EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Neural network applications in device and subcircuit modelling
for circuit simulation

Citation for published version (APA):

Meijer, P. B. L. (1996). Neural network applications in device and subcircuit modelling for circuit simulation. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Chemical Engineering and Chemistry]. Technische Universiteit
Eindhoven. https://doi.org/10.6100/IR459139

DOI:
10.6100/IR459139

Document status and date:
Published: 01/01/1996

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR459139
https://doi.org/10.6100/IR459139
https://research.tue.nl/en/publications/bcb2f24a-dac8-4e75-8865-8dbe52fbeee3

Neural Network Applications in
Device and Subcircuit Modelling
for Circuit Simulation

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. J.H. van Lint,
voor een comrmissie aangewezen door het College
van Dekanen in het openbaar te verdedigen op
donderdag 2 mei 1996 om 16.00 uur

door

Peter Bartus Leonard Meijer

geboren te Sliedrecht

Dit proefschrift is goedgekenrd door de promotoren:

proft.Dr.-Ing. JA.G. Jess
prof.drir. W.M.G. van Bokhoven

Neural Network Applications in
Device and Subcircuit Modelling
for Circuit Simulation

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEIL, DEN HAAG
Meijer, P.B.L.

Neural Network Applications in

Device aud Subcirenit Modelling

for Circuit Simmnlation

Proefschrift Technische Tniversiteit Eindhoven,

- Met lit. opg., - Met samenvatting in het Nederlands.

ISBN 90-T4445-26-8

Trefw.: IC design, wmodelling, neural networks, eircuit simulation.

The work described in this thesis has heen carried ont at the Philips Research Laboratories
in Eindhoven, The Netherlands, as part of the Philips Research progranune.

© Philips FElectvonics N. V. 1996
All rights ave veserved. Reproduction in whole or . part is
prohibited without the written consent of the copyright owner.

CONTENTS

Contents

1 Introduction

1.1
1.2
1.3
1.4

1.5

21

=
[

2.3

Modelling for Circuit Simulation

Physical Modelling and Table Modelling

Artificial Neural Networks for Circuit Simulation

Potential Advantages of Neural Modelling

Overview of the Thesis e

Dynamic Neural Networks

Introduction to Dynamic Feedforward Neural Networks

2.1.1
2.1.2

Electrical Behavicur and Dynamic Feedforward Neural Networks . .

Device and Subcircuit Models with Embedded Neural Networks . . .

Dynamic Feedforward Neural Network Equations

2.21

2.2.4

Notational Conventions
Neural Network Differential Equations and Output Scaling
Motivation for Neural Network Differential Equations

Specific Choices for the Neuron Nonlinearity F

Analysis of Neural Network Differential Equations

2.3.1
2.3.2

2.3.3

Selutions and Eigenvalues
Stability of Dynamic Feedforward Neural Networks

Examples of Neuron Soma Response to Net Input g;,(¢)

Representations by Dynamic Neural Networks

2.4.1
2.4.2

Representation of Quasistatic Behaviour
Representation of Linear Dynamic Systems
2421 Polesof H(s).
2422 Zerosof H(s).
2.4.23 Constructing H(s) from H{(s)

vi CONTENTS

2.4.3 Representations by Neural Networks with Feedback . .00 .0 .. 45
2.4.3.1 Representation of Linear Dynamic Systews 15

2.4.3.2 Representation of General Nonlinear Dynaniic Systems . . 50

2.5 Mapping Neural Networks to Circuit Simulators 54
2.5.1 Relations with Basic Semiconductor Deviee Models L. 54
2.5.1.1 SPICE Equivalent Electrical Cireuwdt for Fy o 0 0 0 0o L. 54

2.5.1.2 SPICE Equivalent Electrical Circuit for Logistic Function . 56

2.5.2 Pstar Equivalent Electrical Circuit for Newron Soma 5T

2.6 Some Known and Anticipated Modelling Linitations 59
3 Dynamic Neural Network Learning 63
3.1 Time Domain Learning oL 63
3.1.1 Transient Analysis and Transient & DC Sensitivity 63
3.1.1.1 Time Integration and Time Differentiation 63

3.1.1.2 Neural Network Transient & DC Sensitivity GG

3.1.2 Notes on Error Estimation L0000 69
3.1.3 Time Domain Neural Network Learning 70

3.2 Frequency Domain Learning L i)
321 AC Aunalysis & AC Sensitivityo 5
3.2.1.1 Neural Network AC Apalysis 76

3.2.1.2 Neural Network AC Sensitivity 9

3.2.2 Frequency Domain Neural Network Learning 31
3.2.3 Exanple of AC Response of a Single-Neuron Neural Network . . ., 34
3.2.4 On the Modelling of Bias-Dependent Cut-Off Frequencies 34
3.2.5 On the Generality of AC/DC Characterization 3y

3.3 Optional Guarantees for DC Monotonicityo 89
4 Results 93
41 Experimental Softwareo L 0L 93
41.1 On the Use of Sealing Techniques 93
4.1.2 Nonlinear Constraints on Dynamic Behaviour 96
4.1.2.1 Schewe for 7y k. 794 > 0 and bounded 7y 4 . . . oL 98

4.1.2.2 Alteruative scheme for 7y, 200 0 0L 100

4.1.3 Software Self-Test Mode - L 101

CONTENTS

4.1.4

Graphical Qutput in Learning Mode

4.2 Preliminary Results and Examples

4.2.1
4.2.2

4.2.3
4.2.4
425
426

Multiple Neural Behavioural Model Generators
A Single-Neuron Neural Network Example.
4.2.2.1 Tllustration of Time Domain Learning
4.2.2.2 Frequency Domain Learning and Model Generation

MOSFET DC Current Modelling
Example of AC Circuit Macromodelling
Bipolar Transistor AC/DC Modelling
Video Circuit AC & Transient Macromodelling

5 Conclusions

5.1 Summary e e e e e e

5.2 Recommendations for Further Research

A Gradient Based Optimization Methods

A1 Alternatives for Steepest Descent

A2 Heuristic Optimization Method

Input Format for Training Data

B.l File Header e

B.1i1

Optional Pstar Model Generation

B.2 DC and Transient Data Block
B3 ACDataBlock e

B.4 Example of Combination of Data Blocks

C Examples of Generated Models

C.1 Pstar Example e
C.2 Standard SPICE Input Deck Example
C3 CCodeExample e e
C.4 FORTRAN Code Example.

C.5 Mathematica Code Example0 0L,

D Time Domain Extensions

D.1 Generalized Expressions for Time Integration

vil

103

135
135
137

139
139
141

143

viil CONTENTS

D.2 Generalized Expressions for Transient Sensitivity o ...
D.3 Trapezoildal versus Backward Euler Integration
Bibliography
Summary
Samenvatting

Curriculum Vitae

173

175

LIST OF FIGURES ix

List of Figures

1.1

2.1

[SCI
(3

%]
[a23 [1= [\

o
~]

o
o

2.9

210
2.11
2.12
213
2.14
215
216

3.1
3.2
3.3
34

4.1
4.2

Modelling for circuit simulation. 2
A 2-4-4-2 feedforward neural network example. 10
A neural network embedded in a device or subcircuit model. 20
Notations associated with a dynamic feedforward neural network. 21
Logistic function. e 29
Neuron nonlinearity Ay (s, bin). -« -« o v oo o oo 30
Neuren nonlinearity Fo(sip, &iz)- - . - - .« . o oo 32
Unit step response for various quality factors. 33
Linear ramp response for various quality factors. 33
Magnitude of transfer function for various quality factors. 39
Phase of transfer function for various quality factors. 39
Representation of a quasistatic model by a feedforward neural network. . . 41
Parameters for representation of complex-valued zeros. 46
Representation of linear dynamic systems. 0L 49
Representation of state of general nonlinear dynamic systems. 51
Representation of general nonlinear dynamic systems. 52
Equivalent SPICE circuits for nonlinear functions. 55
Circuit schematic of electrical circuit corresponding to neuron. 57
Single-neuron network, frequency transfer 3D parametric plot. 35
Single-neuron network, frequency transfer 2D plot. 35
Bias-dependent cut-off frequency: magnitude plot. 87
Bias-dependent cut-off frequency: phase plot. 87
Parameter function m(oy e, o2m). - - - oo oo a7

Parameter function m(o1 ik, G26). -« o v v e e e e e e e a7
2001 ik, 02k

4.3
4.4
4.5
4.6
4.7
43
4.9
410
4.11
4.12
4.13
4.14
4.15
4.16
417
4.18
4.19
4.2(
4.21
4.22
4.23

4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31

D1
D.2
D.3
D4

LIST OF FIGURES

Program running in sensitivity self-test wmode. 000000 102
Program running in nenral network tearning mode. .. . 0 . 0000 104
Neural network mapped onto several civenit simmlators. ..o 108
Single-neuron thne domain learning, . . 00 o Lo oL 110
Pstar model generation and simulation resalts. .. .0 o000 oL 112
MOST model 901 de drain current. . . o 0. 00 L0 o oL Lo 114
Newral vetwork de drain current. 0 0oL L L L0 L0 114
Differences bhetween MOST wmodel 901 and neural network., 0 . .. 115
MOSFET modelling crror as a function of iteration count. 117
Awplifier eivenit and neural macromodel. . .00 00000000 118
Macromodelling of eirenit admittance, Yo o0 0000000000000 120
Macromodelling of civenit admittance, Yo o000 00000000000 120
Macromodelling of cirenit admittance, Yoo o0 0000000000000 121
Macromodelling of civeuit admittance, Yo, Lo 121
Overview of wacromodelling exrors. . . . 0000000000000 122
Equivalent circuit for packaged bipolar transistor.00 123
Bipolar transistor modelling error as a function of iteration count. 124
Neural network maodel versms bipolar diserete deviee model. .00 0 0L 125
Block schematic of video filter cireuit.o 127
Schematic of video filter section. Lo 127
A 2-2-2-2-2-2 feedforward neural network. . .o 0000000 1238
Schematic of video filter interfacing circuitry.o .0 123
Schematic of video filter blasing civenitry.00 L 129
Macromodelling of video flter, time domain overview, 130
Macromodelling of video filter, enlargement plot L .00 0 00000 o0 130
Macromadelling of video filter, enlargement plot 2. 0 131
Macromodelling of video filter, frequency domain Hyg. 131
Macromodelling of video filter, frequency domain Hyg, . o0 o o 132
Video filter modelling ervor as a function of iteration count. 133
Backward Euler integration of & = 2rsin(2=). . . .00 00000 oL 0L 164
Trapezoidal integration of & = 2msin{2wt).o L 164
Backward Euler tutegration of & = 2mcos(2rt).o 165

Trapezoidal integration of &= 2rcos(2mf).o Lo 165

LIST OF TABLES xi

List of Tables

4.1 Overview of neural modelling test-cases. 107
4.2 DC MOSFET modelling results after 2000 iterations. 116

4.3 DC errors of neural models for bipolar transistor. 125

Chapter 1

Introduction

In the electronics industry, civcuit designers increasingly rely on advanced computer-aided
design (CAD) software to help them with the synthesis and verification of complicated
designs, The main goal of (computer-aided) design and associated software tools is to
exploit the available technology to the fullest. The main CAD problem areas are con-
stantly shifting, partly because of progress within the CAD area, but also because of the
continuous improvements that are being made w.r.t. manufacturing capabilities. With
the progress made in integrating more and more functions in individual VLSI circuits, the
traditional distinction between system and circuit designers now also begins to blur. In
spite of such shifting accents and in spite of many new design approaches and software
tools that have been developed, the analogue circuit simulator is---after several decades
of intense usage—still recognized as one of the key CAD tools of the designer. Extens-
ive rounds of simulations precede the actual fabrication of a chip, with the aim to get

first-time-right results back from the factory.

When dealing with semiconductor circuits and devices, one typically deals with continuous,
but highly nonlinear, multidimensional dy;iamic systems. This malkes it a difficult topic.
and much scientific research is needed to improve the accuracy and efficiency with which
the bekaviour of these complicated analogue systems can be analyzed and predicted. ie.,
simulated. New capabilities have to be déveloped to master the growing complexity in

both analogue and digital design.

Very often, device-level simulation is simply too slow for simulating a (sub)cireuit of any
relevant size, whiie logic-level or switch-level simulation is considered too inaccurate for
the critical circuit parts, while it is obviously limited to digital-type circuits only. The
analogue circuit simulator often fills the gap by providing good analogue accuracy at a
reasonable computational cost. Naturally, there is a continuous push both to improve the

accuracy obtained from analogue circuit simulation, as well as to increase the capabilities

2 CHAPTER 1. INTRODUCTION

for siimulating very large circuits, containing many thonsands of devices. These are to
a large extent conflicting requirements. hecanse higher accuracy tends to require more
complicated models for the cireuit components, while higher simulation speed favours
the selection of shimplified. but less accurate. models. The latter holds despite the general
speed Inerease of available computer hardware on which one can run the eireuit simulation

software.

