

Integrating continuous-time and discrete-event concepts in
modelling and simulation of manufacturing machines
Citation for published version (APA):
Beek, van, D. A., Gordijn, S. H. F., & Rooda, J. E. (1997). Integrating continuous-time and discrete-event
concepts in modelling and simulation of manufacturing machines. Simulation Practice and Theory, 5(7-8), 653-
669. https://doi.org/10.1016/S0928-4869(96)00028-6

DOI:
10.1016/S0928-4869(96)00028-6

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.1016/S0928-4869(96)00028-6
https://doi.org/10.1016/S0928-4869(96)00028-6
https://research.tue.nl/en/publications/f2b1f282-cbe7-4aa7-8a05-8c51227cf265

ELSEVIER Simulation Practice and Theory 5 (1997) 653-669

SIMULATION
PRACTICE = THEORY

Integrating continuous-time and discrete-event
concepts in modelling and simulation of

manufacturing machines

D.A. van Beck*, S.H.F. Gordijn, J.E. Rooda
Eindhoven University of Technology, Department of Mechanical Engineering,

PO. Box 513, 5600 MB Eindhoven. The Netherlands

Received 1 May 1996; revised 1 October 1996

Abstract

Using simulation models for the development and testing of control systems can have significant
advantages over using real machines. This paper demonstrates the suitability of the x language
for modelling, simulation and control of manufacturing machines. The language integrates a small
number of powerful orthogonal continuous-time and discrete-event concepts. The continuous-time
part of x is based on DAEs; the discrete-event part is based on a CSP-like concurrent programming
language. Models are specified in a symbolic mathematical notation. A case study is presented of
a transport system consisting of conveyor belts. @ 1997 Elsevier Science B.V.

Keywords: Machine modelling; Control system testing; Hybrid; Discrete-event: Continuous-time

1. Introduction

Using simulation models for the development and testing of control systems can have
significant advantages over using real machines:

l Using the real machines may be hazardous because of the possibility of damage
due to errors.

l The control system may already be operative so that it must be taken out of
production to test the new version.

l The real machines can still be under development.
The main disadvantage of simulation-based testing is the time and effort needed to

model the system. Therefore it is important that a sufficiently accurate model can be de-

* E-mail: vanbeek@wtb.tue.nl

0928-4869/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PII SO928-4869(96)00028-6

654 D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669

veloped in a reasonable amount of time. This is possible with the combined continuous-
time / discrete-event language x presented in this paper. The paper is based on Ref. [81.

Many modelling languages are primarily suited to the specification of either discrete-
event or continuous-time models. In order to be able to specify combined systems,
some languages have been extended with continuous-time or discrete-event constructs,

respectively.
Some examples of continuous-time languages that have been extended with discrete-

event constructs are: ACSL [181, Dymola [111, Omola [1] and gPROMS [5]. The

discrete-event constructs of the first three languages are limited to discontinuity handling
using time-events or state-events. The gPROMS language is based on the continuous-

language Speedup [31. It has been developed for modelling systems occurring in the
process industries. Its discrete-event part is based on composition of sequential and
parallel blocks. The language is, however, not suited to modelling of discrete-event

(control) systems.
The language SIMAN [221, is an example of a discrete-event modelling language that

has been extended with assignment and pointer based constructs for representing equa-
tions, using the general purpose programming language C [161. This leads to low level
code for representing equations, so that the modeller is forced to concentrate on equation

solving instead of simply specifying the equations describing the continuous-time sys-
tems. Prosim [lo] is another discrete-event based language in which a limited number

of continuous constructs are present. Petri Nets (see Ref. [9] for a survey paper) are
also based on discrete-event concepts. They have been extended with continuous-time
constructs (e.g. see Ref. 1231). In Ref. [4] such constructs are used for a more effi-

cient approximation of discrete-event systems; the continuous constructs are generally
not designed to support the specification of complex continuous systems.

In Ref. [171 the COSMOS language is described. Its discrete-event part is based on

the activation and passivation of processes. In the continuous part differential equations
can be specified. The language also comprises an elaborate experiment description part,
so that the model and the experiment descriptions are clearly separated.

