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A pressure-dependent ]2-flow theory is proposed for use within the framework of the Cosserat 
continuum. To this end the definition of the second invariant of the deviatoric stresses is generalised to 
include couple-stresses, and the strain-hardening hypothesis of plasticity is extended to take account of 
micro-curvatures. The temporal integration of the resulting set of differential equations is achieved 
using an implicit Euler backward scheme. This return-mapping algorithm results in an exact satisfaction 
of the yield condition at the end of the loading step. Moreover, the integration scheme is amenable to 
exact lineadsation, so that a quadratic rate of convergence is obtained when Newton's method is used. 
An important characteristic of the model is the incorporation of an internal length scale. In finite 
element simulations of Iocalisation, this property warrants convergence of the load-deflection curve to 
a physically realistic solution upon mesh refinement and to a finite width of the |ocalisation zone. This 
is demonstrated for an infinitely long shear layer and for a biaxial specimen composed of a 
strain-softening Drucker-Prager material. 

1. Introduction 

When testing structures composed of materials such as concrete, rock and soil, a marked 
peak in the load-displacement curve is often found followed by a descending branch. 
Depending on the type of material, the residual load-carrying capacity of the structure may 
only be marginally below the peak strength or may vanish altogether. 

The classical approach towards this behaviour is to simply extend the procedures used in the 
pre-peak regime and to convert the load-deflection curve at a structural level into a 
stress-strain curve at a local level. However, in doing so, it is tacitly assumed that all 
hypotheses which are normally made to arrive at a continuum model and which have proven 
to be reasonable assumptions in the pre-peak regime still hold beyond peak stress level. One 
of these assumptions is that the transmission of forces between the material on both sides of 
an infinitesimal surface element is completely described by a force vector and does not require 
the introduction of a couple vector [1]. Rotational equilibrium of an elementary cube of 
material shows that this assumption is tantamount to the postulate that the stress tensor is 
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symmetric, which is sometimes referred tO as Boltzmann's Axiom. Nevertheless, continuum 
theories do exist that are not rooted in this assumption. Although such theories are usually 
much more complicated than classical continuum theories, their use is justified if the classical 
concept of a continuum fails to produce meaningful answers. 

The transformation of an experimentally obtained load-displacement curve that exhibits a 
descending branch at the structural level into an affine stress-strain curve at the material point 
level is usually associated with the terminology 'strain-softening'. A constitutive law which has 
a descending branch in the stress-strain curve is then named a strain-softening type constitu- 
tive law. 

In the last few years, the notion has transpired that a straightforward translation of 
load-displacement curves into stress-strain curves entails some serious complications, both 
from a mathematical and a physical point of view [2-5]. From a mathematical viewpoint, 
which will be the prime subject of concern in this contribution, we face the problem that 
introduction of strain softening in a classical continuum model may convert the boundary 
value problem for static loading conditions from an elliptic problem into a hyperbolic 
problem. For dynamic loading conditions on the other hand, hyperbolicity is lost and the wave 
speeds of loading waves become imaginary. In both cases, the rate boundary value problem is 
no longer well-posed. Numerically, this ill-posedness manifests itself in pathological mesh 
dependence, i.e. localisations which inevitably accompany failure processes in the classes of 
materials discussed above tend to be determined entirely by the spacing of the finite element 
mesh in lieu of being governed by the physics of the underlying problem [6, 7]. 

For transient problems, the loss of hyperbolicity and the ensuing pathological mesh 
sensitivity can, at least partially, be remedied by the consideration of heat flow and the 
inclusion of thermo-mechanical coupling terms and/or by resorting to the introduction of 
viscosity in the constitutive description [8-12]. These approaches implicitly introduce an 
internal length scale into the governing set of equations, which causes the initial value problem 
to remain well-posed. 

