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Current-in-plane magnetoresistance: An approach to boundary conditions

V. I. Litvinov and V. K. Dugaev
Institute of Material Science Problems, Ukranian Academy of Sciences, 5 Wilde Street, 274001, Chernovtsy, Ukraine

M. M. H. Willekens and H. J. M. Swagten
Department of Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 9 July 1996!

The giant magnetoresistance effect is calculated for metallic magnetic superlattices with current-in-plane
geometry by solving the semiclassical Boltzmann transport equation. Two types of interface roughness will be
taken into account, geometrical interface roughness and scattering at defects, impurities, etc. located at the
interface. Within this approach, geometrical interface roughness with a finite correlation length is considered.
It is shown that geometrical interface roughness, without any other form of spin-dependent scattering, can
result in a considerable magnetoresistance.@S0163-1829~97!00213-0#
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INTRODUCTION

The giant magnetoresistance~GMR! in metallic multilay-
ers like Co/Cu and Fe/Cr is a well-known phenomenon a
generally it is accepted that the GMR effect finds its origin
different scattering rates for spin-up and spin-do
electrons.1 The relative contribution to the scattering rat
from bulk and interfacial scattering processes is conside
as an important problem in recent investigations. To desc
interfacial current transmission several theoretical
proaches have been developed and one could divide the
two main groups, one of which employs the semiclass
Boltzmann approach2,3 ~BA! and another using a quantu
approach4–6 based on the Kubo formalism. When the si
quantization across the layers can be neglected, any o
approaches mentioned above can be used to describe
transport properties in a proper way.7

A major goal of any theoretical model for describing t
GMR effect is to take into account in a most consistent w
the interfacial scattering or nonideality of the interface
which is generally separated in two different contribution
namely geometrical roughness and electron scattering on
fects and impurities located at the interfaces. In the BA t
problem mainly corresponds to the formulation of prop
boundary conditions for the electron distribution function
These boundary conditions are supposed to include the p
erties of the interfaces.

An attempt to describe the nonideality of the interfaces
magnetic multilayer systems within the BA was made
Camley and Barnas.2 They modeled the interfaces by tw
purely phenomenological spin-dependent parameters, on
coherent transmission and one for diffusive scattering. Ho
ever, whether or not an electron experiences the interfac
a specular plane depends crucially on its momentum and
on the angle of incidence on the interface which was
included in the interface parameters. Thus, with the par
eters in the Camley-Barnas model it is impossible to disc
between the characteristics of the incident electrons and
properties of the interfaces.

Therefore, Hood and Falicov3 made a more realistic ap
proach. They introduced different potentials for majority a
550163-1829/97/55~13!/8374~8!/$10.00
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minority spins in the magnetic layers. Then coefficients
coherent transmission and specular reflection can be q
tum mechanically calculated by matching free-electron-l
plane-wave functions and their derivatives at each interfa
Since in this microscopical approach the boundary con
tions for the distribution functions depend on the electr
velocity, they automatically also depend on the angle of
cidence. Unfortunately their model still contains one pure
phenomenological spin-dependent parameter that denote
degree of potential scattering~the rest being scattered dif
fuse! and decreases with the concentration of defects
impurities located at the interfaces. The calculated GMR
pends crucially on the value of this parameter.

As far as geometrical roughness is concerned, Hood, F
cov, and Penn3 ~HFP! have only considered one special ca
when the in-plane roughness correlation lengthL tends to
zero. This limit however does not allow one to consider t
processes of the diffusive electron scattering in a proper w
since physicallyL is limited to the atomic size.

Recently Barnas8 reported on a quantum-mechanical a
proach where the geometrical interface roughness is de
mined by two statistical parameters, the root mean squ
h of the deviations from the perfectly flat interface and t
in-plane correlation lengthL. Here, the scattering on the geo
metrical roughness is treated equivalent to the scattering
impurities and defects at the interface, i.e., by potential s
tering.