Apart from the important role of good models for deviees and subceircuits, it is also very
important to develop more powerful algorithins for solving the large systems of nonlinear
equations that correspond to electronic cirenits. However. in this thesis we will foceus
onr attention on the development of device and subcircuit models, and in particular on

possibilities to automate model development.

In the following sectious, several approaches are outlined fhat aim at the generation of
device and subeireuit inodels for use in analogue cirenit simulators like Berkeley SPICE.
Philips’ Pstar, Cadeuce Spectre. Anacad’s Eldo or Analogy's Saber. A much simplified
overview is shown in Fig. 1.1, Generally starting from discrete hehavioural data', the main
objective is fo arrive al continmous models that accurately mateh the discrete data, and
that fulfill a munber of additional requirements to make them snitable for use i cirenit

sitnulators,

"The word “diserele™ in this context refers Lo the fact that devices aned subeivenits are normally char-

acterized (measured or simulatedy only at a finite set of different bias coneitions, time points, and/or
frecuencies,

PICE

Physical Physwal
Measuremenis Modelling
Device Table
Simulations | | "%|[Modelling
Suabcircuit Neural
Simulations Modelling

Figure 1.1 Maodelling for civenit simulation.

1.1. MODELLING FOR CIRCUIT SIMULATION 3

1.1 Modelling for Circuit Simulation

In modelling for circuit simulation, there are two major applications that need to be
distinguished because of their different requirements. The first modelling application is
to develop efficient and sufficiently accurate device models for devices for which no model
is available yet. The second application is to develop more efficient and still sufficiently
accurate replacement models for subcircuits for which a detailed {network) “model” is often
already available, namely as a description in terms of a set of interconnected transistors and
other devices for which models are already available. Such efficient subcircuit replacement

models are often called macromodels.

In the first application, the emphasis is often less on model efficiency and more on having
something to do accurate circuit-level simulations with. Crudely stated: any model is
better than no model. This holds in particular for technological advancements leading to
new or significantly modified semiconductor devices. Then one will quickly want to know
how circuits containing these devices will perform. At that stage, it is not yet crucial to
have the efficiency provided by existing physical models for other devices—as long as the
differences do not amount to orders of magnitude?. The latter condition usually excludes a
direct interface between a circuit simulator and a device simulator, since the finite-element.
approach for a single device in a device simulator typically leads to thousands of nonlinear
equations that have to be solved, thereby making it impractical to simulate circuits having

more than a few transistors.

In the second application, the emphasis is on increasing efficiency without sacrificing too
much accuracy w.r.t. a complete subcircuit description in terms of its constituent com-
ponents. The latter is often possible, because designers strive to create near-ideal, e.g..
near-linear, behavicur using devices that are themselves far from ideal. For example, a
good linear amplifier may be built from many highly nonlinear bipolar transistors (for the
gain) and linear resistors (for the linearity). Special cireuitry may in addition be needed
to obtain a good common mode rejection, a high bandwidth, a high slew rate, low off-
set currents, etc. In other words, designing for seemingly “simple” near-ideal behaviour
usually requires a complicated circuit, but the macromodel for circuit simulation may be

simple again, thereby gaining much in simulation efficiency.

At the device level, it is often possible to obtain discrete behavioural data from measure-

ments and/or device simulations. One may think of a data set containing a Hst of applied

*An additional reason for the fact that the complexity of transistor-level models does not matter oo
much is that with very large circuits, containing many thousands of these devices, the simulation times are
dominated by the algorithms for solving large sets of (non)linear equations; the time spent in evaluating
device models grows only linearly with the number of devices, whereas for most analogue circuit simulators
the time spent in the (non)lirear solvers grows superlinearly.

4 CHAPTER | INTRODUCTION

voltages and corresponding device currents. but the list could also involve combinations
of fluxes, charges. voltages and currents. Shinilarly. at the subeirenit level, oune obtains
such diserete hehavioural data from measurements and/or (sub)eirenit simulations. For
analogue circuit simulation. Lowever. a representation of electrical helavionr is needed
that can in principle provide an outcome for any combination of input values. or bies
conditions. where the input variables are usnally a set of independent voltages, spanning
a contiunoens real-valied input space IB? in case of n independent voltages. Cousequerntly.
something must he done to eiremvent the discrete nature of the data in a data sct.

The general approach is 1o develop a model that not only closely matehes the helavionr as

specified in the data set. but also yields “reasonable™ outcomes for situations not specified
in the data set. The vague notion of veasonable outcomes refers to several aspects. For
situations that ave close according to some distance weasure - to a situation from the
data set. the model outeomes should also be close to the corresponding onteoines for that
particular sitnation from the data set. Continuity of a model already implies this property
to some extent, but strictly speaking only for infinitesimal distances. We wouldu't he
satisficd with a continmous hut wildly oscillating interpolating model function. Therefore.
the notion of reasonable onteowes also refers to certain constraints on the number of sign
changes n higher derivatives of & model, by relating them to the nuwber of sign changes
in finite differences calenlated from the data set’. Much wore can be said about this
topic, but for our purposes it should be sufficient to give some idea of what we mean by

reasouable hehaviour,

A wmodel developed for use ju a circuit simulator normally consists of a set of analytical
functions that togesher define the model on its continuous input space IR”. For mumer-
ical and other reasons, the combination of functions that constitutes a model should be
“smooth,” weaning that the model and its first—and preferably also higher-- partial deriv-
atives are continnons in the input variables. Furthermore, to incorporate effects like signal
propagation delay. a device model may be constructed from several so-called guasistatic

{subhmodels.

A quasistalic model consists of funetions deseribing the static hehaviour. supplemented by
functions of which the first time derivative is added to the outcomes of the static ountput
functions to give a first ovder approximation of the effects of the rate with which input
signals change. For example, a quasistatic MOSFET modcl normally contains nonlinear
umltidimensional functions —-of the applied voltages- ~for the static {(de) terminal currents
and also noulinear multidimensional functions for equivalent terminal charges [48]: more

details will be given i section 2.4.1. Time derivatives of the equivalent terminal charges

3The so-called variation-diminishing splines are based on considerations like these: see for instance
[11. 39] for sowe device modelling applications.

1.2. PHYSICAL MODELLING AND TABLE MODELLING 5

form the capacitive currents. Time is not an explicit variable in any of these model func-
tloms: it only affects the model behaviour via the time dependence of the input variables
of the model functions. Time may therefore only be explicitly present in the boundary
conditions. This is entirely analogous to the fact that time is not an explicit variable
in, for instance, the laws of Newtonian mechanics or the Maxwell equations, while actual
physical problems in those areas are solved by imposing an explicit time dependence in
the boundary conditions. True delays inside quasistatic models do not exist, because the
behaviour of a quasistatic model is directly and instantaneously determined by the be-
haviour of its input variables*. In other words, a quasistatic model has no internal state
variables (memory variables) that could affect its behaviour. Any charge storage is only

associated with the terminals of the quasistatic model.

The Kirchhoff current law (KCL) relates the behaviour of different topologically neighbour-
ing quasistatic models, by requiring that the sum of the terminai currents flowing towards
a shared circuit node should be zero in order to conserve charge [10]. It is through the cor-
responding differential algebraic equations (DAE’s) that truly dynamic effects like delays
are accounted for. Non-input, non-output circuit nodes are called internal nodes, and a
model or circuit containing internal nodes can represent truly dynamic or non-quasistatic
behaviour, because the charge associated with an internal node acts as an internal state

(memory} variable.

A non-quasistatic model is simply a model that can—via the internal nodes—represent the
non-instantaneous responses that quasistatic models cannot capture by themselves. A set
of interconnected quasistatic models then constitutes a non-quasistatic model through the
KCL equations. Essentially, a non-quasistatic model may be viewed as a small circuit by
itself, but the internal structure of this circuit need no longer correspond to the physical
structure of the device or subcircuit that it represents, because the main purpose of the
non-quasistatic model may be to accurately represent the electrical behaviour, not the

underlying physical structure.

1.2 Physical Modelling and Table Modelling

The classical approach to obtain a suitable compact model for circuit simulation has

been to make use of available physical knowledge, and to forge that knowledge into a

“Phase shifts are modelled to some extent by quasistatic models. For instance, with a quasistatic
MOSFET model, the capacitive currents correspond to the frequency-dependent imaginary parts of current
phasors in a small-signal frequency domalin representation, while the first partial derivatives of the static
currents correspond to the real parts of the small-signal response. The latter are equivalent to a matrix
of (trans)conductances. The real and imaginary parts together determine the phase of the response w.r.t.
an input signal.

6 CHAPTER 1. INTRODUCTION

numerically well-behaved maodel. A monograph on physical MOSFET modelling is for
instance [48]. The Philips’ MOST model 9 and bipolar model MEXTRAM are examples
of advanced physical models [21]. The relation with the underlying deviee physics and
physical structure remains a very important asset of such hand-crafted models. On the
other hand, a major disadvantage of physical modelling is that it usually takes years to
develop a good model for a new device. That has been one of the major reasons to explore

alternative modelling techuigues.

Because of many complications in developing a physical model, the resulting model often
containg several constructions that are more of a curve-fitting nature instead of being based
on physics. This is common iu cases where analytical expressions can be derived only for
idealized asymptotic behaviour occurring deep within distinet operating regions, Trans-
ition regions in multidimensional behaviour are then simply—but certainly not easily —
modelled by carefully designed transition functions for the desired intermediate behaviour.
Consequently, advanced physical models are in practice at least partly phenomenological
models in order to meet the accuracy and smoothness requirements. Apparently, the phe-
nomenological approach offers some advantages when pure physical modelling runs into
trouble, and it is therefore logical and legitimate to ask whether a purely phenomenological
approach would be feasible and worthwhile. Phenomenological modelling in its extreme
form is a kind of black-box modelling, giving an accurate representation of hehaviour

without knowing anything alout the canses of that behaviour.

Apart from using physical knowledge to derive or build a model, one could also apply
numerical interpolation or approximation of discrete data. The merits of this kind of black-
box approach, and a munber of useful techniques, are described in detail in [11. 38, 39].
The models resulting from these techniques are called table models. A very important
advantage of table modelling technigues is that one can in principle obtain a quasistatic
mode] of any required accuracy by providing a suffieient amount of (sufficiently accurate)
discrete data. Optimization techniques are not necessary—-although optimization can be
employed to further improve the accuracy. Table modelling can be applied without the rigk
of finding a poor fit due to some local minimum resulting from optimization. However, a
major disadvantage is that a single quasistatic model cannot express all kinds of hehaviour

refevant to device and subcircuit modelling.

Table modelling has so far been restricted to the generation of a single quasistatic model
of the whole device or subcircuit to be modelled, thereby neglecting the consequences
of non-instantaneous response. Furthermore, for rather fundamental reasons, it is not

possible to obtain even low-dimensional interpolating table models that are both infinitely

1.3. ARTIFICIAL NEURAL NETWORKS FOR CIRCUIT SIMULATION 7

smooth (infinitely differentiable, i.e., €°°) and computationally efficient®. In addition, the
computational cost of evaluating the table models for a given mput grows exponentially
with the number of input variables, because knowledge about the underlying physical
structure of the device is not exploited in order to reduce the number of relevant terms

that contain multidimensional combinations of input variables®.

Hybrid meodelling approaches have been tried for specific devices, but this again in-
creases the time needed to model new devices, because of the re-introduction of rather
device-specific physical knowledge. For instance, in MOSFET modelling one could apply
separate—nested—table models for modelling the dependence of the threshold voltage on
voltage bias, and for the dependence of dc current on threshold and voltage bias. Clearly,
apart from any further choices to reduce the dimensionality of the table models, the in-
troduction of a threshold variable as an intermediate, and distinguishable, entity already

makes this approach rather device-specific.

1.3 Artificial Neural Networks for Circuit Simulation

In recent years, much attention has been paid in applying erisficial neural nefworks to
learn to represent mappings of different sorts. In this thesis, we investigate the possibility
of designing artificial neural networks in such a way, that they will be able to learn to
represent the static and dynamic behaviour of electronic devices and (subjcircuits. Learn-
ing here refers to optimization of the degree to which some desired behaviour, the target
behaviour, is represented. The terms learning and optimization are therefore nowadays of-
ten used interchangeably, although the term learning is normally used only in conjunction
with (artificial) neural networks, because, historically, learning used to refer to behavioural
changes occurring through—synaptic and other—adaptations within biological neural net-
works. The analogy with biology, and its terminology, is simply stretched when dealing
with artificial systems that bear a remote resemblance to biological neural networks.