2. The ,y language

The x language is based on a small number of orthogonal language constructs which
makes it easy to use and to learn. Where possible, the continuous-time and discrete-event
parts of the language are based on similar concepts. Parametrized processes and systems
provide modularity, parallelism with communication and synchronization, and hierar-
chical modelling. The language is based on mathematical concepts with well defined
semantics. Unlike many other simulation languages, the ,y language uses a symbolic
notation for specifications and ASCII equivalents for simulations. The symbolic notation
makes specifications easier to read and to develop. Compare for example the symbolic

notation of

h’ = kJpi_p,

At-r

D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653469 655

with its ASCII equivalent for simulation purposes

h’ = k * sqrt(pi - p-0)

delta t - time

The pronunciation of the x symbols used in this paper is shown in Table 1.

In this paper, only the language constructs used in the example are treated. The syntax
and operational semantics of the language constructs are explained in an informal way. A
treatment of all language constructs and design considerations is presented in Ref. [21.

The model of a system consists of a number of process (or system)’ instantiations,
and channels connecting these processes. Systems are parametrized.

syst name(parameter declarations) =

I[channel declarations

j process or system instantiations

II

The parameter declaration of a process is identical to that of a system. A process
may consist of a continuous-time part only (DAEs), a discrete-event part only, or a

combination of both. The links (explained in the next section) provide a means to
access continuous variables from other processes.

proc name(parameter declarations) =

11 variable declarations

; initialization

1 links

1 DAEs
I discrete-event statements

II

The continuous-time and discrete-event parts of the language are based on similar

concepts. Processes have local variables only; all interactions between processes take
place by means of channels. A channel connects two processes or systems. Continuous
channels are symmetrical; discrete channels are used for output in one process and
input in the other. Channels are declared locally in systems and are either discrete (e.g.
p : int, q : void) or continuous (e.g. u : [m/s]). The special void data type denotes the

absence of data. Therefore the declaration q : void declares a synchronisation channel

q. Channels can also be declared as process or system parameters. When declared as
parameters, discrete channels are used for either input (e.g. p : ? int, 4 : ? void), or

Table 1
Pronunciation of the Y svmbols

X
proc

syst

I[

II

chi

process

system

begin block

end block

4 link * repeat

7 receive 0 Or

1 send I end

A delta - then

V nabla _L nil

656 D.A. van Beek et al. /Simulation Pracrice and Theory 5 (1997) 653469

Table 2
BNF syntax of the continuous-time part of ,y
DAE ::= re = re 1 [GE] 1 DAE, DAE

GE ::= b-DAEIGEOGE

output (e.g. p : ! int, q : ! void). Continuous channel parameters are declared as c :
-o [m/s]. A continuous channel is represented graphically by a line (optionally ending
in a small circle to denote either the direction of a flow or a cause-effect relationship),
a discrete channel by an arrow. Processes and systems are represented by circles.

2.1. Data types, variables and links

All data types and variables are declared as either continuous or discrete. This is
an important distinction with other hybrid modelling languages in which the type of a
variable is often implicitly inferred from its use.

The value of a discrete variable is determined by assignments. Between two subse-
quent assignments the variable retains its value. The value of a continuous variable,
on the other hand, is determined by equations. An assignment to a continuous variable
(initialization) determines its value for the current point of time only.

Some discrete data types are predefined like boo1 (boolean), int (integer) and real.
Since all continuous variables are assumed to be of type real, they are defined by
specifying their units only. For example, the declaration c : [m/s] defines a continuous
variable (in a process) or channel c (in a system).

In parameter declarations, c : -s [m/s] defines a continuous channel parameter c
which may be linked to a continuous variable of type [m/s] using the link symbol -o

c -0 var

The variable var and the channel c must be of the same (continuous) data type. Link-
ing is the only operation allowed on continuous channels in processes. By linking, a
continuous channel relates a variable of one process to a variable of another process
by means of an equality relation. Consider two variables x0, Xb in different processes,
that are linked to a continuous channel c (c -Z xa and c -o xb). The channel and links
cause the equation x0 = xb to be added to the set of DA& of the system.

2.2. The continuous-time part of x

The continuous-time part of x is based on Differential Algebraic Equations (DAEs) .
A time derivative is denoted by a prime character (e.g. x’). A summary of the
continuous-time language constructs is given in Table 2. In this table re denotes a real
expression, possibly including derivatives. An informal explanation of the constructs
follows below.

