state :solution was dealt with. In this 
:sub:)ectioJl, SCM and ASCM arc applied to a l-nOF autonomout> t\ystem 
in which two stabl(, limit cycles coexist. The considered system if> a. long 
prism of square cross-section in a. normal steady wind (velocity V)_ The 

prism, with [na.ss m and length I, is coml(~cted to t.he world by uwalltj of a 
line(~r damper (damping d) and a liuc<l..r spring (stiffness k). In Fig- 3_4, a 
schema.tic picture of this system is showH_ 

v ------'-_.. . ..... II, ...- ..... ~ 

q 

Fip;1II't: :~.4: Cro&'l"'sedion of SqltoU-C prism \lnder normal skady wind (:nnflition. 

Studied by l'ftrkinson and SmiLh [26], 

In Parkinson <tnd Smith [26], a quasi-steady anaJysis is lllade of the tra.ns­
V<"~TSC galloping of the prism. This results in the following; ODE for t}J(' nnndi­
rneItSioIl.~l vibration displacement y = q/h in vertical direction, wherr. q is 
th<..~ reid displaf:ement and h the side-.kllgth of the square ::;(~ctiml: 

/I 2tl I (H n . C I", ( f) . 17 
'1/ +'IJ = nA{(l/ - -)y - -)'//' + (--)Yl '. _._- --)'1/ }. .. . nA AU . 11(1:\ AU" . 
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Here, ( )' denotes differentiation with respect to nondimensional time T = wt, 
where w = Jkjm is the natura'! drcular frequency. In (:1.:~), the following 
nondimcnsional parameters have additionally been introduced: 

(3 dj2mw non dimensional damp.ing 
n == ph2lj2m : mass parameter (3.4) 
U V!wh : nondimensional air velocity, 

wit.h p the air density. Finally, A, B, C, D are positive constants whkh can 
be determined experimentally. 

In [26]' the stea.dy-state behaviour of (3.3) has been investigated by 
means of analytical techniques. For small values of U, only one steady-state 
solution exists, namely (y,yl) = (0,0). For U > Ua = 2(3!nA, this solu­
tion becomes unstable ;'I,nd a stable limit cycle (L 1) comes in to existcnce. 
For UI < U < U2, a second stable limit cycle (L2) with a larger amplitude 
comes into existence, coexisting with 1,1. Both limit cycles are separated 
by an unstable limit cycle. Here, UI ~ 1.2 Uo and U2 ::::;:; 1.8 Uu- Finally, fOf 
U > U2 only limit cycle L2 remains. 

To obtain a sHua.tion of coexistence oftwo stable limit cycles, (J = 1.5lJo 
is taken. Further, (3 = 0.5 and n = 4.3 * 10-1 is taken. These choices imply 
a large value for U, resulting in a large nondimensional displacement y and 
velocily y'. To a.pply SCM for these parameters, a large region of interest n 
is taken: -402 ::; l/, yl :::; 402. n is divided into 201 X 201 cells of size 4.0 X 4.0. 
Image cells are determined by means of integration over 2.0 seconds for each 
cell. This results in three periodic groups: a P - 62 group representing L2, 
a. p - 92 group representing L1, and a P - 1 cell representing the unstable 
equilibrium point (see Fig. 3 . .5). Small dots 0 are used to mark cells which 
arC mapped to L1) the white area in Fig. 3.5 contains all cells which lead to 
L2. The uecessary CPU"time for this calculation was 62.8 s. 

In Fig. 3.6, the results are shown of an ASCM application to the same 
system, taking ~ : y' = 0 ;l.ud n' : -402 :::; Y :::; 402. For discretization, 201 
intervals of size 4.0 are used. In this approach, 4 groups are found: A P - 2 
group representing L2) two P - 2 groups representing L1, and one P - 1 
(ell representing the unstable equilibrium point. The basins of attraction of 
both limit cycles restricted to ~ <.tre al:::o shown in Fig. 3.6- The necessary 
CPU-time for this calculation was only 0.4 s. 

The unstable limit cycle, scpara.ting the basins of attradion of the two 
stable limit cycles, has not been found in both calculations- Under SCM 
however, a graphical approximation for the unstable limit cycle is of course 
given by the basin boundary of both basins of attraction. In the same way, 
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Figure 3,5: SCM resuJt~ for t.he aeroelaoLic oscillator (a-:3): Large amplitude limit. 
cycle (+) rtnd basin of attraction (left. hhnk); small amplitude lirnit. 
r.yck (*:) and basin of attraction C); unstable equilibrium point (0). 

a.n approximation of the intersections of the unstable limit cyr.le with I; is ob­
t;~,iJl(~d Ilnder ASCM. Determination of the trajectory ernan~.tillg from these 
(j,pproximations by mean::: of numerical integration yidds an approximation 
for the completc nHtlta,hle limit cycle. In thi::: wa,y) the basins of attraction 
in n ca.n be obtained. Again, this shows that the resulttl pro(b](:od by SCM 
can aho h(·~ produced by means of ASCM (taking very little CPlJ-tirll(~) and 
<lon 'I,dditional integration over ,t, tlhnrt time-interval. 

3.2.5 Remarks 

i'I. H a.lternative SCM approach for autonomous systcms ha,f; hNlIl presented, 
termed ASCM. This a.pproarh produces the Poincar~ sertions of atLntctors 
~nd basins of attraction in the autonomous stat(~ space. Compared to reg­
ular SCM) only a, fl'<tction of the CPU-time i::: required under ;\SCM- An 
<),na,lOf!;OIlS approach ca.n h(~ applied to lCM a,ud GeM, 
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y' = 0 + 
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Figure 3,6: ASCM results for the aeroelastic oscillator (3,3): La.rge amplitude limit 
cycle (+) and basin of attraction (left blank); small amplitude limit 
cycle (*) and basin of attraction 0; unstable equilibrium point (0). 

The idea behind the ASCM method is briefly mentioned in Hsu [14 j 
page 1.54], Sinc~ no examples are presented there j it was considered useful to 
indade this approach here, RecentlYj a similar approach has been introduced 
by Levitas [22]. In his approa,ch, two or more Poincare sections are used in 
the autonomous state space. 

FinallYj it is remarked here that a new CM method for autonomous 
systems has been presented recently, termed adjoining cell mapping (3H j 10J. 
Under adjoining cell mapplngj t he integration interval t::.t for each cell ~ is 
chosen such that ~ is adjoining3 to its image cell. In doing so, t::.t is kept 
very small for each cell, in which way the CPU·time is kept very low. 

3.3 Modifications for discontinuous systems 

3.3.1 Introduction 

A special class of dynamic systems which is very often met in mechanic.a.l 
engineering is formed by systems with discontinuities. These are systems 
which involve clearances j impact problems? and so on. As a result, the 
mathematical model of such (j, system contains discontinuous changes in one 
or more of the state variables. 

When applying eM methods to discontinuous dynamic systems, some 
modifications need to be made. This is shown on the basis of a for(:~~d 

3In Chapter 4, a definition of adjoining is given. 
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Figure :~_7: Meehallical oscillator consist.ing of two pa.rts, joined by a smooth pin 
wit.h play, studied by Li ~t. aL [23], 

t;cro-difbwss impact oscillator, a dynamic. system with <t dir:;continuity. This 
system is discussed in tho:..~ next subsection and treated hy moans of SCM and 
leM in the following tnlbso(:tions, The resultiS <H'C found to match quite well 
with the n~!:iults obtained by numerical integration. 

3.3.2 A fOl"Ced zero-stiffness impact oscillator 

Th(~ Iwhaviour of a simple rnccll'l..nical oscillator is coniSido:..~r<..~d. ]'ht~ sys­
tom consists of two pa,rtiS: on<..' fixed, having a 1>lot, and (HH' constrained to 

translate a.long a iStraight line, joined by a smooth pin wit.h play (FiR· ;{.7). 
Th~~ movable part ifi excited by a pcriodic force and ~mcounter~ uo r('sistance 

(~xn'pt inertia. unUl the pin reaches the end of the slot. The im pa.ct of the pin 
on the fix(~d member i~ ind.t!:iti<:. a.nd is modelled by a codlici(~)lt of" I~p.fititlltjon 

'I', with () < T < 1. The system is governed by thc following nondimensiona.l 
(iiffi'l'fmtia.1 ~Klllati01l and bOUHdQ.,I~Y conditions: 

/I '(.) q ':::isln T 

q' - -7'(/ 
for iqi < I, 
I'or Iftl == 1, 

(:3.5) 

.Here, q rrl(~a,SIJl"(~S the position of the plJl and i is the forcin?; a!llpli1,1](h~. 
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This system was studied by Li et aI. [23], who showed the existence 
of periodic solutions for certain values of rand 'Y by means of analytical 
techniques- For instance, for r -= 0.5 and 'Y ;; 0.20826 a periodic motion wa.s 
found with period 21!' having two impacts during each period. In Van der 
Spek et al. [36], the existence of a chaotic attractor for the same parameter 
vaJnes was shown. 

3.3.3 Simple cell mapping 

To apply the SCM method to the impact oscillator, a region of interest n is 
chosen. Obviously, q satisfies Iql s:; 1. To obtain a region 11 which includes 
both the periodic an the chaotic at tractors it i::; sufficient to choose 1 (/1 :::; 1 
[:l6]. Next, n is divided into 101 x 101 rectangular cells of equal size. For 
each cell, the image cell is detennined by means of the center point method. 

When integrating (3.5), one has to deal with the discontinuity in the 
velocity at Iql = 1. Integration mllst be performed until Iql ;; 1; after 
changing the velocity l' into -rq', integration can be continued untillql = 1 
again. To realize this procedure, the Henon method is used [11]. Here, the 
Henon method means rearranging (3.5) in such a way that q becomes the 
independent va,ria,ble and T the dependent one. This is achieved by writing 
the equation of motion for Iql < 1 in (3.5) as a first order system: 

~ d~i') = X2, 

d~2 = I sin(t). 
(3-6) 

with Xl = q, .1:2 == q'. Dividing the second equation by the first one and 
invHrting the first one yields: 

dr 
CIXl 
~ 
d:tl 

1 
;(;2' 

:t\ I sin ( T) . 
(a.7) 

To describe the procedure followed during numerical integration, the 
following definitions are introdnced: 

T J value of T aftcr j·th integration fltep 

x j calculated value of x = (Xl, X2) after j-th integration step 

x; calculated value of .'ri (i = 1,2) after j-th intcgration :step 

hJ applied stepsize in j-th integration step 
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Numerical integration starts with (3.6). When for some j Ixi I > 1 holds, it 

f;witch is made to .(3.7) and one integration step is carried out with initial 
fondition (Tj-l,:t~-l) and step size Xl = sgn(xD - J;~-l. In this way, the 
values of T and X2 at 1:1:11 = 1 are easily ohta.ined. After multiplying X2 by 
-r, integration is continued with (3.6) until IXll > 1 again. HowEwer, when 
X2 is small, (3.7) becomes a set of stiff differential equations, which ;ue ha.rd 
to integra.te. For :/:2 ::;:-: 0, the system derivatives a.te even infinitely large. 
Hence, the HEman method is not very pl'acticaJ for small values of X2. 

When X2 is too small, a less sophisticated hut more robust way is used to 
integT~te over the discontinuity at IXll == 1. When for some j I,<:i'l > 1 hold~ 
and xtl i~ ~uw.ll, a. new integration is performed from x j - I = (:!;~-\X~-l) 
with stepsize h{ = 1hj = 1(Tj - Tj-d which yields a new x-'(. Next, .t new 

integra.t.ion is carried out with stcpsize hf, with 

iflx~1 < 1, 

if Ixi I > 1. 
(3.8) 

This procedure is repeated until II J;i I - 11 < 10-3 . Since everyi ntegra.tion 
starts from the same state, no accumula.tion of integration errors will a.p 1)(' M . 

The two proc(~dure::; treated ,'l,bove are used in the SCM application. When­
ever X2 < 0.0.5, jh~ stepsize-haJving method is used, otherwise, the Henon 
method is applied. The corresponding results arc shown in Fig. 3.8. The 
periodic solution is represented hy .5 cillRtered cells of period I (0). TIt(' 
transient cells U lea.diIlg to one of these cells together form the ha.sin of 
attraction of the p{~riodif solution. The chaotic aLtntdor if! repn,sented by 
a P - 17 group (*), Its basin of a.ttraction is left blank iIl Fig. 3.8. 

To check the correctness of these results, n (j merical integration for a.ll c<'11 
center points is carried ouL IIer(~, integra.tion is continued UIltil cOllvergence 
is feMhed (r.onvergence criterion: EPS = lO-€\ with a maximum intcgr(lJion 
t.in-H' of 407' (HOll-). If no convergence is obtained within tltir:i tiaw limit., the 
tr<l.jpctory is considered to be duvAic. 

Fig. :1.9 shows the results obta.inod by numerical intcgrn,l.ion: It. pNiodlc 
solution (0) id (O.894,-O.R2S), its basin of '1.t1.radion (::), and the chaotic 
a.t.tractor, which is product~d by th(' E~nd points of all duwtic trajPctories. 
The ba.sin of a.tt.I~a.ction of the chaotic attracto)" is l<~ft blank. It can be :;t~PII 

that the ba::;ins of attraction reasonably match with the SCM results, with 
tb(~ (~xception of the the area -1 S :7:1 :::; -O.G, n.7 -::; .<:2 :S 1.0. Unlib' the 
periodic aJtractor, the chaotic a.ttradol" round under SCM (th(~ P-17 group) 
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Figure a.8: SCM results for the impact oscillator (3.5) for r :;::;; 0.5, 7 ;;;; 0.20826: 5 
p ~ 1 cells (0) and transient cells (-); p - 17 group (*) and transient. 
cells (left blank). 

does not resemble the actual attractor. As is usual under SCM, additional 
numerical integration is necessary to obtain a correct chaotic attractor. 

3.3.4 Interpolated cell mapping 

For applying reM to the impact oscillator} a grid of points distributed over n 
is needed. Since every state in D must have four surrounding grid points) the 
grid points must lie on the boundary of f.! as well. For this reason, the center 
points of the cells used under SCM cannot be 1lsed. Hence, an additional 
numerical integration over one forcing period has to be performed for a 
completely new grid, given by (ih1,jh2), i,j =. -50, .. ,50, hI = h2 = 0.02. 

The discontinuity in (3.5) introduces an additional difficulty for ICM. 
Interpolation only gives a good approximation of the actual state of the 
system when the image points of the relevant interpolation points are not 
too far apart. This is not the case when the corresponding trajectories have 
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Fi)!;ure ;~.\I: Numerical integration result:;;: Periodic attrotctor (0) (l"nd ha~in of a~­
(,l"<.\ction (::); rhaotic att.rador (-) and basin of n,tt.ract.ion (len blauk). 

<:1" different nnmber of impact~. Since interpolation will ?;ivc r:;puriuufi refitdts 
.in this sitllation) an ordinary numerlc<'ll integration should be carried out 
instc(Hl. 0 f rot! fRe, all integrations have to be exec. uted with the integra,tion 
pro(·.Nl \J nl) given in Subsection 3.3-3, 1.0 ha.ndle the di~continuitics. 

Fig_ 3.10 shows the reM results foJ' ~PS = 10-3 and IMAX = 40- The 
p<..~riodic soilltion is found at (-0.895,-0_828) (0). Further, a ~Mldk solt1-
tion is found at (-0.762,-0.807) (+), Tr::tjcdoric$ that do not show can VCl"­

gcnC(~ within 10 interpoiation/integra.tioTl steps are assumed to end up on 
the chaotic <It tl'actoL The corresponding basin of att rac.tion is given by t Itt' 
initial ~tate::> of th(·)st> trajectories (len blank in Fig .. ),[0), 

Comp;)riug thr.se results with those obtained by numerical integra.tion, it 
call be concluded that the periodic solution is found <11mosL exacLly, a.S w~'ll 

as Hi:! basin of itttr<tction. The chaotic attra.ctor also matches very well with 
the one obL~in0.d by numerical integ;ratioll. Additionally, the dctcrrnin'i.tion 
of the :sa,ddle ::>oJu1.io!i is a.n important result. 
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Figure 3.10; reM results: Stable periodic solution (0) and basin of attraction (:;); 
saddle solution (+) and stable manifold (x); chaotic attractor (.) and 
basin of attraction (left blank). . 