®A piecewise (segment-wise) description of behaviour allows for the use of simple, in the sense of
computationally inexpensive, interpolating or approximating functions for individual segments of the input
space. Accuracy is controlled by the density of segments, which need not affect the model evaluation time.
However, the values of a simple—e.g., low-order polynomial—C*® function and its higher order derivatives
will not, or not sufficiently rapidly, drop te constant zero cutside its associated segment. To avoid the costly
evaluation of a large number of contributing functions, the contribution of a simple function is in practice
forced to zero outside its associated segment, thereby introducing discontinuities in at least some higher
order derivatives. The latter discontinuities can be avoided by using very special (weighting) functions,
but these are themselves rather costly to evaluate,

%In some table modelling schemes, like those in [38, 38], a priori knowledge about “typical® semicon-
ductor behaviour is used to reduce the amount of discrete data required for an accurate representation,
but that is something entirely distinct from a reduction of the computational complexity of the model
expressions that need to be evaluated. The latter reduction is very hard to achieve without introducing
unwanted discontinuities. ’

3 CHAPTER 1. INTRODUCTION

As was explained before, in order to model the behavioural consequences of delays within
devices or subcircuits, non-quasistatic (dynamic) modelling is required. This implics the
use of internal nodes with their associated state variables for (leaky) memory. For nu-
merical reasons, in particular during time domain analysis in a circuit simulator, models
should not only be aceurate, but alse “smooth,” lmplying at least continunity of the model
and its first partial derivatives. In order to deal with higher harmonies in distortion ana-
lvses, higher-order derivatives must also be continuous, which is very difficult or costly to

obtain both with table modelling and with conventional physical device modelling.

Furthermore, contrary to the practical situation with table modelling, the best internal
coordinate system for modelling should preferably arise antomatically, while fewer restric-
tions on the specification of ineasurements for device simulations for model input would be
quite welcome to the user: a grid-free approach would make the usage of automatic mod-
elling methods easier, ideally nnplying not much more than providing measurement data
to the automatic modelling procedure, only ensuring that the selected data set sufficiently
characterizes (“covers™) the device behaviour. Finally, better guarantees for monoton-
icity, wherever applicable, can also be advantageous, for example in avoiding artefacts in

simulated circuit hehaviour.

Clearly, this list of requirements for an automatic non-quasistatic modelling scheme is
ambitious, but the situation is not entirely hopeless. As it turns cut, a number of ideas
derived from contemporary advances in neural network theory, in particular the back-
propagation theory (also called the “generalized delta rule™) for feedforward networks,
together with our recent work on device modelling and circuit simunlation, can be merged
into a new and probably viable modelling strategy. the foundations of which are assembled

in the following chapters.

From the recent literature, one may even anticipate that the mainstreams of electronic
circuit theory and neural network theory will in forthcoming decades converge into general
methodologies for the optimization of analogue nonlinear dynamic systems. As a demon-
stration of the viability of such a merger, a new modelling method will be described. which
combines and extends ideas borrowed from methods and applications in electronic circuit
and device modelling theory and numerical analysis 8, 9. 10, 29, 37, 39], the popular crror
backpropagation method (and ather methods) for neural networks [1, 2, 18, 22, 36, 44, 51],
and time domain extensions to neural networks in order to deal with dynamic systems
[5, 25, 28, 40, 42, 45, 47, 49, 50]. The two most prevalent approaches extend either
the fully connected—except for the often zero-valued self-conncetions - -Hopfield-type net-
works, or the feedforward networks used in backpropagation learning. We will basically
describe extensions along this second line, because the absence of fecdback loops greatly

facilitates giving theoretical guarantees on several desirable model(ling) properties.

1.3. ARTIFICIAL NEURAL NETWORKS FOR CIRCUIT SIMULATION g

An example of a layered feedforward network is shown in the 3D plot of Fig. 1.2. This
kind of network is sometimes also called a multilayer perceptron (MLP) network. Con-
nections only exist between neurons in subsequent layers: subsequent neuron layers are
fully intercomnected, but connections among neurons within a layer do not exist, nor are
there any direct connections across layers. This is the kind of network topology that will
be discussed in this thesis, and it can be easily characterized by the number of neurons
in each layer, going from input layer (layer 0) to output layer: in Fig. 1.2, the network
has a 2-4-4-2 topology’, where the network inputs are enforced upon the two rectangular
input nodes shown at the left side. The actual neural processing elements are denoted by
dodecahedrons, such that this particular network contains 10 neurons®. The network in
Fig. 1.2 has two so-called hidden layers, meaning the non-input, non-output layers, i.e.,
layer 1 and 2. The signals in a feedforward neural network propagate from one network
layer to the next. The signal flow is unidirectional: the input to a neuron depends only
on the outputs of neurons in the preceding layer, such that no feedback loops exist in the
network®.

We will consider the network of Fig. 1.2 to be a 4-layer network, thus including the layer
of network inputs in counting layers. There is no general agreement in the literature on
whether or not to count the input layer, because it does not compute anything. Therefore,
one might prefer to call the network of Fig. 1.2 a 3-layer network. On the other hand,
the input layer clearly is a layer, and the number of neural connections to the next layex
grows linearly with the number of network inputs, which makes it convenient to consider
the input layer as part of the neural network. Therefore one should notice that, although in
this thesis the input layer is considered as part of the neural network, a different convention
or interpretation will be found in some of the referenced literature. In many cases we will
try to circumvent this potential source of confusion by specifying the number of hidden

layers of a neural network, instead of specifying the total number of layers.

In this thesis, the number of layers in a feedforward neural network is arbitrary, although
more than two hidden layers are In practice not often used. The number of neurons in each

layer is also arbitrary. The preferred number of layers, as well as the preferred number of

"Occasionally, we will use a set notation, here for instance giving {2,4,4,2} for the 2-4-4-2 topology,
to denote the set of neuron counts for each layer. Using this alternative notation, the “-" separator in
the topology specification is avoided, which could otherwise be confused with a minus in cases where the
neuron counts are given as symbols or expressions instead of as fixed numerical (integer) values.

$Here, and elsewhere in this thesis, we do not count the input nodes as (true) neurcns, although the
input nodes could alternatively also be viewed as dummy neurcns with enforced output states.

?Only during learning, an error signal—derived from the mismatch between the actual network output
and the target output—also propagates backward through the network, hence the term “backpropagation
learning.” This special kind of “feedback” affects only the regular updating of network parameters, but
not the network behavious for any given (fixed) set of network parameters. The statement about feedback
locps in the main text refers to networks with fixed parameters.

10 CHAPTER 1. INTRODUCTION

Figure 1.2: A 2-4-4-2 feedforward neural network example.

neurons in each of the hidden layers, is usually determined via educated guesses and some
trial and error on the problem at hand, to find the simplest network that gives acceptable

performance.

Some researchers create time domain extensions to neural networks via schemes that can
be loosely described as heiug tapped delay lines (the ARMA model used in adaptive
filtering also belongs to this class), as in, e.g., [41]. That discrete-time approach essen-
tially concerns ways to evaluate discretized and truncated convolution integrals. In our
coutinuous-time application, we wish to avoid any explicit time discretization in the {finally
resulting) model description, because we later want to obtain a description in terms of —
continuous-time -differential equations. These differential equations cau then be mapped
onto equivalent representations that are suitable for nse in a circuit simulator, which gen-
erally contains sophisticated methods for automatically selecting appropriate time step
sizes and integration orders. In other words, we should determine the coeflicients of a set
of differential equations rather than parameters like delays and tapping weights that have
a discrete-time nature or are associated with a particular pre-selected time discretization.
In order to determine the coefficients of a set of differential equations, we will in fact need
a temporary diseretization to make the analysis tractable, but that discretization is not

in any way part of the final result, the neural model.

1.4. POTENTIAL ADVANTAGES OF NEURAL MODELLING 11

1.4

Potential Advantages of Neural Modelling

The following list summarizes and discusses some of the potential benefits that may ideally

be obtained from the new neural modelling approach-—what can be achieved in practice

with dynamic neural networks remains to be seen. However, a few of the potential benefits

have already been turned into facts, as will be shown in subsequent sections. It should be

noted, that the list of potential benefits may be shared, at least in part, by other black-box

modelling techniques.

Neural networks could be used to provide a general link from measurements or device
simulations to circuit simulation. The discrete set of outcomes of measurements or
device simulations can be used as the target data set for a neural network. The neural
network then tries to learn the desired behaviour. If this succeeds, the neural network
can subsequently be used as a neural behavioural model in a circuit simulator after
translating the neural network equations into an appropriate syntax—such as the
syntax of the programming language in which the simulator is itself written. One
could also use the syntax of the input language of the simulator, as discussed in the

next item of this list.

An efficient link, via neural network models, between device simulation and circuit
simulation allows for the anticipation of consequences of technological choices to cir-
cuit performance. This may result in early shifts in device design, processing efforts
and circuit design, as it can take place ahead of actual manufacturing capabilities:
the device need not (yet) physically exist. Neural network models could then con-
tribute to a reduction of the time-to-market of circuit designs using promising new

semiconductor device technologies.

Even though the underlying physics cannot be traced within the black-box neural
models, the link with physics can still be preserved if the target data is generated
by a device simulator, because one can perform additional device simulations to find
out how, for instance, diffusion profiles affect the device characteristics. Then one
can change the (simulated or real) processing steps accordingly, and have the neural
networks adapt to the modified characteristics, after which one can study the effects

on circuit-level simulations.

Associated with the neural networks, output drivers can be created for qutomatically
generating models in the appropriate syntax of a set of supported simulators, for
example in the form of user models for Pstar or Saber, equivalent electrical circuits for
SPICE, or in the form of C code for the Cadence Spectre compiled model interface.
Such output drivers will be called model generators. This possibility is discussed in

12 CHAPTER 1. INTRODUCTION

more detail iu sections 2.5.1, 2.5.2, 4.2.1, 4.2.2.2 and Appendix C. Because a manual
implementation of a set of model equations is rather error-prone, the automatic
generation of models can help to ensure mutually consistent model implementations
for the various supported simulators. Presently, behavioural model generators for
Pstar and Berkeley SPICE (and therefore also for the SPICE-compatible Cadence
Spectre) already exist. It is a relatively small effort to write other behavioural
model generators once the syntax and interfacing aspects of the target simulator are
thoroughly understood. As soon as a standard AHDL!? appears. it should be no

problem to write a corresponding AHDL model generator.

e Neural networks can he gencralized to introduce their application to the automatic
modelling of device and subcircuit propagation delay effects, manifested in output
phase shifts, step responses with ringing effects, opamp slew rates, near-resonant be-
haviour, ete. This implies the requirement for non-quasistatic (dynamic) modelling,

which ig a main focus of this thesis.

Not only the ever decreasing characteristic feature sizes in VLSI techunology cause
multidimensional interactions that are hard to analyzc physically and mathemat-
ically, but also the ever higher frequencies at which these smaller devices are op-
erated cause multidimensional interactions, which in turn lead to major plysical
and mathematical modelling difficulties. This happens not only at the VLSI level.
For instance, parasitic inductances and capacitances due to packaging technology
become nonnegligible at very high frequencies. For discrete bipolar devices, this is

already a serious problem in practical applications.

At some stage, the physical model, even if one can be derived, may become so
detailed—-i.e., contain so much structural information about the device—that the
border between device simulation and circuit simulation becomes blurred, at the
expense of simulation efficiency. Although the mathematics becomes more difficult
and elaborate when more physical high-frequency interactions are incorporated in
rily
become miore complicated. Different physical causes may have similar behavioural

the analysis, the actual behaviowr of the device or subcircuit does not nece

effects, or partly counteract each other, such that a simple(r} equivalent behavioural

model may still existil.

WAHDL = Analogue Hardware Description Language.

lor example, in deep-submicron semiconductor devices, significant behavioural consequences are
caused by the relative dominance of boundary effects. One has to take into account the fact that the
electrical fields are non-uniform. This makes a local electrical threshold depend on the position within
the device. These multidimensional effects make a thorough mathematical analysis of the overall device
behaviour exceedingly difficult. However, the electrical characteristics of the whole device just become
simpler in the sense that any “sharp” transitions occurring in the nonlinear behaviour of a large device
are now “blurred” by the combined averaging effect of position-dependent internal thresholds. In many

1.4,

POTENTIAL ADVANTAGES OF NEURAL MODELLING 13

Neural modelling is not hampered by any complicated causes of behaviour: it just
concerns the accurate representation of behaviour, in a form that is suitable for its

main application area, which in our case is analogue circuit simulation.

Mnuch more compact models, with higher terminal counts, may be obtained than
would be possible with table models, because model complexity no longer grows
exponentially with the terminal count: the model complexity now typically grows

quadratically with the terminal count2,

Neural networks can in principle automatically detect structures hidden in the tar-
get data, and exploit these hidden symmetries or constraints for simplification of the
representation, as is done in physical compact modelling. Given a particular neural
network, which can be interpreted as a fixed set of computational resources, the
(re)allocation of these resources takes place through a learning procedure. Thereby,
individual neurons or groups of neurons become dedicated to particular computa-
tional tasks that help to obtain an accurate match to the target data. If a hidden
symmetry exists, this means that some possible behaviour does not occur, and no
neurons will be allocated by a proper learning procedure to non-existent behaviour,

because this would not help to improve accuracy.

Neural network models can easily be made infinitely differentiable, as is discussed
in section 2.2. This may also be loosely described as making the models infinitely
smooth. This is relevant to, for instance, distortion analyses, because discontinuities
in higher model derivatives can cause higher harmonics of infinite ampiitude, which

clearly is unphysical.

