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Chapter 1

Introduction and
preliminaries

Here we provide the reader with a short overview of the following chapters and with the

concepts of empirical process theory used later on.

1.1 Outline

In Einmahl and Mason (1992) generalized quantile processes are defined and stud-
ied. These processes are based on generalized quantile functions, a flexible way to
summarize properties of multivariate data or a probability distribution. Statistical
applications of the theory of generalized quantiles is the main subject of this thesis.

A special case of generalized quantile functions leads to the idea of minimum
volume sets, which inspired a new way of constructing nonparametric multivari-
ate tolerance regions, defined and studied intensely in Part I. We define tolerance
intervals as the minimum length intervals, that contain a certain number of observa-
tions. In higher dimensions the idea can be extended naturally by defining tolerance
regions as minimum volume sets from a general indexing class.

In IRk, k ≥ 1, for fixed t0 ∈ [0, 1], C ∈ IR and n ∈ IN large enough, define the
tolerance region An,t0,C as the smallest volume (Lebesgue measure) set from a class
of sets A, containing at least t0 + C√

n
observations. The class A will be specialized

to the following classes: all closed
(a) ellipsoids,
(b) hyperrectangles with axes parallel to the coordinate hyperplanes,
(c) convex sets (for k ≤ 2),

that have probability between 0 and 1. We extend these cases further. For each
fixed integer m we consider (a’) unions of m closed ellipsoids, (b’) unions of m
closed parallel hyperrectangles and (c’) unions of m closed convex sets, contained
in a fixed, large compact set (for k = 2).
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2 Introduction and preliminaries

We use the idea of minimum volume sets to construct tolerance regions for
circular and spherical data. For these cases A will be respectively

(d) the class of arcs;
(e) the class of caps (defined in Chapter 4).
As above we assume here as well that each A ∈ A has a probability between 0

and 1.
The asymptotic theory for these tolerance regions is derived under very weak

conditions. We show that these tolerance regions are asymptotically minimal with
respect to the indexing class and have desirable invariance properties. We also
investigate finite sample properties of the tolerance regions through a simulation
study and consider real data examples.

In Part II we continue with the application of the theory of generalized quantiles
while studying graphical methods for hypothesis testing. Define the generalized P-P
plot as

mn(t) := sup{Pn(A) : P0(A) ≤ t, A ∈ A}, t ∈ [0, 1],

here A is the class of all closed intervals on IR. The generalized P-P plot can
be considered as a diagnostic plot, which compares the empirical and hypothetical
distributions over the class A. Further we define the generalized empirical P-P plot
process as

Mn(t) :=
√
n
(

sup{Pn(A) : P0(A) ≤ t, A ∈ A} − t
)
, t ∈ [0, 1].

This process can be recognized as an inverse of the generalized quantile process
defined later. We derive asymptotic behavior of Mn under the null and alterna-
tive hypothesis and show that it is asymptotically distribution-free under the null
hypothesis. We also study behavior of Mn in case of contiguous alternatives. The
two-sample problem is stated and treated similarly.

The rest of this chapter reviews background material from empirical process
theory: in Section 1.2 we describe the Skorokhod construction and its applications.
Minimum volume sets are introduced in Section 1.3 and finally in Section 1.4 we
define the generalized quantile process and present results on this limiting behavior.

Notations introduced in this chapter will be used throughout this thesis.

1.2 Skorokhod construction

Let (S, d) be a metric space with some metric d and let (S,S) denote S with the
σ-algebra generated by the open balls. Next suppose that ξ, ξ1, ξ2, . . . is a sequence
of random elements defined on a probability space (Ω,F , IP ) taking values in (S,S).

Definition 1.1 We say that the sequence ξn, n ≥ 1, converges weakly to ξ and
write ξn

w→ ξ, iff ∫
fdPn →

∫
fdP, as n→∞,
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for every d-continuous, bounded, S-measurable, real-valued function f defined on
S, where P, P1, P2, . . . denote the distributions of the random elements ξ, ξ1, ξ2, . . .,
respectively.

For random elements ξ and η defined on the same probability space, we write
that L(ξ) = L(η) iff ξ and η have the same distribution. The following result which
is often used when studying limiting behavior of functionals of the sequences of
random elements, can be found for example in Shorack and Wellner (1986).

Theorem 1.1 Let ξn
w→ ξ and let ψ denote a real-valued, S-measurable function

on S that is continuous with respect to the metric d, then

ψ(ξn) w→ ψ(ξ), as n→∞.

Weak convergence of random elements tells us more about these distributions. How-
ever when we deal with random processes which have functions as sample paths, we
rather have asymptotic results in the metric space of these functions. For this pur-
pose the following Skorokhod-Dudley-Wichura representation theorem (Skorokhod
construction) is the right tool.

Theorem 1.2 Suppose ξn
w→ ξ, then there exists a probability space (Ω̃, F̃ , ĨP ) car-

rying a sequence of random elements ξ̃, ξ̃1, ξ̃2, . . . in (S,S) such that

L(ξ̃) = L(ξ), L(ξ̃n) = L(ξn), for n ≥ 1,
and

d(ξ̃n, ξ̃)→ 0 a.s., as n→∞.
(1.1)

This theorem holds more general: when random elements ξ1, ξ2, . . . are defined
on the Borel σ-algebra (see, e.g., Gaenssler (1983)). We apply this construction
several times in Chapter 6 in the following setting.

By C denote the class of all continuous functions on [0, 1]. Define the supremum
norm metric on C as

‖f − g‖ = sup
t∈[0,1]

|f(t)− g(t)|, f, g ∈ C. (1.2)

Then the space C endowed with this metric is a complete, separable metric space
and hence we can define C, the Borel σ-algebra (σ-algebra generated by the open
sets from C). Further let D be the class of all right-continuous functions on [0, 1],
with left-hand limits at each point. Then D with the supremum norm defined
in (1.2) is a complete, nonseparable metric space and the Borel σ-algebra of D
is too large for our purposes, namely uniform empirical process, defined below, is
not measurable with respect to it. To avoid measurability problems, instead of
the Borel σ-algebra we consider a smaller σ-algebra: by D denote the σ-algebra of
subsets of D generated by the open balls. Note that equipped with the Skorokhod
metric the space of all right-continuous functions defined on [0.1] that have left-hand
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limits is complete, separable metric space and its Borel σ-algebra coincides with the
σ-algebra generated by the open balls (see, e.g., Billingsley (1968)).

Consider a sequence U1, U2, . . . of i.i.d. uniform-[0, 1] random variables defined
on some probability space. For each n ≥ 1, define the uniform empirical process

Γn(t) =
1√
n

n∑
i=1

[
I[0,t](Ui)− t

]
, t ∈ [0, 1],

where IA denotes the indicator function of the set A; Γn is a random element on
(D,D). Let B denote a Brownian bridge, a Gaussian process on (C, C) with

IEB(t) = 0, and IE[B(s), B(t)] = s ∧ t− st for 0 ≤ s, t ≤ 1.

Then Γn
w→ B on (D,D). Given this weak convergence by the Skorokhod-Dudley-

Wichura representation theorem we obtain that there exists a probability space
(Ω̃, F̃ , ĨP ) carrying Γ̃1, Γ̃2, . . . and a version B̃ of B in (C, C) with

L(B̃) = L(B), L(Γ̃n) = L(Γn), for n ≥ 1,
and

sup
t∈[0,1]

|Γ̃n(t)−B̃(t)| → 0 a.s., as n→∞.
(1.3)

Note that the empirical process Γ̃n is based on a triangular array Ũn1, . . . , Ũnn of
uniform-[0, 1] random variables.

Next suppose that X1, . . . , Xn, n ≥ 1, are i.i.d. IR-valued random variables
defined on a probability space (Ω,F , IP ) having a common probability distribution
P , with corresponding distribution function F . In this case a result similar to (1.3)
can be obtained using the F−1-transformation. On (Ω̃, F̃ , ĨP ) for each n ≥ 1, define
X̃ni = F−1(Ũni), for 1 ≤ i ≤ n, and the empirical distribution function F̃n based
on these random variables

F̃n(t) =
1
n

n∑
i=1

I(−∞,t](X̃ni), t ∈ IR.

Then the empirical process α̃n(t) :=
√
n(F̃n(t) − F (t)) = Γ̃n(F (t)), t ∈ IR, and by

(1.3)
sup
t∈IR
|α̃n(t)− B̃(F (t))| → 0 a.s., n→∞. (1.4)

Finally we review the well known results on weak convergence of empirical pro-
cesses indexed by a class of sets in IRk, k ≥ 1. Let X1, . . . , Xn, n ≥ 1, be i.i.d.
IRk-valued random vectors defined on a probability space (Ω,F , IP ) with common
probability distribution P , absolutely continuous with respect to Lebesgue measure
and the corresponding distribution function F . Further let B be the σ-algebra of
Borel sets on IRk and let d0 be the pseudo-metric on B defined as

d0(B1, B2) = P (B14B2), for B1, B2 ∈ B.
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Denote by Pn the empirical distribution:

Pn(B) =
1
n

n∑
i=1

IB(Xi), B ∈ B.

For a subclass A ⊂ B define the empirical process indexed by A as

αn(A) =
√
n(Pn(A)− P (A)), n ≥ 1, A ∈ A. (1.5)

Then αn takes values in the space D0, which is constructed as follows. D0 is the
linear space of all functions f + g, where f is the element of the space C0, of all
bounded real functions on A continuous with respect to the metric d0 and g is a
finite linear combination of point masses. We suppose that the space D0 is equipped
with the supremum norm. D0 could be considered as an extension of the space D
defined above.

Definition 1.2 A class A is countably generated (CG), if there exists a countable
subclass G of A, such that for any A ∈ A there exists a sequence {Gn}n≥1 such that
IGn(x)→ IA(x), for all x ∈ IRk.

The assumption that an indexing class is CG is often made for measurability
purposes; if the class A is CG then it is empirically measurable class for P (P -EM),
that is for all n, the empirical distribution function Pn indexed by A is a measurable
mapping from (Ω,F , IP ) to (D0,D0), where D0 is the σ-algebra generated by the
open balls in D0.

Definition 1.3 A P -EM class A will be called a P -Donsker class if and only if

αn
w→ BP , in (D0,D0), n→∞,

where BP is the P -Brownian bridge, a bounded Gaussian process indexed by A with
zero expectation and covariance P (A1 ∩ A2) − P (A1)P (A2), uniformly continuous
with respect to d0.

Definition 1.4 We will call a class A ⊂ B a Vapnik-Chervonenkis (VC) class if
there exists a polynomial p such that from every set of N points from IRk, the class
picks out at most p(N) distinct subsets. Formally, if {x1, . . . , xN} ⊂ IRk, then there
are at most p(N) distinct sets of the form {x1, . . . , xN} ∩A with A ∈ A.

Dudley (1978) extended results of Donsker (1952) and Doob (1949) for a VC
class: he showed that under certain measurability conditions, a VC class is a P -
Donsker class. A similar result was obtained in Bolthausen (1978) for the class of
convex sets in IR2: when the distribution P has a bounded density with respect to
Lebesgue measure, the class A of all open (closed) convex subsets of some compact
set B ⊂ IR2 is a P -Donsker class. Then by the Skorokhod construction we obtain
that

sup
A∈A
|α̃n(A)− B̃P (A)| → 0 as as n→∞. (1.6)

We will apply this result in Chapters 3 and 4 when A is one of the following
classes, (a), (b), (c), (a’), (b’), (c’), (d) or (e).
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1.3 Minimum volume sets

Let A be a class of measurable subsets of IRk, k ≥ 1 and suppose we have n i.i.d.
random vectors taking values in IRk.

Definition 1.5 For t ∈ (0, 1], we will call an element At of the class A a minimum
volume set (MV-set) or t-minimum volume set iff it is a smallest (with respect to
Lebesgue measure) set from A that contains at least dnte-observations.

The MV-sets are used in statistics as building blocks for estimators. For this
reason consistency and the rates of convergence of these sets are often studied. In
robust statistics the MV-sets are used for obtaining estimators for the location and
scale parameters. On the line, the smallest interval containing half of the observa-
tions (MV-set with t = 1/2) is called the shortest half, or “shorth”. In Andrews
et al. (1972) the arithmetic mean of the observations in the shortest half is consid-
ered as an estimator of location. In Rousseeuw and Leroy (1988) the scale estimator
for one-dimensional samples is constructed based on the length of the “shorth”. The
length of the “shorth” was initially introduced and studied in Grübel (1988), where
under certain conditions the asymptotic normality of these estimators was proved.
In Beirlant et al. (1999) a generalized chi-square quantile plot is defined in terms
of minimum volume ellipsoids (MV-sets for class of ellipsoids). Based on this plot,
using concepts of generalized quantiles defined in the next section, authors derive
tests for multivariate normality. Further in Rousseeuw (1985) minimum volume
ellipsoids were used to construct estimates of multivariate locations and disper-
sion parameters in higher dimensions. Davies (1992) showed that the Rousseeuw’s
minimal volume estimator is consistent and asymptotically normal under certain
differentiability conditions.

Minimum volume sets are considered as well when investigating the properties of
the underlying distribution. In Sawitzki (1994) based on the length of the smallest
interval, a graphical method is proposed for studying the mass concentration of the
distribution. Under the assumptions that the underlying distribution function has
a unimodal density f , with continuous first derivative, in Andrews et al. (1972) an
estimator of the mode of f is defined as the midpoint of the t-minimum volume
interval and the asymptotic distribution of this estimator is derived, when t ∈ (0, 1)
is a fixed constant. Unimodality of the distribution can be observed as well using
the similar techniques. For this purpose the excess-mass ellipsoids were introduced
and this limit distribution was investigated in, e.g., Muller and Sawitzki (1991),
Nolan (1991), etc. Note that the excess-mass ellipsoids are generalizations of the
minimum volume ellipsoids.

When the density of the distribution function exists, level sets can be defined
and if the class A contains level sets then these can be approximated by MV-sets. In
Chapters 3 and 4 for different indexing classes we define empirical tolerance regions
as MV-sets and show under very mild assumptions that these sets are asymptotically
optimal (see Lemma 3.2 and 4.2). We show as well that for some choices of the class
A MV-sets exist and are a.s. unique. Since we use empirical process theory to
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prove our results Vapnik-Chervonenkis, Glivenko-Cantelli and Donsker classes are
natural candidates forA. Minimum volume sets for more general settings are studied
intensely in Polonik (1997).

1.4 Generalized quantile processes

The idea of generalizing the ordering of data in higher dimensions is not new. There
exist quite a few methods for ordering multidimensional data. Instead, multivariate
quantiles introduced in Einmahl and Mason (1992) offer a technique that gives more
information on properties of underlying distribution by using an indexing class of
sets and a real-valued function defined on this class.

Let A be a subset of B and let λ be a real-valued function defined on A. Then
the generalized quantile and generalized empirical quantile functions based on P , A
and λ are defined as follows:

U(t) = inf
A∈A
{λ(A) : P (A) ≥ t}, t ∈ (0, 1),

Un(t) = inf
A∈A
{λ(A) : Pn(A) ≥ t}, t ∈ (0, 1);

set U(t) = 0 for t ≤ 0, and U(t) = lims↑1 U(s) for t ≥ 1. When the function U is
differentiable with derivative g ≡ f̃ ◦ U , where f̃ is the derivative of the inverse of
U , f̃ = (U−1)′, the generalized quantile process βn is defined as:

βn(t) := g(t)
√
n(Un(t)− U(t)), t ∈ (0, 1).

In Einmahl and Mason (1992) generalized quantiles are studied under very general
conditions. This, with the possibility of various choices of A and λ, makes general-
ized quantiles a very attractive tool when dealing with multivariate data (see, e.g.,
Serfling (2000)). Observe that when A = {(−∞, x] : x ∈ IR} and λ((−∞, x]) = x,
the functions U and Un are the classical real-valued quantile and empirical quantile
functions and the process βn is the classical one-dimensional quantile process.

Under certain conditions functions U and Un have inverse and generalized inverse
functions respectively, which can be defined as:

F̃ (y) = sup
A∈A
{P (A) : λ(A) ≤ y}, y > 0,

F̃n(y) = sup
A∈A
{Pn(A) : λ(A) ≤ y}, y > 0.

These functions could also be called concentration and empirical concentration func-
tions.

Next we generalize the concept of the minimum volume sets defined in the previ-
ous section. For t ∈ [0, 1] a set At ∈ A is a minimum λ set (MV-set) if λ(At) = Un(t).
Observe that when λ is Lebesgue measure the set At is the minimum volume set
from the class {A : Pn(A) ≥ t, A ∈ A}. Since in a certain sense the generalized



8 Introduction and preliminaries

quantile function is a quantile transformation in higher dimensions we can consider
the MV-set as the concept corresponding to the quantile.

Following Einmahl and Mason (1992) we sketch assumptions that are required to
be fulfilled in order to obtain the limit theorem for the generalized quantile process;

(C1) Let λ be continuous on A with respect to d0.

(C2)− (C3) The class A is CG and P -Donsker.

(C4) For all A ∈ A, 0 < P (A) < 1.

(C5) For each t ∈ (0, 1) there exists an MV-set from A.

(C6) For every ε > 0 there exists a δ > 0, such that for 0 ≤ t1, t2 ≤ 1, with
|t1 − t2| < δ and t1-minimum volume set At1 ∈ A there exists t2-minimum
volume set At2 ∈ A with d0(At1 , At2) < ε.

(C7) The function U is strictly increasing on (0, 1) having inverse function F̃ that
has a continuous derivative f̃ .

(C8) For every ε > 0 there exists a δ > 0, such that for A ∈ A, with 0 < t − δ <
P (A) < t < 1 and λ(A) < U(t) there exists A′ ∈ A with λ(A′) = λ(A),
P (A′) = F̃ (λ(A)) and d0(A,A′) < ε.

Now we can state the following limit theorems for the generalized quantile process
and its inverse process.

Theorem 1.3 Under assumptions (C1)− (C8) for all 0 < a < b < 1,

sup
a≤t≤b

∣∣∣βn(t) + sup
P (A)=t

λ(A)=U(t)

BP (A)
∣∣∣→ 0 a.s. as n→∞. (1.7)

Theorem 1.4 Under assumptions (C1)− (C8),

sup
0≤t≤1

∣∣∣√n( sup
λ(A)≤U(t)

Pn(A)− t)− sup
P (A)=t

λ(A)=U(t)

BP (A)
∣∣∣→ 0 a.s. as n→∞. (1.8)
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Chapter 2

Brief historical review

In this chapter we introduce nonparametric tolerance intervals and regions and briefly

review the literature.

2.1 Introduction

Predicting a specific event in the future and estimating the probability of this oc-
currence using the information obtained in the past, is an occupation of different
fields of statistics. For example, when testing the life duration of a new product,
knowing the survival times of sold products, one would like to make a reasonable
statement about the warranty period of a new product. In quality control, the
produced article is often considered to be effective or defective depending whether
or not the certain characteristics of the product are within previously determined
limits tolerated by the manufacturer and the customer. After knowing the amount
of defect articles in e.g., 100 batches, manufacturer would like to predict the number
of defect products in a new batch. In medical statistics predicting the efficiency of
the particular treatment for a new patient or detecting diseased patients are of vital
importance. There are many other examples of this kind in, e.g., quality control,
reliability statistics, chemistry, etc. (see, e.g., Aitchison and Dunsmore (1975)).

For establishing the problem stated above in statistical terms, usefulness and
validity will be desirable for this statistical approach to comply. Then for a sequence
X1, . . . , Xn, n ≥ 1, of i.i.d. random variables we want to find a measurable set
T = T (X1, . . . , Xn) that satisfies certain probabilistic conditions. Validity here
might be considered as a requirement that the region T will capture the outcome
of the future experiment. Usefulness can be described by the statement on the
coverage, probability of T with respect to the future experiment. As the region
T has to establish tolerated limits for the outcome Xn+1 of future experiment, it
is called a tolerance region. In the ideal case when T will contain Xn+1 almost
surely the coverage is equal to 1. Then the distribution of the coverage will be
degenerate at 1. This confirms intuitively the following probabilistic restrictions on

11
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the distribution of the coverage. The first assumption concerns the mean of the
distribution of the coverage. It has to be reasonably high, close to one. This leads
to mean coverage tolerance regions. The second restriction is that the ‘bulk’ of
the coverage distribution is above some specific value. In other words we want to
have a guarantee that a certain portion of the coverage distribution is above this
specific value. This restriction is more a condition on the quantile of the coverage
distribution rather than on the mean and defines guaranteed coverage tolerance
regions (see, e.g., Guttman (1970), Aitchison and Dunsmore (1975)).

Although there is a vast literature on tolerance regions when the underlying
distribution belongs to a parametric family (see, e.g., Wilks (1941, 1942), Wald
(1942), Guttman (1957, 1970), Aitchison (1966), etc.), we will restrict ourselves by
considering only the nonparametric case.