3.3.5 Conclusion 

It ha.s been shown that eM methods ca.n successfully be applied to dis­
continuous systems. To this end, the following modifications to the basic 
proced ures need to be performed: 

• Modification of the Ullme:tica.J integration procedure to overcome the 
discontinuity. 

• Under ICM and MM: Replacement of interpolation by integration 
when the interpolation trajectories show an extreme divergence due 
to the discontinuity, 

As a consequence, ICM and MM require a (relatively) high CPU-time when 
applied to discontinuous systems. 
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3.4 Modified ICM procedure 

3.4.1 Introduction 

In thi~ tl(~cti()nj a modification of reM, tflftned MICM, is described} with 
which a substantitd gMll ill CPU-time may be a,chievt'(L Although the ICM 

m(·thod is quite efficient, it (I,n become very time-consuming. Especially 
this is the case when qn(~ is dealing with discontinuom; systems (see pf( .. ~ViOU5 

section). IIowev(~r, a small change in the concept of ICM can reduce the 

CPU -time d ra.stlca.lly} as will be shown.. The presented modification "an 

abo be applied to MM} in which caM the method is termed MMM .. 

3.1.2 The modification 

UndN leM} a trajectory is approximated by IIl<..~am; of intElrpolation. Tll!~ 

interpobtioll i~ stopped when one of the following criteria is satisfi(~d: 

• Convergence t.o a,n attrartor has been a,c.hi(~v(~d arrording t.o it ('.onver .. 

g(~n n' Crit£~rion. 

• The number of interpolation steps h<~~ exu~eded a certain max.i .1l111 ilL 

[n both cases} the created trajertory has setLled Oil <Ill a.ttractol' (in t.he la.tkr 

Cit.S(': a chaotic att.racLor). Th(~ starting point of the l.r(l.j(·rtory is a.dded to 

the rorrosponding bit,.,i II of att radion. 

The proC!'SS of interpol.ation can b~~ stopped at an carlicr :::1.;t,g<', ha.ving 
Hot f'tJlfllled any of the two ;dww'"rnentioned criteria yd .. 11. is suffirient to 

p(~rf()rrll interpolation unLil a st.;~.t.(·~ y has been rc::tched of which the surround­

inp; ~rid points xl! ... X.i2 N (N: state spacc dim('Tlsion) are already knowH to 

kad 1.0 Oll(~ a.nd the same <.tttractor ;\.. Sinu~ further int.crpo]<t.tion will also 
ira,d to A in ::dmosL iWY case j it can be stopp(~d a.t this sta;;c. Thc init.ia,1 

sta.te' of the intcrpola.Led trajer.tory can then imul()dia.toly be added to th(' 
(,OrT<'spondiug ba,sin of a,ttradion. 

'l'bcre mit,y 1)(' wry raro situatiom in whirh thir; premat\lj'(~ clldillf!; of the 

interpol<\,tioTi process produces spurions .['"(·SIJltS. It emL go wrong (' .. g .. when 
iw;i(h~ 1. he a.r(~a, of the N -dimensiona,! C Illw j defined by thc 2N i IItNpolatioIl 

POill1.S, (l, region of initial state::; ()xists leadiniS to;~ difrc["(~Tlt attl'ac1.or t.luUl Ow 
aUra(·tor (·orT0sponding t.o the ~\.lITOllndjng intr>rpolaLion poiJlts. [f t.his iii the 

C,\t)(\ tlw interpolation is noL ju:;tified a.nyway. 'I'D obt(l,.ill correc.t f(~sllltiiJ the 
i Tlt(~rpolation ;;rid shouid lw chosell fi ncr then. The prod II dion of spu.riol1 S 
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Figure :3.1 1: MICM results for the modified Duffing equation (2.4) for d :;;; 0.15) a = 
0.3, w = 1.0: Periodic attractor ( .. -) and basin ofattraction (::); chaotic 
attractor (-) and basin of attraction (left blank); cells leading to the 
sink cell (0). 

results when applying MICM Or MMM may in particular occur when dealing 
with fractal basins of attraction. 

3.4.3 Examples 

As a first example, the modified Duffing equation (2.4) is considered. 
U sing the :;am€ grid and criteria as in Section 2.~i, the MICM method is 
applied. In Fig. 3.11, the results are shown. Compared to Fig. 2.9, a.lmost 
identical basins of attraction are obtained. The MICM method, however, is 
1..5 times faster than ICM, a:; can be seen in Table 3.1. Further, due to the 
modification, fewer transient dots are found under MICM. 

As a second example, the impact oscillator (3.5) is considered. Fig. 3.12 
shows the results found with the MICM mdhod. Here, the same region n 
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is Ilsed as in Subsection 3.3.4, a::: well as the same grid. and ui1;(~ria.. Apart 
from the chaotic attrador, t1H~ MICM results perfectly In<l.tch with the lCM 
rc:mlts. However, the M ICM method is mort' tha.)l five times asf.:tst (scc T<:l.­
ble ;{.l). As ex.pla.incd in SlI bRflction 3.:~.4, interpolation should be rcplac(~d 
by intcgr,ttion whenever the interpolation tra.jec:torieR have a difrcrcHt au m­
bcr of irnpa.cts. Bec:ause of this ctSpcct., USE' of the MICM mdhod ca1lses a. 
wry la.rge gain in CPU-Lime for this example. 

From both ex(\ .. w.ples, it can be seen that undr.r M ICM the chaotic a.ttrac:­

tor is formed by much fewer points than undcr ICM. This can be ducidakd 
by the f(~d that only terminate points of trajectories that have not con­

verged wi thin IM A X interpolation steps arc su PPOfH,d to be part of a. chaotic 
aLLr(l.ctoL Due to the prematurc cndhlg of the interpolation pnH:.Cf:;f:; under 
MICM, most trajectories lea.ding to tlH~ chaotic attmctor <l.re classified as 
being clmotic at aIL (lady stage, in which C.~.tH~ they have not settkd on the 
attracLOl' ycL llow('ver, the chaotic attmctor c:an be obtaincd aJterwa.rds 
hYIIH'a.ns of regular numcrical integration. Integration of thE~ equations of 
motion over 5000 forcing periods gives an accurate picture of the chaotic 
attractor. The nccc:;:qry CPU-time for snch an integration takes only 7.4 ::; 
for the Inodjfi(~d J)llfllng equation and 5-8 :) for the impact oscilla.!.or, which 

implies tIm!. MICM ifi fitill to he preferred to lCM-
Additiollk).l\y, M MM has becn applied to both systems. Sincp the rI~slllts 

obtained .trc ::;imijax to those obtained by MICM, they are not 1'hown lwn~_ 
Cntnpared with MM, identical bas.ins of <l.ttraction arc fOllUd- T1H' chaotic 
attracton; a.n.~ forTfl(~d by less points than under MM. 

In Ta.blo a.I, the CPU-t.irn(~s are giv(~Il for all methods and hoth exa,rnples. 
The IIlodiJi<,<l concept turns out to be faster in aU cases. For t.he modifiod 
DuHiHg ('(Juation, the modified methods aH' 1.D times as fa::;t (l.t:: thp original 
methods. For the irrlJntcL o::;cillator, the difference in CPU·t.inw is up to a 
f(ldor 6-

'Ltblr. 3_1: CPU (8) with and withollt modification. 

Method --Mod- Dilf. lmp.Osc. 

ICM :n.9 1·] 8.G 
MICM 21-8 IS.7 
MM 38.:3 kR.:l 
MMM 25.6 16_7 
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Figure 3,12; MICM results for the impact oscillator (3.5) for r == 0.5, "I == 0.20826: 
Periodic attra.ctor (0) a.nd basin of attraction (:;); chaotic attractor 
o and basin of attraction (left blank), saddle solution (+) and stable 
manifold (x). 

3.4.4 Conclusion 

Modifications of ICM and MM, termed MICM and MMM, have been in­
troduced. These modifications produce almost identical basins of attraction 
in less CPU-time. For discontinuous systems, the gain in CPU-time can 
be a factor five or more. Chaotic attractors are formed by fewer points, 
which implies that additional numerical integration has to be performed to 
obta.in a complete picture. For systems with fra.ctal basins of attraction, the 
presented modifications may produce spurious results. 
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3.5 Mixed cell mapping 

:1.5.1 Intl'odudion 

In S(~ction 2.4, the Hlultiple mappin?; (MM) method has been iIlLrodll.v~d as 

a. va.riation on IeM. U ndN M M, the regula.]' rna,p oV(~r one forcing period is 

replaced by two ma,ps, ~Ia(h covering half of thA integration intcrvid. TIl(l 

idoa behind MM i~ the (~xp1-~dation that a shortN intArpolation interval will 

.inLI)]'ov<~ th(~ a.u:llracy of the trajectory ddermination r:~21. ][ow('ver, this 

d(H~t-: 1101. !I(~(·'d to be true, In bet, b<tJving the intcrpohttioH illtt~rva.l makes 
only sonse for sL;tLes Lh.tt ;t,H.~ !Hling interpolated bctw(~(~n trajectories that 
havp diverged in WIlle way at t = 1'/'2. Therefore, <:I, combination of MM and 
ICM is introduced, termed mi:.r:r:d cel! ·mapping (MCM). 

3,5.2 Method explanation 

Under MCM, it rr.gula.r rCM is used unlt~ss one of the following sitllations 

ocell rs: (a) The iutcrpolation trajectories ha,v(' diverged at I = T /2 with 

respect to 1. he interpolation [!;rid; (b) The interpolation tr;.tjecto ri(\s ('n close 

<t CmlC<l,V(~ area. at t = T. In both caSeS M M is llsed to ohta,in 1. h(' nf\xt image 

point. Divergence of interpolation tra.iectork~s is ddi)lNj to take place wh(~Jl 

d> 1., with 

_ 1 2N -1 d
j 

d- N ~ -. 
2 -1 L..,h' 

:/=( J 

Here, hi <tIld elj (j :::::. 1, .. , 2N - l) represent the distance between Xll+1 and 

xh at t = () and l = T/2 respectively, ::tS is ~hown in II'ig. :1.U for N = 2. 

Tlw I1se of the MCM method in practice will L;.dw .more CPU-time tha,I) 
both Ie M and MM. For f.<lch cell center point ;'l.n i ntegratioll has to b(> 
carried out [or l = 0 to t = T and one for /, = 7'/2 to t = T, which impli(lf; an 
PTlla,rp;(lnH'nt of th(:\ CPU-time with a factor 1.5 compa,f('d to reM and MM. 
However, the re::mltH obtained by MCM are by doi1n.ition at ka::;L a,s a.ccuratE' 

as tliosc obtained hy ICM ;.mt! MM, and in many cases wor(~ ;t,(:cl1rate. Otlwr 

optiou:) to improve the accuracy lIHdrr ICM or MM······such as tlw reduction 

ofth0. (rll sizc-·rn<.~y cIllaxge the CPU-time with it 1(\,rgP.l' factor or m,w ki.V(~ 

less infll10tH'.0. on th~) accuracy of thr. reslllts. 
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t:::: 0 t = Tj2 

Figure 3,13: Definition of state space divergence, 

3.5.3 Example: modified Duffing equation 

As an example of application, the modified Duffing equation (2.4) is consid­
ered, with d = 0,1, a = 3.2, w = 0.1776. These parameters-for which two 
eta-hIe second order sub harmonic solutions coexist-were chosen by Tongue 
[32], to compare reM and MM. On the basis of fractal dimension calcu­
la-Lions, Tongue proved that MM is more a,ccurate than rCM. Here, appli­
cation of both methods as well as MCM is performed and compar<..~d to 
results obtained by numerical integration. The values of IMAX and EPS, 
not mentioned by Tongue, are taken to be 100 and 0,001, respectively, while 
n == {(Xb x2)llxll $ 2,51\ IX21 :::; 4.0}j the interpola.tion grid is given by 
(ihI, jh2 ), with h1 ;;;; 0.05, h';l == 0.08 a,nd i, j = ~50, .. , 50. . 

Fig. ~}.14 shows the results obtained by MCM. The two subharmonic 
solutions have been found as P - 2 groups ((0) and (*)). Each solution has 
a large basin of attraction. Approximately 600 points (+) are mapped into 
the sink celL Because of the fractal nature of the basins of attraction, the 
modification presented in the previous section is not used here. 

Applica.tion of reM produces similar results. To obtain an l~xact com­
parison with MCM, numerical integration is carried out for all grid points, 
using the same criteria for convergence. For every grid point in the basin of 
a,ttraction of one of the two P - 2 solutions found nnder reM and MCM, it is 
r.hecked if numerical integration leads to the same attrac.tor. It is found that 
reM produces approximately 300 errors more than MeM. The CPU-time 
for ICM and MCM is 85.S sand 135.0 s, respectively. 

Under application of MM, more than :WOO grid points are mapped into 
the sink cell. Apparently, the first of the two interpolation mappings pro­
duces a state outside n many times. This problem is solved by choosing 
a different interpolation grid for the second mapping, covering all the end 
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-I 

2.5 

Figure 3.14: MCM results for t.he modified Dulling equation (2.4) for d = (l.l, a;;;::: 

3.2, w = 0.4776: Periodic a.U.ractor (0) and basin of attraction C); 
periodic attractor (:,,:) FLnd basin of attraction (left blank); cells leading 
to the sink cell (+). 

points of the first ma.pping;. In doing so, the number of cells leading to the 
sin k cell is reduced to a.pproximately 500. However, MM still produces the 
same order of (:~rr()rs as ICM (compared with numerical integration) and is 
~herdon~ less accurate than MeM. The CPU-tiHl(~ for MM is os_a t;-

3.5.4 Conclusion 

A modification ha.s been added to the eXlstmg cell In<l,pping techniqucti, 

termed mixed cell m.apping (MCM). MCM is a combination of "{eM <tnd 
MM, produciug mOrE' accurate re:mlts at the cosL of mOtf. CPU-time. Wh0.n 

<tpplying MCM to di~coHtjn!Jo!Js systems, ev(:n a gain in CPU-t.inH' may bc 

<tchieved. This w<.'ts ~hown in Van del' Spek et al. [:16], wb<>fe the MCM 
mcLhod was applied to the impac:t oscillator (3-5). 
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3.6 Integration interval extension 

In this section, it is shown what can go wrong when investigating nonlinear 
dynamic systems by rnean~ of eM methods. As an example, a beam with 
nonlinear support is chosen, It is shown that the use of eM in its regular 
way produces spurious results for this system, The system characteristics 
urge the user to introduce an extended integration intervaL 

3.6.1 Beam with nonlinear support 

A pinned-pinned steal beam with a. central nonlinear support is considered. 
The beam is harmonically excited by a transversal load and is supported 
by a linear damper and a one-sided linear spring. In Fig. 3.15, a schematic 
picture ofthe beam system is shown. This system was studied by Fey I8], who 
investigated the long term behaviour by means of eMS (component mode 
synthesis) methods and finite difference techniques. Here, eM methods are 
used to investigate the long term behaviour for one set of system parameters-

j
F cos( 27r It) 

1L 

Figure l15: Beam system with nonlinear support. Studied by Fey [8]. 

