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Optimal Free Parameters in
Orthonormal Approximations
Albertus C. den Brinker and Harm J. W. Belt,Member, IEEE

Abstract— We consider orthonormal expansions where the
basis functions are governed by some free parameters. If the
basis functions adhere to a certain differential or difference
equation, then an expression can be given for a specific en-
forced convergence rate criterion as well as an upper bound
for the quadratic truncation error. This expression is a function
of the free parameters and some simple signal measurements.
Restrictions on the differential or difference equation that make
this possible are given. Minimization of either the upper bound
or the enforced convergence criterion as a function of the free
parameters yields the same optimal parameters, which are of a
simple form. This method is applied to several continuous-time
and discrete-time orthonormal expansions that are all related to
classical orthogonal polynomials.

Index Terms—Orthogonal functions, parameter estimation,
polynomials, transforms.

I. INTRODUCTION

A PPROXIMATIONS of functions by a set of orthonormal
functions is an often applied technique. Examples are the

use of orthogonal polynomials [1], [2]; the use of Laguerre,
Hermite, and Kautz functions in system identification ([3] and
references therein), and signal coding [4]–[6].

In many cases, the set of orthogonal functions depends on
one or more free parameters. In that case, it is of interest to
establish the optimal free parameters in the case of a limited
number of expansion terms. Since the free parameters appear
in the error criterion in a nonlinear way, they are usually hard
to find: Many local minima may occur in the error surface.
Further, one would like to establish these parameters before
actually engaging the orthonormal expansion.

Therefore, the question is can we, and if we can how,
can we establish these free parameters based on (preferably
some simple) signal measurements only. Such an approach
has been considered before [7] but there it was restricted
to orthonormal functions adhering to a linear second-order
differential or difference equation. In this paper, we extend
these results and explicitly give the restrictions that have to be
imposed on the differential or difference equation.

The specific form of the differential or difference equation
results in a simple upper bound for the quadratic truncation
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error as well as an expression for an enforced convergence rate
criterion. Both expressions are in essence identical and are a
function of the free parameters and some signal measurements
only. These expressions can be minimized by taking the
derivative with respect to the free parameters and setting this
equal to zero. This yields an expression for the free parameters
directly in terms of a limited number of signal measurements.

This method is applied to orthonormal functions related to
classical orthonormal polynomials where differential or differ-
ence equations and weight function adhere to the restrictions
mentioned earlier. It extends results described earlier [8]–[11].

II. CONSIDERED SETS OF ORTHONORMAL FUNCTIONS

Let be a real-valued non-negative weight function
over some finite or infinite continuous interval or a discrete
interval, which are both denoted by The inner product of
two real-valued functions is denoted by

(1)

for continuous-time functions or

(2)

for discrete-time functions. The continuous intervalis re-
stricted to the three fundamental cases or

Let be a complete set of orthonormal
functions in the space of real-valued functions in or

The orthonormality is expressed by

(3)

where denotes the Kronecker delta. It is assumed that
this set of orthonormal functions depends on one or more
parameters denoted by, where the parameter setconsists of
continuous real variables and where is a continuous
function of these free parameters. Last, it is required that the
weight function be independent of the parameters

Let the orthonormal functions adhere to the equation

(4)

where is a linear operator defined as

(5)
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for continuous-time functions or

(6)

for discrete-time functions with and the forward
shift operator: Further, is a
monotonically increasing function of independent of and

Without loss of generality, we can take since if
, then this term can be absorbed in the operator

Last, we require that each coefficient is a finite sum
of separable functions in and the free parameters, i.e.,

(7)

III. SQUARED-ERROR CRITERION: AN UPPERBOUND

For a real-valued function in or , we
have

(8)

From the orthonormality, we have , and is a
function of the free parameters

In practical situations, we are interested in finite approxi-
mations of a function according to

(9)

The relative quadratic error in this approximation is given by

(10)

For , the upper bound

(11)

can be found [7], where

(12)

The upper bound in (11) is attained at a certain ,
i.e., , only for the functions

, where and are arbitrary
real numbers [7].

In view of the assumed separability of the coefficients,
the function is dependent on a limited number of signal
measurements, namely

(13)

or

(14)

for and Since it was
assumed that the weight function is independent of the free
parameters, the signal measurements are independent

of the parameter set; hence, the name signal measurements
is appropriate. These signal measurements have been called
“moments” because is often a polynomial in

Consider the class of functions having equal “moments”
as defined by (13) or (14). Thus, there is a single function

applicable to this whole class, i.e.,

(15)

Having only these moments at hand, it is clear that the best
estimate for an appropriate choice of the free parameters in
an orthonormal series expansion is obtained by taking the
derivative of and setting this equal to zero. This leads to

(16)

for each of the parameters of The optimal parameter set
is a solution of this set of equations. From a mathematical point
of view, it is not even clear if there exists a solution, if there
is a single global minimum of , and if this set of equations
yields an explicit expression for the optimal parameters. We
refrain from studying the constraints on the functions
Instead, we argue that from the problem formulation, we do
expect that an optimal parameter setexists. Furthermore, the
examples show that indeed simple expressions evolve for the
optimal parameters (see Section V).