Starting with Wilks (1941), many papers have appeared in the literature on non-
parametric tolerance regions. Wilks (1941) introduced distribution free tolerance
intervals based on ordered statistics. Wilk’s method was extended in Wald (1943)
for tolerance regions for two or more dependent variables, for an unknown distri-
bution. These results were extended further in Tukey (1947) for the multivariate
case. Using an ordered set of arbitrary real-valued functions, the sample space was
partitioned into statistically equivalent blocks. The multivariate tolerance regions
are then defined using these blocks. Nonparametric tolerance regions defined by the
statistically equivalent blocks were studied further in Fraser (1951, 1953) and more
recently in Ackermann (1983, 1985). A totally different approach is presented in
Chatterjee and Patra (1980), where a uniformly consistent density estimator is used
which yields asymptotically minimal tolerance regions. The monographs Aitchison
and Dunsmore (1975) and Guttman (1970) provide thorough overviews of the lit-
erature, while extensive bibliographies can be found in J́ılek (1981) and J́ılek and
Ackermann (1989).

2.2 Definitions and setup

As we noted in the previous section there are mainly two types of tolerance re-
gions considered in the literature; guaranteed coverage and mean coverage in the
terminology of Aitchison and Dunsmore (1975) or β-content and β-expectation in
the terminology of Guttman (1970). Let X1, . . . , Xn, n ≥ 1, be a sample on a
probability space (Ω,F , IP ) taking values in IRk from a common distribution P .

Definition 2.1 T (X1, . . . , Xn) is a guaranteed coverage tolerance region (β guar-
anteed coverage tolerance region with confidence level 1− α) if

IP
{
P
(
T (X1, . . . , Xn)

)
≥ β

}
≥ 1− α.

Definition 2.2 T (X1, . . . , Xn) is a mean coverage (β mean coverage ) tolerance
region if

IE
(
P
(
T (X1, . . . , Xn)

))
≥ β.



2.3 Tolerance intervals: one dimensional case 13

Here IE is the expectation on Ω defined by IP .
The probability content P

(
T (X1, . . . , Xn)

)
is called the coverage of the tolerance

region T (X1, . . . , Xn). Since T (X1, . . . , Xn) is a random set-function depending on
random variables, the coverage P

(
T (X1, . . . , Xn)

)
is a random variable as well.

Hence the guaranteed coverage tolerance region contains at least 100β percent of
the population with probability at least 1− α.

It is easy to see that a mean coverage tolerance region is actually a prediction
region. By definition, a random set A = A(X1, . . . , Xn) is a β-prediction region if
for a new observation X, independent from the sample X1, . . . , Xn, with L(X) = P ,

IP
(
X ∈ A

)
≥ β.

However
IP
(
X ∈ A

)
= IEIP

(
X ∈ A : X1, . . . , Xn

)
= IEP (A).

2.3 Tolerance intervals: one dimensional case

Classical nonparametric tolerance intervals were introduced in Wilks (1941), one of
the first important papers on tolerance regions. Wilks (1941) defined distribution-
free tolerance intervals and investigated the problem of determining the sample
size needed to obtain these tolerance intervals, when the parameters β and α are
previously determined.

Suppose that X is a random variable defined on (Ω,F , IP ) taking values in IR,
with an unknown density function f . Let X1, . . . , Xn, n ≥ 1, be i.i.d. random
variables with L(Xi) = L(X), i ≥ 1, and let X(1), . . . , X(n) be the order statistics.
Define a tolerance interval as

T (X1, . . . , Xn) = [X(r), X(n−r+1)],

where r is a positive integer less than (n+ 1)/2 and its value is determined by the
values of α and β. Wilks (1941) showed that the coverage of the tolerance region

P
(
T (X1, . . . , Xn)

)
=
∫ X(n−r+1)

X(r)

f(x)dx

has the Beta distribution I(n − 2r + 1, 2r). Let F be the distribution function of
X and U(i) = F (X(i)), 1 ≤ i ≤ n, be the order statistics of n i.i.d. uniform-[0, 1]
random variables, then

IP
{
P
(
T (X1, . . . , Xn)

)
≥ β

}
= IP

{
F (X(n−r+1))− F (X(r)) ≥ β

}
= IP

{
U(n−r+1) − U(r) ≥ β

}
= IP

{
U(n−2r+1) ≥ β

}
=

n!
(n− 2r)!(2r − 1)!

∫ ∞
β

sn−2r(1− s)2r−1ds.
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Obviously the distribution of the coverage P (T ) does not depend on F and hence
the tolerance interval is distribution-free. Observe that tolerance intervals can also
be defined as

T (X1, . . . , Xn) = [X(r1), X(n−r2+1)], r1 + r2 = 2r,

with truncation that is not necessarily symmetric as above. Note that the coverage
of [X(r1), X(r2)], have the same Beta distribution. However these intervals are
most efficient when knowing the shape of the density. In Chapter 3 Tables 3.2
and 3.3 demonstrate that tolerance intervals for asymmetric densities obtained with
the classical method are longer then the ones introduced in Chapter 3. It is also
important to note that in the classical case it is decided beforehand which order
statistics will define the interval.

2.4 Nonparametric tolerance regions

Since the classical procedure is based on order statistics it was troublesome to extend
it to higher dimensions. To overcome this problem “statistically equivalent blocks”
and ordering functions were introduced. Generalizing the results of Wilks (1941)
and Wald (1943), multivariate tolerance regions were constructed in Tukey (1947,
1948) for continuous and discontinuous distributions, respectively. Before describing
the method presented in Tukey (1947), we review the one-dimensional case from a
different perspective. Using order statistics in the setting of the previous section,
divide IR into n+ 1 blocks: (−∞, X(1)], (X(1), X(2)], . . . , (X(n),∞). Then as noted
above the sum of `, 1 ≤ ` ≤ n, coverages of these blocks has the Beta distribution
I(n− `+ 1, `). Note also that

IE
(
P (X(i), X(i+1)]

)
=

1
n+ 1

, 0 ≤ i ≤ n, (2.1)

with X(0) := −∞ and X(n+1) := ∞. This explains why these blocks were called
statistically equivalent.

To generalize this procedure to higher dimensions, Tukey had to introduce an
ordering in IRk. For an i.i.d. sample X1, . . . , Xn taking values in IRk let ϕ1, . . . , ϕn
be measurable (deterministic) real-valued functions of X1. Using these ordering
functions IRk is divided into disjoint random sets (the statistically equivalent blocks)
S1, . . . , Sn+1, with coverages R1, . . . , Rn+1, (Ri = P (Si), i = 1, . . . , n+ 1).

The following definition of statistically equivalent blocks is rather complex, there-
fore it is followed by an example (see also Figure 2.1). By definition, at any stage
i, 1 ≤ i ≤ n, the ordering function ϕi may depend only on the values of previously
used functions and on the observations defining these functions:

ϕi = ϕi(x : x
(j)
(1), j = 1, . . . , i− 1),

where x(j)
(1) is the observation that gives the smallest value of ϕj . The i-th statistically
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equivalent block is defined as

Si =
{
x : ϕi(x : x

(j)
(1), j = 1, . . . , i− 1) < V

(i)
(1)

}
⊂ Si−1,

where V (i)
j = ϕi(Xj) and V

(i)
(j) are order statistics of V (i)

j for 1 ≤ j ≤ n, S denotes

the closure of the set S and the observation x(j)
(1) may not be used defining subsequent

blocks. Tukey (1947) showed that

IERi =
1

n+ 1
, i = 1, . . . , n+ 1

and that the sum of ` coverages has the Beta distribution I(n− `+ 1, `), hence

IP{
∑̀
i=1

Ri < β} = Iβ(n− `+ 1, `), (2.2)

where

Iβ(n,m) =
Γ(n+m)
Γ(n)Γ(m)

∫ β

0

xn−1(1− x)m−1dx

is the incomplete beta function, with Γ denoting the gamma function. Note that the
method presented in Tukey (1947) uses a fixed sequence of the ordering functions.
In Fraser (1953) this method was generalized for randomly chosen sequences of
ordering functions and it was proved that the results in Tukey (1947) remain true
in this case.

Let us now illustrate this by constructing a tolerance region based on the statis-
tically equivalent blocks (see Figure 2.1). Suppose we have n = 20 observations(

(X1, Y1), (X2, Y2), . . . , (X20, Y20)
)

from a continuous, bivariate distribution and suppose that r = 7 block should be
cut off. (We take these values of n and r for convenience.) Let the sequence of the
ordering functions be as follows:

ϕ1

(
(x, y)

)
= x, ϕ2

(
(x, y)

)
= y, ϕ3

(
(x, y)

)
= −x, ϕ4

(
(x, y)

)
= −y,

ϕ5

(
(x, y)

)
= x− y, ϕ6

(
(x, y)

)
= −x+ y, ϕ7

(
(x, y)

)
= x+ y.

Then
S1 =

{
(x, y) : x < X(1)

}
,

where X(1) is the smallest value of the first coordinates of the observations. The
second block is

S2 =
{

(x, y) ∈ S1 : y < Y(1)

}
,

since
V

(2)
(1) = min

i
ϕ2((Xi, Yi)) = min

i
Yi = Y(1).
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Figure 2.1: Statistically equivalent blocks.

The following five blocks are defined similarly,

S3 =
{

(x, y) ∈ ∩2
i=1Si : −x < min

i
−Xi

}
=
{

(x, y) ∈ ∩2
i=1Si : x > max

i
Xi

}
,

S4 =
{

(x, y) ∈ ∩3
i=1Si : −y < min

i
−Yi

}
=
{

(x, y) ∈ ∩3
i=1Si : y > max

i
Yi
}
,

S5 =
{

(x, y) ∈ ∩4
i=1Si : x− y < min

i
(Xi − Yi)

}
,

S6 =
{

(x, y) ∈ ∩5
i=1Si : −x+ y < min

i
(−Xi + Yi)

}
and

S7 =
{

(x, y) ∈ ∩6
i=1Si : x+ y < min

i
(Xi + Yi)

}
.

The procedure ends when seven blocks are cut off. The obtained tolerance region
T
(
(X1, Y1), . . . , (X20, Y20)

)
is shaded in Figure 2.1.

Note that in practice, nonparametric tolerance regions should be constructed
for at least n ≥ 100 observations, as for 1 − α and β, values close to one should
be chosen. Generally for these cases r is small. For example, when n = 100 for
a β = 0.9 guaranteed content tolerance region with confidence level 1 − α = 0.95,
from Definition 2.1 and (2.2) we obtain

0.95 = IP
{ n−r+1∑

i=1

Ri ≥ 0.9
}

= 1− I0.9(r, 100− r + 1) = I0.1(100− r + 1, r),
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that r is at most 5. In the example above, for n = 20 and r = 7 for the guaranteed
tolerance region with a confidence level of 1− α = 0.94 we obtain that β = 0.5.

Clearly the choice of ordering functions is arbitrary so that by taking different
sequences of these functions one can obtain totally different regions with different
shapes. Moreover these tolerance regions are not necessarily asymptotically mini-
mal, as defined below. Chatterjee and Patra (1980) defined the concept of asymp-
totically minimal tolerance regions for the multivariate case and constructed a se-
quence of tolerance regions that satisfies this criteria. For n ≥ 1 let Tn(X1, . . . , Xn)
be β-guaranteed coverage tolerance region with confidence level αn, for i.i.d. ran-
dom variables X1, . . . , Xn taking values in IRk, having an unknown density f . By
assumption αn may depend on f .

Definition 2.3 If lim infn→∞ αn ≥ α for some α ∈ (0, 1] and any f then Tn rep-
resents a sequence of β guaranteed coverage tolerance regions with asymptotic con-
fidence level α.

Definition 2.4 Assuming that the density f has no flat parts, a sequence of β-
guaranteed coverage tolerance regions Tn with asymptotic confidence level α is called
asymptotically minimal (optimal) if

λ(Tn4Gf,β) IP−→ 0 n→∞,

where λ denotes Lebesgue measure,

Gf,β = {x : f(x) > γβ}

is the γβ-level set of f and γβ is this (1− β) quantile.

Under certain conditions Chatterjee and Patra (1980) showed that for uniformly
consistent estimators fn of the density f , there exists a sequence γn,β such that the
sequence of β-guaranteed coverage tolerance regions

Tn = {x : fn(x) > γn,β},
with asymptotic confidence level α is asymptotically minimal, when γn,β converge
in probability to γβ .

2.5 Directional tolerance regions

Although there is a huge literature on directional data and tolerance regions in
general, not much seems to be known on tolerance regions for directional data.
Based on the idea of statistically equivalent blocks Ackermann (1985) constructed
tolerance regions for circular data.

Suppose θ1, . . . , θn, 0 ≤ θi < 2π, n ≥ 1 are i.i.d. circular data measured in
angles. Then each θi can be identified with a point Zi on the unit circle. Define
statistically equivalent blocks as the arcs

Si = (Z(i−1), Z(i)], i = 1, . . . , n,
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where the Z(i)’s are points on the circle that correspond to the order statistics θ(i)

of the θi, i = 1, . . . , n and Z(0) = Z(n). Here and below everywhere a half open arc
(A,B] is defined to be the set of all points on the circle that lie between A and B
taking anti-clockwise direction and including the point B. Trivially the closed arc
[A,B] = {A} ∪ (A,B].

Based on Tukey (1947) it is shown in Ackermann (1985) that the sum of r
coverages,

∑r
i=1 P{Si} has a Beta distribution. A median direction µ, 0 ≤ µ ≤ 2π

for the circular density f is defined by the equation∫ µ+π

µ

f(θ)dθ =
∫ µ+2π

µ+π

f(θ)dθ =
1
2
,

where f(µ) > f(µ + π) (see, e.g., Mardia (1972)). Suppose n is even. Set µ̂ to
be an estimator of the median direction and let θ(i−1) < µ̂ ≤ θ(i). Thus the block
Si = (Z(i−1), Z(i)] contains the point on the circle corresponding to the estimator
of the median direction µ̂. Then the tolerance region can be defined as a union of r
adjacent blocks

S = (Z((i−1−r2+n)(modn)), Z((i+r1)(modn))],

where r1 + r2 + 1 = r ≤ n. Suppose now that n is odd. Set θ(i) to be the estimated
median direction, then

S = (Z((i−r2+n)(modn)), Z((i+r1)(modn))]

is the tolerance region and r1 + r2 = r ≤ n. However the exact or asymptotic
behavior of the tolerance regions has not been studied in this setting, but only when
the true median direction is known, which is typically not the case in practice.



Chapter 3

Small nonparametric
tolerance regions

This chapter is an extended version of Di Bucchianico, Einmahl, and Mushkudiani
(2000).

In this chapter a new, natural way of constructing nonparametric multivariate tolerance

regions is presented. In the spirit of the shorth (see, e.g., Rousseeuw and Leroy (1988),

Grübel (1988)), tolerance intervals are defined as shortest intervals, that contain a certain

number of observations. This idea can be extended in a natural way to higher dimensions,

by replacing the class of intervals by a general class of indexing sets, which specializes to the

classes of ellipsoids, hyperrectangles or convex sets and the classes of finite unions of these

sets. Furthermore we show that the procedure presented here is asymptotically correct

and the tolerance regions have invariance properties. We also illustrate our approach

by computing tolerance regions for leukemia diagnosis from bi- and trivariate observations

from blood counts and by investigating the finite sample properties of the tolerance regions

through a simulation study.

3.1 Notations and preliminary results

Below we specify our setup and notation. We also state some preliminary results
for convenient reference later on. Let X1, . . . , Xn, n ≥ 1, be i.i.d. IRk-valued ran-
dom vectors defined on a probability space (Ω,F , IP ) with a common probability
distribution P , absolutely continuous with respect to Lebesgue measure, and corre-
sponding distribution function F . Let B be the σ-algebra of Borel sets on IRk and
let d0 be the pseudo-metric on B defined in Chapter 1. Denote by Pn the empirical
distribution:

Pn(B) =
1
n

n∑
i=1

IB(Xi), B ∈ B.

19
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Figure 3.1: Uniqueness of minimum area convex set.

As we mentioned already, tolerance regions defined here are the MV-sets (see
Section 1.3). Below we consider several classes of our interest and show that the
MV-sets from these classes exist and are a.s. unique.

Let E be the class of all closed ellipsoids in IRk. Fix t0 ∈ (0, 1) and C ∈ IR. Set
pn = t0 + C√

n
. For n large enough, we need existence and uniqueness of an ellipsoid

An,t0,C ∈ E of minimum volume such that Pn(An,t0,C) ≥ pn, almost surely. In
other words, An,t0,C should contain at least dnpne observations. In the notation of
Section 1.3 An,t0,C = At0+ C√

n
. The sets An,t0,C are our candidate tolerance regions.

The existence and a.s. uniqueness of such an ellipsoid An,t0,C was proved in Davies
(1992). There are between k + 1 and k(k + 3)/2 points on the boundary of An,t0,C
in dimension k (see Silverman and Titterington (1980)) and hence,

t0 +
C√
n
≤ Pn(An,t0,C) < t0 +

C√
n

+
k(k + 3)

2n
a.s. . (3.1)

However with some more effort it can be shown that a minimum volume ellipsoid that
contains at least m out of n points, contains exactly m points, a.s. (see Lemma 3.3).
This result seems not to be present in the literature. It yields that

Pn(An,t0,C) =
1
n

⌈
n

(
t0 +

C√
n

)⌉
a.s. . (3.2)

Let R be the class of all closed hyperrectangles with faces parallel to the coordinate
hyperplanes. It is easy to adapt the proof of Davies (1992) to R. Hence, there exists
an a.s. unique smallest volume hyperrectangle An,t0,C ∈ R, with Pn(An,t0,C) ≥ pn.
Since with probability one, all hyperplanes parallel to the coordinate axes contain
at most one observation, the equality in (3.2) holds here too.

Consider now the existence and a.s. uniqueness problem of An,t0,C for C, the
class of all closed convex sets in IR2. It is a well-known fact that the convex hull of
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X1

X3X2

Figure 3.2: Illustration to Remark 1.

X = {X1, . . . , Xn} is a bounded polyhedral set in IR2 (i.e., a bounded set which is the
intersection of finitely many half-planes, see e.g., Webster (1994), Theorem 3.2.5),
and thus a polygon. Since the convex hull of X is the smallest (with respect to set
inclusion) convex set containing X , it follows that the closed convex hull of X is the
a.s. unique smallest area closed convex set containing X . As the number of subsets
of X is finite, the existence of a smallest area convex subset containing dnpne points
from X is assured. Hence, it is left to show that with probability 1, any two different
convex hulls of subsets of the sample will have different areas. Suppose we have two
sets of vertices {Xi1 , . . . , Xi`} and {Xj1 , . . . , Xjk}, 3 ≤ `, k ≤ n, with convex hulls
A1 and A2, respectively. Without loss of generality we assume that X1 is a vertex
of A1, but not of A2. If we condition on {X2, . . . , Xn}, then we have to show that
for any positive v

IP{X1 : V (A1) = v | X2, . . . , Xn} = 0, (3.3)

where V (A1) denotes the area of A1. Since A1 is convex, X1 lies in the interior of
the triangle Xi1OXi2 (see Figure 3.1), for any neighboring vertices Xi1 and Xi2 .
As the area of A1 is fixed, X1 can be only on some interval parallel to Xi1Xi2 .
(Actually, we assumed 5 ≤ ` ≤ n, but a similar argument works for ` = 3 or ` = 4.)
Hence, we see that (3.3) holds. Finally, it is obvious that (3.2) holds for C.

Remark 3.1 Observe that unlike for the classes above, the minimum volume prob-
lem has no unique solution for the case of all hyperrectangles in IRk. Consider a
random sample of size n in, e.g., IR2. Then with positive probability, there are 3
sample points that form an acute triangle such that the remaining n − 3 sample
points are in the interior of that triangle. In this case, there are 3 minimal area
rectangles that contain the sample (see Figure 3.2).

Here are some more definitions and results. By the Blaschke Selection Principle
(see e.g. Webster (1994), Theorem 2.7.10), every sequence of non-empty compact
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convex sets contained in a compact subset of IRk has a subsequence that converges
in the Hausdorff metric to some non-empty compact convex set in IRk. It is easy to
show that the Blaschke Selection Principle holds as well for the sequence of finite
unions of compact convex sets. By Shephard and Webster (1965), the Hausdorff
and the symmetric difference metric d(A,B) := V (A4B), where V denotes volume
(Lebesgue measure), are equivalent on the class of all compact convex subsets of
IRk with non-empty interior. Hence, we have convergence in the Hausdorff metric
if and only if we have convergence in the symmetric difference metric d.

In the setting of Section 1.4 when λ is Lebesgue measure V we have for an
MV-set An,t0,C that

An,t0,C = argmin{V (A) : Pn(A) ≥ t0 +
C√
n
,A ∈ A}

and hence

λ(An,t0,C) = V (An,t0,C) = Un(t0 +
C√
n

),

where Un in the generalized empirical quantile function. In this chapter we consider
the generalized quantile functions only in the case when λ is Lebesgue measure.
Then for any class A ⊂ B.

3.2 Limit theorems for small tolerance regions

Here we present the asymptotic results on small tolerance regions. Recall the nota-
tion of the previous section. Let A be a class of Borel-measurable subsets of IRk.
(We assume that A is such that no measurability problems occur.)

