EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Order functions and evaluation codes

Citation for published version (APA):

Hgholdt, T., van Lint, J. H., & Pellikaan, G. R. (1997). Order functions and evaluation codes. In T. Mora, & H. F.
Mattson (Eds.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Proceedings 12th
International Conference, AAECC-12, Toulouse, France, June 23-27, 1997) (pp. 138-150). (Lecture Notes in
Computer Science; Vol. 1255). Springer. https://doi.org/10.1007/3-540-63163-1_11

DOI:
10.1007/3-540-63163-1_11

Document status and date:
Published: 01/01/1997

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://doi.org/10.1007/3-540-63163-1_11
https://doi.org/10.1007/3-540-63163-1_11
https://research.tue.nl/en/publications/667e1002-c478-4885-972b-b9383feebf1c

Order Functions and Evaluation Codes

Tom Hgholdt*, Jacobus H. van Lint, and Ruud Pellikaan™*

Abstract. Based on the notion of an order function we construct and
determine the parameters of a class of error-correcting evaluation codes.
This class includes the one-point algebraic geometry codes as well as
the generalized Reed-Muller codes, and the parameters are determined
without using heavy machinery from algebraic geometry. .

1 Introduction

Suppose we have n points Pi,..., P, in the affine space AG(m, ¢) of dimension
m over some finite field IFy, and a vector space of functions f : AG(m, q) — IF,.
We can then choose some of these functions fi, fo,. ., fi, say, and define a code
E; by

Ey = span(f;(Py), fi(P2), ..., fi(Pn)),i=1,...,1

and its dual code by
Cr =

In general nothmg mterestmg can be sald about the codes constructed in this
way, but in 1977 V. D. Goppa [1] showed that it is pos51ble to determine the pa-
rameters of such codes if the points are chosen on an algebraic curve and the func-
tions are from a certain space associated with the curve. The proof of this uses
some heavy machinery from algebraic geometry, in articular the Riemann-Roch
Theorem. The subject of algebraic geometry codes exploded after Tsfasman-
Vladut and Zink [2] showed that in this way it is possible to get asymptotically
good sequences of codes with parameters better than the Varshamov-Gilbert
bound in a certain range of the rate and for large enough ¢. Since 1977 a lot
of effort has gone into finding a more elementary way of describing these codes
[3]-[8]. In this paper we give such a description based on the so-called order func-
tions. The paper came about when working on a chapter on algebraic geometry
codes which will appear in the Handbook on Coding Theory [9].

In section 2 we introduce the concept of an order function. Section 3 treats
evaluation codes and their duals and determines the parameters and 4 contains
some concluding rema.rks
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2 Order Functions

Let R be a commutative ring with a unit which contains the finite field Fyjasa
unitary subring. We will call R an IF;-algebra. Let IN denote the positive integers
and INg the nonnegative integers. ’

Definition 1. A function p : R — INg U {—o0} is called an order function if it
satisfies

0.0 p(f)-_——-oo@f:O

0.1  p(Af) = p(f) for all nonzero A € IF,

0.2 p(f + g) < max{p(f), p(g)} with equality if p(f) # p(g)
0.3 If p(f) < p(g) and h € R\ {0} then p(hf) < p(hg)

0.4 If p(f) = p(g) then there exists a nonzero A € IF, such that

p(f — Ag) < plg)
for all f,9,h € R. Here —oo0 < n for all n € Ny.

Definition 2. Let R be an IF,-algebra. A weight function on R is an order
function that furthermore satisfies

05 p(fg) = p(f) +p(9)
for all f,g € R. Here —oo +n = —co for all n € INg.

Ezample 3. Let R = IF,[x] and p(f) = deg f. Then p is a weight function. For
multivariate polynomials the degree function does not satisfy O.4.