For static loading conditions, the above enhancements of the constitutive model apparently 
cannot introduce an internal length scale into the problem. In the past, three different 
approaches have been followed to introduce such an internal length scale. The first approach 
introduces higher-order strain gradients in the constitutive description [13-18], while the 
second method employs an averaging procedure with respect to the inelastic state variables 
(non-local constitutive equations [19, 20]). The approach pursued in this paper is the use of a 
so-called generalised or micro-polar continuum. Such a continuum model, in which three 
rotational degrees-of-freedom are introduced in addition to tht~ conventional three translation- 
al degrees-of-freedom, was proposed as early as in 1909 by E. and F. Cosserat [21]. Probably 
because of its relative complexity, it received little attention. Nevertheless, renewed interest 
arose after a dormant period of some 50 years, primarily due to the works of Eringen [22], 
G~inther [23], Mindlin [24, 25], Schaefer [26, 27] and Toupin [28]. These contributions have 
considerably broadened the original concept of E. and F. Cosserat [21] and the terminology 
micro.polar elasticity has become the vogue to describe these extended or generalised elasticity 
theories. Yet, interest died in the late 1960s, probably because of the inherent complexity of 
the theory, which results in a governing set of differential equations that is insoluble except for 
the most simple cases [24, 26]. Other arguments against the use of micro-polar elasticity were 
put forward by Koiter [1] who unfortunately based his conclusions on a rather special type of 
micro-polar elastic solid, which may have blurred a proper assessment. 
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Recent years have again witnessed a proliferation of interest in micro-polar solids, as 
evidenced in the contributions of Bogdanova-Bontcheva and Lippmann [29] and Miihlhaus 
and Vardoulakis [30-32, 37]. In these approaches the emphasis is on micro-polar plasticity 
rather than on elasticity and it has been stressed that micro-polar theories by their very nature 
introduce a characteristic length in the constitutive description, thus rendering the governing 
set of equations to remain elliptic while allowing for localisation of deformation in a narrow, 
but finite band of material. In this paper we shall amongst other things show that these 
favourable properties are preserved also after discretisation of the continuum into finite 
elements. 

Before entering the discussion how to implement Cosserat elasto-plasticity in a finite 
element context, including aspects such as temporal integration of the constitutive equations 
and consistent linearisation of the so-derived return-mapping algorithm, a brief discussion of 
the scope, the merits and limitations of the approach pioneered here is in order. First, the 
prime motivation of the present investigation was to construct a model that does not suffer 
from pathological mesh dependence as encountered in conventional strain-softening models 
for soils, concrete and rock, while being straightforwardly extendible to two and three 
dimensions. This goal has been reached completely. A limitation of the developed micro- 
polar, pressure-dependent Jz-flow theory is that it cannot realistically model mode-I fracture 
which is the prominent failure mechanism in concrete and rock under low confining pressures. 
For the latter class of problems, the inclusion of higher-order gradients in the constitutive 
model appears to be more effective [13]. More work is also needed on additional experimenta- 
tion and extraction of material properties from test data, an issue that is only marginally 
addressed in this investigation. For instance, in the examples at the end of the paper the 
characteristic length has been chosen rather arbitrarily. 

2. Cosserat elasticity 

In the present treatment, we limit our attention to two-dimensional, planar deformations. 
In that case, each material point in a micro-polar solid has two translational degrees-of- 
freedom, namely ux and uy and a rotational degree-of-freedom oJ~, the rotation axis of which is 
orthogonal to the x, y-plane. As in a standard continuum the normal strains are defined as 

Ou~ 0uy (la,b) 
e~= Ox and e~y= Oy " 

However, the shear strains are given a slightly modified form: 

~ux Ouy (2a,b) e~y=~+~o~ and eye= #x ~oz. 

It is observed that only for the choice 

of the macro-rotation, do ~xy and e .  become equal, thus maintaining symmetry of the strain 
tensor. This rather special case of micro-polar elasticity has been the subject of much research, 
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but has also given rise to some confusion. Mindlin [24] has constructed exact solutions for 
stress concentrations around circular holes for this theory, while Koiter [1], on the basis of this 
special theory, has concluded that, for plate flexure, micro-polar elasticity results in an 
increase in rigidity over that predicted by classical elasticity, that is unlikely to have 'remained 
unnoticed' had micro-polar elasticity effects been significant. Unfortunately, the impression is 
sometimes created that the theory originated by E. and F. Cosserat embodies assumption (3), 
which is not true, (cf. [22, 27, 28]). The original theory of E. and F. Cosserat does not require 
(3), although the possibility of constraining the theory by imposing (3) was noticed by them. 
Later, Eringen [22] named this special case of the Cosserat theory the 'indeterminate 
couple-stress theory'. In the remainder of this treatment, we will not use (3) and we will 
adhere to the original formulation of the Cosserats for deriving the elastic part of the theory. 