A I-DOF model of the beam system is given by the following equation: 

M ij + dq + (1 + 6H( -q))kq ~ Fcos(21r It), 

with M = 1.0358 kg, d = 116,61~ Ns/m, k = 3282.2 N/m, F :;::;; 19.693 N. 
In (:1.9), q represents the displacement of the beam, while the Heavyside 
[unction II(;c) represents the one-sided character of the linear spring. The 
ratio of the spdng stiffness and the beam stiffness equals six. In IS], the exis­
tence of periodic motions is shown for f E [0,40] Hz and t = 0.01,0.05,0.1 
by means of the above-mentioned methods and pat.h·following techniques. 
In particular, a 1/2 subharmonic solution was found for f = 22 Hz and 
E = 0.01. 
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Figure :3.16: SCM results for the beam syst.em (3.9) for Lll = ,/': Basin of aUraction 
of t.he 1(2 tlubharmonic tloluLion (left blank); basin of attraction of the 
1(5 su bharrnonic solution (+); cells leading to the sink cell (-), 

3.6.2 Simple cell mapping 

The SCM rn(~th()d IS a,ppJi~d t.o tlw beam system (3.9) for f = 22 Hz, ~ = 

0.01, n = {(q, 1)llql $ (Ull f\ 141 $ (l,S), and 6t = T, with T = 1( f· For 
discretization, 201 X 201 cells are used. Thc 1/2 :-)ubh,trmonir solution is 
represented by <t .F-38 group and a P-8 gtOllp. Further, four P-f"l ~roups 
arc found, rcpresenting a 1/5 subhannonic solution, In Fig, ;LIG, the basins 
of attraction of the periodk groups are shown, 

Two aspects of the obtained results a,re striking: the large num ber of celb 
leading to the sink cdl <tud the large n umber of periodic' cells repreflenting low 
ordf'r subharmonic att.ractors. Both aspects can be explained at the h<tJld of 

ch.tractcristics of thf. i nvest.igated system. The large number of transient cells 
is caused by the large amplitude excitation, cau:;ing the sy.st~m to undergo 
lar~e amplitude transient behaviour bcfor(:~ t-:dtling Oil Oll~ of the attractors 
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q 

q 

Figure 3.17: SCM results for the beam system (3.9) for At == 20T: 1/2 subharmonic 
solution (0) and basin of attraction (.); coexisting 1/2 subharmonic 
solLltion (*) and basin of attraction (left blank); basin of attraction of 
1/5 subharmonic solution (+). 

in O. Further, the occurrence of many spuri01lS periodic cells is caused by the 
low system damping. For those cells, an integration-interval of one forcing 
period is too short to leave the cell when starting in its u~nter point. 

Both problems can be tackled by !:~xtending the integration interval ill. 
In Fig. 3.17, the results arc shown of an SCM application for the same n­
and cell discretiza.tion, taking !1t = 20T. As a result, no cells are mapped 
into the sink cell and the periodic attractors are represented by only a few 
groups. Taking an even number of system periods has another advantage 
h(~l'e. When a 1/2 subharmol1lc solution exists, ;).(;tllally two 1/2 subharmonic 
solutions coexist which arc equal avtrt from a phase shift 'Jr. Taking .6.1 =­
nT, with n even, the determination of each solution and corresponding basin 
of attraction i~ (I.(:tomplished. 
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3.6.3 Conclusion 

The extension of the integration interval for the dctcnnination of image cells 
(or imagc points, undcr reM) to two or more forcing periods can be a,pplied 
to au:ompllsh the following: 

• Reduction of thc number of cells mapped into the sink cell due to 
transient behaviou r. 

• R(~duction of spurious periodic cells found due to low damping. 

This has be(~n Ahnwn a.t the hand of a beam system with nonline.tr support) 
excited by a large amplitude force and experiencing little damping. 

It has been shown that cell mapping is a useful addition to periodic 
solvers. By means of SCM, an additional attractor has been found for the 
considered beam system for f ;;;;; 22 Hz. In Van der Spek [;~5], the same 
beam systcm was investigated by means of SCM and IeM. This resulted in 
the detection of additional attractors for f = 8.34 lIz and f = 21.5 Hz. 
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Extensions of Cell Mapping 
Methods 

In this chapter j two important extensions of cell mapping methods are pre­
sEmted_ In Section 4.1, parameter variation methods for cell mapping are 
introd uced _ After an initial cell mapping applicatioILI the proposed methods 
enable the determination of the basins of attra.ction for a new system para­
meter value in relatively little computation time. In Section 4.2~ the question 
how to handle multi-DOF systems by me.ws of (ell mapping is dealt with. 
To reduce the CPU-time a.nd memory demands to reasonable proportions, 
a general approach is presented for these systems, 

4.1 Parameter variation methods 
for cell mapping 

4.1.1 Inhod uction 

The equations of motion of a nonlinear dynamic system usually contain one 
or more system parameters, which are unknown or can change within a 
certain bounded interval. An essential step in the researc:h of a nonlinear 
dynamic; system is the study of the influence of the system paramctcr( s) on 
the long term behaviour. Methods used for this kind of resca.J'ch ar(~ called 
parameter variation methods or cOT).tinual'ion methods. 

Continuation methods are frequently llsed in combina.tion with periodk 
solvers, such a::: the shooting method or the time disct',etization method [3, 8J. 
Periodic solvers yield a periodic solution (if there cxii)ts OM) of a set of 
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0])1':'t;;. A continu,~,1.ion method detennine::: the evolution of the periodic 
:)olution when <~ system parameter is changed. For more information about 
rontinuation metlwds, th(~ rea,der it> referred to Seydel [27]. 

One thing that iF; still lacking in the established eM methods is a para,nw­

tel' variation method, This method should be capable of drtr.nnining the 
evolution of the basin boundaries when a system pamrnetcr is varied, Of 
WUfse, tfw ddermin;t,t;ioH of the ha::;in boundinics for Ul(~ new paramdcr 

V(l,hH~ should t.tkc less CPU-time than a, complete new CM execution, For 
systems of two or more degrees of freedom) application of cell mapping meth­
ods may be very time-consuming. The existence of a, continuation method 

greatly improves the applicability of CM methods to those systems. 
In this section) methods are presented which pred.ict the basin boundary 

evolution of tIl{) attractors of a nonlinear dynamic system, which is investi­
gated by means of SCM or rCM, These methods are termed PVSCM and 
PVICM, r(~spectively. After a regular eM application, yielding two or more 

attractors and basins of attraction, the specific parameter vari<.ttioll method 
predicts th(~ basin boundaries and hence the basins of at tmdion for a varied 
system parameter value. The necessary CPU-time for one variation step is 

much smaller than for a new eM execution, as will be shown. 
In the next subsections, the PVSCM and PVICM mdhods <tl'C pres(~nkd. 

The (:OIlC(~pt of par<i,rnet(~r varia,tiorI is ()xplainNI and corresponding algo­

ritluns ,trc giv(~n. Application of the methods to a rnodifi~~d D'l rfing equation 
is discussed. A comparison is made with a regular eM applica.t.ion for the 
new parameter valile. The proposed methods turn out to be very efficient 
d,nd accllrate. 

4.1.2 PVSCM Method 

Method explanation 

A ·I-Dor nonlinear dyna,mic system is considered: 

X2, 

f(:cl, :C:J, i., f.~). 
(4.1 ) 

Here) :"1:1 and :1:2 represent the displacement and velocity of the ~y~(.(~rn, n~" 

sJw<;Livdy, f sta.llds ['or tirnt.~, <i,lld I" is a system parameter . .It is assumed 

tha.t .r is periodic in l with period T. 
The starting-point of the PVSCM method is a regular SCM application 

to (1.1) for J.l ::;:: 110' For this purpose, a region of interest n .in the st.ate 
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(a) (b) 

Figure 1.1: (a) Partition of region of interest n in basins of a.t,t.ract.ion separated by 
basin boundary 88. (b) Definit.ion of l:!.R. 

i:>p<'l,ce is chosen and is dlscretized in cells, numbered 1, .. , M. For each rcgular 
cell, t he image cell is determined by means of the center point method (sec 
Subsection 2,1.4) with integration interval D.l = T. After SCM <'!,pplir.a.tio!l, 
each cell Z E {I, .. , M} has obtained a, group number G = G(z) whir.h denotes 
to which group z belongs (as a periodic or as a transient cell). 

For illustration purposes, it is assumed that two periodic groups have 
been found in the SCM application, each representing an attractor. These 
groups are numbered 2 and 3 (no. 1 is reserved for the sink cell, which is by 
definition also a periodic group). For the sake of simplicity, it it=: a55urned 
that each cell in n belongs to one of these groups (as a periodic Or as a 
tJ<tIlsicnt cd!), which impUes that no r.ells 3,re ma.pped into the sink cell. 
lh:'rlce, ('<l,ch n~glllar udl " sa.tisfies either G(z) ;::; 2 or G(z) = ;{, The region 
n can be divided in two corresponding basins of attraction B'/., B3, sepa,rated 
by the basin boundary DB (tH~(~ Fig. 4,la). 

The aim of the PVSCM method is to determine the position of tllf. ha.sin 
boundary tJ n~ for It = /-t* == /-to + D./-t in Ie$!) CPU ·time tha,/l is ner.essary for a 
regular SCM execution. Thir:; i5 ,tchieved by only d(~1;(mnining the new image 
cells (i.e. for p == p") for a limited number of cells. When no bifurcations 
occur, the basin boundary wanders through the ~tatc space in 3, (anti n [JOllt; 
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Fjp;lln~ 4.2: (<I) [)dlnit.ion of hOllndary cells. (b) Definition of new boundary cells. 

way when a system parameter is continuously vari~d. For fJ ~ It~, t.he basin 
boundary has moved over an area ~B which is bound~d by DlJ and D.W (see 
Fig 1.lh). By iteratively creating an area B which is a.S stl1.atl as pOf;sible but 
which contains 6.B, <t sd of cells is obtained o{"which the new group numbers 
ddi n(-~ ttl(' lH'W basi n bOll ndary. These cells are referred to as B -cdls. 

IkJore giving t.h~: nN:essa.ry steps in the PVSCM procedure, the following 

dclinitions <tre introduced: 
Definition 1: Two cello z <tnd Zl (i.fe called adjoining if they have at least 

one cell corner point in common. 
Definition 2: A (.~ll z is called a bmmdary cell if thef(~ exists a cell z' which 
is a.djoining to z with (7(,::) f:. a(z'). 
In Fig. Il.la, the boundary cells in n a.n~ shown for J1. = ll.O. 

Tn Ow PVSCM mrthod, the following steps are taken initia.lly: 

1. Determina.tion of the boundary cell::: for /1. = /1'0. TlHl set of boul1cbry 
cells is taken as initial set for B. 

2. Determination of the image cell C(z) for each (ell z E B for II = /-t"'. 

3. Determination ofth(,~ group rnnnlwr G(z) for each cell z E B for p = I""' 
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For the determination of group numbers, a cell sequence z) C(z), C2(z), .. is 
created for each z E B (see Appendix A), making use of the new image cells­
When a. cell sequence leads to a cell i outsjde B, a.11 cells in the sequence 
rec;eive the same group number as z_ 

The newly determjned group numbers produce a new basin boundary 
DB(l), which lies inside B. At places where f)B(l) touches the boundary of 
B, n should be expanded. This is done by determining the new boundary 
cells; these are cells which do not belong to B, but satisfy the definition of 
a boundary cell, due to the new group numbers of the cells in B- The new 
bOllnda.ry cells can then be added to B _ In Fig- 4.2b, the new boundary cells 
are indica.t.ed. Steps 4 and 5 in the PVSCM algorithm are hence given by: 

4. Det(~rUlination of the new boundary cells. 

5. Addition of the neW boundary cells to .H. 

To complete the expansion of B, steps 2-5 are repeated until no new 
boundary cells are found. In step 2 of course, the image cell needs to be 
determined only for the new B-cdb. In 5tep 3 however, it is necessary to 
determine the new group numbers not only for t.he new B-cells) but for each 
B-cell z which eventually maps outside B, hence which satisfies G(z) :; :1 
for the considered example. This is done to restore possible errors. After all, 
when a new boundary cell z receives a group number G(i; M*) i- G(f; 110), 
an cdls Z E R which are mapped onto Z, need to be given the correct group 
Humber 0(£; J1.~). This is achieved by re-determining the group number of 
all B-cells characterized by a group number G ::; 3 (c<:.Jb with G > 3 ha.ve 
received their group number on the basis of new data) i.e. for it = M'", so a 
re-determination of group numbers is not necessary for these cells). When 
no nt~W boundary cells (l.n~ fOllnd, the new basin boundary 8B~ is defined by 
the gr{)1.1p numbers G(z; /1."') of all cells z E B. 

Here, two remarks need to be made regarding the given procedure. First, 
it is possible that during th(~ expanl'iun of B (I. new periodic group is found, 
P_g_ a saddle solution. This does not change anything to the procedure. 
Groups found inside B receive group number 4, 5, .. and so on, 

Second, it should be noted that the PVSCM method determines the new 
basin boundaries in a minimal CPU-time. The time-consuming part in SCM 
is the determination of the image cells, in which integration is involved. 
Here, only for a limited number of cells-the B-cells-the image cell !ta.s 
been determined. The profit with respect to a regular SCM performance is 
obvioHs. 
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PVSCM algorithm 

The PVSCM aJgol"ithm rna,kes Ilse of the group nllmbers G ddennjJl{~d in 
a SCM calculation. The group numbers have been stored in the ,'l,rfa,y g. 

For each regular cdl z, the group number G(z) is given by g[z]. Let Nfl 
be the number of groups (including the sink cell) found under SCM, then 
1 :S g[z] :S N g holds for z = 1, .. ,M. In the PVSCM algorithm, the following 
arrays and variables are additionally used: 

c[zJ image cell of z, z = 1, '" M, 
Nb number of fl-cdls, 
K number of new B-celb, 
b[i] i-th Ii-cell, 'i =: :I, .', N&, 
ind[z] equaJs '1 if z is a, H-cell, 0 otherwise, z ;;;;; 1, .. , M. 

The n(st step in the PVSCM method is the determination of the bOllndary 

cells. When all cells have been checked, If boundary cells have bf~cn found 
and stored in the array b. Hence, initially Nb = ]{ and ind[b[ilJ = 1 holds, 
(i=l, .. ,K). 

Steps 2-0, given in the previous subsection, define the general loop of the 
program. While I( > 0 holds, the following i::; repeated: 

1. For i = Nb " .. K+ 1, .. , Nb (i.e., for all new fl-cdls): 
determine the image cell c[b [ill for p = It". 

2. For i = 1, .. , Nb: 
if g[b[iJ] :::; Ny then g[b[il] := o. 

3. Fori:::; 1, .. ,Nb: 
if g[b[i]] = 0 then determine the HeW group llumber for b[i]. 

4. K:= O. 

D. Fot z = "I, .. , AI: 
if z is (l, boundary cell and ind[z] = 0 then 

J( .- K+ 1, 

b[Nb + f(] ,. N, 

ind[z] . _.- J. 

G. N/I :-::-:: N/,+ g. 
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In the second step of this loop, all B-cells for which a new group number 
needs to be determined (new B-cells as well as cells which eventually map 
outside B, both characterized by a group number G :::; Nfl) arc tagged as 
virgin cells by giving them group number 0 (see also Appendix A). The 
search for new boundary cells, which is done in the fifth step of the loop, is 
quite trivial and can be programmed in many ways. 

Example of application: modified Duffing equation 

As an example of a.pplication of th(~ PVSCM method, the modified Duffing 
equation (2.4) is considered with d == 0.15, a ;;; 0.3, w = LO. SCM applica­
tion to this system has been discussed in Section 2.1, with n: IXi I ::s:; 2.02, i == 
l,2, and a cell discretintion of 101 X 101 (eUs. In Fig. 2.3, the attrar.tors 
and basins of attraction obtained by SCM are shown. 

The PVSCM algorithm is used to determine the basins of attraction for 
d = 0.17. For this purpose, it is necessary to change the group numbers. In 
the SCM execution for d = 0.15, 6 groups were found. However, 3 of them 
r!:.~prcsent the same chaotic attractor. Hence, only 4 different groups need to 
be distinguished (Ng ::= 4). After the group numbers have been changed and 
stored j the PVSCM algorithm can be applied. 

The results obtained by PVSCM arc shown in Fig. 4.3. The basins 
of attraction of both attractors have been determined for d == 0.17. The 
new position of the saddle solution has also been found. To check these 
result::;, the domains of attraction h;:we been determined by mea.ns of SCM 
for d = 0.1.7. The results of both methods perfectly match. In Fig. 4.3, the 
only cell which belongs to different basins of attraction in both simulations is 
indicated (0). The corresponding CPU-tImes are 6.1 s (PVSCM) and 21.2 s 
(SCM). 

