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cochlear-nucleus simulation, and multilayer perceptrons
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~Received 1 November 1994; revised 18 July 1995; accepted 24 July 1995!

An algorithm for detection of vowel onsets in fluent speech was presented by Hermes@J. Acoust.
Soc. Am.87, 866–873~1990!#. Performance tests showed that detection was good for fluent speech,
although the parameter settings had to be modified for application to well-articulated speech. One
of the purposes of the algorithm was application to speech by deaf persons, for which it failed
completely. In order to improve the algorithm and to make it more generally applicable, two
alternative detection strategies have been explored in the present study. These strategies were~a!
simulation of transient-chopper responses in the cochlear nucleus and~b! training of multilayer
perceptrons. Two large databases of read speech have been used for performance comparison of the
original algorithm and the new strategies. The strategy based on simulating cochlear-nucleus
responses is found both to result in a higher false-alarm rate than the original algorithm and to be
rather level dependent. On the other hand, the performance of a multilayer-perceptron network,
trained on mel-scaled spectra, is comparable to the performance of the Hermes algorithm. In more
general terms, the results suggest that temporal information on intensity and~rough! spectral
envelope are important for human vowel-onset detection behavior. Information on harmonicity can
be used as a secondary source of information to avoid detection of mainly unvoiced, nonvowel
onsets. ©1996 Acoustical Society of America.

PACS numbers: 43.72.Lc, 43.70.Fq, 43.64.Bt, 43.71.An

INTRODUCTION

A prominent characteristic of speech signals is the pres-
ence of simultaneous frequency modulation~FM! and ampli-
tude modulation~AM !. On a suprasegmental level, FM can
be found in the pitch contour, whereas AM is present in the
syllabic structure. The corresponding modulation frequen-
cies, disregarding phenomena like microintonation, are typi-
cally low: In general, the upper bounds are 8 Hz for FM and
5 Hz for AM ~e.g., Plomp, 1984!. On the segmental level,
FM and AM are most prominent in the so-called ‘‘fast tran-
sitions’’ that occur in the succession of two phonemes or in
diphthongs. The rate of those modulations often exceeds by
far the rate of suprasegmental FM and AM. There is growing
evidence that fast transitions are important for phoneme rec-
ognition. Especially in the case of a plosive-vowel combina-
tion, a short portion of the speech signal~typically 20–40
ms! appears to contain sufficient information for determina-
tion of the place of articulation of the consonant~e.g.,
Kewley-Portet al., 1983! or the identity of the vowel~e.g.,
Tekieli and Cullinan, 1979!. In general, much perceptually
relevant information is present in speech portions which
show substantial spectral change within a short time interval
~Strangeet al., 1983; Furui, 1986; Nossair and Zahorian,
1991!.

Hermes~1990! defines vowel onsets perceptually as the
moment in the syllable at which a listener starts to perceive
the vowel. He determined vowel onsets by using a so-called
gating paradigm~’t Hart and Cohen, 1964! in which short,
windowed portions of the speech signal are isolated and lis-

tened to. Using this paradigm, a phonetician can determine
vowel onsets with an average accuracy of at least 20 ms.
Agreement among different phoneticians will generally be
high, but may vary for different phonemic contexts. In the
Hermes~1990! study, vowel onsets are assumed to coincide
with speech portions which show large increments in inten-
sity in separated frequency channels of the auditory system.
As such, vowel onsets can be conceived of as a subset of the
class of fast transitions.

House~1990! showed that speech segments with consid-
erable spectral change play an important role in tonal percep-
tion in speech. The perceptual identity of a pitch movement,
i.e., which syllable it accentuates and how much it contrib-
utes to the prominence of the syllable, depends on the tem-
poral position of the pitch movement with respect to those
segments with considerable spectral change. Of these seg-
ments, the vowel onset appears to play the most important
role ~’t Hart and Cohen, 1973; ’t Hart and Collier, 1975;
House, 1990!. Furthermore, vowel onsets appear to play a
primary role in perceiving rhythm in speech~Rapp, 1971;
Allen, 1972; Cole and Scott, 1973; Eriksson, 1991!. In pho-
nology, the vowel onset corresponds to the transition from
syllable onset to syllable rhyme. At the syllable level, this
division is generally believed to be basic to the structure of
the syllable~Pike, 1947; Selkirk, 1982!. The theoretical issue
of the importance of the vowel onset for speech perception
will be readdressed in Sec. III.

In spite of these arguments concerning the relevance of
vowel onsets to speech perception, little attention has been
paid to the automatic detection of vowel onsets. Hermes
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~1990! introduces the concept of ‘‘vowel strength,’’ which is
a measure for the presence of both a formant structure, i.e.,
with pronounced maxima, as well as a harmonic structure,
i.e., a line structure, in the amplitude spectrum. Strong incre-
ments in vowel strength are supposed to signal the presence
of a vowel onset. Based on these ideas, Hermes~1990! pre-
sents an algorithm for the automatic detection of vowel on-
sets in natural speech, which we will refer to here as vowel-
strength measurement~VSM!. The algorithm was found to
perform quite satisfactorily for fluent speech: Approximately
10% of vowel onsets were missed, most of which before
unaccented schwas. For well-articulated isolated words,
some parameter settings of the algorithm had to be changed
for a satisfactory performance; otherwise, the number of
false alarms increased unacceptably. The algorithm was ap-
plied in a teaching system of intonation to profoundly deaf
persons~Kaufholz, 1992!. In this case as well, the perfor-
mance of the algorithm was judged to be unacceptable. As
the aim of this system was to improve the intonation of deaf
persons, the system could not be optimized for deaf speech.
Two independent strategies for improving VSM were at-
tempted: First, psychophysically inspired processing stages
were introduced~te Rietmole, 1991!, and second, cepstral
analysis was included~Kaufholz, 1992!. Neither strategy
could substantially reduce the number of missed onsets with-
out simultaneously increasing the number of false alarms.
More generally, the relative contributions of physical speech-
signal characteristics like intensity, harmonicity, and spectral
content, remained unclear.

This paper will describe further investigations of auto-
matic vowel-onset detection by comparing the performance
of VSM to two alternative automatic detection strategies.
The aim of the investigations is both to obtain more insight
into the underlying signal dimensions which play a role in
human vowel-onset detection, and to develop a better detec-
tion scheme. The rationale for comparing different schemes
is that such a method may help to derive what information is
required to model human vowel-onset detection. The paper
will focus on the description and evaluation of the alternative
strategies. In the evaluation, both missed-onset and false-
alarm rates as well as phonemic context of occurrence will
be analyzed.

As alternative vowel-onset detection strategies we have
chosen~a! to apply a model of the cochlear nucleus~CN!
developed by Meyer~1993a, b! and ~b! to train multilayer
perceptron~MLP! networks. In the case of the CN model, a
detection scheme will be presented that is based on simulated
transient-chopper responses. This detection scheme will be
referred to as cochlear-nucleus simulation~CNS!. The MLP
networks have been trained both with the simulated
transient-chopper responses and with conventional mel-
scaled amplitude spectra. We have compared VSM, CNS,
and the MLP networks by means of performance tests using
two speech databases. Both databases consisted of Dutch
read speech uttered by nonprofessional speakers: 18 and 24
speakers, respectively, with an equal number of male and
female speakers. Recording conditions of the databases were
good and excellent, respectively. The results give support to
the hypothesis that the important signal dimensions for hu-

man vowel-onset detection are both the increment of inten-
sity as well as the spectral envelope, and that harmonicity
serves as an additional source of information. The CNS de-
tection scheme yields missed-onset rates slightly higher than
VSM, and false-alarm rates that are considerably higher.
Moreover, the performance of the CNS scheme is seen to be
substantially level dependent. On the other hand, the perfor-
mance of a detection scheme based on an MLP network, with
mel-scaled spectra as input, is competitive with the perfor-
mance of VSM.

I. MODELS

In this section, the detection schemes will be presented:
first, the VSM algorithm will be briefly reviewed. Second,
both the auditory model and the corresponding vowel-onset
detection scheme CNS will be discussed, and finally, the
MLP-network architecture will be presented.

A. Vowel-strength measurement

The VSM algorithm is based on measurement of vowel
strength. This measure expresses~a! the weighted contribu-
tion of the harmonics to the pitch of a speech segment,1 and
~b! the degree to which a formant pattern is present in the
preprocessed amplitude spectrum of a pitch period within
that segment. Vowel strength is measured every 10 ms. Both
~a! and~b! show a high correlation to intensity so that vowel-
onset detection in VSM is based on spectral envelope, har-
monicity, and intensity.