Ezample 4. Let R=1F,[z1, 2y, ..., 2,]. We will use the multi-index notation for
monomials. This means z* = T2,z if @ = (@1,...,am). The lezicographic
order on the monomialsis defined by £ <r z%ifandonlyifa; = B1,...,q1_1 =
Bi-1 and o < By forsome 1 < I < m, and the graded lezicographic order <p is de-
fined by 2* <p 2 if and only if either deg(z®) < deg(z?) or'deg(z®) = deg(z?)
and ¢® <g zP. The graded lexicographic order is an admissible order, and can
be extended to an order function on R in the following way. Let f;, fo, ... be an
enumeration of the monomials such that f; <p fi41 for all . The monomials are
a basis of R over IFy, so every nonzero polynomial f can be written in a unique

way as
Jj
F=Y_Mfi
=1
where A; € IF, for all ¢ and A; # 0. Define a function
p:R— INgU {—c0}
by p(0) = —co and p(f) = j — 1 where j is the smallest integer such that f can

be written as a linear combination of the first 7 monomials. Then p is an order
function, but not a weight function.
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Lemma 5. Let p be an order function on R. Then:

1) If p(f) = plg), then p(fh) = p(gh) for all h € R.

2) p(1) < p(f) for all nonzero elements f € R.

3)TF =1{f € R | plf) < p(D)}.

4) If o(f) = p(g), then there exists a unique nonzero A € IF such that p(f-2g) <
p(9)-

Proof.

1) If p(f) = p(g), then there exists a nonzero A € IF such that p(f — Ag) <
p(g), by (0.4). So p(fh — Agh) < p(gh), by (0.3). Now fh = (fh — Agh)+ Agh.
Thus p(fh) = p(Agh) = p(gh), by (0.2) and (O.1), respectively.

2) Suppose that f is a nonzero element of R such that p(f) < p(1). Then
p(1) > p(f) > p(f?) > - -+ is a strictly decreasing sequence, by Condition (0.3),
but this contradicts the fact that Ny U {=co} is a well-order. Thus p(1) < p(f)
for all nonzero elements f in R. '

3) It is clear that IF is a subset of {f € R | p(f) < p(1)}, by Conditions
(0.0) and (0.1) If f is nonzero and p(f) < p(1), then p(f) = p(1), by 2) and
hence there exists a.nonzero A € IF such that p(f — A1) < p(1), by (O.4). Thus
f—A=0and fEF. , _, ,

4) If p(f) = p(g), then there exists a nonzero A € IF such that p(f ~ Ag) <
p(g) by condition (0.4). If p(f — pg) < p(g), we get by (0.1) and (0.2) that
p(f — Ag — (f — pg)) < p(g) and therefore p((u — A)g) < p(g). Condition (O.1)
gives p — A= 0. ’

Proposition 6. If there ezits an order function on R, then R is an integral
domain. ’

Proof. Suppose that fg = 0 for some nonzero f,g € R. We may assume that
p(f) < p(g)- So p(F?) < p(fg) = p(0) = —c0. So p(f?) = —c0, and f2 = 0. Now
F# 0, hence p(1) < p(f), by Lemma 5. So p(f) < p(#2) = p(0) = —oo. Thus .
f =0, which is a contradiction. Therefore R has no zero ‘divisors.

Ezample 7. The IF-algebra R = IF[X1; X2]/(X1X5—1) is an integral domain. We
will show that it does not have an order function. Denote the coset of X; modulo
the ideal (X; Xz — 1) by z;. If p is an order function on R; then p(1) < p(z1),
so p(xs) < p(ziza) = p(1), thus p(zs) = p(1) and in the same way we ‘get
p(z1) = p(1). Therefore p(f) < p(1) for all f € R. Thus IF = R by Lemma 5,
which is a contradiction since z; ¢ IF.

The following proposition and theorem show that if there exists an order func-
tion, then there exits a basis with certain properties; and conversely if such a
basis exists, then one can define an order function. Although the formulation is
technical, it is easy to apply. This will be shown in some examples.