Remarks 

The PVSCM method only produces the bMim; of attraction for the new pa­
ramekr value, not the location of the attractors. This information however 
can easily be obta.ined by regular numerical integratIon. Only when a solu­
tion lies in the region B (e.g. the saddle solution in the previolls example), 
a corresponding group may be found. Under SCM however j attractors are 
alwa.ys represented by periodic groups which approximate the exact location 
of the attractor:;. To obtaln the exact position and type of the attractors, 
additional resea.Tch is necessary. In general, integra.tion over a short interval 
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Figure 1.:1: SCM and PVSCM results for the modified Duffing equation (2.1) for 
d = 0,17, a = 0,3, w = 1.0: Periodic basin (-); chaotic basin (left blank); 
S:Lddl~ :,;olution (+) and stable manifold (x); (0) belongs to pNiodic 
basin under PVSCM, to chaotic basin under SCM. 

startiug frow one of tlw cells which represent the attrador is suHkient to 

get the desired inform.ttioo. In this respect, the absence of periodic groups 
ir! the results of a PVSCM execution can not be seer! a.S a shortcoming. 

The basins of aHradion obtained by PVSCM arc (\pproximat.ioTLs for 

those ohbined by SCM. By means of adaptivdy enlarging tIH' set of h'-cells, 
the approximation Nror is kept as small as possible, JloW0.Vf~r, things Gall go 
wrong when a i)'Gell z is mapped onto a cell i rf. l3 with G(i;Jl.~) f:. G(Zj/-tu), 

Then, z receiv('s a. wrong group nnmber C(i; /1>0)' When i is never goin~ to be 

part of fl, cell z-aH wdJ as aJI cells in B which received thl?jr group number 
due 1.0 lcotd.ing to i will keep this wrong group nurnbH. The chance for tld~ 
to happen is small, a.ssuming th.tt the basin boundaries chang{~ HHloothly and 
that generally the state of the inv~~t;1:iga.ted system moves a.way from th(' basin 
bound<l.ry towards the attractor. When nl(~ pa.rameter variation i>tcp !::J./~ is 

increaF;ed, t lle probability of error·introd urtions ~rows. 
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In the <.:~xample of the modified Duffing !:~quation, an extended starting set 
for B was used- Besides the initial boundary cells, all cells bordering on the 
sink cell were added to B as well. When a parameter is varied, changes in the 
basin boundary can also occur along the boundary of O. To predict this kind 
of changes, the extension of the starting set for n is H<:~(.e$$ary- Application 
of the PVSCM mdhod to (2.4) with tld = 0.02 using only the boundary 
cells as starting set for B did not predict the basin boundary changes ill the 
upper left corner of n. Apart from that, the r!:~sults were identical. The 
necessary CPU-time for this simulation wa.s 5-5 s. 

4.1.3 PVICM method 

Method explanation 

The parameter variation technique presented in the previous section can be 
applied to ICM in a similar way. Under ICM, cells actually do not playa. 
role. By regarding the ICM grid points as cell center points, the parameter 
variation concept for SCM is suited for ICM as well. Suppose IeM has been 
applied to (4.1) for Ii = }-to, yielding two attractors, numbered 2 a.nd 3, and 
corresponding basins of attraction. Then, for ea.ch regular cell z a group 
number O( z) exists, which denotes to which basin z belongs j as well as an 
image point x(z), determined by numerical integration over T seconds. To 
obtain the basin boundary for J-l = J-l* = J-lo + b.lt, again a region B is created 
which covers all the cells between the old a.nd new basin boundary. 

The procedure for the crea.tion of B is the same as under PVSCM, apart 
from a few (trivial) differences. First, for each new B-cell z the image point 
x(z) is determined instead of the image cell C(z). Second, interpolation 
is used to determine a cell's group number. During intetpola.tion, the new 
image points (determined for J-l = M~) should be used when available. 

PVICM algorithm 

In the PVICM algorithm, two arrays are used from the reM execution for 
P = }-to. Besides the array of group numbers g, a two-dimensional array ip 
is ava.ilablc- Here, ip[z][i] initially contains the i-th coordinate of the image 
point x(z) for J1 ;:;; Po. Whenever for a B-cell z the new image point is 
determined in the algorithm, ip is updated. The a.rray ip contains all the 
necessary data for the interpolation of trajectories_ FHrther, tbe same arrays 
a.nd variables a.re used as under PVSCM, except for the array c which is not 
rel.eva.nt. under ICM. 
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The first step in the PVICM <dgorithm h the ~ame Oi..S under PVSCM: 
determination and storage of the initial boundary cells. Next, the following 
steps arc repeated until the number ]{ of boundary cells equals zero: 

1. For i = Nb - j( + J, .. , Nr 
determine the image point x(b[i]) for it = !~~ and store it in ip. 

2. Fori::: "l, .. ,N/): 
if g[b['iJ] :S Ng th(~n dd.(nniJ}(> Ul(> new group number for b[i]. 

3, ]( := O. 

1, For z = 1, .. , M: 
if z is a boundary cell and ind[z] = 0 then 

]{ + 1, 

ind[z] 1. 

The determination of group numbers is rc<\lized by means of interpo­
lation, which is continued until conv<"~l'gen(e is obta.ined or until a state is 
re<tdl(~d of which the surrounding grid points belong to cells which have iden­
tical grollp nllmberfi (MICM method, see Section :l.1). When no convergence 

is obtained within IMAX interpolation steps, the trajectory is considered to 
lw r.haotic. The (;ell containing the initial point is accordingly tagged by 
receiving group number O. 

Example of application: modified Duffing equation 

In Section 2.:1, IeM has been applied to the rnodi-n<>d nllffing eqllation (2,1[) 
for d = 0.15, a = O.~l, w = 1.0. Thi~ resulted in t.lJ(~ loca.tion of the periodic 
<tnd the cli<totic a.1.1.rac1.or a.S w(~11 a.s the domains of attraction (Fig. 2.9). 
DtH' to th(' periodicity criterion and the recurrent charadeI' of 1.he ckv)tic 
attractor, I) additiOllal periodic groups were found 00 the chaotic attractor. 
The corn~sponding basins of attmdion, which only consisted of very few 
points, w(~['(~ ;l.(ld(~d to the chaotic attractor's basin of attr<-I.c(.ioTl. These 

re~>ults <-I.re lls(~d as a. reference for PVICM. 
After re-numbering the grOllJl llllmbers j the PVICM method is a.ppli<.~d 

to (2.1) with 6.d = O.ll:.!. Fig. 4.4 shows the new basins of attraction a~ well 



Extensions of Cell Mapping Met hods 69 

.' .. 

'., ..... . 

-0.5 o 0,5 1.5 2 

Figure 4.4: ICM and PVICM results for the modified Duffing equation (2.4) for 
d = 0.] 7, a := 0,3, w ;;;;; 1.0: Periodic basin 0; chaotic basin (left blank); 
saddle solution (+) and tra.nsient cell (x); (0) belongs to periodic basin 
under PVICM, t.o chaotic basin under ICM, 

as the newly found saddle solution. Here, also the cells bordering on the sink 
cell have been included in the starting seL for B. To check the results, reM 
ha,$ been applied for d = 0.17. In Fig, 4.4, discrepancies between PVrCM 
and ICM results are indicated (0), Again, a very good resemblance in the 
basins of attraction is achieved. Also the location of the saddle solut.ion 
is identical [or both methods. The CPU-times for both methods are 7}j s 
(PVICM) and 35.0 s (leM), 

Next, the PVICM method is applied wit.h lld = (},03, which implies a 
damping variation of 20%, All grid points are found t.o lead to the chaotic 
aUra.dor for this case. A regular reM performance for d = 0.18 proved the 
t.onettness of these results. Hence, the vanishing of the periodic attractor, 
which happens somewhere bdw(~!:'n d = 0.17 and d::::;: 0,18, can be predicted 
by means o[ the PVICM method. Here, the necessary CPU·times for the 
reM and PVrCM executions are 36-1. sand 15,6 s, respectively. 
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Remarks 

The additional information of ICM with respect to SCM is the location of 
the chaotic attractor. Unlike under SCM, where the ch,wtic aHra,ctor is 
rcpl'c~ent<~d only by a, r(~W p(~riodic grOI1PS, tile end points of chaotic tra­
jectorjes form a reasonable approximation 0(' the ch<w1.ic ;:tH ra,c1.oL Th is 

additional information is missing when using th(~ PVTCM met.hod - JJOW(~VN, 

the c1l<.wtic <~ttn~ctor obt,uned by n~gul<l,r IeM is still not very accurate when 
regarding the end points ne,u' t.h(~ p(~riodic (I,Uractor. These points belong to 

tra.ject.ori('s which rH'NI more than IMAX steps to converge to the periodic 
attn~ct.or. Furt.her, th(~ d~Q.,otjc attrac:tor is partly formed by end points of 
trajectorics which ha,w not converged to this attractor yet, resulting in <~ 

disorderly picture of the itttrM:tor (compared with the picture obtained by 
rf~gllla.r nil nwric:a.l in t{'gration in Fig. L~). Hence, for a, correct, eha.ot.ic ;\,ttra.c­

t.or, ;~, regul(l.r nllJr)eric:a.l integration is necessary <tnyw<.ty. This rneallt': that 
the lacking of a chaotic at tmctor for fL = 11.* agal n is not a real shortcoming 

of th!..~ PVICM m.~th(ld_ 

,\'he chaotic attractor's basin of attra.ction for 11. = /1'~, obtained by regular 
reM, not only con~ists of ITlltial points of chaotic trajectories, but also of 
grid pointfl leading to periodic groups on the chaotic ;d,tra,doL To obtain 

th(~ correct basin of attraction, all basins of these periodic groups need to 
be included. Under PVrCM however, the correct basins of attrac:tion arc 

directly obtained without ad-hoc interference by the IJser. 

4.1.4 Conclusions 

A IMra.mdcr v~ri(~tion (PV) method for cell l1l<l,pping ha,:) be~~H introdllc:ed. 

It has becn shown that the method can be applied to both SCM and leM, in 

which c<w_~ it i~ termed PVSCM a,ndPVICM, respectively. The PV wethod8 
(\!>t('nnilw t.h0. evolution ofthe basin boundari!"~s,lniti;:dly determined by SCM 
or leM, wll(ln a. systern parameter is v<uied_ Cor]"(~sponding algorithms h<we 

been prc~e II tcd -
Applica.tlon of the PVSCM and PVICM rrl!..~tllOds to a modified Duffing; 

equation has been pNformed. 'l'he obtained. re:::ult;:; perfectly match with reg­
ular c:ell mapping ~'xecutioIlS for the new pa.ramet(~r value. The PV lllct.bods 

howflver are up to five times a:s h~:sL 
Tht' presented methods may not work when global bifurcatiou::; occur 

durinf!; the pararnckr variation, due to discontinuom; ch;~,T!g(~S In the basin 

boundari(~s. However, rcsult~ ohtitilH'd by the PV methods can be USNI to 
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predict global bifurcations for additional para, meter variation. The vanishing 
of attradors dl1rlng variation cc.n be handled in general. In that case, the 
CPU-time profit may be smaller than usuaL Application to sy~tems wlt.h 
fractal basinr:: of attraction may even produce no profit at aJl. In that case, 
due to the followed concept, the number of cells for which a new image (.(~ll 

needs to be determined will be mtlch larger. 

4.2 Cell mapping for multi-DOF systems 

4.2.1 Introduction 

When applying CM methods in their regillar form to systems of many DO V's; 
problem::: of c:omputational kind C<I1l he expected. For a dynamic system of 
l DO f"s, the corresponding state space has dimension N ::;; 2l. According 
to (2.2), the number M of regular cells for a SCM application grows ex­
ponentiaJly with N. Additionally; the necessary CPU-time to determine a 
cell\; image cell grows linearly with N, since N first-order ODE's need to 
be integrated for this purpose. This means that for N > 4 extremely high 
CPU-time~ will occur. 

Under regular SCM, several arrays of length M are crea.ted in the algo­
rlthnl. For each cell z E {l, '.j M}, the image cell C(z) is stored as well as 
its group number G(z) and the step number S(z), which is the number of 
mapping steps required for z to end up on a periodic group ([14], Appendix 
A). Under GeM, a cell can have r::evera.l ima.ge cells, which means that <'~Vell 
morfl arrays are needed. Under ICM jail (N) coordinates of the image pOint 
of each grid point need to be stored. Hence, for too large values of M j the 
computer memory capacity will be exceeded for any CM method. 

'J'he present-day hard ware memory ca.pacity and processing speed put 
a limit on the number of cells and hence on the number of DOF"s of the 
investigated system. Systems modelled by two DOF's probably form the 
limit for regular CM application. In Hsu [141, a 2-DOF Van der Pol system 
was investigated by means of SCM llsing 594 cells. For the determination of 
image cells, an integration interval l' = 2.2 was used. Thir:: :sirnula.tion took 
19 hOlHS on a VAX-ll/750. The same r::imulation has been repeated by the 
author on a SG Challenge, in which case 2.5 hours were needed. However, an 
additional nOF will increase the CPU·time with another factor 592 when the 
same number of cells is used for dir::crctization in the a.dditional dimcnr::ions. 
lIenee, it seems that applying eM methods to systems of three Or more 
DOF's is hardly possible, unless M is kept relatively small by using very large 
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cells. III dOiYlg ~o how(~ver, the (~rrors introduced by thfl cdl diHcY'(~tiza.tion 

will also be very Ia.rge. 
It. is concluded that new eM techniques are necessary for tile investiga­

tioIl of systems of three or more DOF's. An example of sl.J(:h a new t(~ChIliquc 
i~ the MDCM (rnulti-DOF cell mapping) method, which is pre~wnkd in the 

next sllbs(~ction. The MDCM method is dNluced fronl. SCM mld can be 
applied to systems of arbitrary number of DO"''s. I.n SUbS(~Cti()H 4.2.5, ap­

plication is performed to a 4- DO.F dYM.mic t>yt>tem. 

4.2.2 MDCM concept 

U nd('r r(~gllhr SCM, thc a.ttracLors and basins of attraction are determined 
in a region of interest n in th(~ N-dimcm:ional statc swtce. lIow(,wer, a two­
dimcnsional subspace :E needs to be chosen for representation p II rposes. For 
large N, many choices for :E are possible. Hence, the user has to decide 
which (:ho.i«~s are most rdcvant. This means that many data are not used in 
pra.cti(:(~. Thereforc, it scems meaningful to make these choices beforehand 
and to determine the long term beha.viour only for the initi<.tl statcs lying iIt 
the subspace of interest. This point of view is the ba.sis for MDCM. 

The a.im of the MDCM method is the determination of the intersections 
of the basins of attraction of a N-dimensional dynalUk syskrn (N ;;:: 3) with 
a two-dimensional subspace L. For t.his plJrpose, tlw followirlg Ht(~PH a.re 
t<.tkcn: 

• A two-dimensiona.l snbspace ~ C lRN .is chosen. 

• In B, a region of interest n' is chosen. 

• A set of cells S' is defined, covering D'. 

• V'or each cell Z E S 1 the group number O( z) is determined by uea.tl ng 
a "ell processing sequence z,C(z)J:2(zL ... 