DAEs are separated by commas

DAEl , DAE2, . . . , DAE,

If the set of DAEs depends on the state of a system, guarded DAEs can be used,

[bl -DAEs, 0 . . . I] 6, -DAEs,],

D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669 657

Table 3
BNF syntax of the discrete-event part of ,y

E ::= c!elc?xlc!lc?lAtjvr

GB ::= b--+SIGBfi GB

GW ::= b;E---+SIGWO GW

G ::= [GB] 1 [GW]

s ::= x:=elEIGI*GIS; S

which is pronounced as: ‘guarded equations, if bl then DAEq, or . . . or if 6, then
DAEs,,, end’. The boolean expression bi (1 < i < n) denotes a guard, which is open if
bi evaluates to true and is otherwise closed. At any time at least one of the guards must

be open so that the DAEs associated with an open guard can be selected.

2.3. The discrete-event part of ,y

The discrete-event part of x is a CSP-like [141 real-time concurrent programming
language, described in Refs. [191 and [201. Our notation is derived from Ref. [151.
We have adopted the CSP-like constructs because of:

l The concurrent processes, that are well suited to modelling the parallelism found
in industrial systems.

l The sound mathematical background of the formalism.
l The synchronous nature of the interactions, which means that buffers are modelled

explicitly and cannot be hidden in interactions.

l The lack of global variables, which enables robust modelling.

l The possibility to extend the CSP language with, among others, the selective
waiting construct, which is explained below together with the other language

constructs.
A summary of the discrete-event language constructs is given in Table 3.
Interaction between discrete-event parts of processes takes place by means of syn-

chronous message passing or by synchronization

c!e c?x c! c?

Consider the channel c connecting two processes. Execution of c ! e in one process
causes the process to be blocked until c ?x is executed in the other process, and vice
versa. Subsequently the value of expression e is assigned to variable X. Synchronization

is denoted by c ! and c ?. The only difference with communication is that no data is

exchanged.
lFme passing is denoted by

Af

where t is a real expression. A process executing this statement is blocked until the time
is increased by t time-units.

Selection ([GB] > is denoted by

[h - SI 0 62 - Sz II . . . 0 bn - S,]

6.58 D.A. van Beek et aI./Simulation Practice and Theory 5 (1997) 653-669

which is pronounced as: ‘selection, if bt then S1, or if bZ then S2 or . . . or if b,, then

S,,, end’. The boolean expression bi (1 < i < n) denotes a guard, which is open if
bi evaluates to true and is otherwise closed. After evaluation of the guards, one of the

statements Si associated with an open guard bi is executed.

Selective waiting ([GW]) is denoted by

[bl ; El - SI II . . . 0 b, ; E,, - Sn 1

Consider for example the selective waiting statement

[bl; p?x-SI 0 b2; At-&]

this is pronounced as: ‘selective waiting, if bl and p receive x then St, or if b2 and delta t
then S2, end’. An event statement Ei which is prefixed by a guard bi (bi; Ei) is enabled

if the guard is open and the event specified in Ei can actually take place. Continuous
variables are not allowed in these guards. There are four types of event statement: input

(c ? e or c ?) , output (c ! x or c !), time (A t) , and state (V r, explained in the following

section). The process executing [GW] remains blocked until at least one event statement

is enabled. Then, one of these (EL) is chosen for execution, followed by execution of
the corresponding Si. Time-outs are event statements of the form A t that are prefixed
by a guard (b; A t) _ A process cannot be blocked in a selective waiting statement with
time-outs for longer than the smallest time-out time tS (provided the associated time-out

guard is open). If no other event statements are enabled within that period, a statement
S associated with an enabled time-out of time ts is executed. Please note that guards
that are always true may be omitted together with the succeeding semicolon. Therefore

‘true; E’ may be abbreviated to ‘E’.

Repetition of the statements [GB] and [GW] is denoted by

*[GB] and *[GW]

respectively. The repetition terminates when all guards are closed. The repetition *[true
- S] may be abbreviated to * [S 1.

2.4. Interaction between the continuous and discrete parts of x

In the discrete-event part of a process, assignments can be made to discrete variables

occurring in DAEs or in the boolean guards of guarded DABS. In the former case
the DAEs will be evaluated with new values, in the latter case different DABS may be
selected. Continuous variables are initialized immediately after the declarations, and may
be reinitialized in the discrete-event part. In both cases the symbol ::= (e.g. x ::= 0) is

used.
By means of the state event statement

Vr

the discrete-event part of a process can synchronize with the continuous part of a process.
Execution of V r, where r is a relation involving at least one continuous variable, causes
the process to be blocked until the relation becomes true.

D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669 659

Fig. 1. The transport system.