In VSM, vowel onsets are associated with rapid incre-
ments in vowel strength. Such increments are detected by
finding the maxima of the smoothed derivative of the se-
quence of vowel-strength measurements. The impulse re-
sponse of the smoothed-derivative filter has a bipolar char-
acter; it is the sum of two Gaussians shifted in time and of
opposite sign, starting with a positive excursion. The effec-
tive duration of the filter is approximately 100 ms. A similar
filter is applied in the CNS detection scheme and the MLP
networks. An example of the time course of vowel strength is
given in Fig. 1~PM-sentence 13 ‘‘Eindelijk kwam de trein
op gang,’’ see Sec. II A!. The smoothed-derivative filter is
shown in the inset of Fig. 1. For further details of the VSM
algorithm, the reader is referred to Hermes~1990!.

B. Detection based on simulated transient-chopper
responses

If vowel onsets play a role in human speech perception,
it is reasonable to expect that the information required for
this process is encoded in the auditory pathway. The auditory
model ~Meyer, 1993a, b; Ainsworth and Meyer, 1994! ap-
plied in this study comprises simulations of responses in the
first two stages in the neural auditory pathway: the
cochlear or auditory nerve~AN! and the anteroventral co-
chlear nucleus~AVCN!. For these stages, however, no physi-
ological observations have been reported in the literature that
demonstrate any enhancement of vowel onsets in neural re-
sponses~Kortekaas and Meyer, 1994!. Nevertheless, simula-
tion of neural encoding of~speech! signals may be appropri-
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ate for automatic vowel-onset detection; the spectrotemporal
resolution of such simulations is approximately the same as
that of the auditory system. This means that such simulations
may contain information which is perceptually more impor-
tant. Moreover, several authors have demonstrated the per-
ceptual importance of onsets and offsets, which are enhanced
in simulated neural encoding and therefore more easily de-
tectable ~e.g., Darwin, 1984; Summerfield and Culling,
1992!. Furthermore, spectral contrast is enhanced, too, which
will be important for tracing resolved harmonics and formant
frequencies.

The initial motivation for investigating simulations of
peripheral auditory processes was based on the observation
of overshoot phenomena in the AN, like short-term adapta-
tion ~e.g., Smith and Zwislocki, 1975; Eggermont, 1985!.
The hypothesis was that, due to short-term adaptation, rapid
intensity increments and decrements in auditory channels are
strongly enhanced in the firing profiles of cochlear nerve
fibers. In the present context, rapid increments correspond to
vowel onsets. The idea was that vowel onsets can be detected
by measuring such strong simultaneous increments in chan-
nels corresponding to formant regions. It should be noted
that an alternative approach would be to concentrate on
phase locking in the auditory nerve. Several authors have
demonstrated that the spectral content of speech sounds is
preserved in the phase-locked activity of cochlear-nerve fi-

bers~e.g., Delgutte and Kiang, 1984a, b, c; Carney and Gei-
sler, 1986!.

Nerve fibers generally show a limited dynamic range,
normally extending 20–30 dB of differential sensitivity~e.g.,
Evans and Palmer, 1980!. Steady-state stimulation at levels
that exceed this range results in saturation of the fiber and as
a consequence, loss of differential coding. The dynamic
ranges of single nerve fibers generally are too small to pro-
vide differential coding over the whole dynamic range of
speech. On the other hand, the auditory system seems to be
provided with a continuum of nerve fibers with different
thresholds and dynamic ranges~Liberman, 1978!. Often a
categorization of nerve fibers into a low- and a high-
threshold population is made. A combination of the two
populations seems necessary for coding spectral information
in terms of discharge rate over the whole dynamic range of
speech.

Such a combination is found for the so-called stellate
cells in the AVCN~e.g., Rhode and Greenberg, 1992!. Stel-
late cells receive excitatory input from both low- and high-
threshold AN fibers whose characteristic frequencies are
within 1 Bark of the characteristic frequency of the stellate
cell ~Rhode and Smith, 1986; Blackburn and Sachs, 1990;
Rhode and Greenberg, 1992!. Moreover, the cell receives
inhibitory input from a relatively wide receptive field. The
response patterns that were physiologically recorded from
stellate cells are often characterized as ‘‘transient chopper’’
or ‘‘chop-T.’’ Such a response pattern is characterized by
initial regularity of discharge~‘‘chopping’’ ! followed by a
rapid transition to irregularity. Under stimulation with pure
tones, the dynamic range of chop-T cells is comparable to
the limited dynamic range of AN fibers. Nevertheless, physi-
ological recordings have shown that discharge profiles of
chop-T cells represent the spectrum of~speech! sounds over
a wide dynamic range. Therefore, simulation of chop-T re-
sponses seems to be appropriate for vowel-onset detection
~Kortekaaset al., 1994!. Blackburnet al. ~1990! showed, for
instance, that the formants of the synthetic vowel /}/ are
represented with high contrast in chop-T discharge rates over
a dynamic range of 35- to 75-dB sound-pressure level. Such
contrasts were not observed in the rate profiles of AN fibers.
These differences in spectral contrast can be modeled by
lateral inhibition which is present in the case of chop-T neu-
rons, but not in the case of AN fibers.

1. Auditory model

This section briefly describes the auditory model which
consists of a peripheral part and a chop-T-response simula-
tion part ~Meyer, 1993a, b!. The peripheral part consists of
the following stages:

~1! Gamma-tone filterbank with 32 4th-order IIR filters~De
Boer, 1969; Darling, 1991!. Center frequencies range
from 0.1 to 4.6 kHz at 0.5 Bark spacing. Each channel
has a bandwidth of one equivalent rectangular bandwidth
~ERB! ~van Compernolle, 1991!.

~2! Filter-output scaling for:
Human hearing-threshold adjustment~Fay, 1988!.
Dynamic-range extension~see below!.

~3! Inner-hair-cell model~Meddis, 1986, 1988!.

FIG. 1. Waveform of PM-sentence 13~top! and corresponding vowel
strength, as measured by VSM, as a function of time~bottom!. Aurally
detected vowel onsets are marked by vertical lines. The impulse response of
the smoothed-derivative onset filter is shown in the inset of the bottom
panel. Note that the time axes of vowel strength and the onset filter do not
match; the effective duration of the onset filter is approximately 100 ms.
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~4! Spike generation on the basis of expected firing rates.

The hearing thresholds are calculated for each channel by a
polynomial fit to the data reported in Fay~1988!.2 The
dynamic-range-extension stage is introduced for simulation
of two populations of nerve fibers; instead of adjusting the
parameters of the Meddis~1988! model, the signals that
drive the inner-hair-cell model are scaled. The two popula-
tions are specified as follows, where relative firing threshold
denotes the absolute firing threshold of the fiber relative to
the absolute hearing threshold~i.e., sensation level!:

Low-threshold fibers: relative fiber threshold of 0 dB,
dynamic range of 30 dB, and spontaneous activity of 50
spikes s21;
High-threshold fibers: relative fiber threshold of 15 dB,
dynamic range of 50 dB, and spontaneous activity of 15
spikes s21.

Simulation of CN responses is based on a point-neuron
model. The membrane potential is controlled by the
Goldman–Hodgkin–Katz equation~e.g., Brown, 1991! as a
function of concentration gradients and membrane perme-
ability. Each simulated neuron receives excitatory input from
neurons having the same center frequency. In addition, the
neuron receives inhibitory input from neurons which have
center frequencies between 1 Bark below, and 2 Bark above
the neuron’s center frequency. Both for excitation and inhi-
bition, afferent neurons are from both populations. Instead of
generating action potentials for the chop-T simulation, we
concentrate on the extracellular potential of the neuron rela-
tive to its firing threshold. We will refer to this potential as
‘‘activity.’’ The output of the chop-T simulation is the activ-
ity, as a function of time, of an array of 23 neurons. Best
frequencies of those neurons are in the range from 0.2 to 2.6
kHz, with 0.5-Bark spacing. For more details on the model,
the reader is referred to Meyer~1993a, b! and Ainsworth and
Meyer ~1994!.