The finaJ St.f'P i::; expl<:l..in(~d in detail in the next subsection. Th!~ i.lltcnH~dions 
of the basins of attractioll with )~ are given by the r.elIs in S' with pqual group 

number. Since only for cells in the processing sequences the image cell is 
determinf~d inRtea.d offor <'\.11 cd Is in n uO.der regular SCMtIH~ CPU-time 
and memory demand is reduced drasti"ally in this way. Hnder MDCM, there 

is no rcal re::;triction on the syr::tt~m dimension. 
An interesting aspect of MDCM is the possibility of re-llsinr; stored group 

numbers of processed cells. Having applied MDCM for a. certain :suhsp<tce 
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El, llse can be made of the::;(! group ll1lmbers when applying MDCM for 
another subspac(~ 1:2 _ When a cell sequence starting from <"I. cell Z E 1::2 leads 
to a cell z' which has already been processed in the first application, the 
sequence can be terminated. All cells in the sequence then obtain the same 
group number as z'. In this way, the creation of each processing sequence is 
stopped at an early stage, yielding an extra gain in CPU -time-

4.2.3 MDCM method 

Consider aN-dimensional dynamic system governed by 

( 4.2) 

with fi. periodic in t with period T (i = lj .. ,N). In the state space lRN , a 
N -dimensional cell structure is created. To this end, N cell sizes hI, --, hN are 
chosen. Each cell in this structure is denoted by a cell vector z = [.01 -- .oN]]', 

with Zi E z-; (i;;; 1, ",N). A cell z contains all states x == [Xl"XN]T with 

(Zi - 1/2) hi :S Xi :::; (Zi + 1/2) hi, i;::; 1, '" N. (4.3) 

As a restllt, the center point of a cell z is given by (': ~ [el __ CN]T with 

ci=hiZi, i=l,,,N. (4.4) 

The definition of a two-dimensional subspace E is realized by giving N - 2 
cell indices a constant value, e.g. ZJ = " = ZN = O. E is then defined by 
the corresponding center points, hence E : X3 == .. == ),~N == O. On £, a 

bounded region 0/ is defined by introducing an upper amllower limit for the 
remaining two sta.tt~ variables: 

'{ NI (I) (1") - . N} ) n == x E IR Xi :::; Xi :::; Xi , t;;; 1,2 1\ xi = 0, ~ = 3, .. , . (4.5 

The set S of cells covering Of is then given by 

S == {z E ;ZNI z;1) ~ Zi::; z;u), i = 1,2 /I. Zi;;;; 0, i = :1, .. ,N}, (4.6) 

where zfl) and z;u) are related to x~l) and x~u) according to (4.3). The number 
of cells in S is given by M, with 

(4.7) 

To determine the long term behaviour for each z E S, a cell sequence 
z,C(z),C2(z), __ is neat.ed, with C : YLN --+ ?LN. The determination of 
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an image cell C(z) for a cell z ;;;;; [Zl •• ZN]T itl re<:tli:ted by mcans of the 
(;(~ntcr point mdhod: First, the center point c is obtained by means of (1.1). 
Scwnd, uUIIlcrical jntegration of (4.2) is performed over an iuterval 6.t = T 
using c as initial state. This integration yields <I. st<:ttc y = [Yl .. YN f. Third, 
the imagc cell z~ = [zi .. ZNV is determined, which Is the cdl containing y. 
Th(~ cdl jndices of z* are given by 

( 4.8) 

where int(:I:) d(~n(*~s thc largest integer which is less than or equal to );. 

A cdl sequence is terminated when a (I'll IS found which already occurred 
.in the sequcnce or which has already been tagged in a. rreviolls s(~quence. 
In the former "as€, c. IV~W periodic group has been found; in the latter one, 
all cells in the sequence are transient cclls, leading to a.Il already discovered 
group, and are accordingly tagged. 

Onder M DCM, it is not necessary to definc a sink ccll. After all, for ea"h 
sta.te X E lltN a corresponding cell exists according to (4.8). Hence, a cell 
sequence will not bc terminated because of ending up in the sink (ell, as 
under SCM, but eMf be continued until a periodic group is found. Without 
the existence of a sink (elJ however, the number of cells in the state space is 
infinite. This i m pi ies tfw possibiJ.i ty of (\. never (~ndiIlg cell sequcnce . .lust .os 
under ICM, this problem is tackled by introducing a ma.ximum !lumber of 
"ells in a. sequence. When this maximum is exceeded, all cells in the sequence 
(I.re (l.SS umed to lead to a chaotic attractor. 

4.2.4 MDCM algorithm 

Compar('d with SCM, <:t different way of storing cell data is applied in the 
MDCM algorithm. Under SCM, the group number, the step number, a.nd 
the index of the image cell are stored for each regul.ar cell. Under M DC M, 
thi<:: ,tppro,tch i<:: impossible because of the infinite number of regular cells in 
the ~tatc space. For storing purposes, the following arrays and variables are 
used: 

• Npc: number uf procc<::scd cells, i.e. cdIs which havc obtaincd a. defillite 
group number . 

• f(: number of Gel!.s under processing, Le. (ells in the Cllrrflnt processing 
sequence. 
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• pc: two"dimensional array containing all celis processed or under pro­
cessing. Here) pe[i] denotes the i-th cell in pc while pe[iJ[j] contains 
the j-th index of peril (j = 1, .. ) N) i = 1, .. , Npc + K). 

• g; one-dimensional array containing the group 111lmbers of all cells in 
pc. nence~ the group number of pc[ i] is given by g[ i] (i = 1 ~ .. , N pc+ K). 

• ind: one-dimensional array containing the position in pe of cells in the 
current sequence. Hence~ the i-th cell in the current sequence i:; given 
by pc[ind[i]] (i = 1, .. ~ J(). 

During the generation of a cell seq (1ence~ it has to be checked if th(~ 

la.t.est determined cell z has already occurred in the current or in a previous 
sequence. This information is obta.ined by scanning the array pc. The CPU­
time required for this operation is proportionaJ to t.he number of cells stored 
in pc, which is given by 'In ;= Npc + K. Since m grows during the algorithm 
and a.t least will be equal to M, it is useful to reduce this CPU -time by 
sorting the cells in pc: If 1 :S i < j :::; m then peril < pc[jJ. Here, the 
relation < for two vectors x and y of length N is defined as 

x < y ~ 3jE{1, .. ,N} {Xj < y'j 1\ Xi = Yi 1 s: i < j}. (4.9) 

When pc is sorted in this way, the search for a certain cell take!:> a CPU -time 
which is proportional to log(m) (see e.g. [34]). 

Let N g denote the number of periodic. groups found in the MDCM algorithm. 
The initialization of the algorithm is then given by 

• Npc :;;;;; O. 

Let the cells in S be denoted by ZI, '" zM. To determine the group number 
of z :::: Zi (i = l, .. ,M) the following is performed: First., it is checked if z 
already OCCurS in pc, by means of the assignment 

• B;= SCAN(z, pc, J), 

where SCAN is a function returning TRUE if z occurs in pc~ FALSJ:~ other­
wise. In the former case~ J receives the corresponding index, which means 
that afterwards pc[I] = 2 holds. In the la.tter r.ase, J receives the index of 
the smallest cell in pc larger than z. If no such cell exists, z > pc[Npc) holds 
and I is set equal to Npt: + 1. 
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After calling SCAN, two possibilities exist. When B = TRUE, z has 
already been processed in a previous sequence. In that case, the current 
investigation is terminated and the procedure is restarted for the next cell 
zi+l. When B ;:;;;FALSE, z has not occurred in any sequence. In that case, 
a cell sequence is generated, starting from z. To this end, the number J( of 
cells in the current sequence is initially set equal to zero: 

• If := O. 

Next, the following steps are performed: 

L J( := J( + 1 

2. for (j ::;: 1+ 1, ", Npc + K): pe[j] := pe[j .~- 1] 

3. pe[IJ:= z 

4. [or (j = I + 1, '" Npc + K): g[jJ :== g[j - 1J 

!). g[I]:= -1 

6- for (j == "1; "; /( - "1): if (ind[j] ~ 1) ind[j] = ind[j] + 1 

7. ind[J(] := I 

8. z:= IMCELL(z) 

9- JJ:= SCAN(z, pc.; I) 

In step I; l( is updated. In steps 2 a.nd 3, z is storl'd in pc at position I and 
pc is accordingly upd<lLed_ In steps 4 and fl, g is updated and z is ta.ggNl 
as a cdl lITvlE'r prou~f>sing by receiving a temporary group llum!wr ·1. In 
stt'P 6, the array ind is adjusted a.ccording to the changes in pc. In step 7, 
the index of the laicst dt~tcrmin('d (I'll z is stored in indo In step 8, z i" ::;d 

equal to its image cell G(z), which is determined by means of the function 
fMCELL. Finally, pe is scanned for the O«llrrenCe of z in step 9. 

Steps 1-!) arc repeated until OJl0. of the following situations occurs: 
(A) D = TRUE: In this ca.se; the latest determined cell z aJrE-'ady occurs in 
pc. Depending on t.he corresponding group number g[/] of Z; the following 
::;i1: u<ltinns are d istingllished: 
(AI) g[I] ::::.= -·1: In this case, z already occurred in the current sequence, 
which means th<tL a new period ic grnu P h a.s been found. A:) a ]"(~su It, N[l is 
updated and all cell:; in the current sequence arc Lagged: 
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• Ng := Ny + 1 

• for (i = 1, .. , K) g[ind[i]] := No. 

(A2) g[f] ;::;: 0: In this case, z has already occurred in a previous sequence. 
The cells in the current sequence then lead to the same attractor as z a"nd 
heI\(:e receive the same group number: 

• for (i = 1, .. j K) g[ind[iJJ := g[IJ. 

(B) K == MAX: In this case, the number of cells in the current sequence 
equals the maximum number MAX without visiting a u.Jl which i8 stored in 
pc. Then, all cells in the seq uence are assumed to lead to a chaotic attract Or 
and are accordingly tagged by receiving group number O. Additionally, the 
latest determined cell z needs to be stored in pc and hence g and pe need to 
be updated. Hence, 

• l(:= f( + 1 

• for (i = 1, .. ,K - 1) g[ind[i]J:= O. 

• for (j = I + 1, .'j Npc + K) pc[j] :;;;;; pe[j - 1] 

• pe[IJ::;;; z 

• for (j = 1+ 1, --, Npc + K) gliJ :== g[j - 1J 

• g[I]:= 0 

In both (A) and (B), all cells in the sequenc.e have been processed_ Hence, 
Npc is updated as follows: 

• Npc:= Npc + [{. 
This completes the investigation for zi, The procedure can now be repeated 
for the next cell in S. In Fig, 4.5, (:I, flowchart i8 given of the MDCM­
algorithm_ 

Having determined the group number of each cell in S, the research is 
finished. If desired, a new S<..'t of cellr:; Sf can be chosen for investigation, In 
that case) the same proc.edure is (:I,pplied, starting with the currcnt valuer:; for 
Nil and N pc a,nd using th(~ d,~,t<i, stored in pc and g. 
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-----l H := SCA'N-(Z, pc, 1) ~~-'TnlJE F 

-C'­
(~:~~}----c }--------
'---' ~ .. -'"J~ .---.. [i' 

-------,IT 
N N I · I{ ;= K + 1 

''''_'. :.=. ,_ 1". + ~ CHAOS r------o-i , . _. UPDATE 
pC[J] := Z 

r-;:~~ g[T]:=-1 
~.~~_(~; .' '" ind(K] ;= 1 

" ~,Z :"" TMCELL(Z) 

[ .. _NhWC T gil)"" = __ i }oo-----'T'-IB = THUJ:<J- B ;= SCAN (Z, pc, f) 

Subroutine Uf'DATb;: 

(<>t' (i '" T + 1, .. , Nr", -I K) {peril ;= pC[i - IJ; g[i] := g[i- Il} 
fow (i = 1".,J\.· -- 1) {if (ind[i]2 T) ind[i]:= ind[iJ 4- 1} 

Subroutine Cl!AOS: 

J\ ;= K + I; lJl'OATE; pC[!] := Z; ind[Kl ;= I; 

1'01" (i = 1,"", 1{) {g[ind[iJ] ;= u} 

Subroutine NEW(l; 

N g ;= N g + 1 

1'",' (, = 1, .. ,1\-) {g[ind[i]];= N g } 

for' (i = 1,"",1\) (g[ind(ilJ := g[I]} 

Fig\lr(~ 4.1): l"low chart of the M DCM algorithm. 
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4.2.5 Application: 4-DOF beam with nonlinear support 

The beam system with nonlinear support discussed in Section 3.6 is used a,s 

application for the MDCM method. A 4-DOF model of this system is given 
by the following set of equations: 

Mq + Dq + J(q + f(q) == F(t). (4.10) 

Here, q = [ql q2 q3 q4f is an approximation of the real displacement field) 
containing three frcc"interiace eigenmodes and one rcsidua11lexibility mode 
(see [8, page 84]). Further) M, D, and J( are the corresponding mass, 
damping, and :::tiffness matrices, respectively, which are given by 

[ 

1.38 

M = 0.38 
-0.38 
-0.39 

0.38 -0.38 -0.39] 
1.38 -0.38 -0.39 

-0.38 1.38 0.39 
-0-39 0.39 0.39 

r 

62.91 43.21 -43.19 -43.98] 
J( = 43.21 43.30 -43.25 -44.04 .105. 

-43.1.9 -43.25 45.80 44.02 
-43.98 -44.04 44_02 44.82 

00] o 0 
o 0 
o 116.61~ 

( 4.11) 

Here, (" is a nondimensional damping coefficient. Finally, f(q) a.nd F(t) con" 
tain the nonlinearity and the external excitation of the system, respectively. 
For the considered system, they are given by 

[ 0] r 0] ° ° f( q) = 0 F(t) = 0 . 

19690II( -q4)q4 19.69 cos(21r It). 

( 4.12) 

Here, H (x) is the Heavyside fll nctjoD, representing the one-sided linear spring 
and 1 is the frequency of the external excitation. 

For J == 22 lIz and ~ = 0.02, the MDCM method is applied to (4.10). 
The sta.tE' of the system .is given by x = [Xl .. . 1:8]T, with .1:i = qi, .1:i+1 = 
(n, i = 1, ;~, 5, 7. In the 8-dimenslona.l state space, a cell structure is defined 
by introducing 8 cell sizes 1-1.1, "j h8, given by 6 - 10-7 , 6 - 10-4 , 4 - 10-5 , 

8 . 10-3 , 6 . 10-6 , 3· 10-3 , 4 . 10-5, 1 . 10-2, resper.tlvely_ The (Zl, :t2)-p!a.nc 
is taken as subspace of interest ~; this plane corresponds to all cells z w.ith 
2i = 0 for i = 3, .. ,8. In 1::, a bounded rf:gion QI is defined by plltting 
~25 ::; Zl, Z'2 S; 25, which implies l:l~ll ::; 1..5 - 10-5 

/\ l:t21 ~ 0.01.5. lIenee, 
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n contains M = 51 X 51 cells. For the ddcrndmttion of image cells, an 
integration interval 6.t = 20T is used (::;~~e ,iJoO SectioTl :3.6). Th(~ TH,tximuTT) 
num ber MAX of cells in a cell sequence is set equal to 20. 

In Fig. 4.6a, th(.~ rc::;ults ur this simubtion are shown. The blank area 
corresponds to cells which lead to a 1/2 subharrnonic solulion. Cells identi­
fied by a (-) lead to a 1/6 subharmonic solution. The necessary CPU-time 
for this simulation is approximately one hour. In Fig. 4.7, ~tat0 Sp,l.CP. rcp­
rescnhtions arc shown for aU stat.(~ variables for both solutions. 

In Fig. 1.6b-h) the basins of at.traction are shown for djjr(.~n~Ht choi(:(-~s 

for I;. The modific<~tions with respect to (a.) hn~ giV(~n by Z4 ::.::: 1,2, .. , 7, 
respectively, which implies X1 = Sn . 10-:\ n = 1,2, .. ,7. For J:'I = 0.032 
and X1 = ().()f)6, only the 1/2 subharrnonic solution is found ,tc; poc;sib]e long 
term be haviou r for the cons.idered initi.tl statt~". H sholl ld l)(~ 11 ot.NI that 
in each new s.imubtion use is made of t.he results obtained in the previous 
simulations. In this way, the CPU-time is rednr.ed to approximately half an 

hour per ~irnubtioH. 