3. A conveyor line example

This section illustrates the use of the x language by an example of a transport system
shown in Fig. 1. The system consists of a line of conveyor belts driven by motors, and is

used for the transportation and buffering of boxes. Each conveyor belt is equipped with
a sensor (represented in the figure by a small rectangle). which detects the presence of

a box. Both the model of the physical system and the discrete-event control system are

presented.
The iconic model of the transport system is given in Fig. 2. The textual model of the

transport system T follows below.

syst T(~11 : 4 vel

, p1 : ?id, p7 : !id, 40 : ? void, 93 : ! void

, let lb, Is, i&t : real

I=

I[~11~~12~~13~~219~227~23~~31~~32~~33: vel

, ql,q2,0nl,on2,0n3,0ffl,off2,0ff3 :void
SI,Q,S3,“21,W,m3 :bool, p2,p3,p4,p5tpf, :id

i C(q0,4t7w,ofl,ml) II w 41,u12,u13,ml,k) II S(n,m,ofl,)

II C(ql,q2tOn2,0fS22,m2) II M(u21,u22,v23,m2,u,t) II SCs2,on2,&2)

II C(q2,q3,0n3,df3,m3) II M(u31,u32,u33,m3,v,t) II S(s3,on3,@3)
Ij C&U12,pl,p;!,~b,k) 11 ~~~~~~~~~~~~~~~~~~~~~~~~~~
(1 CB(WvP3>P4~kvk) 11 CF(v23,v31,P4rP5,S2,Ib,Is)
11 CB(U32>P5>p6,lb,k))I c~~(u33,P6,~,~3,~b,~,)

II

A conveyor is modelled by the processes CF (Conveyor Front) and CB (Conveyor
Back). The controller, motor and sensor are modelled by the processes C, M, and S,
respectively. The boxes enter the system via the process CFF (which is not shown in the
figure), and leave the system via process CFL. The specifications of the processes CFF
and CFL are not given here, because they depend on the environment of the system.
For an example of how they could be specified we refer to Ref. [131.

660 D.A. van Beek et al./Simulation Practice and Theory 5 (1997) 653-669

fig. 2. Model of the transport system.

The user defined types that are used in different processes are listed below.

type vel = [m/s]

7 pos = [ml
id = int

3.1. The model of a motor

The motor is switched on when it receives the value true via channel mj, and is

switched off when it receives the value false. The parameter vSt represents the value of
the velocity of the conveyor motor when it is switched on. The velocity u of the motor

is made available to three processes via the continuous channels Ujt, Uj2 and Uj3 (see

Figs. 2 and 3).

proc M(Vjl, Vj2, Vj3 1 -<) vel
, mj:?bool
, vet : real

I=
I[v : vel
, b : boo1

; b := false

1 UjlrUj2*Uj3 --O u

1 [b-v=v~[
0 d-v=0

I
1 *[mj?b]

II

3.2. The model of a sensor

A sensor is modelled by process S. The control system synchronizes with a sensor
by means of the synchronization channels on and o# These are used by the control

D.A. van Beek et al./Simulation Practice and Theory 5 (1997) 653-669 661

system to wait for the sensor to be activated or deactivated. The synchronization on?

in a control process can only take place if the sensor is activated. This is modelled by

‘b ; on ! - skip’ in process S, where skip is the empty statement. Execution of the

statement off? in the control system causes it to block until the sensor is deactivated.

The sensor receives its new state from process CF via channel S. The boolean variable

b denotes the state of the sensor.

proc S(s : ?bool, on,ofJ: !void) =

I[b : boo1
1 b :=false

; *I s ? b - skip

i 7::
’ -skip

Eii - skip

1
II

3.3. The conveyor processes

The assumptions regarding the behaviour of a conveyor are:
l The length (Zb) of a box is less than the length (I,) of a conveyor.
l If a box is positioned on two conveyors, the movement of the box is determined

by the conveyor which supports the major part of the box.
l Initially there are no boxes on the conveyors.

l The control system allows a new box to enter a conveyor only when the conveyor
is empty, or its current box is leaving the conveyor. Therefore, the boxes cannot
come into contact with each other.

The conveyors are modelled by means of the processes CF and CB (see Fig. 1).

Process CB models a part of the conveyor immediately preceding the sensor. The first
part of the conveyor is modelled by process CF, which also models the part after the
sensor of the preceding conveyor. The process CF determines the state of the sensor.
Because the CF section starts at the position of the sensor, and the length of the section
equals the length of a box, the sensor is activated if and only if the front of a box is
present in section CF. The second section, CB, has a length of I, - lb.