In this paper we will describe a semiclassical model ba
on the BA. In fact it is an extension of the model used
HFP.3 As in the model of Barnas8 we will define the inter-
face roughness with the statistical parametersh andL. We
will not assume however that the electrons experience
curvature of the interface as a special external potential fi
but we will calculate the boundary conditions by matchi
the electron wave functions on theactual position of the
nonideal interface. All potential scattering agents at the
terface, like defects and impurities, but also the poten
scattering on the bumps, are contained in a random fi
W(r). The method used for the description of scattering
the interfaces has been proposed by Falkovsky9 and has
recently10 been applied to study impurity scattering at a fl
8374 © 1997 The American Physical Society
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55 8375CURRENT-IN-PLANE MAGNETORESISTANCE: AN . . .
interface between two simple nonmagnetic metals. We h
extended this method for magnetic superlattices with curr
in-plane geometry. Our model does not contain any phen
enological parameter and the main advantage is that it
ables one to examine the mechanism of effective scatte
on roughness which arises from pure geometrical prope
of the interface.

FORMULATION OF THE MODEL

Consider a trilayer consisting of two ferromagnetic laye
of thicknesst1 and t3 separated by a nonmagnetic spacer
thicknesst2. All metals are regarded as free-electron like a
the energy diagram3 of the system under consideration
shown Fig. 1. The Fermi energies« f1,3 depend on the spin
direction. We assume spin-up to be parallel to the magn
zation in layer 1. In the parallel~P! configuration the mag-
netizations of layers 1 and 3 will point in the same directio
in the antiparallel~AP! configuration the magnetization d
rection of layer 3 will be opposite to that of layer 1. Since w
want to consider a superlattice the two outer surfaces of
trilayer are regarded as perfectly flat and they are assume
reflect all incident electrons specularly. Only the interfac
1/2 and 2/3 between metals 1,2 and 2,3, respectively,
regarded as nonideal. There are two sorts of nonideality
we will take into consideration:~a! scatterers distributed ove
the plane and~b! geometrical roughness.

For a single flat interface between media 1 and 2
Schrödinger equation for an electron’s wave functionC(r )
has the form10

2
\2

2m
¹@12Q~z!#¹C12

\2

2m
¹Q~z!¹C21W~r,z!C

5«1C@12Q~z!#1«2CQ~z!, ~1!

in which r5(x,y) is the in-plane coordinate,Q(z) is the
unit step function, andW(r,z) is a random scattering poten
tial caused by impurities and other possible potential sca
ing agents. We consider only the simplest caseW(r,z)
5d(z)W(r) and assume that the distribution of the rando

FIG. 1. Schematic diagram of the potential landscape within
surperlattice.
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field W(r) is Gaussian with ad-like correlator that corre-
sponds to short-range scattering centers:

g8~r!5^W~0!W~r!&5g8d~r! with g85NiW0
2 ~2!

whereNi is the planar concentration of scattering cente
W0 is the Fourier transform of the potential, and^ & means
averaging over all realizations ofW(r).

Another source of nonideality of the interface is geome
cal roughness which is described by random deviations fr
a perfectly flat interfacez(r). We assume a Gaussian distr
bution of z with spatial correlation taken into account in th
following way:

g~r!5^z~0!z~r!&5h2expS 2
r2

L2D , ~3!

whereh5A^z2(r)& is the root-mean-square value of the d
viations. The two-dimensional Fourier transform has t
form

g~q!5
h2L2

2
expS 2

q2L2

4 D , ~4!

where \q is the in-plane momentum,L is the correlation
length, which has the physical meaning of the average siz
smooth parts of the interface, and^ & means averaging ove
all realizations ofz.

CONDUCTIVITY

The general solution to the Boltzmann equation for me
with a single boundary atz50 parallel to thex-y plane with
an applied electrical fieldE in the x direction has the form

f65 f 01
etE

m

] f 0
]vx

F11F6expS 7
z

tuvzu
D G , ~5!

where f 0 is the Fermi-Dirac equilibrium distribution func
tion, t denotes the bulk relaxation time,vz is thez compo-
nent of the electron velocity, coefficientsF6 are determined
from the boundary conditions and6 corresponds to a posi
tive or negative velocity with respect to thez direction.

We start from the equation for in-plane conductivity f
the P configuration. For the sake of simplicity spin-flip sc
tering processes have not been taken into account. Thus

s↑↑5
1

Ettot
H(

s
F E

0

t1
J1s~z!dz1E

t1

t11t2
J2s~z!dz

1E
t11t2

t

J3s~z!dzG J , ~6!

whereJ1,2,3are current densities in layers 1, 2, and 3, resp
tively, which depend on the relative orientation of the ma
netic moments in layers 1 and 3 andt tot5t11t21t3.