Another question that arises is the following: Having mini-
mized and thus the upper bound for , is there is a
function within the class for which the error criterion
assumes the upper bound in the minimum at? The answer
is, in general, negative. Such a function should not only have
the right “moments” but, as stated before, must also be of
the form This latter form
has only two parameters ( and ), which is, in general,
clearly insufficient to attain the (arbitrary) “moments” of

We note that the statement that the procedure outlined above
yields the best parameters for the whole class of functions
having certain moments is rather weak. In practice, we are
not dealing with a whole class of functions but rather with
one specific function or a limited set of functions (not even
necessarily having the same moments). Further, these moments
are usually not the only available information. In fact, we
did actually set out to find an approximation of the form
(9); clearly, therefore, we dispose over more information.
Fortunately, there is another interpretation of this method.

IV. ENFORCED CONVERGENCERATE CRITERION

Consider the approximation of functions by some linear
combination of orthonormal functions as in (9). Further, con-
sider the criterion

(17)
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Taking as a monotonically increasing function of,
minimization of can be considered to be an enforced
convergence rate criterion.

From the previous section, it is immediately clear that by
taking , we have

(18)

and, thus, that optimization of this criterion with respect to
yields the same result as the minimization of the upper bound

for the previously considered criterion
In the examples (Section V), is of a very simple form,

namely, This specific form has a clear physical
interpretation since then, is the center of the energy
distribution in the coefficients of infinite orthonormal series,
and this is what we are minimizing. In that case, can be
used as a rule of thumb for the minimum number of terms,
say , that is needed to acquire some accuracy in the
approximation. We could use, say, as a rule
of thumb.

Consider the functions , where is not
necessarily equal to the number of terms in the approximation

It is clear that for at , we have
Using a Taylor series for , it can be shown that the
derivative of with respect to at equals zero (see
Appendix). Therefore, the parameter that determines
is indeed one of the solutions of (16). Thus, if , then
the outlined procedure results in an approximation for which
we have

This does not hold more generally. Suppose we have a
function that for some can be written exactly as an-
terms orthonormal series, i.e., the function is within the model
set for some value of Then, the procedure will, in general,
not return this value , and thus, the obtained “optimal” value
of is not the best in terms of minimization of This
is not surprising since the “optimal” value ofis not defined
as a minimization of but as a minimization of [or,
equivalently, as a minimization of an upper bound for
In practice, we do not consider this a serious problem since it
is not expected that is within the model set, and further, it
is still possible that an accurate approximation is found might
this situation arise.

Note that is a linear function of the “moments”
; see (15). Therefore, an extension [10] of this method is

possible to an enforced convergence rate criterion for several
functions at once by introducing a relative weight to each
function that is to be approximated. Let

(19)

where is the th measurement of theth function
, and is a positive weight that quantifies the

importance of the th function. Then, the optimal parameter
set is again a solution of the set of equations (16) but now
with the signal measurements of an individual function
replaced by the average signal measurements

TABLE I
CLASSICAL ORTHOGONAL POLYNOMIALS; WEIGHT FUNCTION

AND COEFFICIENTS IN THE DIFFERENTIAL EQUATION

V. ORTHONORMAL FUNCTIONS ASSOCIATED

WITH ORTHOGONAL POLYNOMIALS

In this section, we will apply the outlined optimization
procedure to transformations related to the classical orthogonal
polynomials.

A. Classical Orthogonal Polynomials

The classical orthogonal polynomials are the Jacobi, the
(generalized) Laguerre, and the Hermite polynomials [1],
[2]. The Jacobi polynomials have as special cases the Le-
gendre, the Chebyshev, and the Gegenbauer polynomials, and
these will not be treated here. The orthogonality interval is

and for the Jacobi, the generalized
Laguerre, and the Hermite polynomials, respectively.

The classical orthogonal polynomials adhere to a second-
order linear differential equation

(20)

where denotes differentiation. The coefficients and
are given in Table I. The free parameters and must all
be greater than The polynomials are orthogonal under a
weight function ; see Table I, for which

(21)

holds.
Functions , which are obtained from the th-order

orthogonal polynomials by

(22)

where is the normalization constant, are considered. In this
way, a set of functions that are orthonormal under a unit weight
function is obtained. Thus, the weight function is independent
of the free parameters involved in the orthogonal polynomials.