Model smoothness is also important for the efficiency of the higher order time in-
tegration schemes of an analogue circuit simulator. The time integration routines
in a circuit simulator typically detect discontinuities of orders that are less than the
integration order being used, and respond by temporarily lowering the integration
order and/or time step size, which causes significant computational overhead during

transient simulations.

Feedforward neural networks can, under relatively mild conditions, be guaranteed

to preserve monotonicity in the multidimensional static behaviour. This is shown

cases, smooth—at least C''—phenomenoclogical models will have less difficulty with the approximation of
the resulting more gradual transitions in the device characteristics than they would have had with sharp
transitions.

2Ty be fair, the exponential growth could still be present in the size of the target data set and in the
learning time, because one has to characterize the multidimensional input space of a device or subcircuit.
Although this problem can in a number of cases be alleviated by using a priori knowledge about the
behaviour, it may in certain cases be a real bottieneck in obtaining an accurate neural model.

14

CHAPTER 1. INTRODUCTION

in section 3.3, and subsequently applied to MOSFET modelling in section 4.2.3.

With contemporary physical models, it is generally no longer possible to guarantee

monotonicity, due to the complexity of the mathematical analysis needed to prove
monotonicity. It is an important property, however, hecanse many devices are knowa
to have monotonic characteristics. A nonmonotonic odel for such a device may
vield multiple spurious solutions for the circuit in which it is applied and it may lead

to nonconvergence even during time domain circuit simulation.

The monotonicity guarantee for neural networks can be maintained for highly non-
linear mmultidimensional hehaviour, which so far has not been possible with table
models without requiring excessive amounts of data [39]. Furthermore, the mono-
tonicity guarantee is optional, such that nonmonotonic static behaviour can still be

modelled, as is illustrated in section 4.2.1.

Stability'® of feedforward neural networks can be guaranteed. The stability of feed-

forward neural networks depends solely on the stability of its individual neurons.

If all neurons are stable, then the feedforward network is also stable. Stability of
individual neurons is ensured through parameter constraints impesed upon their

associated differential equations, as shown in sections 2.3.2 and 4.1.2.

Feedforward neural networks can be defined in such a way that it can be gunaranteed
that the networks each have a unigue behaviour for a given set of (time-dependent)
inputs. This implics, as is shown in section 3.1.1.1, that the corresponding neural
models have unique solutions in both de and transient analysis when they are ap-
plied in circuit simulation. This property can help the nonlinear solver of a circuit
simulator to converge and it also helps to avoid spurious solutions to circuit beha-
viour.

On the other hand, it ig at the same time a limitation to the modelling capabilities of
these neural networks, for there may be sitnations in which oune wants to model the
multiple solutions in the behaviour of a resistive device or subeireuit, for example
when modelling a flip-flop. So it must be a deliberate choice, made to help with
the modelling of a restricted class of devices and subeircuits. In this thesis, the
uniqueness restriction is accepted in order to make use of the associated desirable

mathematical and numerical properties,

Feedforward neural networks can be defined in such a way, that the static beha-

viour of a network, Le.. the dec solution, can be obtained from nonlinear but explicit

YStability here refers to the s
inpu

rstem property ihat for times going towards infinity, and for constant
to the system under consideration, and for any starting condition, the system moves into a static

cquilibrium state, which is also called a stable focus [10].

1.5. OVERVIEW OF THE THESIS 15

formulas, thereby aveciding the need for an iterative solver for implicit nonlinear equa-
tions. Therefore, convergence problems cannot occur during the de analysis of neural
networks with enforced inputs!®. Simulation times are in general also significantly

reduced by avoiding the need for iterative nonlinear solvers.

The learning procedures for neural networks can be made flexible enough to allow the
grid-free specification of multidimensional input data. This makes the adaptation
and use of existing measurement or device simulation data formats much easier. The
proper internal coordinate system is in principle discovered automatically, instead

of being specified by the user (as is required for table models)*s.

Neural networks may also find applications in the macromodelling of analogue non-
linear dynamic systems, e.g., subcircuits and standard cells. Resulting behavioural
models may replace subcircuits in simulations that would otherwise be too time-
consuming to perform with an analogue circuit simulator like Pstar. This could
effectively result in a form of mixed-level simuiation with preservation of loading
effects and delays, without requiring the tight integration of two or more distinct

simulators.

1.5 Overview of the Thesis

The general heading of this thesis is to first define a class of dynamic neural networks,
then to derive a theory and algorithms for training these neural networks, subsequently
to implement the theory and algorithms in software, and then to apply the software to
a number of test-cases. Of course, this idealized logical structure does not quite reflect
the way the work is done, in view of the complexity of the subject. In reality one has to
consider, as early as possible, aspects from all these stages at the same time, in order to
increase the probability of obtaining a practical compromise between the many conflict-
ing requirements. Moreover, insights gained from software experiments may in a sense

“backpropagate” and lead to changes even in the neural netwark definitions.

14This will hold for our neural network simulation and optimization software, which makes use of ex-
pressions like those given in section 3.1.1.1, Eq. (3.6). If behavioural models are generated for another
simulator, it still depends upon the algorithms of this other simulator whether convergence problems can
occur: it might try to solve an explicit formula implicitly, since we cannot force another simulator to be
“smart.” Furthermore, if some form of feedback is added to the neural networks, the problems associated
with nonlinear implicit equations generally return, because the values of network input variables involved
in the feedback will have to be solved from nonlinear implicit equations.

! An exception still remains when guarantees for monctonicity are required. Monotonicity at all points
and in each of the coordinate directions of one selected coordinate system, does not imply monotonicity in
each of the directions of another coordinate system. Monotonicity is therefore in principle coupled to the
particular choice of a coordinate system, as will be briefly discussed later on, in section 3.3, for a bipolar
modelling example,

16 CHAPTER 1. INTRODUCTION

In chapter 2. the equations for dynamic feedforward neural networks are defined and
discussed. The behaviour of individual neurons is analyzed in detail. In addition, the
representational capabilities of these networks are considered, as well as some possibil-
ities to construct equivalent electrical circuits for neurons, thereby allowing their direct

application in analogue circuit simulators.

Chapter 3 shows how the definitions of chapter 2 can be used to construct sensitivity-
based learning procedures for dynamic feedforward neural networks. The chapter has
two major parts, consisting of sections 3.1 and 3.2. Section 3.1 considers a representa-
tion in the time domain, in which neural networks may have to learn step responses or
other transient responses. Section 3.2 shows how the definitions of chapter 2 can also e
employed in a small-signal frequency domain representation, by deriving a correspond-
ing sensitivity-based learning approach for the frequency domain. Time domain learning
can subsequently be combined with frequency domain learning. As a special topic, sec-
tion 3.3 discusses how monotonicity of the static response of feedforward neural networks
can be guaranteed via parameter constraints during learning. The monotonicity property
is particularly important for the development of suitable device models for use in analogue

circuit simulators.

Chapter 4, section 4.1, discusses several aspects concerning an experimental software im-
plementation of the time domain learning and frequency domain learning technigues of
the preceding chapter. Section 4.2 then shows a number of preliminary modelling res-
ults obtained with this experimental software implementation. The neural wmodelling ex-
amples involve time domain learning and frequency domain learning, and use is made of
the possibility to automatically generate analogue behavioural (macro)models for circuit

slmulators.

Finally, chapter 5 draws some general conclusions and sketches recommended directions

for further research.

17

Chapter 2

Dynamic Neural Networks

In this chapter, we will define and motivate the equations for dynamic feedforward neural
networks. The dynamical properties of individual neurons are analyzed in detail, and

conditions are derived that guarantee stability of the dynamic feedforward neural networks.

Subsequently, the ability of the resulting networks to represent various general classes of
behaviour is discussed. The other way around, it is shown how the dynamic feedforward
neural networks can themselves be represented by equivalent electrical circuits, which
enables the use of neural models in existing analogue circuit simulators. The chapter ends

with some considerations on modelling limitations.

2.1 Introduction to Dynamic Feedforward Neural Networks

Dynamic feedforward neural networks are conceived as mathematical constructions, inde-
pendent of any particular physical representation or interpretation. This section shows
how these artificial neural networks can be related to device and subcircuit models that

involve physical quantities like currents and voltages.

2.1.1 Electrical Behaviour and Dynamic Feedforward Neural Networks

In general, an electronic circuit consisting of arbitrarily controlled elements can be math-
ematically described by a system of nonlinear first order differential equations!
dz(t)

fla), —5,~-p) =0 (2.1}

!Actually, we may have a system of differential algebraic equations (DAE’s), characterized by the
fact that not all equations are required to contain differential terms. However, one can also view such an
algebraic equation as a special case of a differential equation, involving differential terms that are multiplied
by zero-valued coefficients. Therefore, we will drop the adjective “algebraic™ for brevity.

18 CHAPTER 2. DYNAMIC NEURAL NETWORKS

with f a vector function. The real-valued? vector @ can represent any mixture of electrical
luput variables, internal variables and output variables at times f. An electrical variable
can be a voltage, a current, a charge or a flux. The real-valued vector p containg all the
circuit and device paraneters. Parameters may represent component values for resistors,
inductors and capacitors. or the width and length of MOSFETs, or any other quantities
that are fixed by the particular cholce of circuit design and manufacturing process. but
that may, at least in principle, he adapted to optimize circuit or device performance.
Counstants of nature, such as the speed of light or the Boltvinann constant, are therefore
not considered as parameters. It should perhaps be explicitly stated, that in this thesis
a paraeter 18 always considered to be constant, except for a possible regular updating
as part of an optimization procedure that attempts to obtain a desired behaviour for the

variables of a system by scarching for a suitable set of parameter values.

For practical reasons, such as the crucial model simplicity (1o keep the model evaluation
times within practical hounds), aud to he able to give under certain conditions guaran-
tees on some desirable properties (uniqueness of solution, wonotonicity, stability, ete.),

we will move away from the general form of Eq. (2.1). and restrict the dependencies

to those of layered feedforward newval networks, excluding interactions among different
newrons within the samne laver. Two subsequent layers ave fully interconnected. The
feedforward approach allows the definition of noulinear networks that do not require an
Iterative method for solving state variables from sets of noulinear equations (contrary to
the situation with most noulinear electronic cireuits), and the existence of a unique solu-
tion of network state variables for a given set of network inputs can be guaranteed. As is
conveutional for [eedforward networks, neurons receive their input ouly from outputs in
the layer immediately preceding the layer in which they reside. A net input to a neuron is
constructed as a welghted swn. including an offset, of values obtalned from the preceding

layer, and a noulinear function is applied to this net input.

However, instead of using only a nonlinear function of a net input, each neuron will now
also involve a lincar «ifferential equation with two internal state variables, driven by a
nonlinear function of the net input, while the net input itself will include time derivatives
of outputs from the preceding layer. This enables each single neuron, in concert with its
ittput connections. to represent a second order hand-pass type filter, which makes even
individual neurous very powerful building blocks for modelling. Together these nenrons
constitite a dynamic feedforward neural network, in which each neuron still receives input

only from the preceding layer. In our new neural uetwork modelling approach, dynamic

“In the remainder of this thesis, it will very often not he explicitly specified whether a variable, para-
meter or function is real-valued, complex-valued or integer-valued. This omission is mainly for reasons of
readability. The appropriate value type should generally he apparent from the context, application arca,
or conventional use in the literature,

2.1, INTRODUCTION TO DYNAMIC FEEDFORWARD NEURAL NETWORKS 19

semiconductor device and subcircuit behaviour is to be modelled by this kind of neural

network.

The design of neurons as powerful building blocks for modelling implies that we deliber-
ately support the grandmother-cell concept® in these networks, rather than strive for a
distributed knowledge representation for (hardware) fault-tolerance. Since fault-tolerance
is not (yet) an issue in software-implemented neural networks, this is not considered a

disadvantage for our envisioned software applications.

2.1.2 Device and Subcircuit Models with Embedded Neural Networks

The most. common modelling situation is that the terminal currents of an electrical device
or subcircnit are represented by the outcomes of a model that receives a set of independent
voltages as its inputs. This also forms the basis for one of the most prevalent approaches
to circuit simulation: Modified Nodal Analysis (MNA) [10]. Less common situations.
such as current-controlled models, can still be dealt with, but they are usually treated
as exceptions. Although our neural networks do not pertain to any particular choice
of physical quantities, we will generally assume that a voltage-controlled model for the
terminal currents is required when trying to represent an electronic device or subcircuit

by a neural model.

A notable exception is the representation of combinatorial logic, where the relevant inputs
and outputs are often chosen to be voltages on the subcircuit terminals in two disjoint
sets: one set of terminals for the Inputs, and another one for the outputs. This choice
is in fact less general, because it neglects loading effects like those related to fan-in and
fan-out. However, the representation of combinatorial logic is not further pursued in this
thesis. because our main focus is on learning truly analogue behaviour rather than on

constructing analogue representations of essentially digital behaviour®*.