2. Vowel-onset-detection scheme

The vowel-onset-detection scheme was developed with
the aim of applying phonetic knowledge to the process of
detecting vowel onsets in simulated chop-T responses. We
will refer to this scheme as cochlear nucleus simulation
~CNS! in the following. In the scheme, the simulated neuron
activity is averaged over two frequency bands which roughly
correspond to the regions of the first and second formant~see
Fig. 2!. The corresponding best frequencies are 0.2–1.1 kHz
for the first formant, and 0.9-2.6 kHz for the second-formant
band, respectively. These two bands can be conceived as a
rough representation of the spectral envelope within the first
and second formant region. The underlying idea of defining
two formant areas is the assumption that vowel onsets are
characterized by simultaneous and strong increase of activity
in these two bands. The scheme traces such increases of
activity ~‘‘vowel-onset candidates’’! and applies a number of
criteria to discard onsets other than vowel onsets.

The averaged activity is low-pass filtered by means of
leaky integration to obtain the signalsAL(t) andAH(t) for
the first- and second-formant band, respectively. The23-dB
point of the LP filter is at;25 Hz. Subsequently, we take the

smoothed derivative ofAL(t) andAH(t), as described in Sec.
I A, which results in the signalsOL(t) andOH(t). Vowel-
onset candidates are found at those instances at which~a!
bothOL(t) andOH(t) are greater than zero,~b! OL(t) has a
local maximum. The condition thatOH(t) should also have a
local maximum was found to be too strict.

A vowel-onset candidate detected at timetc should
match the following criteria~parameter settings will be given
below!.

a. C0 threshold. To exclude irrelevant fluctuations of
activity in AL(t), the criterion reads:

OL~ tc!>OTH ,

whereOTH is a parameter. A similar criterion is applied in
VSM.

b. C1 ratio of activity. In order to discard candidates
that signal phoneme classes other than vowels, the following
criterion is introduced:

a<
ML~ tc!

MH~ tc!
,

wherea is a parameter andML(tc) andMH(tc) denote the
mean activity inAL(t) andAH(t) over 45 ms following the
onset attc . The lower bounda is introduced to discard on-
sets of fricatives which have concentration of spectral energy
in the high region. An upper bound for the ratio of activity,
which could exclude onsets for nasals, was found not to con-
tribute significantly.

c. C2 temporal spacing.Some phoneme classes, e.g.,
liquids and semivowels, yield multiple candidates during an
interval of continuous increase of activity, i.e.,OL(t).0 for
all t within the interval. This criterion consists of two parts:

FIG. 2. Schematic representation of the CNS~and CNS–ACF! detection
scheme.
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~i! Within such an interval, a vowel onset detected att1
is discarded if a subsequent vowel onset is detected att2,
with t2.t1 .

~ii ! If a candidate att2 is separated from a preceding
vowel onset att1 by a period of decrease or absence of ac-
tivity, then the candidate att2 is accepted if

t22t1.D,

wheret1 ,t2 like above andD is a parameter. The vowel onset
at t1 is not discarded. A similar criterion is applied in VSM.

Unlike VSM, the CNS scheme does not include infor-
mation about the harmonicity of the signal. Modulation
transfer functions measured for chop-T responses show that
phase locking to the AM envelope is preserved up to ap-
proximately 400 Hz~e.g., Rhode and Greenberg, 1992!. This
means that information about harmonicity of the speech sig-
nal can be derived from a broad frequency range. A rather
ad-hoc solution to incorporate a harmonicity criterion into
CNS is to calculate the short-term autocorrelation of the ac-
tivity of each chop-T neuron. The autocorrelation is calcu-
lated for a 10-ms signal window. The individual autocorrela-
tions are combined to obtain the summary autocorrelogram
of the whole neuron array~e.g., Meddis and Hewitt, 1991!.
The magnitude of the maximum of the summary autocorre-
logram is taken to represent the ‘‘strength of harmonicity.’’
This measure generally shows a high correlation to the in-
stantaneous level of the input signal. In this extended
scheme, referred to as CNS–auto-correlogram function
~CNS–ACF! in the following, a criterion is introduced for
periodicity:

d. C3 periodicity. For each vowel-onset candidate, the
corresponding strength of periodicity should be above
ACFTH% of the maximum strength of periodicity observed
in the utterance. Here, ACFTH is a parameter.

An example of the signalsAL(t), AH(t), and the auto-
correlation peak is given in Fig. 3 for PM-sentence 13~‘‘Ein-
delijk kwam de trein op gang;’’ see Sec. II A!. Note that the
C3 criterion requires that the whole utterance is analyzed
before vowel onsets can be detected. Instead, the maximum
strength of periodicity could also be determined for a con-
stant interval of, e.g., 200 ms. Such an interval may require,
however, that~a! pauses in utterances can be detected and~b!
that the signal-to-noise ratio~SNR! is always high.

In summary, vowel-onset detection in the CNS scheme
is based on changes of intensity and~rough! spectral enve-
lope. In addition to these characteristics, detection in the
CNS–ACF scheme is based on estimation of harmonicity.

3. Scaling of input signals

The computational model of the auditory periphery and
the cochlear-nucleus responses is nonlinear, which makes in-
put scaling necessary. Optimizing and testing the CNS and
CNS–ACF schemes~and MLP networks! was done at 35,
55, and 75 dB SPL, where the root-mean-square of each of
the sentences was normalized. Note that both schemes are
partially based on intensity-level information, but that the
rate-intensity functions of the simulated neurons behave non-
linearly.

4. Parameter setting

The parameters presented above were optimized for the
T-sentence database containing 377 vowel onsets~see Sec.
II A !. Setting all parameters to zero, i.e., accepting all vowel-
onset candidates, resulted in 356 correct detections and 136
false alarms~at 55 dB SPL input level; see Sec. I B 3!. Using
the criteria mentioned above, the vowel-onset-detection
scheme has to perform a ‘‘yes–no’’ task for each vowel-onset
candidate. A method for analyzing the performance of the
scheme as a function of parameter settings is the receiver–
operating-characteristic~ROC! curve~e.g., Green and Swets,
1966!. By setting all other parameters to zero, individual
parameters were optimized by finding the value that opti-
mally reduces the number of false alarms, while keeping the
number of correct detections almost unaffected. This means
that the combination of the different optimized criteria may
drastically reduce the false-alarm rate, provided the different
criteria affect different vowel-onset candidates. The param-
eter settings listed in Table I were derived by finding optimal
values compromising for both 55 and 75 dB SPL input level.

Figure 4 shows ROC curves for CNS and CNS–ACF
where each of the parameters is varied while all other param-

FIG. 3. Waveform of PM-sentence 13~top!, activity in band 1 and band 2 at
55 dB SPL~middle panels!, and magnitude of the peak of the summary
autocorrelogram of the chop-T neuron array at 55 dB SPL~bottom!. Aurally
detected vowel onsets are marked by vertical lines.

TABLE I. The parameters of the CNS and CNS–ACF schemes.

OTH 0.00075 mV/ms
a 0.8
D 45 ms
ACFTH 10 %
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eters are set to the optimal values as listed in Table I. These
curves show the sensitivity of both schemes to variation of
each of the parameters. This sensitivity can be derived to a
first approximation from the area under the ROC curve
~Green and Swets, 1966!. It should be noted that the ROC
curves are plotted with raw numbers as units, whereas ROC
curves usually display probabilities. Moreover, for all param-
eters exceptOTH , only part of the ROC curve is shown. In
general, the individual optimal parameter settings determined
by the ROC-curve method described above are seen to be
also appropriate in case all criteria are applied. This indicates
that the criteria can be conceived of as being more or less
independent. From Fig. 4~b! it can be derived that the con-
tribution of the C3 criterion is important in case no spectral-
envelope information, i.e., the C1 criterion, is used. If the C1
criterion is applied then the C3 criterion contributes by ad-
ditionally discarding some false alarms while keeping the
correct-detection rate almost unaffected@see Fig. 4~d!#.

C. Training multilayer perceptron (MLP) networks

MLP networks have proven to be robust techniques for
pattern classification in speech-recognition tasks~e.g., Mc-
Culloch and Ainsworth, 1988; Markowitz, 1993!. A weak
point of the CNS~–ACF! detection scheme is that the deci-
sion boundary for the vowel versus nonvowel categories may

not be optimal. In other words, the criteria defined on the
basis of general phonetic knowledge may not be optimal for
separating the two categories. In this respect, MLP networks
are used~a! to determine whether the information required
for vowel-onset detection is present in the chop-T represen-
tation, and~b! to investigate whether this information can be
retrieved from conventional speech-analysis techniques.
MLP networks are used in this study as vowel versus non-
vowel classifiers, where two classification experiments have
been performed:

~i! MLP networks have been trained with the chop-T
representation for the following input-pattern configurations:
~a! the full-resolution, 23-channel representation;
~b! the two-formant-band representation as applied in CNS~–
ACF!;
~c! a single unit being the sum of all 23 channels.
In the case of~b!, performance results inform about the
amount of information required for vowel-onset detection
with respect to spectral envelope. In the case of~c!, only
intensity information was supplied to the network.

