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Summary

fn this thesis, modifications and extensions of cell mapping (CM) methods
are presented. CM methods are tools for the global investigation of the long
term behaviour of nonlinear dynamic systems. By means of CM, periodic
as well as chaotic solutions of the equations of motion can be determined.
Additionally, application of CM enables the determination of the basins of
attraction of the stable soluiions.

Firsl, an overview is given of existing CM methods. The simple cell
mapping (5CM) method is based on a discrefization of the state space in
cells, followed by a determination—hy means of numerical integration—of
corresponding image cells. Groups of periodic cells represent the system’s
long term behaviour, The generalized cell mapping (GOM) method is a gen-
eralization of SCM. Because of the probabilistic approach involved, GCM
is particularly suited for the description of chaotic behaviour. Under in-
terpolated coll mapping (ICM), approximations of state space trajeclories
are created by means of interpolation. Finally, multiple mapping (MM) 15
a modification to ICM, yielding more accurate results in case of high state
space distorlions.

Next, some modifications are presented which increase the accuracy and
efficiency of the existing CM methods, For autonomous systems, a dimen-
sion reduction methad is given. Subsequently, modifications are given which
are necessary Lo make cell mapping methods applicable to discontinuous
systems. For ICM, a modification is introduced which speeds up the in-
terpolation process. IMurther, a combination of ICM and MM is discussed,
termed mized cell mapping (MCM). Finally, the advantages are shown of
using an extended integration interval under SCM,

In addition to these modificalions, two substantial extensions of the ex.
isting UM methods are presented. The fiest extension contains a parameter
variation technique, suited for the sensitivity-analysis of CM results with re-
spect to system parameters. With this technique, the evolution of the basin
boundaries due 1o & parameter variation can be obtained in relatively Tittle
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CPU-time. In this way, global bifurcations can easily be predicted. The
introduced concept has been elahorated for both SCM and ICM.

The second extension is a new CM method, termed multi-DQF cell map-
ping (MDCM), which can be applied to systems of many degrees of free-
dom. Since the number of cells—and hence the CPTU-time and storage
requirements—grows exponentially with the state space dimension, appli-
cation of conventional CM methods to these systems is very impractical.
Under MDCM, the CPU-time grows only linearly with the system dimen-
sion while the order of the storage requirements remains constant.

For illustration purposes, application of CM methods is performed to
two practical nonlinear dynamic systems. First, the global behaviour of a
rotor with rubbing is investigated. Here, emphasis is put on the basins of
attraction of a coexisting quasi-periodic and chaotic attractor, which cor-
respond to a motion of roll and slip, respectively. Second, the ’joggability’
of a portable CD player is studied. By means of MDCM, the response of
the player to a periodic excitation is determined for a set of relevant initial
canditions.

It is concluded that the presented modifications and extensions have
merit. Further, the additional value of CM methods is emphasized with
respect to more established methods of investigation, such as periodic solvers
and regular numerical integration. Finally, general guidelines are given for
the investigation of nonlinear dynamic systems as well as for the application
of CM methods.
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Chapter 1

Introduction

In engineering practice, there is a great need for efficient, powerful, and ac-
curate methods to predict the long term dynamic behaviour of nonlinear
mechanical structures. As important examples, one can think of rotordy-
namic systems, such as pumps and generators, or systemns with nonlinear
supports. In this thesis, a promising dynamic system investigation method
is discussed in detail.

A theoretical approach in the prediction of dynamic behaviour is given
by the procedure of mathematical modelling of the mechanical structure one
is investigating. In this thesis, mechanical systems are considered which are
discretized with respect to space. This approach results in a set of second
order ordinary differential equations (ODE’s):

El=F(q=élatnu')' (1'1)

Here, q = [g1() .. q1)]T is the column containing the system’s generalized
coordinates, with [ the number of degrees of freedom (DOF) of the system.
Further, ¢ and § are the columns containing the velocities ¢; and the accel-
erations §;, respectively (4 = 1,..,{). The column p = [p1 .. ux]7 contains the
system parameters, such as the system frequency, the system damping, and
30 on. Finally, (") stands for differentiation with respect to time ¢. Defining
the state of the system as x = [g1..q; d1 .. §1]7, (1.1) can be written as a set
of N firet order ODE’s:

% = F(x,t, p). (1.2)

Here, N = 2! is the dimension of the state space. Both {1.1) and (1.2) are
used in this thesis for the mathematical deseription of dynamic systems.

1



2 Chapter 1

[n most cases, the dynamic response of a mechanical structure resulis
from excitation through an external force. In {1.1), this force is represented
by means of the explicit dependence of the right-hand side [ on time ¢. The
study of the long term behaviour of a mechanical system is in particular rel-
evanht when the external force has a deterministic character, especially when
it is periodic. Tor this reason, only periodic external forces are considered
in this thesis. Hence, F' satisfies

Flg,q,0+ T, p) = F(q,4,t, p), Yizo, (1.3)

where 1" ig the period time of the external force, When the external force—
and hence F'—is time-independent, the system is called autonomous.

Having modelled the mechanical system by a set of ODE’s, the next step
15 the determination of its long term behaviour, represented by Lhe stable
solutions. Finding the stable solutions of (1.1), also called altractors, has
now become the first task for the investigator. Besides stable solutions,
also unsgtable solutions of (1.1) may cxist. These solutions represent saddle
solutions and repellors of the mechanical system (see ¢.g. Thompson and
Stewart [29]). Localization of these solutions may provide important addi-
tional information for the system behaviour and can be viewed as a second
task for the investigator.

When a model is created [or the relevant phenomena of the dynamic be-
havionr of a real mechanical system, two main features should be included
in general. First, the model should be dissipative. In every real moechan-
ical system, encrgy is being dissipated in a cortain way, e.g. by damping,
friction, or nonclagtic collisions. This aspect shonld alse be represented by
the model. Second, the model should be nonlinesr. Although lincar models
may be suited (o obtain a first impression of the behaviour of a mechanical
system, they will not necessarily be able to predict real characteristics of the
bekaviour, Henece, an accurate mathermatical model of a mechanical system
will mostly contain one or more nonlinear ODE’s. This has some important
consequences for the solution strategy of (L.1).

Whether a dissipative system is linear or nonlinear has great influence
on the determination of its long term behaviour. In a dissipative linear sys-
tem, only one steady-state long term solution for the generalized coordinates
exists, This solution has (he same frequency as the external force, while its
amplitude is propertional to the amplitude of the external force. Fach ini-
tial state of the system leads to this solution. The behaviour of the system
before settling on the steady-state solution is called tronsient behaviour,
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In contrast to linear systems which are relatively simaple, a nonlinear
system may reveal a broad spectrum of strange phenomena. In this, it is
useful to note two important characteristics of a nonlinear system:

¢ Coexistence of attractors. Even when the system is dissipative, more
than one atiractor may exist for the same set of system parameters.
To which one the system is attracted depends on its initial state.

o Occurrence of chaetic behaviour. Although being excited in a periodic
way, the system may respond in a chaotic, i.e. nonperiodic way. When
this chaotic behaviour is siable, one speaks of a chaotic atiractor. In
spite of the deterministic equations that describe the behaviour of the
system, a chaotic motion is so extremely sensitive to changes in the
initial state that it can be called unpredictable.

Additionally, many types of bifurcations may occur in nonlincar systems.
Bifurcations are sudden changes of the solutions in multiplicity, form, type,
magnitude, or stability, caused by a variation of a system parameter. For
more information about nonlinear systems, chaos, and corresponding phe-
nomena, the reader is referred to Thompson and Stewart [29)].

To illustrate the two main features of a nonlinear system, the modified Duff-
ing equation {29, page 101] is considered:

§+dg—q+q° = acos(wt). (1.4)

This equation models a vertical Euler support column, loaded beyond its
buckling point, additionally harmonically excited with amplitude e and pe-
riod 27 /w (see Fig. 1.12). In the unforced case, this system has two stable
equilibrium points at ¢ = 1 and ¢ = —1 (buckled states) and an unstable
aquilibrinm point at ¢ = 0. A small external harmonmnic force converds the sta-
ble equilibrium states to periodic attractors. For larger driving amplitudes,
competing periodic and chaotic attractors may come into existence [29).

Ford = 0.15, a = 0.3, w = 1.0, a periodic and a chaotic attractor coexist
(Kreuzer [20]). This can be shown by means of numerical methods. Taking
g(0) = ¢(0) = 1.0, numerical integration ylelds a trajectory that converges
to a periodic motion. On the other hand, an initial state of g(0) = ¢{0) = 0.0
produces a trajectory that settles on a chaotic attractor. In Fig. 1.1, a time-
history and a state space plot arc shown for the periodic and the chaotic
motion for ¢+ = 0.. 100,
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Figure 1.1: Attractors of the modified Duffing equation (1.4) for d = 015, 4 =
0.3, w = 1.0: periodic attractor (thin line) and chaotic attractor {thick
line). (a) Corresponding system: Tuler support column. (b)) Time-
higtory plot. (c) State space plot.

1o get a better insight in the chaotic motion of the considered system,
it is useful to inspect the state (g,¢) of the system at discrete equidistant
times & = fo + nd',n = 0,1,.., where T = 2z /w is the system’s forcing
period and 45 € [0, T). The collection of states obtained in this way is called
a Poincard section. 1Mig. 1.2 shows a Poincaré seclion of the periodic and
chaotic attractor for ¢ty = 0 and = = 0, 1, .., 3000.

With this example in mind, the question arises how to investigate a nonlinear
system. For (his purpose, one can make use of several kinds of methods and
tools. Numerical integration can be applied, in the form of various schemes,
as was done in the example mentioned above. However, different initial
states may lead to different attractors. Hence, the equations of motion may
have to be integrated for numerous initial stales to locate all atiractors,
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N .

L

Figure 1.2: Poincaré section of coexisting periodic (o) and chaotic (-) attractors of
the modified Duffing equation (1.4) for d=0.15, e = 0.3, w = 1.0,

For the determination of periodic behaviour in nonlinear dynamic sys-
tems, several methods exist, of which the time discretization method and
the shooting method are most known {Van de Varst [37), Crooijmans (3],
Fey {8], Meijaard [24]). For a certain initial approximation, these methods
provide a periodic solution (if there exists one) in most cases. By means of
a path-following method, the evolution of this pertodic solution can be fol-
lowed when a particular system parameter is varied, including the passage of
hifurcation points. However, no information can be obtained about possible
chaotic attractors or other, coexisting, periodic attractors.

The feature of coexistence of attractors gives rise to an extra task in the
investigation of nonlinear systems. Besides locating a specific attractor and
studying the influence of system parameters (bifurcation research) on this
attractor, an additional subject of investigation is found in the determina-
tion of a global overview of attractors and basing of attraction. A basin of
attraction is the set of all initial states leading to a particular attractor. In
Fig. 1.3, the basins of attraction are shown for the two attractors of the mod-
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Figure 1.3: Attractors and basins of attraction of the modified Duffing cquation
(1) for d = 0.15, 2 = 0.3, w = 1.0¢ Periodic atiractor (o) and basin of
attraction (::); chaollc attractor () and basmn of attraction (left blank).

ified Dulfing equation (1.4) in the region —2 < ¢, ¢ € 2. This picture was
obtained by numerical integration of (1.4) with (¢(0),4(0)) = (th,7h), h =
0.04, 4,7 = =50,.., 50, Trajectories that showed no convergence to the pe-
riodic attractor in less than 40 excitation periods were considerced to settle
on the chaotic attractor. This way of determining the basing ol attraction is
very time-consuming,

Knowledge about the basins of attraction can be important from an
engineering point of view. These basins give an idea of the robusiness of the
existing solutions with respect to changes in the initial conditions. When a
specific solution is desired, it can be investigated for which system parameter
values the corresponding basin of allraction is optimal in the sense that it
covers all the relevant initial states of the mechanical system. Determination
of the basins of attraction can therefore be of great use in the design of
mechanical structures,
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A new approach in the dynamic behaviour investigation of a nonlinear sys-
tem was introduced with the cell mapping method (Hsu [12, 14]). The cell
mapping method is based on a discretization of the state space in so-called
cells. 'This special approach makes it possible to find all attractors —-periodic
and chaotic—of the system, as well as their corresponding basins of attrac-
tion, in a bounded subset of the state space.

Three main types of cell mapping (CM) can be distinguished: simple
cell mapping (SCM), generalized cell mapping (GCM), and interpolated cell
mapping (ICM). The SCM method is a robust and efficient tool for the detec-
tion of attractors and the determination of basing of altraction. The GCM
method is more suited when dealing with chactic behaviour or with basins of
attraction with fractal basin boundaries. The ICM method is a sophisticated
deduction of SCM, in which the original concept of cells is combined with
interpolation methods, yielding more accurate results (Tongue [30, 31]).

The CM method is the subject of research presented in this thesis. In Chap-
ter 2, the existing cell mapping methods are presented. This includes 5CM,
GCM, as well as [CM. Iurther, a variation on ICM termed multiple mapping
(MM) (Tongue [32]) is discussed. The above-mentioned modified Duffing
equation is used as example of application for all methods.

Modifications to the existing CM methods in order to get more accurate
results or a more efficient algorithm are presented in Chapter 3. Especially,
a strategy is shown for applying CM methods to discontinuous dynamic
systems, which are frequently met in engineering practice [24].

In Chapter 4, two main extensions of the existing methodology are pre-
sented and discussed. The first extension contains a parameter variation
technigue for CM. This technique cnables the determination of the basins
of attraction, initially obtained by SCM or ICM, for a varied system para-
meter value in relatively little CPU-time. The second extension deals with
the tackling of systems of many DOF’s. Since the number of cells grows ex-
ponentially with the system dimension, regular application of CM methods
will cause computational problems for systems with state space dimension
N >4

Part of the methods, modifications, and extensions discussed in Chapters
2, 3, and 4 are applied to two practical dynamic systems in Chapter 5. The
global behaviour of a rotor with rubbing as well as the motion of a portable
CD player during jogging are investigated. Both applications are modelled
by 2-DOTF models.

This thesis is finished with conclusions and guidelines in Chapter §.
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All numerical results in this thesis were produced on a Silicon Graphics IRIS
RAGOD 32 Mb workstation, unless stated elsewise. Numerical integration
was carried out by means of a fourth-order six-stage Runge-Kutta scheme
(England [6]) with variable time step. The applied scheme is especially suited
for the integration of scts of nonlinear ODI's { England [7], Lambert [21, page
133]). In practice, the choice of the integration scheme should be adjusted
o the characteristics of the considercd ODE’s.
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Cell Mapping Methods

In this chapter, an overview is given of existing cell mapping methods. In
Section 2.1, an outline is given of the simple cell mapping (SCM) method.
The generalized cell mapping (GCM) method, is discussed in Section 2.2, In
Section 2.3, the interpolated cell mapping (ICM) method 15 treated. Addi-
tionally, a variation on ICM, termed multiple mapping (MM), is presented
in Section 2.4. The modified Duffing equation, discussed in Chapter 1, is
used as example of application. Chapter 2 is closed with & discussion on the
existing cell mapping methods.

2.1 Simple cell mapping

2.1.1 Introduction

When using numerical techniques to solve (dynamic) problems, roundoff
errors are introduced due to the computer’s limited precision. Moreover, in
experimental methods a limited measurement accuracy exists. This means
that in both numerical and experimental methods physical quantities cannot
be obtained exactly. A state variable, describing part of the state of a
dynamic system, should therefore not be regarded as a continnous variable,
which can assume every possible value z € IR, hut as a discrete quantity.

This motivation was used by Hsu to defend the concept of the SCM
method [12]. Under SCM, the state space R™ or part of it is divided into
a discrete collection of N-dimensional cells, where & is the state space di-
mension. Restricting the state of the system to this set of cells enables
the efficient determination of all attractors and basins of attraction. The
discretized stale space is called cell state space.

9
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2.1.2 Cell state space

A dynamic system with Tuclidian state space IRY is considered (N = 2).
Crenerally, the state of a dynamic system is restricted to a bounded subsct,
of the state space. For convenience, this subset, denoted by ©Q, is taken to

be reclangnlar. Tet x = [z¢..2n]7 be the state vector, then for cach siate
() 1)

variable ; & lower and upper boundary «; exist:
1) (2)

1 T 0

and &)

1%

T, S ow i=1,..,N.

To create a cell state space, Q is divided into cells. In prineciple, the cells
can be of arbitrary form, as long as they fill up €. Practically, the choice of
rectangular cells is preferable. The division of (1 in rectangular cells can be
realized by dividing each interval [scgt), xgu)] into M; intervals of equal length
hi. Hence,

gl g :
b= B oL (2.1)
)
In this way, {2 is divided into M rectangular cells, with
N
M = H M. (2-2)
1=

Fach cell is denoted by an index 7 € {1,.., M}. The region RV\§} is called
the sink cell and is denoted by index (. The cells in 2 are called regular
colls. Tn Pig. 2.1, a cell state space is shown for N = 2.

The mindamental step in the SCM theory is the [ollowing: The state of
the system at time { is no longer described by the state vector x(1), bhutl by
the index £(t) € {0,.., M} of the cell containing the state vector. Hence,

£ =7 < x{t)e cell 5.

All possible states within one cell are denoted by the same index and are
therefore treated as one and the same state. Ience, a cell can be regarded
as an indivisible entity of the state of 1he system.

2.1.3 System evolution

Next, the description of the system cvalution in time in terms of cells is
considered. By inspecting the state of the system at discrele equidistant
times, the evolution of the system is given by a sequence of positive integors
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Figure 2.1: Discretization of a two-dimensional state space.

£(0), £(1), £(2), .... Here, £(n) corresponds to the cell containing the state
of the system at t = nAt, (n = 0,1,2,..), with Az the time between two
slate inspections.

In this thesis, only evolutions are considered which satisfy

&(n +1) = C(£(n)). (2.3)

The mapping € : IN — IN is called a 3CM. By (2.3), it is implied that the
next state of the system is completely determined by its current state and
is explicitly independent of the mapping step n. In the next subsection, it
is shown how to create such a mapping ¢ for a system governed by a set of

ODE’s.
When the system enters the sink cell, its evolution is no longer followed.
By definition, the system stays there forever. Hence

C(0) = 0.

Under SCM, two kinds of regular cells are distinguished: periodic and tran-
sient cells. A cell £ salisfyving

§=C"(¢)
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for some m € IN, is called a periodic cell with period in, or simply, a F —m
cell, Here, '™ denotes the cell mapping € applied m times. If & cell £ s
a P - m cell) then the cells C(£), .., C™ &) are also P — m celis. Such a
group of pertodic cells is called a periodic group of m cells, or P — m group.
By delinition, the sink cell is a /*— 1 cell. Periodic groups represent the long
term behaviour of the investigated system.

A cell £ which is not periodic is called a transient cell. Since the number
of regulas cells is finite, only two possibilities exist for a transient cell: it
is wapped onto a regular periedic cell in a finite number of steps, or it is
mapped into the sink cell in a finite number of steps. Transient cells of the
former kind represent the basins of attraction of the periedic groups.

From the above possibilities it is evident that in the context of simple
cell mapping only periodic motions occur. Due to the finite number of cells,
the system sooner or later will enter the sink cell or a previonsly entered cell,
Yet, the cell mapping approach is applicable to systems which exhibit chaotic
behaviour when taking the following assumptions for granted (Kreuzer [20]):

+ Chaotic molions are represented by periodic groups of relatively Jong
pariod.

+ A chaotic attracior is represented by a set of cells covering part of the
attractor in state space.

Concerning the stability of a periodic group, the following conventions
are made: A periodic group is stable when it is surrounded by transient cells
leading to this group. When a periodic group has no corresponding transient
cells, it is a repellor. In all other cases, the group is a saddle solution.

When for all cells in the region of interest the image cefl has been found,
it can be determined to which periodic group cach cell belongs, as a periodic
or a8 4 lransient cell, In the context of SCM, the dynamic behavieur in the
region of interest has completely been determined then. Tn Hsu [14], an al-
gorithm is given for the determination of periodic groups and corresponding
transient cells, In Appendix A, this algorithm is bricfly discussed.