In addition to normal strains and shear strains, Cosserat theory also requires the intro- 
duction of micro-curvatures 

000: a~o~ (4a,b) 
Kx~= Ox and K~y-- 0y " 

Anticipating the treatment for elasto-plasticity we will rather use the generalised curvatures 
g,xi and Kxyl, where I is a material parameter with the dimension of length. It is this parameter 
which effectively sets the internal length scale in the continuum, and therefore has the role of 
a 'characteristic length'. 

The strain components introduced so far may be assembled in a vector, 

e e ,y, e+,+,, e,+,,, +',,.++, ,<,,J, ,<+,,l]'. (S) 

Note that in addition to the strain components introduced in (1), (2) and (4), the normal 
strain in the z.direction, e++, has also been included in the strain vector e. This has been done 
because, although this strain component remains zero under plane strain conditions during the 
entire loading process, this is not necessarily the case for the elastic and plastic contributions 
of this strain component. Also, the normal stress o'~., which acts in the z-direction, may be 
non-zero, which necessitates inclusion of e~ and o-~ in the stress-strain relation. It is 
furthermore noted that by multiplying the micro-curvatures ~++ and ~ by the length 
parameter l, all components of the strain vector • have the same dimension. 

Let us now consider the statics of a Cosserat continuum. While the strain vector • is 
comprised of seven components for planar deformations, so is the stress vector o'. As in a 
classical continuum, we have the normal stresses o'~,,, ¢r~y and o'~+, and the shear stresses o-+y, 
%x (Fig. l). For the Cosserat continuum, we also have to introduce stress quantities that are 
conjugate to the curvatures Kz+ and ~y. Figure 1 shows that the couple.stresses m+~ and m~y 
serve this purpose. We observe that for this continuum model, a couple vector acts on an 
elementary surface in addition to the familiar stress vector. 

Dividing the couple-stresses by the length parameter l, we obtain a stress vector zr in which 
all the entries have the same dimension: 

o. = [o.,+.,+, # , ,  o.o.+., o.+,,, %,+, m++l+, m++It]' . (6) 

Leaving aside body forces and body couples for the sake of simplicity (see e.g. [33] for an 
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%y 

mzy 

o~ 

1 

Fig. 1. Stress and couple-stress in a two-dimensional configuration. 

extensive treatment), translational equilibrium in the x and y-directions results in 

0c% 0%~ O%y 
O°'xx + = O, ' + = O, (7a,b) 
Ox ay Ox i~y 

respectively, which replicates the result obtained for a classical, non-polar continuum. 
However, for rotational equilibrium, we find that 

i~m,,,O......~ + 0m,,0y (o'xy - %x) = 0 , (8) 

which shows that the stress tensor is in general only symmetric (0% = %,,) if the couple- 
stresses m,x and mzy vanish (Boltzmann's Axiom). 

Anticipating the treatment of micro-polar plasticity in the next section, we decompose the 
strain vector into an elastic contribution e '  and a plastic part eP: 

• ffi e ° + e p , (9)  

whi le  we  assume that the elastic strain vector is linearly related to the stress vector ~r: 

= D e e  ° ; ( t o )  

D c is the stiffness matrix that contains the elastic moduli: 

D C _ _  

-2V, c t 2V, c 2 2/.¢c 2 0 0 0 0 
2/~C 2 2~ct  2V, c 2 0 0 0 0 
2V, c 2 2/~c 2 2V, ct 0 0 0 0 

0 0 0 / ~ + ~  /z- /z~ 0 0 
0 0 0 / ~ - ~  t ~ + / ~  0 0 
0 0 0 0 0 2V, 0 
0 0 0 0 0 0 2~ 

g 

(it) 
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with ct = ( 1 -  v ) / ( 1 - 2 v )  and c2= u / ( 1 - 2 v ) .  The elastic constants /t and v have the 
classical meaning of the shear modulus and Poisson's ratio, respectively./t c is an additional 
material constant, completing the total of four material constants, viz./.t, v, I and V.c that are 
needed to describe the elastic behaviour of an isotropic Cosserat continuum under planar 
deformations. The coefficient 2 has been introduced in the terms D66 and D~7 in order to 
arrive at a convenient form of the elasto-plastic constitutive equations. The total (bending) 
stiffness that sets the relation between the micro-curvatures and the couple-stresses is basically 
determined by the value of the internal length scale 1. 