In order to calculate the conductivity in superlattices w
use distribution functions as given by Eq.~5! adjusted to
include interfaces atzÞ0. We assume that the outer boun
aries of our trilayer, atz50 andz5t tot , act as a mirror to all
incident electrons~completely specular reflection!, which
means that in fact we study an infinite superlattice with

e
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8376 55LITVINOV, DUGAEV, WILLEKENS, AND SWAGTEN
repetition unit of 2t1 /t2/2t3 /t2. This assumption results in
the following boundary conditions for the outer boundarie

f 1s
1 5 f 1s

2 at z50 and f 3s
1 5 f 3s

2 at z5t tot .
~7!

Appropriate boundary conditions for the inner interfaces w
be derived in the next section. Calculating current densi
with help of Eqs.~6! and ~7! we arrive at the equation

s↑↑5s01s↑↑
1 1s↑↑

2 1s↑↑
3 , ~8!

wheres0 is the bulk conductivity. The deviations from th
bulk behavior due to interfaces are represented bys↑↑

1 ,
s↑↑
2 ands↑↑

3 where

s↑↑
1 5

e2

2p2\3t tot
(
s

« f1s
2 t1s

2 E
0

1

F1s
2 ~x1s!

3F12 exp S 22t1
l1sx1s

D G~12x1s
2 !x1sdx1s ,

s↑↑
2 5

e2

p2\3t tot
« f2
2 t2

2E
0

1

@F2
1~x2!1F2

2~x2!#FexpS 2t2
l2x2

D21G
3~12x2

2!x2dx2 ,

s↑↑
3 5

e2

2p2\3t tot
(
s

« f3s
2 t3s

2 E
0

1

F3s
1 ~x3s!

3F12 expS 22t3
l3sx3s

D G~12x3s
2 !x3sdx3s , ~9!

where xis[v is /v f is with v is5(1/m)A2m« f is2\2k2, the
z component of the electron velocity on the Fermi surface
layer i , \k is the modulus of the in-plane momentum,v f i is
the Fermi velocity in layeri , andl is is the bulk mean free
path in layeri .

Similar expressions can be obtained for the AP confi
ration with correspondent coefficientsFis

6 . For both configu-
rations we can identify Fermi energies and bulk relaxat
times of electrons with their majority (M ) and minority
(m) values:

~P!: t1↑↓5t1Mm ;t3↑↓5t3Mm ,

~AP!: t1↑↓5t1Mm ;t3↑↓5t3mM . ~10!

To perform the final calculation in Eq.~9! one should find
the coefficientsFis

6 for both ~P! and ~AP! configurations
making use of the boundary conditions for the distributi
functions. In the next section we will derive the bounda
conditions from a microscopical consideration.

BOUNDARY CONDITIONS
FOR DISTRIBUTION FUNCTIONS

First we consider the wave functions for a sing
interface,10 which are wave packets on the Fermi surface
metals 1 and 2:
:

l
s

n

-

n

C1,2~«,z,r!5E dk
exp~ ik•r!

v1,2k
@a1,2k

, exp~2 ik1,2zz!

1a1,2k
. exp~ ik1,2zz!#, ~11!

in which the coefficientsa, and a. correspond to
kz52k1,2z and kz51k1,2z , respectively,k1,2z5m1,2v1,2/\,
v iks is thez component of the electron velocity on the Ferm
surface in layeri , and \k is the modulus of the in-plane
momentum. The electron distribution functions are related
the coefficientsa,, a. via9

ua1k
, u25v1kf 1

2 ;ua1k
. u25v1kf 1

1 ;ua2k
, u25v2kf 2

2

and

ua2k
. u25v2kf 2

1 . ~12!

From the Schro¨dinger equation@Eq. ~1!# one can obtain
the matching conditions for quantum-mechanical current
the interface.10 The matching of wave functions and curren
at a nonideal, curved interface between metals 1 and 2 le
to the following equations:

C[C15C2 at z5z~r!

and

\2

2m1

dC1

dz U
z5z2d

2
\2

2m2

dC2

dz U
z5z1d

1W~r!C50, d→0.

~13!