Theorem 3.1 Fix t0 ∈ (0, 1) and let C ∈ IR. Assume the following conditions are
fulfilled:

C1) A is P -Donsker class,
C2) There exists an n0 ∈ IN , such that for all n ≥ n0, with probability 1, there exists
a unique set An,t0,C ∈ A with minimum volume and

Pn(An,t0,C) ≥ t0 +
C√
n
,

C3) There exists a sequence Cn ↓ C, such that for all n ≥ 1,

Pn(An,t0,C) ≤ t0 +
Cn√
n

a.s. ,

C4) At0 , the set in A with minimum volume and P (At0) = t0, exists, is unique, and

d(An,t0,C , At0) IP−→ 0 (n→∞).
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Then we have
√
n(t0 − P (An,t0,C)) + C

d−→ Z
√
t0(1− t0) (n→∞), (3.4)

where Z is a standard normal random variable.

Proof For each n ≥ 1, let αn be the empirical process indexed by A. Since A is a
P -Donsker class by the Skorokhod construction, in the notation of Chapter 1, we
obtain that there exists a probability space (Ω̃, F̃ , ĨP ) carrying a version B̃P of BP
and versions α̃n of αn, for all n ∈ IN , such that

sup
A∈A
|α̃n(A)− B̃P (A)| → 0 a.s., n→∞. (3.5)

Henceforth, we will drop the tildes from the notation, for notational convenience.
By C2) we obtain

√
n(Pn(An,t0,C)− P (An,t0,C))−BP (An,t0,C)→ 0 a.s., n→∞. (3.6)

Combining this with C3) yields
√
n(t0 − P (An,t0,C)) + C −BP (An,t0,C)→ 0 a.s., n→∞. (3.7)

From C4) we have that d0(An,t0,C , At0) IP−→ 0 and hence, since BP is continuous
with respect to d0,

BP (An,t0,C) IP−→ BP (At0) n→∞. (3.8)

From (3.7) and (3.8) we now obtain that

√
n(t0 − P (An,t0,C)) + C

IP−→ BP (At0) n→∞.

Observing that
BP (At0) d= Z

√
t0(1− t0),

completes the proof. �

The following theorems, which are corollaries to Theorem 3.1, are actually main
results about small tolerance regions. In fact, we will show that the sets An,t0,C , for
suitable C, are asymptotic tolerance regions. Theorem 3.2 gives the result for guar-
anteed coverage tolerance regions, whereas Theorem 3.3 deals with mean coverage
tolerance (or prediction) regions. We show that the guaranteed coverage tolerance
regions have indeed asymptotically the correct confidence level, whereas the mean
coverage tolerance regions have the correct mean coverage with error rate o(1/

√
n).

These results are new and of interest in any finite dimension, including dimension
one. The numbers t0 and 1− α denote the (desired) coverage and confidence level,
respectively.
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Theorem 3.2 Fix α ∈ (0, 1) and let C = C(α) be the (1 − α)-th quantile of the
distribution of Z

√
t0(1− t0). Under the conditions of Theorem 3.1 we have

lim
n→∞

IP{P (An,t0,C) ≥ t0} = 1− α. (3.9)

Proof By Theorem 3.1, for all x ∈ IR, we have

IP{
√
n(t0 − P (An,t0,C)) + C ≤ x} → IP{Z

√
t0(1− t0) ≤ x}, n→∞.

Hence, taking x = C, we obtain

lim
n→∞

IP{P (An,t0,C) ≥ t0} = IP{Z
√
t0(1− t0) ≤ C} = 1− α.

�

Theorem 3.3 If the conditions of Theorem 3.1 hold and
√
n(t0 − P (An,t0,0)) is

uniformly integrable, then

IEP (An,t0,0) = t0 + o

(
1√
n

)
, n→∞. (3.10)

Note that IEP (An,t0,C)→ t0, n→∞, for every C ∈ IR.

Proof Theorem 3.1 with C = 0 yields

√
n(t0 − P (An,t0,0)) d−→ Z

√
t0(1− t0), n→∞. (3.11)

By assumption
√
n(t0 − P (An,t0,0)) is uniformly integrable, hence

IE
√
n(t0 − P (An,t0,0)) −→ IE(Z

√
t0(1− t0)) = 0, n→∞,

which is the statement of the theorem. �

In the next theorem, we will specialize our general results to three natural and
relevant indexing classes, which satisfy the conditions of the above theorems. From
the point of view of applications, this is the main result of this chapter. In the
sequel, A will be one of the following classes: all closed

(a) ellipsoids,

(b) hyperrectangles with faces parallel to the coordinate hyperplanes,

(c) convex sets (for k = 2)
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that have probability strictly between 0 and 1.
These classes of sets are very natural for constructing nonparametric tolerance

regions. The class of ellipsoids in (a) is a good choice, since elliptically contoured dis-
tributions are considered to be natural and important in probability and statistics.
The multivariate normal distribution is of course a prominent example. One should
choose the parallel hyperrectangles of (b) as indexing class, if it is desirable, like in
many applications, to have a multivariate tolerance region that can be decomposed
into (easily interpretable) tolerance intervals for the individual components of the
random vectors. The convex sets of (c), which reduce to tolerance regions that are
convex polygons, are very natural, since when taking the convex hull of a finite set
of data points, one hardly feels the restriction due to the underlying indexing class.

Theorem 3.4 Fix t0 ∈ (0, 1). If the density f of the distribution function F is
positive on some connected, open set S ⊂ IRk and f ≡ 0 on IRk\S, and if At0 , the
set in A with minimum volume and P (At0) = t0, exists and is unique, then we have
for the cases (a) and (b) that (3.4),(3.9) and (3.10) hold.
If k = 2 and, in addition, f is bounded, then (3.4),(3.9) and (3.10) also hold for
case (c).

We next present two lemmas. Lemma 3.2 is crucial for the proof of Theorem 3.4,
whereas Lemma 3.1 is needed for the proof of Lemma 3.2. Until further notice we
shall, for case (c), tacitly restrict ourselves to those closed convex sets that are
contained in some large circle B (which will be specified later on). In the proof of
Theorem 3.4 we will show that this restriction can be removed. For Lemma 3.1,
recall the functions U and F̃ , defined in Section 1.4, when λ is Lebesgue measure.

Lemma 3.1 Under the assumptions of Theorem 3.4 we have for the cases (a),
(b) and (c), that the functions U and F̃ are inverses of each other. Hence, U is
continuous on (0, 1), F̃ is continuous on IR+, and they are both strictly increasing.

Proof We first prove the continuity of U . Note that absolute continuity of P implies
that

U(t) = inf
A∈A
{V (A) : P (A) > t}, for any t ∈ (0, 1),

and
F̃ (y) = sup

A∈A
{P (A) : V (A) < y}, for any y ∈ IR+.

Let us now take an arbitrary decreasing sequence tm ↓ t, where tm, t ∈ (0, 1).
Consider the sequence of sets

Dm = {V (A) : P (A) > tm, A ∈ A}.

It is easy to see that this is a nested sequence of sets, with limit set
∞⋃
m=1

Dm = {V (A) : P (A) > t}
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and hence,

lim
m→∞

U(tm) = lim
m→∞

inf Dm = inf
A∈A
{V (A) : P (A) > t} = U(t).

In case tm ↑ t the proof is analogous. Similar arguments yield continuity of F̃ .
Note that absolute continuity of P also implies that

U(t) = inf
A∈A
{V (A) : P (A) = t}, for any t ∈ (0, 1), (3.12)

and
F̃ (y) = sup

A∈A
{P (A) : V (A) = y}, for any y ∈ IR+. (3.13)

It follows from (3.12) and (3.13) that U is the generalized inverse of F̃ , i.e.

U(t) = inf{y : F̃ (y) ≥ t} for any t ∈ (0, 1).

Hence, clearly both U and F̃ are strictly increasing and continuous. Thus we
conclude that they are inverses of each other. �

Note that an in-probability-version of the second lemma, with k = 1 and C = 0, can
be found in Beirlant and Einmahl (1995), Corollary 1; see also Einmahl and Mason
(1992).

Lemma 3.2 Under the assumptions of Theorem 3.4 we have for the cases (a), (b)
and (c) that with probability one

d(An,t0,C , At0)→ 0,

and hence d0(An,t0,C , At0)→ 0 (n→∞).

Proof Since the classes (a), (b) and (c) are P -Donsker (see Section 1.2), (3.5) holds
for all three cases. Since BP is bounded, this yields

sup
A∈A
|Pn(A)− P (A)| → 0 a.s., n→∞. (3.14)

It now trivially follows from (3.14) and the definitions of F̃n and F̃ that

sup
y>0
|F̃n(y)− F̃ (y)| → 0 a.s., n→∞. (3.15)

Let ` < 1 be arbitrary. Since U(t) is continuous, increasing and nonnegative on
(0, 1) by Lemma 3.1, it is uniformly continuous on (0, `], and thus

sup
t∈(0,`]

∣∣∣∣U (t+
C√
n

)
− U(t)

∣∣∣∣→ 0, n→∞. (3.16)
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We now want to prove that

sup
t∈(0,`]

|Un(t)− U(t)| → 0, n→∞. (3.17)

For any ε > 0 we have from (3.15) that for n large enough

F̃ (y)− ε ≤ F̃n(y) < F̃ (y) + ε for all y > 0 a.s. .

By Lemma 3.1, U is the generalized inverse of F̃ . It is easy to see that Un and F̃n
are generalized inverses. Hence, we obtain from the above inequalities that

U(t− ε) ≤ Un(t) ≤ U(t+ ε) for all t ∈ (0, 1) a.s. .

Since U is uniformly continuous, there exists δ > 0 such that

U(t)− δ ≤ U(t− ε) ≤ Un(t) ≤ U(t+ ε) ≤ U(t) + δ for any t ∈ (0, `] a.s.,

which immediately yields (3.17). From (3.16) and (3.17) it follows that

sup
t∈(0,`]

∣∣∣∣Un(t+
C√
n

)
− U(t)

∣∣∣∣→ 0 a.s., n→∞. (3.18)

Now let us return to the sets given in the statement of the lemma:

• An,t0,C , the a.s. unique MV-set from A with Pn(An,t0,C) ≥ t0 + C√
n

(and
hence, V (An,t0,C) = Un(t0 + C√

n
)),

• At0 , the unique smallest element of A with P (At0) = t0 (and V (At0) = U(t0)).

By (3.2),
Pn(An,t0,C)→ t0 a.s., n→∞,

and thus by (3.14)
P (An,t0,C)→ t0, a.s., n→∞.

From (3.18) we have
lim
n→∞

V (An,t0,C) = V (At0) a.s. .

To apply the Blaschke Selection Principle to the sequence {An,t0,C}n≥1 we have
to show that it is uniformly bounded a.s., i.e. for each ω ∈ Ω0, with IP (Ω0) = 1, there
exists a compact set, that contains all An,t0,C(ω)’s. Suppose the contrary, that is,
for any ω ∈ Ω′, with IP (Ω′) > 0 we have that there exists a subsequence n` := n`(ω)
such that for all ` ≥ 1, An`,t0,C has an interior point an` with d(an` , O) → ∞,
as ` → ∞, where O denotes the origin. Next since P (An,t0,C) → t0, we will
have that for all ` large enough An`,t0,C has an interior point bn` , such that bn` ∈
An`,t0,C∩BO,r, where BO,r is a closed ball with the center at the origin O, the radius
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r and P (BO,r) > 1 − t0. Thus for ` large enough we have that an` , bn` ∈ An`,t0,C ,
bn` ∈ BO,r and as `→∞, d(an` , O)→∞, which yields

lim
`→∞

diam (An`,t0,C) =∞, (3.19)

where for any measurable set A, diam (A) := sup
x,y∈A

d(x, y). Let us now recall that

An,t0,C is an ellipsoid or a parallel hyperrectangle and

lim
n→∞

V (An,t0,C) = V (At0),

then by (3.19)
lim
`→∞

V (An`,t0,C ∩BO,r) = 0

and consequently lim
`→∞

P (An`,t0,C ∩BO,r) = 0. Hence we obtain that

lim
`→∞

P (An`,t0,C) = lim
`→∞

P (An`,t0,C ∩BO,r) + lim
`→∞

P (An`,t0,C ∩BcO,r) < t0

which is impossible.
Then by the Blaschke Selection Principle the sequence {An,t0,C}n≥1 has at least

one limit set. So there exists a subsequence {Ank,t0,C}k≥1 and a non-empty closed
convex set A∗ (an element of the indexing class (a), (b) or (c), respectively), such
that

lim
k→∞

V (Ank,t0,C 4A∗) = 0 a.s. .

Hence, V (Ank,t0,C) → V (A∗), and thus V (A∗) = U(t0) a.s.. Using that P is abso-
lutely continuous with respect to Lebesgue measure, it is easy to see that P (A∗) = t0.

So we have for the limit set A∗ that

V (A∗) = U(t0) and P (A∗) = t0 a.s.,

but by assumption there exists a unique set At0 satisfying these two equations.
Hence, any limit set A∗ of the sequence {An,t0,C}n≥1 is equal to At0 , and thus the
sequence itself converges to At0 (a.s.). �

Proof of Theorem 3.4 We will check the conditions C1)-C4) of Theorem 3.1. We
first prove (3.4) and (3.9), for the cases (a), (b) and the restricted case (c). As noted
in the proof of Lemma 3.2 we have that C1) holds. In Section 3.1 it is shown that
C2) holds as well; C3) follows from (3.2). The first part of C4) is an assumption of
Theorem 3.4; Lemma 3.2 yields the second part of condition C4). This completes
the proof of (3.4) and (3.9) for these cases.

Now consider the unrestricted case (c). We will prove (3.4) and (3.9). Let us
first construct a proper circle B, as used in the definition of the restricted class. Let
Bt0 be a circle with radius r, say, such that At0 ⊂ Bt0 and P (Bt0) > t0 ∨ (1 − t0).
For sake of notation, any space Vγ between two parallel lines in IR2 at distance γ is
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said to be a γ-strip. Note that for a probability measure P with density f we have
that

lim
γ→0

sup
Vγ

P (Vγ) = 0, (3.20)

where each supremum runs over all γ-strips. Therefore there exists a γ0 satisfying
the inequality

sup
Vγ0

P (Vγ0) ≤ 1
2 t0, (3.21)

where the supremum runs over all γ0-strips. Now choose B to be a circle with the
same center as Bt0 , but with radius R > 8

γ0
U(t0) + r, where γ0 satisfies (3.21).

Next we show that An,t0,C = A∗n,t0,C for large n a.s., where A∗n,t0,C is defined
similarly as An,t0,C but for the restricted class. In other words we have to show that
for n large enough An,t0,C ⊂ B almost surely. Observe that

lim
n→∞

Pn(An,t0,C) = t0 a.s.,

lim
n→∞

Pn(Bct0) = P (Bct0) < t0 ∧ (1− t0) a.s. .

So, if there exists with positive probability a subsequence {Ank,t0,C}k≥1 such that
Ank,t0,C 6⊂ B for all k, then Ank,t0,C contains an element of Bt0 as well as an element
of Bc eventually. Because the γ0-strips form a VC class, we have that

lim
n→∞

sup
Vγ0

Pn(Vγ0) ≤ 1
2 t0 a.s. .

Hence, Ank,t0,C eventually contains a triangle with area γ0
4 (R− r) > 2U(t0). How-

ever, this can not happen because of the Glivenko-Cantelli theorem. This proves
(3.4) and hence (3.9).

Finally we prove (3.10) for all three cases. It suffices to show that
√
n(t0 −

P (An,t0,0)) is uniformly integrable. It follows from (3.2) that∣∣√n(t0 − P (An,t0,0))
∣∣

≤
∣∣√n(Pn(An,t0,0)− P (An,t0,0))

∣∣+
∣∣√n(t0 − Pn(An,t0,0))

∣∣
≤ sup
A∈A
|
√
n(Pn(A)− P (A))|+ 1 a.s..

Therefore it suffices to establish uniform integrability of

Yn := sup
A∈A
|
√
n(Pn(A)− P (A))|.

Note that if Y is a non-negative random variable then

IEY =
∫ ∞

0

IP{Y > y}dy.

Hence,

IEY I[Y >a] =
∫ ∞

0

IP{Y I[Y >a] > y}dy = aIP{Y > a}+
∫ ∞
a

IP{Y > y}dy.
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Moreover, for the cases (a) and (b) (as then A is a VC class), using Theorem 2.11
of Alexander (1984), we have for λ ≥ 8 and C1, C2 ∈ (0,∞) that

IP{ sup
A∈A
|
√
n(Pn(A)− P (A))| > λ} ≤ C1λ

C2exp(−2λ2). (3.22)

For large enough λ, the right-hand side of (3.22) is less than exp(−λ2). Let ε > 0.
Then for a large enough:

IEYnI[Yn>a] = aIP{Yn > a}+
∫ ∞
a

IP{Yn > y}dy ≤ ae−a
2

+
∫ ∞
a

e−y
2
dy < ε.

In case (c), using Corollary 2.4 and Example 3 (p. 1045) of Alexander (1984) with
ψ = ψ3, we obtain the uniform integrability similarly as above; see also van der
Vaart (1996), p. 2134. �

Remark 3.2 Theorem 3.4 is valid under very mild conditions. In particular, there
are no smoothness conditions on the density f . The uniqueness of At0 , however, is
crucial for the results as stated. If it is not satisfied the results can be substantially
different. On the other hand, uniqueness of At0 is a mild condition and holds for
many (multimodal) distributions.

Note that it is well-known, see e.g. Dudley (1982), that for dimension 3 or higher
there is no weak convergence of the empirical process indexed by closed convex sets,
since this class of sets has a too large entropy. (Actually the supremum of the
absolute value of this empirical process tends to infinity, in probability, as n→∞.)
This means that for this case Theorem 3.4, if true at all, can not be proved with
the methods presented in this thesis.

Remark 3.3 Since our general tolerance regions An,t0,C converge in probability to
At0 , they are asymptotically minimal with respect to the chosen indexing class. That
means, e.g. for case (a), that no tolerance ellipsoids can be found the volume of
which converge to a number smaller than V (At0). However under weak additional
conditions (see Section 2.4) there exists a region of the form {x ∈ IRk : f(x) ≥ c},
for some c > 0, that has probability t0 and minimal Lebesgue measure. Such a
minimal region is unique up to sets of Lebesgue measure 0. If the above level set
belongs to the indexing class we use, then our tolerance regions are asymptotically
minimal (with respect to all Borel-measurable sets).

At a finer scale, it seems possible to prove (under additional conditions) along the
lines of Einmahl and Mason (1992) that in fact V (An,t0,C) = V (At0) +OIP (n−1/2).

Remark 3.4 It is rather easy to show that the tolerance regions of Theorem 3.4 have
desirable invariance properties. For cases (a) and (c) the tolerance region An,t0,C is
affine equivariant, i.e. for a nonsingular k× k matrix M and a vector v in IRk, we
have that MAn,t0,C + v is the tolerance region corresponding to the MXi+ v. (Here
MAn,t0,C = {Mx : x ∈ An,t0,C}.) Since case (b) deals with parallel hyperrectangles,
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this property does not hold in full generality for this case, but it does hold when M
is a nonsingular diagonal matrix, which means that we allow affine transformations
of the coordinate axes.

Finally, we will extend Theorem 3.4 to more general classes of sets: let m > 1
be an integer and let A ⊂ B be the class consisting of
(a’) unions of m closed ellipsoids,
(b’) unions of m closed parallel hyperrectangles, or
(c’) unions of m closed convex sets, contained in a fixed, large compact set (for
k = 2),
with probability strictly between 0 and 1, respectively. Then an MV-set An,t0,C
from the class (a’), (b’) or (c’) consists of at most m ‘components’ and some of
these components may have an empty interior. Since now with positive probability
there exists more than one MV-set An,t0,C from A by An,t0,C denote any member
of the class

An,t0,C :=
{
A ∈ A : Pn(A) ≥ t0 +

C√
n
, V (A) = Un

(
t0 +

C√
n

)}
. (3.23)

Note that Remark 3.4, mutatis mutandis, holds for the classes (a’), (b’) and (c’).

Theorem 3.5 Fix t0 ∈ (0, 1). If the density f of the distribution function F is
positive on some connected, open set S ⊂ IRk and f ≡ 0 on IRk\S, and if At0 , the
set in A with minimum volume and P (At0) = t0, exists and is unique, then we have
for the cases (a’) and (b’) that (3.4),(3.9) and (3.10) hold.
If k = 2 and, in addition, f is bounded, then (3.4),(3.9) and (3.10) also hold for
case (c’).

Proof First we show that for fix t0 ∈ (0, 1), C ∈ IR and n ≥ 1, the class An,t0,C is
not empty when A is the class of unions of two closed ellipsoids. For the other cases
the proof will be similar.

We have to show that there exists the minimum volume set An,t0,C ∈ A that
contains at least dnpne observations. Without loss of generality we can assume that
the class Adnpne defined as

Adnpne := {A ∈ A : Pn(A) ≥ pn, Un(pn) ≥ V (A) ≥ 2Un(pn)}

is uniformly bounded. Observe that An,t0,C ⊂ Adnpne. Since any A ∈ Adnpne, can
be represented as the union of two ellipsoids A = A1∪A2, we will obtain two classes
of ellipsoids A1 ∈ A1 and A2 ∈ A2. Then by the Blaschke Selection Principle there
exists a sequence {A(1)

n }n≥1 from A1 that converges in the metric d to a nonempty
ellipsoid A(1) and this corresponding sequence {A(2)

n }n≥1 from A2 has a subsequence
{A(2)

nk }k≥1 that converges in the metric d to a nonempty ellipsoid A(2). Hence any
sequence {A(1)

n ∪ A(2)
n }n≥1 from Adnpne has at least one limit set A(1) ∪ A(2). It

is easy to show that A(1) ∪ A(2) ∈ Adnpne. Then Adnpne with the metric d is a
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compact. Note that the same argument can be used for extending the Blaschke
selection Principle for the case of the uniformly bounded sequence of m unions of
non-empty compact convex sets. Next consider a real-valued function f(A) = V (A),
A ∈ Adnpne. Then, since Adnpne is a compact and f is a continuous mapping on it,
f will reach its upper and lower bounds on Adnpne. Hence there exists an MV-set
from Adnpne.