We observe that all stiffness moduli that enter the elastic stress-strain matrix D ~ have the 
same dimension. This is attributable to the fact that all components of the strain vector e and 
the stress vector zr have the same dimension. 

3. Micro-polar elasto-plasticity 

In the present treatment, we employ a pressure-dependent J2-flow theory (Drucker-Prager 
model). Accordingly, the yield function f can be written as 

f= (3J2) t̀ 2 ¢ ap- #(y), (12) 

with ~ a function of the hardening parameter y and a a (constant) friction coefficient. 
p - ~ (o'xx + ¢ryy + crzz) and ]2 is the second invariant of the deviatoric stresses, which, for a 
micro-polar continuum, can be generahsed as [30, 31] 

,l 2 m atsd/$~/ + a25o$1 ~ + a 3 r n ~ j r n J l  2 . (13) 

In (13), the summation convention with respect to repeated indices has been adopted, s# is the 
deviatoric stress tensor and a t, a 2 and a s are material parameters. In the absence of 
couple-stresses, i.e. m 0 = 0, s~j = sj~ and (13) reduces to 

J2 - (at + aDs:o, (14) 

which implies that the constraint a~ + a 2 = ½ must be enforced so that the classical expression 
for J2 be retrieved properly. 

For the case of planar deformations, J2 can be elaborated as 

2 2 2 J2 -- t[s~x + syy 0% + 2a2o',,y%x + ato.y,, + as[(mv, l l )  2 + (m,yll)2] . 

Combining (12) and (15), and introducing the matrix 

p =  

m 

2/3 - I / 3  - 1 / 3  0 0 0 0 " 
- 1 / 3  2/3 - 1 / 3  0 0 0 0 
- 1 / 3  - 1 / 3  2/3 0 0 0 0 
0 0 0 2a t 2% 0 0 
0 0 0 2a 2 2a I 0 0 
0 0 0 0 0 2~l 3 0 

. 0 0 0 0 0 0 2a3 .  

(15) 

(16) 
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then leads to an appealingly compact form of the yield function 

f =  [3 o"eer] u2 + azr'm"- +(1+), (17) 

with ~rt= [1/3, 1/3, 1/3, 0, 0, 0, 0]. A (non-associated) flow rule is now obtained in an 
identical fashion to that in a non-polar continuum. 

, p = , (  ag atr '  (18) 

g = [+o.'eo.] + ,so-', . .-  
where 

(19) 

is the plastic potential function and/3 is a dilatancy factor. Noting that during plastic flow 
f---0, we obtain for the plastic strain rate 

[ 3Po" ] 
eP=  A 2X/3"-~wtPw + fl,r . (20) 

In (18) and (20), A is the plastic multiplier which, in analogy with classical plasticity, is 
determined from the consistency condition f = 0. 

It now remains to identify the plastic strain measure 3' (the hardening parameter) for a 
J2-flow theory in a Cosserat medium. For this purpose we first recall the conventional 
strain-hardening hypothesis, 

3' = [t  -,j-,,j++P.++.P.I"2 , (21) 

with ~j the plastic deviatoric strain-rate tensor. For "aniaxial stressing, q reduces to the 
uniaxial plastic strain rate, ~, = "p 8,,,. Since there are no couple-stress effects in uniaxial loading, 
we require that any modification to (21) for Cosserat media does not affect the result for pure 
uniaxial loading. Considering this prerequisite, a possible generalisation, analogous to (13), is 
to postulate that [30, 31] 

h ,~P,~P +/~  ,:.Pd.P121112 (22) 
~,=[b#~+~ +"v' , / ' J ,  " ' " O " ' r  J ' 

with b t + b= = ~ in order that definition (21) for the strain-hardening hypothesis in a non-polar 
solid can be retrieved. 

For the case of planar deformations, 1 ~ can be elaborated as 

• p .p b l ( ~ ; x )  2 ,~, = [t[(~xpx)2 + (t~ypy)2 + (~=p)2] + bt(~xpy)2 + 2b2fxyey  x + 

• p 2 1 / 2  + b3[(~Pzl) 2 + (Ry=/)  ]] . 