The independent voltages of a voltage-controlled model for terminal currents may be
defined w.r.t. some reference terminal. This is illustrated in Fig. 2.1, where n voltages
w.r.t. a reference terminal REF form the inputs for an embedded dynamic feedforward
neural network. The outputs of the neural network are interpreted as terminal currents,

and the neural network outputs are therefore assigned to corresponding controlled current

3In the neural network literature, this refers to the situation that a single neuron performs a specific
“task” —such as recognizing one’s grandmother. Removal of this neuron makes the neural network fail on
this task. In a so-called distributed representation, however, the removal of any single neuron will have
little effect on the performance of the neural network on any of its tasks.

*The design of constructive, i.e., learning-free, procedures that map for instance a logic sp-form [6, 31]
onto a corresponding topology and parameter set of an equivalent feedforward neural network is certainly
possible, including a rough representation of propagation delay, but a full description would require a
rather extensive introduction to the terminology of logic synthesis. That in turn would shift the emphasis
of this thesis too much away from the time domain and frequency domain learning techniques.

20 CHAPTER 2. DYNAMIC NEURAL NETWORKS

sources of the madel for the electrical behaviour of an (n+ 1}-terminal device or subcircuit.
Only n currents need to he explicitly modelled, because the current through the single
remaining (reference) terminal follows from the IKirchhoff current law as the negative sum

of the » explicitly modelled currents.

At first glance, Fig. 2.1 may seen 1o represent a system with feedback. However, this is not
really the case, since the inforiation returned to the terminals concerns a physical quantity
{current) that is entirely distinet from the physical quantity used as input (voltage). The
nput-output relation of different physical quantities may be associated with the same set
of physical device or subeircnit terminals, but this should not he confused with feedback
situations where outputs affect the nputs hecause they refer to, or are couverted into.
the same physical quantitics. In the case of Fig. 2.1, the external voltages may be set

irrespective of the terminal currents that result from them.

In spite of the reduced model (evaluation) complexity, the mathematical notations in the
following sections can sometimes hecome slightly more complicated than needed for a
general network description, due to the ncorporation of the topological restrictions of

feedforward networks in the various derivations.

REF

Figure 2.1: A dynamic feedforward neural network embedded in a voltage-controlled
device ov subcircuit model for terminal currents.

2.2, DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 21

2.2 Dynamic Feedforward Neural Network Equations
2.2.1 Notational Conventions

Before one can write down the equations for dynamic feedforward neural networks, one
has to choose a set of labels or symbols with which to denote the various components,
parameters and variables of such networks. The notations in this thesis closely follow and
extend the notations conventionally used in the literature on static feedforward neural
networks. This will facilitate reading and make the dynamic extensions more apparent
for those who are already familiar with the latter kind of networks. The illustration of
Fig. 2.2 can be helpful in keeping track of the relation between the notations and the neural
network components. The precise purpose of some of the notations will only become clear

in subsequent sections.

A feedforward neural network will be characterized by the number of layers and the number
of neurons per layer. Layers are counted starting with the input layer as layer 0, such that
a network with output layer K involves a total of K + 1 layers (which would have been
IU layers in case one prefers nof to count the input layer). Layer k by definition contains
Ny neurons, where & = 0,-.-, K. The number N, may also he referred to as the width of

layer k. Neurons that are not directly connected to the inputs or outputs of the network

belong to a so-called hidden layer, of which there are I’ — 1 in a (K + 1)-layer network.
(0}
o

Network inputs are labeled as 29 = (z ,mclsg)T, and network outputs as (&) =

Figure 2.2: Some notations associated with a dynamic feedforward neural network.

(]
(8]

CHAPTER 2. DYNAMIC NEURAL NETWORIS

(A AT
(i)T

The neuron cutput vector 4, = (¥ 4.0 Yk)T represents the vector of neuron outputs
for layer &, containing as its elements the output variable y;, for cach individual neuron
i in layer k. The network mputs will be treated by a dwnny neuron layer & = 0, with
enforced neuron j outputs y;0 = .1'50). 7 =0,--,Nyg. This sometimes helps to simplify
the notations used i the formalism. However, when counting the number of neurons in a

network, we will not take the dwnmy input neurons into account.

We will apply the couvention that separating conunas in subscripts are usually left out
if this does not cause confusion. For example, a weight parameter w; ;, may be written
as wyk, which represents a weighting factor for the counection from® neuron j in layer
k — 1 to neuron 7 in layer k. Separating commas are normally required with numerical
values for subscripts, In order to distingnish, for example. w2 3 from wy » 5 and wy 5 3

unless, of course, one has advance knowledge about topological restrictions that exclude

the alternative interpretations.

A weight parameter unjp sets the static connection strength for connecting newron j in
layer £ — 1 with neuron ¢ in layer &, by multiplying the output y;x_y by the value of w;j.
An additional weight parameter v, will play the same role for the frequency dependent
part of the connection strength, which is an extension w.r.t. static neural networks. It is a
weighting factor for the rate of change in the output of neuron j in layer k — 1, multiplying

the time derivative dy; .1 /d¢ by the value of v;j;.

In view of the direct association of the extra weight parameter v with dynamic beha-
viour, it is also considered to he a timing parameter. Depending on the context of the
discussion, it will therefore he referred to as either a weight(ing) parameter or a tining
parameter. As the notation already suggests, the parameters wyjp and w5, are considered
to belong to neuron ¢ in layer k. which is analogous to the fact that much of the weighted

input processing of a biological neurou is performed through its own branched dendrites.

The vector of weight paramecters wip = (Wi 4 .- 0 WiN,_ &)T is conventionally used
to determine the orientation of a static hyperplane, by setting the latter orthogonal to
wir. A threshold parameter 6, of neuron 7 in layer A is then used to determine the
position, or offset, of this hyperplane w.r.t. the origin. Sepavating hyperplanes as given
by wig-yy,_y — B = 0 are known to form the backbone for the ability to represent arbitrary
static classifications in discrete problems [36]. for example occurring with combinatorial

logic, and they can play a similar role in making smooth transitions among (qualitatively)

“This differ
usually vepresents a connection from a nevron j to a neuron 7 in some layer. Not specilying which tayer is
often a cause of confusion, especially in textbooks that attempt to explain backpropagation theory, hecause
one then tries to put inte words what would have been [ar more obvious from a well-chosen notation.

only stightly from Lhe convention in the neural network literature, where a weight wy;

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 23

different operating regions in analogue applications.

The {generally) nonlinear nature of a neuron will be represented by means of a {generally)
nonlinear function F, which will normally be assumed to be the same function for all
neurons within the network. However, when needed, this is most easily generalized to
different functions for different neurons and different layers, by replacing any occurrence
of F by FU* in every formula in the remainder of this thesis, because in the mathematical
derivations the F always concerns the nonlinearity of one particular neuron i in layer k:
it always appears in conjunction with an argument s;; that is unique to neuron # in
layer k. For these reasons, it seemed inappropriate to further complicate, or even clutter,
the already rather complicated expressions by using neuron-specific superscripts for F.
However, it is useful to know that a purely linear output layer can be created®, since that
is the assumption underlying a number of theorems on the representational capabilities of
feedforward neural networks having a single hidden layer [19, 23, 34].

The function F is for neuron ¢ in layer k applied to a weighted sum ;% of neuron outputs
% x—1 in the preceding layer £ —1. The weighting parameters w;;x, vy;% and threshold para-
meter 6 take part in the calculation of this weighted sum. Within a nonlinear function
F for neuron ¢ in layer &, there may be an additional (transition) parameter 6;z , which
may he used to set an appropriate scale of change in qualitative transitions in function
behaviour, as is common to semiconductor device modelling”. Thus the application of ¥
for neuron i in layer & takes the form F(s;x,d;), which reduces to F{s;) for functions

that do not depend on &;.

The dynamic response of neuron i in layer £ is determined not only by the timing paramet-
ers vi;r, but also by additional timing parameters 7 ; and 75;,. Whereas the contributions
from v amplify rapid changes in neural signals, the 7y i and 75 . will have the opposite
effect of making the neural response more gradual, or time-averaged. In order to guarantee
that the values of 7 4 and 74 will always lie within a certain desired range, they may
themselves be determined from associated parameter functions® Tk = T1{01 k> 09,) and
roqe = T2(oLik s o2,4%). These functions will be constructed in such a way that no con-
straints on the (real} values of the underlying timing parameters oy i and o3, are needed

to obtain appropriate values for 7 ;x and 72 k.

SLinearity in an output layer with nonlinear neurons can on a finite argument range also be approxim-
ated up any desired accuracy by appropriate scalings of weights and thresholds, but that procedure is less
direct, and it is restricted to mappings with a finite range. The latter restriction will normally not be a
practical problem in modelling physical systems.

In principle, one could extend this to the use of a parameter vector 8,1 , but so far a single scalar §;
appeared suffictent for our applications.

8The detailed reasons for introducing these parameter functions are explained further on.

24 CHAPTER 2. DYNAMIC NEURAL NETWORKS

2.2.2 Neural Network Differential Equations and Qutput Scaling

The differential equation for the output, or excitation, g of one particular neurou ¢ in

layer & > 0 is given by

I Ay
T @Lik s Ooan) g+ TH{OLik . Ooik) o 4 Bk = F s bu) (2.2)
de dt
with the weighted sum s of outputs from the preceding layer
[y dyr_;
s = Wik Yeo — ik + vik g
Nit Neea dys e
= Z Wik Yik— — Pir + Z Uijk + (2.3)
£ - t
-1 j=1
L
for & > 1, and similarly for the neuron layer & = 1 connected to the network input
A da®)
s 2 w2 — 6+ vg
dt
Mo No 1:®
o da
= Swyery) — o + Y bijo _1; {2.4)
=1 i= dt

which, as stated before, Is entirely analogous to having a dumiy neuron layer & = 0 with
S . 0 . . .

enforced neuron j outputs y;0 = 15 ! In the following, we will occasionally make use of

this in order to avoid each time having to make notational exceptions for the nenron layer

k=1, and we will at times refer to Eq. (2.3) even for &£ = 1.

The net input sy, is analogous to the weighted input signal arriving at the cell body, or
soma, of a biological neuron via its branched dendrites, where its value determines whether
or not the neuron will fire a signal through its output, the axon, and at what spike rate.
Eq. (2.2) can therefore be viewed as the mathematical description of the neuron cell body.
In our formalism, we have no analogue of a branched axow, because the branching of the

inputs is sufficiently general for the feedforward network topology that we use”.

20One could alternatively view the set of weights, directed to a given layer and coming [rom one particular
neuron in the preceding layer, as a branched axon for the output of that particular neuron. Then we would
no longer need the equivalent of dendrites, and we could relabel the weights as helonging to neurons in the
preceding layer. All this would not make any difference to the network functionality: it merely concerns

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 25

Finally, to allow for arbitrary network output ranges—because, normally, nonlinear func-
tions F are used that squash the steady state neuren inputs into a finite output range,
such as [0,1] or [—1,1]—the time-dependent outputs ¥ of neurons ¢ in the output layer
K vield the network output excitations assm through a linear scaling transformation

%(K) = o Yik + 5 (2.5)

vielding a network output vector 27,

There is no fundamental reason why a learning scheme would not yield inappropriate
values for the coefficients of the differential terms in a differential equation, which could
lead to unstable or resonant behaviour, or give rise to still other undesirable kinds of
behaviour. Even if this occurs only during the learning procedure, it may at least slow
down the convergence towards a “reasonable” behaviour, whatever we may mean by that,
but it may also enhance the probability of finding an inappropriate local minimum. To
decrease the probability of such problems, a robust software implementation may actually
employ functions like 7 5 = T1{01k » o2,41) and T2 = Ta(01 4k O24k) that have any
of the relevant-—generally nonlinear—constraints built into the expressions. As a simple
example, if 715 = Ufyik and 7o = cr%‘ik, and the neural network tries to learn the
underlying parameters oy and oy, then it is automatically guaranteed that 7 ;; and
Ty, are not negative. More sophisticated schemes are required in practice, as will be
discussed in section 4.1.2. In the following, the parameter functions 7y (o1 ik, 02,4} and
79(01,k » 02,i%) are often simply denoted by (timing) “parameters” 7y i and 7o, but it
must be kept in mind that these are only indirectly, namely via the ¢’s, determined in a
learning scheme. Finally, it should be noted that the 71 ;4 have the dimension of time, but

the 72 4 have the dimension of time squared.

2.2.3 Motivation for Neural Network Differential Equations

The selection of a proper set of equations for dynamic neural networks cannot be performed
through a rigid procedure. Several good choices may exist. The final selection made for
this thesis reflects a mixture of—partly heuristic—considerations on desirable properties
and “circumstantial evidence” (more or less in hindsight) for having made a good choice.
Therefore, we will in the following elaborate on some of the additional reasons that led to
the choice of Egs. {2.2) and (2.3):

the way we wish to denote and distinguish for ourselves the different components of a neural network.

CHAPTER 2. DYNAMIC NEURAL NETWORKS

A nonlinear, typically sigmoid!?, function F with at least two identifiable operating

regions provides a general capability for representing or appreximating arbitrary

discrete (static) classifications——even for disjoint sets—using a static (de) feedforward

network and requiring not more than two hidden layers [36].