From Eqs.~13! we first obtain9 relations between coefficient
a,, a. and, thereafter, with help of Eq.~12!, the boundary
conditions for electron distribution functions at the interfac
After averaging these relations over all the realizations
random variablesW(r) and z(r) the boundary conditions
take the form~assumingm15m2[m):

f 1ks
2 5R12s f 1ks

1 1T12s f 2ks
2 1E d2q@A12~k,q! f 1~k1q!s

1

1B12~k,q! f 2~k1q!s
2 #,

f 2ks
1 5R21s f 2ks

2 1T21s f 1ks
1 1E d2q@A21~k,q! f 1~k1q!s

1

1B21~k,q! f 2~k1q!s
2 #, ~14!

where

A12~k,q!5v1ksv1~k1q!sQ12, B12~k,q!5v1ksv2~k1q!Q12

and

A21~k,q!5v2kv1~k1q!sQ12, B21~k,q!5v2kv2~k1q!Q12,

Q125
2

p\2~v1ks1v2k!
2 Fm2~v1~k1q!s2v2~k1q!!

2g12~q!

1
4g128 ~q!

~v1~k1q!s1v2~k1q!!
2G , ~15!
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R125R̃121DR12, T125T̃121DT12,

R̃125R12
0 S 12

4m2h2v1ksv2k
\2 D

with

R12
0 5S v1ks2v2k

v1ks1v2k
D 2, ~16!

and

T̃125T12
0 S 11

m2h2~v1ks2v2k!
2

\2 D
with

T12
0 5

4v1ksv2k
~v1ks1v2k!

2 .

Corrections caused by effective interface scattering proce
have the form

DT125DT215T12
0 H m2~v1ks2v2k!

p\2 E g~q!~v2~k1q!

2v1~k1q!s!d2q2
4

p\2~v1ks1v2k!
E g8~q!d2q

v1ks1v2k
J

~17!

and

DR125R12
0 H 2v1ksm

2

p\2 E g~q!~v2~k1q!2v1~k1q!s!d2q

2
8v1ks

p\2~v f1s
2 2v f2

2 !
E g8~q!d2q

v1~k1q!s1v2~k1q!
J . ~18!

Similar boundary equations can be obtained for the in
face between layers 2 and 3 whereg(q) andg8(q), describ-
ing the properties of the second interface, may be differ
Ranges of integrations in Eqs.~17! and ~18! are determined
by the simultaneous existence ofz components of the Ferm
velocities in adjacent layers. Conditions~16! have been ob-
tained with second-order accuracy inW(r) andz(r) and no
mixed terms likeW(r)z(r) were taken into account. Thi
means that we neglect the influence of roughness on impu
scattering and assume that these two factors act inde
dently. The boundary conditions of Eq.~14! are integral
equations which were solved in first-order approximation
scattering and roughness correlators, Eqs.~2! and ~4!. It ap-
pears that the integral terms in Eq.~14!, when substituted
into the coefficientsF6 in Eq. ~9! do not contribute to the
current unless the correlators are anisotropic. Since we
pose the correlators to be isotropic, we neglect the inte
terms in Eq.~14!, and the nonideality of the interfaces ju
results in a renormalization of the transmission and reflec
coefficients and the boundary conditions take the fami
form:

f 1ks
2 5R12s f 1ks

1 1T12s f 2ks
2 , f 2ks

1 5R21s f 2ks
2 1T21s f 1ks

1 ,
~19!
es

r-

t.

ity
n-

p-
al

n
r

with T andR given by Eqs.~16!, ~17!, and~18!. For a per-
fectly flat interface (h50), these boundary conditions ar
determined only byR0 andT0, and are therefore equivalen
to those obtained by Hood and Falicov.3 In this case the
influence of the potential step at the interface due to differ
potentials in adjacent media is taken into account exactly

From the boundary conditions Eq.~19! one can find the
coefficientsF6 in the distribution functions of Eq.~5!. For
each configuration and spin direction we obtain six equati
for Fis

6 , which can be reduced to a set of four equations w
the help of two periodic boundary conditions at the ou
surfaces given by Eq.~7!. The solution of this set of equa
tions being substituted into the conductivity of Eq.~9! gives
us the integrands which depend onR12 and T12 from Eqs.
~16!–~18!.

We would like to add that ranges of integration in Eq.~9!
include regions of full reflection. In these regions thez com-
ponent of the electron velocities in adjacent layers are eq
to zero which corresponds toR51 andT50 and can result
in electron channeling similar to the model of Hood a
Falicov.3

NUMERICAL RESULTS

After the calculation of the conductivities both for the
and AP configuration one can obtain the magnetoresista
from

MR512
s↑↓
s↑↑

. ~20!