~ii ! MLP networks have been trained with conventional
mel-scaled amplitude spectra. The choice of mel-scaled spec-
tra was motivated by the similarity of these spectra to the
simulated cochlear-nucleus representation except for the
nonlinearities of the auditory model. The mel-scaled spectra
consisted of 23 points covering approximately the same fre-
quency range as in VSM and CNS~–ACF!, namely 200–
2600 Hz. Three input-pattern configurations have been inves-
tigated:
~a! the rms of each utterance was normalized so that indi-
vidual spectra contained intensity-level information;
~b! each mel-scaled spectrum was normalized so that no
intensity-level information was used;
~c! all components of individual mel-scaled spectra were
summed to obtain a measure of the instantaneous level.
For input patterns under condition~a!, all spectra contained
intensity-level information with respect to the whole utter-
ance. In contrast, input patterns under~b! did not contain
intensity-level information but only contained spectral enve-
lope information. Finally under condition~c!, where the rms
of the utterance was normalized, patterns only consisted of a
measure of the instantaneous level.

1. Network architecture

In all classification experiments, the output of the MLP
networks consisted of a single unit representing the presence
of a vowel. The unit’s output range was between zero and
one, where zero indicates that the presence of a vowel, given
the input pattern, is highly unlikely. In the case of both the
mel-scaled spectra and the chop-T representation, input pat-
terns consisted of 1, i.e., the sum of spectral components, or
23 units, i.e., the full resolution. Performance was evaluated
for the number of hidden units ranging between 0 and 10. If
no hidden units were used, the network did not learn,
whereas ten hidden units caused ‘‘overtraining.’’ Best results
on the training database~see Sec. II A! were obtained for two
to five hidden units: Except for the single input condition,

FIG. 4. ROC curves for each of the parameters of CNS~s! and CNS–ACF
~h!. Filled symbols represent the parameter settings used in the evaluations
and listed in Table I. In all cases, the smallest parameter values correspond
to the rightmost data points on the ROC curve.~a! ROC curve for parameter
OTH with parameter range of 0 to 0.003 mV/s in steps of 0.00025 mV/s.
Additional values are 0.004, 0.008, 0.016, and 0.032 mV/s.~b! ROC curve
for a where the range is 0 to 1.5 with a stepsize of 0.05.~c! ROC curve for
D where values are set in the range 5 to 100 ms with increments of 5 ms.~d!
ROC curve for ACFTH plotted for the range 0% to 75% in steps of 5%.
These data are obtained for the T-sentence database at 55 dB SPL~see Sec.
II A !.
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where the network incorporated two hidden units, all results
to be described below were obtained with networks having
five hidden units.

2. Network training

All input patterns were calculated over 25.6-ms-long
time slices by either calculating an FFT of the windowed
speech signal, or by binning the activity within channels in
the chop-T representation. The input patterns were presented
to the networks without any further preprocessing. The fre-
quency range of the input patterns was 200 to 2600 Hz both
for the mel-spectra as well as the chop-T representation.
Training patterns for the vowel category were taken at au-
rally detected vowel onsets~see Sec. II A 1! and at 25.6 ms
after those onsets. Each training sample was checked visu-
ally to exclude erroneous training data like very short vowels
or early detections. In all, 1345 training patterns were used:
744 and 601 patterns for the vowel and nonvowel category,
respectively. The training patterns for the nonvowel category
were chosen in two passes: Initially a small set of nonvowels
and silences was chosen. After training, the network was
tested on the T-sentence database~see Sec. II A! and patterns
that the network erroneously classified as vowels were added
to the nonvowel-pattern set. Then, the network was retrained
with the vowel set and the extended nonvowel set. The MLP
was trained using standard backpropagation with a learning
rate of 0.0005 and a momentum term of 0.1. To prevent
overtraining we set an error threshold to 0.05. The networks
were trained in steps of 100 cycles until the summed error in
the vowel versus nonvowel classification no longer declined,
usually for 400 to 600 cycles.

3. Vowel-onset detection

Sentences from the training set were processed in steps
of 1 ms. The activation of the output unit, representing the
likelihood of the presence of a vowel, was first thresholded at
0.6. This threshold value was determined by trial-and-error,
and applied to all training and testing conditions. A pseudo-
ROC curve is depicted in Fig. 5 for a particular condition,
namely, input patterns consisting of 23-channel mel-scaled
spectra, with normalization of the rms of the sentence. The
ROC curve is determined by evaluation on the PM-sentence
database~see Sec. II A!.

Like the detection of vowel onsets in the sequence of
vowel strength in VSM, we then applied the smoothed de-
rivative filter ~see Sec. I A! to trace the local maxima. An
example of the output of an MLP as a function of time, based
on mel-scaled spectra, is given in Fig. 6~PM-sentence 13,
see Sec. II A!.

II. MODEL EVALUATIONS

A. Materials

Hermes~1990! evaluated VSM for a database consisting
of 28 Dutch sentences spoken by nine male and nine female
speakers, all nonprofessional native speakers of Dutch. They
were instructed to read the sentences without taking special
care of articulation. This database will be referred to as the T
sentences. As described in the Introduction, a trained phone-

tician traced the vowel onsets by means of the gating tech-
nique. The gating technique is based on listening to a short
portion of the speech signal by windowing the signal, typi-
cally of 20- to 40-ms duration, and shifting this window in

FIG. 5. ROC curve for the threshold parameter of the MLP schemes. The
parameter-value range is 0.1~rightmost data point on the ROC curve! to
0.95 ~leftmost point! with a stepsize of 0.05. The filled symbol represents
the value of 0.6 as applied in the experiments. These data are obtained for
the PM-sentence database~see Sec. II A!.

FIG. 6. Waveform of PM-sentence 13~top! and corresponding MLP output
as a function of time~bottom!. The MLP is trained on mel-scaled spectra,
with normalization of the rms of each sentence. Aurally detected vowel
onsets are marked by vertical lines.
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time through the speech signal~’t Hart and Cohen, 1964!.
Vowel onsets obtained in this manner are called ‘‘actual on-
sets,’’ 377 of which were detected in the T-sentence database.

Because both the CNS~–ACF! and the MLP schemes
have been optimized or trained on the T sentences, an alter-
native speech database was required for comparison of per-
formances. For this purpose, we made a random selection of
28 out of 560 sentences from the Plomp and Mimpen~1979!
set which has its application in diagnostic audiology. We will
refer to this selection as the PM sentences. The 28 sentences
were rerecorded with 14 male and 14 female nonprofessional
speakers resulting in both a male- and a female-speaker ver-
sion of each sentence. Instructions for reading were similar
to those of the T sentences. Actual onsets in these 56 utter-
ances were determined by an experienced phonetician, who
traced 466 vowel onsets.

1. Performance evaluation

The number of missed onsets and false alarms are cal-
culated for each of the detection schemes by determining the
cross coincidence between actual and algorithmically de-
tected vowel onsets. We adopt the criterion proposed in Her-
mes ~1990! that algorithmically detected onsets should be
within 660 ms to the actual onsets. Missed-onset and false-
alarm rates will be presented as a proportion of the total
number of actual onsets. For indication of accuracy, we will
also give figures that express the proportion of correct algo-
rithmically detected onsets that are within620 ms to the
actual onsets. These results will be presented as ‘‘accuracy’’
in the next section. The results for the T sentences have been

evaluated for both rates and contexts of occurrences for
missed onsets and false alarms. For reasons of clarity, we
will only present missed-onset and false-alarm rates. On the
basis of these rates, we will select a number of schemes that
will be evaluated in more depth for the PM sentences.

B. Results

1. The T sentences

Performance scores for the detection schemes are listed
in Table II. The figures given for VSM performance are the
same as in Hermes~1990!.

For the CNS scheme, a difference between sound-
pressure-level conditions can be observed: If all sentences
are normalized to 35 dB SPL, the number of missed onsets is
about twice the missed-onset rate for 55 or 75 dB SPL. The
missed-onset rates for the latter two levels are comparable to
VSM performance. The false-alarm rate is substantially
lower for the 35 dB SPL condition than for the two other
levels. Many more false alarms are obtained with CNS, for
the 55 and 75 dB SPL conditions, than with VSM. However,
if harmonicity information is used in the detection process,
as in CNS–ACF, then the false-alarm rate can be seriously
reduced. This effect is most prominent for the 75 dB SPL
condition, where analysis of false-alarm occurrences showed
that the harmonicity criterion especially rejected onsets for
unvoiced plosives. The reduction of false alarms does not
affect the missed-onset rate significantly, except for the 35
dB SPL condition. Accuracy figures for the CNS and CNS–
ACF schemes are generally lower than the accuracy figure
for VSM.