2.1.4 Center point method

For a system governed by a set of ODIy, a SCM can be created by means
of the center point method ([14, page 153]). According to this method, the
image cell C'(€) of a regular cell € ts determined as follows:

s Calculate the center point of cell £
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L9

ceg)

numerical integration

1
Figure 2.2: Center point method in a two-dimensional state space.

o Integrate the set of QDE’s over a period At using the center point as
initial state. Here, At s the time beiween two state inspections.

¢ Determine the image cell C'(¢) which contains the end point of the
calcnlated trajectory.

Hence, the conter point is used as a relerence point for each cell. In Fig. 2.2,
the center point method is illustrated for a system with two-dimensional
state space.

When the system is explicitly dependent on time in a periodic way, the
interval At between the state inspections should be chosen equal to the cor-
responding period 7. In doing so, a SCM is obtained that is independent of
the mapping step n. For antonomaous systems, At can be chosen arbitrarily,
provided that it is not too small (Section 3.2, Hsu[14, page 154]).

2.1.5 Example
As an example, the modified Duffing equation (1.4) is considered. Defining
T = ¢, T3 = ¢, {1.4) is transformed into

£ = &g,
g2 = —dre+xy —af + acos(wi). (2.4)
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0.5 0

Xy

Figure 2.3: SCM results for the modified Duffing equation (2.4) fur d = 0.15, 2 =
0.3, w = 1.0: Stable P — 1 group (¢) and transtent cells (-}; wtable
periodic groups (+) and transient cells (left blank); 7 — 1 groop () and
transient cells (x); cells mapped into the sink ccll (o, lower left corner),

The region of interest @ is defined as —2.02 < @y, g £ 2,02, Taking hy =
by = 0.04, which implies M, = M» = 101, the total number of regular cells
is given by M = 10201. By means of the center point method, the hnage cell
of each regular cell is determined. The integration interval is chosen equal
to the excitation period: Af = 2 /w.

e A P—1cell (¢} (center point (0.6, 1.32)) with a large basin of aliraction
(+). The cell represents the stable periodic solution with period Af,

o AP =19 a P - 16, and a I’ — 10 group (%), together representing
the chaotic attractor. The corresponding basins of attraction are lefl
hlanlk,
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¢ A P —1cell (+) (center point (—0.8,1.28)) with a basin of attraction
consisting of 13 cells (x), positioned at the boundary separating the
basins of attraction of the periodic and the chaotic attractor. Hence,
this cell represents a saddle solution.

¢ 11 Cells (o) which are mapped into to the sink cell.

Comparing these results with the results obtained by numerical integra-
tion in Chapter 1, it can be concluded that the periodic attractor as well
as its basin of attraction are determined quite accurately. The chaotic at-
tractor is represented by three periodic groups of relatively long period. The
basins of attraction of these groups give a good approximation of the chaotic
attractor’s actual basin of attraction as determined in Chapter 1. Addition-
ally, the saddle solution, whose stable manifolds separate the two basins of
attraction, is found under SCM. The position of the saddle solution with
respect to the attractors plays an important role in bifurcation research. Fi-
nally, it should be noted that the CPU-time needed for SCM is only 1.5% of
the required CPU-time for numerical integration (see Table 2.1 at the end
of this chapter).

2.1.6 Remarks

The SCM method is a robust tool for obtaining a global impression of the
dynamic hehaviour of a nonlincar system. Attractors and basins of attrac-
tion can be determined quite accurately. Periodic groups of relatively long
period indicate the possible existence of chaotic behaviour. The capability
of determining repellors and saddle solutions depends on the cell size and
the position of the actual solution with respect to the cell boundary.

For more detailed information about a delermined periodic group, a reg-
ular nemerical integration may be performed, taking the center point of one
of the periodic cells as initial slate. In this way, the type and position of the
atiractor are easily obtained. This was done for the periodic groups in the
considered example, thus obtaining the relation between the P — 19, P — 16,
and P — 10 group. To determine the type of a solution, also the Liapunov
ezponents can be calculated (see e.g. [29]).

When the basin boundaries are fractal, the SCM method does not deter-
mine them very precisely. In particular, this holds when the fractal boundary
layers are small with respect to the applied cell size. For those cases, the
GOM method will produce more accurate results. This method is treated in
the next section.
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2.2  Generalized cell mapping

2.2.1 Introduction

Under SCM, each regular cell is mapped onto a single image cell. In reality,
the image of a cell will be given by some bounded region, covering more
than one cell, as shown in Fig. 2.4. This means that for each regular cell
the number of image cells should not be restricled to one. This is the idea
behind the concept of GCM (Isu [13], Tsu et al. [15]).

£y

L/
[

Figure 2.4: Real image of a cell, covering several cells,

Under GCM, a regular cell can have several image cells, each with a
fraction of the total probability. The state of the system at t = nAf, with
At the time between two siate inspections, is denoted by the cell probability
vector p(n) = [pi{n) .. par(n)}?. Here, M is the total number of regnlar cells
and

pi{n) = Probl&(n)=i], neN, i=1,.., M. (2.0)

In words, pi(n) denotes the probability of the state of the system bheing in
cell at { = nAlL
To describe the system evolution, the fransition probabudity matriz, or
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simply transition matriz, P(n) = (p;;(n)) is introduced, with
piy(n) = Probl&(n+ 1) = i|€(m) = ), n€N 6j=1,,M. (26)

Here, p;;(n) is the fransition probebility from cell j at § = nAt to cell 7 at
t = (n+ 1)Atf. For a periodically excited system, the time step At between
two state inspections can be chosen equal to the system period, in which
case p;;, and hence P, are independent of the mapping step n. For the sink
cell (index 0), the following holds by definition:

1 i=0 ‘
Pio = { 0 otherwise. (2.7)

By means of the introduced definitions, the evolution of the system can
be put in the following form:

p(n+1) = Pp(n). (2.8)

By (2.8), a finite, discrote, stationary Markov chain is defined (see e.g.,
Tsaacson and Madsen {16]).

The transition matrix P fully determines the dynamic behaviour of the
system. The attractors and basins of attraction may be found by examining
the properties of P by means of the theory of Markov chains. First, some
definitions of this theory are introduced.

2.2.2 Classification of cells

According to the theory of Markov chains, two types of cells can be distin-
guished under GCM: persistent and transient cells. A persistent cell ¢ has
the property that when the system is in ¢ at a certain moment, it will return
to i at some time in the future. Following the Markov theory, persistent
cells can be formed into persistent groups (PG's), which are closed. When
the system enters a persistent cell, it will stay in the PG to which this cell
belongs. The PG's of a Markov chain, deduced from a dynamic system,
correspond to the attractors of that system. By definition, the sink cell iz a
persistent group by itself.

When a cell is not persistent, it is transient by definition. For finite
Markov chains, the system will leave the transient cells with probahility one
and will settle on a P(3. Transient cells can be divided in single-domicile (5D)
and mulliple-demicile (MD) cells, according to the number of domiciles (one
or more than one, respectively). Starting in a 5D cell, the system will lead
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to a particular PG wilh probability one. Hence, the collection of SD cells
of a PG represents the corresponding basin of attraction. Starting in a MD
cell, the system can lead to several PG’s with corresponding probabilities,
the sum of which of course equals one. The MD cells represent the basin
boundarics, also called separatrices.

2.2.3 Limiting probability

For each cell 7 of a PG one can determine the limiting probabilily (L1) pf,
which is the probability of the system being in ¢ at t = oo under condition
that it ever entered the PG to which ¢ belongs. In Hsu [14], algorithms are
given for the determination of the LP distribution of a persistenl group.

Especially for PG’s consisting of many cells, the LT distribution can give
some useful information. Such PG's usually represent chaolic atiractors.
The LP distribution then gives an idea of which parts of the attractor are
'visited’ very frequently by the systermn and which parts very rarely. Thus, a
better picture is obtained of the chaotic attractor as a wholc.

2.2.4 Sampling method

The main part of constructing a GCM is the determination of the cell tran-
sition probabilities. When applying the GCM method to a system governed
by a set of ODTs, the transition probabilities can be determined by means
of the sampling method {14, page 268]:

* Choose for a regular cell 5 /. points, in some way distributed over j.

¢ Integrate the set of ODE’s over a period At, using these poinls as
initia) states. Again, At is the time between two state inspections.

* Determine the cells which contaln the end peints of the caleulated
trajectorics. These cells are taken to be the image cells of cell j.

Let { be the number of image cells, with index i41,..,4;, containing L;,, .., L;,
end points, respectively, ‘The cell transition probabilities p;;, + = 0, M,
are now defined as follows:

0 otherwise.

Doing this for each regular cell 7 yields the transition watrix 17
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2.2.5 Example

The GCM method is applied to the modified Duffing equation (2.4) with
d=0.15,a = 0.3, w = 1.0, The same region of interest } is used as under
SCM (Juyf < 2.02, ¢ = 1,2). Again, £ is divided into 101 x 101 cells. The
transition probabilities are calculated with the sampling method, using 9
integration points for each cell. Algorithms given by Hsu [14] are used to
determine the PG’s, the 5D and MD cells, and the LP distribution. In
Fig. 2.5, the results of this simulation are shown:

+ A PG consisting of 10 cells (x) corresponding to the periodic attractor.
The basin of attraction of this PG is given by its SD cells (+).

e A PG consisting of 966 cells (o) corresponding to the chaotic attractor.
The basin of attraction (the 5D cells) is given by the white area in
Fig. 2.5.

» 6 Cells (+) which are mapped into the sink cell.
¢ A large number of MD cells ().

Fig. 2.6 shows the LP distribution for both PG’s. For each persistent
cell, the LP is expressed in the mean value (MV) which equals 1/10 for the
PG representing the periodic attractor and 1/966 for the PG representing
the chaotic attractor. Cells denoted by "x’, have a LP value of f+MV, with
f = 1.5. For cells denoted by '+’ and ", we have f € [0.5,1.5) and f €
[0.0,0.5), respectively.

Finally, to obtain a better picture of the basins of attraction, the MD
cells have been divided in two groups: cells leading to the periodic solution
with probability p > 0.5 (o), and cells leading to the chaotic attractor with
probability p > 0.5 (%) {Fig. 2.6). This information has been obtained by
determining the group absorpiion probabilities for the MD cells (see e.g.
[14]). For this purpose, use has been made of an algorithmic approach given
by Bestle and Kreuzer [1].

Compared to SCM, the chaotic attractor has been determined more ac-
curately under GCM (several periodic groups versus one PG). The periodic
attractor is represented by a small P(3, which is not as accurate as the P —1
cell found with SCM. The domains of attraction have been determined just
as accurate as under SCM. The saddle solution has not been found under

GCM.
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Tigure 2.5 GCM results for the madified Dutling equation (2.4): PG (x), represent-
ing the periodic attractor, and transient cells (+); PG (o), representing
the chaotic attractor, and transient cells (left blank); MD cells (#); cells
mapped into the sink cell ().

2.2.6 Remarks

The GCM method is very suited for the description of chaotic behaviour.
The PG othat represents a chaotic attractor gives a good picture of this
attractor in general. Turther, additional properties of chaotic attractors
can be determined, such as the LP distribution or the largest Liapunov
exponent {IKim and Hsu [18]). Under GCM, the basing of attraction of all
stable solutions are determined more accurately than vnder SCM in general.
When two basing of atiraction are separated by a thick layer of MD cells,
additional research has to be done to obtain an accurate separalrix.

O the other hand, periodic solutions are nol found as aconrate as with
SCM. Repellors and saddle solutions are generally not found at all. There-
fore, the GOM moethod may be considered as a very useful addition 1o SCM,
especially if one is interested in chaotic attractors and their properties.
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Figure 2.6: Probabilistic properties of the PG’s and the MD cells.

2.3 Interpolated cell mapping

2.3.1 Introduction

In spite of the satisfying results found with the cell mapping methods dis-
cussed so far, two important drawbacks of these methods need to be stressed.
First, becanse of the finite number of cells, a restriction is placed on the pe-
riod length of a solution. Henee, chaotic behaviour is always represented by
a finite number of cells. Second, due to the discretization of the state space,
errors have to be taken into account when determining the system’s dynamic
behaviour. Especially for systems with fractal basins of attraction, the 5CM
and GCM methods may produce spurions results.

These drawbacks motivated Tongue to introduce the ICM method [30,
31]. The concept of ICM is actnally very different from SCM and GCM.
Under the latter ones, cells are being mapped onto image cells. By repeated
mapping application, structures of cells are found which show some kind
of recurrent character. Additional research is required to obtain the actual
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type of hehaviour (periodic, quasi-periodic, or chaotic).

Compared with SCM and GCM,ICM is a more straightforward technigue
which approximates numerical integration. For an arbitrary initial state,
an approximate trajectory can be created. Afler transient behaviour has
vanished, this trajectory will settle on an atiractor. The initia)] state can
then be added to the corresponding basin of attraction. Doing this for a
huge number of initial states in a region of interest €2, the attractors and
basins of attraction in { can be oblained.

2.3.2 Trajectory approximation

In the N-dithensional state space, the region of interest €2 is uniformly cov-
cred with M grid points', dencted by x', 7 = 1,.., M. Here, M is given
by (2.2) with M; the number of grid points in z,-direction (¢ = 1,..,N). The
corresponding distance h; between two neighbouring grid points satisfies

2 : .
hi = EMQ——I’ i=1,.,N, {2.10)
whare ::-:Eu) and :r:E” denote the upper and lower boundary, respectively, of

z;. In Fig. 2.7, an ICM egrid is shown for a two-dimensional state space.

l'or each grid point x', a sequence of image points ', A2 iy con-
strucled. Tere, " represents the approximate state of the system at
t = nAt, n = 1,2, .. corresponding 1o an initial state x*. Hence,

i = X'i, i=1,..M
Again, At equals the excitation period of the system. For antonomous sys-

Lems, At is arbitrary but fixed. For each grid point x*, the first image point
41 is obtained by numerical integration and denoted by y*. Hence,

G =yl i=1,., M.

The sccond image point ¢* is determined by means of interpolation. To
this end, the 2V grid points which surround ¢! are used as interpolation
points. Let {y,..,{;~ be the ndices of the interpolation points, then

2N
¢t e S Py, i= 1 M. (211)

Tu the original ICM concept, (2 is divided into cells of which the center points serve as
initial states for approximate trajectories. Since cells do not play an actual rele in [CM,
they are not mentioned hore.
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Figure 2.7: ICM grid for a two-dimensional state space.

Here, £;: R™ — [0,1] is an interpolation function satisfying
Pi(x") = &5, 4,7 €{L,...2"},

where §;; 1s the Kronecker delta. In Appendix B, general expressions are
given for the interpolation point indices and the interpolation functions. For

N = 2, the following holds:

¢ = (1—&)(1-&y" +&(1-Ly"
+ (1 - 61)62)’-[3 + ‘515257!*1 1=1,.., M, (212)
with,
O

-
‘fk:yk k

hok 1 k: 1$21

and Ag given by (2.10). In Fig. 2.8, the integration and first interpolation
step are illustrated for a two-dimensional state space.

The trajectory points ¢*", n = 3,4, .., are obtained by application of
the interpolation formula (2.11) replacing y* by ¢*"~1, for i = 1,.., M. By
repeated application of (2.11), an approximate trajectory of desired length
is obtained.
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Figure 2.8 ICM procedure for a two-dimensional state space: Integration step and
first interpolation step.

2.3.3 ICM criteria

For the classification of an approximate trajectory, two criteria arc intro-
duced. A sequence &, n=10,1,2,..,is considered periodic at step [ if

|65 ] < EPS (2.13)

for some 7 € {0,1,..,0 — 1} and a beforehand chosen accuracy EPS. The
inequality (2.13)is called the periodicily criterion. A sequence which satisfies
(2.13) corresponds to a periedic attractor with period (I — 7)A?. Whenever
a new point in the sequence has been determined, the most cflicient way of
checking the periodicity criterion is downwards from 7 =17 -1 to 0, since
low order subharmonic behaviour is more likely to occur than high order in
practice, To save CPU-time, it deserves recommendation to stop checking
(2.13) when e.g. § < 1 —10.

To limit the—maybe never ending—search for periodic behaviour, the
number of iteration steps in the ICM procedure by definition is bounded
by the integer IMAX. When no periodic behaviour has been found within
IMAX ilerations, the sequence 15 considered Lo be chaotic. This is called the
chaos criterion, It is not very obvious how to choose IMAX, If IMAX is too
small, a spurious chaotic atiractor may be found; if IMAX is too large, the
CPU-time may become unnecessary large. The optimal cholce for IMAX
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depends on the required accuracy EPS and the amount of damping in the
gystem.

A third criterion, not discussed by Tongue, is especially important in the
programming context. When two initial states both lead to the same periodic
attractor, the corresponding trajectory end points will still differ. To obtain
correct basins of attraction, it is important to know that both trajectories
lead to one and the same atiractor. Therefore, when a trajectory satisfies
the periodicity criterion, it should be checked whether the latest determined
image point s not too close to an already existing periodic attractor. This
also holds for regular numerical integration as was applied in Chapter 1.

2.3.4 Example

As an example, again the modified Duffing equation (2.4) is considered,
with d = 0.15, a = .3, w = 1.0. The region of interest £ is defined as —2 <
xy, 2y < 2. Grid points are given by (thy, Jha), with 4,7 = —50,..,50, by =
hs = 0.04 (notice that these points correspond to the cell center points of
the examples in Sections 2.1 and 2.2). Application of ICM with EPS = 10~*
and IMAX = 20 yields the following results (see Fig. 2.9):

s A periodic attractor (#) at (0.638,1.341} with a large basin of attrac-
tion (:1).

s A chaotic attractor (), formed by the end points of trajectories that
did not show any periodicity within 20 interpolation steps. The white
atea contains the corresponding initial conditions.

» Some periodic groups (not shown in Fig. 2.9), lying on the chaotic
attractor with only a few transient points. These groups are artifacts
of the ICM method, caused by the periodicity criterion. Sinee a chaotic
attractor is 'dense’, some chaotic trajectories can be regarded as being
periodic, due to this criterion.

s 17 Points (¢) which are mapped into the sink cell.

Comparing these results with those obtained by SCM and GCM, the
following may be concluded: The periodic attractor has been localized more
precisely now. The chaolic atiractor looks more like the real atiractor, shown
in Chapter 1, than the one produced by GCM. However, part of the dots
forming the chaotic attractor are not lying on the real attractor (compare
Fig. 1.3); in fact, some of them are lying close to the P — 1 solution. These
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Figure 2.9: ICM results for the modified Duffing equation (2.4): Periadic attrac-
tor (+) and basin of attraction (::); chactic attractor (-) and basin of
attraction (left blank); cells mapped inte the sink cell ().

so-called transient dots represent end points of trajectories that have not
settled on one of the attractors yet. A larger value for IMAX will reduce
the number of transient dots. Further, it should be noted that the saddle
solution has not been found wnder ICM.

2.3.5 Remarks

The 1ICM method is an attractive too] for investigating nonlincar dynamic
systems. With respect to SCM and GCM, the main advantages arc listed
below.

¢ The discretization error is replaced by a smaller interpolation error.,
¢ No resiriction is placed on the period length of 2 periodic motion,

¢ Chaotic motion is represented by nonperiodic motion (as it should be).
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¢ The interpolation grid can be chosen finer than the integration grid:
For instance, when tackling a problem with 101 x 101 integration
points, afterwards a 1001 x 1001 interpolation resolution may be used
to obtain the basing of attraction. This is an interesting aspect of
1CM, keeping in mind that the interpolation part requires much less
CPU-time than the integration part. Here, it should be noted that the
accuracy of the results is defined by the integration grid. Use of an
extended interpolation grid only prodices a higher resolution plot of
the basins of attraction.

However, the following critical remarks have to be made as well:
» Repellors and saddle solutions will not be found in general.