In Fig. 2 we calculated MR for a superlattice as a functi
of h, the deviation from the perfectly flat interface, for di
ferent values of the lateral in-plane correlation lengthL. The
input parameters for the Fermi energy and relaxation tim

FIG. 2. MR effect for an Fe(20 Å)/Cr(10 Å) superlattice calc
lated for different values ofh and L. The input parameters ar
« f ,M58.23 eV, « f ,m55.73 eV, « f ,Cr55.77 eV, all t are taken
equal (5310213 s), lM56946 Å, lm55796 Å, andlCr55816 Å,
and the effective electron massm is 1.53m0. In the insetother
parameters have been used, corresponding to an Fe(20
Cu(10 Å) superlattice. The input parameters used in the inset
« f ,M58.23 eV, « f ,m55.73 eV, « f ,Cr58.54 eV, all t are taken
equal (5310213 s), lM56946 Å,lm55796 Å, andlCu57076 Å,
the effective electron massm is 1.53m0 andh50.2 Å. The MR
effect is calculated as a function ofL.
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are taken from Hood and Falicov,3 with the values of the
Fermi energies corresponding to Fe and Cr. To concent
on the effect of geometrical roughness only, all relaxat
times are taken equal (5310213 s) such that there is no bul
spin-dependent scattering and furthermore no impuritie
the interfaces were assumed. Note that the allowed value
g(q) and g8(q) are restricted to small perturbations sin
our calculation ofR and T @Eqs. ~16!, ~17!, and ~18!# is
based on a perturbation approach. This means, for insta
that the allowed values ofh should be small in compariso
with the z component of the electron wavelength. Therefo
the maximum value ofh in our calculations amounts t
h'0.45 Å. We will return to the value of this parameter
the discussion. In the inset of Fig. 2 we have used differ
parameters. We will come back to this point in the disc
sion.

Since we did not include any bulk spin-dependent scat
ing nor impurities at the interfaces in the parameters of F
2, we find that MR50 when the interfaces are perfectly fla
like in the model of Hood and Falicov, which is identical
our model for perfectly flat interfaces. However, as is cle
from Fig. 2, geometrical roughness (hÞ0 andLÞ0) can
already produce a MR effect without any other form of sp
dependent scattering. The MR effect here is due to the c
bination of geometrical roughness and different potentials
majority and minority electrons in the magnetic layers. Ge
metrical roughness will induce a larger probability of diff
sive scattering for those electrons that experience the la
potential difference when crossing an interface. Thus for
parameters of Fig. 2 the majority electrons will be more d
fusively scattered than the minority electrons in the case
geometrical roughness. This effect eventually results in
ferent conductivities for parallel and antiparallel configu
tions of the magnetization.

In Figs. 3 and 4 the dependence of MR on the thicknes

FIG. 3. MR effect for an Fe(tFe Å)/Cr(10 Å) superlattice calcu-
lated as a function oftFe for different values ofh andL. The input
parameters are« f ,M58.23 eV, « f ,m55.73 eV, « f ,Cr55.77 eV, all
t are taken equal (5310213 s), lM56946 Å, lM55796 Å, and
lCr55816 Å, and the effective electron massm is 1.53m0.
te
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ce,
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the Fe and Cr layers, respectively, is shown. Since there i
contribution to the spin-dependent scattering from the b
of the layers, both figures display a monotonous decreas
MR as a function of layer thickness as one might exp
when the MR effect is caused by geometrical interfa
roughness.

In Fig. 5 also a large bulk contribution to the spin
dependent scattering is taken into account by choosing
ferent values for the relaxation timest for majority and mi-
noriy electrons. This results in a considerable MR effect ev
without interface roughness. In the bulk the minority ele
trons are most effectively scattered as a result of the par
eters that we have chosen (tm,tM). On the contrary, as
stated above~Fig. 2!, the interface roughness has more infl
ence on the scattering of the majority electrons. Therefore

FIG. 4. MR effect for an Fe(20 Å)/Cr(tCr Å) superlattice calcu-
lated as a function oftCr for different values ofh andL. The input
parameters are« f ,M58.23 eV, « f ,m55.73 eV, « f ,Cr55.77 eV, all
t are taken equal (5310213 s), lM56946 Å, lm55796 Å, and
lCr55816 Å, and the effective electron massm is 1.53m0.