TABLE II. Missed-onset and false-alarm rates~as percentages of the number of actual onsets! found for the
detection schemes, for the T-sentence database. ‘‘MLP mel-spectra’’ refers to training the MLP with mel-scaled
spectra, with normalization of the rms ofthe whole sentence. In the case of ‘‘MLP normalized,’’each individual
mel-scaled spectrum is normalized. ‘‘MLP summed’’ refers to the single input unit containing the summed
spectral values. ‘‘MLP chop-T’’ refers to training with the cochlear-nucleus simulation. See text for a descrip-
tion of the ‘‘channels 1-2-23’’ conditions.

Test level
~dB SPL!

Missed
onsets~%!

False
alarms~%!

Accuracy
~%!

VSM 8 3 91

CNS 35 16 6 86
55 8 9 87
75 10 15 84

CNS–ACF 35 24 3 87
55 10 6 88
75 11 8 84

MLP Mel-spectra 10 10 80
Normalized 9 36 67
Summed 9 9 77

channels channels channels
MLP Chop-T 1 2 23 1 2 23 1 2 23

Trained on 35 14 10 12 7 5 3 82 82 85
test level 55 16 8 10 5 8 9 84 82 82

75 13 9 8 6 18 14 85 79 77

Trained on 35 11 14 17 11 15 12 77 74 78
all levels 55 8 18 14 29 25 24 72 69 73

75 10 20 8 30 26 24 70 65 73
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The MLP scheme, with mel-scaled spectra training,
yields a missed-onset rate comparable to VSM performance
~10%! and a higher false-alarm rate~10%! for the condition
where each sentence is normalized. If instead each spectrum
is normalized, a comparable missed-onset rate~9%! is ob-
tained while at the same time the false-alarm rate increases
dramatically~36%!. These results indicate that level differ-
ences within a sentence contribute to vowel-onset detection.
Accuracy figures for these MLP schemes are also slightly
worse than the VSM accuracy figure. An interesting result is
obtained for the ‘‘MLP-summed’’ condition, which shows
comparable missed-onset and false-alarm rates as the mel-
spectra case~sentence rms normalized!. This finding indi-
cates that instantaneous level or, more specifically, change of
instantaneous level contains much information for vowel-
onset detection. Analysis of phonemic context of missed on-
sets, however, reveals that the MLP trained on the full-
resolution mel-spectra has a relatively higher missed-onset
rate of unaccented /./ vowels, and a lower missed-onset rate
of accented vowels.

Finally, we will discuss the performance results obtained
with MLP networks trained with the simulated chop-T re-
sponses, in either the 1, 2, or 23-channel representation. For
all representations we applied two training conditions:~a! the
network was trained and tested on a single sound-pressure
level, and~b! the network was trained on all levels but tested
on a single level. In the case of training condition~a! we see
that the missed-onset rates are comparable for the 2- and
23-channel representation, and that the false-alarm rate is
slightly higher for the 2-channel representation. These results
indicate that the 2-channel representation, despite its reduced
spectral resolution, contains almost as much information for
vowel-onset detection as the 23-channel representation.
Comparing the results of this training condition to the CNS
model, we find performances which are generally compa-
rable, especially at 55 and 75 dB SPL. The accuracy of the
CNS model is overall higher by approximately 5%. If instead
only a measure of the instantaneous intensity is used, like in
the single-channel condition, the evaluations generally show
higher missed-onset and lower false-alarm rates.

For the 2- and 23-channel representations, application of
training condition~b! yields an overall trend similar to train-
ing condition ~a! discussed above. However, missed-onset
and false-alarm rates are generally worse than for condition
~a!: they are higher by a factor of 2 in the case of the
2-channel representation, and moderately higher at low lev-

els in the case of the 23-channel representation. The false-
alarm rates are higher by a factor of 2 to 3 for both repre-
sentations at nearly all levels. These results indicate that the
spectral representation in~simulated! chop-T responses is
fairly stable over a wide dynamic range as missed-onset rates
for the 23-channel representation are comparable for condi-
tions ~a! and ~b!. The increase of missed-onset rate for the
2-channel representation in condition~b! is possibly due to
the absence of absolute-level cues within the training set.
The same factor probably underlies the increase in false-
alarm rate for both representations under condition~b!. The
results for the single-input condition are in general agree-
ment with this observation; in contrast to the reduction in
missed onsets relative to the condition of training and testing
on a single level, the false-alarm rate increases dramatically.
This finding indicates that the absolute level of~summed!
activation is not a very reliable cue.

On the basis of these results, we made a selection of
schemes that were tested on the PM-sentence database: the
VSM, CNS–ACF, and MLP~mel-scaled spectra training and
sentence-level normalization! schemes will be compared.
Their performances will be analyzed in more detail in terms
of phonemic context of occurrence of missed onsets and
false alarms.

2. The PM sentences

Vowel-onset-detection performances for the PM-
sentence database are listed in Table III. Missed-onset rates
are found to be almost identical to the rates reported above
for the T-sentence database. Not only do rates show a high
similarity, but phonemic categories of missed onsets corre-
spond as well~see below for a listing of categories for the
PM-sentence database!. An exception to the latter finding
applies to the CNS–ACF scheme: A higher occurrence of
missed onsets for /i/ sounds is measured for the PM-sentence
database. On the other hand, comparing false-alarm rates for
both databases shows that rates for the PM database are gen-
erally higher. We suspect that this finding results from differ-
ences between both databases in the speakers’ care of articu-
lation. Hermes~1990! reported a similar increase of false-
alarm rate when testing VSM, optimized for fluent speech,
on a database containing carefully articulated, isolated non-
sense words. In addition, a contribution to the effect may
have come from differences in recording quality, which is

TABLE III. Missed-onset and false-alarm rates~as percentage of the number of actual onsets! found for the
detection schemes, for the PM-sentence database. MLP mel-spectra refers to network training with mel-scaled
spectra, with normalization of the rms ofthe whole sentence.

Test level
~dB SPL!

Missed
onsets~%!

False
alarms~%!

Accuracy
~%!

VSM 7 9 90

CNS-ACF 35 20 9 92
55 10 10 91
75 10 14 90

MLP mel-spectra 9 14 88
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higher for the PM database. As opposed to the performance
of VSM and CNS–ACF, the MLP scheme shows a rather
stable performance.

An analysis of occurrences of missed onsets is given in
Table IV. For all detection schemes main categories of
missed onsets are /./, /{/, /(/. The VSM scheme does show a
moderate number of missed onsets for /|/, but not for the
categories /Ä/, /Ñ/, and /É/. For CNS–ACF and MLP, these
latter categories are seen to give rise to a number of missed
onsets. Missed onsets for /./ sounds generally occurred in
unaccented syllables. It is surprising to find that the high
vowels /{/, /(/, and to a lesser extent /}/ and /Ñ/, cause diffi-
culties in detection for all schemes. For all schemes, this may
be explained by the observation of a delayed detection coin-
ciding with the high second formant reaching its full reso-
nance. Such a detection was typically delayed by more than
60 ms and was thus regarded as a false alarm. We will refer
to such phonemic contexts as long vowels.

Table V lists the phonemic categories of occurrences of
false alarms. The main general categories are long vowel, /./,
unvoiced-fricative, and nasals contexts. To a slightly lesser
extent, false alarms are given for the categories voiced frica-
tives and /./-like. In the case of the latter category, the pho-
netician did not mark these contexts as vowel onsets because
they were poorly articulated. Despite the introduction of a
harmonicity criterion in CNS–ACF, we also find a large

number of false alarms for unvoiced plosives, even though
the false-alarm rate for unvoiced plosives is already largely
reduced by this criterion. Also in the case of the MLP
scheme, unvoiced plosives and unvoiced fricatives are found
to evoke a number of false alarms. With an exception of the
unvoiced contexts, the overall distribution of false-alarm cat-
egories is in good agreement with the data presented in Her-
mes~1990; Table I!.