From (20)–(22), it easily follows that adheres to a
second-order linear differential equation, namely

(23)

with , and
In the case of an infinite interval (Hermite polynomials), we

can use scaling and translation of the independent variable
Thus, we obtain what we will call the Hermite functions

(24)

where denotes both the scale and the center
In the case of a semi-infinite interval, we define the Laguerre
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TABLE II
PARAMETERS IN THE DIFFERENTIAL EQUATION

FOR THE LAGUERRE AND HERMITE FUNCTIONS

TABLE III
LAGUERRE AND HERMITE FUNCTIONS: OPTIMAL FREE PARAMETERS AND THE

MINIMUM VALUE OF F ALL EXPRESSED INSIGNAL MEASUREMENTSONLY

functions by scaling the independent variablein the functions
according to

(25)

In this case, stands for the scale and for the order
of generalization For the Jacobi case, we define the Jacobi
functions directly as Then, denotes the
parameters and

We are now able to give the differential equation for these
functions in the form (4). The results are given in
Table II, with the exception of the Jacobi functions. These
cannot be given in a form where is independent of both
parameters and

We define the following signal measurements or “moments”

and assume that these exist for thosethat are used to
determine the free parameters of the orthogonal functions.
Note that these signal measurements are strictly positive
numbers for (Laguerre case) and for evenfor

(Hermite case). The definition of the moments
and is a bit of an abuse of the formerly outlined procedure
since there, we worked with normalized moments (i.e., relative
to the energy ) and used a completely different indexing.
The reason for introducing these “moments” is that it results
in simpler expressions.

Taking the derivative of with respect to the free parame-
ters and setting this equal to zero gives the explicit expressions
given in Table III. Note that it can be easily proved that

(Laguerre case) and (Hermite case)
are strictly positive numbers. Parts of these results have been
established before; see [8], [10], and [11].

TABLE IV
DISCRETE CLASSICAL ORTHOGONAL POLYNOMIALS: PARAMETERS, WEIGHT

FUNCTION, COEFFICIENTS IN THE DIFFERENCE EQUATION, AND

NORMALIZATION CONSTANTS. FOR THE KRAWTCHOUK CASE WE HAVE

q = 1� p: FURTHER, (b)n DENOTES THE POCHHAMMER SYMBOL

A similar procedure can be applied if one of the parameters
is fixed. Then, an expression for the other (free) parameter can
be obtained. This latter situation is not explicitly given here.

B. Discrete Classical Orthogonal Polynomials

The discrete classical orthogonal polynomials are the
Krawtchouk, Hahn, Charlier, and Meixner polynomials. The
discrete Chebyshev polynomials are a special cases of the
Hahn polynomials. Similar to the Jacobi polynomials, the
Hahn polynomials will, in general, not give rise to the required
form of a difference equation. Therefore, we will not treat this
case here. The discrete orthogonality intervalis
for the Krawtchouk polynomials and the non-negative integers
for the Charlier and Meixner polynomials. The parameters
appearing in the weight functions (see Table IV) are restricted
in the following way. The parameters(Krawtchouk) and
(Meixner) are restricted to the interval (0, 1). The parameters

(Charlier) and (Meixner) are positive real numbers.
The th-order discrete classical orthogonal polynomial

adheres to a second-order linear difference equation

(26)

The coefficients and are given in Table IV. The
polynomials are orthogonal under the weight function
(see Table IV), and thus

(27)

where is the normalization constant (see Table IV). Further,
for the weight function, we have

(28)

Functions , which are obtained from the th-order
orthogonal polynomials by

(29)

or

(30)
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are considered. In this way, functions that are orthonormal
under a unit weight function are obtained.

From (26), (28), (29), and (30), it easily follows that
adheres to a second-order difference equation, namely

(31)

where
, and For , the sign holds for

(29) and the sign for (30).
We will now introduce the Krawtchouk, Charlier, and

Meixner functions in such a way that both cases (29) and (30)
are incorporated and, further, that the basis functionsare
continuous functions of the free parameters. In the following
definitions, it is assumed that the leading term in the orthogonal
polynomial has a positive coefficient.

The Krawtchouk functionsare defined as

(32)
where is the parameter determining the Krawtchouk
polynomials Thus, the Krawtchouk functions exist for

Although the Krawtchouk polynomials are not
defined for , we have
Therefore, we allow as a natural extension and,
consequently, the parameterin the Krawtchouk functions
is limited to

The Charlier functionsare defined as

(33)

where is the parameter determining the Charlier
polynomials , and sgn denotes the signum function.
Thus, the Charlier functions exist for Although the
Charlier polynomials are not defined for , we have

Therefore, is allowed as
a natural extension, and consequently, the parameterin the
Charlier functions can assume any real value.