The specification of the process CF is shown below. It is best understood in combi-
nation with Fig. 3.

Each box is represented by an integer of type id, which is stored in the variable id.

The variables X, u and up represent the position of the front of a box, the velocity of the
conveyor belt and the velocity of the preceding conveyor belt, respectively. The boolean

variable b equals true when the conveyor supports the major part of the box, and false
otherwise.

The variables used in the continuous part are initialized immediately after the decla-

rations (x ::=i ; b := false). Initially the conveyors are empty. Therefore the variable
x is initialized to _L. In this way it becomes undefined. When a continuous variable
is initialized to I, the variable and all equations in which it occurs are temporarily
removed from the system, until the variable is initialized to a value other than _I_.

662 D.A. van Beek et al./Simularion Practice and Theory 5 (1997) 653-669

Fig. 3. Model of a conveyor.

The entry of a box onto the conveyor is modelled by the communication pk ? id. As
a result, the sensor is activated (s ! true), and x is initialized to 0. The trajectory of x

is determined by the value of its derivative (x’). This value equals either the velocity
up of the preceding conveyor (if b is false) or the velocity u of the conveyor itself

(if b is true), depending on the position of the box. In the discrete-event section, two
state-events are used. The first state-event represents the detection that the major part of
the box is supported by the conveyor, i.e. V x = I, + i&,_ By subsequently assigning the
value true to b, the equation X’ = L: is selected. The second state-event represents the

moment at which the box reaches the process boundary, i.e. V x = I,,_ Consequently the
communication pl ! id is executed, the sensor is deactivated (S ! false), and the variable
x is reinitialized at 1. From this point on, the position of the box is determined by the

next process.

proc CF(Uia, Ujr : -0 vel
, pk:?id, pl:!id, s:!bool

, lb,& : real

I[n : pas), : 0 : vel
, b: bool, id:id
; x ::=_L ; b := false

I &3 -0 up

v;1 +v

i [7b - X' = up

II b -x'=u

1
1 *[pk?id; s!true; b:=false; x::=O

; Vx = 1, + $lb ; b := true
; vx=/b; pl!id; s!falSe; x::=l

I

II

The specification of CB is slightly different from the CF specification. The conditional
equation is no longer necessary, because in this process the box is always carried by

D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669 663

the conveyor itself. The discrete event part is also simplified, because the state of the
sensor is not affected by process CB.

proc CB(uj2 : -D vel
, pj : ?id, p,,, : !id

, lb,/, : real

)=
([n : pos, u : vel

, id:id
; x ::=I

/ Vj2 4 V

x1 = v

1 *[pl?id; x::=O; vx=l,-lb; pm!id; x::=_L]

II

4. The conveyor line control system

The control system is included, because it clarifies the sensor and actuator based
interaction between the control system and the conveyors.

4.1. A simplified control strategy

The specification of the control process C follows below (see also Fig. 2). The
control strategy is straightforward: new boxes are allowed to enter only when the sensor
is not activated, and the conveyor is therefore empty. When the synchronization via qin

succeeds, the motor of the conveyor is switched on (m ! true). The control process then
waits until the sensor is activated (on ?), so that the box is at the end of the conveyor.

The process then checks if the next conveyor is ready to receive a box (qoUt !). If this is
the case, then the synchronization qout ! . 1s executed. If the next conveyor cannot receive a
box within 0.1 seconds, the time-out A 0.1 is executed. As a result the motor is switched
off, and the control process waits until the next conveyor can receive a box. Then it

starts the motor. Finally, it waits until the box has left the conveyor (ofs?), before a
new box may enter the conveyor.

procC(qi,: ?void, qO,,!void, on,ofJ:?void, m: !bool) =

I[* [9in ? ; m!true; on?

; [qout ! - skip
fl AO.1 -m!false; qout!; m!true

I
; off?
1

II

4.2. A more eflcient control strategy

A more optimal strategy is presented below. In this case, boxes are allowed to enter
a conveyor as soon as the box already present on the conveyor has reached the sensor

664 D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669

(on ?), and is leaving the conveyor. The advantage of this strategy is that there can be
two boxes on a conveyor instead of just one, which results in an increased throughput.