III. DISCUSSION

A. Detection schemes

The occurrences of both missed onsets and false alarms
in the cases of all three schemes are found to be distributed
over more or less the same phonemic categories. This is an
interesting finding given the fact that the schemes differ con-
siderably in their preprocessing of the input signals. The
main category of missed onsets is ‘‘.-like,’’ occurring in un-
accented syllables, which is in agreement with data presented
in Hermes~1990!. Furthermore, all three schemes have dif-
ficulties in detecting onsets of high vowels. In the case of
false alarms, a similar distribution is found as presented in
Table I in Hermes~1990!, although the present evaluations
show higher false-alarm rates for /(/ contexts and nasals. As
is mentioned in Hermes~1990!, some categories of false
alarms can function as vowels in other phonetic contexts,

TABLE IV. Occurrences in raw numbers of phonemic contexts of missed onsets, for the PM-sentence database.
‘‘CNS–ACF ~35!’’ indicates results obtained for 35 dB SPL input level.

VSM CNS–ACF~35! CNS–ACF~55! CNS–ACF~75! MLP

/./ 17 37 18 19 15
/i/ 6 12 9 10 11
/(/ 1 13 5 3 5
/e/ 4 1
/}/ 3 2 2
/Ç/ 1 2 1 1 1
/Å/ 1 2 1 2
/~/ 1 4 1 2 3
/Ä/ 1 12 2 1 2
/y/ 1 3 2 2 3
/u/ 1 1 2 3 3
/}I/ 1 1 1
/o”/ 1 1 1
S 34 91 45 47 44

TABLE V. Occurrences in raw numbers of phonemic contexts of false alarms, for the PM-sentence database.
‘‘CNS–ACF ~35!’’ indicates results obtained for 35 dB SPL input level.

VSM CNS–ACF~35! CNS–ACF~55! CNS–ACF~75! MLP

Long vowel 18 21 16 16 15
/./-like 3 3 3 3 4
/r/ 4 7 8 8 8
/k/,/p/,/t/ 4 1 5 16 15
/l/ 2 3 6 5 4
/n/,/m/ 5 3 4 5 4
/j/,/w/ 1 2 3 1
/b/,/d/ 2 1
/x/,/s/ 4 1 3 10
/z/,/v/ 2 1 2 4 1
others 2
S 42 40 47 67 63
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e.g., in the context of syllabic consonants or in other lan-
guages. The fact that all three schemes show similar trends
may therefore support the conclusion that the presence of
these false alarms has a phonological background.

Within the scope of improving the automated vowel-
onset detection, it is found that an MLP network trained with
mel-scaled spectra, with normalization of the rms of the
whole sentence, is competitive with the VSM scheme. In
terms of improvement of the automatic vowel-onset detec-
tion, the CNS–ACF scheme does not seem to be an obvious
candidate; missed-onset and false-alarm rates are generally
higher than for VSM, and the performance of the scheme is
found to depend on level. However, this may have a percep-
tual counterpart. For speech, a comfortable loudness level
appears to be well specified. The determination of actual
onsets with the gating technique was normally done at a
comfortable loudness level, which presumably was substan-
tially higher than 35, and moderately lower than 75 dB
sound-pressure level. If the determination had been done at
other than comfortable levels, the correspondence between
the detection behavior of CNS~–ACF! and the human lis-
tener may have been substantially better. In this respect, the
performance of the CNS~–ACF! scheme presumably is more
comparable to human vowel-onset detection.

It should be noted that the determination of vowel onsets
by the human listener was done under conditions with high
signal-to-noise-ratio~SNR! levels, where ‘‘noise’’ refers to
background noises. Likewise, the models were trained and
tested with speech signals having high and very high SNR
levels for the T and PM-sentence databases, respectively.
This means that model performances may deteriorate if
trained and/or tested under worse SNR levels. The experi-
ments reported in this paper have not been repeated for such
levels, however. Ainsworth and Meyer~1994! investigated
speechrecognitionperformances using hidden Markov mod-
els ~HMMs! trained and tested on a number of simulated-
response representations of various stages of auditory pro-
cessing, namely the auditory nerve and cochlear nucleus.
Training and testing was done for SNR levels up to 0 dB.
Recognition performances were compared to human recog-
nition scores. Of all simulated representations, it was found
that the results obtained by using chop-T representations
were most like human performance. This finding may impli-
cate that the simulated representation of chop-T responses
also provides a reasonably robust representation for vowel-
onset detection under low SNR conditions. It should be
stressed, though, that this is merely speculative at present
and requires experimental evidence.

B. Signal characteristics

The comparative tests give more insight into the relative
importance for vowel-onset detection of the signal-
characteristics intensity, spectral envelope, and harmonicity.

1. Intensity

The importance of intensity may be derived from com-
paring vowel-onset-detection models and training conditions.
First, for MLP networks trained on mel-scaled spectra, com-
parable performance is obtained for the conditions of~a! a

single input, i.e., the sum of all 23 spectral points, and~b! the
full-resolution 23-channel input. In both training conditions,
the rms of each sentence processed is normalized. This find-
ing indicates that increments of intensity are important for
vowel-onset detection. Second, for the condition that each
individual spectrum is normalized before being processed by
an MLP network, detection performance is moderate com-
pared to the condition that the rms of each sentence is nor-
malized. Third, if the MLP networks are trained with chop-T
representations at all levels and tested on a single sound-
pressure level, then the false-alarm rate is substantially
higher than with training on a single level. Finally, the dif-
ference between the MLP scheme trained on the two-channel
chop-T representation and the CNS scheme is that in the
latter the derivative of activation plays a key role: Vowel-
onset candidates are selected at local maxima of the deriva-
tive and its time course is explicitly used as a criterion. Com-
paring the results for the MLP and CNS, it is found that
performances are comparable for the condition that the MLP
is trained and tested on a single level. With training and
testing on all levels, however, the MLP performance is seen
to be substantially worse. Assuming that training of the MLP
constructed an optimal classification boundary based on the
rough 2-channel spectral envelope, this finding indicates that
the derivative of activation can be conceived of as a more
robust source of information than spectral envelopeper se.
In sum, the comparison of different models and training con-
ditions indicates that increments of intensity relative to sen-
tence level are of prime importance for modeling human
vowel-onset detection. This observation is in agreement with
the fact that also in VSM, intensity is an important source of
information.

2. Spectral envelope

An MLP network trained with the 2-channel chop-T rep-
resentation is seen to exhibit reasonable performance, pro-
vided training and testing is done on a single sound-pressure
level only. A similar, rather crude spectral weighing is the
basis of the CNS~-ACF! schemes, which also show reason-
able performance. These findings give support to the hypoth-
esis that vowel-onset detection predominantly relies on the
rough spectral envelope. On the other hand, false-alarm rates
for the CNS–ACF scheme prove to be substantially lower
than for CNS, especially at higher sound-pressure levels.
This finding indicates that rough spectral envelope is suffi-
cient for detecting vowel-onset candidates, but that more in-
formation is required for correct rejection of false alarms. It
should be noted, though, that hardly anything is known about
integration of activity over such large bandwidths as in the
CNS~–ACF! scheme.

3. Harmonicity

The false-alarm rate obtained with the CNS–ACF
scheme is substantially lower than the rate obtained with the
CNS scheme, while the missed-onset rate is practically iden-
tical. This finding may give support to the hypothesis that
harmonicity information plays an important role in modeling
vowel-onset detection. On the other hand, mel-scaled spectra
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do not show a harmonic structure, yet the corresponding
MLP performance is found to be satisfactory. This may mean
that ~a! harmonicity information is present in the mel-scaled
spectra in some other way, or that~b! in human vowel-onset
detection, harmonicity information is only used to reject
some onsets other than vowel onsets. Possibility~a! can be
verified by adding harmonicity information to the MLP in-
put, and comparing performance with and without such an
extra input unit. Possibility~b! would be in line with the
decrease of false-alarm rate observed for CNS–ACF relative
to CNS.

C. Onsets in (simulated) chop-T responses

To our knowledge, there are no physiological data re-
ported in the literature pointing at the specific coding of tran-
sitions such as vowel onsets. This means that the perceptual
information used for the specific detection of vowel onsets
cannot directly be derived from measured or simulated re-
sponse patterns.

Initially, we measured the presence of a formant struc-
ture ~‘‘vowel strength’’! in the simulated chop-T representa-
tion. In this array of simulated neuron responses, the formant
structure is enhanced by lateral inhibition resulting in a
stronger spectral contrast. Blackburnet al. ~1990! observed
that spectral contrast is preserved over a wide dynamic
range. However, these measurements were obtained by tak-
ing the long-term average of discharge activity during steady
state, which may not adequately describe discharge activity
at the onset. If spectral contrast is preserved over a broad
dynamic range, then we can also expect vowel strength to be
stable over a broad range. The measurements did not provide
support for this expectation, as especially at high signal lev-
els ~75 dB SPL!, contrast in vowel strength diminished be-
tween vowel and nonvowel contexts. As a result, the false-
alarm rate increased considerably, which indicated that the
relative contribution of onsets other than vowel onsets
started to increase.