» When a trajectory is found not to repeat itself within the maximum
number of interpolation steps, it is regarded as being chaotic. The ini-
tial values of all chaotic trajectories are now assumed to form the basin
of attraction of a chaotic attractor. This however, may not always be
true, for instance when more than one chaotic atiractor exist. Plotting
the end points of all chaotic trajectories gives an idea of the form of
the chaotic attractor, and also (the only) information with respect to
its uniqueness.

s When the maximum number of interpolation steps is chosen too small,
a spurious chaotic attractor will be found. In general, the choice of the
criteria may be of great influence on the results. It is not very obvious
which c¢riteria are the optimal ones; this may depend on the system
characteristics.

+ Application of ICM is not very suited for systems with large siate space
dimension N. For onc interpolation step, 2V interpolation points have
to be determined and 2% interpolation functions have to be evaluated.
For large N, the CPU-profit with respect to regular numerical integra-
tion will vanish.

Concluding, the ICM method may be considered as an efficient addition
to SCM, taking only a small amount of additional CPU-time. The method’s
drawbacks require some improvisation and ad-hoc thinking of the user.
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2.4 Multiple mapping

2.4.1 Introduction

In recent vears, a number of modifications on ICM have been presented.
In [33], a higher order method of ICM is shown termed tensor product in-
terpolated cell mapping ('TUPICM). Under TIPICM, the bi-linear mapping is
replaced by a more sophisticated mapping which preserves all the qualitative
dynamic properties of the system. Although the results are more accurate
than under regular ICM, the costs are so high that the TPICM method is
not very recomimendable. In this thesis, no attention is paid to the TPICM
nerethod,

A second modification on ICM, called multiple mapping (MM), is of more
practical importance [32]. With respect to ICM, MM is said to produce more
accurate results for slightly more CPU-time. Under MM, the regular map
over one period is replaced by two maps, each covering half a period. This
is done to diminish the state space distortion.

2.4.2 5State space distortion

The state space of a nonlinear dynamic system is being distorted during time.
As w result, trajeclories starting from close initial states may be separated
after only o short while. For chaotic systems, the state space distortion
may be very high. According to Tongue, the state space distortion can be
represented by means of the divergence of neighbouring trajectorics. For a
twao-dimensional system, the following definition is given for the state space
distortion o in x = {2y, ;) after 7 seconds [32]:

L gdi(x,m) dg(X,T)) .
P it ‘ ‘ 2.14
d(x,7) 3 ( At + X { )

Here, Az, is the initial distance between the trajectory starting from x and
the neighbouring trajectory in the positive x;-direction (i = 1,2); d; denotes
the distance between the trajectories after a fixed time 7 (see Fig. 2.10).

To Mostrate the concept of state space distortion, the modified Dufling
equation (2.4} is considered. For this system, the state space distortion
d after one period T = 27 /w is determined.  Grid points used for 1CM
in the previous seclion are chosen as initial states. Purther, Az, = Iy =
0.04 (# = 1,2) is taken, which implies that neighhouring grid points are used
to represent the initial points of neighbouring trajectorics,
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Figure 2.10: Definitions of Az; and d;, (i = 1,2).

In Fig. 2.11, regions of high (d > 5} and low (0 < d < 1) distortion are
shown. As expected, high distortion is found on the chaotic attractor and
its corresponding domain of attraction. Since a chaotic attractor undergoes
strefching as well as folding during time, also regions of low distortion are
found on the chaotic attractor,

2.4.3 Multiple mapping concept

In the previous subsection, the occurrence of high state space distortions is
shown to be very well possible. When applying ICM to a state space with
these types of distortions, large interpolation errors are introduced. After
all, when at ¢ = T the integrated trajectories have already diverged very
severely, the mapping image determined by interpolation cannot be very
accurate,

Since the divergence of neighbouring trajectories increases with time, it
is preferable to use two interpolation mappings instead of one, each covering
half of the total integration time T (Tongue [32]). Tor this purpose, lwo
integrations have to be carried out for each grid point %, ¢ = 1, .., M: onec for
0 <t<T/2, and one for T/2 < ¢ < T. Both interpolation mappings should
be repeatedly applied one after the other to obtain an approximate trajectory
of desired length. The region of interest (2 for the second integration may
differ from the ome for the first integration.

The total costs for the MM method are slightly higher than for ICM. The
numerical integration costs are equal in both methods (an integration over T
seconds for an equal number of initial states). Under MM however, twice as
many interpolation steps need to be made as under ICM to obtain the same
number of mapping points. Since the numerical costs for interpolation are
much smaller than for integration, the total difference in CPU-time between
both methods is very small.
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Figure 2.11: Regions of high (1) and low (s) distortion for the modified Duffing
cauation (2.4

2.4.4 Example

[n 1ig. 2,12, the results are shown obtained by MM application to the mod-
ified Dufling equation (2.4). The same criteria and parameters are used as
under ICM. The foliowing results are found:

¢ A periodic attractor («) at (0.638,1.341).
* A chaotic attractor (.).

¢ Some periodic groups (not tagged in Fig. 2.12), lying on the chaotic at-
tractor with only a few transient points (artifacts of the MM method ).

e 138 Points (o) which arc mapped into the sink cell.

Compared to the [CM results, the chaotic attracior is determined much
more accurate nnder MM, Basing of attraction and the position of the pe-
tiodic solution are determined just as accurate as under ICM. Since two
interpolation maps are used instead of one, more grid points are mapped
into the sink cetl. Still, of almost 99 % of the grid points in & the atiractor
has been determined. In Table 2.1, the CPU-times are given for all CM
applications performed in this chapter.
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Figure 2.12: MM results for the meodified Duffing equation (2.4): Periodic attrac-
tor () and basin of attraction (::); chaotic attractor (-) and basin of
attraction (left blank); cells leading to the sink cell (o).

2.4.5 Remarks

The most obvious difference between the ICM and the MM results is the
form of the chaotic attractor. Though the maximum number of interpola-
tion steps IMAX equals 20 for both methods, no transient dots are found
under MM. Hence, the large number of transient dots found under ICM
cannot be explained by the small value of IMAX. Apparently, the mapping
time 7 is too large to obtain accurate results in the region occupied by the
chaotic attractor. The use of two maps of mapping time T'/2 {(as under MM)
produces a 'clean’ chaotic attractor without transient dots.

In [32], the MM method was applied to a different modified Duoffing equa-
tion. For the considered case, two periodic attractors coexisted. The MM
method was used to determine the basin boundaries and their dimension.
Because of the fractal structure of the basin boundaries, the state space
distortion was locally very high. The use of MM yielded a much better
approximation of the boundaries than ICM. 5o, whenever high state space
distortions occur, MM is to be preferred to ICM.
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Table 2.1: CP1J-times for the modificd Duffing equation {2.4).

[Method  CPU-time (s)
SCM 21.3
GOM 222.1
ICM 31.9
MM 38.3
Num. int. 1432.2

2.5 Recapitulation

This chapter concludes with a short recapitulation of the considered celt
mapping tnethods.

The SCM method gives a global overview of the dynamic behaviour in
a nonlinear system. Periodic attractors are found, chaotic attractors are
represented by periodic groups of relatively long period. Basing of attrac-
tion can be determined quite accurately, provided that they have no fractal
boundaries. The capability of finding repellors and saddle solutions depends
on the actual pogition of these solutions with respect to the cell houndazios.

The GCM method is particnlarly svited for the determination of chaotic
attractors and their properties. When dealing with [ractal basin boundaries,
the basins of attraction are determined more accurately compared to SCM.
The required CI?U-time for GCM is much larger than for SCM.

The 1CM method yields a precise location of periodic aliractors. Chaotic
attractors can be determined very accurately, under condition thal the max-
imum number of interpolation steps is large cnough. Whenever large state
space distortions occur, the MM method is to be preferred to the ICM
method.  The CPU-time required for both methods is almost cqual, but
larger than for SCM.

The congidered CM methods should not be seen as competitors. Depend-
ing on the system characteristics and the user’s interests, a certain method
should be chosen. A combination of methods is also possible, taking advan-
tage of each method’s specific strong points. Starting with SCM, the main
part of ICM (the integration part) has already beer carried out, as well as
part of the work for GOM and MM. With the SCM resnlts in hand, one can
decide whether to do an additional GCM, ICM, or MM,
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Modifications of Cell
Mapping Methods

In the previous chapter, an overview of the existing CM methods has becn
given. In this chapter, a number of modifications of these methods is pre-
sented. First, modifications dealing with special types of dynamic systems
are introduced. Second, two improvements on ICM are shown. Finally, SCM
is applied to a beam system with nonlinear support to show the effect of an
extended integration interval.

3.1 Overview of modifications

In Section 3.2, an alternative approach for autonomous systems is presented,
termed ASCM. This approach enables a substantial reduction of the neces-
sary CPU-time. Application of the ASCM method to a Van der Pol equation
and to a nonlinear aeroelastic oscillator is performed.

When investigating a discontinuous dynamic system by means of CM,
the original methods have to be modified in some way. This is shown in
Section 3.3. As an example, a forced zero-stiffness impact oscillator is con-
sidered.

In Section 3.4, a new criterion in the ICM procedure is proposed. As a
result, a trajectory can be classified at an earlier stage than under regular
ICM. This modified ICM method (MICM) yields equal results in less CPT-
time. MICM is applied to a modified Duffing equation and to an impact
ascillator.

A combination of ICM and MM, termed mized cell mapping (MCM), is

33
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presented in Section 3.5, Application of MCM to a modified Duffing equation
is performed. It is shown that MCM is more accurate than ICM and MM
but also more time-consuming.

This chapter is concluded with the application of SCM (o a beam with
nonlinear support in Section 3.6. Tt is shown that system characteristics
urge the user Lo extend the integration interval [or determining the image
cells. Az a result, the number of cells leading to the sink cell as well as the
number of spurious periodic groups are reduced.

3.2 CPU-time reduction for autonomous systems

3.2.1 Introduction

An autonomous system is a system of which the equations of motion have
the following form:

x = M(x). (3.1)

Here, x = [z(t) .. an(1)]7 is the state of the system. In (3.1), time does
not explicitly occur. Hence, at each possible state x € RY the system’s
acceleration has a specifie time-independent value. Periodic solutions of
(3.1) are called limil cycles.

When applying CM methods to autonomous systems, initially the same
procedure may be followed as for non-aulonomous systems. However, afler
choosing a region of interest £ and dividing it into cells, the question arises
how to determine a cell’s image cell, For a non-autonomous system which
is periodically forced, the interval Af, over which the cquations of motion
are integrated to obtain the image coll, has to be equal to (a multiple of)
the forcing period to obtain a CM which does not explicitly depend on time.
Since by definition time does not explicitly occur in autonomous cquations,
any possible value for At is allowed.

Although for an autonomons system any value of the integration interval
Al produces a CM which is independent of time, the choice for Al is far
from trivial. When Af? is chosen too small, spurious results may be found.
In thal case, many cells may be mapped onto itself, since At is oo small
to reach a state outside the cell when starling in the center point. A large
value of At is also not very satisfying, since this would imply an unnecessary
large computation time.
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Figure 3.1: SCM results for the Van der Pol equation (3.2} for 4 = 1.0: Two P =
41 groups (#, x) represeuting the stable limit cycle; P — 1 group (o)
representing the unstable equilibrium point; cells leading to the sink

cell (+).

3.2.2 Van der Pol equation

One of the best known antonomous equations is probably the Van der Pol
equation:

G+ p(l~g?)g+g=0. (3.2)

For i < 0, the stable equilibrium point (g,4) = (0,0) is the only attractor,
For i = 0, this equilibrium point loses its stability while a stable limit cycle
comes into existence (see e.g. Crooijmans [3, page 1.4]).

SCM is applied to (3.2) for p = 1.0. For discretization, 201 x 201 cells
are used of size 0.025 x 0.03, covering {q| = 2.5125, |¢| £ 3.015. For At, a
value of 1.3 is chosen.! The results are shown in Fig. 3.1. The stable limit
cycle is repregented hy two periodic groups of 41 cells each. The unstable

*In [14], the same system is investigated with At = 1.3 using 101 x 101 cells.
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equilibrium point is represented by one periodic cell. urther, 834 cells are
mapped into the sink cell. The remaining cells in £ are mapped onto one of
the /7 — 41 groups and hence represent the basin of attraction of the limit
cycle,

The results obtained in this example contain an approximation of the
complete limit cyele in state space. When a non-autonomeons syslem is in-
vestigated by means of CM, only Poincaré sections of solutions are obtained.
Hence, for artonomous systems more information is obtained under 5CM
than {or non-autonomoeus systems, in the same order of computation time,
This implies that the same amount of information—interseclion of aliractors
and basins of attraction with a Poincaré section—may be obtained jn less
computation Lime,

3.2.3 Alternative approach

By introducing a Poincaré section X in the autonomous state space, an al-
ternatlive SCM approach (ASCM) may be applied. On £ a region of interest
¥ is chosen, e.g. the intersection of  with X. Next, 15 discretized into
cells and a cell mapping ' : £ — T is created. The image cell of cach cell
£ € is determined by the center point method. The integration interval
At is chosen such that the terminate point of the integrated trajectory lies
in ¥. Hence, for each cell a different value of Af is used, which is allowed for
aulonomous systems. Since the dimension of the investigated repion is re-
duced with one, an obvious gain in compulation lime is achieved with respect
to SCM. In Fig. 3.2, the ASCM procedure is shown for a two-dimensional
autonomous state space,

numerical Integration

i —.

¢

U ' ' ' ' =
0 = Qs ¢18)

g

Figure 3.2: Alternative SCM (ASCM) approach for autonomous systems.
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The choice of a Poincaré section in an autonomous state space is not
trivial. Starting from a point in I, it is necessary to return to T within a
finite time interval. This is achieved by choosing ¥ : § = 0 for a system of
one DOF ¢, since every generalized velocity of every attractor equals zero
infinitely many times (or is constantly zero for an equilibrium point).? For
a general autonomons system of [ DO¥’s, ¢; = 0 is a correct choice for I,
for any j € {1,..,1}.

The ASCM method is applied to the Van der Pol equation (3.2), taking
L:g=0;Q ¢l £25125 @ is divided into 201 cells of length 0.025.
For each cell in £, integration is performed until ¥ is intersected again.
The cell which contains the end point is the image cell by definition. The
exact intersection of a trajectory with ¥ is obtained by means of the Hénon
method, which is explained in Section 3.3. In Fig. 3.3, the results are shown:
The limit cycle is represented by two cells with center points ¢ = 2.025
and ¢ = —2.025 respectively (§ = 0). The unstable equilibrium point is
represented by a P — 1 cell with center point ¢ = 0. All other cells are
mapped onto the P — 2 group.

Wl O

Figure 3.3: ASCM results for the Van der Pol equation (3.2) for g = 1.0: P—2 group
(#) representing the stable limit cycle; P = 1 group (o) representing the
unstable equilibrium point.

The 5CM and ASCM applications to the Van der Pol equation required
a CPU-time of 16.1 s and 0.1 s, respectively. The extra information given by
SCM —the form of the limit cycle—can be obtained by numerical integration
over a very short inferval taking the center point of one of the P — 2 cells

?For a chaotic attractor, this can be proven by wsing the fact that it s bounded and

recurrent.
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ag initial condition. lurther, for each of the transient cells the number of
mapping steps necessary to end up onr the limit cyele is given (transient
behavions information). Hence, under regular SCM more jnformation is
obtained about the global transient behaviour, If one is only interested in
detecting the attractors and the domains of attraction, the ASCM approach
deserves recommendation.

3.2.4 Aeroelastic nonlinear oscillator

The Van der Pol equation treated in the previous subsection is a relatively
simple example sinee only one steady-stale solution was dealt with. In this
subscction, SCM and ASCM are applied to a 1-DOF autonomous system
in which two stable limit cycles coexist. The considered system is a long
prism of square cross-section in a normal steady wind (velocity V). The
prism, with mass m and length [/, is connected to the world by means of a
linear damper (damping d) and a lincar spring (stiffness k). In Fig. 3.4, a
schematic picture of this system is shown.

Vv b

J , ..............
i..*~|;. LHd
S S

Figure 3.4: Cross-seclion of square pristn under normal steady wind condition.
Studied by Parkinson and Smith [26].

In Parkinson and Smih [26], a quasi-steady analysis is made of the trans-
verse galloping of the prism. This results in the following ODE [or the nondi-
mensional vibration displacement y = ¢/h in vertical directton, where g is
the real displacement and A the side-length of the square section:

23 3 ¢ YT
= +(AU5) - (™)

W'y = nA{(U - (3.3)
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Here, { ) denotes differentiation with respect to nondimensional time 7 = wt,

where w = /k/m is the natural circular frequency. In (3.3), the following
nondimensional parameters have additionally been introduced:

A = d/2mw : nondimensional damping
n = phtl/2m : mass parameter (3.4)
U = Vjwh : nondimensional air velocity,

with p the air density. Finally, 4, B,C, D arc positive constants which can
be determined experimentally.

In [26], the steady-state behaviour of (3.3) has been investigated by
means of analytical techniques. Por small values of {7, only one steady-state
solution exists, namely (y,%") = (0,0). For U > Uy = 243/nA, this solu-
tion becomes unstable and a stable limit cycle (L1) comes into existence,
For U7y < U < Uy, a second stable limit cycle (L2) with a larger amplitude
comes into existence, coexisting with L1. Both limit cycles are separated
by an unstable limit cycle. Here, Uy &= 1.2 U and U = 1.8 Up. Finally, for
[ = {75 only limit eycle L2 remains.

To obtain a siluation of coexistence of two stable limit cycles, {7 = 1.5/,
is taken. Further, # = 0.5 and n = 4.3 % 1071 is taken. These choices imply
a large value for I/, resulting in a large nondimensional displacement y and
velocity . To apply 5CM for these parameters, a large region of interest (2
is taken: —402 < y, ¥ £ 402. Q is divided into 201 x 201 cells of size 4.0 4.0.
Immage cells are determined by means of integration over 2.0 seconds for each
cell. This results in three periodic groups: a P — 62 group representing L2,
a P — 92 group representing L1, and a P — 1 cell representing the unstable
cquilibrium point (see Fig. 3.5). Small dots (-} are used to mark cells which
are mapped to L1, the white area in Fig. 3.5 contains all cells which lead to
L2. The necessary CPU-time for this caleulation was 62.8 s.

In Fig. 3.6, the results are shown of an ASCM application to the same
system, taking XL : ' = 0 and ' : —402 £ y < 402. Tor discretization, 201
intervals of size 4.0 are used. In this approach, 4 groups are found: A P -2
group representing L2, two [* — 2 groups representing L1, and one P — 1
cell representing the unstable equilibrium point. The basins of attraction of
both limit cycles restricted to X are also shown in Fig. 3.6. The necessary
CPU-time for this calculation was only 0.4 s,

T'he unstahle limit cycle, separating the basing of attraction of the two
stable limit cycles, has not been found in bhoth caleulations. Under SCM
however, a graphical approximation for the unstable limit cycle is of course
given by the basin boundary of both basins of attraction. In the same way,
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Figure 3.5 SCM results for the aercelastic oscillator (3.3): Large amplitude limit
cyele {++) and basin of attraction (left blank); small amplitude limit
cyele (+) and basin of attraction (-); unstable equilibrium point (2).

an approximation of the intersections of the unstable limit cycle with X is ob-
tained under ASCM. Determination of the trajectory cmanating from these
approximations by means of numerical integration yields an approximation
for the complete unstable limit cycle. In this way, the basins of attraction
in ¥ can be obtained. Again, this shows that the resulls produced by SCM
can also be produced by means of ASCM (taking very little CPU-time) and
an additional integration over a short time-interval.

3.2.5 Remarks

An alternative SCM approach for autonomous syslems has been presented,
termed ASCM. This approach produces the Poincaré sections of atlractors
and basins of attraction in the autonomous state space. Compared to reg-
alar SCM, only a fraction of the CPU-time is required under ASCM. An
analogous approach can be applied to 1CM and GCM.