A mnonlinear, monotonically increasing and bounded continuous function F also
provides a general capability for representing any continuous multidimensiounal (imul-
tivariate) static hehaviour up to any desired accuracy, using a static feedforward
networlk and requiring not more than oue hidden layer [19, 23]. Recently, it has even
been shown that F need only be nonpolynomial in order to prove these represent-
ational capabilities [34). More literature on the capabilities of neural networks and

fuzzy systems as universal static approximators can be found in [4, 7, 24, 26, 27, 33].

It will be shown by coustruction in section 2.4.1, that this ability to represent any
multidimensional static behaviour almost trivially extends to arbitrary quasistatic
behaviour, when using Eqgs. (2.2}, (2.3) and (2.5), while requiring no more than two

hidden layers.

The use of an infinitely differentiable, i.e., C*°, function F makes the whole neural
network infinitely differentiable. This is relevant to the accuracy of weural network
models in distortion analyses, but it is also important for the efficiency of the higher
order time integration schemes of an analogue circuit simulator in which the neural

network models will be incorporated.

A single neuron can already exactly represent the dynamic behaviour of elementary
but fundamental linear electronic cireuits like a voltage-driven {unloaded) RC-stage,
or an output-grounded RCR-stage from a ladder network. The heuristic but prag-
matic guideline Lere is that simple electronic circuits should be representable by
few neurons. If not, it would become doubtful whether more complicated electronic

circuits could be represented efficiently.

The term with o;,; provides the capability for time-differentiation of input signals to
the neuron, thereby amplifying, or “detecting,” rapid changes in the neuron input

signals.

The terms with wyj; and vy, together provide the capability to represent, in a very
natural way, the full complex-valued admittance matrices arising in low-frequency
quasistatic modeiling. This ensures that low-frequency modelling nicely fits the

mathematical structure of the neural network, which will generally speed up learning

Y4 sigmoid function is defined as being a strictly increasing differentiable function with a finite range.

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 27

progress. In electrical engineering, an admittance matrix Y is often written as
Y = G + jwC, where & is a real-valued conductance matrix and C a real-valued
capacitance matrix. The dot-less symbol 7 is in this thesis used to denote the complex
constant fulfilling 3> = —1. The (angular) frequency is denoted by w, and the factor
jw then corresponds to time differentiation. Since the number of elements in a
(square) matrix grows gnadratically with the size of the matrix, we need a structure
of comparable complexity in a neural network. Only the weight components w;; and
vy, meet this growth in complexity: the wy;y, can play the role of the conductance
matrix elements (G');;, while the v can do the same for the capacitance matrix
elements (C);; 1.

A further reason for the combination of w;; and v lies in the fact that it simplifies
the representation of diffusion charges of forward-biased bipolar junctions, in which
the dominant charges are roughly proportional to the dc currents, which themselves
depend on the applied voltage bias in a strongly nonlinear (exponential) fashion. The
total current, consisting of the de current and the time derivative of the diffusion
charge, is then obtained by first calculating a bias-dependent nonlinear function
having a value proportional to the dc current. In a subsequent neural network layer,
this function is weighted by wy;r to add the de current to the net input of a neuron,
and its time derivative is weighted by v;;; to add the capacitive current to the net
input. The resulting total current is transparently copied to the network output
through appropriate parameter settings that linearize the behaviour of the output
neurons. This whole procedure is very similar to the constructive procedure, given
in section 2.4.1, to demonstrate that arbitrary quasistatic models can be represented

by our generalized neural networks.

The term with 7y, provides the capability for time-integration to the neuron,
thereby also time-averaging the net input signal sy. For 75, = 0 and v, = 0,
this is the same kind of low-pass filtering that a simple linear circuit consisting of a

resistor in series with a capacitor performs, when driven by a voltage source.

The term with 7 ;% suppresses the terms with vy for very high frequencies. This
ensures that the neuron (and neural network) transfer will drop to zero for sufficiently

high frequencies, as happens with virtually any physical system.

If all the 1y 4 and 724 in & neural network are constrained to fulfill ry,, > 0 and
To4% > 0, then this neural network is guaranteed to be stable in the sense that the

time-varying parts of the neural network outputs vanish for constant network inputs

"n linear modelling, this applies to a 2-layer linear neural model with voltage inputs and current
outputs, using F{8ix) = ik, 71,46 = Tagx = 0 and @y = 1. The 6;, and B; relate to arbitrary offsets.

28 CHAPTER 2. DYNAMIC NEURAL NETWORKS

and for times going towards infinity. This topic will be covered in more detail in

gection 2.3.2.

Further on, in section 3.1.1.1, we will also show that the choice of E¢qs. (2.2) and

(2.3) avoids the need for a nonlinear solver during de and transient analysis of the
neural networks. Thereby, convergence problems w.r.t. the dynamic behaviour of
the neural networks simply do not exist, while the efficiency is greatly improved by
always having just one “iteration” per time step. These are major advantages over
general circuit simulation of arbitrary systems having internal nodes for which the

behaviour is governed by implicit nonlinear eguations.

The complete neuron description from Egs. (2.2) and (2.3) can act as a (nonlinear)
band-pass filter for appropriate parameter settings: the amplitude of the uyjk-terms will
grow with frequency and dominate the wij- and @;;-terms for sufficiently high frequencies.
However, the 7 j-term also grows with frequency, leading to a transfer function amplitude
on the order of vy /7y i, until 754 comes into play and gradually reduces the neuron high-
frequency transfer to zero. A band-pass filter approximates the typical behaviour of many
physical systems, and is therefore an important building block in system modelling. The

non-instantaneous response of a neuron is a consequence of the terms with 7y ;1 and 79 -

2.2.4 Specific Choices for the Neuron Nonlinearity F

It all timing parameters in Egs. (2.2) and (2.3) are zero, Le., vy = 714 = T2 = 0, and

if one applies the familiar logistic function L(s;,)

A A 1)
Folsu) = Lls) = ——— (2.6)
Lpe St

then one obtains the standard stafic (not even quasi-static) networks often used with
the popular error backpropagation method, also known as the generalized delta rule, for
feedforward neural networks. Such networks are therefore special cases of our dynamic
feedforward neural networks. The logistic function £{s;;), as illustrated in Fig. 2.3, is
strictly monotonically increasing in s;. However, we will generally use nonzero v's and
7's, and will instead of the logistic function apply other infinitely smooth (C®) nonlin-
ear modelling functions 7. The standard logistic function lacks the common transition
between highly nonlinear and weakly nonlinear behaviour that is typical for semiconductor

devices and circuits!?.

"20pne may think of simple examples like the transition in MOSFE drain currents when going from

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 29

FO

-18 -5 S 10

Figure 2.3: Logistic function £{s;,).

Oune of the alternative functions for semiconductor device modelling is

1 w6 e — Bk
F1(siks bix) = — {ln (coshsmz;ézw—ln (coshsﬂﬁ)]

1 cosh & +

B cosh m_%ﬁuq

with & # 0. This sigmoid function is strictly monotonically increasing in the variable s,

and even antisymmetric in s;g: Fi{s, b)) = —F1(=58, 6k}, as illustrated in Fig. 2.4.

Note, however, that the function is symmetric'® in & Fi(sit, 6i) = F1(sir, —0i). For
|&k| 3 0, Eq. (2.7) behaves asymptotically as Fi(sig, 6i) 22 —1 + exp(si + i)/ |Gik]
for sip < —=|als Fr(si,0i) = saf16ik| for —|6i] < sip < 16al, and Fi(sie, i) =
1 — exp(bu — s)/|6ik| for s > |6ix|- The function defined in Eq. (2.7) needs to be

subthreshold to strong inversion by varying the gate potential, or of the current through a series connection
of a resistor and a diode, when driven by a varying voltage source. When evaluating £{wijry;u—1) for
large positive values of wi;«, one indeed obtains highly nonlinear exponential “diode-like” behaviour as a
function of y;e—1 for y;u-1 € 0 of y;4—1 3 0 (not counting a fixed offset of size 1 in the latter case).
However, at the same time one obtains an undesirable very steep transition around y; -1 = 0, approaching
a discontinuity for wi;p — oo.

13Symmetry of a non-constant function implies nonmonotonicity. However, monotonicity in parameter
space is usually not required, because it does not cause problems in circuit simulation, where only the de
monotonicity in (electrical) variables counts.

30 CHAPTER 2. DYNAMIC NEURAL NETWORKS

rewritten into several munerically very different but mathematically equivalent forms for
improved wmunerical robustuess, to avoid loss of digits, and for computational efficiency in
the actual implewentation. The function is related to the logistic function in the sense that
it is. apart frow a linear scaling, the integral over s of the difference of two transformed
logistic functions, obtained by shifting one logistic function by —é;, along the sg-axis,
and another logistic funetion by 44, This construction effectively provides ns with a
polynomial (Hnear) region and two exponential saturation regions. Thereby we have the
practical equivalent of two typically dominant basis functions for semiconductor device
modelling, the motivation for which runs along similar lines of thought as in highly non-
linear multidimensional table modelling [39]. To show the integral relation bhetween £ and

F1. we first note that the logistic function £ is refated to the tanh function by

+x/2 —a/2
e v/ -e o/

x
2 J -1 = -1 = = ti - 2.
20(x0) — 1 T 1))) e tankh 3 (2.8)

The indefinite integral of the tanh(x) function s n(cosh(x)) (neglecting the integration

constant), as is readily verificd by differentiating the latter, and we easily obtain

/ L{r)yde = % -+ In ((‘()th) (2.9)

AN
A \Y

10 10

RN AN
N

delta -10 -10 B

Figure 2.4: Neuron nonlinearity Fy (s, dip).

2.2. DYNAMIC FEEDFORWARD NEURAL NETWORK EQUATIONS 31

such that we find, using the symmetry of the cosh function,

B) (et - £ 8)) do =

ik

51_k [—,)—LH 4:6 +In (cosh T—J'_Té"") - (L_Qﬁd* +ln (COSLIEZQL&))}(S] = (2.10)

o Sk . .
R R
Hn T=F —mn T

0

cosh -7—-'-5‘ cosh —'-L—z——l&

which is the F7(six, 6;) defined in Eq. (2.7). Another interesting property is that the
Fi{s:x, b)) reduces again to a linearly scaled logistic function for 6y, approaching zero,
ie.,
Jim F(sig,6) = 2L(sw) 1 = tanh (5—2’3) (2.11)
kT

The limit, is easily obtained by linearizing the integrand in the first line of Eq. (2.10) at x
as a function of &;r, or alternatively by applying I'Hopital’s rule.

Derivatives of F1(s;k,0) in Eq. (2.7) are needed for transient sensitivity (first partial

derivatives only) and for ac sensitivity (second partial derivatives for dc¢ shift), and ave

given by

OF) 1

3o = 5 (Llow + Eie) = Llsu = ba)) (212)

3t F 1 .

aszl = g (ot [l = Ll + 8] = Lloie = o)L = Llsws — S} (213)
ik w

aF] 1

;)—é—i = g (Clou+ b) + Llow = 8ix) = Flsie,) = 1) (2.14)

F 82.7'_
1k Sik Skl

Sﬁ(c(sm«smwz(sw«w+z<sik—mu— (s = dux)] = 52

[Sv]
—
wr

The strict monotonicity of F7 is obvious from the expression for the first partial derivative
in Eq. {2.12), since, for positive d;, the first term between the outer parentheses is always
larger than the second term, in view of the fact that £ is strictly monotonically increasing.
For negative d;, the second term is the largest, but the sign chaunge of the factor 1/é;
compensates the sign change in the subtraction of terms between parentheses, such that

the first partial derivative of Fy w.r.t. s;;. is always positive for &, # 0.

32 CHAPTER 2. DYNAMIC NEURAL NETWORKS

Yet another cholce for F uses the argument é;;, only to control the sharpness of the trans-
ition between linear and exponential behaviour, without simultaneously varying the size of
the near-linear interval. Preliminary experience with modelling MOSFET de characterist-
ies indicates that this helps to avoid unacceptable local minhina in the ervor function {cost
function) for optimization unacceptable in the sense that the results show too gradual

near-subthreshold transitions. Another choice for #(s;r, d;) 18 therefore defined as

2. 2y
Falsinbi) 2 (QL‘ {ln (rnsh bk(éi‘ * 1)) -In (cosh 46““('”;]))}

é?~(54k + i)
| s
i A— (2.16)

= 5 In
1

7 Tl
bk cosh Jﬁﬂw—b' '(b'f)

AL 7
K PALT AL
Rl

S
52525255

Figure 2.5: Neuron nonlincarity Fa(s;g, bix)-

where the square of &; # 0 avoids the need for absolute signs, while it also keeps practical
values of & for MOSFET subthreshold and bipolar modelling closer to 1, i.e., nearer to
typical values for most other parameters in a suitably scaled neural network (see also
section 4.1.1). For instance, éfk = 40 wounld be typical for Boltzmann factors. The

properties of Fy are very similar to those of Fj, sinee it s actually a differently scaled

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 33

version of Fy:
Folsiw.8ix) = F1l6h, sin, 63 (2.17)

So the antisymmetry (in s) and symmetry {in §) properties still hold for F2. For (8| > 0,
Eq. (2.16) behaves asymptotically as Fa(si, b) = —l+exp(5;-2k(8ilc+1))/5i2k for s;p < —1,
Folsir, ba) = s for =1 < s < 1, and Fo(sik, bie) = 1 — exp(—6% (su — 1))/6%, for
six > 1. The transitions to and from linear behaviour now apparently lie around s, = —1
and s; = +1, respectively. The calculation of derivative expressions for sensitivity is
omitted here. These expressions are easily obtained from Eq. (2.17) together with Eqs.
(2.12), (2.13), (2.14) and (2.15). Fp(s, bix) is illustrated in Fig. 2.5.