D. Syllabification

In this study, a vowel onset was considered to be cor-
rectly detected if the detection algorithm signaled a vowel
onset within 60 ms of a vowel onset indicated by a phoneti-
cian. This rather strong demand can be loosened by consid-
ering vowel-onset-detection algorithms as a means for syl-
labification. For syllabification it is necessary to have one
onset per syllable, but this onset does not necessarily have to
coincide with the vowel onset. Hunt~1993! presents a study
of syllabification by detecting onsets and offsets of vowels
by means of recurrent neural networks. The following results
were reported: 6% missed syllables and 5% falsely detected
syllables, with an accuracy figure for vowel-onset and offset
detection of 87%. For the purpose of comparison, Table VI
presents missed-onset and false-alarm rates if the three
schemes of the present study are applied to detect syllables,
instead of vowel onsets. These rates were found by taking
one algorithmically detected vowel onset per syllable, while
allowing that the onset does not coincide with an actual

vowel onset. If there are more than one detections per syl-
lable, these are regarded as falsely detected syllables.

In comparison to vowel-onset detection~Table III!, the
CNS–ACF scheme benefits most from this redefinition of
the task: In general, the missed-onset and false-alarm rates
decrease with approximately 4%. Analysis of the phonetic
contexts showed that this improvement especially results
from correct syllabification in long vowel contexts, where
this context is often seen to cause false alarms in vowel-onset
detection. The proportion of falsely detected syllables still is
slightly higher than the data presented by Hunt~1993!. This
may, however, also have resulted from the use of another
database~i.e., TIMIT!, analogously to the differences found
in the false-alarm rate for the T and PM databases in the
present study.

E. Perceptual mechanism and phonological structure

It is well known that speech can induce a rhythmic beat
which runs synchronously with the syllables which make up
the speech signal. Various early studies have shown that the
moment of occurrence of this rhythmic beat is close to the
vowel onset of the syllable~Rapp, 1971; Allen, 1972; Cole
and Scott, 1973!. Allen ~1972, p. 72! mentions that ‘‘the
rhythmic beats were closely associated with the onsets of the
nuclear vowel of the stressed syllables, but precede those
vowel onsets by an amount positively correlated with the
length of the initial consonant~s! of the syllable.’’ Cole and
Scott ~1973! reported the importance of ‘‘vowel transitions’’
for the perception of the temporal order of syllables. Studies
like these into the rhythmic structure of speech has led to the
concept of the perceptual moment of occurrence of the syl-
lable, or its P-center~Morton et al., 1976!. Marcus ~1981!
showed that the length of the onset and the rhyme of the
syllable affects its P-center, so that the P-center cannot ex-
actly be identified with the vowel onset. Pompino-Marshall
~1989, 1990! developed a detailed model for algorithmic
P-center determination, in which he estimates the P-center
from the acoustic waveform on the basis of a weighted av-
erage of onsets and offsets in the course of the specific loud-
ness of the speech sounds. Since the strongest onsets in a
syllable occur in the neighborhood of the vowel onset, where
the oral cavity opens and the formants start to rise, this
model predicts that the P-center will be close to the vowel
onset. In the Pompino-Marshall model, secondary onsets and

TABLE VI. Rates ofmissed syllablesand falsely detected syllables~as
percentage of the number of actual vowel onsets! found for the detection
schemes, for the PM-sentence database. MLP mel-spectra refers to network
training with mel-scaled spectra, with normalization of the rms ofthe whole
sentence.

Test level
~dB SPL!

Missed
syllables~%!

Falsely detected
syllables~%!

VSM 5 8

CNS–ACF 35 16 5
55 7 8
75 7 12

MLP mel-spectra 7 11
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offsets in the course of the syllable will move the estimated
P-center forward or backward. For a number of syllables,
this model is able to predict the shift of the P-center quite
accurately. The shifts are never larger than at most a few
dozens of ms, however. Therefore, the vowel onset appears
to be a good first approximation for the location of the
P-center. Also for the rhythmic production of syllables, it is
concluded from various studies that, among other phonetic
events, the vowel onset best corresponds with the moment
speakers use in timing their syllables~Eriksson, 1991!.

Phonologically, the syllable has been divided into onset
and rhyme. Although this binary division has been supple-
mented by a division of the rhyme into nucleus~or peak! and
coda~Pike, 1947; Selkirk, 1982!, it is generally assumed that
the boundary between onset and rhyme is more important
~Treiman, 1986!. In metrical phonology, the syllable is di-
vided into a weak onset and a strong rhyme. The latter in its
turn is then divided into a strong nucleus and a weak coda.
This implicates that the strongest transition is from the weak
onset to the strong rhyme. The transition from nucleus to
coda is of a lower level; the transition between two syllables,
though of a higher level, takes place from the weak coda of
the first syllable to the weak onset of the second. The latter
transition is subject to many coarticulatory phenomena, even
if the two syllables belong to different words. Therefore, the
syllable onset, the transition from one syllable to the next, is
much less well defined than the transition from onset to
rhyme. In this respect it is interesting to note that the three
algorithms tested, though very different in nature, show er-
rors in the same phonetic contexts, which, as argued above,
might have a phonological background.

From both a phonetic and a phonological point of view,
it is therefore concluded that the best candidate for timing
the syllable is the transition from onset to rhyme. In produc-
tion and perception, the actually realized and perceived tem-
poral moment of occurrence is closely linked with the vowel
onset, though higher-order processes can apparently shift the
actual moment of occurrence for a few tens of ms. Large
shifts occur only when the syllable onset contains~sonorant!
segments with strong onsets. For isolated syllables, it may
eventually not be too difficult to estimate these shifts from
the acoustic speech signal preceding and following the vowel
onset. But also in this case, one has to start from the vowel
onset. In running speech, the situation is much worse. The
syllable onset is often badly defined, in any case much worse
than the vowel onset. It is as yet impossible to estimate how
much onsets and rhymes will contribute to the rhythmic beat
perceived. It is a well known fact that perceived rhythmicity,
even in poetry and music, does often not correspond with
regular intervals between any well known acoustic event of
the sound signal. Nevertheless, we are very sensitive for
small changes in the temporal structure of speech signals. In
general, it can be concluded that higher-order, ‘‘top-down’’
processes push the speech events into a rhythmic frame in
which the perception of rhythmicity occurs before it is
clearly present in the temporal series of acoustic events.~For
a review, see Eriksson, 1991.! In this situation, it is likely
that vowel onsets do not precisely correspond with the per-
ceptual moment of occurrence of the syllable. Taking all ar-

guments together, however, they come out as the first pho-
netic events to be considered in studying perceived
rhythmicity in speech.

IV. CONCLUSIONS

In this paper, three methods for automatic detection of
vowel onsets in speech have been presented and evaluated.
One of these methods, namely vowel-strength measurement,
was presented in an earlier publication. For evaluation, two
databases of read Dutch speech uttered by nonprofessional
male and female speakers have been used. Both databases
can be characterized as having a good recording quality with
high signal-to-noise ratios. For all methods and correspond-
ing parameter settings, missed-onset rates are found to be
better than 25%, and false-alarm rates are not seen to exceed
30%. For the best performing schemes, missed-onset and
false-alarm rates are found to be in the order of 10%. In spite
of the substantial differences between the three methods, an
analysis of the phonetic contexts of missed onsets and false
alarms has shown that these contexts generally match.

The method of vowel-strength measurement has been
found to be overall best performing. This method is not only
based on spectral-envelope information, but also depends to
a great extent on both intensity as well as harmonicity infor-
mation.

The second method presented is based on simulation of
chop-T responses found in the anteroventral cochlear
nucleus. Reasonably good results were obtained by using a
detection scheme that postprocesses the simulated responses,
where rough spectral-envelope, intensity, and harmonicity in-
formation are used. However, this method was seen to be
rather input-level dependent which may have, as has been
argued in Sec. III, a perceptual counterpart.

The third detection method is based on training
multilayer perceptrons having a single hidden layer. Best re-
sults for these MLPs are obtained if the input to the network
consists of mel-scaled spectra. Intensity information, i.e., the
distribution of intensities over the whole sentence, has been
found to be an important source of information in this
method. Training the MLPs with the simulated chop-T re-
sponses only resulted in fair performance if training and test-
ing was done at the same input signal sound-pressure level.