Proposition 8. Let R be an IF-algebra with order function p. Then there exists
a basis {f; | i € IN} of R over IF such that p(f;) < p(fiy1) for all i. Every
such basis has the property that if i is the smallest positive integer such that f
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can be written as a linear combination of the first i elements of that basis, then
p(f) = p(fi). Furthermore; if I(i,j) is the smallest positive integer | such that

o(£if;) = p(fi), then I(2,4) < I(z +1,7) for alli and j.

Proof. Let (p; | ¢ € IN) be the increasing sequence of all nonnegative integers
that appear as the order p(f) of a nonzero element f € R. By definition there
exists an f; € R such that p(f;) = p; for all ¢ € IN. Thus p(f3) < p(fi+1) for all
i, and for all nonzero f € R there exists an ¢ with p(f) = p(fi), by definition.
The fact that {f; | i € IN} is a basis is proved by induction and Lemma 5 (4),
and it has the required property by (0.2). That the function (¢, j) is strictly
increasing in its first argument is a consequence of condition (0.3).

Theorem 9. Let R be an IF-algebra. Let {f; | i € IN} be a basis of R as a vector
space over I with fi = 1. Let L; be the vector space generated by fi1,..., fi. Let
I(3,§) be the smallest positive integer | such that f;f; € Li. Suppose I(3,5) <
I(i+1,7) for all i,j € IN. Let (p; | ¢ € IN) be a strictly increasing sequence
of nonnegative integers. Define p(0) = —oo, and p(f) = p;i if i is the smallest
positive integer such that f € L;. Then p is an order function on R. If moreover
Pii.§) = Pi + pj, then p is a weight function.

Proof. The conditions (0.0), (0.1), (0.2), and (O.4) are a direct consequence
of the definitions.

With every nonzero element f € R the smallest positive integer ¢(f) is asso-
ciated such that f € L,s). Let f and g be nonzero elements of R. Then

F=3 MNfig= Y, vifj and fo= Y mh,

i<u(f) i<ug) 1<)

with A5y # 0, vyq) # 0 and p,(zg) # 0. There exist piji € IF such that

fifi= ) mah

1<1i.5)

and [L;j((i,j) :,'é 0. Thus
D A
1(i,5)=l
The function I(4, j) is strictly increasing in both arguments, by assumption and

symmetry. So (4, ) < I{(e(£), «(g)) if i < ¢(f) or j < ¢(g). Furthermore, if i = +(f)
and j = ¢(g), then

Aivipijigig) # 0,
This element is therefore equal to pb(fg), and we have proved that «(fg) =

1(o(£), «9))-

If moreover py; ;) = p; + pj, then

P(F9) = Pusa) = Py = Pup) + Pugy = PUF) + £(9)-
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Ezample 10. Let w = (wy,...,wn) be an m-tuple of positive integers called
weights. The weighted degree of @ € INg' and the corresponding monomial X< is
defined by

wdeg(X®) = wdeg(a) = E aquy,
and of a nonzero poiynomial F=3% ;\,,X “ by
wdeg(F) = max{ wdeg(X*) | Ao #0 }.

This gives a degree function wdeg on the ring F[X1,...,Xm]. The weighted
graded lezicographic order <y, on INy' is defined by

a < B if and only if wdeg(a) < wdeg(8) or wdeg(a) = wdeg(f) and a <L B,

and similarly for the monomialé. Form = 2 with X =X1,Y = X5, wdeg(X) = 4
and wdeg(Y) = 5, the start of this total graded lexicographic order looks like:

1 <

X <Y =<

X?< XYy <Y? <

X3 <X?Y <XY? Y3 <

Xt < X3 < XWW?< XY? <Y* <
X3 <X < X?Y?2 < X?Y3 < XY <YS

Ezample 11. Let I be the ideal in IF[X, Y] generated by a polynomial
X +YP 4+ G(X,Y)

with deg(G) < b < a and ged(a,b) = 1. Let R = IF[X,Y]/I. Denote the cosets
of X and Y modulo I by z and y, respectively. Then z% = —y® — g(z,y) and
therefore £ is a linear combination of elements of the form z%y? with 0 < a < a,
since deg(G) < a. By recursion one shows that the set