Four different states are used in the controher:
(i) EMPTY: At first the conveyor is empty, not running, and is able to receive and

transport a box.
(ii) RATS (running at sensor) : The conveyor is running with a box that has reached

the sensor. At this stage, the controller tries to send to qout to see if the next conveyor
can receive the box. If this is not possible within 0.1 seconds (A 0. 1), the motor stops
(m ! false) and the controller waits until the next conveyor can receive the box.

(iii) ROUT (running out) : The box can leave the conveyor. When leaving, two events
are possible. Either a second box may enter the conveyor (qin ?), or the box leaving the
conveyor may clear the detector (of?) before a second box has entered. If a new box
has entered first, the control process subsequently waits for the first box to have left the
conveyor (og?), and then waits for the second box to reach the detector (on ?) .

(iv) REMPTY (running empty) : If there is no new box within 5 seconds, the motor
stops, and the state s becomes EMpTY.

proc C (9in : ?void, qout!void, on,o$: ?void, m: !bool) =
I[s : {EMPTY,ROUT,REMpTY,RATS}

1 s:=EMPTY

; *[s=EMPlY ; qin? -m!true; ~YZ?; s:=RATS

0 s=RATS ; qout ! - s := ROUT

0 s=RATS ; Ao.1 --+m!false; qout!; m!true; S:=ROm

0 s=ROUT ; qin? -of?; On?; s:=RATS

0 s= ROUT ; off? -s:=REMPTY

[1 s=FEMPTY; qin? -on?; s:=RATS

0 s=REMpTY; A.5 -m!false; s:=EMPTY

I

II

5. Extensions to the conveyor line example

In this section the conveyors are modelled in more detail. Two extensions are pre-
sented: a conveyor motor with start-up and shut-down characteristics, and a conveyor
line on which the boxes may collide.

5.1. Extensions to the motor

The motor described in the previous section had two states only: on or off. The
motor specified below has two additional states: accelerating and decelerating. The
variable s stores the state of the motor, it can take on any of the values in the set
{STOPPED, ACC, MAX, DEC}. When the motor is switched on, its velocity u rises with
a constant acceleration a,[until the maximum velocity u,[is reached. The motor process
continuously tries to receive a new command from the control system (mj ? b). When
the motor receives a new command via channel mj, it first checks the state of the

D.A. van Beek et al. /Simulation Practice and Theory 5 (1997) 653-669 665

Fig. 4. Model of the conveyors with colliding boxes.

motor. If it is turned on and it is not yet at its maximum velocity (b A s + MAX)
the state is set to accelerate (S := ACC). If it is turned off and it has not yet stopped

(-b As # STOPPED), the state is set to decelerate. If the state s equals ACC, the process

waits until the motor has achieved its maximum speed (V u = u,~), and subsequently

switches the state to MAX.

proc M(Ujl.Uj2,Cj3 1 -0 vel
, mj:?bool

, aset, uset : real
I=

I[u : vel
, b : boo1 , s : {STOPPED, ACC, MAX, DEC}

; c ::=o; s := STOPPED

1 Ujl,Cj2,Uj3 4 L:

1 [s=MAXVs=STOPPED-u’=O

0 s=ACC
I

- u = aset

0 s = DEC
/

-u =-L&t

mj?b -[br\s#mx --+s:=ACC

0 Tb A s # STOPPED - s := DEC

1
0 s=ACC; vu=uset -s:=MAX

fl s=DEC; vu=0 -s:=STOPPED

1
II

5.2. Conveyors with colliding boxes

In this section a more accurate model of the conveyors is presented. This model takes

into account the possibility of colliding boxes. If a box enters a conveyor section that
contains a box which is not moving, the entering box collides with the box already
present. It is assumed, that as a result of a collision the velocity of the entering box
becomes equal to the minimum of (1) the velocity of the conveyor section by which it
is supported and (2) the velocity of the box in front of it.

Only process CBC (Conveyor Back Colliding) is specified. The specification of
process CFC is similar. The specification of the process follows below. Fig. 4 shows the
process CBC together with the surrounding processes CFC.