Let again A be the class (a’) when m = 2. We will show that an MV-set
An,t0,C = A1 ∪ A2 ∈ An,t0,C will contain at most dnpne + k(k+1)

2 observations.
Suppose the contrary, that An,t0,C contains dnpne+ k(k+1)

2 + `, ` > 0 observations.
As we already mentioned above A1 will have at most k(k+3)

2 points on this boundary,
among which there is at least one point, say X1 that does not belong to A2. Then
we can “peel” these boundary points and construct the ellipsoid A1ε ⊂ A1 that
contains all observations in A1 except its boundary observations. Then A1ε ∪ A2

will have the volume smaller than An,t0,C and will contain at least dnpne+ ` and at
most dnpne+ k(k+1)

2 +`−1 observations, but this is impossible, hence we obtain that
(3.1) holds true. It is easy to show that (3.1) remains true for cases when m > 2.
Similarly can be shown that (3.2) holds for the classes (b’) and (c’).

Let us now consider the conditions C1)-C4) of Theorem 3.1. When it is not
mentioned otherwise A will denote below any of the classes (a’), (b’) or (c’).
C1). The classes (a’) and (b’) are VC classes and are satisfying required measur-
ability conditions, hence they are P -Donsker. For the class (c’) for m = 2, when
A1 ∪A2 ∈ A we have that

αn(A1 ∪A2) =

αn(A1) + αn(A2)− αn(A1 ∩A2) IP→ BP (A1) +BP (A2)−BP (A1 ∩A2)
= BP (A1 ∪A2),

(3.24)

since (c) is a P -Donsker class (see Section 1.2). For the case when m > 2 the weak
convergence can be obtained using the induction.
C2). We already showed existence of MV-sets.
C3). It follows from (3.1) for the class (a’) and from (3.2) for the classes (b’) and
(c’).
C4). We have to show that Lemma 3.2 holds for A. Observe that

Pn(An,t0,C)→ t0 a.s. as n→∞.

However C1) implies that

sup
A∈A
|Pn(A)− P (A)| → 0, a.s. as n→∞

and hence
P (An,t0,C)→ t0 a.s. as n→∞.

Then following the lines of the proof of Lemma 3.2 we obtain that (3.18) holds for
A and thus

lim
n→∞

V (An,t0,C) = V (At0) a.s..
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Next we want to show that

lim
n→∞

V (An,t0,C 4At0) = 0 a.s.. (3.25)

Let us first prove that the sequence {An,t0,C}n≥1 is essentially uniformly bounded,
that is there exists a compact set B = B(ω) such that

IP
{
V (An,t0,C\B)→ 0

}
= 1. (3.26)

Suppose the contrary, that for any ω ∈ Ω′, with IP (Ω′) > 0,

V
(
An,t0,C(ω)\B(ω)

)
6→ 0, (3.27)

for all closed compact sets B(ω) ∈ B. Fix ω ∈ Ω′. There exists at least one sequence
{Kn}n≥1 of the components of {An,t0,C}n≥1 such that

V
(
Kn\B

)
6→ 0, as n→∞. (3.28)

Then there exists a subsequence of points an ∈ Kn\B, such that d(O, an) → ∞,
where n ≥ 1 denotes its subsequence for the notational convenience. Then there can
be two cases, when lim inf

n→∞
d(O,Kn) = ∞ and when it is not. The first case yields

that there exists a subsequence Kn′ , with P (Kn′)→ 0, however we can construct a
sequence Dn′ , such that

P (Kn′) < P (Dn′) and V (Kn′) > V (Dn′),

but this is impossible, since Kn′ is a component of the MV-set An′,t0,C . The second
case yields that there exists a subsequence n′, such that

diam (Kn′)→∞, as n′ →∞.

Here again two cases are possible, first suppose that there exists a subsequence n′′

such that P (Kn′′)→ 0. Then again consider a sequence Dn′′ , with the properties as
above P (Kn′′) < P (Dn′′) and V (Kn′′) > V (Dn′′), which will lead to contradiction.
Therefore lim inf

n′→∞
P (Kn′) > 0, which yields that there exists a subsequence n′′ such

that
lim

n′′→∞
P (Kn′′) = ε,

where ε is a positive constant. Note that (3.20) can be extended to the case when
k > 2 and then it will yield that there exists γ small enough, such that Kn′′ 6⊂ Vγ ,
n′′ ≥ 1. But since diam (Kn′′) → ∞ we obtain that V (Kn′′) → ∞, which gives a
contradiction. Hence (3.26) holds true.

Let {A∗n,t0,C}n≥1 denote the sequence defined similarly as {An,t0,C}n≥1 but from
the restricted class. By the extended Blaschke Selection Principle the sequence
{A∗n′′,t0,C}n′′≥1 has a subsequence {A∗k,t0,C}k≥1 such that

lim
k→∞

V (A∗k,t0,C 4At0) = 0 a.s..



34 Small nonparametric tolerance regions

But by (3.26) we obtain that

lim
k→∞

V (A∗k,t0,C 4Ak,t0,C) = 0 a.s..

Finally (3.25) follows from these equations.
To complete the proof note that along the lines of the proof of Theorem 3.4 we

can show the uniform integrability of the sequence
√
n(t0 − P (An, t0, 0)), n ≥ 1

using that the classes (a’) and (b’) are VC classes and that

sup
A∈Am

|αn(A)| ≤ C(m) sup
A∈A
|αn(A)|,

for the class (c’), where Am denotes the class (c’), A the class (c) and C(m) is a
constant depending on m. �

3.3 Applications

All simulations performed in this section consist of 1000 replications.

3.3.1 Comparison of classical and small tolerance intervals

The asymptotic behavior of small tolerance regions does not change if we vary the
number of observations in the tolerance regions within o (

√
n). However, even for

the classical nonparametric tolerance intervals (see Section 1.2), the finite sample
behavior is very sensitive to the actual number of used order statistics (see Table 3.1).

number of order statistics 93 94 95 96 97
confidence level 67.9% 79.3% 88.3% 94.2% 97.6%

Table 3.1: Sensitivity of classical 90% guaranteed coverage tolerance intervals with
n = 100.

Simulations showed a similar sensitivity for small tolerance regions. Moreover,
including exactly dnpne observations we obtained slightly too low coverages, result-
ing in too low simulated confidence levels. Since the boundary of a tolerance region
has probability zero, we decided to add the number of points on the boundary of
our tolerance regions to dnpne.

For the classical tolerance intervals, we of course used an exact calculation, based
on the beta distribution, for the number of observations to be included. These inter-
vals were chosen in such a way that the indices of the order statistics that serve as
endpoints are (almost) symmetric around (n+1)/2. We thus expect small tolerance
intervals to be substantially shorter for skewed distributions, as they automatically
scan for the interval with highest mass concentration. As mentioned above, we
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added 2 observations when constructing our tolerance intervals. Tables 3.2 and 3.3
contain our simulation results for guaranteed coverage and mean coverage tolerance
intervals. These tables show very good behavior of small tolerance intervals. In
particular, for the highly skewed distributions they perform much better with re-
spect to length; e.g., for the Pareto distribution the length is reduced with 50%. In
general, we see that the asymptotic theory works well.

3.3.2 Tolerance hyperrectangles

Here we performed simulations for tolerance hyperrectangles for k = 2 and 3. Ta-
ble 3.4 gives simulation results for mean coverage rectangles with sides parallel to
the coordinate axes. We included 4 extra observations in all cases, i.e. we used 274
observations for n = 300 and 904 for n = 1000. We simulated from the following
distributions:

• bivariate standard normal with mean ( 0
0 ) and covariance matrix ( 1 0

0 1 ),

• bivariate half-normal with density f(x, y) = 2
π e
− 1

2 (x2+y2), x, y ≥ 0

• bivariate Cauchy distribution with density
f(x, y) = 1

2π

(
1 + x2 + y2

)−3/2,

• bivariate exponential (1,1) distribution with density f(x, y) = e−(x+y), x, y ≥
0,

• bivariate pyramid distribution with density f(x, y) = 1
8(|x|∨|y|) e

−(|x|∨|y|); see
Figure 3.3 below.
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Figure 3.3: Bivariate pyramid density.
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sample sizedistribution
300 1000

bivariate normal 87.7% 88.7%
bivariate half-normal 88.3% 88.9%
bivariate Cauchy 86.2% 86.3%
bivariate exponential 88.5% 89.0%
bivariate pyramid 86.4% 87.1%

Table 3.4: Simulated coverages of 90% mean coverage tolerance rectangles.

From this table, we again see that small tolerance regions perform well: the coverages
are close to 90%, but slightly too low. This effect is caused by the minimum area
property of small tolerance regions, and has a drastic impact on the confidence level
of guaranteed coverage tolerance rectangles. Therefore, we do not present simulation
results for those rectangles. However, a better performance of the mean coverage
tolerance rectangles is possible by including more observations.

For tolerance hyperrectangles in IR3, simulations were performed from the fol-
lowing trivariate distributions:

• trivariate standard normal with mean
(

0
0
0

)
and covariance matrix

(
1 0 0
0 1 0
0 0 1

)
,

• trivariate half-normal with density f(x, y, z) =
(

2
π

)3/2
e−

1
2 (x2+y2+z2), x, y, z ≥

0,

• trivariate Cauchy distribution with density
f(x, y, z) = 1

π2

(
1 + x2 + y2 + z2

)−2,

• trivariate exponential distribution with density f(x, y, z) = e−(x+y+z), x, y, z ≥
0.

In Table 3.5 simulation results for the mean coverage hyperrectangles for n = 300
are presented. Here we included 6 extra points. Hence for the 95% mean coverage
tolerance regions 291 data points were included. As is clear from this table the
results are again very good. Replacing 90% (Table 3.5) by 95% seems to improve
the asymptotics, as could be expected. We chose 95% here, not to improve on the
coverage, but to speed up the computations; now the number of points that have to
be excluded is substantially less (9 against 24).

3.3.3 MV-hyperrectangle algorithm

Here we give a description of the algorithm that was used for computing the min-
imum volume parallel hyperrectangles for k = 3, which led to Table 3.5 (see also
Figure 3.6). This algorithm can be easily extended to k > 3; the same idea was
used for Table 3.4 for k = 2.



3.3 Applications 39

distribution simulated coverage
trivariate normal 93.6%
trivariate half-normal 94.1%
trivariate Cauchy 94.8%
trivariate exponential 94.2%

Table 3.5: Simulated coverages of 95% mean coverage tolerance hyperrectangles.

Suppose X = {(X1, Y1, Z1), . . . , (Xn, Yn, Zn)} are given n observations in IR3.
We want to construct the minimum volume hyperrectangle (MVH) that contains at
least dnpne-points from X. The basic idea of the procedure is that since tolerance
regions typically have a coverage of 90% or 95%, it is the outermost points that
determine the minimum area rectangle. As we have to find the smallest rectangle
over dnpne observations from X we ‘peel’ our data r+1 times, where r := n−dnpne.
The ‘peeling’ consists in removing the boundary observations that determine the
smallest hyperrectangle. Since a hyperplane parallel to the coordinate hyperplanes
contains at most one observation with probability one, we assume that each face of
the MVH contains one boundary observation from X. For the notational convenience
let Hn−r be the MVH over n− r points. Hence we want to construct Hn−r.

Procedure: I. To simplify our procedure we first peel the data r+1 times and drop
the points from X which are r+2 level and deeper. Let Hn be the MVH over X. By
V1 denote the set of observations from X that define Hn (the boundary observations
of Hn), obviously #{V1} ≤ 6. Further consider a new set of observations X \V1 and
again construct MVH over X \ V1. The set of this boundary observations denote
by V2. Repeat this procedure r + 1 times. Set X∗ := ∪r+1

i=1Vi and denote by ` the
cardinality of X∗ (` := #{X∗}).
Note that since we have to find at most six points (or six faces) that define Hn−r,
in the procedure there will be five free indexes.

II. a) Order (by increasing) z-coordinates of the elements of X∗ and denote them
by Zj:`, j = 1, . . . , `. The horizontal sides of the Hn−r can lie only on the planes
z = Zj:` and z = Z`−r+i−1:`, where j = 1, . . . , r + 1 and i = j, . . . , r + 1. For each
fixed i and j there are j − 1 +

(
` − (` − r + i − 1)

)
= r − (i − j) points outside of

the planes z = Zj:` and z = Z`−r+i−1:` (recall that i ≥ j). Hence more i− j-points
should be removed.

b) Fix i and j. Consider the elements of X∗ that lie between the planes: Zj:`
and Z`−r+i−1:`. In other words, take the points of X∗ with the third coordinates
satisfying the inequality: Zj:` ≤ z ≤ Z`−r+i−1:`. Denote this set of points by X∗i,j .
Since X∗ contains `-points and r − i + j-points have been dropped, we have that
#{X∗i,j} = ` − r − j + i. Further order the y-coordinates of the elements of X∗i,j
and denote them by Yk:m, k = 1, . . . ,m, where m := ` − r − j + i. The y-faces
of Hn−r can only be on the planes y = Yk:m and y = Ym−(i−j)+p−1:m, where
k = 1, . . . , i− j+ 1 and p = k, . . . , i− j+ 1. Hence for fixed i, j, k and p we removed
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additional k−1 +m− (m− (i− j) +p−1) = (i− j)− (k−p)-points. Thus the total
amount of the points that have been removed is r−(i−j)+(i−j)−(p−k) = r−(p−k).
Hence p− k points should be dropped at the next step.

c) Fix i, j, k and p, take the observations from X∗i,j that lie between the planes
y = Yk:m and y = Ym−(i−j)+p−1:m and denote the set of this observations by X∗i,j,k,p.
Order x-coordinates of the elements of X∗i,j,k,p and denote them byXq:h, q = 1, . . . , h,
with h := ` − (r − (p − k)). Then the x-faces of Hn−r can only lie on the planes
x = Xq:h and x = Xh−(p−k)+q−1:h, where q = 1, . . . , p− k + 1.

Finally for each fixed i, j, k, p and q the volume of the MVH (H(i, j, k, p, q)), with
the faces on the planes z = Zj:`, z = Z`−r+i−1:`, y = Yk:m, y = Ym−(i−j)+p−1:m,
x = Xq:h and x = Xh−(p−k)+q−1:h will be

V {H(i, j, k, p, q)} = (Z`−r+i−1:` − Zj:`)× (Ym−(i−j)+p−1:m − Yk:m)
× (Xh−(p−k)+q−1:h −Xq:h)

and the final MVH is the hyperrectangle with the smallest volume among
H(i, j, k, p, q)’s:

Hn−r =argmin
{
V {H(i, j, k, p, q)} : j = 1, . . . , r + 1, i = j, . . . , r + 1,

k = 1, . . . , i− j + 1, p = k, . . . , i− j + 1, q = 1, . . . , p− k + 1
}
.

3.3.4 ‘Smoothed’ tolerance intervals

Given the discrete nature of the empirical measure and the aforementioned sensi-
tivity of tolerance regions it can be, in particular when the density f is smooth,
that a smoothed version of the empirical measure yields somewhat better tolerance
regions than the ones presented in Section 3.1. We will briefly consider this here
and will restrict ourselves to the one dimensional situation and guaranteed coverage
tolerance intervals. It can be shown, see e.g. Azzalini (1981), Shorack and Wellner
(1986), Section 23.2, and van der Vaart (1994), that an integrated kernel density
estimator (P̂n, say) as an estimator for the probability measure yields the same
limiting behavior as in Section 3.2, when the bandwidth is chosen to be K/n1/3,
K ∈ (0,∞). So asymptotically, in first order, there is no difference between the
two procedures, i.e. Theorem 3.2 holds true, when An,t0,C is based on P̂n instead
of on Pn. However, for finite n it may be that a ‘smoothed procedure’ works bet-
ter. We investigated this through a simulation. Table 3.6 gives the results. We
chose the Epanechnikov kernel (with support [−1, 1]) and K = 1

2

√
5S, with S the

sample standard deviation, as suggested in Azzalini (1981). Since P̂n is absolutely
continuous we did not add the 2 observations as indicated above.

This table shows excellent behavior of the ‘smoothed’ tolerance intervals. We
see indeed that there is some evidence that, when the underlying density is smooth,
our procedures can be somewhat improved by properly smoothing the empirical.
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distribution sample size simulated conf. level average length

standard normal
300

1000
92.6%
92.7%

3.58
3.44

chi-square(5)
300

1000
96.4%
96.8%

9.98
9.50

beta(5,10)
300

1000
94.5%
94.3%

0.42
0.40

logistic
300

1000
93.4%
93.1%

6.51
6.23

Student-t(5)
300

1000
93.6%
92.7%

4.52
4.28

Table 3.6: ‘Smoothed’ 90% guaranteed coverage tolerance intervals with confidence
level 95%.

All simulations presented in this section were performed on a SunSparc5 and
SunUltra10. Simulations in dimensions one and three were performed using the sta-
tistical packages of the computer algebra system Mathematica. The (two-dimensional)
rectangles algorithm was implemented in C++, which was linked with a Mathemat-
ica notebook where data were generated and coverages were computed. The com-
putation for one replication (including the coverage computation) with n = 1000
took at most 6 seconds.

3.3.5 Medical data example

As mentioned before medical statistics is one of the fields where tolerance regions
are used. Here we illustrate our theory with an application to Leukemia diagnosis.
Leukemia is a cancer of blood-forming tissue such as bone marrow. The diagnosis
of Leukemia is based on the results of both blood and bone marrow tests. There
are only three major types of blood cells: red blood cells, white blood cells and
platelets. These cells are produced in the bone marrow and circulate through the
blood stream in a liquid called plasma. When the bone marrow is functioning nor-
mally the count of blood cells remains stable. In the case of this disease the number
of blood cells changes drastically and is therefore easy to detect with tolerance re-
gions. We now construct a 95% mean coverage tolerance ellipse and two 95% mean
coverage tolerance (hyper)rectangles (for dimension k = 2 and k = 3) for blood
count data kindly provided by Blood bank de Meierij, Eindhoven. Blood samples
were taken from 1000 adult, supposedly healthy potential blood donors. Among the
measured variables were the total number of white blood cells (WBC), red blood cells
(RBC), and platelets (PLT) in one nanoliter, picoliter, and nanoliter, respectively,
of whole blood. We computed tolerance regions (ellipse, rectangle, hyperrectan-
gle) for the following combinations of variables: (WBC, PLT), (WBC, RBC) and
(WBC, RBC, PLT), for 500, 1000 and 500 observations, respectively (see Figures 3.4,



42 Small nonparametric tolerance regions

3.5 and 3.6 below).

4 6 8 10 12
WBC

100

200

300

400

500

PLT

Figure 3.4: 95% mean coverage tolerance ellipse.

Comparing the tolerance regions in Figures 3.4, 3.5 and 3.6 with the in practice
used one-dimensional ‘reference’ or ‘normal’ values for WBC, RBC, and PLT (which
we do not record here), it can be seen that our procedures work nicely. Due to the
fact that the one-dimensional distributions of WBC and PLT are somewhat skewed
to the right our procedures tend to give smaller regions (when these variables are
involved), than those constructed (in one way or another) from the one-dimensional
reference values. This is the same effect as seen in Tables 2 and 3 for the skewed
distributions there. Moreover, our tolerance regions are somewhat shifted to the
‘left’ because of this skewness of the distributions of these variables. It is obvious,
but it can be important, that in Figure 3.4, the tolerance ellipse does not include
certain bivariate values, which would be included when forming two intervals by
projecting the ellipse on the horizontal and vertical axes. For Acute Leukemia,
newly diagnosed, adult patients very often have WBC values considerably over 10
(in many cases even above 100(!)) or RBC values around 3 or PLT values below
100. Clearly these values can be easily detected by the depicted tolerance regions.

Finally we give some references on computing minimum volume ellipsoids and
minimum area planar convex sets (which we did not compute in this section). An
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Figure 3.5: 95% mean coverage tolerance rectangle.

algorithm for computing the minimum volume ellipsoid containing all data points is
presented in Silverman and Titterington (1980). Algorithms for computing approx-
imate minimum area ellipsoids containing m (< n) points are given in Nolan (1991)
and Rousseeuw and van Zomeren (1991) and the exact algorithm we used for the
minimum volume ellipse containing m (< n) points was developed in Agulló (1996).
The computer code of this algorithm was kindly placed to our disposal by the au-
thor; it also works in higher dimensions (up to 10). As we noted in Section 3.1, the
minimum area planar convex set containing m (< n) sample points is a polygon.
Exact algorithms for computing such sets can be found in Eppstein et al. (1992) and
Eppstein (1992).