{z°y’ |0<a<a}

is a basis for R. Suppose there exists a weight function p on R such that
ged(p(x), p(y)) = 1. We will show that p(z) = b and p(y) = a. Let ziy be
the monomial in g with the largest weight. Then p(g) < ip(z) + jp(y) by (0.2)
and (0.5) and therefore either p(g) < (i+4)p(z) or p(g) < (i+4)p(y) from which
we get p(g) < ag(x) or p(g) < bp(y) since i +j < b < a. But p(z*) = p(y’ +9)
and p(t) = p(2® + g) by (0.1) so we conclude p(z®) = p(y’) using (0.2) and
(0.5), and theréfore ap(z) = bp(y). Since ged(p(z), p(y)) = 1 the result follows.

In the following it is shown that indeed such a weight function exists.

Proposition 12. Let I be the ideal in F[X,Y] generated by a polynomial of
the form X 4+ Y? + G(X,Y) with deg(G) < b < a and ged(a,b) = 1. Let
R = F[X,Y]/I. Then there ezists a weight function p on R. The ring R s
an integral domain, I is a prime ideal and X° + Y® + G(X,Y) is absolutely
irreducible.
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Proof. Consider the total weighted degree lexicographic order <y on the mono-
mials in X and Y with respect to the weights wdeg(X) = b and wdeg(Y) = a.
This weight function is injective on the set {X*Y* |0 < & < a}, since ged(a, b) =
1. Let f1, fa, ... be an enumeration of the elements z%y? of the basis of R, and
let p1,p2,. .. be an enumeration of the nonnegative integers of the form ab+ Ba
with 0 < a < q, in such a way that p; < p;y1 and f; = 2*y? if p; = ab+ Ba and
0<a<a,foralli. Let Ly = {fi1,..., fi).

It is proved by induction that py; ;) = p;+p; . The induction is with respect to
the well-order <y on IN%. Now f; = 1 and p; = 0. So I(1,1) = 1 and the start of
the induction is satisfied. Suppose that the claim is proved for all (#/, ') <w (3, 7).
Let f; = z°%®, p; = ab + Ba with 0 < o < . Let fi =2y, pj = vb + a with
0< v <a. Then f;fj = z**7y?*% and p; + p; = (a + )b+ (8 + §)a.

fa+7v < a, then fsz is a basis element. So fl(i,j) = fifj and PG5 = Pitpi-

Ifoa+v>a,then a+v=a+¢c with0 <e¢ < a. Hence

pitpi=(a+7)b+(B+8a=eb+ (b+ L +6)a

. and

o fifi = =2y — 2%(a,y).

~ The term z¢y**P+? is a basis element f;. We may assume by induction that
-~ z°g(x,y) € Li_y, since deg(G) < b < a. Thus f;f; = f1, I(3,j) =l and p; =

b+ (b+ B+ 8)a = p; + p;. This concludes the proof that py; ;) = pi + pj.

Therefore (4, ) < {(i + 1, j).

* Thus there exists a weight function p on R such that p(z%y®) = ab + fa,

by Theorem 9. So R is an integral domain by Proposition 6 and I is therefore a

prime ideal.

. The general question under what conditions on the ideal I it is possible to find
an order function on R = F[z1,...,2,)/] is difficult. Some results relating this

- to'the existence of Groebner bases for I with certain properties are given by R.
. Pellikaan in [8].