The functions Fo, 71 and Fa are all nonlinear, (strictly) monotonically increasing and
bounded continuous functions, thereby providing the general capability for representing
any continuous multidimensional static behaviour up to any desired accuracy, using a
static feedforward network and requiring not more than one! hidden layer [19, 23]. The

weaker condition from [34] of having nonpolynomial functions F is then also fulfilled.

2.3 Analysis of Neural Network Differential Equations

Different kinds of dynamic behaviour may arise even from an individual neuron, depend-
ing on the values of its parameters. In the following, analytical solutions are derived for
the homogeneous part of the neuron differential equation (2.2), as well as for some spe-
cial cases of the non-homogeneous differential equation. These analytical results lead to
conditions that guarantee the stability of dynamic feedforward neural networks. Finally,

a few concrete examples of neuron response curves are given.

2.3.1 Solutions and Eigenvalues

If the time-dependent behaviour of s;; is known exactly (at all time points), the right-hand

side of Eq. {2.2) is the source term of a second order ordinary (linear) differential equation

YiWhen an arbitrary number of hidden layers is allowed, one can devise many alternative schemes. For
instance, a squaring function z — = can be approximated on a small interval via linear combinations of
an arbitrary nonlinear function F, since a Taylor expansion around a constant c gives = 2F(c 4 &) =
Fle) — aF (o)) /F e} + O(z*). The only provisien here is that F is at least three times differentiable (or
at least four times differentiable if we would have used the more accurate alternative z° = [Flc + x) —
2F{c) + Flc —2)]/F" (¢) + O(z")}. These requirements are satisfied by our € functions Fo, F1 and F.
A multiplication zy can subsequently be constructed as a linear combination of squaring functions through
xzy = (= + ¥)? — (2 —y)%, ay = %[(m +y) -2~y oray = —%[(11 —)% —2® —¢?]. A combination
of additions and multiplications can then be used to construct any multidimensional polynemial, which in
turn can be used to approximate any continuous multidimensional function up to arbitrary accuracy. See

also [33].

34 CHAPTER 2. DYNAMIC NEURAL NETWORKS

it gig. Because s, will he specified at the network input ouly via values at discrete thme
points, intermediate values are not really known. However, one could assmme and make
use of a particular input interpolation, e.g.. lincar, during each time step, If, for instance,
linear interpolation is used. the differential equations of the first hidden layer & = 1 of
the neural networks can be solved exactly {analytically) for each time interval spanned
by subsequent diserete time points of the network input. If one uses a plecewise linear
interpolation of the nel input to the next layer, for instance sampled at the same set of
thne points as given in the nelwork input specification, oue can repeat the procedure for
the next stages, and analytically solve the differential equations of subsequent layers. This
gives a sew-analytic solution of the whole network, where the “semi” refers to the forced

piecewise linear shape of the time dependence of the net inputs to neurons.
For each neuron, and for each time interval, we would obtain a differential equation of the
form

dz.lfik i

e v R e vl at + b (2.18)

with constants « ancd & for a single segment of the piecewise linecar description of the right-
hand side of Eq. (2.2). It is assumed here that 75 > 0 and 7 > 0 {the special case

Ty = 0 is treated further on).

The homogencous part {(with « = b = () can then be written as

Sk 2y —— 4wy = 0 2.19
an T dr Wy Yik ()

for which we have 7 2 0 aud wy > 0, nsing

L& TLk (2.20)
273 ik
and
1
wpy 2 (2.21)

Tk

The quality factor, or Q-factor, of the differential equation is defined by

QL o ¥ (2.22)

i Th,ik

Equation (2.19) is solved by substituting g, = exp(At), giving the characteristic equation

A e 2+l =0 (2.23)

2.3. ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 35

with solution(s)

Mg o= oy —uod
—y vy iy >we >0
: ify=wy >0 (2.24)
—yEgwg 0 <y <uwp

I
|
2

using

e

Yd

i
L)

(2.25)

Wy

The “natural frequencies” A may also be interpreted as eigenvalues, because Eq. {2.19}
can be rewritten in the form & = Ax with the elements a,; of the 2 x 2 matrix A related
to v and wp through 2y = —(ayy + az) and wg = @182z — ai2az1. Solving the eigenvalue

problem Az = Alx yields the same solutions for A as in Eq. (2.24).

The homogeneous solutions corresponding to Eq. (2.19) fall into several categories [10]:

¢ Overdamped response (y > wp > 0; 0 < Q < %)

2/@(:)(1) = ¢y M ¢y et (2.26)
with constants 'y and Cy, while Ay = —y + 4 and Ay = —7 — 74 are negative real
numbers.

Critically damped response (y =wp > 0; @ = %)
B = (1 + Caty e (2.27)
with constants C'| and Cy, while A) = Ay = —y = —wy is real and negative.
e Underdamped response (0 < v < wq; % < @ < o0)
g (1) = C1e” 7 cos(wat — Cb) (2.28)

with constants €] and C', while Ay = —v + jwg and Ay = —5 — jwg are complex

conjugate numbers with a negative real part —y.

* Lossless response (7 =0, wp > 0; @ = c0)
dP() = €1 cos(wnt — Cy) (2.29)
with constants C; and €7, while A} = jwg and Ay = —pwg are complex conjugate

imaginary numbers.

36 CHAPTER 2. DYNAMIC NEURAL NETWORKS

A particular solution _I/f:j)(f) of Eq. (2.18) is given by

g/:lf)(f) = at + I;f% =l + b—ar (2.30)
“

which 1s casily verified by substitution in Eq. (2.18).

The complete solution of Eq. (2.18) is therefore given by
/ .
vty = 40 + uln (2.31)

with the homogencous solution sclected from the above-mentioned cases.

In the special case where 7, > 0 and 7y = 0in (2.18), we have a first order differential

eguation, leading to
g (f) = C oAl 4+ wt + b—ar i (2.32)

with constant ', while A = —1/7| ;& is a negative real number.

Frow the above derivation it is clear that calculation of the semi-analytical solution. con-
taining exponential, goniometrical and/or square root functions, is rather expensive. For
this reasown, and because a mumerical approach is also easily applied to any alternative
differential equation, it is probably better to perforin the integration of the second order
ordinary (linear) differential equation numerically via discretization with finite differences.
The use of the above analytical derivation lies more in providing qualitative insight in the
different kinds of behavionr that may ocenr for different parameter settings. This is par-
ticularly nseful in designing suitable nonlinear parameter constraint functions g =
Ti(onah, o2.0) and Ty = (6 ir . o2p). The dssue will be considered in mnore detail in

section 4.1.2.

2.3.2 Stability of Dynamic Feedforward Neural Networks

The homogeneous differential equation (2.19) is also the homogeneous part of Eq. (2.2).
Moreover, the corresponding analysis of the previous section fully covers the situation
where the neuron inputs y; .1 from the preceding layer are constant, such that sy is
constant according to Eq. (2.3}, The source terin F(suy, di) of Eq. (2.2) is then also

constant. In terms of E¢. (2.18) this gives the constants ¢ = 0 and b = F(sip. fie).

If the lossless respouse of Eq. (2.29) is suppressed by always having 74 > 0 instead
of the earlier condition 7, > 0, then the real part of the natural frequencies X in Eq.
(2.24) 15 always negative. Iu that case. the behaviour is exponentially stable [10], which

liere implies that for constant neuron mnputs the time-varying part of the neuron output

2.3, ANALYSIS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 37

yik(t) will decay to zero as ¢ — oo. The parameter function 71(a1 4k, ¢2.) that will be
defined in section 4.1.2.1 indeed ensures that =y ;x > 0. Due to the feedforward structure
of our neural networks, this also means that, for constant network inputs, the time-varying
part of the neural network outputs @{*)(t) will decay to zero as t — oo, thus ensuring
stability of the whole neural network. This is obvious from the fact that, for constant
neural network inputs, the time-varying part of the outputs of neurons in layer £ =1
decays to zero as t — oo, thereby making the inputs to a next layer k = 2 constant. This
in turn implies that the time-varying part of the outputs of neurons in layer & = 2 decays
to zero as ¢ — oo. This argument is then repeated up to and including the output layer
k=~H.

2.3.3 Examples of Neuron Soma Response to Net Input s;;(t)

Although the above-derived solutions of section 2.3.1 are well-known classic results, a few
illustrations may help to obtain a qualitative overview of various kinds of behaviour for
444 (1) that result from particular choices of the net input s;(¢). By usinga = 0,5 =1, and
starting with initial conditions g = 0 and dy;./dt =0 at ¢ = 0, we find from Eq. (2.18)
the response to the Heaviside unit step function u,(¢) given by

(2.33)

lt] = { 0 ift<0

1 if t>0

Fig. 2.6 illustrates the resulting yx(t) for o =1 and @ € {% i, % 1,2,4,00}.

One can notice the ringing effects for Q@ > %, as well as the constant oscillation amplitude
for the lossless case with Q = co.

For a = 1, b = 0, and again starting with initial conditions y;; = 0 and dy;/df = 0 at
t = 0. we find from Eq. (2.18) the response to a linear ramp function ., (t) given by

0 if t<0
up(t) = {t P (2.34)

Fig. 2.7 illustrates the resulting yx(t) for 79, =1 and Q € {%, %, %,1,2,4,00}.

From Egqs. (2.30) and (2.31) it is clear that, for finite @, the behaviour of y;(¢) will
approach the delayed (time-shifted) linear behaviour a (¢ — 71%) + b for ¢ — co. With
the above parameter choices for 72 ;4 and €, and omitting the case @ = oo, we obtain the
corresponding delays 71 i € {8,4,2, 1, %, é}

When the left-hand side of Eq. (2.18) is driven by a sinusoidal source term (instead of

the present source term o f + b), we may also represent the steady state behaviour by a

38 CHAPTER 2. DYNAMIC NEURAL NETWORKS

Y

2t
1.5 |
1
0.5 |

5 1o 15 20 25 G

Figure 2.6: Unit step response yu(f) for 7 = 1 and Q@ € {é, %, % 1. 2,4.00}.

Y

5 10 1s 20 75 e

Figure 2.7: Linear ramp response yu(t) for m = 1 and Q € {gl 1 % 1,2.4, oc}

2.3. ANALYSJS OF NEURAL NETWORK DIFFERENTIAL EQUATIONS 39

L . n L omega
0.5 1 1.5 2 9

Figure 2.8: |H(w)| for 73, = 1 and @ € {%, 1, % 1,2,4}.

Phase(H)

omega

-180 -

Figure 2.9: /H(w), in degrees, for 7o, =1 and @ € {%, i 2,4}.

40 CHAPTER 2. DYNAMIC NEURAL NETWORKS

frequency domain transfer function H{w) as given by

1

Hw = ——on —————
) U+ gwriu — Toak-w?

(2.35)

111
13

in Fig. 2.8 and Fig. 2.9, respectively. Large peaks in |H| arise for large values of Q. These

which for m i, =1 and @ € { 1, 2~4} resuits in the plots for |H| and ZH as shown
peaks are positioned near angular frequencies w = wy, and their height approximates the
corresponding value of Q. The curve in Fig. 2.9 that gets closest to a 180 degree phase
shift is the oue corresponding to @ = 4. At the other extremne, the curve that hardly gets
beyond a 90 degree phase shift corresponds to @ = 5% For @ = 0 (not shown), the phase

shift of the correspouding first order system would never get heyoud 90 degrees.

Frequency domain transfer functions of individual neurons and transfer inatrices of neural
networks will be discussed in more detail in the context of small-signal ac analysis in

sections 3.2.1.1 and 3.2.3.

2.4 Representations by Dynamic Neural Networks

Decisive for a widespread application of dynamic neural networks will be the ability of
these networks to represent a number of important general classes of hehaviour. This issue
is best considered separate frow the ability to construct or learn a representation of that
behaviour. As in mathematics, a proof of the existence of a solution to a problew does
not always provide the capability to find or construct a solution, bhut it al least indicates

that it is worth trying.

2.4.1 Representation of Quasistatic Behaviour

In physical modelling for ¢ircuit simulation, a device is usnally partitioned inte submodels
or lumps that are described guasistatically, which nplies that the electrical state of such a
part responds instantaneously to the applied hias. In other words, one considers submodels

that themselves have no internal nodes with associated charges.