4.2.6 Concluding remarks 

A eM method for multi-DOF systems has been introduced, tcrrn(~d MDCM. 
Under M DC M t he long term behaviour is dctcrrnlued fot (I. bOil ndr.d set of 
init.ia.1 s1.a.t('s in a two-dimensional subspace of ~he r:;t'l,te tlpa.C(~. As a. restllt, 
M DC M yields two-dimensional repre~cIltatioHt\ of the ad tlal basins of at trac­
tion. The cor]"(~spoTldiTlg ;-}.tt.ra,ctors a.re represented by periodic group::; ,wd 

by final cells iIi t\<.'qllen(:(~fi oflrngth MAX. By means ofnurnerical integr<'l.tion) 

t.he '~x'v:1. position and type of the attractOl'S can be found. 
With tlH~ a.nalysis of a 4-DOli' beam system, it It:::~s been shown that the 

M DC M method is an effective tool for in vedigati ng m lllti- DO f systems. 
Resides a 1/2 subharmonic solution, which wa.s also found by F~)y [8] by 
rIl(~am; of <t pNiodic solver for different dampjng valuer:;, MDCM ddeded the 
cxist(~Tlu~ of a, ·I/n sllbharmonic solution. Thi::; aga.iTl c;hows tha.t CM is a 

llseftll addition to periodic solvers. 
An alternative way of determining the long term behaviour of a two­

dimensional set of illiti'tl states Of in a N-dimensional r:;t.a.tc :)pa,(:(~ is numer­
iea,] int.(~gr,!.tion, to h(~ performed for each initial stak, ;'l.nd to br. continued 

unt.il convergence to (In attractor is accomplished. Results ohtained by thb 
<.tpproach In<ttdl yuite well with the MDCM results, ,t$ far as the 1-DOF 
beam system ir:; COlltlidered. However) the same order of CPU· ti me iF: re­
quired for ea..eh new choice of 0.' (±3.5 houro for the considered cx.tmple). 
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Figure 4,6; MDCM results for the i-DOF beam system (1.10) for f =:: 22 Hz, {" == 
0.02; Cell~ leading to a 1/2 subharmonic solut,ion (left blank); cells 
leading to a 1/6 subharmonic solution (-). Remaining initial ~tates; 
X3 = X;; = X6 = ~:7 = ~:8 = O. 
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Figure 1,7: Periodic solutions of the 4-DOF bea.m system (4.10) for J = 22 Hz, 
~ = 0.02: (rt)-(d) 1/2 subharrnonit solution. (~)-(h): lid subhannonic 
solntion. 
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Applications 

In this chapter, cell mapping methods are applied to some practical nonlinear 
dynamic systems. First, a rotordynamic rubbing problem is considered, 
featuring a mass-eccentrlc elastic rotor which rotates around a dgid shaft. 
Nonlinear phenomena occur when the rotor touches the shaft (rubbing). 
Here, the ASCM method is used for investigation. Second, the MDCM 
method is applied to a 2·DOF model of a portable compact disc player 
which is hanging on a jogger's shoulder. In this model, the nonlinearities 
are represented by a one-sided connection between player and pad as well as 
between shoulder and pad. 

5.1 Rotor with rubbing 

5.1.1 Introduction 

Rotordynamic systems have been studied for many years, This study finds 
its application in the manufacturing of large turbines as well as small do­
mestic utenslls. Knowledge about the phenomena in rotordynamic motion is 
very important to assure reliability of the machinery as well as to diminish 
unpleasant side-effects for the user, such as noise and malfunctioning. 

In 1919, Jeffcott [17] was the first to present a mathematical description 
of the whirling response of simple rotor models. In recent investigations, 
special emphasis has been put on the nonlinear response of rotors [9, 2, 
2,5) 5) 19]. NonliMat motion can be caused by rubbing between rotor and 
housing, nonlinear bearings, clearanC(~s) Or nonlinear supports. The analysis 
of these problems ir:: wostly carried out by means of periodic so]v(~r$, reglllar 
nurnerica] int.egration} and analytical techniques. 

83 
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[n UH' nf~xt sllbsection, a ro1.ordynarnic prohkHl with rubbing is consid­
Ned feaJHring an t'lafltk rotor rota.ting Mound (I. fixed shaft.. The model i::: 
similar to the one studied by Crooijmans [3L in which case fubbing con­

cerned the rotor-housing contact. In [3], the time-discretizatioll method was 
u~ed to determine periodic solutions of the system. Dy mmms of contin­
uation methods, additional bifurcation research was performed. Here, the 
ASCM method is llsed to determine all possible responses of the system for 
a certain set of system parameters. 

5.1.2 The rotor model 

Geometry of the rotor 

A flexible rotor of mass M is considered, which i~ rot(l.ting with consta.nt 
radial velocity n aroulld a fixed rigid shaft. The rotor is mass-ecrentric. 
The inner radius of the rotor is given by R while C denotes the dc.tr,wu' 
between rotor and shaft. Here, R > > C holds. 

The moLioll of the rotor is described by two DOF's, x and y, which 
determine the position of the geometrical center of t he rotor, Pi), with respect 
to the fixed center of the shaft, Po - The mass unbalance of the rotor i::: 
represented. bye, which denotes t.ht~ dist.a.nee between P" and the center of 
mass Fin. In Fig. !'i. 1, a. momentary position of the rotor i::: shown. 

Forces exerted on the rotor 

Between rotor and ttl<"~ shaft, no medium is present. This means that the 
rotor II ndergoes a free motion as long as contact between rotor and shaft 
does n.ot occur. In case of contact, i.e. for Ll := -/:('.2 + y2 - C 2 0, the shaft 
exerts a restoring force FB = F n -+- Ft on the rotor 1 with 

F'<l = }"'n [ - r,~Hl () ], Ft = Ft [ sin 8]. 
- sm () .,. cos I} 

(5.1) 

The angle (} is defined. <:tS the a.ngle hetween r~ - 1'0 and. the pos.itive x-axis 
(::lee Fig. 5.1). The force FB applies in the idealized can tact point Pc =: 

--u(cos 0, sin 0), with a !:::.: R - C (see E'lg. 5.2). 
TIH~ rotor i:;; made of visf.O-elastic material, with stiffness k alid damping 

d, while the shaft is rigid. Hence) the nOl'mal component I~~ of F~ satisfies 

Fn ::.: H(6.) max{O, k6. + dA}, (.5.2) 
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Figure 5,1; Momentary position of the rotor. 

wh~re H{x) is the Heavysidc function. The tangential component Ft repre­
sents the friction force, which is proportional to the normal component Fn 
(according to Coulomb\s Ia.w) and opposite to the tangential velocity Vc of 
the rotor in Pc. Hence 

(5.3) 

with f the friction coefficient of the rotor and Vc given by 

Vc = i: sin (} - iI cos f) + QR. (5.4) 

Equations of motion 

According to Newton's second law, the equations of motion of the rotor are 
given hy 

M [ Xy:: ] = MeQ2 [ c?sDt ] + 1"n [ - c?s8 ] + Ft [ sinO]. (.5.5) 
sm Dt - S))l (J - co~ () 
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Figure. 5.2: Definition of t.he conta.d point Pc and the contact forces F n and Ft. 

Introducing non dimensional coordinates ~ = :tIC, 77 = !fIe a.nd nondimen­
siona.l time T = nt, (5.5) is tra.nsformed into 

[ 
~II 1 [ cos T 1 [ cos (} 1 [Sin (;l 1 " = E. - 1/Jn . + ?jlt , 
7j SlIl T sm e - cos f) 

(5.6) 

with ( Y :::::: d( )ldT. The nondimensionaJ force (.omponentf> VJn a.nd VJt are 
given hy 

H(o) max{O, IiO + ,90/}, 
.- fsgn(llcN'n, 

(5.7) 

where 0 ;-;:; J(2 + 172 - I is the nondimensional indentation of lhe sha.ft in 
the rotor and 

[1(: = {' sin (;l - r/ cos (;l + p 

is the uondimcnsiowd tn.ngcntia.l velocity of the rotor in the contact point 
"c. In (5.6)) (5.7)) and (5.8L the following non-dimensional parameters have 
been introduced: 

E clC, 
K, kIM0 2 , (5.9) 
(3 dIMf'l) 
p RIC. 

Together with the friction codficio:.~nt J, they form the set of relevant system 
parameters. 
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Slip or roll 

The expr~ssion (5.3) for the tangential component Ft of the restoring forc.e 
F$ is only valid for Vc -=J. O. This applies to a sitnation in which the rotor is 
slipping along the shaft. When v~ = 0, the rotor is rolling along the ::ihaft. 
In that case, Ft is an additional unknown which can be found by means of 
the equations of motion and the additional algebra.i(. condition v,: = O. 

NumericaHy} the situation of Vc being exactly zero will almost never 
occur. To make roll behaviour possible in a numerical approach, the concept 
of micm-slip is introduced, which can be interpreted as 'almost roW. When 
Vc is small, say IVcI < vep$} 1'( is considered to be unknown (l,.nd is determined 
by means of substitution of the relation Vc = 0 in the equations of motion. 
This yields (see Appendix C) 

proil 
t M e!P (sin llt cos 8 - cod1t sin 0) 

MnR (. 0 .. 0) 
C (1 + 8) x cos + y sm . (5.10) 

Since the friction force is bounded by the friction force dne to slip, the 
following formula for Ft is obtained in a roll situation: 

(.5.11 ) 

The complete expression for the nondimensional tangential component Wt of 
the re6toring force FB is now given by 

with veps « 1, 'Ij;n given by (5.7)} and 

jl/~ I 2: l-'eps, 

lvel < VCPB , 

II [. . e cos 0 + r/ sin B] 11[0 =H(o) e(slIlTcosB-cos1'smO)-p 1+8 . 

5.1.3 Investigation by means of ASCM 

(.5.12) 

(5.13) 

To investigate (5.6) by means of eM, the most obvious method is the MDCM 
method (Section 4.2). After all, the state space of the considered system 
has dimension N = 4, which implies that r(~g11Iar eM will be very time­
consuming. By introducing co-rotating coordinates however, U').6) can be 
transformed into an autonomous system of the same dimension. By meanS 
of the ASCM method (Section 3.2), the dimension of the cell state space 
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is reduced to three. Hence, ASCM ::;cem::; to be an Q..ppropriate nwthod of 
investigation for this particular system. 

Th(~ following co-rotating coordinates are introduced: 

~ cosr + rysin T, 

-~ sin T + 7] cos To 
(5.14) 

Differentiation of (5.14) with respect to r) substitution of (fi.ti) , and elemen­
(.;ny ca,lclllation yields the following set of ODE'::;: 

r~ "'1 + 2'''2 - '¢'n t 1 - 'ijJ tr 2 + e) 
r~ = r2 - 2,j - 4'n 1'7, + 'l/V1· 

(5.15) 

In the four-dimensional :state space spa.n ned by {rll r~ , r2, rD, a three­
dimensiona.1 Poinr.are section E is chosen, given by r~ = O. Next, a cell 
mapping C : B ---'I- :E is created. To this end) a region of interest H' on 
~ I::; defined by fY : Irll ::::; 2}i, Ir~1 ::; 100, hi :::; 2.5 which is divided into 
41 X 11 X 41 cells. For each cell, numerical integration is performed until 
:E has been inter:sccted for the 20-th time. The cell containing thf. 20-th 
intersection point is taken as the image cell. 

The ASCM methud as described above is applied to (.5.1.5) for E = 

3.0) J = 0.01) P = 62.5, K = 2850.0, f3 = 8.5, Q..ncl ZlfjpS = 0.01. This result::; in 
the determina.tion of two coexisting attractofS. The1ie attracton; rcpresent 
different types of motion which the rotor may undergo, namely slip and roll. 
In Fig. 5.~\ the basins of attraction of both attractors a.re shown for four 
diH'ercnt two-dimensional subsets of 2::, given by (a) r~ = 0, (b) 1') ::::::: 0, 
(c) 1'2 = 0, (d) T2 ;;:;: 0.125. By meanS of the rela.tions 

~(O) 
t(O) 
77(0) 
7]1( 0) 

rj (0), 
r~ (0) - r2(O), 
rAO), 
,;(0) + 1'1(0), 

(5.16) 

wliich directly follow from the definit.ions of ri (i = 1,2), the basins of 
attraction an~ oht.<l.ined in the original coordinates (,11, fj t/. 

In Fig. 5.Ja, the consIdered set of initial states corresponds to a situation 
in which the rotor is almost in rest (~, 17;;;: 0(1), (, r/ !::: 0("102)). To obtain 
roll behaviour, <:ttl initia.l indentation of the r:;haft in t he rotor i::; necessa.ry. 
When the rotor is given a.larger initial velocity (Fig. 5.3b)j roll behaviour C<lll 

emanate from init.ia.1 states corresponding to a no-contact situation. When 
the rotor initially i~ concentric with the shaH ({ = 17 = 0), large velocities 
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are nccesMry to obtain roll behaviour; moving away from this concentric 
position in ~-dlrection, smaller veloc.ities are sufficient (Fig, .5-3(.)_ The same 
effect can be seen for 'f7 ;;;; 0.125 (Fig . .5-3d). Tn Fig. 5.3, the region of no­
contact is represented by the inner area. of the circle ((a),(b)) ;l..nd by the 
area between the two vertlcallines ((c),(d)). 

In Fig- 5.4, a doser IOQk is taken at the .a.ttractor representing slip behav­
iour. Fig. 5.3 shows tha.t an initial state of ~ = e = 7] = 7]' = 0 leads to slip. 
The trajectory calculated by straigbHorwaTd numerical integration of (5.6) 
::;ta.rting from this initial state is shown in Fig. 5Aa for T = 0 - 200. Due to 
its mass-eccentricit.y, the rotor moves Qutw;l..rds untH it hits the shaft. When 
t.ra.nsient behaviour ha;;; vanished, the rotor undergoes a slip motion along 
the shaft. For T > l.50, the slip motion is interspersed with short period;;; of 
free motion. In Fig. 5At, a Poincare section of thi$ trajectory is shown, rep· 
resenting the state at T == 2n7r, n ::;;; 2000,2001, .. , .5000. The fractal form of 
the Poincare section indicates that the slip-motion a.c.tually is a chaotic mo­
tion_ This is confirmed when focllssing on parts of the (l,ttractor (Fig. 5.4c,d). 
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Finally, in Fig. 5.4e-h, Poincare sections of the state of the rotor arc shown 
fOf T = 2n1!" + cPo, n = 2000,2001, .. ,5000, with cPo = 7r! 4, 1[,/2, 37r! 4, 7r. 

In Fig. 5.5a,b, a trajectory is shown which is obtained by integration of 
(5.6) for T = 0 - 30 with initial state e -= r/ -= 1.5, e = 1] = O. According to 
Fig. 5.3, this state should lead to roll behaviour. After transient behaviollf 
ha,t;; vanished, the motion in the ~ - T/ plane is almost circular with radius 
r ~ 1.76, which implies a nondirnensioHaJ indentation of 0.76. Hence, large 
contact forC(~s will occur between rotor and shaft in this {'.as{~. In Fig. 5.5c, a 
closer look is taken at the response of the rotor in ~-dlrection as a function of 
time. The two difI'cn'nt oscilJa,tions that can be clearly distinguished indicate 
tha,t the considered motion is quasi-periodic This is confirmed by Fig. 5.5d, 
showl ng a Poincare section of the i::ta.tc at 7" =: 2mr, n ;;; 6, 7, .. , 1000. The 
dosed loop in this figure corresponds to a quasi-periodic motion. 
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5.1.4 Discussion 

In a previolls stluly on the ronsidered rotor system, empha&i~ wa,:; put OJI 
the influence of the pa.ra.meteni [ a.nd f on the long term behaviour. For 
investigat.ion, straightforward nll medcal integration was applied IIsi ng ~ = 
1/ = e = 1/ = 0.0 a~ initial state. The aiIIl of that study was to find out which 
pa.r;urwter value combiua,tious kad to ::;lJp l:iJ)d which to roll bdl(l,vioul". J)~J~~ 

to the large deformations involved, it was especially important to determine 
w hid coUl.biIlation~ could prevent tll<:'~ uCCurnmn~ of rolL n(~C(I,use of UH' 
confidcntial chamdcr of this study, no further detaiL:> can b~~ given IH~H~. 