4 3 Evaluation Codes and Their Duals

7 Let R be an IF -algebra with an order function p. Let (f; | ¢ € IN) be a basis of

. R over IF, such that p(f;) < p(fi4+1) for all i € IN, and for all nonzero f € R

there exists a j with p(f) = p(fj). The existence of such a basis is guaranteed
by Proposition 8. Let L; be the vector space generated by fi, ..., fi. Thus for all
“nonzero f € R we have that p(f) = p(fi) if and only if { is the smallest integer
such that f € L;. Let I(4, j) be the smallest positive integer ! such that f; f; € L;.
280 l(i, ) <l(i+1,5) for all 4,5 € IN.
- " The coordinatewise multiplication on IF, is defined by a*b = (a1b1,. .., anb,)
fora = (ai,...,a,) and b = (by,...; b, ). The vector space IF7 becomes an IF,-
- algebra with the multiplication *.
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Definition 13. The map
p: R —TFy,

is called a morphism of IF,-algebras if ¢ is IF,-linear and

o(fg) = o(f) * ¢(9)-
Let h; = ¢(f;). Define the evaluation code E; and its dual C; by

= (L) = (hy,..., by},
Ci={c€F} |c-h;=0 forall i<l}.

We will consider only those algebra morphisms ¢ that are surjective. Thus there
exists a positive integer N such that E; = IF" and C;=0foralll> N.

Let the set P consist of n distinct points P, ..., P, in IFy’. Consider the evalu-

ation map
evp :IF[Xq,..., Xpm] — F7,

defined by evp(f) = (f(P1), ..., f(Pn)). This is a morphism of IF,-algebras from
R to IFy, since FG(P) = F(P)G(P) for all polynomials F' and G, and all points
P.

Lemma 14. The map evp is surjective.

Proof. Let Pj = (zj1,...,%jm)- Let Ay = {zj1 | j=1,...,n}\{zu}. Define the

polynomial f; by
fz =H H (X;—-:c).

=1 =z€Ajy

Then fi(Py) = 0 for all i # 7. Furthermore f:(P;) # 0, since the points Py, ..
are mutually distinct. Let g; = £;/£i(7;). Then evp(gi) is the ith standard ba51s
element of IF"’ Thus evp is surjective.

Suppose that I is an ideal in the ring IF[X1,..., Xn]. Let P;,..., P, be in
the zeroset of I with coordinates in IF. Thus f(P;) = 0 for all f E I and all
j=1,...,n. Then the evaluation map induces a well-defined linear map

evp : F[X1,..., Xpn)/I — F",

which is also a surjective morphism of IF-algebras.

In the above setting the codes are very general and nothing specific .can be
said about the minimum distance of the codes E; and C;. We will show that
certain order and weight functions on the affine ring R give a bound on the
minimum distance which is in many cases the actual minimum distance.

Suppose that p is a weight function. Condition (O.5) implies that the subset
S=1{p(f)| f €R, f#0} of INg has the property that, 0 € S, anda:+y€5
forall z,ye S.
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Definition 15. A subset S of the nonnegative integers INy is called a semigroup
if0 € Sandforallz,y € S also the sum z +y € S. Elements of INg\ S are called
gaps of S and elements of S are called nongaps of S. If all elements of S are
divisible by an integer d > 1, then there are infinitely many gaps. The number
of gaps is denoted by g = g(S) If g < oo, then [ (S) = I, is both the largest gap
of S and the gth gap. :

Lemma 16. Let S be a semigroup with finitely many gaps and s E S, then the
number of elements of S\ (s +S) is equal to s.

Proof. Let s € S. Let l; be the largest gap of S. Let T={t € INg |t > s+ 1, }.
Then T is contained in S and in s +.S. Let U = {u € S | u < s+ [;}. Then the
number of elements of U is equal to s +-1; +1—g, and S is the disjoint union of
TandU.Let V={ve€s+S|s<v<s+1}. Then the number of elements of
Vis equal tol;+1=g, and 54 5 is the disjoint union of V'and T. Furthermore
. VCU,since s € S and S is a semigroup. Thus

#(S\(s+S))=#U‘—#Vi_(s+lg'+l—g)—(lg+1——g):5.