FIG. 5. MR effect for an Fe(20 Å)/Cr(10 Å) superlattice calc
lated for different values ofh and L. The input parameters ar
« f ,M58.23 eV, « f ,m55.73 eV, « f ,Cr55.77 eV, tM55310213,
tm50.5310213, tCr55310213 s, lM56946 Å, lm5580 Å, and
lCr55816 Å, and the effective electron massm is 1.53m0.
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the parameters of Fig. 5, an increase of the geometr
roughness decreases the scattering asymmetry between
jority and minority electrons and therefore decreases the
as well. ForL510 Å andh>0.25 Å, apparently the asym
metry due to roughness becomes dominant and MR incre
again. Note that when we would have reversed the sign
the bulk contribution to the spin-dependent scattering~same
potentials but tM50.5310213 s, lM5695 Å,
tm55310213 s, lm55796 Å!, the introduction of rough-
ness indeed results in an increase of MR because now
bulk and interface scattering processes possess the
asymmetry.

Finally, in Fig. 6 the influence of impurities, defects, e
at the interface is examined. Here the MR is calculated a
function of a parametera, which is given by

a5
m2g8~q!

\4 . ~21!

As follows from Eqs.~17! and ~18! alsog8 will change the
reflection and transmission coefficients for majority and m
nority electrons with a different amount. In Fig. 6 this resu
in a decrease of MR when there is no bulk spin-depend
scattering~solid line! as well as when bulk spin-depende
scattering is active~dashed line!. In general however the ef
fect of impurities, defects, etc. will depend on the spec
choice of parameters such as potentials and relaxation tim
and can also increase the MR.

DISCUSSION

As stated above the input parameters for the potential
ergy and relaxation times are taken from Hood and Falico3

It is known however that the choice of these parameters
sults in a conductivity that is too large in comparison w
experiments which can be seen, e.g., by the unrealistic l
values for the mean free paths. To compare their results
experiments Hood and Falicov therefore introduced a sca
factor to reduce the number of conduction electrons. As
do not intend to make a quantitative comparison with exp
mental data, we did not include a scaling factor in our c
culations. We however would like to mention that when t
relaxation times are reduced to obtain more realistic val

FIG. 6. MR effect for an Fe(20 Å)/Cr(10 Å) superlattice calc
lated for different values ofa ~see text!. The input parameters ar
h50.2 Å, L53 Å, « f ,M58.23 eV,« f ,m55.73 eV,« f ,Cr55.77 eV,
all t are taken equal (5310213 s),lM56946 Å,lm55796 Å, and
lCr55816 Å, and the effective electron massm is 1.53m0.
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of l, this also reduces the MR effect with an order of ma
nitude.

Furthermore the Fermi velocity of the conduction ele
trons is in our model calculated on the basis of the fr
electron model. This is another reason why the values in
calculations should not be taken as exact numbers. Our
sults therefore merely represent trends in how the MR ef
depends on the various input parameters and in particula
the geometrical roughness.

Let us now concentrate on the dependence of MR onh
andL again. From Fig. 2 it is clear that geometrical roug
ness, which is in principle spin independent as we have c
sen h and L to be spin independent, effectively leads
spin-dependent scattering which is induced by the differ
potentials for majority and minority electrons in the ma
netic layers. The same result, although not shown in Fig
holds for scattering at impurities and defects located at
interface and described byg8. As a result we cannot distin
guish a spin-dependent interface mechanism from a s
independent one.

According to our model, when there is no bulk spi
dependent scattering~all t equal!, there is only a MR effect
when bothhÞ0 and LÞ0. Also from Figs. 2, 3, and 4 we
can see that an increase inh or L both seems to result in a
increase of MR in the absence of bulk spin-dependent s
tering. These results appear to be at variance with Hood
Falicov who find a significant MR already for zero correl
tion length (L50, hÞ0). Moreover Barnas,8 who also de-
scribes interface roughness with the parametersh andL re-
ports a decrease of MR with increasingL which physically
seems realistic as an infiniteL would correspond to a fla
interface. This discrepancy can be understood however f
the correlation functiong(q), Eq. ~4!.