The usc of cell mapping-in particular ASCM-for th<..~ iHV<..~titigatioH of 
the rotor system has shown important advantages with rcrsped to rcgular 
nnmeric.a.l integration. Under ASCM, the complete ::;tatc ::;pac(~ is '::lca,nncd' 

[or recurrcnt b('havioul while under flilmerica.l integration only one initial 
::;t,\,te i::; ('oJJsid<:'red a,nd hence only one steady-state solution can be found. 
By mean::; of i\SCM, it h;t::; be~~ll t-:hown that not only the parameter values 
but. a,bo tf)(~ initia.l state of the rotor determines whether slip or roll will 
occur. In particular, no parameter combinations have be<:.~n found which 
rom pletely exclude the occurrence of roll. Howcvcr, for roll behavi()u r to 
happen, large initial velocities Or large .injtja.1 rotor-shaft indentations may 

be necessary, as in the considered <"~xMn.rle. 
The rc,},der should T10t(~ tha.t for the considered system the situation oc­

curs in which a dlo..otic motion .is preferred to a regular motion. After all, 
when Ul(~ rotor is slipping along the shaft, the motion of its geomct.ric<tl cenh~r 
is chaotic <:tnd hence totally unpredictable. On the other hand, th(~ motion is 
qua::;i-periodic ,l,nd hence totally predictable in a situation of roll. However, 
it if:> not tlH' predic.tability that counts for this system. More import.tnt is 
the ,woid;j.nce of large rotor deformations and corresponding cont.<tct forces, 
which result in malfunctioning and a noisy performance. 

5.1.5 Concluding remarks 

It ha~ been shown th,~t tb(~ ASCM method can be applied to rotordyn<lm.ic 
::;Y::ltemt:> with dimension fOUf in state space. By means of co-rotat.ing coordi­
nates, these systems are transformed into Q.,1JtonOmOtl5 systems of the same 
dimcnsion. By utiing (I, PoinCl:irp. sH:tion in the autonomous state r:;pace, the 
dimcnsion of the cdl :)t<I.tl~ spau' ran be reduced to three, which implies a 
tiubsLl.[)tia,! rN!1Jction of the total number of regular cdb. This mea.ns that 
the rcqllin~d CPU-time is a.cceptable for the USCI'. Th(~ ~iTl1ll!a.tio!l pH'sented 
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in the pH~vious subsection took 4.2 hours CPU-time. 
For the investiga.tion of (5.6), the MDCM method can be Hsed as well. 

The advantage of ASCM with respect to MDCM however, is that the com­
plete state spa.ce is scanned for recurrent behaviour. Under MOCM, a re­
duced set. of initial states is considered and hence only attractors corre­
sponding to these initial states can be found. The MDCM method can be 
seen as the only pnctical tool for systems with dimension N > 4, or as an 
appropria.te tool when only particular sets of initial states have the user's 
interest.. 

5.2 Portable CD player under jogging condition 

5.2.1 Introduction 

The handling of external shocks is one of the main problems in the design 
of consumer electronics. As an example, one can think of a. portable com­
pact disc (CD) player. Knowing the type of external disturbance, measures 
can be taken to guarantee a high-quality performance. This includes e.g. 
the design of appropriate suspensions of the internal me<::hanisms and opti­
m1zation of the control systems and electronics. For invcstjgation un this 
topic, based on linear theory, the reader is refetted to DraJjer et aJ. [4] and 
Stdnbuch d aL [28]. 

For a portable CD player, a special type of externa.l disturbance 1s given 
by th(~ motion which 1t experiences during jogging. The ability of the player 
to perform well under this condition if> called 'joggability'. The measures 
necessary to assure joggabillty depend on the response of the player to this 
type of loading. Especially, the occuning acceleration of the player is rele· 
vant for this evaluation. 

In the next subsection, a simple 2-DOF model is given which charac­
teril;e~ the nonlinear vertical behaviour of an ideaJjzed portable CD system. 
The jogging effect is represented by a harmonic excitation. To determine 
the long term behaviour of the system, use is made of the M.DCM method. 
This is done for one set of system parameter values. 

5.2.2 The CD model 

The CD pJayer ma.inly consists of two parts: the player P (mass 1n2) and 
a carrying stra.p, containing a shoulder pad B (mass ml)' The vertical 
displ~(.eH\ent of H is denoted by ql' The two parts of the strap connecting n 
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Figure 5.6: 2-DOF mooel of rt port.ahle CD player under jogging couditioll. 

with l' art' <.onsidered Inassless and are modelled as one-sided linear springs 
and dampers, ear.h with stiffness k and damping d. The displacement of P i~ 
givt'n by Q2, with q2 such that (/2 < ttl conforms to the situation in which the 
strap is being stretched. In Fig. 5.6, the model of the CD pla.y(~r if.] shown. 

During jogging, t.he motion of t}H~ shoulder is assumed to be harmonic. 
'rhe amplitude and frequency of this harmonic motion (I.re giv(~Tl by a and 
f, respectively. Hence, the motion of the should~r is prescribed and given 
by 'II.(t) =- as.in(wt), with w = 27rf. The shoulder ih<.:~lf i~ U\odf~llwl as a 
OI1(~-hidedli nmtr s pring with stiffness c. 

The eqllations of motion of the system are sirnplf,~ ,tnd piece-wise linear. 
DdiniIlg ~ = gd a, 1} = q:d (/., T' :=: wt, the nondimensional equations of motiun 
<1.H~ giv(~n by: 

(S.17) 
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Here, ( )' = d( )jdT and I = g/aw2, with 9 the a.{'.cdCfation due to gravity. 
Fb represents the strap forces, whkh arc only nonzero when the strap is 
being stretched (~ > 1]). Hence, 

F O - H(£ - 7 ) [ - max{O, Kl(£ - 77) + fil(f - 77')} 1 
- 7 max{O, K2(£ -1]) + f32(e' - ry/)} , (5.18) 

where I'vj = 2kjm.jw 2, f3; ;;;; 2dln"/,iw (i = 1,2), and H(x) is the Heavyside 
function. F5 represents the force which the shoulder exerts on B. Hence 

F E - H" (. _ ') [ 0'( sin r - t) 1 - sm T .. 0 ' (5.19) 

5.2.3 MDCM application 

1'he MDCM method (see Section 4.2) is used to investigate the 2-DOF model 
of the portable CD player, given by (5.17), (5.18), and (5.19). It is assumed 
tha.t the stra.p stiffness is equal to the shoulder stiffness: k = c == 1000 N 1m, 
while the strap damping i::: given by d = 4 Ns/m. For the jogging amplitude 
and frequency, a = 0,05 m and f = 2 Hz is taken, respectively. The masse::; 
of Band P are given by ml = 0.05 kg and ffi2 = 0.35 kg, respectively. 

The .tim of applying MDCM is to determine the possible types of respom:e 
-in particular the occurring acceleratlon·····-for the CD player. Looking at 
the background of the problem, it is obviQUfi to focus on the CD player and 
the influence of its initial state on its long term behaviour. An appropriate 
choi.c(,~ for a. two-dimensional subspace of relevant initial states is then for 
example given by z:; : f, == r == O. 

The :::tate of the system is given by x ;;;; [Xl" X-lJT with Xl = ¢, X2 = 
(, x::\ = If, X1 = 1]'. In this four-dirn(~nsion<ll state spare, a cell structure is 
defined by choosing four cell sizes: hl = h3 = 0,01, It'), = 11,4 = 0.06. On 
:8, a region of interest nl is defined by lad::; 0 .. 5, IX41 ~ 3. By means of 
MDCM, the long term behavlou r is determined for initial states in n/. For 
the detf:~rrnillation of image cells, a time integration interval of five forcing 
period::: i::: ur::ed (b. T =: 5//)· 

In Fig. 5.7a, the results of the MDCM application are shown. For the 
chosen region of interest n/, three different type::: of steady state behaviour 
have been found. Cells denoted by (0) lead to a. ha.nnonic solution, shown in 
Fig. 5.8a. This attractor corresponds to a situation in which there is always 
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a function of time (s): (a),(b) Pull contact harmonic solution; (c),(d) 
coexisting harmonic solution; (c) ,(f) quasi-periodic solution; (g),(h) 1/2 
subharmonic solution, 
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contact between f>hOlllder and pad. Cells denoted by (-) leMi to <t coo:.:~xi~tiIlg 

hannonic solution (Fig_ 5-8(:), which showA twointerva.l:; orno-conhct during 
each period. Finally, cells which are left blank in Fig. 5.7a lead to a quasi­

JH~riodic solution (Fig- ,5-8e). The trajectories in Fig . .5.8 are representations 
of the state of the player in original coordinates as a function of rea.! tillH'_ 

In Fig. 5.7b j the basins of attraction are shown obta.ined by an additiona.l 
MDCM application for a region nil c n/. Here, 0/1 is defined by Ix:)1 :S 
0-05, 1:(:41 :S 0.3- Tht~ cdl sizes are given by hI = h:J = 0,001, h2 = hq = 

0-006- From t.his 'lnagnific.a.tion window' on nl
, it eMl be concluded that 

the basinf> of attraction have a fracta.! structure; changing the initia.l state 

only slightly may retlult in a different stea.dy-sta.te motion_ F'nrthermore, an 

addit.iona.1 periodic: group is found with a sma.!l ha.sin of a.ttra.ction (*)_ This 
group rt~pre~(~Ilts a 1/2 ~ubharrnoIlic solution (:::ee Fig. ,5,Sg), 

The a.ccelHations of t.he CD player corresponding to the determined so­
lutions a,re a,dditionally shown in Fig_ .J_8,b,d,f,h. The acceleration in the 

c;,tse of the full-contact solution is perfectly sinusoidal. For the coexisting 
harmonic solution, the intervals of free motion arc represented by intervals 
of ronsta,nt acceJera.tjon -9_ It ((I.u be seen tha.t the occurring peal <l,c(:d~ra.­

tiOll is less than 2g for this solution. In the case of quasi-periodic behaviour 

(Fig. 5.Hf) however j a.ccelerations of more than l:~g are possible. Here j the 
motion of the player is characterized by large amplitudes (up to Ii ve timelS the 

shoulder amplitude). Finally, the peak acceleration for the 1/2 subharmonic 

is approximately :lg. 
The results in Fig. 5.7a,b have been verified by determining the trajectory 

belong.ing to four different initial states, each corresponding to a differrmt at­

tractor. III Fig. 5.9, trajectories are shown obtained by integration starting 

from x = [OOOx~j1', with Xq = 1.1,1.2, -1.0, (US, respectively. The fir:::t. 

three shtes indeed lead to the attractor as predicted by the MDCM method­
For ~;'I = (UR, however, the wrong attractor is obtained. Although the tran­
sient b('haviollr of t.his trajectory is governed by the 1/2 subha,rmonic, it 
finally settles on the fulJ-contact harmonic solution. This may be explained 

by the small basin of ::tttraction of the 1/2 subharmonic t>o1utioJl- AllywaYj 

when the actual basins of attraction have a fractal structurt\ the rt~pret>en­

tations obtained by means of eM should be interpreted with carC. In such 
a sit\lation, the errors involved with eM have a larger impact than usual. 
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Figure 5,9: Verification of basins of attraction (initial state; Xi = 0, i = ] 12, :1); 
(a) full contact harmonic solution; (b) coexisting harmonic solution; 
(c) quasi-periodic solution; (d) full contact harmonic solution with 1/2 
subharmonic transient. 
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5.2.4 Concluding remarks 

A 2 nOF model of "t porta.ble CD player ha.s hwm investigated by means of 
tll(' M DC M method. Vor an initia.l region of i ntereflt j three different )"('spOT\St'S 

were found to be possible: two harmonic solutions and one qmtsi-periodk 
~olution, Dy focussing on a small part of the initiaJ region, H~<'IJi/'<..'d by (I. 

MDCM application with very small celLs, a 1/2 subhannonic wiutloll WitS 

deth:t(:~d_ A second r(~R1l1t of thlR ?:ooming action was the confirmation of the 
frat.ta.l strud.u rr. of parts of the basins of attraction. 

Unlike the (sllb)harmonic solutions found, the quasi-periodic solution 
featlJreslarge accelerations and a large amplitude motion. Since this solution 
has a large basin of attraction in the ~et of relevant initial st<ttes, large 
(I.u:elf'rations a.rt' very likely to occur. For the assurance of joggability, it is 
t.herefore necessary to cope with these kind of accelerations, or to change 
one or more system parameters in such a way that only low-a.cceleration 
solu tion~ occur. 

Th(' present.ed simulations have shown the existence of four solutions for 
<1. set of system parameter values. By means of continuation methods, the 
evolution of the periodlc attractor~ eMl he determined when system parame­
ters are varied. The sensitivity of the basin boundaries with respect to the 
systcm p;uamders can be investigated by means of PVSCM. Howcver j the 
gain in CPU-time with r($pcct to a MDCM application for a new parameter 
value will probably be smail, oue to the fractal structure of the basins of 
(l.t.t.ra.c.tion. 
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Conclusions and Guidelines 

In this thesis, recent development.s have been presented concerning the ap­
plication of cell mapping methods as a tool for the global investigation of 
nonlinear dynamic systems. For the S<.tke of accuracy and efficiency but in 
particular applicability, a number of modifications and extensions have been 
presented and evaluated. In this chapt.er} a recapitulation is given of the 
main conclusions that can be drawn. Additionally, sorm~ general guidelines 
are giv(~n for the use of cell mapping methods ;Hld their extensions. 

6.1 Conel usions 

Mod ifi cations 

• For autonomous 5ystems, the necessary CPU-time can be reduced 
tremendously by introducing a Poincare section and taking this as 
the cdl state space. 

• For discontinuous systems, the following modifications are necessary: 

- Adaptation of the integration rotltine to overcome the disconti­
nuity. 

- When interpolation if:; iIlvolved, replacement of interpolation by 
integration when the interpolation trajectories show an extreme 
divergence dtte to the discontinuity. 

• Under ICM, a gain in CPU·time can be achieved when a new criterion 
is added to the interpobtion procedure: When a state is reached of 

101 
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which the f:;urrounding interpolation points lead to (HI(~ <illd the same 
(j,1.1.ra.ctor, further interpolation will generally lead also to 1, h is aUl'ador 

and is therefore not perfonncd-

• reM and MM can be combined to MeM_ MCM product~~ more accu­
rate reR !llts a,t the cost of more CPU" time-

• The extension of the time integration interval; for the de1.errninil,tion 
of image ceUs or poiub, rc:::ults in 

the reduction of the nllmber of spuriolls IH~riodic cells or points, 

the reduction of the number of cells mapped into the sink cdL 

Extensions 

• By means of the PVSCM and PVICM mdhods, tht~ scm:itivity of re­
sults obtained by SCM and lCM with respect to system para.nH~tNs 
can be studied very effectively and straightforward. In th is Wily, global 
bifurcation::: can be predicted. 

• Hy mea,ns of MDCM, systmns of arbitrary state spau' dinwllRinn ta,n 
be scanned for (j,ttra,dors. Two-dimensiona.l intel~sf'.ctions of the corre­
sponding basins of attraction are obtained. 

General conclusion 

When a global overview of the attractors and corresponding basins of at­
traction of a complex nonlinear dynamic system is wanted, eM is the most 
:::uited method. In t-:eveml applic<ttiollS di:::nlSS(~d in this thrBis, C:M yi(~lded 

additiona.l informa.tion with refiped to previous investigations performed by 
periodic :::olvcrs and dired integmtion for one initia.l Rta,te_ NIlTlwrital inte­
gration for <:t huge number of initial state:::-the only a.ltern a.tiV(~ for a. globa.J 
inwstigation is milch more time-cnnRuming than eM. 

6.2 Guidelines 

Which method to use for solving the equations of motion? 

• When only one specific periodic :::olution is desired: Periodic solvers. 