Introduction of the matrix 
I 

2/3 - 1 / 3  - 1 / 3  0 0 0 0 
- 1 / 3  2/3 - 1 / 3  0 0 0 0 
- 1 / 3  - 1 / 3  2/3 0 0 0 0 

0 0 0 3 /2b  1 3/2b 2 0 0 
0 0 0 3/2b 2 3/2b  1 0 0 
0 0 0 0 0 3/2b 3 0 

_ 0 0 0 0 0 0 3 /2b  3. 

(23) 

(24) 
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allows the rate of the hardening parameter ~ to be written in a similar format as the yield 
function, 

.-- [2  3 ( ~ p ) t Q ~ p ] l / 2  , (25) 

with the vector ~ p assembling the plastic strain-rate components. 
We next introduce the flow rule (20) in expression (23) for the rate of the hardening 

parameter. Since ,~ and 6 are always non-negative, the result is given by 

.¢/= A( ~tPQPtF~ 1,2 
crtpcr / (26) 

since Q ~ ' -  O. If the parameters a,, a 2, a 3 and b~, b2, b 3 are chosen such that 

POP = P ,  (27) 

(25) reduces to exactly the same format as obtained in standard J2-flow theory: 

- A. (28) 

In the remainder of this paper, we assume that condition (27) is satisfied. 
With the above definitions, J~-flow theory can be carried over to a Cosserat medium in a 

straightforward an¢t elegant fashion. Integration algorithms for this model which are based on 
the concept of return mapping are discussed in the next section. 

4. A return.mapping algorithm 

With the governing rate equations for the micro-polar elasto-plastic solid at hand, we can 
set out to develop an algorithm that determines the stress increment in a finite loading step. 
Here, a variety of algorithms exist, but we shall only consider two possible candidates, namely 
the Euler backward algorithm and a one-step return-mepping algorithm in which the gradient 
is evaluated at the trial stress state, 

o '  t = o '  0 ~" D e A e ,  (29) 

O" o being the stress at the beginning of the loading step. For the latter algorithm, it has been 
shown in [34] that, for certain classes of the material parameters, there exists a set of values 
a t , o 2, a 3 and bt ,  b2, b3, which ensures a return to the yield surface in a single iteration. These 
advantageous properties are obtained for a t = a 2 = ~, a 3 = ½, b t = b 2 ~, b 3 ~. This set of 
constants will henceforth be referred to as the 'standard' set. 

When these conditions are not satisfied, an Euler backward algorithm as delineated below 
should be employed. In this algorithm, tbe total strain increment in a finite loading step As is 
decomposed into an elastic contribution Ae ~ and a plastic part A~P, 

Ae = A~ ~ + Aer.  (30) 
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Between the stress increment Ao- and the elastic strain increment Ae~, we have the bijective 
relationship 

Ao" = D e Ae e . (31) 

Furthermore, the expression for the plastic strain rate (20) is integrated using a single-point 
Euler backward rule. This results in 

[ 3 , ~ .  ] 
Ae p -- AA - ~  + ~ .  , (32) 

2~/~ O'nPO" " 

where the subscript n refers to the value at the end of the loading step. By definition o-. is 
given by 

o'. = o" o + Ao' ,  (33) 

so that combination of (29)-(33) results in 

o ' . f f i ( r , -AA 2~/iw'.eo' .  + f lD 'zr  . (34) 

We next use the condition that at the end of the loading step the yield condition must be 
satisfied: f (~ . ,  %)ffi 0. Then, (34) transforms into 

.3D©Po.n 
o'. -- o', - ~A 2 [¢~(~-~_  - ~-r,cr. l  + ~ D ~ r  . (35)  

A complication now arises, since we wish to express ¢n as a function of o', and AA, while in 
(35) o', also occurs in the denominator of the second term on the right-hand side. Therefore, 
we express ~'*o', as a function of ~r*o" t and AA by premultiplying (35) by the projection vector 
~'. This gives 

lr*(r. = ~rto ", - AA~K, (36) 

with K ffi zrtDezr. In the case of isotropic elasticity, K is the bulk modulus. Substitution of this 
identity into (35) results in the desired formulation: 

o'. = A-I[o ", - AAflD'~],  (37) 

where 
A = i + 3AAD~P (38) 

2[~(7.) + A A a [ J K -  a¢¢'o',] " 

Substitution in the yield condition f(o'.,  %) = 0 then results in a non-linear equation in ~A, 
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f(AA)- (~(~,,- AA/3Oe~)~t-'eA-'(o ' - AA~O°~)) ''2 + ,~-1(o-,- AA~O°=)- ,~ 

= 0 ,  (39) 

which is solved using a Regula-Falsi method. Normally, convergence is achieved within 4-5 
iterations. 