Moedifications of Cell Mapping Methods 41

y’ = 0 -|— o \F +
1 I l A 1 1 1 o]
-400  -300 -200  -100 0 100 200 300 400
Y

Figure 3.6: ASCM results for the aeroelastic oscillator (3.3): Large amplitude limit
cycle (+) and basin of attraction (left blank); small amplitude limit
cycle (#) and basin of attraction (-); unstable equilibrium point (o).

The idea behind the ASCM method is briefly mentioned in Hsu {14,
page 154]. Since no examples are presented there, it was considered useful to
include this approach here. Recently, a similar approach has been introduced
by Levitas [22]. In his approach, two or more Poincaré sections are used in
the autonomaous state space,

Finally, it is remarked here that a new CM mcthod for autonomous
systems has been presented recently, termed edjoining cell mapping {38, 10).
Under adjoining cell mapping, the integration interval At for each cell £ is
chosen such that £ is adjoining® to its image cell. In doing so, At is kept
very small for each cell, in which way the CPU-time is kept very low.

3.3 Modifications for discontinuous systems

3.3.1 Introduction

A special class of dynamic systems which is very often met in mechanical
engineering is formed by systems with discontinuities. These are systems
which involve clearances, impact problems, and so on. As a result, the
mathematical model of such a system contains discontinuous changes in one
or more of the state variables.

When applying CM methods to discontinuous dynamic systems, some
modifications need to be made. This is shown on the basis of a forced

*In Chapter 4, a definition of adjoining is given.
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Figure 3.7: Mechanical ogeillator consisting of two parts, joined by a smooth pin
with play, studied by Li et al. [23].

gero-stiffness immpact oscillator, a dynamic system with a discontinuity. This
system is discnssed in the next subsection and treated by moans of SCM and
[CM in the following subsections. The results are found to match quite well
with the results obtained by numerical integration.

3.3.2 A forced zero-stiffness impact oscillator

The behaviour of a simple mechanical oscitlator is considered. The sys-
tem consists of two parts: one fixed, having a slot, and one constrained to
translate along a straight line, joined by a smooth pin with play (Fig. 3.7).
The movable part is excited by a periodic force and encounters no resistance
except inertia until the pin reaches the end of the slot. The impact of the pin
on the fixed member s inclastic and s modelled by a coeflicient of restitution
r,with 0 < 7 < 1. The system is governed by the following nondimensional
differential equation and boundary conditions:

g = ysin(r) forg| < 1, (3.5)
¢ — —rq’ for |gf = 1. |

Here, ¢ measures the position of the pin awd 7 is the forcing amplitude.
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This system was studied by Li et al. [23], who showed the existence
of periodic solutions for certain values of r and 5 by means of analytical
techniques. For instance, for r = 0.5 and v = 0.20826 a periodic motion was
found with period 27 having two impacts during each period. In Van der
Spek et al. [36], the existence of a chaotic attractor for the same parameter
values was shown.

3.3.3 Simple cell mapping

To apply the SCM method to the impact oscillator, a region of interest {2 is
chosen. Obviously, g satisfies |¢g| < 1. To obtain a region  which includes
both the periodic an the chaotic atiractors it is sufficient to choose |¢'| < 1
[36]. Next,  is divided into 101 % 101 rectangular cells of equal size. For
each cell, the image cell is determined by means of the center point method.

When integrating (3.5), one has to deal with the discontinuity in the
velocity at |g| = 1. Integration must be performed until |¢f = 1; after
changing the velocity ¢/ into —rg’, integration can be continued until [g] = 1
again. To realize this procedure, the Hénon method is used [11]. Here, the
Hénon method means rearranging (3.5) in such a way that ¢ becomes the
independent variable and 7 the dependent one. This is achieved by writing
the equation of motion for |¢| < 1 in (3.5) as a first order system:

dz; _
& (@36)

H?Z = ~ysin(t).

with zy = g, 7z = ¢'. Dividing the second equation by the first one and
inverting the first one yields:

21 2’ (3.7)
Edf?r% = 1%7 sin{T)

To describe the procedure followed during numerical integration, the
following definitions are introduced:

74 1 wvalue of 7 after j-ih integration step
x! : calculated value of x = (zy,22) after j-th integration step
z? : calculated value of z; (i = 1,2) after j-th intcgration step

h? : applied stepsize in j-th integration step
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Numerical integration starts with (3.6). When for some j |z{| > 1 holds, a
switch s made to (3.7} and one Integration step is carried out with initial
condition (1771, 2971) and stepsize z; = sgn(x]) — ], In this way, the
values of 7 and x5 al |z} = 1 arc casily obtained. After multiplying z; by
—r, integration is continued with (3.6) until |#y| > 1 again. However, when
z7 is small, (3.7) becomes a set of stiff differential equations, which are hard
to integrate. For xy = 0, the system dertvalives are even infinitely large.
Hence, the Hénon method is not very practical for amall values of z;.

When 3 is too small, a less sophisticated but more robust way is used to
integrate over the discontinuity al |xq| = 1. When for some j |z]| > 1 holds
and x5 is small, a new integration is performed from x/~% = (&]7%, 257
with stepsize hf = Ih' = 2(7; — 7j_1) which yields a new zi. Next, a new
integration is carried out with stepsize k), with

; i + j;.,.i/4 if |_,r.-'| <1
hJ = 1 . 1 ) 4.8
’ { hi— R4 if 2] > 1. (3.8)

This procedure is repeated until |[|z3] — 1} < 1072, Since every integration
starts from the same statc, no accumulation of integration errors will appear.

The two procedures {reated above are used in the SCM application. When-
ever xs < 0.05, the stepsize-halving method is used, otherwise, the Hénon
method is appliecd. The corresponding results are shown in Fig. 3.8. The
periodic solution is represented by b clustered cells of period 1 (o). The
transient cells (-) leading to one of these cells together form the basin of
attraction of the periodic solution. The chaotic attracior is represented by
a P — 17 group (). Its basin of attraction is left blank in Fig. 3.8.

To check the correctness of these resulls, numerical integration for all cell
center points is carried out. Iere, integration is continned until convergence
is reached (convergence criterion: EPS = 107%), with a maximum integration
time of 407 (807). If no convergence js obtained within this time limit, the
trajectory is considered to be chaotic.

Fig. 3.9 shows the results obtained by aumerical integralion: A periodic
solution (o) al {-0.894,-0.828), its basin of altraction (::), and the chaotic
atiractor, which is produced by the end points of all chaotic trajectories,
The basin of attraction of the chaotic aliractor is left blank. It can be seen
that the basing of attraction reasonably match with the SCM results, with
the exception of the the area —1 < 5y < —0.5, 0.7 € 22 = 1.0. Unkke the
periodic atiractor, the chaotic attractor found under SCM (the P—17 group)
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Figure 3.8: SCM results for the impact oscillator (3.5) for » = 0.5, v = 0.20826: 5
P =1 cells (o) and transient cells (-); £ — 17 group () and transient
cells (left blank).

does not resemble the actual attractor. As is usual under SCM, additional
numerical integration is necessary to obtain a correct chaotic attractor.

3.3.4 Interpolated cell mapping

For applying ICM to the impact oscillator, a grid of points distributed over {2
is needed. Since every state in {2 must have four surrounding grid points, the
grid points must lie on the boundary of 2 as well. For this reason, the center
points of the cells used under 5CM cannot be used. Hence, an additional
numerical integration over oune forcing period has to be performed for a
completely new grid, given by (ihy, jhs), 4,5 = —50,..,50, hy = hy = 0.02.

The discontinuity in {3.5) introduces an additional difficulty for ICM.
Inlerpolatlion only gives a good approximation of the actual state of the
systemm when the image points of the relevant interpolation points are not
too far apart. This is not the case when the corresponding trajectories have
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Figure 3.9: Numerical integration results: Periodic atiractor (o) and basin of at-
traction (1); chaotic attractor (-} and basin of attraction (lefi blank).

a different number of impacts. Since interpolation will give spurious results
in this situation, an ordinary numcrical integration should be carried out
instead. Of course, all integrations have to be executed with the integration
procedure, given in Subsection 3.3.3, lo handle the discontinuitios.

Fig. 3.10 shows the ICM results for EPS = 1073 and IMAX = 40. The
periodic sotution is found at (-0.895,-0.828) (¢). Further, a saddle solu-
tion is found at (-0.762,-0.807) (+). Trajectories that do not show conver-
genee within 40 interpolation/integration steps are assumed to end up on
the chaotic altractor. The corresponding basin of attraction is given by the
initial states of these trajectories (lefl blank in Ifg. 3.10).

Comparing these results with those obtained by nurnerical integration, it
can be concluded that the periodic solution is found almost cxactly, as well
as ity basin of attraction. The chaotic attractor also matches very well with
the one obtained by numerical integration. Additionally, the determination
of the saddle solution is an important resualt,
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Figure 3.10: ICM results: Stable periodic solution (o) and basin of attraction (::);
saddle solution (+) and stable manifold (x); chaotic attractor (-) and
basin of attraction (left blank).

3.3.5 Conclusion

It has been shown that CM methods can successfully be applied to dis-
continuous systems. To this end, the following modifications to the basic
procedures need to be performed:

» Modification of the numerical infegrailion procedure to overcome the
discontinuity.

o Under ICM and MM: Replacement of interpolation by integration
when the interpolation trajectories show an extreme divergence due
to the discontinuity.

As a consequence, ICM and MM require a (relatively) high CPU-time when
applied to discontinuous systems.
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3.4 Modified ICM procedure

3.4.1 Introduction

In this section, a modification of ICM, termed MICM, is described, with
which a substantial gain in CP'U-time may be achieved. Although the ICM
method is quite efficent, it can become very time-consuming. Especially
this is the case when one is dealing with discontinuous systems (see previous
section). However, a small change in the concept of ICM can reduce the
CPU-time drastically, as will be shown. The presented modification can
also be applied to MM, in which case the method is termed MMM.

3.4.2 The modification

Under [CM, a trajectory is approximated by means of interpolation. The
interpolation is stopped when one of the following criteria is salisfied:

e Convergence 1o an atiractor has heen achieved according to a conver-
gonee criterion,

¢ The number of interpolation steps has excceded a certain maximum,

[n both cases, the created trajeciory has setlled on an attractor (in the latter
case: a chaoiic attractor). The starting point of the trajectory is added to
the corresponding basin of attraction.

The process of interpolation can be stopped at an carlier stage, having
not. fulfilled any of the two abovementioned criteria yot. It is sufficient to
perform interpolation until & state ¥ has been reached of which the surround-
ing prid points xt . x%¥ (N: state space dimension) are already known to
lead to one and the same attractor A. Since further interpolation will also
lead to A in almost any case, it can he stopped at this stage. The initial
state of the interpolated trajectory can then mmnediately be addoed to the
corresponding basin of attraction.

There may be very rare situations in which this premature ending of the
interpofation process produces spurions resolts. It can go wrong e.g. when
inside the area of the N-dimensional cube, defined by the 2V interpolation
points, a region of initial states exists leading to a different attractor thau the
attractor corresponding 1o the surrounding interpolation points. If this is the
case, the interpolation s nol justificd anyway. To oblain correct results, the
interpelation grid shoutd be chosen finer then, The production of spurious



Modifications of Cell Mapping Methods 49

0

X

Figure 3.11: MICM results for the modified Duffing equation (2.4) for d = 0.15, a =
0.3, w = 1.0: Periodic attractor (+) and basin of attraction (::); chaotic
attractor (-) and basin of attraction (left blank); cells leading to the
stnk cell (&).

results when applying MICM or MMM may in particular occur when dealing
with fractal basins of attraction.

3.4.3 Examples

As a first example, the modified Duffing equation (2.4) is considered.
Using the same grid and criteria as in Section 2.3, the MICM method is
applied. In Fig. 3.11, the results are shown. Compared to Fig. 2.9, almost
identical basins of attraction are obtained. The MICM method, however, is
1.5 times faster than ICM, as can be seen in Table 3.1, Further, due to the
modification, fewer transient dots are found under MICM.

As a sccond example, the impact oscillator (3.5) is considered. Fig. 3.12
shows the results found with the MICM mecthod. Here, the same region 0
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is used as in Subsection 3.3.4, as well as the same grid and criteria. Apart
from the chaotic attractor, the MICM results perfectly match with the 1CM
results. Ilowever, the MICM method is more than five times as fast (see Ta-
ble 3.1). As explained in Subsection 3.3.4, interpolation should be replaced
by integration whenever the interpolation trajectories have a different wum-
her of impacts. Because of this aspect, nse of the MICM method causes a
very large gain in CPU-time for this example.

From both examples, it can be secn thal under MICM the chaotic atirac-
tor is formed by much fewer points than under ICM. T'his can be elucidated
by the fact that only terminate points of trajectories that have not con-
verged within IMAX interpolation steps arc supposed to be part of a chaotic
attractor. Due to the premature ending of the interpolation process under
MICM, most trajectorics leading to the chaotic attractor are classified as
being chaotic ai an early stage, in which case they have not settled on the
attractor yel. However, the chaotic attractor can be obtained afterwards
by ‘means of regular numerical integration. Integration of the equations of
motion over 5000 forcing periods gives an accurate picture of the chaotic
attrtactor. The necessary CPU-time for such an integration takes only 7.4 s
for the modified Duffing equation and 5.8 5 for the impact oscillator, which
implies that MICM is still to be preferred to ICM.

Additionatly, MMM has been applied to both systems. Since the resolts
obtained are similar 1o those obtained by MICM, they are not shown here.
Compared with MM, identical basing of attraction are found. The chaotic
attractors are formed by less points than under MM,

In Table 3.1, the CPU-times are given for all methods and both examples,
The modified concept turns out to be faster in all cases, Ior the modified
Dufling equation, the modified methods are 1.5 times as fast as the original
methods. lor the impact osciflator, the difference in OPU-time is up to a
factor 6.

Table 3.1: CPU (s) with and without modification.

Method Mod. Duf. Imp. Osc.

1CM 319 118.6
MICM 218 18.7
MM 38.3 #38.3

MMM 25.6 16.7
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Figure 3.12: MICM results for the impact oseillator (3.5) for 7 = 0.5, v = 0.20826:
Periodic attractor (o} and basin of attraction (::); chaotic attractor
() and basin of attraction (left blank); saddle solution (+) and stable
manifcld (x).

3.4.4 Conclusion

Modifications of ICM and MM, termed MICM and MMM, have been in-
troduced. These modifications produce almost identical basins of attraction
in less CPU-time. For discontinuous systems, the gain in CPU-time can
be a factor five or more. Chaotic attractors are formed by fewer points,
which implies that additional numerical integration has to be performed to
obtain a complete picture. Tor systems with fractal basins of attraction, the
presenfed modifications may produce spurious results.
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3.5 Mixed cell mapping

3.5.1 Introduction

In Section 2.4, the multiple mapping (MM) method has been introduced as
a variation on ICM. Under MM, the regular wap over one forcing period is
replaced by two maps, each covering hall of the integration interval. The
idea behind MM is the expeciation that a shorter interpotation interval will
improve the accuracy of the trajectory determination {32]. Mowever, this
docs not need to be true. In fact, halving the interpolation interval makes
only sense for states thal are being interpolated belween trajectorics Lhat
have diverged in some way at 1 = 7'/2. Therefore, a combination of MM and
ICM is introduced, termed mired cell mapping (MCM).

3.5.2 Method explanation

Under MCM, a regolar [CM is vsed unless one of the following situations
occurs: (a) The interpolation trajectorics have diverged at { = T/2 with
respect Lo the intespolation prid; (b) The interpolation trajectories enclose
a comcave area at £ = T In both cases MM is used to obtain the next image
point. Divergence of interpolation trajectories s defined to take place when
o = 1, with

1 25l
= 4
d= oN E Ly

Here, h; and d; {j = 1,..,2% — 1) reprosent the distance between x‘+! and
x'' att = 0 and { = T/2 respectively, as is shown in Fig. 3,13 for N = 2.

The nse of the MOM method in practice will take more CPU-time than
both ICM and MM, For each cell center poinl an integration has to be
carried out for { = 0tot = P and one for L = T'/2to t = T, which implies an
enlargement of the CPTU-time with a factor 1.5 compared to ICM and MM.
However, the results obtained by MCM are by definition at leasl as accurate
as Lhose obtained by 1CM and MM, and in many cases more accurale, Other
options to mmprove the accuracy under ICM or MM-—such as the reduction
of the cell size—may cnlarge the CPU-time with a larger factor or may have
less influence on the accuracy of the results.
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Figure 3.13: Definition of state space divergence.

3.5.3 Example: modified Duffing equation

As an example of application, the modified Duffing equation (2.4) is consid-
ered, with d = 0.1, @ = 3.2, w = 0.4776. These parameters—Ifor which two
stable second order subharmonic solutions coexist—were chosen by Tongue
[32], to compare ICM and MM. On the basis of fractal dimension calcu-
lations, Tongue proved that MM is more accurate than ICM. Here, appli-
cation of both methods as well as MCM is performed and compared to
results obtained by numerical integration. The values of IMAX and EPS,
not mentioned by Tongue, are taken to be 100 and 0.001, respectively, while
= {{z1,@2)||z1] < 2.5 A |zz| £ 4.0); the interpolation grid is given by
(ihy, jha), with fy = 0.05, hy = 0.08 and i,7 = —50, .., 50. '

Fig. 3.14 shows the results obtained by MCM. The two subharmonic
solutions have been found as P ~ 2 groups ((o) and (+)}). Each solution has
a large basin of attraction. Approximately 600 points (+) are mapped into
the sink cell. Because of the [ractal nature of the basins of attraction, the
modification presented in the previous section is not used here,

Application of ICM produces similar results. To obtain an exact com-
parison with MCM, numerical integration is carried out for all grid points,
using the same criteria for convergence. For every grid peint in the basin of
attraction of one of the two F — 2 solutions found under ICM and MCM, it is
checked if numerical integration leads to the same attractor. 1t is found that
ICM produces approximately 300 errors more than MCM. The CPU-time
for ICM and MCM is 85.8 s and 135.0 s, respectively.

Under application of MM, more than 2000 grid points are mapped into
the sink cell. Apparently, the first of the two interpolation mappings pro-
duces a state outside {2 many times. This problem is solved by choosing
a different interpolation grid for the second wapping, covering all the end
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Figure 3.14: MCM results for the modified Duffing equation (2.4) for d = 0.1, a =
3.2, w = 0.4776: Periodic attractor (o) and basin of atiraction (-);
periodic attractor (*) and basin of attraction (left blank); cells leading
to the sink cell (+).

points of the first mapping. In doing so, the number of cells leading to the
sink cell is reduced to approximately 500. However, MM still produces the
same order of errors as ICM (compared with numerical integration) and is
therefore less accurate than MCM. The CPU-time for MM is 95.3 5.

3.5.4 Conclusion

A modification has been added (o the existing cell mapping techniques,
termed mired cell mapping (MCM). MCM is a combination of 1CM and
MM, producing more accurate results at the cost of more CPU-time. When
applying MCM to discontinuous systems, even a gain in CPU-time may be
achieved. This was shown in Van der Spek et al. [36], where the MCM
method was applied to the impact oscillator (3.5).
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3.6 Integration interval extension

In this section, it is shown what can go wrong when investigating nonlinear
dynamic systems by means of CM methods. As an example, a beam with
nonlinear support is chosen. Tt is shown that the use of CM in its regular
way produces spurious results for this system. The system characteristics
urge the user to introduce an extended integration interval.

3.6.1 Beam with nonlinear support

A pinned-pinned steal beam with a central nonlinear support is considered.
The beam is harmonically excited by a transversal load and is supported
by a linear damper and a one-sided linear spring. In Fig. 3.15, a schematic
picture of the beam system is shown. This system was studied by Fey [8], who
investigated the long term bchaviour by means of CMS (component mode
synthesis) methods and finite difference techniques. Here, CM methods are
used to investigate the long term behaviour for one set of system parameters.

F cos(2r f1)

N

Fizgure 3.15: Beam system with nonlinear support. Studied by Fey [8].