• When only a few initial states an~ l'elr.vaYlt: Numerlcalintegration. 
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• When an overview of all attractors (periodic, quasi-periodic, chaotic) 
<'!,nd corresponding basins of attraction is d(~sired: Cell mapping. 

Which eM method to use? 

• For statf) space dimension N = 2: 

Generally; SCM, (M)ICM, (M)MM, MCM. 

- For autonomous systems: ASCM. 

To obtain probabilistic properties; GCM. 

• For N = 3,4: 

- Genenlly: SCM, MDCM. 

For autonomous systems: ASCM. 

• For N > 4: MDCM. 

Combination of eM with other methods 

• To determine the type and exact position of an attractor, H~presented 
by a periodic group fou nd with eM, the following methods can be 
applied: 

- Numerical integration. 

- Liapunov exponents or attractor dimcnsion determination_ 

• To obtain a complet~ bifurcation diagram for a certain system para­
meter, the following procedure should be followcd: 

Determination of all attractors by me<'l,ns of eM, for a,n initial 
value of the system parameter, 

- Determination of periodic: branches as (j, function of the varied 
sYRtem parameter vallle, by applying a, path-following method to 
each periodic at trador. 

Guide for t:l.pplying eM 

• How to choose Q and E'! 

- On the basis of state restrictions of the system, 
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On the basis of relev;'l,ncy. 

On the basis of forcknowledge, e.g. obtained by [Mall:;; of numer­
ical int0gration. 

• How to choose the time integration i oterval': 

For periodically forced non-a.utonornous systems: r~qlJal to (me or 
more forri ng peri()d~. 

For autonomous systems: Arbitrary (but not too ~rnall) undcr 
regular eM; prescribed under ASCM. 

For :small damping and large amplitude transient beha.viour, an 
extension of the interval is l'ecom men ded (:)(X~ Conclusions). 

General guidelines 

• Wlwn(~ver an aLLrador has been found by means of eM, it dcscl'vc~ 
recommendation to detcrmine its type and location in the state space, 
c.g. by means of Ilumerical integration over only a short {wriod. Un­
der eM, an attntctor is OftCIl represented by several period ic: grQ II ps. 
Ntlmerlc.tl iutcgmtion thus yields which groups represent the sanw a.t· 
tractor. To obtain the conect bar:;iIl of attraction for an attrac:tot'j the 
basins of attrMtion of all its corresponding groups need to 1w (ollN:ted. 

• G(~nNa,lly, the choice for the integration interval under eM if.: not ob­
vi01ls. Tn llmt case, the smallest value (as possi hie for tll(~ ;l,ppli(:d 

method) is reronl mell (kd. Wh<..~n ~puriom: rcsul ts ::tre obtillned j inte­
gration can be contlnu(~d, usillg the (~nd points of the trajcctories as 
skl.rt.ing poin t~. This process can be proc:eeded IJ nti I satisfyi ng re~uIt.s 
are obt<tinr.d. In doing so, the integration interval and henc:e the CPU­
time is kept minima.l. '1'111' )1('t.essMY CP U -time for the classification 
of cells and other a.dministra.tiv(: procedurc~, which h<wc to be pcr­
formed after every new integration, can be .TJt~glectd. with rcspect to 
the CPU-time for integration. 



Appendix A 

SCM algorithm 

Under SCM, cells are dassified by a group number and a step number_ 
For each cell z, the grQup number G(z) denotes to which periodic group z 
belongs; the step number 8(z) stands for the number of ma,ppings necessary 
for z to end up on a, periodic group. Hence, periodic cells are characterized 
by a. zero step number. 

In the SCM algorithm, the arrays g[z] and s[z] represent the group 
a.nd 6tep number of z, while c[z] contains the index: of the image cell of 
z (z ;;:;: 0,1,." M). The sink cell (index 0), which is a periodic cell by defi­
nition, is regarded as the fir6t periodic group. This results in the following 
assignments; 

g[O] 1 
s[OJ 0 
e[O] 0 
Ng 1 

where N g denotes the number of periodic groups found in th(~ algorithm. 
For the determination of the group and step Humber of the remaining 

ceHs, the following procedure is fol.1owed: Initially, all regular cells are taggNI 
as vit~qin cells by giving them a zero group number: 

for (z = 1, .. , M) g[z] ;= 0 

Next, a cell scquenr.e z, C(z), C2(zL .. is created for each regula,!' cell z. Cells 
in tlw sequence are tagged as cdIs tmder processing by giving them a tempo­
rary group number -1. As Jong as the latest determined (ell in the sequence 
is a virgin cell, creation of the sequence is continued. Let z be the initial cell 
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of a sequence and let IMCELL(z) be the subroutine returning the irn.tge cdl 
of ;:, then the cell sequence creation ifi given by the following assignments: 

j := 0 
b := z 
while (g[b] = 0) g[b] '­

c[b] 
-1 
IMCELL(h) 

b .- c[b] 
J j + 1 

When t h(~ ticq neuc<.~ has been terminated, two possibilities exist for its 
final cell b = Cj(z): g[b] ;;;; -lor g[b] > O. If g[h] = -1 holds then cdl b 
already occllrredin the sequence, 'J'his m~ans that b::.:: Ci(z) i()l" .t. cert<tin 
i E {O, .. ,j .. I}. Hence, a new periodic group has been fOllnd, giwlL by 
b,C(b), .. ,Cj-i-I(b). As a result, Nq can be updated and aJl cells in the 

R!'quen.ce Cart be given a group and step number as follows: 

Ng ,- N!! + 1 
for (l = O, .. ,i-l) g[z] Nfl 

s[z] i -l 
z '- c[z] 

for (l = i, .. ,) - 1) g[z] '~ Nf} 
s[z] 0 
z '- c[;:] 

If g[b] :> () holds then cell b is either the sink cell or a regular cell which has 
already been tagged in a previous sequence. In both caRes, all u~lls in the 
cuncut ~cquencc .\re tagged as transient cells, leading to the same periodic 
group a.t; b. lknce 

for (l = 0, .. ,j - 1) g[z] .~ g[b] 
s[z] s[b]+j-l 
z c[z] 

When for all regular cells this procedure has be!')) carried out, all group 
and step numbers are known. As a result, all periodic' groups and wrre­

sponding basinf> of attraction are obtained. A more detailed explanation of 

the SCM a..lgorithm is given in Hsu [14]. 



Appendix B 

Interpolation Indices and 
Functions 

In the reM algorithm, state space trajectories are approximated by means 
of interpolation, For all M grid points, covering the region of interest n, the 
image points a,re calculated by means of numerical integration. The image 
point of a grid point xl is df:~noted by yl (l ::::: 1, ,., M). To obtain the image 
point y of an arbitrary state x == [Xl .. X'N]T E [2, multi-linear interpolation 
is perlormed betw{~en the image points of the 2N grid points which surronnd 
x: 

']/' 

y::;:; LPi(X)y!i, (B-1) 
i=l 

The indices 11 , ,., 12N of thf. grid points surrounding x are given by: 

N i-1 

II 1 + kl + L;ki II Mj, 
i=2 j=] 

m-l 

I· J I + II M 2 N · 2m - 1 12m 
(j-2m-l)i, Tn::::: ,.', ,j= + , .. , , 

i=l 

wit.h 
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Tht' interpolation function~ p], .. , P'),N in (B.l) <tre giv@ by: 

N 

I-\ (x) II Lo(fd, 
1=.1 

Fj{x) ·1 N· 2m - 1 + ., 2m 
m~ ,'H~, .,J= ~~-, ~ 

with 

i;;;;: 1, .. , N, 

and 

Lo(x) - 1 - x, 

L t (:1:) :c. 



Appendix C 

Derivation of Equation 
(5.10) 

In the case of micro"slip (almost roll), the tangential velocity of the rotor in 
the contact point is assumed to be zero. According to (5.4), this means 

X sin B - it cos () + DR ;:;;; O. (C.l) 

Differentiation with respect to time yields 

x 51 n e + x iJ cos e - ii cos e + yO sin 0 == O. (C.2) 

Next, e is eliminated from the above equation. Since 

() = arctan(y/x) + C, 

with C = 0, 1r or 2n-, it follows that 

e 1 l' yx 
(y / x)2 + 1 (;;- - x2 ) 

xy - y± 
= 

x2 + y2 
Y cos B - i; sin e 

=: 
VX2 + y2 

iJ cos () - i: sin e 
= 

C(l + b) 
(C.3) 

Sl1bstitution of (C.l) in (C.3) yields 

iJ _ rtR 
- C(l + by (CA) 
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Elimination of iJ from (C.2) using (CA) yields: 

.. . 1'1 . f'lR I)" (} . flit . () 0 
xsmu+x"",( -,)cos -yeos +VC( I:)sm = . 

G'l+u .,1+() 

ConRider the equations of motlon (,5.5): 

M i :::. 1VI eD2 cos Dt - F rj (.Os 0 + Ft sin ()) 

Mij = lVId~2::;jnnt- F:"sinO-FtcosB. 

Substitution of (c. 7) in (CJi) yield$: 

.. . e . SIR f)' nR '() 
l: 8m + x c(. ') eos + y C(. 1:) SIn ;::: .,1+0 .. 1+u 

~ (-"~t sin e - Ft cos B + Men2 sill W) cos B. 

Elimination of x using (C.6) yields: 

~(- F~ (Os e + Ft sin () + M en2 co:; Hi) sin () 
M 

- ~ (- Fn sin I) - Ft. cos f} + M en2 sin nt) cos e 
DR (. e ., 1'1) 

... C (1 + 8) x (;OS + Y sm u . 

Hence, Ft satisfies tlle following relation: 

Fc - M en2 (sin nt cos () - cos Of sin B) 

MftR (. Ll •• 1'1) 
- C(l + 8) XCOSv + ysmu . 

Appendix C 

(C.!)) 

(C.6) 

(C.7) 

(C.S) 

(C.9) 

(C.IO) 
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Samenvatting 

In dit proefschrift worden modificaties en uitbreidingen gepresenteerd va or 
cell mapping (eM) rnethoden. eM methoden worden gebruikt om het lange 
termijn gedrag van nict-lineaire dynamische systemen globaal te onderzoe­
ken. Met behulp van eM kunnen zowel periodieke als chaotische oplossingen 
van de bcwegingsvergelijkingen bepaald worden. Tevens maakt toepassing 
van eM de bepaling van de attractiegehieden van de stabie1e oplossingen 
rnogelijk. 

Eerst WOl'dt een overzicht gegeven van de belangrijkste CM method€ll_ 
De simple cell mapping (SCM) methode is gebMeerd op een dlscretisatie 
van de toc:standsruimte in cellen j gevolg door de bepaling-via numerieke 
integratie-van de bijbehOl'ende beeldcellen. Ret la,nge termijn gedrag V;3,n 
een sysV~em wortH hier gerepresenteerd door groepen periodicke cellen, De 
generalized cell mapping (GeM) methode is cCIl generalisatie van SCM. Van­
wege de probabilistische benaderlng is GeM met name geschikt voor de 
bescbdjving van chaotis{:h gedrag, Dij de interpolated cell mapping (reM) 
methode worden met behulp van interpolatie benaderingen bepaald van de 
trajectories van het systeem in de toestandsruimte. Multiple mapping (MM) 
tenslotte is een gemodificeerde versie van JCM welke betere resultaten oplc­
vert in gcval van grote toestandsruimte-vervormingcn. 

Vervolgens worden enige rnodificaties gepresentecl'd, welke dienen am 
de nauwkeurigheid en efficicntie van de bestaande eM methoden te vCr­
groten_ Yoor autonome systcmen wordt l~en dimensic-reductic methode bc­
sptoken. Vervolgens word~n modificaties gegevcn welke noodzakelijk zijn om 
eM melhoden toe te passen op di$continuc :system, Voor reM wordt een 
aanpassing gei-ntroduc:eel·d waarmee het intcrpolaticpro(es wordt vcrsneld. 
Verder wordt cen combinatie besproken van lCM en MM j mixed (ell mapping 
(MCM) genaamd, Tenslotte worden de voordelen getoond van het gebruik 
V<'J.l1 t~en verlengd integrati0.-interval voM SCM. 

N aast deze modificaties worden twee wezcnlijke uit brcidingen op de be­
staande eM methodcn gei-ntroduceerd, De cerste behcbt een para.meter-
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variatie tech nick waarmee de gevodlgheld van CM-resuHaten met lwtrckklng 
tot systeemparameters kan word,,~n geanalyseerd- Met bHhulp van dczc tech­
niek b.n in relatief weinig rckentljd de evollJ.tie van de att racticgebieden 
bepaa1d worden wanoeer cen systeempa.rametcr wordt gevarieerd. Op deze 
manier kunnen globa1e bifurcatles gemakkelijk voorspeld worden_ lId gej'n­
trod.ucecrde idee is uitgewcrkt voor zowel SCM als reM. 

De twecde llltbreiding bestaat Ult een nieuwe eM methode j mv.lli-DOF 
cell mapping (MDCM) genaamd, wt~lke toepasbaar is op ::;ystemen met vee! 
vrijhtjdsgraden. Omdat het aantal cellen·-en dientengevolge ook de reken­
tijd en geheugenruirntc-exponentieel tocneemt lllet de dimensle van de toe­
standsruimte j is toepasslng van de conventionele CM methoden op dergeIijke 
systenwn erg onpraktisch. Dlj de MDCM methode loapt de rekentijd slechts 
evenrcdig op met de systeemdimensie terwij1 de vereiste geheugenruimte qua 
ordt~·grootte const.ant blijft. 

Ter illllstra.t.ie wordt CM toegepast op twee praktische nid-lineaire dy­
H<l,mische systemen_ EcrsL wordt het glob ale gedrag Ond€fZOcht van een 
rotor-lager syskern. I-lier llgt de nadruk op de attractiegcblcden van een 
quitsi-periodieke en een coexisterende chaotische oplossing; wf.lkt~ overeenka­
nwn met respectievelijk cen ro1- en een slip·bewcging van de rotor_ Vervo1-
gens w()rdt het 'joggend vermogcn' van een draagba.re CD-speIer bestudeerd. 
Met behuip va.n MDCM wordt V()Or cen verzame1ing relev<tute beglntoe­
standen de respons van de CD-speIer bepaald op een periodi(~ke cxcitatie. 

Ger.oncludeerd wardt dat dc gcpresenteerde moditkatics en uitbreidlngen 
waardf-vol zljn. Verder wordt de toegevoegde waardc bcnadrukt van eM 
methoden ten opzichte van de meer ingcburgerde onder7.0eksmethodcn, zoals 
reguliere numcricke integratie en perlodieke op1ossingsmethoden. Tenslotte 
worden algemene richtlijnen gegeven voor ltet onderzoeken van nid·lincairc 
dynamische systerncIl alsmede voor het gcbruik van eM methoden. 



Acknowledgements 

The author wishes to thank everyone who has contributed in any way to the 
realization of this thesis. He ows special thanks to the students who have 
participated in the project: 

• Corne de Hoon 

• Didier Lemmens 

• Edwin Thijssen, 

for their resea.rch in the field of cell mapping, 

• .Josu Xavier Piiia BHbao 

• 'rom de J onge, 

for their investigation of rotordynamic fitructures, and 

• Marko de Jager 

for his contribution to the creation of order in chaos. Finally, the author 
wishes to acknowledge hirs appreciation to his colleague 

• Pider Vosbeek 

for the TEX- and UNIX-support throughout the years_ 

117 



Curriculum Vitae 

• 7-[)-1966: Born in Asten, The N etherlands_ 

• 1975-1984: St. WiUibrord Gymnasium Deurne (gra.mm<tr school). 

• 1981-1989: Eindhoven Uniwl'sity of Technology: Studies at the Fac­
ulty of Mathematics and Computing Science. 

• "1990 1994: Eindhoven University of Technology: R(~scarch assistant 
at the Faculty of Mechanical Engineering, Section of Computational 
<tIld Experimental Mecha.nics_ 

118 



Stellingen 
behoreno~ hij hd. prod~chrift 

Cell Mapping; Methods: Modifications and Extensions 
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