666 D.A. van Beek et al./Simulation Practice and Theory 5 (1997) 653-669

proc CBC(umotor, ul, u, : -0 vel, x1, xm : --o pos
, pl:?id, p,:!id

, &,I, : real

I[X,Xnext fpis, U,hext : k-21
, id : id, s : {EMPTY, FRONT, TAIL, FRONlTAIL, COLLISION}

; X ::=I ; s := EMPTY

I JJmOlOr -0 u

. Xl -0X

3 u1 --ou

1 Xn -0 Xnext
9 urn 4 hext
1 [s # COLLISION - x’ = u

0 s = COLLISION - x’ = min(u, unext)

1
1 *[s=EMPTY ; pl ?id - x ::= 0; s := FRONT

IIS = FRONT ; vx=l,-lb -pm!id; x::=I; s:=TAIL

OS =TAIL ; v Xmt = lb -s:=EMP-IY

0 s=TAIL ; pl? id -x::=O; s:=FRONTl?AIL

0 S=FRON?TAIL; Vdist=O - s := COLLISION

/-j S = FRONTTAIL; v Xnext = lb - S := FRONT

0 s=COLLISION; vX,rxt=/b -pm!id; x::=l; s:=TAIL

0 s= COLLISION ; V dist > 0 - s := FRONTTAIL

1
II

The variable s stores the state of the process, it can take on any of the values in
the set {EMPTY, FRONT, TAIL, FRONTTAIL, COLLISION}. The different states are ah0

shown in Fig. 5.
The state depends on the position of the boxes within the process boundaries. Initially

the state is EMPTY. If a new box enters the process, the state changes to FRONT. The

box moves across the conveyor until it reaches the end of section CBC. From this point
on, the position of the box is described by the next process, but its tail remains in

section CBC. The state now changes to TAIL. Two events can now take place: the tail
of the box can leave the section (V xnext = lb) thus changing the state to EMPTY, or a
new box can enter the section (pi ? id) thus changing the state to FRON?TW. When
the state equals FRoN-ITAIL, the two boxes collide when the distance between them
becomes zero. The state then changes to COLLISION. As a result, the velocity of the
colliding box becomes equal to the minimum of its own velocity and the velocity of
the box in front of it (x’ = min(u, u ,,xt)) _ In the case of a collision, the two conveyors

can either cross the process boundary simultaneously (V xnext = lb), or the first box
can start moving faster than the second box, causin g the boxes to be separated again
(V dist > 0). The expression dist has been introduced for reasons of clarity. It denotes
the distance between the front of a box and the tail of its successor (if present). This
distance equals (I, - lb) - x - (lb - xnext) (see Fig. 6), so instead of dist one should

D.A. van Beek er al. /Simulation Practice and Theory 5 (1997) 653-669 667

Area of
interest

1 1 I ‘/ ,!, ,8/S

,piji’,
;- / B!_

L /

no ; + + : + OCE +
CFC : CBC ; CFC

Fig. 5. The states of process CBC.

State

EMPTY

FRONT

TAIL

FRONTTAIL

COLLISION

read Xnext - x - 21b + I,. The position (nnext) and velocity (vnext) of the succeeding box
are made available to process CBC by means of the two continuous channels x,,, and L’,,,
(see Fig. 4).

6. Conclusions

The application of the ,y language to modelling and simulation of manufacturing
machines has been illustrated using a conveyor based transport system. The language is
relatively easy to use and to learn because of the small number of orthogonal language
constructs. Combined with the symbolic mathematical notation, this leads to concise
models. Good modularity is achieved by the use of processes and systems and the
absence of global variables.

668 D.A. van Beek et al./Simulation Practice and Theory 5 (1997) 653469

CBC I CFC I CBC I CFC

Fig. 6. Conveyors with colliding boxes.

The integration of continuous-time and discrete-event concepts in the language makes

it highly suitable for machine modelling. In the continuous-time parts of the models,
positions of moving parts are described by simple DAEs. In order to simplify models,
many actions of machines can be abstracted as discrete-event actions. For this purpose,
the x language provides CSP-based discrete-event constructs. Changes in the velocity
of moving parts can be simplified as discontinuous changes, which are modelled in the
discrete-event part of the processes. The crossing of process boundaries by products

is modelled by synchronous communications. Interaction between the continuous-time

and discrete-event parts of processes is achieved by means of assignments to variables
occurring in DA&, or by means of the nabla operator in order to synchronize with state

events.
The x simulator for the discrete-event part of the language [21] is being used

in a large number of cases. The cases deal with modelling and simulation of complex

discrete-event manufacturing systems, such as production facilities for integrated circuits.

The first version of the x simulator for combined continuous-time / discrete-event
systems [121 has recently been completed.

The x language can also be used for the specification of control systems, including
exception handling [6,7 J . Such a control model can be tested by connecting it to a model

of the controlled machines. The sensors and actuators serve as the interface between
the controller and the controlled system. The combined system can then be simulated.