A 1-DOF model of the beam system is given by the following equation:
Mg+ dg+ (1 4+ 6H(—q))kg = Fcos(2n ft), (3.9)

with M = 1.0358 kg, d = 116.61£ Ns/m, k = 3282.2 N/m, F = 19.693 N.
In (3.9), ¢ represents the displacement of the heam, while the Heavyside
function H(x) represents the one-sided character of the linear spring. The
ratio of the spring stiffness and the beam stiffness equals six. In (8], the exis-
tence of periodic motions is shown for f € [0,40] Hz and £ = (.01, 0.05, 0.1
by means of the above-mentioned methods and path-following techniques.
In particular, a 1/2 subharmonic solution was found for f = 22 Hz and
£ =0.01.
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Figure 3.16: SCM results for the bearn system (3.9) for Al = 7" Basin of attraction
of the 1/2 subharmonic solution (left blank); basin of attraction of the
1/6 subharmonic solution (+); cells leading to the sink cell (-}

3.6.2 Simple cell mapping

The SCM method is applied to the beam system (3.9) for f = 22 Hz, £ =
0.01, @ = {(¢, )| lg] < 0.01 A |¢g| <08}, and At =T, with 7' = 1/f. lor
discretization, 201 % 201 cells are used. The 1/2 subharmonic solution is
represented by a M —38 group and a P —8 group. Further, four 7 —5 groups
arc found, representing a 1/5 subharmonic solution. In ig. 3.16, the basins
of attraction of the periodic groups are shown.

T'wo aspects of the obtained results are striking: the large number of cells
leading to the sink cell and the large number of periodic cells representing low
order subharmaonic atiractors. Both aspects can be explained at the hand of
characteristics of the investigated system. The large number of transicnt cells
is caused by the large amplitude excitation, causing the system to undergo
targe amplitude transient behaviour before settling on one of the attractors
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Figure 3.17: SCM results for the beam system (3.9) for At = 207 1/2 subharmenic
solution (o) and basin of attraction (-); coexisting 1/2 subharmonic
solution (*) and basin of attraction (lelt blank); basin of attraction of
1/5 subharmonic solution (+).

in 2. Further, the occurrence of many spurious periodic cells is caused by the
low system damping. TFor those cells, an integration-interval of one forcing
pericd is too short to leave the cell when starting in its center point.

Both problems can be tackled by extending the integration interval Af.
In I'ig. 3.17, the results arc shown of an SCM application for the same Q
and cell discretization, taking At = 20T. As a result, no cells are mapped
into the sink cell and the periodic abtractors are represented by only a few
groups. Taking an even number of system periods has another advantage
here. When a 1/2 subharmonic solution exists, actually two 1/2 subharmonic
solutions coexist which are equal apart from a phase shift x. Taking Al =
nT, with n even, the determination of each solution and corresponding basin
of attraciion is accomplished.
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3.6.3 Conclusion

'T'he extenston of the integration interval for the determination of image cells
(or image points, under ICM) to two or more forcing periods can be applied
to accomplish the following:

+ Reduction of the number of cells mapped into the sink cell due to
transient behaviour.

¢ Reduction of spurious periodic cells found due to low damping.

This has been shown at the hand of a beam system with nonlinear support,
excited by a large amplitude force and experiencing little damping.

It has been shown that cell mapping is a useful addition to periodic
solvers. By means of 5CM, an additional attractor has been found for the
considered beam system for f = 22 Hz. In Van der Spek [35], the same
boam system was investigated by means of SCM and ICM. This resulted in
the detection of additional attractors for f = 8.34 Iz and f = 21.5 Hz.
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Extensions of Cell Mapping
Methods

In this chapter, two important extensions of cell mapping methods are pre-
sented. Tn Section 4.1, parameter variation methods for cell mapping are
introduced. After an initial cell mapping application, the proposed methods
enable the determination of the basins of attraction for a new system para-
meter value in relatively little computation time. In Section 4.2, the question
how to handle multi-DOF systems by means of cell mapping is dealt with.
To reduce the CPU-time and memory demands to reasonable proportions,
a general approach is presented for these systems.

4.1 Parameter variation methods
for cell mapping

4.1.1 Introduction

The equations of motion of a nonlinear dynamic system usually contain one
or mote system parameters, which are unknown or can change within a
certain bounded interval. An essential step in the research of a nonlinear
dynamic system is the study of the influence of the system paramecter(s) on
the long term behaviour. Methods used for this kind of research are called
parameter variation methods or confinuation methods,

Continuation methods are frequently used in combination with periodic
solvers, such as the shooting method or the time diseretization method (3, §).
Periodic solvers yield a periodic solution (if there exists one) of a set of

59
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ODFs. A continuation method determines the evolulion of the periodic
solution when a system parameter is changed. For more information about
continuation methods, the reader is referred to Seydel [27].

One thing that is still lacking in the established CM methods is a parame-
ter variation method. This method should be capable of determining the
evolution of the basin boundaries when a system parameter is varied. Of
course, the determination of the basin bouadaries for the new parametler
value should take less CPU-time than a complete new CM excoution. For
systems of two or more degrees of freedom, application of cell mapping meth-
ods may be very time-consuming. The existence of a continuation method
greatly improves the applicability of UM methods to those systems.

In this section, methods are presented which predict the basin boundary
evolution of the attractors of & nonlinear dynamic system, which is investi-
gated by means of SCM or ICM. These methods are termed PV5CM and
PVICM, rospectively. After a regular CM application, yielding two or more
abtractors and basins of attraction, the specific parameter variation method
predicts the basin boundaries and hence the basins of attraction {or a varicd
system parameler value. The necessary CPU-lime for one varialion step is
much smaller than for a new M execution, as will be shown.

In the next subsections, the PVSCM and PVICM methods are presentod.
The concept of parameler variation is explained and corresponding algo-
rithms are given. Application of the methods to a modified Dfling equation
is discussed, A comparison is made with a regular CM apphication for the
new parameter value. The proposed methods turn out to be very efficient
and accurate.

4.1.2 PVSCM Method
Method explanation

A 1-DOF nonlinear dynamic system is considered:

T = Xa, )

ity = [, 22,4 p0) (4.1)

Here, zy and z, represent the displacement and velocity of the system, re.

spectively, £ stands for {ime, and g iy a system parameter. It is assumed
that [ is periodic in £ with period 7T

The starting-point of the PVSCM method is a regular SCM application

to (1.1) for gt = pp. Lor this purpose, a region of interest 2 in the state
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Figure 4.1: (a) Partition of region of interest £ in basins of attraction separated by
basin boundary 38. (b) Definition of AR,

space 15 chosen and is discretized in cells, numbered I, .., M. For each regular
cell, the image cell is determined by means of the center point method (see
Subsection 2.1.4) with integration interval Al =T, After SCM application,
each cell » € {1,.., M} has obtained a group number ¢ = G(z) which denotes
to which group z belongs (as a periodic or as a transient cell).

I'or illustration purposes, it is assumed that two periodic groups have
been found in the SCM application, each representing an attractor. These
groups are numbered 2 and 3 (no. 1 is reserved for the sink cell, which is by
definition also a periodic group). For the sake of simplicity, it Is assumed
that each cell in {2 belongs to one of these groups (as a periodic or as a
transient cell), which implies that no cells are mapped into the sink cell.
Hence, each regular cell z satisfies either (7(2z) = 2 or (7(2) = 3. The region
{1 can be divided in two corresponding basins of attraction Bs, Bs, separated
by the basin boundary 857 (see Fig. 4.1a).

The aim of the PVSCM method is to determine the position of the basin
boundary #@B* for u = p* = po+Ap in less CPU-time than is necessary for a
regular SCM execution. This is achicved by only determining the new image
cells {1.e. for g = p*) for a limited number of cells. When no bifurcations
occur, the hasin boundary wanders through the stale space in a continuous
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Figure 4.2: (a) Definition of boundary cells. (b) Definilion of new boundary cells,

boundary has moved over an area AB which is bounded by B and dB* (see

Fig 1.1b). By iteratively creating an area B which is as small as possible but

which contains AR, asct of cells is obtained of which the new group numbers

define the new basin boundary. These cells are referred to as H-cells,
Belore giving the necessary steps in the PVSCM procedure, the following

deflinitions arce introduced:

Definition 1: Two cells z and 2 are called adjoining if they have at least

one cell corner point in comnon.

Definition 2: A cell z s called a boundary cellif there exists a cell z° which

is adjoining to r with (7(z) £ ((£).

In Fig. 4.2a, the boundary cells in € are shown for g = uo.

Tu the PVSCM method, the following steps are taken initialty:

1. Determination of the boundary cells for p = pg. The set of boundary
cells is taken as initial set for .

2. Determination of the image cell C'{z) for each cell 2 € B for = p*,

3. Determination of the group number G(z) foreach cell 2 € Blorp = .
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For the determination of group numbers, a cell sequence z, C(z),C¥(2),.. is
created for each z € P (see Appendix A), making use of the new image cells.
When a cell sequence leads to a cell # outside B, all cells in the sequence
receive the same group number as 2.

The newly determined group numbers produce a new basin boundary
@B} which lies inside B. At places where #B(!) touches the houndary of
B, B should be expanded. This is done by determining the new boundary
cells; these are cells which do not belong to B, but satisfy the definition of
a boundary cell, due to the new group numbers of the cells in B. The new
boundary cells can then be added to 3. In Fig. 4.2b, the new boundary cells
are indicated. Steps 4 and 5 in the PVSCM algorithm are hence given by:

4, Determination of the new boundary cells.
5. Addition of the new boundary cells to B.

To complete the expansion of B, steps 2-5 are repeated until no new
boundary cells are found. In step 2 of course, the image cell needs to be
determined only for the new P-cells. In step 3 however, it is necessary to
determine the new group numbers not only for the new B-cells, but for each
B-cell z which eventually maps outside B, hence which satisfies G(2) £ 3
for the considered example. This is done to restore possible errors. After all,
when a new boundary cell # receives a group number G(Z; u*) # G(Z; o),
all cells x € B which are mapped onto 2, need to be given the correct group
number (% 1*). This is achieved by re-determining the group number of
all B-cells characterized by a group number G < 3 (cells with G > 3 have
received their group number on the basis of new data, i.e. for g = u*, so a
re-determination of group numbers is not necessary [or these cells). When
no new boundary cells are found, the new basin boundary 9B* is defined by
the group numbers Gz 2*) of all cells £ € B.

Here, two remarks need to be made regarding the given procedure. Tlirst,
it is possible that during the expansion of B a new periodic group is found,
e.g. a saddle solution. This does not change anything to the procedure,
Groups found inside B receive group number 4, 5, .. and so on.

Second, it should be noted that the PVSCM method determines the new
basin boundaries in a minimal CPU-time. The time-consaming part in SCM
is the determination of the imagc cells, in which integration is involved.
Here, only for a limited number of cells—the B-cells—the imagc cell has
been determined. The profit with respect to a regular SCM performance is
obvious.
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PVSCM algorithm

The PVSCM algorithm makes use of the group numbers & determined in
a 5CM caleulation. The group numbers have been stored in the array g.
For cach regular cell #z, the group number 7(z) is given by g[z]. let N,
be the number of groups (including the sink cell) found under SCM, then
1< giz] < N, holds for z =1, .., M. In the PV5CM algorithm, the following
arrays and variables are additionally used:

¢z : image cell of 2, 2= 1,.., M,

Ny : number of B-colls,

iy : number of new B-cclls,

b{i] ¢ d-th B-cell, i=1,., N,

ind[z] : equals 11if s a B-cell, 0 otherwise, = = 1,.., M.

The first step in the PVSCM method is the determination of the boundary
cells. When all cells have been checked, A" boundary cells have been found
and stored in the array b. Hence, initially N, = K and ind{b(7]] = 1 holds,
(+=1,.,K).

Steps 2-5, given in the previous subsection, define the general loop of the
program. While A = 0 holds, the following is repeated:

1. Fori= Ny — K + 1,.., N (i.e., for all new B-cells):
determine the image cell ¢[b{7]] for g = p™.

2. Fori=1,.., Ny
if g[b[il] < N, then g[b[]] := 0.

3 Foro= b, My
if g[b[7]] = 0 then determine the new group number for b[4].

4. K =0.

lorz=1,_,M:
if # is & boundary cell and ind[z] = 0 then

T

K = K41,
[N, + K] = =z,
ind[z] = 1.

6. Ny:= Ny + 1.
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In the second step of this loop, all B-cells for which a new group number
needs to be determined (new B-cells as well as cells which eventually map
outside I, both characterized by a group number G £ N,) arc tagged as
virgin cells by giving them group number 0 (see also Appendix A). The
search for new boundary cells, which is done in the fifth step of the loop, is
quite trivial and can be programmed in many ways.

Example of application: modified Duffing equation

As an example of application of the PVSCM method, the modified Duffing
equation (2.4) is considered with d = 0.15, ¢ = 0.3, w = 1.0. SCM applica-
tion to this system has been discussed in Section 2.1, with : |z;| < 2.02, 1 =
1,2, and a cell discretization of 101 x 101 cells. In Fig. 2.3, the attractors
and basins of attraction obtained by SCM are shown.

The PVSCM algorithm is used to determine the basins of attraction for
d = 0.17. Tor this purpose, it is necessary to change the group numbers. In
the SCM execution for d = 0.15, 6 groups were found. However, 3 of them
represent the same chaotic attractor. Hence, only 4 different groups need to
be distinguished (N, = 4). After the group numbers have been changed and
stored, the PVSCM algorithm can be applied.

The results obtained by PVSCM are shown in Fig. 4.3. The basing
of attraction of both attractors have been determined for d = 0.17. The
new position of the saddle solution has also been found. To check these
results, the domains of attraction have been determined by means of SCM
for d = 0.17. The results of both methods perfectly match. In Fig. 4.3, the
only cell which belongs to different basins of attraction in both simulations is
indicated (¢). The corresponding CPU-times are 6.4 5 (PVSCM ) and 21.2 5
(SCM).

Remarks

The PVSCM method only produces the basins of attraction for the new pa-
ramcier value, not the location of the attractors. This information however
cant casily be obtained by regular numerical integration. Only when a solu-
tion lies in the region B (e.g. the saddle solution in the previous example),
a corresponding group may be found. Under SCM however, attractors are
always represented by periedic groups which approximate the exact location
of the attractors. To obtain the exact position and type of the attractors,
additional research is necessary. In general, integration over a short interval
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[Migure 1.3 SCM and PVSCM results for the modified Duffing equation {2.1) for
d=0.17, « = 0.3, w = 1.0: Periodic basin (-); chaotic basin (left blank);
saddle solution (+) and stable manifold (x); (o) belongs to periodic
basin under PVSCM, Lo chaotic basin under SCM.

starting frow one of the cells which represent the attractor is suflicient to
eel the desired information. In this respect, the absence of periodic groups
in the results of a PVSCM execution can not be seen as a shorteoming,

The basins of atiraction obtained by PVSCM are approximalions for
those obtained by SCM. By means of adaptively enlarging the set ot H-cells,
the approximation error is kept as small as possible, Tlowever, things can go
wrong when a H-cell z is mapped onto a cell # ¢ B with G(Z u*) # G(E; o).
Then, z receives a wrong group number (¢(Z; uo). When £ is never going to be
part of B, cell z—as well as all cells in B which reccived their group number
due 1o leading to £ will keep this wrong group number. T'he chance for this
to happen is small, assuming that the basin boundaries change smoothly and
that generally the state of the investigated system moves away {rom the basin
houndary towards the attractor. When the parameter variation step Qg is
increased, the probability of error-introductions grows.,
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In the example of the modified Dufling equation, an extended starting set
for B was used. Besides the initial boundary cells, all cells bordering on the
sink cell were added to B as wcll. When a parameter is varied, changes in the
basin boundary can also occur along the boundary of 2. To predict this kind
of changes, the extension of the starting set for I is necessary. Application
of the PVSCM method to (2.4) with Ad = 0.02 using only the boundary
cells as starting set for B did not predict the basin boundary changes in the
upper left corner of 2. Apart from that, the results were identical. The
nccessary CPU-time for this simulation was 5.5 s.

4.1.3 PVICM method
Method explanation

The parameter variation technigue presented in the previous section can be
applied to ICM in a similar way. Under ICM, cells actually do not play a
role. By regarding the ICM grid points as cell center points, the parameter
variation concept for SCM is suited for ICM as well. Suppose ICM has been
applied to (4.1) for u = pg, vielding two attractors, numbered 2 and 3, and
corresponding basins of attraction. Then, for each regular cell z a group
number (/{z) exists, which denotes to which basin z belongs, as well as an
image point x(z), determined by numecrical integration over 7' seconds. To
obtain the basin boundary for y = ¢™ = g+ Ap, again a region B is created
which covers all the cells between the old and new basin boundary.

The procedure for the creation of B is the same as under PVSCM, apart
from a few (trivial) differences. First, for each new B-cell z the image point
x(z) is determined instead of the image cell ('(z). Second, interpolation
is nsed to determine a cell’s group number. During interpolation, the new
image points (determined for u = p*) should be used when available.

PVICM algorithm

In the PVICM algorithm, two arrays arc used from the ICM execution for
it = pp. Besides the array of group numbers g, a two-dimensional array ip
15 available. Here, ip[z][¢] initially contains the i-th coordinate of the image
point x(z) for 4 = pg. Whenever for a B-cell z the new image point is
determined in the algorithm, ip is updated. The array ip contains all the
necessary data for the interpolation of trajectories. Turther, the same arrays
and variables are used as under PVSCM, except for the array ¢ which is not
relevant under LCM.
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The first step in the PVICM algorithm is the same as under PVSCM:
determination and storage of the initial boundary cells. Next, the following
steps are repeated until the number A of boundary cells equals zero:

1. For:= ‘Nb - K+ ], . NE::
determine the image point x{b[7]) for g = p* and store it in ip.

2, Fori=1,., Ny
if g[b[i]] = N, then determine the new group number for blz].

3. K =0,

4, Farz=1,.,M:
if z is a boundary cell and ind(z] = 0 then

K = K+1,
b[Ny + K] = =,
indfz] = 1.

B Ny =N, + K.

The determination of group numbers is realized by means of interpo-
lation, which is continued until convergence is obtained or until a state is
reached of which the surrounding grid points belong to cells which have iden-
tical group numbers (MICM method, see Section 3.4). When no convergence
15 obtained within IMAX interpolation steps, the trajectory is considered Lo
be chaotic. The cell containing the initial point is accordingly tagged by
receiving group number (1

Example of application: modified Dufling equation

In Section 2.3, IUM has been applied to the modified Duffing equation (2.1)
for d = 0.15, « = .3, w = 1.0. This resulted in the location of the periodic
and the chaotic altractor as well as the domains of attraction (Fig. 2.9).
Due to the periodicity criterion and the recurrent character of the chaotic
attractor, 8 additional periodic groups were found on the chaotic attractor.
The corresponding basins of aliraction, which only consisted of very few
points, were added to the chaotic attractor’s basin of attraction. These
rostlis are nsed as a reference for PVICM.

After re-numbering the gronp numbers, the PVICM method is appliced
to {(2.4) with Ad = 0.02. Fig. 4.4 shows the new basins of attraction as well
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Figure 4.4: ICM and PVICM results for the modified Duffing equation (2.4) for
d =017, a = 0.3, w = 1.0: Periodic basin (-); chaotic basin (left blank);
saddle solution (+) and transient cell (x); (o) belongs to periodic basin
under PVICM, to chaotie basin under ICM.

as the newly found saddle solution. Here, also the cells bordering on the sink
cell have been included in the starting set [or B, To check the results, ICM
has been applied for d = 0.17. In Fig. 4.4, discrepancies between PVICM
and ICM results are indicated (o). Again, a very good resemblance in the
basins of attraction is achicved. Also the location of the saddle solution
is identical for both methods. The CPU-times for both methods are 7.5 s
(PVICM) and 35.0 5 (ICM).