$. Consistent llnearisation moduli 

For the derivation of a properly linearised set of tangential moduli, we will restrict ourselves 
to the format of a pressure-dependent ,/z micro-polar plasticity theory that obeys the constraint 
(27). Differentiating (34) then yields 

~ - u  ~-,~ ~-~ , 

where 
ag ~ Po" 
~- ~ +O~ 

and 
. /'~ crtP~rP- Po'o:P 

H-' = [0"I °' + A^~j~ ~ ~ ~ . 

Since f = f(~r, y),  the consistency condition f ,~ 0 can be elaborated as 

Introducing the hardening modulus 

05 
h(~,) = 0~, 

and using the yield condition (12), we obtain 

Equation 
relation 

(40) 

(41) 

(42) 

(43) 

(44) 

T~ b-h,~=0. (4S) 

(45) can be combined with (40) to give the explicit consistent tangential stiffness 
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6. Examples:  shear layer and biaxial test 

The model discussed in the preceding section has been implemented in a 6-noded triangular 
plane strain element. This element has 18 degrees-of-freedom due to the fact that each node 
has three degrees-of-freedom, two translations and one rotation. 

To illustrate the effectiveness of the Cosserat model in predicting physically realistic 
solutions for mode-II failure problems, the shear layer of Fig. 2 has been analysed. It is 
assumed that the shear layer is infinitely long in both the negative and the positive x-direction. 
The discretisation of the shear layer, which has a height H = 100 mm, is shown in Fig. 2 for 
the case of 20 elements. 

Basically, the problem is one-dimensional and could also have been analysed using line 
elements. Use of two-dimensional elements requires that linear constraint equations are added 
to the set of algebraic equations which result after discretisation of the continuum. They have 
to be applied to the displacements in the x-direction as well as to the rotational degrees-of- 
freedom, since all displacements in the y-direction are prevented (isochoric motion). The 
bottom of the shear layer is fixed (u x = 0, uy = 0) and the upper boundary is subjected to a 
shear force or, y (per unit area), which has been controlled using a standard arc-length 
technique [6, 7, 35]. The additional boundary condition o~ z = 0 has been enforced at the lower 
and upper boundaries. 

The standard elastic moduli have been chosen as shear modulus /z = 4000MPa and 
Poisson's ratio v - 0.25. The initial yield strength has been taken equal to 6 = 100 MPa, with 
no friction or dilatancy (a =/3 = 0), while a linear softening diagram has been used with a 
hardening (softening) modulus h- - -0 .125/~ .  For the Cosserat continuum the additional 
material constants /~c = 2000 MPa and l -  12 mm have been inserted. Firstly, the standard 
values for al, a2, a3 and b 1, b 2, b 3 have been utilised. 

In contrast to a standard continuum, a homogeneous strain state is not obtained under pure 
shear loading for a Cosserat continuum, at least not with the essential boundary conditions 
listed above. Already in the elastic regime a boundary layer with a height that is proportional 
to I develops at the upper and lower parts of the shear layer. As a consequence the localisation 
develops smoothly and gradually in the middle of the shear layer without the need for 
introducing imperfections or for adding a part of the eigenvector to the homogeneous solution 
[6, 7, 36]. 

When the discretisation is refined to such an extent that more than one set of two triangular 
elements are placed over the localisation zone, the width of the numerically predicted 
localisation zone becomes constant (Fig. 3). Figure 4(a) shows also that the load-displacement 
curve converges to a physically realistic solution. 

FE-model 

o~ 

Fig. 2. Infinitely long shear layer: applied loading and finite element lay-out. 
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/ 

(e) (b) 

/ 

(a) (d) 

Fig. 3, Incremental displacement patterns at a residual load level of ~r,y/# •ffi 0.28. (a) tO ¢lem©nts; (b) 20 elements; 
(¢) 100 elements; (d) 200 elements. 