In this way, the combined continuous-time / discrete-event approach to modelling and
simulation of manufacturing machines can be an important aid for the development of
robust machine control systems.

Acknowledgements

We like to thank Ralph Walenbergh for his contribution to the control system specifi-
cation. Thanks are also due to the reviewers for their helpful comments on the draft of

this paper.

D.A. van Beek et al. /Simulation Practice and Theory 5 (I 997) 653-669 669

References

[I] M. Andersson, Combined object-oriented modelling in Omola, in: Proceedings of the 1992 European
Simulation Multiconference, York, 1992, pp. 246-250.

[2] N.W.A. Arends, A systems engineering specification formalism, Ph.D. Thesis, Eindhoven University of

Technology, The Netherlands, 1996.

[3] Speedup user guide, Aspen Technology, Cambridge, 1991.

(41 J. le Bail, H. Alla and R. David, Asymptotic continuous Petri Nets: An efficient approximation of

discrete event systems, in: IEEE International Conference on Robotics and Automation, Nice, 1992, pp.

1050-1056.

[5] P.I. Barton, The modelling and simulation of combined discrete/continuous processes, Ph.D. Thesis,

University of London, 1992.

[6] D.A. van Beek, Exception handlin g in control systems, Ph.D. Thesis, Eindhoven University of

Technology, The Netherlands, 1993.

[7] D.A. van Beek and J.E. Rooda, A new mechanism for exception handling in concurrent control systems,

Eur. J. Control (2) (1996) 88-100.

[81 D.A. van Beek, J.E. Rooda and S.H.E Gordijn, A combined continuous-time / discrete-event approach

to modelling and simulation of manufacturing machines, in: Proceedings of the 1995 EUROSIM

Conference, Vienna, 1995, pp. 1029-1034.

[9] R. David and H. Alla, Petri Nets for modeling of dynamic systems: A survey, Automatica 30 (2) (1994)

175-202.

[lo] Department of Mathematics Delft University of Technology and Computer Science, Prosim Reference

Manual, Sierenberg en de Gans, Waddinxveen, The Netherlands, 1995.

[1 l] H. Elmqvist. Dymola-dynamic modeling language-user’s manual, Dynasim AB, Lund, Sweden, 1994.

[121 G. Fabian and P. Janson, Simulator for combined continuous-time / discretexvent models, Final report of

the Postgraduate Programme Software Technology, Eindhoven University of Technology, Stan Acketmans

Institute, The Netherlands, 1996.

[131 S.H.F. Gordijn, Combined continuous-time / discrete-event specifications of industrial systems using

the language x, Master’s Thesis, Department of Mechanical Engineering, Eindhoven University of

Technology, The Netherlands, 1995.

[141 C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood-Cliffs, 1985.

[151 J. Hooman, Specification and Compositional Verification of Real-Time Systems, Springer-Verlag, 1991.

[161 B.W. Kemighan and D.M. Ritchie, The C Programming Language (ANSI Standard C) Prentice-Hall,

Englewood Cliffs. 1988.

[171 D.L. Kettenis, Issues of parallelization in implementation of the combined simulation language

COSMOS, Ph.D. Thesis, Delft University of Technology, 1994.

[181 E.E.L. Mitchell and J.S. Gauthier, Advanced continuous simulation language (ACSL), Simulation 26

(3) (1976) 72-78.

[191 J.M. van de Mortel-Fronczak and J.E. Rooda, Application of concurrent programming to specification

of industrial systems, in: Proceedings of the 1995 IFAC Symposium on Information Control Problems

in Manufacturing, Bejing, 1995, pp. 421-426.

[20] J.M. van de Mortel-Fronczak, J.E. Rooda and N.J.M van den Nieuwelaar, Specification of a flexible

manufacturing system using concurrent programming, Concurrent Eng. Res. Appl. 3 (3) (1995) 187-

194.
[21] G. Naumoski and W.T.M Albert% The x engine: A fast simulator for systems engineering, Final

report of the Postgraduate Programme Software Technology, Eindhoven University of Technology. Stan

Ackermans Institute, The Netherlands, 1995.

[221 C.D. Pegden, R.E. Shannon and R.F? Sadowski, Introduction to Simulation Using SIMAN, McGraw-Hill,

1995.

[23] N. Zerhouni and H. Alla, Dynamic analysis of manufacturing systems using continuous Petri Nets, in:
IEEE International Conference on Robotics and Automation, Cincinnati, 1990, pp. 1070-1075.