Lemma 17. Let f be a nonzero element of an IF;-algebra R with a weight func-
tion p, then
dim(R/(f)) = p(f)-

Proof. Let S be the semigroup of the weight function p. Let s = p{f). Let
(pi | i € IN) be the sequence of the elements of S in increasing order. The image
under p of the set of nonzero elements of the.ideal (f) is equal to s +.S. So
for every p; € S there exists an f; € R such that p(f;) = p;, and f; € (f) if
pi € s+S. Thesets {f; | : € IN} and {f; | i € N, p; € s+ S} are bases of the
algebra R and the ideal (f), respectively, by the same argument as 8. Thus the
classes of f; modulo () with i € IN and p; € S\ (s + S) form basis for R/(f).
Thus the dimension of R/(f) is equal to the number of elements of S\ (s + .5),
which is p(f) by Lemma 16. ‘ '

" Suppose that we have a weight function p on an affine IF -algebra R =
Fy[X1,..., Xm]/I. Let P consist of n distinct points of IF* in the zero set of I,
and let evp : R — IE"; be the corresponding evaluation map.

Lemma 18. Let f be a nonzero element of R. Then the number of zeros of f
ts at most p(f).

Proof. Let Q be the set of zeros of f and let ¢ = |Q|. The map evg : R — ]th
is linear and surjective by Lemma 14. Furthermore g(Q) = 0 for all @ € @ and
g € (f). This induces a well-defined map evg : R/(f) — IF;, which is linear and
surjective. Thus the number of zeros of f is at most the dimension of R/(f)
which is equal to p(f) by Lemma 17.

Theorem 19. Let p be a weight function. Then the minimum distance of Ey is
at least n — p;. If pp < n, then dim(E;) = 1.
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Proof. Let ¢ be a nonzero element of E;. Then there exists a nonzero element
f € R such that p(f) < p; and ¢ = evp(f). So ¢; = f(P;) for all i. The number
of zeros of f is at most p;, by Lemma 18. Thus wt(c) > n — p;.

Suppose moreover that p; < n. Ey is the image under the evaluation map of
the vector space L; of dimension I. If f € L; and evp(f) = 0, then f has at least
n zeros. Hence f = 0 by Lemma 18, since p; < n. Thus the map evp : L; — E;
1s a linear isomorphism, so dim(E;) = I.

Corollary 20. Let p be a weight function with g gaps. If pp < n, then Ey is an
[n, k,d] code such thatk+d>n+1—g.

Proof. This follows from Theorem 19 and the fact that I > p; +1 —

Remark 21. If p is an order function but not a weight function, then in general
R/ ( f) is not finite dimensional and there is not a stralghtforward bound on the
minimum distance for Er.

We will now give a bound on the minimum distance of C; and repeat the main
definitions. Let R be an IF,-algebra with an order function p. Let {f; | i € IN} be
a basis of R over IF, such that p(f;) < p(fiy1) foralli € IN. Let ¢ : R — IF; be
a surjective morphlsm of I -algebras. Let L; be the vector space with fi,..., f;
as a basis. The number (3, _7) was defined as the smallest positive integer ! such
that f;f; € L;. The function {(7, §) is strictly increasing in both arguments. Let
h; = ¢(fi). Let E; = p(L;) and Cy its dual. There exists a positive integer N
such that E; :IFZ forall!> N.SoCi=0foralll>N.Let Hbethe N x n
matrix with h; on the i** row for 1 < i < N.

Definition 22. Consider the syndromes
si(y)=y-h; and s;5(y) =y - (hixhy).
Then S(y) = (545(y) 1 1 <4, < N) is the matriz of syndromes of y.

Lemma 23. Lety € IF. Let D(y) be the diagonal mairiz with y on the diag-

onal. Then ‘
S(y) = HD(y)H",

and

rank(S(y)) = wt(y).

Proof. 'The matrix of syndromes S(y) is equal to HD(y)HT, since
sij(y) =y - (i xhy) = Y wihahy,
1

where hy; is the Ith entry of h;. The rank of the diagonal matrix D(y) is equal to
the number of nonzero entries of y, which is wi(y). The rows of H generate F7,
since Ey = ]Ff;’ Thus the matrices H and HT both have full rank n. Therefore
rank(S(y)) = rank(D(y)) = wi(y).
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Definition 24. Define
Ne={(,)) €N | I(i,j)=1+1}.
Let v be the number of elements of ;.