In summary, the performance results for the different
methods and parameter settings support the hypothesis that
the main information required for automatic vowel-onset de-
tection are~a! rough spectral envelope and~b! intensity. Har-
monicity information can be conceived of as an additional
source of information to reduce the false-alarm rate.
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1In Hermes~1990, p. 868! it is stated that ‘‘it is necessary to suppress the
contribution of the unvoiced parts. This is achieved by weighing the result
of the measurement of the combined strength of the spectral peaks with the
maximum value of the subharmonic sum spectrum.’’ This phrasing gives
the impression that this feature was only applied to avoid some false de-
tections in noisy speech segments. It appears now, however, that this fea-
ture was essential for the good performance of the algorithm.
2The equation reads:
TH~cf !54.0758cf

21117.4741245.2252cf145.7596cf
2219.5892cf

3

14.1071cf
420.4133cf

510.0159cf
6,

wherecf denotes center frequency in kHz, and TH(cf) denotes absolute
hearing threshold in dB SPL.
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University of Göteborg, Sweden.

Evans, E. F., and Palmer, A. R.~1980!. ‘‘Relationship between the dynamic
range of cochlear nerve fibres and their spontaneous activity,’’ Exp. Brain
Res.40, 115–118.

Fay, R. R. ~1988!. Hearing in Vertebrates: A Psychophysics Data Book
~Hill-Fay Assoc., Winnetka!, pp. 327–328.

Furui, S.~1986!. ‘‘On the role of spectral transition for speech perception,’’
J. Acoust. Soc. Am.80, 1016–1025.

Green, D. M., and Swets, J. A.~1966!. Signal Detection Theory and Psy-
chophysics~Wiley, New York!.

Hart, H. ’t, and Cohen, S.~1964!. ‘‘Gating techniques as an aid in speech
analysis,’’ Language Speech7, 22–39.

Hart, H. ’t, and Cohen, S.~1973!. ‘‘Intonation by rule: a perceptual quest,’’
J. Phonetics1, 309–327.

Hart, H. ’t, and Collier, R.~1975!. ‘‘Integrating different levels of intonation
analysis,’’ J. Phon.3, 235–255.

Hermes, D. J.~1990!. ‘‘Vowel-onset detection,’’ J. Acoust. Soc. Am.87,
866–873.

House, D.~1990!. Tonal Perception in Speech~Lund U.P., Lund!.
Hunt, A. ~1993!. ‘‘Recurrent neural networks for syllabification,’’ Speech
Commun.13, 323–332.

Kaufholz, P. A. P.~1992!. ‘‘Improvement of the Vowel-Onset-Detection al-
gorithm in the IPO intonation meter,’’ IPO report 870, Institute for Per-
ception Research, Eindhoven.

Kewley-Port, D., Pisoni, D. B., and Studdert-Kennedy, M.~1983!. ‘‘Percep-
tion of static and dynamic acoustic cues to place of articulation in initial
stop consonants,’’ J. Acoust. Soc. Am.73, 1779–1793.

Kortekaas, R. W. L., and Meyer, G. F.~1994!. ‘‘Vowel-onset detection using
models of the auditory periphery and the nucleus cochlearis: physiological
background,’’ IPO report 963, Institute for Perception Research, Eind-
hoven.

Liberman, M. C.~1978!. ‘‘Auditory nerve response from cats raised in a low
noise chamber,’’ J. Acoust. Soc. Am.63, 442–455.

Marcus, S.~1981!. ‘‘Acoustic determinants of perceptual centre~P-center!
location,’’ Percept. Psychophys.30, 247–256.

Markowitz, J.~1993!. ‘‘Listening with intelligence,’’ AI Expert8, 38–45.
McCulloch, N., and Ainsworth, W. A.~1988!. ‘‘Speaker independent vowel
recognition using multi-layer perceptrons,’’ in Proceedings of the 7th
FASE Symposium, Vol. 8, pp. 851–858.

Meddis, R.~1986!. ‘‘Simulation of mechanical to neural transduction in the
auditory receptor,’’ J. Acoust. Soc. Am.79, 702–711.

Meddis, R. ~1988!. ‘‘Simulation of auditory-neural transduction: further
studies,’’ J. Acoust. Soc. Am.83, 1056–1063.

Meddis, R., and Hewitt, M. J.~1991!. ‘‘Virtual pitch and phase sensitivity of
a computer model of the auditory periphery. I: Pitch identification,’’ J.
Acoust. Soc. Am.89, 2866–2882.

Meyer, G. F.~1993a!. ‘‘Models of neurones in the ventral cochlear nucleus:
signal processing and speech recognition,’’ unpublished Ph.D. thesis,
Dept. Communication and Neuroscience, University of Keele.

Meyer, G. F. ~1993b!. ‘‘CNET—point neurone simulator,’’ Tech. Rep.
TR93-01, Dept. Computer Science, University of Keele.

Morton, J., Marcus, S. M., and Frankish, C. R.~1976!. ‘‘Perceptual centers
~P-centers!,’’ Psychol. Rev.83, 405–408.

Nossair, Z. B., and Zahorian, S. A.~1991!. ‘‘Dynamical spectral features as
acoustic correlates for the initial stop consonant,’’ J. Acoust. Soc. Am.89,
2978–2991.

Pike, K. L. ~1947!. Phonemics~University of Michigan, Ann Arbor, MI!.
Plomp, R., and Mimpen, A. M.~1979!. ‘‘Improving the reliability of testing
the speech reception threshold for sentences,’’ Audiology18, 43–52.

Plomp, R.~1984!. ‘‘Perception of speech as a modulated signal,’’ inPro-
ceedings of the 10th International Congress of Phonetic Sciences, edited
by M. P. R. van de Broecke and A. Cohen~Foris, Dordrecht!, pp. 29–40.

Pompino-Marshall, B.~1989!. ‘‘On the psychoacoustic nature of the
P-center phenomenon,’’ J. Phon.17, 175–192.

Pompino-Marshall, B.~1990!. Die Silbenprosodie. Ein elementarer Aspekt
der Wahrnehmung vor Sprachrhytmus und Sprechtempo, Linguistische Ar-
beiten 247~Max Niemeyer Verlag, Tuebingen!.

Rapp, K. ~1971!. ‘‘A study of syllable timing,’’ in Quarterly Progress and
Status Report, Speech Transmission Laboratory, STL-QPRS 1/1971,
Stockholm, Sweden, pp. 14–19.

Rhode, W. S., and Smith, D. H.~1986!. ‘‘Encoding timing and intensity in
the VCN of cat,’’ J. Neurophys.56, 287–307.

Rhode, W. S., and Greenberg, S.~1992!. ‘‘Physiology of the cochlear nu-
clei,’’ in The Mammalian Auditory Pathway: Neurophysiology, edited by
A. N. Popper and R. R. Fay~Springer-Verlag, New York!.

Rietmole, P. A. te~1991!. ‘‘Een algoritme ter bepaling van klinkerinzetten
en een algoritme ter bepaling van P-centra,’’ IPO report 786, Institute for
Perception Research, Eindhoven.

Selkirk, E.~1982!. ‘‘The syllable,’’ in The Structure of Phonological Repre-
sentation, Part 2, edited by H. van der Hulst and N. Smith~Foris, Dor-
drecht!, pp. 337–383.

Smith, R. L., and Zwislocki, J. J.~1975!. ‘‘Short-term adaptation and incre-
mental responses of single auditory-nerve fibers,’’ Biol. Cybernet.17,
169–182.

Strange, W., Jenkins, J. J., and Johnson, T. L.~1983!. ‘‘Dynamic specifica-
tion of coarticulated vowels,’’ J. Acoust. Soc. Am.74, 695–705.

1198 1198J. Acoust. Soc. Am., Vol. 99, No. 2, February 1996 Kortekaas et al.: Vowel-onset detection



Summerfield, Q., and Culling, J. F.~1992!. ‘‘Auditory segregation of com-
peting voices: absence of effects of FM or AM coherence,’’ Philos. Trans.
R. Soc. London Ser. B336, 357–366.

Tekieli, M. E., and Cullinan, W. L.~1979!. ‘‘The perception of temporally

segmented vowels and consonant-vowels in syllables,’’ J. Speech Hear.
Disord.22, 103–121.

Treiman, R.~1986!. ‘‘The division between onsets and rhymes in English
syllables,’’ J. Memory Lang.25, 476–491.

1199 1199J. Acoust. Soc. Am., Vol. 99, No. 2, February 1996 Kortekaas et al.: Vowel-onset detection