Next, the PVICM method is applied with Ad = 0.03, which implies a
damping variation of 20%. All grid points are found to lead to the chaotic
altractor for this case. A regular ICM performance for ¢ = 0.18 proved the
rorrectness of these results. IHence, the vanishing of the periodic attractor,
which happens somewhere between d = 0.17 and 4 = 0.18, can be predicted
by means of the PVICM method. Here, the necessary CPU-times for the
ICM and PVICM executions are 36.1 s and 15.6 s, respectively.
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Remarks

The additional information of ICM with respect to SCM is the location of
the chaotic attractor. Unlike under SCM, where the chaotic attractor is
represented only by a few periodic groups, the end points of chaotic tra-
jectories form a reasonable approximation of the chaotic altracior. This
additional information is missing when using the PVICM method. However,
the chaotic attractor obtained by regular ICM is still not very accurate when
regarding Lthe end points near the periodic attractor, These points belong to
trajectories which need more than IMAX steps to converge to the periedic
attractor, Further, the chaotic attractor is partty formed by end points of
{rajectories which have not converged to this attractor yet, resulting in a
disorderly picture of the attractor (compared with the picture obtained by
regnlar numerical integration in Iig. 1.3). Henee, for a correct chaotic atirac
tor, a regular numerical integration s necessary anyway. This means that
the lacking of a chaotic attractor for u = p* again is not a real shortcoming,
of the PVICM method.

The chaotic attractor’s basin of altraction for g = p*, obtained by regular
ICM, not only consists of initial points of chaotic trajectorics, but also of
grid points leading to periodic groups on the chaotic atiractor. To obtain
the correct basin of attraction, all basins of (hese periodic groups need to
be included. Under PVICM however, the correct basins of attraction are
directly ohtained without ad-hoc interference by the user.

4.1.4 Conclusions

A parameter variation (V) method for cell mapping has been introduced.
It has been shown that the method can be applied to both SCM and {CM, in
which case it is termed PVSCM and PVICM, respectively. The PV methods
determine the evolution of the basin boundaries, initially determined by SCM
or [CM, when a system parameter is varied. Corresponding algorithms have
been prosented.

Application of the PVSCM and PVICM methods to a modified Duffing
equatlion has been performed. The obtained resulls perfectly match with reg-
ular cell mapping executions for the new parameter value. The PV methods
however are up to five times as fast.

‘T'he presented methods may not work when global bifurcations eccur
during the paramecter variation, due to discontinuous changes in the hasin
boundaries. However, resulls oblained by the PV methods can be vsed to
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pradict global bifurcations for additional parameter variation. The vanishing
of attractors during variation can be handled in general. In that case, the
CPU-time profit may be smaller than usual. Application to systems with
fractal basing of attraction may cven produce no profit at all. Tn that case,
due to the followed concept, the number of cells for which a new image ¢ell
needs to be determined will be much larger.

4,2 Cell mapping for multi-DOF systems

4,2,1 Introduction

When applying CM methods in their regular form to systems of many DOIVs,
problems of computational kind can be expected. For a dynamic system of
[ DOVF’s, the corresponding state space has dimension N = 2[. According
to (2.2), the number M of regular cells for a SCM application grows ex-
ponentially with N. Additionally, the necessary CPU-time to determine a
cell’s image cell grows linearly with N, since N first-order ODE’s need to
be integrated for this purpose. This means that for ¥ > 4 extremely high
CPU-times will occar.

Under regular SCM, several arrays of length M are created in the algo-
eithm. For each cell z € {1,.., M}, the image cell C(z) is stored as well as
its group number G(z) and the step number S(z), which is the number of
mapping steps required for » to end up on a periodic group ([14], Appendix
A). Under GCM, a cell can have several image cells, which means that even
more atrays are needed. Under ICM, all (V) coordinates of the image point
of each grid point need to be stored. Hence, for too large values of M, the
cotputer memory capacily will be exceeded for any CM method.

'I'he present-day hardware memeory capacity and processing speed put
a limit on the number of cells and hence on the number of DOF’s of the
investigated system. Systems modelled by two DOF’s probably form the
lirait for regular CM application. In Hsu [14], a 2-DOF Van der Pol system
was investigated by means of SCM using 59% cells. For the determination of
image cells, an integration interval ¥ = 2.2 was used. This sirnulation took
19 hours on a VAX-11/750. The same simulation has been repeated by the
author on a SG Challenge, in which case 2.5 hours were needed. However, an
additional DOF will increase the CPU.time with another factor 592 when the
same number of cells is used for discretization in the additional dimensions.
Hence, it seems that applying CM mcthods to systems of three or more
DOF’sis hardly possible, unless M is kept relatively small by using very large
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cells. In deing so however, the errors introduced by the cell discretization
will also be very large.

It is concluded that new CM techniques ate necessary for the investiga-
tion of systems of three or more DOF’s. An example of such a new technique
15 the MDCM (multi-DOF cell mapping) method, which is presented in the
next subsection. The MDCM method s deduced from SCM and can be
applied to systems of arbitrary number of DOIs. In Subsection 4.2.5, ap-
plication is performed to a 4-DOF dynamic system,

4.2.2 MDCM concept

Under regnlar SCM, the atiractors and basins of attiraction are determined
in a region of interest £ in the N-dimensional state space. However, a two-
dimensionad subspace £ needs to be chosen for representation purposes. For
large NV, many choices for ¥ are possible. Hence, the user has to decide
which choices are most relevant, This means that many data are not used in
practice. Therelore, it seems meaningful to make these choices heforehand
and to determine the long term behaviour only for the initial states lying in
the subspace of interest. This point of view is the basis for MDCM.

The aim of the MDCM method is the determination of the inlersections
of the basing of attraction of a N-dimensional dynamic system (N = 3) with
a two-dimensional subspace ¥ For this purpose, the following steps are
Laken:

e A two-dimensional subspace ¥ ¢ RV is chosen.
# In ¥, a region of interest ' is chosen.
e A set of cells § is defined, covering /.

o l'or each cell 2 € 8, the group number (/(z) is determined by creating
a cell processing sequence =z, C(z), C%(2), ...

The final atep is cxplained in detail in the next subsection. The intersections
of the basins of attraction with ¥ are given by the cells in § with equal group
nimber. Since only for cells in the processing sequences the image cell is
determined instead of for all cells in € under regular SCM- the CPU-time
and memory demand ts reduced drastically in this way. Under MIDCM, there
is no real restriction on the system dimension.

Aninteresting aspect of MDCM is the possibility of re-using stored group
numbers of processed cells. Having applied MDCM for o cerlain subspace
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v!, use can be made of these group numbers when applying MDCM for
another subspace 2. When a cell sequence starting from « cell z € T¥ leads
to a cell z' which has already been processed in the first application, the
sequence can be terminated. All cells in the sequence then obtain the same
group number as #'. In this way, the creation of each processing sequence is
stopped at an early stage, yielding an extra gain in CPU-time.

4.2.3 MDCM method
Consider a N-dimensional dynamic system governed by
iy = Iy, zn,t), 1=1,.,N, (4.2)

with F; periodic in ¢ with period T (i = 1,.., N). In the state space R, a
N -dimensional cell structure is created. To this end, & cell sizes by, .., Ay are
chosen. Each cell in this structure is denoted by a cell vector z = [21 .. zn]7,
with 2z; € Z (i = 1,.,N). A cell z contains all states x = [z1 .. an]7 with

(zi—ul/g)hgg.’ci4_:(3,;4—1/2)}15, i=1,.,N. (43)

As a result, the center point of a cell z is given by ¢ = [e; .. en]T with

c;=hz, 1=1,.N. (4.4)

The definition of a two-dimensional subspace ¥ is realized by giving N =2
cell indices a constant value, eg. 23 = .. = zy = 0. I is then defined by
the corresponding center points, hence ¥ : 25 = . =2y = 0. On X, a

bounded region (' is defined by introducing an upper and lower limit for the
remaining two state variables:

V= {xecRY 2P <z <2l i=1,2 A 2;=0, i=3,.,N}.(4.5)
The set & of cells covering €' is then given by
S={zezV| V<< iz1,2 8 5=0,i=3,.,N), (46)

where 3;'“) and zi(u)

of cells in 5 is given by M, with

are related to z\" and z{* according to {4.3). The number

P ]

M=(1+2M - 00 - ). (4.7)

To determine the long term behaviour for each z € 5, a cell sequence
z,C(z),Cz(z),._ is created, with ¢+ ZV¥ — ZV. The determination of
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an image cell C(z) for a cell z = [z;..2x]7 is realized by means of the
cenler point method: First, the center point ¢ is obtained by means of (4.4).
Second, numerical integration of (4.2) is performed over an interval At =T
using c as initial state. This integration yields a state y = [y .. yn]7. Third,
the image cell z* = [z7.. 2%]7 is determined, which is the cell containing y.
The cell indices of 2* are given by

= int{y /by + 1/2), (4.8)

where int{x) denotes the largest integer which is less than or equal to =.
A cell sequence is terminated when a cell s found which already occurred
in the sequence or which has already been tagged in a previons sequence.
In the former case, a new periodic group has been found; in the latter one,
all cells in the sequence are transient cells, leading o an already discovered
group, and are accordingly tagged.

Under MDCM, it is not necessary to deline a sink cell. After all, for each
state x € IR a corresponding cell exists according to (4.8). Hence, a cell
sequence will nol be terminated because of ending up in the sink cell, as
under SCM, but can be continued until a periodic group is found. Without
the existence of a sink cell however, the number of cells in the state space is
infinite. This implies the possibility of a never ending cell sequence. Just as
under ICM, this problem is tackled by introducing a maximum number of
cells in a sequence, When this maximuin is exceeded, all cells in the sequence
are assumed to lead o a chaotic attractor.

4.2.4 MDCM algorithm

Compared with SCM, a different way of storing cell data is applied in the
MDCM algorithm. Under SCM, the group number, the step number, and
the index of the image cell are stored for each regular cell. Under MDDOM,
this approach is impossible because of the infinite number of regular cells in
the state space. For storing purposes, the following arrays and variables are
ugid:

» Ny number of processed cells, Le. cells which have obtained a delinite
group number,

e [ number of cells under processing, Le. cells in the current processing
sequence.
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o pc: two-dimensional array containing all cells processed or under pro-
cessing. Ilere, pefi] denotes the i-th cell in pe while pe[il[j] contains
the j-th index of peft] (F=1,.,N,i=1,..,Np. + K).

e g: one-dimensional array containing the group mumbers of all cells in
pc. Hence, the group number of pe(7] is given by gli] (1 = 1, .., Npe+ K).

s ind: one-dimensional array containing the position in pe of cells in the
current sequence. Hence, the i-th cell in the current sequence is given

by pefind(i]] (i = 1,.., K).

During the generation of a cell sequence, it has to be checked if the
iatest determined cell z has already occtrred in the current or in a previous
sequence. This information is obtained by scanning the array pc. The CPU-
time required for this operation is proportional to the number of cells stored
in pe, which is given by m = N, + K. Since m grows during the algorithm
and at least will be equal to M, it is useful to reduce this CPU-time by
sorting the cells in pc: If 1 € ¢ < 7 < m then pe[i] < pe[j]. Here, the
relation < for two vectors x and y of length N is defined as

X<y &= dien M {g;<yirnai=uwul<i<j) (4.9)
When pe is sorted in this way, the search for a certain cell takes a CPU-time

which is proportional to log(m) (see e.g. [34]).

Let Ny denote the number of periodic groups found in the MDDCM algorithm.
The initialization of the algorithm is then given by

* Ng =10
e N, :=0.

Let the c:ells in S be denoted by z!,..,2™. To determine the group number
of 2 = 2 (1 = 1,.., M) the following is performed: First, it is checked if z
already occurs in pe, by means of the assignment

* B :=8CAN(z,pc, ),

where SCAN is a function returning TRUE if z occurs in pe, FALSE other-
wise. In the former case, I receives the corresponding index, which means
that afterwards pe[l] = 2z holds. In the latter case, [ receives the index of
the smallest cell in pe larger than z. If no such cell exists, z > pc[V,.) holds
and T is set equal to N, + 1.
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After calling SCAN, two possibilities exist. When B = TRUE, z has
already been processed in a previous sequence. In that case, the current
investigation is terminated and the procedure is restarted for the next cell
z!*!. When B =FALSE, z has not occurred in any sequence. In that case,
a cell sequence is generated, starting from z. To this end, the number K of
cells in the current sequence is initially set equal to zero:

o K =10,
Next, the following steps are performed:
1. K=K +1
2 for (j=1+1,.., Ny + K): peff) :=peff ~ 1]

6. for (5 = 1,.., & — 1): if (ind[5] = 1) ind[j] = ind[4] + 1
7. ind[K]:=1T

8. z:= IMCELL(z)

9. B :=85CAN(z,pe, 1)

In step 1, K" is updated. In steps 2 and 3, z is stored in pe at position [ and
pe is accordingly updated. In steps 4 and 5, g is updated and z is lagged
as a cell under processing by receiving a temporary group number 1. In
step 6, the array ind is adjusted according to the changes in pe. In step 7,
the index of the Jatest determined cell 2 is stored in ind. In step 8, z is set
equal to its image cell C/(z), which is determined by means of the function
IMCELL. Pinally, pe is scanned {or the occurrence of z in step 9.

Steps 1-9 are repeated until one of the following situations oceurs:
(A) 3 = TRUE: In this case, the latest determined cell  already oeccurs in
pc. Depending on the corresponding group number g[/] of z, the following
situations are distinguished:
(A1) g[I] = —1: In this case, z already occurred in the current sequence,
which means that a new periodic group has heen found. As a result, N, 18
updated and all cells in the current sequence are Lagged:



Extensions of Cell Mapping Methods 77

e Ny =Ny +1
o for (i =1,., K) glind[é]] := N,.

(A2) g[f} > 0: In this case, z has already occurred in a previous sequence.
The cells in the current sequence then lead to the same attractor as = and
hence receive the same group number:

o for (z = 1,.., K) g[ind[i]] := g[J].

(B) A = MAX: In this case, the number of cells in the current sequence
equals the maximum number MAX without visiting a cell which is stored in
pc. Then, all cells in the sequence are assumed to lead to a chaotic attractor
and are accordingly tagged by receiving group number {). Additionally, the
latest determined cell z needs to be stored in pc and hence g and pc need to
be updated. Hence,

s K= K +1

for (#=1,.,K — 1) glind[z] := 0.

for (= I+ 1,.., Npo+ K) pcff] 1= pej — 1]

L}
o pc{l]li=z2
o for (j =04+1,  Np.+ K)gly] i=g[i - 1]

e g[l]:=0

In both (A) and (B), all cells in the sequence have been processed. Hence,
Npe 15 updated as follows:

o Npo= N .+ K.

This completes the investigation for z*, The procedure can now be repeated
for the next cell in §. In Fig. 4.5, a flowchart is given of the MDCM-
algorithm.

Having determined the group number of each cell in S, the research is
finished. If desired, a new set of cells 57 can be chosen for investigation. In
that case, the same procedure is applied, starting with the current values for
N, and N, and using the data stored in pe and g.
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. Npe =10
G&cﬁn}-----»-- N;, =0

Z:=2 _> ——IB—%CAszC 0

}.‘Jmi> Cf) y
- \ I ) Ki=K+1
Ny = Npa + K { |
| e p(‘ CHAOS R = MAX UPDALE

pell] = 2
E“ j gl = -1
QLDG ind{K]:=1
P " % = IMCELL(Z)

B = ’l‘l-iUbJ) ] Bi=BCAN(Z, pC. )

Subroutine UPDATE:
for (§ = T4+ 1, Npo + K) {pe[i] := peli — 1, gl =gl - 1]}
for (i=1,.,K - 1) {if (ind{s] = 1) ind[i] := lnd[a]4 1}

Subroutine CLIACS:
K= K +1; UPDATE, pe[l].= Z; Ind[K] = #;
for (4 = 1,.., &) {gind[i]] .= u}

Subroutine NLEW;

Ngi= Ng+1

for (i = 1, K) (g[ind[3]} :=
Subrautine (L1

For (i = L, .., ) {glindu) = g}

Figure 4.5: Flow charl of the MDOM algorithin,
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4.2.5 Application: 4-DOF beam with nonlinear support

The beam system with nonlinear support discussed in Section 3.6 is used as
application for the MDCM method. A 4-DOF model of 1his system is given
by the following set of equations:

M4+ Dq+ Kq+1(q) = F(t). (4.10)
Here, q = (142 ¢3 q.;]T is an approximation of the real displacement field,
containing three free-interface eigenmodes and one residual flexibility mode
(see {8, page 84]). Further, M, D, and K are the corresponding mass,
damping, and stiffness matrices, respectively, which are given by

138 0.38 038 -0.39 000 0

M= 038 1.38 -0.38 -0.39 D 0 00 0
‘ -0.38 -0.38 138 039 000 0
-0.39 -039 039 0.39 0 0 0 116.61£

62.01 4321 —43.10 —43.08
.| 4321 4330 —4325 —44.04 |
K=1 4319 _4325 4580 4402 | 1O (4.11)

-43.98 —44.04  44.02 4482

Here, £ is a nondimensional damping coefficient. Finally, f(q) and F(7) con-
tain the nonlinearity and the external excitation of the system, respectively.
For the considered system, they are given by

Q 0
0 0 15
f(q) = o | Fo= ol
1969011 —q4)ga 19.69 cos( 27 f1).

Here, H(z) is the Heavyside function, representing the one-sided linear spring
and f is the frequency of the external excitation.

For [ = 22 Hz and £ = 0.02, the MDCM method is applied to (4.10).
The state of the system is given by x = [z ..:ag]T, with z; = ¢;, 241 =
gi, 1= 1,3,5,7. In the B-dimensional state space, a cell structure is defined
by introducing 8 cell sizes hq,..,hs, given by 6 - 1077, 6 - 1071, 4 - 1073,
8:107%,6-107%,3.107%, 4-1073, 11072, respectively. The (z1, 23)-plane
is taken as subspace of interest X; this plane corresponds to all cells 2 with
z =0fori =3,.8 In % abounded region @ is defined by putting
~25 < 21, 20 % 25, which implies |21] < 1.5-107% A o} £ 0.015. Hence,
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2 contains M = 51 % 51 cells. For the determination of image cells, an
integration interval Al = 207 is used (see also Section 3.6). The maximum
number MAX of cells in a cell sequence is set cqual to 20,

In Fig. 4.6a, the resulis of this simulation are shown. The blank area
corresponds to cells which lead to a 1/2 subharmonic solution, Cells identi-
fied by a {-) lead to a 1/6 subharmonic solution. The necessary CPU-time
for this simulation is approximately one hour. In Fig. 4.7, state space rep-
resentations are shown for all state variables for both solutions.

In Fig. 4.6b-h, the basins of altraclion arc shown for different choices
for ¥. The modifications with respecl to (a) are given by z4 = 1,27,
respectively, which implies 24 = 8n - 107", »n = 1,2,..,7. For z, = 0.032
and x4 = 0.056, only the 1/2 subharmonic solulion is found as possible long
term behaviour for the considered initial states. Tt should be noted that
in each new simulation nse is made of the results obtained in the previous
simulations. In this way, the CPU-time is reduced to approximately half an
hour per simulation.

4.2.6 Concluding remarks

A CM method for multi-DOT systems has been introduced, termed MDCM,
Under MIDCM the long term behaviour is determined for a bounded set of
initial states in a two-dimensional subspace of the state space. As a result,
MDCM yields two-dimensional representations of the actual basing of attrac-
tion. The corresponding attractors are represented by periodic groups and
hy final cells in sequences of length MAX. By means of numerical integration,
the exact position and type of the attractors can be found.