3.4 Appendix

Recall the notation of Section 3.1, in particular let X1, . . . , Xn and E be as in that
section. Denote with E1 ∈ E the almost surely unique ellipsoid of minimum volume
containing at least m ∈ {k + 1, . . . , n} (data) points.

Lemma 3.3 E1 contains exactly m points, almost surely.

Proof Assume that E1 contains ` > m points and t (k+ 1 ≤ t ≤ k(k+ 3)/2 a.s.) of
these points are on its boundary. Note that the smallest ellipsoid containing these
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Figure 3.6: 95% mean coverage tolerance hyperrectangle.
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t boundary points is equal to E1, see Silverman and Titterington (1980). Consider
t− 1 of the t boundary points (call this set B) and let E0 be the smallest ellipsoid
containing B. Denote the remaining t-th boundary point of E1 with Y1. Observe
that Y1 /∈ E0. It follows from a conditioning argument that for any subset of size
r > 1 of the n points, we have a.s. that none of the remaining n− r points is on the
boundary of the smallest ellipsoid containing these r points. This yields that a.s.
V (E0) < V (E1).

Note that the smallest ellipsoid containing a finite set is equal to the smallest
ellipsoid containing the convex hull of that set. Denote with Y0 a point on the
boundary of E0 such that the line through Y0 and Y1 intersects the convex hull of
B and such that the open interval from Y0 to Y1 has an empty intersection with E0.
Set Yλ = (1− λ)Y0 + λY1, λ ∈ [0, 1]. Let Cλ be the convex hull of B ∪ {Yλ}. Note
that for λ < λ′ we have that Cλ ⊂ Cλ′ . Let Eλ be the smallest ellipsoid containing
Cλ. So V (Eλ) ≤ V (Eλ′) for λ ≤ λ′.

From the Blaschke Selection Principle it follows that there exists a sequence λj
(< 1), j ∈ IN , converging to 1 and such that

lim
j→∞

V (Eλj4E∗) = 0

for some E∗ ∈ E . We have V (E∗) ≤ V (E1), since V (Eλj ) ≤ V (E1), j ∈ IN . But
C1 ⊂ E∗, so V (E1) ≤ V (E∗). Hence V (E∗) = V (E1) and E∗ and E1 both contain
C1. But, with probability 1, E1 is unique, so E∗ = E1 and hence

lim
j→∞

V (Eλj4E1) = 0.

So there exists a large j (denote the corresponding λj with η) such that Eη contains
all the ` − t points in the interior of E1 and the points of B and does not contain
the n − ` points in the complement of E1. If Y1 ∈ Eη, then Yη is in the interior
of Eη, so according to Silverman and Titterington (1980), Eη = E0 and hence
V (Eη) = V (E0) < V (E1) a.s., but this can not happen since C1 ⊂ Eη. This yields
that Y1 /∈ Eη. We now see that Eη contains `−1 (≥ m) points and V (Eη) ≤ V (E1).
Since E1 is the minimum volume ellipsoid containing at least m points, we have
that V (Eη) = V (E1). Since Eη 6= E1 this contradicts the a.s. uniqueness of the
minimum volume ellipsoid. �





Chapter 4

Small nonparametric
tolerance regions for
directional data

This chapter is an extended version of Mushkudiani (2000).

Continuing the study of tolerance regions here we construct directional tolerance regions

based on the method presented in Chapter 3. Tolerance regions for circular and spherical

data are defined as the MV-sets from the classes of arcs and caps, respectively. Asymptotic

results on these tolerance regions are presented. The tolerance regions investigated in this

chapter are asymptotically minimal under some very mild conditions. The method is

applied to real data of wind directions.

4.1 Introduction

Data that represent directions in space of any number of dimensions are called
directional data. In practice the cases that are considered and studied are of direc-
tional data in two and three dimensional spaces. Then these data are called circular
and spherical data respectively.

Circular and spherical data points occur in many applications in biology, geology,
meteorology, geography, medicine and physics. The corresponding statistical theory
is studied intensely in e.g., Mardia (1972), Batschelet (1981), Fisher, Lewis and
Embleton (1987), Fisher (1993), etc. These monographs contain vast data examples
obtained from different areas. Typical directional data sources are e.g., bird or
animal orientation and navigation data that one normally encounters in biology,
while exploring homing, migration or other activities. In meteorology wind and
ocean directions, thunderstorm and rainfall data are the prominent examples when
directional statistics are natural to apply. More examples of directional data are

47
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orientations of cross-beddings or fractures and fabric elements in deformed rocks,
micro seismic and earthquake directions in a certain region, etc. in geology and
geography.

Circular data can be represented as the angles θ, 0 ≤ θ < 2π measured from
the X-axis in the anti-clockwise direction or as the points on the unit circle that
correspond to θ. Similarly, spherical observations are identified with directions in
space and hence can be represented by two angles (θ, ϕ). These angles can be defined
in various ways. Directions in space can be also identified with the points on the
unit sphere.

In this chapter we construct tolerance regions for circular and spherical data
based on minimum volume sets and the techniques presented in Chapter 3. The
directional data below are represented by the points on the unit circle and on the
unit sphere in IR2 and IR3, respectively. To construct the MV-sets we consider the
following indexing classes: the class of arcs defined on the unit circle (see Section 2.5)
and the class of caps defined on the unit sphere (see Section 4.2). Then the tolerance
regions are certain MV-sets from these classes. We establish the limiting behavior
for these regions and show that they are asymptotically minimal with respect to the
indexing class.

4.2 The setup

In this and the next section we will deal only with spherical data. However, the
results obtained below also hold for circular data, with slight modifications, taking
into account that the analogue of the class of caps C defined below, is the class of
arcs on the circle.

As we have mentioned above spherical data can be specified in different ways.
The one we will need here is as follows. Take L = (x, y, z) ∈ IR3 and set O to be
the origin. Suppose L 6= O and let L′ be the point in which the vector OL cuts
the surface of the unit ball B(O,1) with center in O. The direction of OL can be
identified with the point L′.

Let X1, . . . , Xn, n ≥ 1, be i.i.d. random vectors with values on the unit sphere
S2 (the surface of B(O,1)) defined on a probability space (Ω,F , IP ), from a common
distribution P (see e.g., Mardia (1972), Fisher et al. (1987)). Denote the σ-algebra
of Borel sets on IR3 with B and let d0 be the pseudo-metric defined in Section 1.2.
Note that since whole mass of the probability measure P is concentrated on S2,
P (B) = P (B ∩ S2) for any B ∈ B. Let Pn denote the empirical distribution of the
sample X1, . . . , Xn indexed by B.

Set C ⊂ B to be the class of caps C, defined as follows

C = {(x, y, z) : x2 + y2 + z2 = 1 and ax+ by + cz + d ≥ 0},

where a, b, c, d ∈ IR (see also Ruymgaart (1989)). In other words a set C from C is
the intersection of the half-space ax+by+cz+d ≥ 0 with S2. The circle with center
B, created by the intersection will be called the boundary circle (see Figure 4.2).
The perpendicular line to the boundary circle at B goes through the cap and ‘cuts’
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O

A

B

Figure 4.1: The cap with the center A and the boundary circle centered at B.

the sphere S2 at the point A. Point A will be called the center of the cap and |AB|
its height, with

|AB| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

for A = (x1, y1, z1), B = (x2, y2, z2) ∈ IR3. To avoid technical inconveniences,
from now on let C be the class of caps with 0 < P (C) < 1. One of the engaging
properties of the elements of C is that they can be very easily parametrized. Any set
C ∈ C is uniquely determined by its center ηC and height `C . Hence to each C ∈ C
corresponds a point (ηC , `C) ∈ S2× (0, 2). Take a sequence {Cn}n≥1 from C, denote
the sequence of the corresponding parameters by {(ηn, `n)}n≥1. Since the sequence
{(ηn, `n)}n≥1 is bounded there exists a subsequence {(ηnk , `nk)}k≥1 that converges
coordinate-wise to some point (η∗, `∗) ∈ S2 × [0, 2]. Since for ηnk = (xnk , ynk , znk)
we can write that

1 = lim
k→∞

[x2
nk

+ y2
nk

+ z2
nk

] = x∗2 + y∗2 + z∗2,

where (x∗, y∗, z∗) = η∗, it is clear that there exists a cap corresponding to (η∗, `∗)
and C∗ ∈ C unless when `∗ is 0 or 2. It is easy to see that the following equation
holds as well

lim
k→∞

V (Cnk4C∗) = 0 a.s., (4.1)

where V denotes the area (Lebesgue measure) on S2. Similar results for ellipsoids
can be found in Nolan (1991).



50 Small nonparametric tolerance regions for directional data

Suppose now that P is absolutely continuous with respect to Lebesgue measure
on S2. Define the MV-sets based on the indexing class C as follows. For any fixed
t ∈ (0, 1) and q ∈ IR denote by Cn,t,q a MV-set from C with empirical measure at
least tn = t+ q√

n
, thus

Cn,t,q = argminC∈C

{
V (C) : Pn(C) ≥ tn

}
.

Set Cn,t = Cn,t,0. The sets Cn,t,q and Cn,t are the candidate guaranteed content
and mean content tolerance caps respectively

(see also Section 3.1).

Lemma 4.1 Suppose X1, . . . , Xn, n ≥ 1, are i.i.d. random vectors with values in
S2 from the common distribution P , that is absolutely continuous with respect to
Lebesgue measure on S2. Then the following hold:

(a) An MV-set Cn,t,q from C exists and is a.s. unique.

(b) The MV-set Cn,t,q will contain exactly dntne observations from
X1, . . . , Xn, with probability one.

Proof (a) We first prove the existence and a.s. uniqueness of the MV-cap CX
(MV-set from C) that contains X = {X1, . . . , Xn}.

Trivially Pn(CX ) = 1. Let CX ⊂ C be the class of all caps that contain X. We
will prove the existence of CX by using the parametrization argument described
above. From the definition of C it is clear that

LX := {`C : C ∈ CX} ⊂ (0, 2).

Set `∗ := inf LX. Further take a sequence {`n}n≥1 from LX with `n ↓ `∗. Denote
by {ηn}n≥1 the sequence of η’s corresponding to {`n}n≥1. By the same argument
as above there exists a subsequence {ηnk , `nk}k≥1 that converges to some point
(η∗, `∗) ∈ S2 × (0, 2), with `∗ = inf LX. Then there exists C∗ ∈ C that corresponds
to (η∗, `∗) and a sequence {Cnk}k≥1 of caps such that (4.1) holds. To complete the
existence proof we have to show that C∗ ∈ CX or that X ∈ C∗. Suppose there exists
Xi with Xi 6∈ C∗ then there exists k0 such that for any k > k0, Cnk will not contain
Xi, which is impossible. Hence C∗ = CX is a MV-cap.

Now we prove a.s. uniqueness of CX . Note that with probability one, there can
be at most three observations on any circle on S2 and any two circles that pass
through different sets of three observations will have different radii. By CX denote
the class of sets that are obtained by taking convex hulls (in IR3) of the elements of
CX. It is easy to show that an MV-set from CX corresponds to CX . Construct the
polyhedron HX with n vertices from X. Clearly each face of HX is a triangle a.s..
It can be shown by induction that for n ≥ 4, HX will have 2n− 4 faces. Since HX

is the smallest convex set containing X , each element of CX will contain HX . There
can be two kinds of polyhedra HX, those that contain the origin and those that do
not contain it. We will treat these cases separately.
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I. O ∈ HX. Since each convex hull from the class CX, they will also contain the
origin. Then an MV-set from this class will also contain the origin and will have
the boundary circle with the biggest radius (in comparison to the elements of CX).
Hence, its boundary circle will lie in the plane of one of the faces of the polyhedron
and will pass through three points from X . Assume there exist two different MV-
sets C1 and C2 from CX. Hence, their areas are equal. Then the radii of their
boundary circles are equal as well. Since both boundary circles pass through three
observations it is impossible with probability one.

II. O 6∈ HX. The polyhedron HX is the intersection of the half-spaces created
by the planes of its faces. Hence, there exists at least one of these half-spaces, that
does not contain the origin. Therefore, an MV-set from CX will not contain the
origin either and hence will have the boundary circle with the smallest radius (in
comparison to the elements of CX that do not contain the origin) and the smallest
height (in comparison to all elements of CX). It is easy to show that the boundary
circle of an MV-cap CX will pass through three or two points from X . However,
it will pass through two points only in case it is the smallest circle in S2 passing
through these two points and if so there will be third observation on this circle
with probability zero. Suppose that C1 and C2 are two MV-caps from CX, hence
the radii of their boundary circles are equal. The case when both boundary circles
pass through three observations can be treated similarly as in I. Assume that the
boundary circle of C1 passes through three points {Xi1 , Xi2 , Xi3}, while the bound-
ary circle of C2 through two points {Xj1 , Xj2}. Without loss of generality we can
assume that X1 ∈ {Xi1 , Xi2 , Xi3}\{Xj1 , Xj2}. If we condition on {X2, . . . , Xn},
then it is left to show that for any r ∈ (0, 1)

IP{X1 : R(C1) = r : X2, . . . , Xn} = 0,

where R(C) stands for the radius of the boundary circle of the cap C. This is trivial
since R(C1) = r, implies that X1 can lie only on at most two prescribed circles.
The case when C1 and C2 have two points on their boundary circles can be treated
analogically.

Using the same arguments as above now we can prove the existence and a.s.
uniqueness of the MV-cap Cn,t,q. Clearly an MV-cap Cn,t,q should contain at least
dntne observations from X . Since there are finitely many dntne-element subsets of
X and we can construct the MV-cap for each subset, the existence of Cn,t,q is trivial.
Now we prove uniqueness. Suppose there exist two MV-caps Cn,t,q and C∗n,t,q, then
the boundary circles of these caps will pass through two or three observations from
X . However, we already discussed these cases above. Hence

IP{Cn,t,q = C∗n,t,q} = 1.

(b) Suppose in contrary that the MV-cap Cn,t,q contains m observations

Xm := {Xi1 , . . . , Xim} ⊂ X ,

where m > dntne. Again consider two cases: when O ∈ HX and when O 6∈ HX.
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I. Since O ∈ HX, the boundary circle of the cap Cn,t,q will pass through three
observations from Xm, say {Xi1 , Xi2 , Xi3}. Without loss of generality we can assume
that Xi1Xi2 is the smallest side of the triangle with vertices Xi1 , Xi2 and Xi3 . Let
CXi1 ,Xi2 be the smallest cap containing Xi1 and Xi2 . Obviously CXi1 ,Xi2 will not
contain Xi3 (see Figure 4.2, I). Since we want to show that there exists a cap
that contains m − 1 points from X and has a smaller area than Cn,t,q, it will be
sufficient to construct a cap that contains only {Xi1 , . . . , Xim}\{Xi3} and show
that this boundary circle has radius greater than the one of Cn,t,q. To drop the
point Xi3 one can rotate the plane of the boundary circle of Cn,t,q around the
axis {Xi1 , Xi2} with some small angle ε. Call the cap obtained by the rotation
Cεn,t,q. Since Xi3 6∈ CXi1 ,Xi2 one will have to rotate the boundary circle of the cap
Cn,t,q away from the boundary circle of CXi1 ,Xi2 . Therefore there exists an ε > 0
small enough such that Cεn,t,q will contain m − 1 observations and the radius of
its boundary circle will be greater than the radius of the boundary circle of Cn,t,q,
which is impossible since Cn,t,q is the MV-cap containing at least dntne observations
from X .

Xi1
,C Xi2 iX 3

Cn, t, q

Cn, t, q
ε

1
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ε
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Figure 4.2: The cross section of B(O,1) cut on the plane: passing through the origin
O and perpendicular to Xi1Xi2 (I); passing through the origin O, parallel to
Xi1 , Xi2 and perpendicular to the boundary circle of Cn,t.q (II).

II. When O 6∈ HX, the boundary circle of Cn,t,q will pass through either two
or three observations from X . In case when it passes through three points we can
obtain a contradiction similarly as above. Suppose that the boundary circle of
Cn,t,q passes through two observations {Xi1 , Xi2}. As in I we want to construct a
cap smaller than Cn,t,q that contains only m− 1 points. Without loss of generality
we can assume that these m − 1 points are {Xi1 , . . . , Xim}\{Xi2}. To obtain such
a cap rotate the plane of the boundary circle of Cn,t,p around the point Xi1 , with
some angle ε > 0 in the direction of away from Xi2 (see Figure 4.2, II). Clearly there
exists a small enough ε > 0 such that the cap Cεn,t,q obtained by the rotation will
have an area smaller then Cn,t,q and will contain at least dntne observations from
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X , which gives a contradiction.
Hence we have proved that the MV-cap Cn,t,q will contain exactly dntne obser-

vations, which trivially implies

t0 +
q√
n
≤ Pn(Cn,t,q) < t0 +

q√
n

+
1
n

a.s. . (4.2)

�
Recall that similar results were obtained for the classes of all closed ellipsoids,

hyperrectangles and convex sets in (3.2) and Lemma 3.3.

4.3 Main results

In this section we use the setting and the notation introduced in the previous
section. Suppose that P has a density f which is absolutely continuous with respect
to Lebesgue measure on S2 and that f is strictly positive on some connected open
set A ⊂ S2 (f ≡ 0 on S2 \A).

Theorem 4.1 Fix t0 ∈ (0, 1). If the minimum volume set Ct0 from C with P (Ct0) =
t0 exists and is unique, then for every q ∈ IR

√
n(t0 − P (Cn,t0,q)) + q

d−→ Z
√
t0(1− t0) (n→∞), (4.3)

where Z is a standard normal random variable.

Observe that Theorem 4.1 can be proved similarly as Theorem 3.1. Hence we
will have to show that in the setting of this chapter the conditions C1)-C4) of
Theorem 3.1 are satisfied for the class C. We will need the following lemma (see
also Lemma 3.2 in Section 3.2).

Lemma 4.2 Under the assumptions of Theorem 4.1 we have with probability one
that

d(Cn,t0,q, Ct0)→ 0,

and hence d0(Cn,t0,q, Ct0)→ 0 (n→∞).

For proving Lemma 4.2 one does not need to make any crucial changes in the
proof of Lemma 3.2 in Section 3.2. However, the parametrization from Section 4.2
could be used instead of the Blaschke Selection Principle.

Proof of Theorem 4.1 For each n ≥ 1, define the empirical process indexed by C
to be

αn(C) =
√
n(Pn(C)− P (C)), C ∈ C.

The class C is a VC class, since it is obtained by the intersection of half-spaces and
the unit sphere S2 and it satisfies the required measurability conditions. Hence C is
a P -Donsker class (see Section 1.2) and hence by the Skorokhod construction there
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exists a probability space (Ω̃, F̃ , ĨP ) carrying a version B̃P of BP and versions α̃n of
αn, for all n ∈ IN , such that

sup
C∈C
|α̃n(C)− B̃P (C)| → 0 a.s. n→∞. (4.4)

For convenience, we will drop the tildes from the notation:

sup
C∈C
|
√
n(Pn(C)− P (C))−BP (C)| → 0 a.s. n→∞. (4.5)

Then by the existence and a.s. uniqueness of the MV-cap Cn,t0,q in Lemma 4.1 we
have that

√
n(Pn(Cn,t0,q)− P (Cn,t0,q))−BP (Cn,t0,q)→ 0 a.s. n→∞. (4.6)

Using (4.2) and (4.6) we obtain
√
n(t0 − P (Cn,t0,q)) + q −BP (Cn,t0,q)→ 0 a.s. n→∞. (4.7)

Using Lemma 4.2 and the uniform continuity of BP on C for the pseudo metric d0,
we will get that

BP (Cn,t0,q)→ BP (Ct0) a.s. n→∞. (4.8)

Further it trivially follows from (4.7) and (4.8) that
√
n(t0 − P (Cn,t0,q)) + q −BP (Ct0)→ 0 a.s. n→∞.

And at last using that
BP (Ct0) d= Z

√
t0(1− t0),

we obtain our result
√
n(t0 − P (Cn,t0,q)) + q

d→ Z
√
t0(1− t0) n→∞.

�

The following limit theorems, similarly to Theorems 3.2 and 3.3, immediately
follow from Theorem 4.1 and are the main results of this section. Set qα to be the
(1− α)-th quantile of the distribution of Z

√
t0(1− t0). Then by the following the-

orems MV-caps Cn,t0,qα and Cn,t0 are asymptotic t0-guaranteed coverage tolerance
regions with confidence level 1 − α and t0-mean coverage tolerance regions respec-
tively. Theorem 4.2 below deals with the asymptotic behavior of Cn,t0,qα , whereas
in Theorem 4.3 the limit result for Cn,t0 can be found.

Theorem 4.2 Fix α ∈ (0, 1), then under the conditions of Theorem 4.1 we have

lim
n→∞

IP{P (Cn,t0,qα) ≥ t0} = 1− α.
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Theorem 4.3 Under the conditions of Theorem 4.1

IEP (Cn,t0) = t0 + o(n−1/2), n→∞.

Note that for every q ∈ IR

IEP (Cn,t0,q)→ t0, n→∞.

The proof of Theorem 4.2 is mainly the same as that for Theorem 3.2. Theo-
rem 4.3 can be obtained from Theorem 3.3 and from the fact that the sequence of
random variables

√
n(t0 − P (Cn,t0)) is uniformly integrable. Following the lines of

the proof of Theorem 3.4 uniform integrability of
√
n(t0 − P (Cn,t0)) can be shown

using that C is a VC class.