Lemma 25.
1) Ify € Cr and I(3,5) <1, then s;;(y) = 0.
2y IfyeC\ Ciy1 and I(z,]) =141, then s,-j(y) #0.

Proof.

1) Lety € Cp. If I(3,§) < I, then fifj € Li. So hixh; = o(f;f;) is an element
of ¢(L;), which is the dual of C}. Thus s;;(y) =y - (hi *h;) = 0.
- 2) Let y € Ci\Cry1. (3, 5) =1+ 1, then f;fj € Lizy \ Ly. So fifi = pfip
modulo L; for some nonzero g € IF,. Thus h; + h; = gh;y; modulo ¢(L1). Now
Y € Cit1, 50 8141(y) # 0. Therefore s;;(y) # 0

Lemma 26. Ift =y and (i1, 1), .. -y (41, §¢) 1s an enumeration of the elements
of Ni in increasing order with respect to the lexicographic order on IN?, then
i< < and jy < --- < j1. If moreover y € Ci\ Cit1, then

_J0 ifu<vw
siujo(¥) = {not zero if u=wv.

Proof. The sequence (i1, j1),.. . (4, ji) is ordered in such a way that 4; < ... <
b and Ju < Jut1 if 4y = tuqq. I 4y = 4y 41, then j, < Ju+1, and therefore

I+ 1= l(i’u;ju) < l(iu,ju+1) = I(iu+1;ju+1) =1 + 1:

which is a contradiction. Thus the sequence 4y, .. ., %t is strictly increasing. A
similar argument shows that Jut+1 < Ju for all u < ¢.
Let y € C. If u < v, then I(iy, jy) < {4y, j») = I+ 1. Lemma 25 implies that

$iuj, (¥) = 0.
Moreover, let y & Cigy. If u = v, then {(iy,j,) = | + 1. Lemma 25 implies

that s,;,(y) # 0.
Proposition 27. Ify € C1\ Ciy1, then wt(y) > .
Proof. This follows from Lemmas 23 and 26.

Definition 28.
dORD(l) = min{up | l' 2 l},
doRD,‘p(l) = min{uzl I U >1,Cp # Czl+1}, )

If R is an affine algebra of the form IFg[X1,...,Xm]/T and ¢ is the evaluation
map evp of the set P of n points in IF’qn, ’phen we denote dorp,, by dorp,p-
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Theorem 29. The numbers dorp(l) and dorp,(I) are lower bounds for the
minimum distance of C;: :

d(C1) > dorp,»(I) > dorp(l).

Proof. The theorem is a direct consequence of Definition 28 and Proposition 27.

Remark 30. The set N; and the numbers Y and dorp depend only on the order

function p and neither on the choice of the basis {fi | i € N} nor on the choice
of the set of points. The number dp rD,p depends on the order function and the
choice of the set of points, but not on the choice of the basis.

If P CP’, then dorp,p > dorp, -

Ezample 31. Let R = IF,[X] and let p, with p(f) = deg(f), be the order function
of Example 3. Let f; = X*~1. For a primitive element « of IFoand n =g —1,
let ¢ : R — TF7 be defined by ¢(f) = (f(a®), f(al), -«.y f(@""1)). Then C; =
{c € File-o(fi) =0,1< i<} and G is a cyclic code with defining set
@ a,...,&'1. The order bound gives dorp(l) = I + 1 from which the BCH
bound may be derived.

Ezample 82. Let R = Fyelz,y)/ < 5 + ¥* +y >. The polynomial z° + y* + y
has 64 zeros in IF;. The monomials {z'y/]0 < 4,0 < j < 3} constitute a basis
for R and p(z’y/) = 4i + 55 gives a weight function on R. The table gives a list
of the functions f;, the nongaps p;, the numbers v; and the bound dogp(!) from
Theorem 29. The number of gaps is g = 6 and the largest gap is I, = 11.