From Eq.~4! we can see thatg50 when eitherh50 or
L50, which explains the difference with Hood and Falico
Equation~3! however has an uncertainty in the pointr50,
L50 and therefore is not suitable to describe fully uncor
lated roughness (L50). For this special case one should u
a white-noise-type autocorrelation function11 @like g8(r) in
Eq. ~2! used for potential scattering#:

g~r!5h2a2d~r!, ~22!

in which the value ofa is of the order of the lattice constan
When Eq.~22! is substituted into Eq.~18!, our correction
DR for the limiting case of an outer surface~which means
v250), is given by exp@2(ch2 cos2u)/l2#, expanded to the
first order inh2, wherec is a numerical constant,u repre-
sents the angle of incidence, andl is the electron wave-
length. The exponent mentioned above is the result obta
by Soffer12 for a surface with fully uncorrelated roughnes
This means that we have extended the result of Soffer for
case of a rough interface.

Barnas8 has chosen a different correlation function to d
scribe the interface roughness, viz.,

g~q!52ph2~11L2q2!23/2. ~23!

This correlation function decreases monotonically as a fu
tion of L and is thus maximal forL50, in contrast with our
correlation function@Eq. ~4!# that shows a maximum as
function ofL. Although we were not able to show this for th



b
a
/C
c
e
of

do
w

n

o
om

ily
ult
a
fo
b

by
a
n
pi
ss
e
re
on

o
r

e
in
g
n

s-
ia
ce

the
in-
ged
°C
udy
he
mall
tore-
an

for
he
s,
by
of
ibed
ions
-
er-

e-
nt
ag-
an
val-
pin-

in

ing
ks
en

8380 55LITVINOV, DUGAEV, WILLEKENS, AND SWAGTEN
parameters in Fig. 2 because of the limitations imposed
the perturbation approach, the inset in Fig. 2, where we h
chosen different parameters belonging to an Fe
multilayer, shows that this maximum in the correlation fun
tion results in a maximum in the MR effect. Thus for larg
values ofL our model behaves identically to the model
Barnas.8

Another difference with the model of Barnas is that we
not imply that roughness scatters electrons in the same
as impurities do~i.e., by potential scattering!, but obtain the
boundary conditions from matching electron wave functio
at the interfaces~i.e., a pure geometrical approach!. As a
result, we deduce the effective scattering amplitudes fr
our geometrical approach instead of introducing them fr
the beginning.

From an experimental point of view one cannot eas
decide which approach is better. To start with, it is diffic
to discern between interface spin-dependent scattering
bulk spin-dependent scattering. One of the difficulties is
instance that bulk and interface scattering cannot easily
isolated because a thick bulk layer will always be limited
interfaces, although a number of experimental studies h
made it clear that the scattering at the interface betwee
magnetic and a nonmagnetic layer may be s
dependent.13,14 Furthermore, the role of interface roughne
is still not clarified, mainly because it is difficult to vary th
interface roughness in a controlled way and quantify it the
after. Besides, changing, for instance, the growth conditi
will surely influence the interfaces15 but might also affect the
scattering processes in the bulk of the layers and hence c
plicate the interpretation of the measurements. It might the
fore not be surprising that the conclusions drawn from
number of experiments seem to be contradictory. As an
ample, for the Fe/Cr system a decreasing MR with increas
interface roughness is reported,16 as well as an increasin
MR with increasing roughness,17 and the existence of a
optimum roughness.18

Recently Belie¨n et al.19 have performed a detailed inve
tigation of the relation between interface roughness and g
magnetoresistance in polycrystalline Fe/Cr superlatti
.
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grown by molecular-beam epitaxy. In these superlattices
resistivity is mainly determined by interface roughness
stead of bulk scattering. The interface quality was chan
by varying the growth temperature between 0 and 400
and by the use of a Cr seed layer. It is concluded in this st
that compositional mixing or interdiffusion decreases t
magnetoresistance. It is however suggested that a s
amount of steps at the interface can enhance the magne
sistance which would be in agreement with our finding of
optimal value for the correlation lengthL.

CONCLUSIONS

We have solved the Boltzmann transport equation
magnetic superlattices with current-in-plane geometry. T
boundary conditions for the electron distribution function
needed to calculate the conductivity, were obtained
matching electron wave functions at the actual position
the rough interfaces. Geometrical roughness was descr
by two parameters, the root mean square of the deviat
from the perfectly flat interface,h, and the in-plane correla
tion length,L. Other potential scattering agents at the int
face were described by a random fieldW(r). Although not
intrinsically spin dependent, both kinds of interface nonid
ality (h,L andW) can result in effective spin-depende
scattering due to the spin-dependent potentials in the m
netic layers. It appears that all parameters can lead to
increase or decrease of the MR effect, depending on the
ues of the other parameters and the presence of bulk s
dependent scattering.
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