Remark Notice that the assumptions under which the results are proved are very
mild, in particular, there are no smoothness conditions on the density f .

As we have already mentioned above, t0-content and t0-expectation tolerance
regions for n circular data can be defined as the MV-sets from the class of arcs with
empirical measure t0 + qα√

n
and t0, respectively.

Theorem 4.4 Theorems 4.2 and 4.3 remain true, mutatis mutandis, for circular
data and the class of arcs.

4.4 Simulation study and real data example

Here we present simulation results for tolerance arcs based on circular data.
The number of replications for the performed simulations is 1000. The distributions
from which we sampled data satisfy our conditions: the support of the density f is
connected and there exists a unique shortest arc (α, β) with coverage

∫ β
α
f(ϕ)dϕ =

t0. Note that the density h defined below (see also Figure 4.3) is bimodal, however
the conditions are still satisfied since t0 is close to 1 and this is the case of interest in
practice. The tolerance region for n circular data is the shortest arc that contains at
least dntne observations, where tn = t0+ qα√

n
. As we already have seen in Section 3.3,

the finite sample behavior of our tolerance regions is very sensitive to the number
of observations included. For example 90% guaranteed coverage tolerance arcs with
n = 300 simulated from the von Mises (π, 3) distribution had confidence levels:
80.4%, 85.1%, 88.7%, 92.9% and 95.2% when we included 278, 279, 280, 281 and 282
points respectively, while dntne = 279 (see also Table 3.1). Hence as in Section 3.1,
we have increased the number of points in the tolerance regions with the number of
points on this boundary. Thus the tolerance arcs we constructed contain dntne+ 2
observations.

We simulated from the following circular distributions (see e.g. Batschelet
(1981)):
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Figure 4.3: Linear plot of the bimodal circular distribution h.

distribution sample size simulated conf. level simulated coverage

von Mises(π, 3)
300

1000
92.9%
92.1%

89.1%
89.6%

von Mises(π, 8)
300

1000
94.3%
92.2%

89.1%
89.5%

g(ϕ)
300

1000
92.1%
89.9%

89.0%
89.5%

h(ϕ)
300

1000
90.8%
90.2%

89.0%
89.4%

Table 4.1: Simulated confidence level for 90% guaranteed coverage tolerance arcs
with confidence level 95% and simulated coverage for 90% mean coverage tolerance
arcs.

• von Mises distribution with parameters (π, 3) and (π, 8) respectively;

• g(ϕ) = 1
2π + k

2π sin(ϕ + ν sinϕ) with parameters k = 1 and ν = π/3, where
ϕ ∈ [0, 2π];

• h(ϕ) = c exp[k cos(3.4 + ϕ + µ cos (3.4 + ϕ))] with c = 0.139236, k = 1 and
µ = 5

12π, where ϕ ∈ [0, 2π].

In Table 4.1 the simulation results for the guaranteed coverage and mean cover-
age tolerance arcs are presented. For the guaranteed coverage tolerance arcs we
computed the empirical confidence level: the percentage of tolerance arcs with a
coverage greater than or equal to 90%. If we take into account that the coverage of
the tolerance regions is extremely sensitive to the number of points included, then
the simulation results are indeed very satisfactory.
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Figure 4.4: Tolerance arc for wind directions at Pt. Conception, CA.

Following the ‘smoothing’ procedure presented in Section 3.3 (using the Epanech-
nikov kernel), we simulated ‘smoothed’ mean coverage and ‘smoothed’ guaranteed
coverage tolerance arcs. Simulation results are presented in Table 4.2. Similarly as
in Table 3.6, here we see again that by using the density estimation procedure the
results have been improved considerably. For example, for n = 1000 a simulated
confidence level of the 90%-guaranteed coverage tolerance arc with confidence level
95% from the distribution g, based on the empirical measure is 89.9%, whereas the
simulated confidence level for the ‘smoothed’ tolerance arc with the same parameters
is 95.4%.

Next we construct a guaranteed coverage tolerance arc for wind direction data
(n = 694) obtained from the U.S. National Weather Service at weather station Pt.
Conception, CA, USA; these observations are measured in degrees (see Figure 4.4).
Clearly the underlying density has a connected support, is bimodal and not sym-
metrical in any direction. Hence we can assume the uniqueness of MV-arc and
apply our procedure to this data set. For the tolerance arc a coverage of 90% and
a confidence level of 95% were chosen. The number of observations to be included
in the arc is equal to dntne+ 2 = 640. Then the guaranteed coverage tolerance arc
is [X325:694 = 245◦, X270:694 = 170◦].

Tolerance regions for wind directions can be applied for example in architectural
aerodynamics, the study of relationships between wind and buildings. To survey
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distribution sample size simulated conf. level simulated coverage

von Mises(π, 3)
300

1000
93.7%
93.6%

89.5%
89.9%

von Mises(π, 8)
300

1000
94.7%
93.3%

89.4%
89.8%

g(ϕ)
300

1000
95.6%
95.4%

89.6%
89.8%

h(ϕ)
300

1000
95.2%
95.9%

89.6%
89.9%

Table 4.2: Simulated confidence level for ‘smoothed’ 90% guaranteed coverage tol-
erance arcs with confidence level 95% and simulated coverage for ‘smoothed’ 90%
mean coverage tolerance arcs.

this relation two factors, direction and speed of wind, can be observed. Knowledge
of the wind speed distribution and the most frequent wind directions is very crucial
for choosing wind turbines and locating them. Tolerance arcs for wind directions
can be used for example for choosing directions of wind turbines.



Discussion

To argue about the novelty and advantages of the method presented in Chapters 3
and 4, let us first consider the one-dimensional case. As we have mentioned already
the classical nonparametric tolerance intervals defined in Section 2.3 have the same
asymptotic behavior as the small nonparametric tolerance intervals, introduced in
Chapter 3. However the indices of the order statistics that define the classical
tolerance intervals are chosen beforehand and in the case of skew, asymmetric dis-
tributions like, e.g., Pareto or exponential distributions the length of the classical
nonparametric tolerance intervals may be much greater than of the small nonpara-
metric tolerance intervals (see Tables 3.2 and 3.3). In addition since the tolerance
intervals obtained by the new method are the shortest intervals that contain a cer-
tain number or order statistics, it is obvious that they will never be longer than the
classical tolerance intervals. Furthermore it is difficult and unnatural to extend the
classical procedure to higher dimensions, since an ordering has to be introduced on
IRk, k > 1. In contrast to this, the new method can be extended naturally to higher
dimensions by using minimum volume sets.

The common procedures for multivariate nonparametric tolerance regions in IRk,
k ≥ 1, are based on statistically equivalent blocks or on density estimation (see, Sec-
tion 2.4). The method based on statistically equivalent blocks, depends on auxiliary
ordering functions and is essentially a one-dimensional procedure. The tolerance
regions obtained by this method are exact, however they are not always asymptot-
ically minimal and have a shape that is difficult to work with. The other approach,
that is based on density estimation is more attractive and yields asymptotically
minimal tolerance regions. Though it is (very) conservative since for the tolerance
regions it is only required that

lim inf
n→∞

αn ≥ α,

(see Definition 2.3). Note as well that since the method is based on a density
estimator some regularity conditions have to be satisfied.

In contrast to these methods, the new method is based on an indexing class and
therefore the shape of the tolerance regions can be chosen conveniently. Furthermore
when this indexing class includes the class of level sets the small tolerance regions
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are asymptotically minimal, hence best possible. Generally, these tolerance regions
are asymptotically correct, have better convergence rate than the tolerance regions
based on the density estimation from Section 2.4 and are affine equivariant. Note
that in principal method based on density estimation can be very smooth, this was
shown by the simulation results in Sections 3.3 and 4.4, however it is important to
choose the proper bandwidth. Note as well that the results obtained in Chapters 3
and 4 hold under very mild conditions.



Part II

P-P plots
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Chapter 5

Brief review

5.1 Introduction

Graphical methods in nonparametric statistics have a long history and are nowa-
days commonly used for analyzing data. Recent developments in computer science
and its interaction with statistics and in particular with the theory of nonparametric
statistics made the practical applications of the graphical methods even more possi-
ble. As a result of this interaction, highly developed statistical packages are used in
almost all scientific fields that deal with large quantities of raw, empirical data and
graphical methods are used to visualize the performed analysis. The graphical meth-
ods are generally applied while investigating location, scale, skewness, kurtosis or
other differences in two-sample problems; symmetry or goodness of fit-problems for
one sample; analysis of covariance, k-sample or other multivariate procedures. An
extensive review and bibliography of graphical methods in nonparametric statistics
can be found in, e.g., Doksum (1977), Gnanadesikan (1977), Fisher (1983), Sawitzki
(1994).

Most of the graphical methods are based on diagnostic plots. The simplest
examples of diagnostic plots: histograms, empirical distribution functions or box-
plots, can be found in every elementary statistical textbook. The plots are often
used for detecting validity of the model or analyzing data in an already defined
model. Therefore fitting diagnostic or other plots is a necessary step during the data
analysis. It is usually required that strong theory supports these fitting procedures
and often features as power or reliability of the diagnostic plots are considered.

Citing Fisher (1983) “in nonparametric statistics probably the most powerful and
useful graphical methods are those based on comparison of the sample distribution
functions”. The most prominent example of those methods are based on probability-
probability (P-P) and related plots as quantile-quantile (Q-Q) plots, pair charts,
receiver operating characteristic (ROC) curves, proportional hazards plots, etc.. In
this and the following chapter we will study P-P and related plots.
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5.2 Probability-probability plots

5.2.1 Definitions

The classical P-P plot {(F (x), G(x)) : x ∈ IR} is based on the univariate distribution
functions F and G and is generally used to compare them (see Figure 5.1). Clearly,
the plot begins at (0, 0) and ends at (1, 1), and if the distribution functions are
identical, the plot is a straight line, otherwise we will obtain a curve with various
shapes depending on the difference of F and G. It is visible from the Figure 5.1
that the plot is much more sensitive to differences between these two functions in
the center of their mass, then in their tails. The P-P plot can also be identified with
the graph of the function

{F ◦G−1(y) : y ∈ (0, 1)}, (5.1)

where G−1 is the inverse function of G for a strictly increasing, continuous G,
otherwise it is presumed to be the generalized inverse function defined as

G−1(y) = inf{x : G(x) ≥ y}, y ∈ (0, 1). (5.2)

The receiver operating characteristic (ROC) curve defined as

{1− F ◦G−1(1− y) : y ∈ (0, 1)} (5.3)

is closely related to the P-P plot and hence results for this curve are immediately
obtained using the corresponding results for P-P plots. Generally, the ROC curve
is used in signal theory, psychology, radiology, medicine, etc. (see, e.g., Swets and
Pickett (1982), Li et al. (1996), Hsieh and Turnbull (1996)).

For testing the null hypothesis H0 : F ≡ G in the one-sample case, when a
sequence of i.i.d. random variables X1, X2, . . . has a common unknown distribution
function F , the classical P-P plot can be estimated by the empirical version

{Fn ◦G−1(y) : y ∈ [0, 1]}, (5.4)

where Fn is the empirical distribution function based on X1, . . . , Xn. Figure 5.2
shows the empirical P-P plots for n = 100, corresponding to the theoretical plots of
Figure 5.1.

For the two-sample problem, where two sequences X1, X2, . . . and Y1, Y2, . . . of
univariate random variables, from unknown distribution functions F and G are
given, we want to compare these samples. For n,m ≥ 1, define the empirical P-P
plot as

{Fn ◦G−1
m (y) : y ∈ (0, 1)}, (5.5)

where G−1
m (y) = inf{x : Gm(x) ≥ y}, for y ∈ (0, 1), Fn is the empirical distribu-

tion function based on a sample X1, . . . , Xn, and Gm is the empirical distribution
functions based on a pooled sample X1, . . . , Xn, Y1, . . . , Ym or on the second sample
Y1, . . . , Ym.
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Figure 5.1: P-P plots of Normal(µ, σ) against Normal(0,1) distribution.

From the plots related to the P-P plots the quantile-quantile (Q-Q) plots have
been studied most frequently. The Q-Q plots were first used by Lorenz (1905)
for comparing two independent samples. In Gnanadesikan (1977), Fisher (1983),
Aly (1986b), etc. the properties of these plots are studied profoundly. For the
continuous, univariate distribution functions F and G for each y ∈ (0, 1), F−1(y) =
G−1(y), if these distribution functions are identical. Then for arbitrary univariate
distribution functions F and G, the Q-Q plot is defined as {(F−1(y), G−1(y)) : y ∈
(0, 1)}, where these inverse functions are defined as in (5.2). Similarly to P-P plots,
Q-Q plots can also be represented as {F−1 ◦ G(x) : x ∈ IR}. Again when F is not
assumed to be continuous, F−1 will denote this generalized inverse function. The
empirical Q-Q plot is defined as

{F−1
n ◦G(x) : x ∈ IR} (5.6)

and
{F−1

n ◦Gm(x) : x ∈ IR}, (5.7)

respectively. When F and G are identical, the Q-Q plot will be a straight line with
slope one. Note that the linearity will not change when the functions F and G only
differ in intercept or scale, however the plot will have a different location and slope.
Note also that a Q-Q plot is more sensitive to differences between F and G in the
tails of the distributions than in the centers.



66 Brief review

µ = 1, σ = 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ = 2, σ = 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ = 0, σ = 2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ = 1, σ = 2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 5.2: Empirical P-P plots of Normal(µ, σ) against Normal(0,1) distribution.

Nonparametric statistics based on P-P plots and modifications have been stud-
ied widely (see, e.g., Gnanadesikan (1977), Parzen (1993), Beirlant and Deheuvels
(1990), Sawitzki (1994), Deheuvels and Einmahl (1992), Polonik (1999), Nair (1981,
1982), Aly (1986a), Girling (2000), etc.).

5.2.2 Approximations of P-P and Q-Q plot processes

We maintain the notations introduced above. Consider the classical two-sample
comparison problem in nonparametric statistics. Suppose X11, . . . , X1n1 , n1 ≥ 1,
and X21, . . . , X2n2 , n2 ≥ 1, are two independent samples from the distribution
functions F1 and F2, respectively, and let Fjnj be the empirical distribution function
based on the sample Xj1, . . . , Xjnj , for j = 1, 2. When Fj and F−1

j , for j = 1, 2,
are continuous, by the Glivenko-Cantelli theorem we obtain that for any ε > 0 and
n2 large enough

F2(x)− ε ≤ F2n2(x) < F2(x) + ε for all x ∈ IR a.s..

Since F−1
2n2

is the generalized inverse of F2n2 we obtain that

F−1
2 (y − ε) ≤ F−1

2n2
(y) < F−1

2 (y + ε) for all y ∈ (0, 1) a.s.,
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then for each y ∈ (0, 1) there exists δ > 0, such that

F−1
2 (y)− δ ≤ F−1

2 (y − ε) ≤ F−1
2n2

(y) < F−1
2 (y + ε) ≤ F−1

2 (y) + δ a.s..

Hence for each fixed y ∈ (0, 1),

|F1n1(F−1
2n2

(y))− F1(F−1
2 (y))| ≤ |F1n1(F−1

2n2
(y))− F1(F−1

2n2
(y))|

+ |F1(F−1
2 (y))− F1(F−1

2 (y))| → 0, a.s. n1, n2 →∞.
(5.8)

Similarly for each x ∈ (a, b), with

a := inf{x : F2(x) > 0} and b := sup{x : F2(x) < 1},

we obtain that

|F−1
1n1

(F2n2(x))− F−1
1 (F2(x))| → 0, a.s. n1, n2 →∞. (5.9)

Hence, empirical P-P and Q-Q plots converge pointwise to their theoretical counter-
parts with probability one. The next step is to investigate the rates of convergence
of the weighted difference of the empirical and theoretical plots.

Assuming that F1 has density f , define P-P and Q-Q plot processes based on
P-P and Q-Q plots as follows

∆n1n2(y) =
√

n1n2

n1 + n2

(
F1n1(F−1

2n2
(y))− F1(F−1

2 (y))
)
, y ∈ (0, 1). (5.10)

and

Γn1n2(x) =
√

n1n2

n1 + n2
f
(
F−1

1 (F2(x))
)(
F−1

1n1
(F2n2(x))−F−1

1 (F2(x))
)
, x ∈ (am, bm).

(5.11)
It is proved in Beirlant and Deheuvels (1990) that under certain conditions, under

the null hypothesis H0 : F1 ≡ F2, the P-P plot process ∆n1n2 is distribution-free,
and so is the Q-Q plot process Γn1n2 after changing its scale x = F−1

2 (y). They
showed as well that these processes converge in distribution to Brownian bridges
(with the rate n−1/4(log n)1/2(log log n)1/4, where nj = nj(n) → ∞ as n → ∞,
j = 1, 2, which is optimal in the setting of Beirlant and Deheuvels (1990)).

5.2.3 Applications of P-P plots

Observe that testing procedures based on the P-P plot are rather straightforward.
In general, for a given random sample X1, . . . , Xn, n ≥ 1, having a common un-
known distribution function F , one has to define the empirical distribution function
Fn to test the null hypothesis H0 : F = F0, using P-P plots. Here, F0 is a given dis-
tribution function. In this case, the limiting distribution of the test statistic defined
in terms of the empirical P-P plot, can be derived when the asymptotic behavior
of Fn is known. Consider, for example, the goodness-of-fit problem for randomly
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censored data in the i.i.d. case; suppose that X1, X2, . . . and U1, U2, . . . are two
independent sequences of nonnegative i.i.d. random variables with continuous dis-
tribution functions F and H, where Xi, i ≥ 1, denote uncensored random variables
and Ui, i ≥ 1, these random censoring times. Suppose also that the functions F
and H are unknown, and that the null hypothesis we want to test is H0 : F = F0,
where F0 is a given distribution function. Then Fn can be defined as the Kaplan-
Meier estimator of the true lifetime distribution function F . Nair (1981) introduced
the test statistics based on the weighted difference of the F0 and Fn functions and
derived the limiting distributions of these statistics under the null hypothesis, using
the fact that

√
n(Fn(x) − F (x)), x ∈ (0, T ) with 0 < F (T )H(T ) < 1, converges

in distribution to a Gaussian process. He also constructed the simultaneous con-
fidence bands for P-P, Q-Q and hazard plots (see Nair (1981)). Similarly, for the
two-sample problem in the case of censorship, the Kaplan-Meier product-limit esti-
mators of lifetime distributions can be used to define the P-P plots and to establish
strong approximations of the empirical P-P plot process based on these plots (see
Deheuvels and Einmahl (1992)).

In the other application considered below, the P-P plot is used as an aid in calcu-
lating the test statistics for the Wald and Wolfowitz runs test, the Wilcoxon/Mann-
Whitney test and modifications. Suppose that X1, . . . , Xn and Y1, . . . , Ym are two
independent samples, then the Mann-Whitney-Wilcoxon statistic MWW can be rep-
resented as the area of the region bounded by the empirical P-P plot (5.5) and the
lines x = 1 and y = 0. Hence

MWW :=
1
nm

∑
i

∑
j

δij =
∫
Rnm

dxdy, (5.12)

where

δij =


0 if Xi < Yj ,
1
2 if Xi = Yj ,

1 if Xi > Yj .

and Rnm in the region under the empirical P-P plot. Other versions of the Mann-
Whitney-Wilcoxon rank statistics, also the trimmed and censored ones can be rep-
resented in a similar way, using the region under the empirical P-P plot or ROC
curve (see, e.g., Quade (1973), Girling (2000)).

5.2.4 Multivariate P-P and Q-Q plots

The plots considered until now were defined in the one-dimensional case. Since
these plots are based on the quantile transformation, there is no straightforward way
of generalizing these fitting procedures into higher dimensions. However, one can
define multivariate P-P and Q-Q plots based on the generalized quantile functions
defined in Section 1.4. In Polonik (1999) multivariate P-P and Q-Q plots are defined
and the procedure for a goodness-of-fit test based on these plots is proposed for the
multivariate case. However, the author calls these plots C-C plots, since they contain
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information on the concentrations of the comparing distributions. The C-C plots are
defined in terms of generalized MV-sets. Recall that MV-sets defined in Section 1.3
can be represented using empirical generalized quantile functions, when the real-
valued function λ ≡ V is the Lebesgue measure. In Polonik (1999) generalized
MV-sets and generalized empirical MV-sets are defined similarly to the MV-sets,
for the case when λ is an arbitrary real-valued function.

Suppose X1, X2, . . . is a sequence of random vectors taking values in IRk, k ≥ 1,
from a distribution P . In the notation of Chapter 1 for a class A ⊂ B and a fixed
t ∈ [0, 1], sets AP,t, APn,t ∈ A are called the generalized MV-set and generalized
empirical MV-set, respectively, iff

AP,t ∈ argmin
A∈A

{
λ(A) : P (A) ≥ t

}
and

APn,t ∈ argmin
A∈A

{
λ(A) : Pn(A) ≥ t

}
,

where Pn is the empirical distribution based on sample X1, . . . , Xn. Then under
the assumption that the generalized MV-sets are determined uniquely up to λ-
nullsets, for testing the null hypothesis H0 : P ≡ P0, the C-C plot is defined as the
combination of the multivariate P-P and Q-Q plots, respectively, {P (AP0,t) : t ∈
[0, 1]} and {P (AP0,t) : t ∈ [0, 1]}. The empirical versions of these plots are defined
as {Pn(AP0,t) : t ∈ [0, 1]} and {P0(APn,t) : t ∈ [0, 1]}. A diagnostic plot consisting
of these two graphs is called an empirical C-C plot. Polonik (1999) showed that
both graphs in the theoretical C-C plot are straight lines through the origin with
slope one iff P ≡ P0. In addition, he showed that certain test statistics based on
the P-P and Q-Q plot processes are asymptotically distribution-free.