The Meixner functionsare defined as

(34)
where and are the parameters determining the
Meixner polynomials The Meixner functions exist for

Again, although the Meixner polynomials are not
defined for , we have
Thus, we allow as well, and the parameter in the
Meixner functions is restricted to

The definitions of the Krawtchouk, Charlier, and Meixner
functions do include the standard basis
Another nice feature of the given definitions is the following.
The transformation pair has the property that

and (35)

where is and , and is and
for the Krawtchouk, Charlier, and Meixner transformation,
respectively. Thus, the forward and backward transformations

TABLE V
PARAMETERS IN THE DIFFERENCEEQUATION FOR THE KRAWTCHOUK,

CHARLIER, AND MEIXNER FUNCTIONS. FOR THE KRAWTCHOUK

CASE WE USE r = [1� �
2]1=2 AS A SHORTHAND NOTATION

are identical apart from a sign in the free parameter vector.
This can be proved [12] from the similarity of the recurrence
and difference equations for the orthonormal functions defined
in (32)–(34).

Having the definitions, we can derive the differential equa-
tion for these functions in the form (4) and (6) with

The results are given in Table V. We see that only for
the Meixner functions, the separability (7) of the coefficients

does not hold with respect to the parameterTherefore,
the outlined method is not applicable for optimization over this
parameter. In the remainder,is assumed to be a constant.

We define the following signal measurements or “moments”

with for , and

for the Krawtchouk, Charlier, and Meixner case, respectively.
We are now able to construct the functions for these

cases [12]. Subsequently, by taking the derivative ofwith
respect to the parameter, we obtain the following results for
the optimal parameter

Krawtchouk Functions:

sgn (36)

where The measurement quantifies how
alternating subsequent samples of the functionare around

Therefore, the sign of determines the sign of
For the minimum of , we have

(37)

From the previous expression, it follows that for the center of
the energy distribution, we have This is
achieved by allowing both positive and negative values for
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Charlier Functions:

(38)

with, at this optimum

(39)

Meixner Functions (Fixed Parameter):

(40)

where For , the Meixner
functions are called the discrete Laguerre functions. Restricting
ourselves to nonnegative(thus, ), the results for
are in accordance with those reported earlier [7], [9]. Further,
for this minimum, we have

(41)

VI. DISCUSSION

We considered two criteria to establish the optimal param-
eters in series expansions using sets of orthogonal functions
associated with classical orthogonal polynomials. It was shown
that both criteria yield the same expression for the free
parameters.

However, the starting point in both cases is different. In the
first case, the optimality is defined over a class of functions
adhering to the same “moments.” In the second case, the
optimality is defined by a criterion over an individual function.
Since, in practice, we are dealing with a single function
rather than with a class of functions (let alone a class of
functions with identical “moments”), calculating the optimal
parameters with the outlined method is preferably interpreted
as an optimality in terms of the enforced convergence rate
criterion or, equivalently, a minimum of the center of the
energy distribution in the transform domain.

Instead of minimizing the center of the energy distribution
in the transform domain as is done for , it is also
appealing to consider the minimization of the effective width
of the energy distribution, especially with coding applications
in mind. This could be done by considering the function

if The function is the effective width of
the energy distribution in the transform domain and can, in
principle, be minimized with respect to In addition, this
optimization over can directly be given in terms of “mo-
ments” in the time domain, i.e., we can establish the optimal
free parameter before actually performing the transformation.
Thus, in a practical situation, we could restrict ourselves to the
calculation of the expansion coefficients within this effective
range.

Three remarks apply here [12]. First of all, the expressions
for are more involved than those for Second, setting
the derivative of with respect to equal to zero does not
yield a simple explicit expression for the optimal parameters
in any of the specific cases considered in this paper. Last, had

we minimized the effective width by taking the appropriate
, then the centrer of the energy distributionmight be far

from 0. This is an unwanted situation since the basis functions
are usually constructed via the recurrence relation. Thus,

in order to calculate the expansion coefficients within the
effective range, we have to calculate a lot of basis functions
that are subsequently not used in transformation. All three
remarks imply that establishing and applying the minimization
of the effective width of the transform would result in a large
computational load. Therefore, we consider the minimization
of to be the more practical approach.

APPENDIX

Consider the function We can expand
the center of the energy distribution in a Taylor series
around i.e.,

for sufficiently small (for convenience, we consider the
case where the free parameter vectoris a scalar). Then, we
want to show that at for the considered
function It is clear that ; see (12).

Consider the series expansion

with For the expansion coefficients, we have
the Taylor series

Using this Taylor series expansion in

with , we obtain

neglecting all terms with powers of greater than 1.
By taking the derivative with respect toof the orthonor-

mality condition and under the assumption of
real-valued basis functions , it is found that

Combining the previous two equations, we have the desired
result.
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