As alluded to in the introduction, a major question that needs to be addressed when 
introducing higher-order continuum models is the determination of the additional material 
parameters. The role of the internal length scale I is rather obvious, since it governs the 
brittleness and the width of the Iocalisation zone. A smaller value for I implies a smaller width 
of the localisation zone and a steeper post-peak response as is shown in Fig. 4(b). The 
influence of the ratio a I :a 2 is shown in Fig. 4(c). Apart f~m the standard set (a I = a 2 = ~), 
the so-called kinematic model of Miihlhaus and Vardoulakls [30, 31, 37] (as ffi ~, a2 = ~) and 
the static model of Miihlhaus and Vardoulakis [30, 31, 37] (a ! = ~, a 2 ffi - ~ )  have been used. 
It appears that the specific choice of these parameters has tittle influence on the results in the 
first part of the post-peak regime, but that beyond some critical point in the post-peak regime, 
the gradual evolution of the localisation zone as observed for the standard model breaks down 
for the kinematic model and at an even earlier stage for the static model. Beyond these points, 
the kinematic and static models react in a very brittle manner. Finally, Fig, 4(d) shows the 
influence of the softening modulus on the structural hehaviour. 



R. de Borst, A generalisation of .12-flow theory 359 
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u,lH 

i2 

2 

Fig. 4. L~arkiisplacement diagram for shear layer. Results for a Cosserat continuum with strain softening. (a) The 
effect of mesh refinement; (b) the role of the characteristic length I; (c) influence of the parameter set (a,, a,, aJ); 
(d) influence of the stPftening modulus h. 

To demonstrate the effectiveness of the Cosserat continuum also in two-dimensional 
boundary value problems where frictional sliding is the prevailing failure mechanism, a 
plane-strain biaxial test has been simulated. The specimen that has been considered has a 
width B = 60 mm and a height H = 180 mm. Smooth boundary conditions (u,, = 0) have been 

and lower boundaries and natural boundary conditions have been assumed at the upper 

a -l 
FIB- 1 I 

Fig. 5. Load-displacement curves for a plane-strain biaxial test (Drucker-Prager yield function). 
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(a) (b) 
Fig. 6. Incremental displacements for a plane-strain biaxial test (Drucker-Prager plasticity). (a) Medium mesh 
with 432 elements; (b) Fine mesh with 1728 elements. 

assumed at all sides for the rotations (% free). A Drucker-Prager yield condition with a 
non-associated flow rule was employed. The material data were as follows: shear modulus 

~ 1000MPa, Poisson's ratio v =0.2, ~ = 500MPa, !~  6ram, a ~ 1.2, /~ -0 .0  and # =  
1.2V'~(1- 25y), For the coefficients a~, a z and a~ the 'standard' values have been analysed. 

Three different meshes have been adopted, with t08, 432 and 1728 six-noded triangular 
elements, respectively. The load-displacement curves for all three discretisations are indisting- 
uishable as is shown in Fig. 5. This figure also shows the solution that is obtained under the 
assumption of homogeneous deformations (no localisation). 

Because in pure compression rotational degrees-of-freedom are not activated, an imperfect 
element (5% reduction in the initial yield strength) has been inserted in the model at the left 
boundary near the horizontal centre line. From this point, two shear bands initially propagate, 
but later only one band persists. The incremental displacements at this stage are shown in Fig. 
6 for the medium (432 elements) and the fine mesh (1728 elements), respectively. 

7. Concluding remarks 

Micro-polar plasticity does not share the disadvantages that adhere to some other non- 
classical plasticity approaches. In particular, the concept of return-mapping algorithms can be 
applied straightforwardly and in a pointwise fashion. There is no need to restate the 
consistency condition in a format that involves distribution functions, as is the case for 
non-local approaches [38]. This observation greatly simplifies the programming effort. 
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Another  important  advantage is the fact that  the major  symmetry in the tangential stiffness 
matrix remains preserved when associated plasticity is used. Again,  this result contrasts with 
non-local plast ici ty/damage theories with a local strain field, where this property is lost [19, 
20]. 

Previous research on conventional strain-softening models [35, 39, 40] has shown that,  when 
finite elements are used for such material models, the solution tends to become unstable at 
some stage of the loading process. Some elements or groups of elements tend to show 
deformation patterns that are totally unrealistic and physically unacceptable. The micro-polar 
approach,  which basically enriches the element formulation with higher-order gradients, 
appears to stabilise the element behaviour when strain-softening type constitutive laws are 
used. 
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