With the analysis of a 4-DOT beam system, it has been shown that the
MDCM method is an effective tool for investigating multi-DOF systems,
Besides a 1/2 subharmonic solution, which was also found by Fey [8] by
means of a periodic solver for different damping values, MDCM detected the
existence of a 1/6 subharmonic solution. This again shows that CM is a
useful addition to periodic solvers,

An alternative way of determining the long term behaviour of a two-
dimensionad set of initial states @7 in a N-dimensional slate space is numer-
ical integration, to be performed for each initial state, and to he continued
unlil convergence 1o an attractor is accomplished. Results obtained by this
approach match quite well with the MDCM results, as far as the 4-DOF
beam system is comsidered. However, the same order of CPU-time is re-
quired for each new choice of ' (£3.5 hours for the considered example).
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Applications

In this chapter, cell mapping methods are applied to some practical nonlinear
dynamnic systems. First, a rotordynamic rubbing problem is considered,
featuring a mass-eccentric elastic rotor which rotales around a rigid shaft.
Nonlinear phenomena occur when the rotor touches the shaft (rubbing).
Here, the ASCM method is used for investigation. Second, the MDCM
method is applied to a 2-DOTI model of a portable compact disc player
which is hanging on a jogger’s shoulder. In this model, the nonlinearities
are represented by a one-sided connection between player and pad as well as
betwean shoulder and pad.

5.1 Rotor with rubbing

5.1.1 Introduction

Rotordynamic systems have been studied for many years. This study finds
its application in the manufacturing of large turbines as well as small do-
mestic utensils. Knowledge about the phenomena in rotordynamic motion is
very important to assure reliability of the machinery as well as to diminish
unpleasant side-effects for the user, such as noise and malfunctioning.

In 1919, Jeffcott {17} was the first to present a mathematical description
of the whirling response of simple rotor models. In recent investigations,
special cmphasis has been put on the nonlinear response of rotors [9, 2,
25, 5, 19]. Nonlinear motion can be caused by rubbing between rotor and
housing, nonlinear bearings, clearances, or nonlinear supports. The analysis
of these problems is mostly carried out by means of periodic solvers, regular
numerical integration, and analytical techniques.

23
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In the next subsection, a rolordynamic problem with rubbing is consid-
ered featuring an elastic rotor rotating around a fixed shalt. The model 1s
similar to the one studied by Crooijmans [3], in which case rubbing con-
cerned the rotor-housing contact. In [3], the time-discretization method was
used to determine periodic solutions of the system. By means of contin-
uation methads, additional bifurcation research was performed. Here, the
ASCM method is used to determine all possible responses of the system for
a certain sel of system parameters.

5.1.2 The rotor model
Geometry of the rotor

A ftexible rotor of mass M is considercd, which is rotating with constant
radial velocity £ around a fixed rigid shaft. The rotor is mass-eccentric.
The inner radius of the rotor is given by A while ¢’ denotes the dearance
between rotor and shaft. Here, B »> C holds.

The motion of the rotor iz described by two DOF’s, z and y, which
determine the position of the geometrical center of the rotor, P, with respect
Lo the fixed conter of the shaft, /%, The mass unbalance of the rotor is
represented by e, which denotes the distance between F, and the center of
mass £, In Mg, 5.1, a momentary position of the retor is shown.

Yorces exerted on the rotor

DBetween rotor and the shaft, no mediom is present. This means that the
rotor undergoes a free motion as long as contact beiween rolor and shaft

does not occur. In case of contact, i.e. for A 1= /&2 + y? — ¢ = 0, the shaft
exerts a restoring force F* = F* 4 F! on the rotor, with

F* = F, { — cos } B L) [ sin 6 ] : (5.1)

—sind - c0s 8

The angle 6 is defined as the angle between P, — I, and the positive z-axis
(sce Fig. 5.1). The force ¥* applies in the idealized contact point F, =
—a(cosf,sin @), with a = R — C (see Fig. 5.2).

The rotor is made of visco-elastic material, with stiffness £ and damping
d, while the shaft iz rigid. Hence, the normal component I, of F* satisfies

I, = H{A) max{0, kA + dA}, (5.2)
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Figure 5.1: Momentary position of the rotor.

where H(z) is the Heavyside function. The tangential component Fy repre-
sents the friction force, which is proportional to the normal component I,
(according to Coulomb’s law) and opposite to the tangential velocity v, of
the rotor in F,. Hence

Fy = —Egﬂ(Uc)me (53)
with f the friction coefficient of the rotor and v, given by

v, = Zsind — gcosf + QR. (5.4)

Equations of motion

According to Newton’s second law, the equations of motion of the rotor are
given hy

g 2 | cos - | —cosé sin @
M[ﬁ]_MEQ sinﬂt]-'_]” —si110]+Ft[—cos0 - (5:5)
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Figure 5.2: Definttion of the contact point P, and the contact forces F? and F?,

Introducing nondimensional coordinates £ = 2/, 5 = y/( and nondimen-
sional time 7 = 4, (5.5) s transformed into
£ COs T cos é sin @

il | sinr ¥ sin @ + v —cos

; (5.6)

with (¥ = d{ }/dr. The nondimensional force components ¢, and 1, are
given by
¥, = H(6§)max{0, ké+ G&},
e = - fsgn(ve)ym,
where é = /£2 + 12 — 1 13 the nondimensional indentation of the shaft in
the rotor and

(5.7)

v, = E'sinfl— ' cosf 4+ p (5.8)

is the nondimensional tangential velocity of the rotor in the contact point
P, In (5.6}, (5.7), and (5.8), the following non-dimensional parameters have
been introduced:

g = e/l

ko= k/MQZ ]
B = d/mMe, (5.9)
p = R/C.

Together with the friction coeflicient f, they form the set of relevant system
parameters,
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Slip or roll

The expression (5.3) for the tangential component F; of the restoring force
F*# is only valid for v, # 0. This applies to a situation in which the rotor is
slipping along the shaft. When v, = 0, the rotor is rolling along the shaft.
In that case, F; is an additional unknown which can be found by means of
the equations of motion and the additional algebraic condition v, = 0.

Numerically, the situation of v, being exactly zero will alnost never
occur. To make roll behaviour possible in a numerical approach, the concept
of micro-slip is introduced, which can be interpreted as ’almosi roil’. When
v, is small, say |v;| < veps, F) is considered to be unknown and is determined
by means of substitution of the relation v, = 0 in the equations of motion.
This yields (see Appendix C)

FIO = MeQ?(sin Ot cos 8 — cos N sin )
MQR

w(m cos @ + ysind). (5.10)

Since the friction force is bounded by the friction force due to slip, the
following formula for F; is obtained in a roll situation:

F, = —sgn(v;) min { | FFOU), fF, 1. (5.11)
The complete expression for the nondimensional tangential component ¥ of

the restoring force F* is now given by

min {J¥TOU], Fp.) el < vepe,
with veps << 1, ty, given by (5.7), and

w=ﬂ@mw{f% S (512)

£'cosf 4 n'sin @
1446

ﬁ,iro]l = H(§) [E(sin’rcos& —cosTsind) — p (5.13)

5.1.3 Investigation by means of ASCM

To investigate (5.6) by means of CM, the most obvious method is the MDCM
method (Section 4.2). After all, the state space of the considered system
has dimension N = 4, which implics that regular CM will be very time-
consuming. By introducing co-rotating coordinates however, (5.6) can be
transformed into an autonomous system of the same dimension. By means
of the ASCM method (Scction 3.2), the dimension of the cell state space
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is reduced to three. Hence, ASCM seems Lo be an appropriate method of
investigation for this particular system.
The following co-rotating coordinates are introduced:

rg = fcosrT+psinT,

[Co i3
ro = —£sinT 4+ ncosT. (5.14)

Differentiation of (5.14) with respect to =, substitution of {5.6), and elemen-

tary calculation yields the following set of ODE’s:

=k 2 = dar = e €, (
ri = rg =21 — e + iy

,_
A
L

In the four-dimensional state space spanned by {ry,r], 72,75}, a three-
dimensional Poincaré section ¥ is chosen, given by »; = 0. Next, a cell
mapping € @ ¥ — I is created. To this end, a region of interest ¥ on
T is defined by @ |ry| < 2.5, |74 £ 100, |72} < 2.5 which is divided into
41 % 11 x 41 cells. For each cell, numerical integration is performed until
¥ has been intersected for the 20-th time. The cell containing the 20-th
intersection point is taken as the image cell.

The ASCM method as described above is applied to (5.13) for £ =
3.0, f = 0.01,p = 62.5, 8 = 2850.0, 3 = 8.5, and v, = 0.01. This results in
the determination of two coexisting attractors. These attractors represent
different types of motion which the rotor may undergo, namely slip ard roll.
In Fig. 5.3, the basins of attraction of both attractors are shown for four
different two-dimensional subsets of T, given by (a) #{ = 0, (b) »{ = 5,
(¢) ro = 0, (d) r2 = 0.125. By means of the relations

£0) = n(o),

£10) = ry(0) = r2(0),

N . 5.16

a0) = wa(0), (5.16)
7{0) = r3(0) + r1(0),

which directly follow from the definitions of ; (¢ = 1,2), the basins of

attraction are oblained in the original coordinates £, 9, &', 7.

In Fig. 5.3a, the considered set of initial states corresponds to a situation
in which the rotor is almost in rest (&, 0= O(1), &, 7 = O{10%)). To obtain
roll behaviour, an initial indentation of the shaft in the rotor is necessary.
When the rotor is given a larger initial velocity (Fig. 5.3b), roll behaviour can
emanate {rom injtial states corresponding to a no-contact situation. When
the rotor initially is concentric with the shaft (£ = n = 0), large velocities
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40
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Figure 5.3: Basins of attraction of slip () and roll (left blank) for o' = £.

are necessary to obtain roll behaviour; moving away from this concentric
position in £-direction, smaller velocities are sufficient (Fig. 5.3¢). The same
effect can be seen for = 0.125 {(Fig. 5.3d). In Fig. 5.3, the region of no-
contact 1s represented by the inner area of the circle ((a),(b)) and by the
area between the two vertical lines ((¢),(d}).

In Fig. 5.4, a closer loak is taken at the attractor representing slip behav-
iour. Fig. 5.3 shows that an initial state of £ = £' = y = ' = 0 leads to slip.
The trajectory calculated by straightforward numerical integration of (5.6)
starting from this initial state is shown in Fig. 5.4a for 7 = 0 — 200. Due to
its mass-eccentricity, the rotor moves oulwards until it hits the shaft. When
transient behaviour has vanished, the rotor undergoes a slip motion along
the shaft. For 7 > 150, the slip motion is interspersed with short periods of
free motion. In Fig. 5.4b, a Poincaré section of this trajectory is shown, rep-
resenting the state at 7 = 2nr, n = 2000, 2001, ..,5000. The fractal form of
the Poincaré section indicates that the slip-motion actually is a chaolic mo-
tion. This is confirmed when focussing on parts of the attractor (Fig. 5.4¢,d).
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()

{b)

i

Figure 5.4: State representations of the center of the rotor in case of slip.
{a) Trajectory. (b) Poincaré section. (¢)-(d) Magnifications of (b).

(¢)-(h) PPoincaré sections [or different phase angles.
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Figure 5.5: State representations of the center of the rotor in case of roll,
(a)-(¢) Trajectories. (d) Polncaré section.

Finally, in Fig. 5.4e-h, Poincaré sections of the state of the rotor are shown
for 7 = 2nm + ¢, n = 2000, 2001, ..,5000, with ¢y = /4, 7/2,3% /4, 7.

In Fig. 5.5a,b, a trajectory is shown which is obtained by integration of
(5.6) for 7 = 0 — 30 with initial state £ = ' = 1.5, £ = p = 0. According to
Fig. 5.3, this state should lead to roll behaviour. After tramsient behaviour
has vanished, the motion in the £ — n plane is almost circular with radius
r = 1.76, which implies a nondimensional indentation of 0.76. Hence, large
contact forces will oceur between rotor and shaft in this case. In Fig. 5.5¢, a
closer look is taken at the response of the rotor in £-direction as a function of
time. The two different oscillations that can be clearly distinguished indicate
that the considered motion is quasi-periodic. This is confirmed by Fig. 5.5d,
showing a Poincaré section of the state at 7 = 2n7, n = 6,7,..,1000. The
closed loop in this figure corresponds to a quasi-periodic motion.
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5.1.4 Tiscussion

[n a previous study on the considered rotor system, emphasis was pul on
the influence of the parameters ¢ and f on the long term behaviour. For
investigation, straightforward nurnerical integration was applied using £ =
n=¢ =% = 0.0 asinitial state. The alm of that study was o find out which
parameter value combinations lead to slip and which to roll behaviour. Due
to the large deformations involved, it was especially important to determine
which combinations could prevent the ocourrence of rolll Because of the
confidential character of this study, no further details can be given hore.

The use of cell mapping—in particular ASCM—{or the tuvestigalion of
the rotor system has shown important advantages with respect to regular
nnmerical integration. Under ASCM, the complete state space is “scanned’
for recurrent behaviour while under nutnerical integration only one initial
stale is considered and hence only one steady-state solution can be found.
By means of ASCM, it has been shown that not only the parameter values
but also the initial state of the rotor determines whether slip or roll will
oecur. In particalar, no parameter combinations have been found which
completely exclude the occurrence of roll. However, lor roll behaviour to
happen, large initial velocities or large initial rotor-shaft indentations may
be necessary, as in the considered cxample.

The reader should note that for the considered system the situation oc-
curs in which a chaotic motion is preferred to a regular motion. After all,
when the rotor is slipping along the shaft, the motion of its geometrical center
is chaotic and hence totally unpredictable. On the other hand, the motion is
quasi-periodic and hence totally predictable in a situation of roll. However,
it is not the predietability that counts for this system. More imporiant is
the avoidance of large rotor deformations and corresponding contact lorces,
which result in malfunctioning and a noisy performance.

5.1.5 Concluding remarks

It has been shown that the ASCM method can be applied to rotordynamic
systems with dimension four in state space. By means of co-rotating coordi-
nates, these systems are transformed into antonomous systems of the same
dimension. By using a Poincaré section in the autonomous state space, the
dimension of the coll state space can be reduced to three, which implies a
substantial reduction of the total number of regular cells, This means that
the required CPPU-time is acceptable for the user. The simulation presented
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in the previous subsection took 4.2 hours CPU-time.

For the investigation of (5.6), the MDCM method can be used as well.
The advantage of ASCM with respect to MDCM however, is that the com-
plete state space is scanned for recurrent behavionr. Under MDCM, a re-
duced set of initial states is considered and hence only aftractors corre-
sponding to these initial states can be found. The MDPCM method can be
seen as the enly practical tool for systems with dimension N > 4, or as an
appropriate tool when only particular sets of initial states have the user’s
interest.

5.2 Portable CD player under jogging condition

5.2.1 Introduction

The handling of external shocks is one of the main problems in the design
of consumer electronics. As an example, one can think of a portable com-
pact disc {CD) player. Knowing the type of external disturbance, measures
can be taken to guarantee a high-quality performance. This includes e.g.
the design of appropriate suspensions of the internal mechanisms and opti-
mization of the control systems and electronics. For investigation on thig
topic, based on linear theory, the reader is referred to Draijer et al. {4] and
Steinbuch ot al. [28].

For a portable CD player, a special type of external disturbance is given
by the motion which it experiences during jogging. The ability of the player
to perform well under this condition is called 'joggability’. The measures
necessary to assure joggability depend on the response of the player to this
type of loading. Especially, the occurring acceleration of the player is rele-
vant for this evaluation.

In the next subsection, a simple 2-DOF model is given which charac-
terizes the nonlinear vertical behaviour of an idealized portable CD system.
The jogging effect is represented by a harmonic excitation. To determine
the long term behaviour of the system, use is made of the MDCM method.
This is done for one set of system parameter values.

5.2.2 The CI) model

The CI player mainly consists of two parts: the player P (mass ma) and
a carrying steap, containing a shoulder pad B (mass mq). The vertical
displacement of B is denoted by ¢;. The two parts of the strap connecting I3
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Figure 5.6: 2-D0OF model of a portable CD player under jogging condition.

with [' are considered massless and are modelled as one-sided linear springs
and dampers, each with stiffness & and damping d. The displacement of P is
given by go, with g2 such that ¢ < ¢ conforms to the situation in which the
strap is being stretched. In Fig. 5.6, the model of the CD player is shown.

During jogging, the motion of the shoulder is assumed to be harmonic.
T'he amplitude and frequency of this harmonic motion are given by a and
. respectively. Tlence, the motion of the shoulder is prescribed and given
by u(t) = asin(wt), with w = 27 f. The shoulder ilself is modelled as a
one-sided linear spring with stiffness ¢.

The eqnations of motion of the system are simple and pilece-wise lincar.
Delining £ = g1/a, 11 = g2/a, 7 = wt, the nondimensional equations of motion
a0 giV(‘.Tl ll_y:

[i"]:_»y“]JFFMFS. (5.17)
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Here, ( )' = d{ )/dr and v = g/aw®, with g the acceleration due to gravity.
F® represenis the strap forces, which are only nonzero when the strap is
being stretched (€ » n). Hence,

3 — maxc{0, ky(€ - 1) + B (€ — 1)} r
FP=HE-n) [ max{0, o€ — 1) + Balé — 7)) ] (5.16)

where k; = 2k/muw?, 8; = 2d/muw (i = 1,2), and H(xz) is the Heavyside
function. F* represents the force which the shoulder exerts on 8. Hence

F*=H(sint — §) [ ofsinT - 53 ] , (5.19)

with ¢ = ¢/mqw?.

5.2.3 MDCM application

The MDCM method (sec Section 4.2) is used to investigate the 2-DOF model
of the portable CD player, given by (5.17), (5.18), and (5.19). It is assumed
that the strap stiffness is equal to the shoulder stiffness: & = ¢ = 1000 N/m,
while the strap damping s given by d = 4 Ns/m. For the jogging amplitude
and frequency, @ = 0.00 m and f = 2 Hz is taken, respectively. The masses
of B and P are given by my = 0.05 kg and mo. = 0.35 kg, respectively.

The aim of applying MDCM is to determine the possible types of response
—in particular the occurring acceleration—for the CD player. Looking at
the background of the problem, it is obvious to focus on the CD player and
the influence of its initial state on its long term behaviour. An appropriate
choice for a two-dimensional subspace of relevant initial states is then for
example given by &= £ = (.

The state of the system is given by x = [z ..x,,]T with zy = &, 22 =
¢, z3 =1n, 4 = n'. In this four-dimensional state space, a cell structure is
defined by choosing four cell sizes: hy = ha = 0.01, hy = hy = 0.06. On
¥, a region of interest Q' is defined by lzs| < 0.5, |24] £ 3. By means of
MDCM, the long term behaviour is determined for initial states in £/, For
the delermination of image cells, a time integration interval of five forcing
periods is used (&7 = 5/f).

In Fig. 5.7a, the results of the MDCM application are shown. For the
chosen region of interest €', three different types of steady state behaviour
have been found. Cells denoted by (o) lead to a harmonic solution, shown in
Fig. 5.8a. This attractor corresponds to a situation in which there iz always
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contact between shoulder and pad. Cells denoted by (-} lead 10 a coexisting
harmonic solution (I%ig. 5.8¢), which shows twointervals of no-contact during
each period. Finally, cells which are left blank in Fig. 5.7a lead to a quasi-
periodic solution (Fig. 5.8¢). The trajectories in Fig, 5.8 are representations
of the state of the player in original coordinates as a function of real time.

In Fig. 5.7h, the basins of attraction are shown obtained by an additional
MDCM application for a region " C . Here, 1" is defined by |z3] <
0.05, |z4| = 0.3. The cell sizes are given by by = by = 0,001, Ay = Ay =
0.006. From this 'maguification window’ on §¥, it can be concluded that
the basins of attraction have a fractal structure; changing the initial state
only shightly may result in a different steady-state motion. Farthermore, an
additional periodic group is found with a small basin of attraction (+). This
group represents a 1/2 subharmonic solution (see Fig. 5.8g).

The accelerations of the CI) player corresponding to the determined so-
lutions are additionally shown in Fig. 5.8,b,d,f,h. The acceleration in the
case of the [ull-contact solution is perfectly sinusoidal. For the cocxisting
harmonic golution, the intervals of free motion are represented by intervals
of constant acceleration —g. It can be seen that the occurring peak accelera-
tion is less than 2¢ for this solution. In the case of quasi-pericdic behaviour
(Fig. 5.8f) however, accelerations of more than L3g are possible. Here, the
motion of the player is characterized by large amplitudes (up to five times the
shoulder amplitude). Finally, the peak acceleration for the 1/2 snbharmonic
is approximately d¢.