{ -l 123456 7 8.9 1011 12 13 14 15'
fi Tzya?zyy® 2% a%y zy? oF 2% 23y 222 23 2°
pi 0458 91012 13 14 1516 17 18 19 20
v 22343 46 6 458 9 8 910

dorp(1)[2233 3 44 4 4 5-8 8 8 9 10
The above exarhple can be generalized to treat all the so-called Hermitian codes.

Ezample 33. Reed-Muller codes Let R = IFy[X1,...,Xm]. Let p be ‘the order
function associated to the graded lexicographic order on the monomials of R.
Let f; be the i** monomial with respect to this order. Let n = g™ . Let Py,..., P,
be an enumeration of the n points of IF7* = P. Then RM,(r,m) is by definition
the code obtained by evaluating all f € TFy[X1,...,Xm] of degree at most r
at all points of P. If fi = X7, then fiy1 = X! and {f; | i < I} is the set
of all monomials of degree at most r. So RM,(r,m) = evp(L;) = E;. Thus G
is the dual of RM,(r,m), which is equal to RMy(m(qg — 1) = r - 1,m). The
minimum distance of Reed-Muller codes is well-known. It is also a consequence
of the theory developed above, as we will now demonstrate. ' '

Proposition 34. -
1) If figa = X7, then vy = [T (v + D).

2) ' |
_ Jdeg(fi)+2if fi = X7,
dorp(l) = {deg(ﬁ) +1 oth;rwisel.
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3)Let fi=X[. Writer+1= v(g— 1)+ p with v, u € Ny such that p < g —1.
Then d(C]) = doRD,'p(l) = (p -+ 1)q”. :

Proof. : »
DI fi = X, f; = XP, then fy = X**# for some I. So {(3,7) = I. Thus if
fir1 = X7, then v is equal to the number of pairs (7, 7) such that fifi = fin,
which is equal to the number of all & € ING® such that 0 < a; < 7, for all t,
1<t < m, which is II(v +1). '

2 U fi=X], then fiy; = X[ . Soyy=r+2= deg(fi) + 2, and

v= I+ 1)> O )+ 1= deg(fupn) +12 deg(fi) + 2,

where fyy1 =[] X7, forall I > 1. Thus dopp(l) = deg(fi) + 2.
If fi is not of the form X7, then fi,41 =. ‘T for some ly > ! and r = deg(fi). So
viy=r+1landvy >r+1forall ¥ >1 Thus dorp(l) = deg(f;) + 1.

3) If fuy1 = X7, then ‘the code Cy is not equal to Cpyy if and only if
0<% <q-—1for all £. Thus

'dorp,p(I) = min{ H(% +1) | Yrv>r+land0<y, <g—1foralli }

if fi = X7. Consider f defined by f(x) = [1(2: + 1) as a real function on the
. domain {x € R™ | Y7 >r+1 and 0<z:<g¢-1forallt }. The method
of the multipliers of Lagrange gives that the minimum of f is obtained in the
corner (0,...,0,p,9~1,...,q— 1), where the last v coordinates are equal to

¢~ 1. Thus dorp,»(I) = (1 + 1)¢”. We refer to the literature for the fact that
_there are codewords in C; with this weight.

4 Concluding Remarks

Let Py, P,, ..., P,, Py be aset of IF ,-rational points on a nonsingular, irreducible
curve of genus g defines over IF,. The algebraic geometry codes Cz(D, @) and
Cr(D,G)* where D=P; + ...+ P, G = mP,, are a subclass of the codes E
and C} respectively. In this case R = Um=1 L(mPs) and p: R — Ny U {—o0}
is defined by p(f) = —vp_(f), where vp,, 1s the valuation at infinity. It then
follows from properties of valuations that this p indeed is a weight function. This
implies that the so-called one-point algebraic geometry codes can be understood
'as a special case of the codes treated in section 3. Many other classes of codes
‘can also be treated and it is indeed possible to give fast decoding algorithms as
- well. For further results on this we refer to [9]
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