Chapter 6

Generalized P-P plots

6.1 Introduction and the testing procedure

As mentioned in the previous chapter the P-P plot is a commonly used graphical
method in hypothesis testing. In this chapter we introduce the generalized P-P plot
and the generalized P-P plot process for testing goodness-of fit and two-sample
problems for fixed and contiguous alternatives.

Suppose X1, . . . Xn, n ≥ 1, is a given random sample with values in IR, having
a unknown common distribution P , that is absolutely continuous with respect to
Lebesgue measure. To test the null hypothesis H0 : P ≡ P0, with P0 a given
distribution, absolutely continuous with respect to Lebesgue measure, define the
generalized P-P plot process

Mn(t) = sup
P0(A)=t
A∈A

√
n
(
Pn(A)− t

)
, t ∈ [0, 1],

where A is the class of the closed intervals (defined in the next section), V (A), A ∈ A
is the Lebesgue measure of the set A and Pn is the empirical distribution function
based on the sample X1, . . . , Xn. Based on the P-P plot process Mn, construct the
test statistic Tn defined as

Tn = sup
t∈[0,1]

Mn(t).

For the testing procedure use the critical region [Cα,∞), where Cα is the solution
of the following equation

IP{ sup
V (A)=t
A∈A

B(A) > Cα} = α,

and B is a Brownian bridge indexed be the class A. The simulated values of Cα for
α = 0.05 are presented in Table 6.1 below. In the following section we show that
the proposed test
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• is distribution-free under the null hypothesis;

• is consistent against all fixed alternatives;

• is easy to visualize due to the P-P plots.

We also consider contiguous alternatives and derive the limiting distribution on the
generalized P-P plot process for this case. The corresponding two-sample problem
is also considered and treated similarly.

6.2 One-sample problem

6.2.1 Fixed alternatives

Let X1, . . . , Xn, n ≥ 1, be a sequence of i.i.d. random variables defined on a prob-
ability space (Ω,F , IP ) taking values in IR, from an unknown common distribution
P , that is absolutely continuous with respect to Lebesgue measure and has the cor-
responding distribution function F . Let B denote the Borel σ-algebra on IR, d0 the
pseudo-metric on B and Pn the empirical distribution of the sample X1, . . . , Xn,
n ≥ 1, as defined in Section 1.2.

We want to test the null hypothesis H0 : P = P0 against the alternative H1 :
P 6= P0, where P0 is a given probability measure, absolutely continuous with respect
to Lebesgue measure. Let F0 denote the distribution function corresponding to P0.

Set A ⊂ B to be the class of all closed and half open intervals A = [x, y], (−∞, y]
or [x,∞), with x, y ∈ IR such that 0 < P0(A) < 1.

Define the main object of our interest, the generalized empirical P-P plot as

mn(t) := sup{Pn(A) : P0(A) ≤ t, A ∈ A}, t ∈ [0, 1].

Figures 6.1 and 6.2 show the examples of the theoretical and empirical versions of
the generalized P-P plot. Observe that when A would be {(−∞, y] : y ∈ IR} we
would obtain that mn is the classical P-P plot. Define the generalized empirical P-P
plot process as

Mn(t) :=
√
n
(

sup{Pn(A) : P0(A) ≤ t, A ∈ A} − t
)
, t ∈ [0, 1].

Then under the null hypothesis

Mn(t) = sup{
√
n(Pn(A)− P0(A)) : P0(A) ≤ t, A ∈ A}

= sup{αn(v)− αn(u) : P0([u, v]) = t, 0 ≤ u < v ≤ 1}
= sup{Γn(v)− Γn(u) : v − u = t, 0 ≤ u < v ≤ 1}
= sup{Γn(A) : V (A) = t, A ∈ A[0,1]},

where αn(t), t ∈ [0, 1], is the empirical process and Γn(A) := Γn(v) − Γn(u−),
A = [u, v] is the uniform empirical process indexed by the class A[0,1], that is the
restriction of A on [0, 1]. This implies that the process Mn is distribution-free under
the null hypothesis.
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Figure 6.1: Generalized P-P plots of Cauchy(µ, σ) against Cauchy(0,1) distribution.

Let us now recall the Skorokhod construction for IR-valued random variables
from Section 1.2; there exists a probability space (Ω̃, F̃ , ĨP ), carrying processes
α̃n(t) =

√
n(F̃n(t)− F (t)), n ≥ 1, and B̃(F (t)), t ∈ IR, such that

sup
t∈IR
|α̃n(t)− B̃(F (t))| → 0 a.s., n→∞. (6.1)

Define processes α̃n, n ≥ 1, and B̃P indexed by the class A as

α̃n(A) := α̃n(t)− α̃n(s−),

B̃P (A) := B̃(F (t))− B̃(F (s)), A = [s, t] ∈ A.
(6.2)

The process B̃P is P -Brownian bridge, indexed by A, and (6.1) implies that

sup
A∈A
|α̃n(A)− B̃P (A)| → 0 a.s., n→∞. (6.3)

From (6.3) it is easy to obtain the following statement. We will drop the tildes for
notational convenience.

Theorem 6.1 When P = P0, we have as n→∞,

sup
t∈[0,1]

∣∣∣Mn(t)− sup
V (A)=t
A∈A

B(A)
∣∣∣→ 0 a.s.. (6.4)
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Observe that Theorem 6.1 is the special case of Theorem 6.2 when Hn ≡ 0.
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Figure 6.2: Generalized Empirical P-P plots of Cauchy(µ,σ) against Cauchy(0, 1)
distribution for n = 100.

Then from Theorem 1.1 we obtain that for any function ψ : D → IR that is
(D,B)-measurable and continuous on C for the supremum metric,

ψ(Mn(t)) w→ ψ
(

sup
V (A)=t
A∈A

B(A)
)
, as n→∞ t ∈ [0, 1],

hence
Tn = sup

t∈[0,1]

Mn(t) d−→ sup
A∈A

B(A) = sup
0≤u<v≤1

(B(v)−B(u)). (6.5)

Let us now show that Tn is consistent (against all fixed alternatives). Observe
that when P 6= P0, there exists t0 ∈ (0, 1), such that for some A∗ ∈ A, P0(A∗) = t0
and P (A∗) > t0, then suppose P (A∗) = t0 + ε, for some ε > 0. Then trivially for n
large enough with probability one

Mn(t0) = sup
P0(A)=t0
A∈A

(
αn(A) +

√
n(P (A)− P0(A))

)
≥αn(A∗) +

√
nε,

(6.6)
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and hence
sup
t∈[0,1]

Mn(t)→∞ a.s., n→∞.

6.2.2 Contiguous alternatives

The concept of absolute continuity of two measures in context of asymptotic theory
has been generalized by the concept of contiguity of two sequences of measures. By
definition the sequence of probability measures Q(n)

n≥1 is contiguous with respect
to the sequence of probability measures P (n)

n≥1 if for any sequence of measurable
sets An, lim

n→∞
P (n)(An) = 0 implies lim

n→∞
Q(n)(An) = 0. Contiguity of probability

measures has been studied widely in many applications. Contiguity of two sequences
of measures implies their closeness in Hellinger distance, which is strongly related
to the total variational distance. The last plays an important role in defining the
optimality of goodness-of-fit or two-sample tests (see, e.g., Oosterhoff and van Zwet
(1979)).

Let again X1, . . . , Xn, n ≥ 1, be a sequence of i.i.d. random variables defined
on a probability space (Ω,F , IP ) taking values in IR, from an unknown common
distribution P , that is absolutely continuous with respect to Lebesgue measure and
has the corresponding distribution function F .

Our goodness-of-fit test for contiguous alternatives will consist of the following;
suppose that under the null hypothesis each Xi has a known distribution P0 (H0 :
P = P0), that is absolutely continuous with respect to Lebesgue measure and its
corresponding distribution function F0 is continuous. Suppose under the alternative
hypothesis each Xi has a distribution P

(n)
1 (H1 : P = P

(n)
1 ) defined by(

dP
(n)
1

dP0
(x)

)1/2

= 1 +
1

2
√
n
hn(x), (6.7)

and let F (n)
1 denote this corresponding distribution function. Clearly P

(n)
1 , n ≥ 1,

is absolutely continuous with respect to P0. The necessary and sufficient conditions
for contiguity that is of interest to us are as follows

lim
n→∞

∫
IR

h2
n(x)dP0(x) <∞, (i)

nIP1

{
Xi ∈

{
x :

dP
(n)
1

dP0
(x) > Kn

}}
→ 0, for any sequence Kn →∞ (ii)

(see e.g. Oosterhoff and van Zwet (1979)). Here IP1 denotes the probability measure
on (Ω,F) when P = P

(n)
1 . Note that when hn ≡ 0 from (6.7) we obtain that

these conditions remain true. Hence the alternative hypothesis implies the null
hypothesis. Therefore while dealing with the testing procedures, assume that under
the alternative hn 6≡ 0.
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In the literature often a stronger condition than (i) and (ii) is considered. Some-
times we will assume that there exists a function h such that

0 <
∫
IR

h2(x)dP0(x) <∞ and
∫
IR

(hn(x)− h(x))2dP0(x)→ 0, n→∞. (iii)

Next define a sequence of functions indexed by the class of sets A ∈ B, where A
and B were defined above

H(A) :=
∫
A

h(x)dP0(x), Hn(A) :=
∫
A

hn(x)dP0(x) (6.8)

and ∥∥hn∥∥A :=
[ ∫

A

h2
n(x)dP0(x)

] 1
2

A ∈ A.

Let us now investigate the limiting behavior of the generalized P-P plot process
when (6.7), (i) and (ii) hold. Again apply Skorokhod construction, then there exists
a probability space (Ω̃, F̃ , ĨP ) carrying processes α̃n(t), n ≥ 1, B̃(F (n)

1 (t)), n ≥ 1,
and B̃(F0(t)), with t ∈ IR, such that

sup
t∈[0,1]

|α̃n(t)− B̃(F (n)
1 (t))| → 0 a.s., n→∞. (6.9)

Define processes α̃n, n ≥ 1, B̃P1 , n ≥ 1, and B̃P0 all indexed by the class A

α̃n(A) := Γ̃n(F (n)
1 (t))− Γ̃n(F (n)

1 (s−)),

B̃P1(A) := B̃(F (n)
1 (t))− B̃(F (n)

1 (s)),

B̃P0(A) := B̃(F0(t))− B̃(F0(s)), A = [s, t] ∈ A.

(6.10)

The processes B̃P0 and B̃P1 are P0- and P (n)
1 -Brownian bridges, indexed by A. Note

that since for all n ≥ 1, P (n)
1 is absolutely continuous with respect to P0, the process

B̃P1 will be uniformly continuous in d0 on A. Then (6.9) and (6.10) imply that

sup
A∈A
|α̃n(A)− B̃P1(A)| → 0 a.s., n→∞. (6.11)

Henceforth, we will drop the tildes for the notational convenience.

Theorem 6.2 In the setting above when (6.7) holds, under conditions (i) and (ii)
we have that

sup
t∈[0,1]

∣∣∣Mn(t)− sup
P0(A)=t
A∈A

(
BP0(A) +Hn(A)

)∣∣∣→ 0 a.s. n→∞. (6.12)
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Note that as Theorem 6.2 is stated for the alternative hypothesis, it implies the
corresponding statement for the null hypothesis, when hn ≡ 0.

It is easy to see that the condition (iii) implies (i) and (ii) and hence the following
corollary to Theorem 6.2 holds true.

Corollary 6.1 Theorem 6.2 remains true when condition (i) is replaced by condi-
tion (iii).

Second corollary to Theorem 6.2 deals with the case of random-size samples,
which occurs often in practice. Let Nn, n ≥ 1, be a sequence of random variables
defined on the probability space (Ω,F , IP ), taking values in IN and independent
from the sample X1, X2, . . .. Suppose also that

Nn
IP→∞.

Then by the Skorokhod construction as above there exists a probability space, car-
rying independent versions of αn, n ≥ 1, and Nn, n ≥ 1, and the version of the
Brownian bridge. We skip tildes for convenience. Then

Nn →∞ a.s. n→∞

and the following result follows immediately from Theorem 6.2.

Corollary 6.2 Suppose conditions (i) and (ii) hold, then

sup
t∈[0,1]

∣∣∣MNn(t)− sup
P0(A)=t
A∈A

(
BP0(A) +HNn(A)

)∣∣∣→ 0 a.s. n→∞, (6.13)

where

MNn(t) :=
√
Nn
(

sup{PNn(A) : P0(A) ≤ t, A ∈ A} − t
)
, t ∈ [0, 1].

Remark 6.1 (Scan statistics.) Generally, the scan statistic is defined in terms of
continuous scanning with a window of fixed length. Since the scan statistic searches
for the maximum mass it can be used for testing for uniformity (see, e.g., Dijkstra
et al. (1984)). The test statistic Tn defined above is an analogue of the scan statistic,
though the length of its scanning window varies and this makes possible to detect
clusters of small unknown size.

6.3 Two-sample problem

6.3.1 Fixed alternatives

Similar to the previous section, first consider the two-sample problem for fixed alter-
natives. Let X11 . . . , X1n1 , n1 ≥ 1, and X21 . . . , X2n2 , n2 ≥ 1, be two independent
random samples defined on a probability space (Ω,F , IP ), taking values in IR, from
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unknown distributions P1 and P2, respectively. Suppose as well that for j = 1, 2,
Pj is absolutely continuous with respect to Lebesgue measure and has distribu-
tion function Fj . Our two-sample problem consists of testing the null hypothesis
H0 : P1 = P2 against the alternative H1 : P1 6= P2. Let B,A and d0 be as defined
in the previous section.

Define the generalized empirical P-P plot as

mn1n2(t) := sup{Pn1(A) : Pn2(A) ≤ t, A ∈ A}, t ∈ [0, 1].

(Observe that here as well when A would be {(−∞, y] : y ∈ IR} we would get the
classical empirical P-P plot.) Then the generalized P-P plot process can be defined
as

Mn1n2(t) :=
√
n1n2

n

(
sup{Pn1(A) : Pn2(A) ≤ t, A ∈ A} − t

)
, t ∈ [0, 1].

Similar to the one-sample case, by using the probability integral transform we
obtain that Mn1n2 is distribution-free under the null hypothesis. The following
statement holds true on some probability space {Ω̃, F̃ , ĨP} and is the special case of
Theorem 6.4 below when Hn1n2 ≡ 0.

Theorem 6.3 When P1 = P2, we have

sup
t∈[0,1]

∣∣∣Mn1n2(t)− sup
V (A)=t
A∈A

B(A)
∣∣∣→ 0 a.s. n→∞. (6.14)

Note that it is again easy to show that Mn1n2 is consistent (for all fixed alter-
natives).

6.3.2 Contiguous alternatives

Let {X1i}n1
i=1, n1 ≥ 1, and {X2i}n2

i=1, n2 ≥ 1, be two independent sequences of i.i.d.
random variables on a probability space (Ω,F , IP ).

The generalization of one-sample problem to two-sample problem is rather evi-
dent. For the distributions P (n)

1 and P (n)
2 of X1i and X2i, respectively, we have that

under the null hypothesis P (n)
1 = P

(n)
2 = P0, where P0 is a probability measure ab-

solutely continuous with respect to Lebesgue measure. While under the alternative
P

(n)
1 and P

(n)
2 depend on n1 and n2 and satisfy the following equations(

dP
(n)
1

dP0
(x)

) 1
2

= 1 +
1
2

√
n2

n1n
h1n(x), (6.15)

(
dP

(n)
2

dP0
(x)

) 1
2

= 1− 1
2

√
n1

n2n
h2n(x), (6.16)
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with n = n1 + n2, n1 = n1(n) and n1 →∞ if n→∞;
n2 = n2(n) and n2 →∞ if n→∞.

Here as well we assume that these measures are contiguous and state the neces-
sary and sufficient conditions for contiguity:

njIPj

{
Xi ∈

{
x :

dP
(n)
j

dP0
(x) > Kn

}}
→ 0, for any sequence Kn →∞; (iv)

lim
n→∞

∫
IR

h2
jn(x)dP0(x) <∞ for j = 1, 2, (v)∫

IR

(
h1n(x)− h2n(x)

)2
dP0(x)→ 0, n→∞, (vi)

where for j = 1, 2 IPj denotes the probability measure on (Ω,F) when P = P
(n)
j . As

in the one-sample case the alternative hypothesis implies the null hypothesis here as
well. Hence assume that hjn 6≡ 0, j = 1, 2, while performing the testing procedure.
Note that the condition (vi) together with (v) for j = 1, implies (v) for j = 2. For
each n ≥ 1, define the sequence of functions Hn1n2 indexed by the class of closed
intervals A,

Hn1n2(A) :=
n2

n

∫
A

h1n(x)dP0(x) +
n1

n

∫
A

h2n(x)dP0(x). (6.17)

Observe that if h1n ≡ h2n =: hn, we obtain that Hn1n2 ≡ Hn, with Hn as in the
previous section. Set∥∥hjn∥∥A :=

[ ∫
A

h2
jn(x)dP0(x)

] 1
2

for j = 1, 2. (6.18)

Let Pjnj be the empirical distribution of the sample Xj1, . . . , Xjnj , nj ≥ 1, j = 1, 2

Pjnj (B) =
1
nj

nj∑
i=1

IB(Xji), B ∈ B.

For each t ∈ [0, 1] and n1, n2 ≥ 1, define the two-sample generalized P-P plot
process

Mn1,n2(t) :=
√
n1n2

n

(
sup{P1n1(A) : P2n2(A) ≤ t, A ∈ A} − t

)
. (6.19)

As we proceed behavior of this process will be our main interest. Similarly to the
one-sample case we will construct Gaussian processes BjPj and BjP0 indexed by
the class of closed intervals A. Consider two independent sequences Uj1, . . . , Ujnj ,
nj ≥ 1, for j = 1, 2 of i.i.d. uniform random variables defined on some probability
space (Ω′,F ′, IP ′) with values in [0, 1]. Let Γjnj be the uniform empirical process

Γjnj (t) =
1
√
nj

nj∑
i=1

[
I[0,t](Uji)− t

]
, t ∈ [0, 1], nj ≥ 1, for j = 1, 2.
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The process Γjnj converges weakly to a Brownian bridge Bj in (D,D) and the pro-
cesses B1 and B2 are independent. Given this weak convergence by the Skorokhod
construction there exists a probability space (Ω̃, F̃ , ĨP ) and a sequence of the random
processes Γ̃j1, Γ̃j2, . . . in (D,D) and independent processes B̃j in (C, C) all defined
on the same probability space (Ω̃, F̃ , ĨP ), with

B̃j
d= Bj , Γ̃jnj

d= Γjnj , nj ≥ 1,

and
sup
t∈[0,1]

|Γ̃jnj (t)− B̃j(t)| → 0 a.s., nj →∞, j = 1, 2. (6.20)

For j = 1, 2 define the processes α̃jnj , nj ≥ 1, B̃jPj , nj ≥ 1, and B̃jP0 indexed by
the class A

α̃jnj (A) := Γ̃jnj (F
(n)
j (t))− Γ̃jnj (F

(n)
j (s−)),

B̃jPj (A) := B̃j(F
(n)
j (t))− B̃j(F (n)

j (s)),

B̃jP0(A) := B̃j(F0(t))− B̃j(F0(s)), A = [s, t] ∈ A,

(6.21)

where F (n)
j is the distribution function corresponding to P

(n)
j , for j = 1, 2. Note

that
α̃jnj (A) =

√
nj
(
P̃jnj (A)− P (n)

j (A)
)
, for j = 1, 2, (6.22)

where P̃jnj is the empirical measure of the triangular array of the sequence of random
variables

{
(F (n)
j )−1(Ũji)

}
i≥1

. Then (6.20) yields

sup
A∈A

∣∣α̃jnj (A)− B̃jPj (A)
∣∣→ 0 a.s., nj →∞, j = 1, 2. (6.23)

The processes B̃jPj and B̃jP0 are P (n)
j - and P0-Brownian bridges, respectively, and

B̃1P1 and B̃2P2 are independent as are B̃1P0 and B̃2P0 processes.
For each n1, n2 ≥ 1 construct the process B̃(n)

P0
as follows

B̃
(n)
P0

(A) :=
√
n2

n
B̃1P0(A)−

√
n1

n
B̃2P0(A), A ∈ A. (6.24)

Note that for each fixed n, B̃(n)
P0

is a P0-Brownian bridge.
From now on we will drop the tildes, for notational convenience.