The results in Iig. 5.7a,b have been verified by determining the trajectory
belonging to four different initial states, each corresponding to a different at-
tractor. In Fig. 5.9, trajectories are shown obtained by integration starting
from x = [000x4]", with z4 = 1.4, 1.2, —1.0, 0.18, respectively. The first
three states indecd lead to the attractor as predicied by the MDCM method.
For 24 = (.18, however, the wrong attractor is obtained. Although the tran-
sient. behaviour of this trajectory is governed by the 1/2 subharmonie, it
finally settles on the full-contact harmonic solution. This may be explaincd
by the small basin of attraction of the 1/2 subharmonic solution. Anyway,
when the actual basins of attraction have a fractal structure, the represen-
tations obtained by means of CM should be interpreted with care. In such
a situation, the errors involved with CM have a larger impact than usual.



Applications 99

(i) xr}:l.d -
005
4 0Or
-0.05F ) )
0 1 3 3 4 5 3 7 8
t
{b) xdw 1.2

4 7 8
)
(o) - 1.0 -
G3IF j
G2r
& 0l
0
0 1 2 3 4 5 <] 7 §
!
o) . ) . (d) x4::0.13 - :
0.05
g 0
-0.08
01 L . .
1 2 3 4 ] [ 7 §
I

Figure 5.9: Verification of basins of attraction (initial state: 2; = 0, 1 = 1,2, 3}
(2) Full contact harmenic solution; (b) coexisting harmonic solution;
(c) guasi-periodic solution; (d) full contact harmenic solution with 1/2
subharmonic transient.



100 Chapter 5

5.2.4 Concluding remarks

A 2.DOTF model of a portable CI} player has been investigated by means of
the MDCM method. Tor aninitial region of interest, three different responses
were found to be possible: two harmonic solutions and one quasi-periodic
solution. By focussing on a small part of the intial region, realized Ly a
MDCM application with very small cells, a 1/2 subharmonic solution was
detected. A sccond result of this zooming action was the confirmation of the
fractal structure of parts of the basins of attraction.

Unlike the (sub)harmonic solutions found, the quasi-periodic solution
features large accelerations and a large amplitude motion. Since this solution
has a large basin of attraction in the sel of relevant initial states, large
accelerations are very likely to cccur. For the assurance of joggability, it is
therefore necessary to cope with these kind of accelerations, or to change
one or more system parameters in such a way that only low-acceleration
solulions occur,

The presented simulations have shown the existence of four solutions for
a set of system parameter values. By means of continuation moethods, the
evolution of the periodic altraclors can be determined when system parame-
ters are varied. The sensitivity of the basin boundaries with respect to the
system parameclers can be investigated by means of PVSCM. However, the
gain in CPU-time with respect 1o a MDCM application for a new parameter
value will probably be small, due to the fractal structure of the basins of
atiraction.



Chapter 6

Conclusions and Guidelines

In this thesis, recent developments have been presented concerning the ap-
plication of cell mapping methods as a tool for the global investigation of
nonlinear dynamic systems. For the sake of accuracy and efficiency but in
particular applicability, a number of modifications and extensions have been
presented and evalvated. In this chapter, a recapitulation is given of the
main conclusions that can be drawn. Additionally, some general guidelines
are given for the use of cell mapping methods and their extensions.

6.1 Conclusions

Maodifications

» Lor autonomous systems, the necessary CPU-time can be reduced
tremendously by introducing & Poincaré section and taking this as
the cell state space.

o For discontinuous systems, the following modifications are necessary:

— Adaptation of the integration routine to overcome the disconti-
nuity.

— When interpolation is involved, replacement of interpolation by
integration when the interpolation trajectories show an extreme
divergence due to the discontinuity.

¢ Under ICM, a gain in CPU-time can be achieved when a new criterion
is added to the interpolalion procedure: When a state is reached of
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which the surrounding interpolation points lead to one and the same
altractor, lurther interpolation will generally lead also to this atiractor
and is therefore not performed.

+ JOCM and MM can be combined to MCM. MCM produces more acen-
rate results at the cost of more CPU-time.

¢ The cxtension of the time integration interval, for the delerminalion
of Image cells or points, results in

— the reduction of the number of spurious penodic cells or points,

— the reduction of the number of cells mapped inte the sink cell.

Extensions

« By means of the PVSCM and PVICM methods, the sensitivity of re-
sults obtained by SCM and ICM with respect to system paramoeters
can be studied very effectively and straightforward. In this way, global
bifurcations can be predicted.

s By means of MIDCUM, systems of arbitrary state space dimension can
be scanned for attractors. Two-dimensional intersections of the corre-
sponding basins of attraction are obtained.

General conclusion

When a global overview of the attractors and corresponding basins of atl-
traction of a complex nonlinear dynamic system is wanted, CM is the most
suited method. In several applications discussed in this thesis, CM yielded
additional information with respect to previous investigations performed by
pericdic solvers and direct integralion for one initial state. Numerical inte-
gration for a huge number of initial states—the only alternative for a global
investigation is much more time-consuming than CM.

6.2 Guidelines
Which method to use for solving the equations of motion?
+ When only one specific periodic solulion is desired: Periodic solvers.

¢ When only a few initial states arc relevant: Numerical integration.
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¢ When an overview of all attractors (periodic, quasi-periodic, chaotic)
and corresponding basins of attraction is desired: Cell mapping.
Which CM method to use?
¢ For state space dimension N = 2;
— Generally: SCM, (M)ICM, (M)MM, MCM.
—~ For autonomous systems: ASCM.
— To obtain probabilistic properties; GCM.
o For N =3,4:
— Generally: SCM, MDCM.

— For autonomous systems: ASCM.

o For ¥ » 4: MDCM.

Combination of CM with other methods

» To determine the type and exact position of an attractor, represented
by a periodic group found with CM, the following methods can be
applied:

— Numerical integration.

— Liapunov exponents or attractor dimension determination.

¢ To obtain a complele bifurcation diagram for a certain system para-
meter, the following procedure should be followed:

— Determination of all attractors by means of CM, for an initial
value of the system parameter.

— Delermination of periodic branches as a function of the varied
system parameter value, by applying a path-following method to
each periodic atiractor.

Guide for applying CM
¢ How Lo choose {2 and &7

— Oun the basiz of state restrictions of the system.
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— On the basis of relevancy.

— On the basis of [orcknowledge, e.g. obtained by means of numer-
ical integration.

o Jlow to choose the time integration interval?

— lor periodically forced non-autonomous systems: Fqual to one or
more forcing periods.

— For autonomous systems: Arbitrary (but not too small) under
regular CM; prescribed under ASCM.

— For small damping and large amplitude transient behaviour, an
extension of the interval is recommended (sce Conclusions).

CGieneral guidelines

s Whenever an allractor has been found by means of CM, it deserves
recomumendation to determine its type and location in the state space,
c.g. by means ol numerical integration over only a short period. Un-
der CM, an attractor is often represented by several periodic groups.
Numerical integration thus yields which groups represent the same at-
tractor. l'o obtain the correct basin of atiraction for an attractor, the
basing of attraction of all its corresponding groups need to be collected.

o Generally, the chotce for the integration interval under CM is not ob-
vious. In that case, the smallest value (as possible for the applied
method) is recommended. When spurious results are obtained, inte-
gration can be continued, using the end points of the trajectories as
starting points. This process can be proceeded until satisfying results
are obtained. In doing so, the integration interval and hence the CPUJ-
time is kept minimal. The necessary CPU-time for the classification
of cells and other administrative procedures, which have to be per-
formed after every new integration, can be neglected with respect to
the CPU-time for integration.



Appendix A

SCM algorithm

Under SCM, cells are classified by a group number and a step number.
For each cell 2, the group number G(z) denotes to which periodic group z
belongs; the step number S(z) stands for the number of mappings necessary
for z to end up on a periodic group. Hence, petiodic cells are characterized
by a zero step number.

In the SCM algorithm, the arrays gf{z] and s[z] represent the group
and step number of 2z, while ¢{z] contains the index of the image cell of
z{z=0,1,.,M). The sink cell (index 0), which is a periodic cell by defi-
nition, is regarded as the first periodic group. This results in the following
assignments:

glo] = 1
s{@] = 0
cf0] == @
N, =1

where NV, denotes the number of periodic groups found in the algorithm,

For the determination of the group and step number of the remaining
cells, the following procedure is followed: Initially, all regular cells are tagged
as wirgin cells by giving them a zero group number:

for(z=1,.,M)g[z] =0

Next, a cell sequence z, C(z), C¥(2), .. is created for each tegular cell z. Cells
in the sequence are tagged as cells under processing by giving them a tempo-
rary group number —1. As long as the latest determined cell in the sequence
is a virgin cell, creation of the sequence is continued. Let z be the initial cell
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of a sequence and let IMCELL{2) be the subroutine returning the image cell
of z, then the cell sequence creation is given by the following assignments:

jo= 10

b = =2

while (g[h] =0)  g[b] = -1
b = IMCELL(b)
b = ¢[b]
¥ = J+1

When the sequevce has been lerminated, (wo possibilities exist for its
final cell b = CV(z): glb] = —1 or gb] > 0. If g[b] = —1 holds then cell &

i€ {0,..,7 _l}. Hence, a new periodic group has been found, given by
b, C(), .., 7= b}, As a result, N, can be updated and all cells in the
sequence can be given a group and step number as follows:

N, = N, +1

for (I=0,.,i—-1) glz] = N,
slz2l = -1
z = ¢[z]

for ({=1i,..,5— 1} glz] == N,
s[z] = 0
z = ef2]

If g[b] > 0 holds then cell 4 is either the sink cell or a regular cell which has
already been tagged in a previous sequence. In both cases, all cells in the
currend sequence are tagged as transient cells, leading to the same periodic
group as b. Hence

for{({=0,..,7-1) glz] = g[¥
s(z] = 5[[6]]+ i—1

When for all regular cells this procedure has been carried out, all group
and step numbers are known. As a result, alf periodic groups and corre-
sponding basins of attraction are obtained. A more detailed explanation of
the SCM algonithm is given in Hsu [14].



Appendix B

Interpolation Indices and
Functions

In the ICM algorithru, state space trajectories are approxdimated by means
of interpolation. For all M grid points, covering the region of interest {2, the
image poinis are calculated by means of numerical integration. The image
point of a grid point % is denoted by y* (I = 1,.., M). To obtain the image
point ¥ of an arbitrary state x = [z, ..zn]7 € Q, multi-linear interpolation
is performed between the image points of the 2V grid points which surround
X:

oN
y =3 Blx)vh. (B.1)
=1

The indices Iy, .., Iy~ of the grid points surrounding x are given by:

N i-1
i = 1+k1+zszMja
=2 j=]
b = L+1,
—1
I = l(j_-_’am—l) + H My, m=2.,N,j=2""141,.,2™
i=1
with
_ D
k; = int ('Et i ) , =1, N
h;
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The interpolation functions Py, .., Pyy in (B.1) arc given by:

N
P(x) =[] Lo(&),
=

. L]_(Em.) . - rre—1 ;
L. = Fj_gm-1y#* ’ =1, N, j=2""" 41,27,
J(x) (i—2 1) LO(’SW&) 7
with
L _ b
E; = o 'EE_M’ b= :1‘.\"1Nv
h"i
and



Appendix C

Derivation of Equation
(5.10)

In the case of micro-slip (almost roll), the tangential velocity of the rotor in
the contact point is assumed to be zero, According to (5.4), this means

Zsinf — ycosf + R = 0. (C.1)
Differentiation with respect to time yields
#5in 0 -+ 28 cosd — jeos® + §hsinf = 0. (C.2)

Next, @ is eliminated from the above equation. Since
8 = arctan(y/z)+ C,
with €' =0, 7 or 2x, it follows thal

: 1 ¥ yE
§f = e (¥ _ ¥
(y/ﬂ:)‘3+1(w =)
Ty -yl
- -732‘|'y2

ycosf — Zsind

AT

7cos6 — osind

= . C.
C(1+46) (©3)
Substitution of (C.1) in (C.3) yields
. QR
f= .
1+ 6) (C-4)

108



110

Appendix C

Elimination of § from ((.2) using (C.4) yields:

Zsinf + @--

C{1+6) C(1+46)

Consider the equations of motion (5.5):

Mi = MeQPcosQt — F,cosl + Fysin @,
Mi = MeQ?sin M — F,sind — Fcosé.

Substitution of (C.7) in (C.5) yields:

Faind + T LR cosf + 4 R sin #
)| St X 05 —_— =
C{1+ ) e+ o)
j(—[f’n sin @ — Fycos 8 + MeQ? sin (U) cos 6.

Elimination of & using (C.6) yields:

%(— Focosf -+ Fisinf + MeQ? cos Q) sind

= j‘:l—'(—ﬂlsinﬂ—Fmosf)%—Mﬁstinﬂtjcosﬂ
QE -
m(x cos 6 + ysin §).

Hence, F; satisfies the following relation:

F, = Me*(sin Q1 cos § — cos Qtsin 8)
MQR

m(m cos @ + g sin 8).

QR
cosb‘—ﬁcasﬁ-l—g};sinﬂ =10.

(€.5)

(C.6)

(C.7)

(C.8)

(C.9)

(€.10)
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Samenvatting

In dit proefschrift worden modificaties en nitbreidingen gepresenteerd voor
cell mapping (CM) methoden. CM methoden worden gebruikt om het lange
termijn gedrag van niet-lineaire dynamische systemen globaal te onderzoe-
ken. Met behulp van CM kunnen zowel periodieke als chaotische oplossingen
van de bewegingsvergelijkingen bepaald worden. Tevens maakt toepassing
van CM de bepaling van de attractiegebieden van de stabiele oplossingen
mogelijk.

Ferst wordt een overzicht gegeven van de belangrijkste CM methoden.
De simple cell mapping (SCM) methode is gebascerd op een discretisatie
van de toestandsruimte in cellen, gevolg door de bepaling—via numerieke
integratie—van de bijbehorende beeldcellen. Het lange termijn gedrag van
een systeem wordt hier gerepresenteerd door groepen periodicke cellen, De
generalized cell mapping { GCM) methode is een generalisatie van SCM. Van-
wege de probabilistische benadering is GCM met name geschikt voor de
beschrijving van chaotisch gedrag. DBij de interpolated cell mapping (ICM)
methode worden met behulp van interpolatic benaderingen bepaald van de
trajectorics van het systeem in de toestandsruimte. Multiple mapping (MM)
tenslotte is een gemodificeerde versie van JCM welke betere resultaten ople-
vert in geval van grote toestandsruimte-vervormingen.

Vervolgens worden enige modificaties gepresenteerd, welke dienen om
de nauwkeurigheid en efficiéntie van de bestaande CM methoden te ver-
groten. Voor antonome systermen wordt cen dimensie-reductie methode he-
sproken. Vervolgens worden modificaties gegeven welke noodzakelijk zijn om
CM methoden toe te passen op discontinue system. Voor ICM wordt een
aanpassing geintroduceerd waarmee het interpolatieproces wordt versneld.
Verder wordt een cotnbinatie besproken van ICM en MM, mized cell mapping
(MCM) genaamd. Tenslotte worden de voordelen getoond van het gebruik
vat een verlengd integratie-interval voor SCM.

Naast deze modificaties worden twee wezenlijke uitbreidingen op de be-
staande CM methoden geintroduceerd. De corste behelst een parameter-
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variatie technick waarmee de gevocligheid van CM-resullaten met beirekking
tot systeemparameters kan worden geanalyseerd. Met behulp van deze tech-
niek kan in relatief weinig rckentijd de evolutie van de attracticgebieden
bepaald worden wanneer cen systeemparameter wordt gevarieerd. Op deze
manier kunnen globale bifurcaties gemakkelijk voorspeld worden. et gein-
troduccerde idee is uitgewerkt voor zowel SCM als ICM.

3¢ tweede uitbreiding bestaat uit een nieuwe CM methode, mulli-DOF
cell mapping (MDCM) genaamd, welke toepashaar iz op systemen met veel
vrijheidsgraden. Omdat het aantal cellen—en dientengevolge ook de reken-
tijd en geheugenruimte—exponentieel toeneemt met de dimensie van de toe-
standsruimte, is toepassing van de conventionele CM methoden op dergelijke
systemen erg onpraktisch. Bij de MDCM methode loopt de rekentijd slechts
evenredig op met de sysieemdimensie terwijl de vereiste gehengenruimte qua
orde-grootte constant blijft.

Ter illustratie wordt CM toegepast op twee praktische nict-lineaire dy-
namische systemen. Derst wordt het globale gedrag onderzochi van een
rotor-lager systeem. Hier ligt de nadruk op de attractiegebicden van een
quasi-periodieke en cen coéxisterende chaotische oplossing, welke overeenko-
men met respectievelijk cen rol- en een slip-beweging van de rotor. Vervol-
gens wordt het "joggend vermogen’ van een draagbare CD-speler bestudeerd.
Met behulp van MDCM wordt voor cen verzameling relevante hegintoe-
standen de respons van de CD-speler bepaald op een periodieke cxcitatie,

Geconcludeerd wordt dat de gepresenteerde modificalics cn nithreidingen
waardevol zijn. Verder wordt de toegevoegde waarde benadrukt van CM
methoden ten opzichte van de meer ingeburgerde onderzoeksmeihoden, zoals
reguliere numericke integratie en periodieke oplossingsmethoden, Tenslotte
worden algemene richtlijnen gegeven voor het onderzoeken van niet-lincaire
dynamische systemen alsmede voor het gebruik van CM methoden.
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Stellingen

behorende hij het proefschrift

Cell Mapping Methods: Modifications and Extensions

. Bij de analytische bepaling van de beweging van een rollende schijf over een plat viak
merkt Ginsberg op dal substitutie van de constraints in de bewegingsvergelijkingen
leidt 1ot gecompliceerdere vergelijkingen, Het tependes] is achtar waar.

» J.H. Ginsherg. Advanced Engineering Dynomics, Harper & Row, 1085, p. 297,

2. De buvenmatige asndacht die de chaos-theorie heden ten dage krijgt is met name

te danken aan de schoonheld van fractals, die in deze theorie overigens een—-weten-
schappelijk gezien—ondergeschikte rol spelen,

3. Vaor het onderzocken van niet-lineaira dynamische systemen vonnen cell-mapping-

methoden cen wezenlijke aanvulling op andere methoden waarmes periodieke oplas-
singen bepaald kunnen worden.

» dit proefachrift

. Cell-mapping-methoden zijn toepasbaar op discontinue dynamische systemen, mits
de nodige modificaties worden aangebracht.

o dit proefschrift

. e MDCM-methode {multi-degree-of-freedom cell-mapping) kan worden toegepast
op niet-lineaire dynamische systemen met een willekeurig aantal vrijheidspraden.

s dit procfschrift

. Voor de interpretatie van resultaten verkregen met de cell-mapping-methode s ad-
ditioneel onderzoek zonder meer nedig,

+ dit proefschrift

. Voor de bepeling van het snctheidsveld op bet oppervlak van een totatic-symmetrisch
viscens incompressibel vigeistoflichaam, welk onder invloed van de oppervlaktespan-
ning vervormt, is de invoeting van de fundamentele singulicre oplossing van de ge-
lineariseerde Navier-Stokes vergelijkingen te prefereren boven cen aanpak die stoelt
op de stroomfunctic en de vorticiteit,

o LAW, van der Spek. Inverse Formulalions for ¢ Viscous Sintaring Problem,
Mastet’s thesis. Findhoven University of Technology, The Netherlands, 1989,



R Do alstelling van verkeerslichten voor vostpangees i 5u hel algemeen niet optimaal,
in die zin dat de wachitijden onnodig lang wijo.

%o Ul oogpunt van productiviteit zon het sporten onder werktijd gestimuleerd meoeten
warden.

1. Bwergpapegaaien lunnen loidvgehtig, sgressiel en destrueticl ziin.

tandhoven, 16 fehruart 1984 Jerpen van der Spek
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