Theorem 6.4 Assume that the probability measures P (n)
1 and P (n)

2 defined by (6.15)
and (6.16) satisfy conditions (iv) and (v), then with probability one

sup
t∈[0,1]

∣∣∣Mn1,n2(t)− sup
P0(A)=t
A∈A

(
B

(n)
P0

(A) +Hn1n2(A)
)∣∣∣→ 0, n→∞. (6.25)
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6.4 Numerical results

In this section we use the setting and notation introduced in Section 6.2. Let us
first give a brief description of an algorithm for simulating the test statistic Tn. For
a given sample X1, . . . , Xn, n ≥ 1, rewrite mn as

mn(t) = sup
v−u=t

0≤u<v≤1

Pn([u, v]),

where Pn([u, v]) is the empirical measure of the interval [u, v], of the transformed
sample F0(X1), . . . , F0(Xn). It is easy to see that mn is right continuous step-
function taking values 1/n, 2/n, . . . , 1, hence we have to obtain its jumping points.
Since each observation can be covered by the closed interval of length 0,

mn(t) = 1/n for 0 ≤ t < min
1≤i≤n−1

{Y(i+1) − Y(i)},

where Y(i)’s are the ordered statistics of Yi = F0(Xi), 1 ≤ i ≤ n. Then for k,
0 ≤ k ≤ n− 1,

mn(t) =
k + 1
n

,Wk ≤ t < Wk+1,

where W0 = 0 and Wk = min
1≤i≤n−k

{Y(i+k) − Y(i)}, 1 ≤ k ≤ n − 1, are the jumping

points of mn. Now computing Tn is trivial.

sample size 10 20 50 100 ∞
critical value 1.58 1.6 1.59 1.598 1.64

Table 6.1: Critical values of the statistic Tn when α = 0.05.

Each performed simulation presented here consists of 10 000 replications. In
Table 6.1 the simulated critical values, corresponding to α = 0.05, for the test
statistic Tn are given. These critical values can be used to obtain the empirical
power of the test statistic. In Table 6.2 simulated values of the empirical power of
Tn are presented for:

(a) testing uniformity against the alternative with the density g(x) = 1
2
√
x

,
x ∈ [0, 1];

(b) goodness-of-fit test: alternative Cauchy (1,1) against null distribution
Cauchy (0,1);

(c) goodness-of-fit test: alternative Beta (2,1) against null distribution
Normal ( 2

3 ,
1

3
√

2
),

In case (c) the parameters of the Normal distribution were chosen such that it has
the same µ and σ as the Beta (2,1). As we mentioned above the test statistic Tn
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resembles the scan statistic with its structure, and hence can be used for testing
uniformity against spike alternatives (test (a)). Indeed, Table 6.2 shows that the
test is highly powerful in the case (a) as well as in the cases (b) and (c).

sample size 10 20 50 100 ∞
test (a) 0.12 0.26 0.64 0.93 1
test (b) 0.37 0.89 0.99 1
test (c) 0.68 1

Table 6.2: Empirical powers of the goodness-of-fit tests.

In Table 6.3 simulated empirical power when testing uniformity against the con-
tiguous alternatives are presented. Suppose that in (6.7) hn ≡ g, and consider two
examples of the function g:

(1) g1(x) = 9 I[0, 1
10 ](x) + (−1)I( 1

10 ,1](x), for x ∈ [0, 1];

(2) g2(x) = −2 I[0, 12 ](x) + 2 I( 1
2 ,1](x), for x ∈ [0, 1].

Simulation results show that the test is not equally powerful for these alternatives,
though for all cases the simulated empirical power is greater than α.

sample size 10 20 50 100
g1 0.06 0.07 0.14 0.24
g2 0.29 0.35 0.36 0.36

Table 6.3: Empirical powers for contiguous alternatives.

6.5 Proofs

Here we present the proofs of Sections 6.2 and 6.3

Proof of Theorem 6.2 From (6.7) we have that

dP
(n)
1

dP0
(x) = 1 +

1√
n
hn(x) +

1
4n
h2
n(x).

Then for A ∈ A

P
(n)
1 (A) = P0(A) +

1√
n

∫
A

hn(x)dP0(x) +
1

4n

∫
A

h2
n(x)dP0(x)

= P0(A) +
1√
n
Hn(A) +

1
4n

∥∥hn∥∥2

A
.

(6.26)
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By the absolute continuity of P0 we obtain from (6.26)

Mn(t)

=
√
n sup{Pn(A)− t : P0(A) = t, A ∈ A}

= sup
{√

n
(
Pn(A)− P (n)

1 (A)
)

+
√
n
(
P

(n)
1 (A)− P0(A)

)
: P0(A) = t, A ∈ A

}
= sup

{
αn(A) +Hn(A) +

1
4
√
n

∥∥hn∥∥2

A
: P0(A) = t, A ∈ A

}
,

(6.27)

which yields

sup
t∈[0,1]

∣∣∣Mn(t)− sup
P0(A)=t
A∈A

(
BP0(A) +Hn(A)

)∣∣∣
= sup
t∈[0,1]

∣∣∣ sup
P0(A)=t
A∈A

(
αn(A) +Hn(A) +

1
4
√
n
‖hn‖2A

)
− sup
P0(A)=t
A∈A

(
BP0(A) +Hn(A)

)∣∣∣ ≤ sup
t∈[0,1]

[
sup

P0(A)=t
A∈A

∣∣αn(A)−BP1(A)
∣∣

+ sup
P0(A)=t
A∈A

∣∣BP1(A)−BP0(A)
∣∣+ sup

P0(A)=t
A∈A

1
4
√
n

∥∥hn∥∥2

A

]
(6.28)

≤ sup
A∈A

∣∣αn(A)−BP1(A)
∣∣+ sup

A∈A

∣∣BP1(A)−BP0(A)
∣∣+

1
4
√
n

∥∥hn∥∥2

IR
(6.29)

To complete our proof we have to show that with probability one each term in
(6.29) converges to zero. By (6.26) and condition (i) it remains to show that

sup
A∈A
|BP0(A)−BP1(A)| → 0 a.s., n→∞. (6.30)

By the uniform continuity of B this follows from

sup
A∈A
|P0(A)− P (n)

1 (A)| → 0, n→∞. (6.31)

However, this is equivalent to the following

sup
A∈A

∣∣∣ 1√
n
Hn(A) +

1
4n

∥∥hn∥∥2

A

∣∣∣→ 0, n→∞. (6.32)

Observe that

sup
A∈A

∣∣∣∣ 1√
n

∫
A

hn(x)dP0(x) +
1

4n

∫
A

h2
n(x)dP0(x)

∣∣∣∣
≤ sup
A∈A

∣∣∣∣ 1√
n

∫
A

hn(x)dP0(x)
∣∣∣∣+ sup

A∈A

1
4n

∫
A

h2
n(x)dP0(x).

(6.33)
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Further by the Cauchy-Schwarz inequality for any A ∈ A

lim
n→∞

∫
A

|hn(x)|dP0(x) ≤ lim
n→∞

√∫
IR

h2
n(x)dP0(x)

∫
IR

I2
A(x)dP0(x) (6.34)

= lim
n→∞

√
P0(A)

∫
IR

h2
n(x)dP0(x) ≤ lim

n→∞

√∫
IR

h2
n(x)dP0(x) <∞.

And finally (6.33), (6.34) and condition (i) imply (6.32) and consequently (6.31). �

Proof of Theorem 6.4 From (6.15) and (6.16) we obtain that for A ∈ A

P
(n)
1 (A) = P0(A) +

√
n2

n1n

∫
A

h1n(x)dP0(x) +
n2

4n1n

∫
A

h2
1n(x)dP0(x), (6.35)

P
(n)
2 (A) = P0(A)−

√
n1

n2n

∫
A

h2n(x)dP0(x) +
n1

4n2n

∫
A

h2
2n(x)dP0(x). (6.36)

Then trivially

√
n1n2

n

(
P

(n)
1 (A)− P (n)

2 (A)
)

= Hn1n2(A) +

√
n3

2

16n1n3

∥∥h1n

∥∥2

A
−

√
n3

1

16n2n3

∥∥h2n

∥∥2

A
.

(6.37)

Rewrite Mn1,n2 as follows,

Mn1,n2(t) a.s.=
√
n1n2

n
sup

{(
P1n1(A)− t

)
: P2n2(A) =

bn2tc
n2

, A ∈ A
}
.

Using equations in (6.37) and (6.22) obtain that

Mn1,n2(t) a.s.= sup
P2n2 (A)=t
A∈A

[√
n2

n
α1n1(A)−

√
n1

n
α2n2(A) +Hn1n2(A)

+

√
n3

2

16n1n3

∥∥h1n

∥∥2

A
−

√
n3

1

16n2n3

∥∥h2n

∥∥2

A
+
√
n1n2

n

(
t− t

)]
,

(6.38)
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with t := bn2tc
n2

. Then (6.38) imply that with probability one

sup
t∈[0,1]

∣∣∣Mn1,n2(t)− sup
P0(A)=t
A∈A

(
B

(n)
P0

(A) +Hn1n2(A)
)∣∣∣

= sup
t∈[0,1]

∣∣∣∣ sup
P2n2 (A)=t
A∈A

[√
n2

n
α1n1(A)−

√
n1

n
α2n2(A) +Hn1n2(A)

+

√
n3

2

16n1n3

∥∥h1n

∥∥2

A
−

√
n3

1

16n2n3

∥∥h2n

∥∥2

A
+
√
n1n2

n

(
t− t

)]

− sup
P0(A)=t
A∈A

(
B

(n)
P0

(A) +Hn1n2(A)
)∣∣∣∣.

(6.39)

For the sake of readability, introduce some notations

A0t := {A : P0(A) = t, A ∈ A},

A(n)
2t := {A : P2n2(A) = t, A ∈ A},

W
(n1n2)
t (A) :=

√
n3

2

16n1n3

∥∥h1n

∥∥2

A
−

√
n3

1

16n2n3

∥∥h2n

∥∥2

A
+
√
n1n2

n

(
t− t

)
.

Split the absolute value in (6.39) into two parts. First consider

sup
t∈[0,1]

{
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A∈A(n)
2t
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n
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)}
,

(6.40)

which, by (6.24), is equal to

= sup
t∈[0,1]
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)}
.

(6.41)
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Observe that (6.41) is bounded from above by

≤ sup
A∈A

√
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n
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)∣∣∣∣∣.

(6.42)

Similarly it can be shown that the other part of the absolute value in (6.39) is also
bounded by the expression in (6.42). Using the same arguments as in the previous
section and the uniform continuity of BjPj and BjP0 , respectively, for j = 1, 2, we
obtain

sup
A∈A
|BjP0(A)−BjPj (A)| → 0 a.s., nj →∞, for j = 1, 2. (6.43)

Hence by (6.23) and condition (v) it remains to show that

sup
t∈[0,1]

∣∣∣∣∣ sup
A∈A(n)

2t

(
B

(n)
P0

(A) +Hn1n2(A)
)
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A∈A0t

(
B

(n)
P0

(A) +Hn1n2(A)
)∣∣∣∣∣→ 0

a.s., n→∞.

(6.44)

On the other hand, since B(n)
P0

+Hn1n2 is d0-uniformly equicontinuous with proba-
bility one (see Lemma 6.1 below), using a similar argument as in (6.41) we have to
show that

sup
t∈[0,1]

sup
A2∈A(n)

2t

inf
A0∈A0t

d0(A2, A0)→ 0 a.s., n→∞ (6.45)

and
sup
t∈[0,1]

sup
A0∈A0t

inf
A2∈A(n)

2t

d0(A2, A0)→ 0 a.s., n→∞. (6.46)

We can also state (6.45) as follows: for every ε > 0 we can choose Nε ≥ 1 such that
for n ≥ Nε and for all t ∈ [0, 1], A2 ∈ A(n)

2t there exists a set A0 = A0(A2, ε, t) ∈ A0t

and
P0(A24A0) < ε a.s..

Take an arbitrary ε > 0. Observe that there exists N (1)
ε ≥ 1 such that for n ≥ N (1)

ε

and for all t ∈ [0, 1] and all A2 ∈ A(n)
2t , |P (n)

2 (A2) − t| < ε
2 a.s.. Next choose

N
(2)
ε ≥ 1 such that for n ≥ N

(2)
ε and for all A2 ∈ A(n)

2t , |P0(A2) − P (n)
2 (A2)| < ε

2 .
Set Nε := max(N (1)

ε , N
(2)
ε ). Then trivially for n ≥ Nε and for all A2 ∈ A(n)

2t

|P0(A2)− t| < ε a.s..
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However, since P0 is absolutely continuous with respect to Lebesgue measure, there
exists a set A0, with P0(A0) = t and A0 ⊂ A2 or A0 ⊃ A2 and hence

P0(A24A0) < ε a.s..

Note that (6.46) can be treated similarly. Hence (6.44) is true and thus we have
proved the theorem. �

Lemma 6.1 The collection of continuous functions {B(n)
P0

+ Hn1n2 : n ∈ IN} is
d0-uniformly equicontinuous.

Proof By definition a collection of continuous functions F from some metric space
(S, e) into other metric space (X, d) is d-uniformly equicontinuous if for every ε > 0
there is a δ > 0 such that e(x, y) < δ implies d(f(x), f(y)) < ε for all x and y in S
and all f in F . We prove the statement using the well-known fact on a modulus of
continuity of a standard Brownian bridge B, (see, e.g., Shorack and Wellner (1986))

lim
a↓0

sup|t−s|≤a |B(t)−B(s)|√
2a log(1/a)

= 1 a.s..

Then by a simple transformation the similar result for P0-Brownian bridge is true

lim
a↓0

sup
d0(A1,A2)≤a
A1,A2∈A

|BP0(A1)−BP0(A2)| → 0 a.s..

Since almost sure convergence yields convergence in probability and the sequence of
P0-Brownian bridges have the same distribution, following holds trivially

lim
a↓0

sup
d0(A1,A2)≤a
A1,A2∈A

|B(n)
P0

(A1)−B(n)
P0

(A2)| d−→ 0. (6.47)

By the Skorokhod-Dudley-Wischura theorem there exists a probability space where
the result corresponding to (6.47) holds almost surely. For convenience we will not
change our notations. Hence for any ε > 0 there is small a such that for all n ≥ 1

sup
d0(A1,A2)≤a
A1,A2∈A

|B(n)
P0

(A1)−B(n)
P0

(A2)| < ε a.s.

and this implies that {B(n)
P0

: n ∈ IN} is d0-uniformly equicontinuous.
Let A1, A2 ∈ A. Consider∣∣∣Hn1n2(A1)−Hn1n2(A2)
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≤ n2

n

∫
IR

IA14A2(x)
∣∣h1n(x)

∣∣dP0(x) +
n1

n

∫
IR

IA14A2(x)
∣∣h2n(x)

∣∣dP0(x). (6.48)

By the Cauchy-Schwarz inequality since d0(A1, A2) = P0(A14A2)∫
IR

IA14A2(x)
∣∣hjn(x)

∣∣dP0(x) ≤

√∫
IR

h2
jn(x)dP0(x)

∫
IR

IA14A2(x)dP0(x)

=
√
d0(A1, A2)

√∫
IR

h2
jn(x)dP0(x).

However, by the condition (v) the sequence ‖hjn‖IR, n ≥ 1 for j = 1, 2, is uniformly
bounded, hence for any ε > 0 there exists a δ > 0 such that for all n1, n2 ∈ IN and
any A1, A2 ∈ A, with d0(A1, A2) < δ we will have that

|Hn1n2(A1)−Hn1n2(A2)| < ε.

Thus Hn1n2 is d0-uniformly equicontinuous as well. �



Discussion

The generalized P-P plots introduced in Chapter 6 globally preserve the properties
of the classical P-P plots. The presented one- and two-sample tests, based on these
plots, are general and flexible. The test statistic is easy to compute, using the simple
algorithm from Section 6.4. Since the P-P plot process and, consequently, the test
statistic is distribution-free under the null hypothesis, we were able to simulate
critical values for the case of a finite sample (see Table 6.1). The testing procedure
is consistent against all fixed alternatives. The values of the empirical power are
indeed quite satisfactory (see Table 6.2).

The proposed test statistic resembles the classical scan statistic by its structure,
however it has a window with varying length. The spike alternatives are therefore
natural to consider. Although the considered indexing class is the class of closed
intervals, thus allowing the detection of only one spike, the procedure can be gen-
eralized for the class of finite unions of closed intervals.

The case of the contiguous alternatives is studied and the limiting distribution
of the test statistic is derived. Some numerical results for the empirical power for
these alternatives are given in Table 6.3.
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Samenvatting

Beschouw n onafhankelijke, identiek verdeelde stochastische vectoren met waarden
in IRk, k ≥ 1. Om eigenschappen van multivariate data te onderzoeken wordt
vaak een ordening van de data gebruikt. In Einmahl and Mason (1992) worden
hiervoor echter univariate functies van het quantiel-type gëıntroduceerd, zonder dat
een ordening nodig is. Naast voorbereidende resultaten en definities (o.a. de Sko-
rokhodconstructie en minimum-volume verzamelingen) wordt in Hoofdstuk 1 het
begrip gegeneraliseerde quantielen gedefineerd en kort toegelicht. De diverse keuzes
van index-klassen A en reële functies λ, gedefinieerd op A, die de gegeneraliseerde
quantielen definiëren, maken het mogelijk om deze functies te gebruiken in verschei-
dene niet-parametrische statistische procedures.

In dit proefschrift worden twee toepassingen van gegeneraliseerde quantielen
bestudeerd. In deel I introduceren we een nieuwe methode voor het construeren van
niet-parametrische multivariate tolerantiegebieden, terwijl in deel II een geheel ander
gebied van de niet-parametrische statistiek wordt behandeld. Hier bestuderen we
één- en twee-steekproevenproblemen met behulp van gegeneraliseerde Probability-
Probability (P-P) plots.

Een speciaal geval van gegeneraliseerde quantielfuncties brengt ons tot minimum-
volume verzamelingen, welke leiden tot een nieuwe benadering van niet-parametri-
sche multivariate tolerantiegebieden. Klassieke niet-parametrische tolerantieinter-
vallen zijn intervallen met twee order statistics als eindpunten, waarbij op voorhand
wordt besloten welke order statistics worden gebruikt. Omdat de klassieke methode
is gebaseerd op ordening, is er geen natuurlijke wijze om deze methode uit te breiden
naar hogere dimensies. Om dit probleem op te lossen werden “statistisch equivalente
blokken” en ordeningsfuncties gëıntroduceerd. Echter, omdat deze ordeningsfunc-
ties willekeurig gekozen kunnen worden, kan men gebieden met volkomen verschil-
lende vormen krijgen. Bovendien zijn deze gebieden niet noodzakelijk asymptotisch
minimaal. De andere benadering uit de literatuur voor het construeren van multi-
variate tolerantiegebieden is gebaseerd op dichtheidsschatten en geeft asymptotisch
minimale tolerantiegebieden. Deze en andere begrippen uit de literatuur m.b.t.
niet-parametrische tolerantiegebieden worden gepresenteerd in Hoofdstuk 2.

In Hoofdstukken 3 en 4 definiëren we niet-parametrische tolerantiegebieden als

99



100 Samenvatting

minimum-volume verzamelingen voor respectievelijk Euclidische en directionele data.
In tegenstelling tot de klassieke methode, definiëren we het tolerantiegebied als het
kleinste gebied dat een bepaald aantal waarnemingen bevat. We breiden dit idee uit
naar hogere dimensies door middel van het definiëren van tolerantiegebieden als de
minimum-volume verzamelingen voor een zekere index-klasse, die kan worden gespe-
cialiseerd tot de klasse van verenigingen van een constant eindig aantal ellipsöıden,
hyperrechthoeken of convexe verzamelingen voor Euclidische data en tot de klasse
van cirkelbogen en bolsegmenten voor directionele data. We leiden een asymptotis-
che theorie af voor deze tolerantiegebieden onder zeer zwakke voorwaarden en laten
zien dat ze asymptotisch minimaal zijn met betrekking tot de index-klasse. Een
simulatiestudie en toepassingen op echte data worden gepresenteerd aan het eind
van deze hoofdstukken.

Zoals reeds opgemerkt, bestuderen we in het tweede deel van dit proefschrift, één-
en twee-steekproevenproblemen voor identieke, onafhankelijk verdeelde reëelwaar-
dige stochasten met behulp van P-P plots. Grafische methoden zoals P-P plots
worden dikwijls toegepast in de niet-parametrische statistiek. In Hoofdstuk 5 pre-
senteren we een beknopt literatuuroverzicht voor klassieke P-P plots en modificaties,
terwijl we in Hoofdstuk 6 gegeneraliseerde P-P plots introduceren. Deze plots zijn
gedefinieerd via indicering met intervallen en behouden, globaal gesproken, de eigen-
schappen van de klassieke P-P plots. Met behulp van deze gegeneraliseerde P-P
plots, bestuderen we het één- en twee-steekproevenprobleem voor vaste en naburige
alternatieven. We laten zien dat het gegeneraliseerde P-P plot proces, en dus ook de
hiervan afgeleide toetsingsgrootheid, verdelingsvrij is onder de nulhypothese en dat
de procedure consistent is (voor alle vaste alternatieven). In het geval van naburige
alternatieven leiden we de limietverdeling van de toetsingsgrootheid af. Bovendien
worden enkele numerieke resultaten over onderscheidingsvermogen gepresenteerd.
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