One of the most common sitnations for a bhuilt-in circuit simulator model is that de terminal
currents I and so-called equivalent terminal charges @4 of a device are directly and
uniquely determined by the externally applied time-dependent voltages V(#). This is also
typical for the quasistatic modelling of the intrinsic behaviouwr of MOSFETs, in order

to get vid of the non-quasistatic channel charge distribution [48]. The actual (uasistatic

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 41

terminal currents of a device model with parameters p are then given by
_ pldo d Hen)
I(t) = I''(V(th.p) + 7@ (V(D).p) (2.36)

In MOSFET modelling, one often uses just one such a quasistatic lump. For example,
the Philips’ MOST model 9 belongs to this class of models. The validity of a single-lump
quasistatic MOSFET model will generally break down above angular frequencies that are
larger than the inverse of the dominant time constants of the channel between drain and
source. These time constants strongly depend on the MOSFET bias condition, which
makes it difficult to specify one characteristic frequency'®. However, because a quasistatic
model can correctly represent the (dc+capacitive) terminal currents in the low-frequency
limit, it is useful to consider whether the neural networks can represent (the behaviour
of) arbitrary quasistatic models as a special case, namely as a special case of the truly

dynainic non-quasistatic models. Fortunately, they can.

In the literature it has been shown that continuous multidimensional static behaviour
can up to any desired accuracy be represented by a (linearly scaled) static feedforward
network, requiring not more than one hidden layer and some nonpolynomial function

(19, 23, 34]. So this immediately covers any model function for the dc terminal current

3With drain and source tied together, and with the channel in strong inversion (with the gate-source
and gate-drain voltage well above the threshold voltage), significant deviations from quasistatic behaviour
may be expected above frequencies where the product of gate-source capacitance-—which now equals the
gate-drain capacitance and angular frequency becomes larger than the drain-source conductance.

Figure 2.10: Representation of a quasistatic model by a feedforward neural network.

42 CHAPTER 2. DYNAMIC NEURAL NETWORKS

T (V). Furthermore, simply by adding another network in parallel, one can of course
also represent any function QU9 (V) with a neural network containing not more thau one
hidden layer. However, according to Eq. (2.36), we must add the time-derivative of Qled)
to the de cmrrent 7% This is easily doue with an additional network layer & = 3. A
number of nonzero wyjy and zero ;3 values are used to copy the de currents iuto the
net input s; 3 of output neurons in this extra layer. Zero wy; 3 and nonzero vi; 3 values are
used to add the appropriate time derivatives of the charges, as given by the outputs of

other neurons in layer k=2 those of the previously mentioned parallel network.

An illustration of the procedure is given in Fig. 2.10 for a 3-input 3-output neural network,
as needed to represent a quasistatic model for a 4-terminal device. (We will not try to
formalize and prescribe the rather trivial bookkeeping details of giving concrete values to
the s and vi;3.) The 7y, and 75 parameters are kept at zero in all layers. The net
input of output layer k = 3 is already the desired outcome of Eq. (2.36) aud must therefore
be transparently passed on to the network outputs by using linear(ized) behaviour in 7.
The latter is always possible by making appropriate use of the linear scalings that are
part of our neural network definitions. A (nearly) linear region of F need not explicitly be
present, as in Fy. Equivalent linear behaviour can be obtained up to any desired accuracy
from any continuous F, by scaling the wi; 3z and v, values by a sufficiently small factor,
and compensating this scaling at the network output by a corresponding unuscaling, by
multiplying the c; values with the inverse of this factor. The 8,3 and 3 can all be kept

at zero.

This very simple constructive procedure shows that all quasistatic models are representable
up to arbitrary accuracy by our class of dynamic neural networks. It does not exclude the

possibility that the sane may also be possible with fewer than two hidden layers.

2.4.2 Representation of Linear Dynamic Systems

In this section we show that with our dynamic neural network definitions Eqgs. (2.2}, (2.3)
and (2.5), the behaviour of any linear time invariant lumped ¢ircuit with frequency transfer
watrix H(s) can be represented exactly. Here s is the Laplace variable, also called the
compler frequency.

We will first restrict the discussion to the representation of a single but arbitrary element
H(s) of the transfer matrix H(s). The H(s) for multi-input, multi-output systems can
afterwards be synthesized by properly merging and/or extending the neural networks for

individual elements H(s).

Tt is known that the behaviour of any uniquely solvable linear time-invariant lnmped cireuit

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 43

can be characterized by the ratio of two polynomials in s with only real-valued coeflicients
{10]. Writing the nominator polynomial as n{s) and the denominator polynomial as d(s),

we therefore have

a(s)
H = 2.37
5) ~ 5 (237)
The zeros of d(s) are called the poles of H(s), and they are the natural frequencies of
the system characterized by H(s). The zeros of n(s) are also the zeros of H(s). Once
the poles and zeros of all elements of H(s) are known or approximated, a constructive
mapping can be devised which gives an exact mapping of the poles and zeros onto onr

dynamic feedforward neural networks.

It is also known that all complex-valued zeros of a polynomial with real-valued coeffi-
cients occur in complex conjugate pairs. That implies that such a polynomial can always
be factored into a product of first or second degree polynomials with real-valued coefli-
cients. Once these individnal factors have been mapped onto equivalent dynamic neural
subnetworks, the construction of their overall product is merely a matter of putting these

subnetworks in series (cascading).

As shown further on, the subnetworks will consist of one or at most three linear dynamic
neurons. W.r.t. a single input 7, a linear dynamic neuron—with F(sy) = s, —has a
transfer function by (s) of the form
Wik T 8 Vigh

_ 2.38
1+ 108 + To,u9° ()

hiji(s) =
as follows from the replacement by the Laplace variable s of the time differentiation op-
erator d/dt in Egs. (2.2) and {2.3).

In the following, it is assumed that H(s) is coprime, meaning that any common factors in
the nominator and denominator of H(s) have already been cancelled.

2.4.2.1 Poles of H(s)

In principle, a pole at the origin of the complex plane could exist. However, that would
create a factor 1/s in H(s), which would remain after partial fraction expansion as a term
proportional to 1/s, having a time domain transform corresponding to infinitely slow
response. This follows from the inverse Laplace transform of 1/(s + a): exp{—at), with
a positive real, and taking the Emit @ | 0. See also [10]. That would not be a physically
interesting or realistic situation, and we will assume that we do not have any poles located
exactly at the origin of the complex plane. Moreover, it means that any constant term in

d(s) —because it now will be nonzero—can be divided out, such that H(s) is written in

44 CHAPTER 2. DYNAMIC NEURAL NETWORKS

a form having the constant term in d(s) equal to 1, and with the constant terw in n(s)
equal to the static (de) transfer of His). l.e., H(s = 0).

o Complex conjugate poles {a =& jb), « and b both real:
The product of 5 — (a+3b) and 5 — (a— b} gives the quadratic forny 82 = 2sa4+a? + 0%,
If (a, b) £ (0,0} as assuned before, we can- without changing the position of poles
divide by a® + 5% and get 1 — [2a/(a® + 2))s + [1/(a? + 1*)]s*. This exactly matches

the denominator 14 7 s + 75 5% of hipe(s), with real 7 and 4, if we take

2a
T = -
Tk a? + b2
= (2.38)
Tk T T o

To ensure stabilily, we may want nou-positive real parts in the poles, ie., @ < 0,
such that indeed 7 > 0. We see that 15, > 0 s always fulfilled.
Apparently we can represent any complex conjugate pair of poles of H(s), nsing just

a single neuron.

e Two arbitrary but real poles o, ay:

The product of s — a) and s — a3 gives ajas — (e +az)s + 5% If (a1, 0) # (0,0) and
{ag,0) # (0,0} as assumed before, we can-—without changing the position of poles —
divide by ajuy and get the quadratic form 1— [(a; +e2)/(aras)]s + [1/(#1a2)]s?. This
exactly matches the denominator 14 7, jes 4 m9465° of hijels), with real 7y and

Ty ik, Il we take

ay + o
Tk = —
" ey
L .
o = (2.40)
' aya

To ensure stability, we may again want non-positive real parts in both (real) poles,
fe, ap < 0, ay <0, such that together with the exclusion of the origin (0,0),
Tk > 0, and also 74 > 0. For @ = ag, the same values for 714, and 7y arise
as 1n the case with complex conjugate zeros (u £ yb) with b = 0, which is what one
would expect.

Apparently we can represent two arbitrary real poles of H(s), using jnst a single

neuron.

* One arbitrary but real pole a:

This implies a polynomial factor s — «. For {a.0) # (0,0) as assumed before, we

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 45

can--without changing the position of poles—divide by —a and get 1 —(1/e}s. This
exactly matches the denominator 1 4 7y 8 + TZH.HCSZ of hyp(s), with real m 5 and

Ta4k. if we take

Tk = —
Ty ik = 0 (241)

=

For stability, we will want non-positive real parts for the (real) pole («,0), L.e., a €90,

such that together with the exclusion of the origin (0.0), 7% > 0.

Apparently we can represent a single arbitrary real pole of H(s), using just a single

ueuron.

This provides us with all the ingredients needed to construct an arbitrary set of poles for
the transfer function H(s) of an electrical network. Any set of poles of H(s) can now be

represented by cascading a number of neurons.

It should be noted that many pole orderings, e.g., with increasing distance from the origin.
may give an arbitrary sequence of real poles and complex conjugate poles. Since a pair
of complex conjugate poles must be covered by one and the same neuron, due to its real
coefficients, one generally has to do some reordering to avoid having, for instance, one real
pole, followed by a pair of complex conjugate poles, followed by a real pole again: the
two real poles have to be grouped together to align them with the two neurons needed to

represent the two real poles and the pair of complex conjugate poles, respectively.

2.4.2.2 Zeros of H(s)

The individual zeros of the nominator n{s) of H{s) can in general not be covered by
associated single neurons of the type defined by Eqs. (2.2) and (2.3). The reason is that
the zero of a single-input neuron is found from wijr + sve = 0, ie, § = —wie/vijs-
while w;;, and vy are both real. Consequently, a single single-input neuron can only
represent an arbitrary real-valued zero a of n{s), i.e., a factor (s — @), by taking v, # 0
and w,;x = —avge. The real-valued wyj; and w5, of a single neuron do not allow for

complex-valued zeros of n(s).

However, arbitrary complex-valued zeros cen be represented by using a simple combination
of three neurons, with two of them in parallel in a single layer, and a third neuron in the
next layer receiving its input from the other two neurons. The two parallel neurons share
their single input. With this neural subnetwork we shall be able to construct an arbitrary

factor 1+ a1s + ass? in n(s), with a1, a2 both real-valued. This then covers any possible

46 CHAPTER 2. DYNAMIC NEURAL NETWORKS

pair of comrplex conjugate zeros'®. It is worth noting that in the representation of complex-
valued zeros, one still ends nup with one modelled zero per neural network layer, but now

using three weurons for two zeros instead of two neurons for two (real) zeros.

First we relabel, for notational clarity, the ayj and ¢ parameters of the single-input ()
single-output () neural subnetwork as indicated in Fig. 2.11.

If we neglect, for simplicity of discussion, the poles by temporarily!” setting all the 7
and 7 4 of the subnetwork equal to zero, then the transfer of the subuetwork is obviously
given by (uy + vy s)we + 198) + (wy + vgs)(ug 4+ vgs), Setting wy = 0, m = as, wy =0
and 1o = 1 vields a term ays? i the transfer, and setting wy = 1, vy = aj, wy = 1
and = 0 yields another term 1+ ays in the transfer. Together this indeed gives the
above-mentioned arbitrary factor T4 ays 4 azs? with a;. as both real-valued. Similar to
the earlier treatment of complex conjugate poles (a £ 1b) with a and b both real, we find
that the product of s — (a4 yb) and s — (@ — 30) after division by a? + &? leads to a factor
1 — [2a/(a® +b%)]s + [1/(a® + 0%)]s?. This exactly matches the form 1 - w18 + ays? if we

Of course it also covers any pair of real-vadued zeros, but we didn't need this construction to represent
real-valued zeros.

ANy poles of H{s) that one would have associated with a neuron in the first of the two layers of the
subnetwork can later easily be reintroduced withont modifying the weros of the subnetwork. This is done
by copying the values of 71 ¢ and 72k of one of the two parallel neurons to the respective 7 and m 4
of the other ncuren. The two parallel neurons then have identical poles, which then also are the poles of
any linearly weighted combination of their outputs. Poles associated with the neuron in the second of the
two layers of the subnetwork are reintroduced without any special action.

Figure 2.11: Parameter settings in a neural subnetwork for the representation of two
complex conjugate zeros.

2.4, REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 47

take
2a
a = =TT g
! a? + b?
1
; g 2.42
a2 a? + b (2:42)

Any set of zeros of H{s) can again be represented by cascading a number of neurons—or

neural subnetworks for the complex-valued zeros.

The constant term in n(s) remains to be represented, since the above assignments only
lead to the correct zeros of H(s), but with a constant term still equal to 1, which will
normally not match the static transfer of H{s). The constant term in n{s) may be set to
its proper value by multiplying the w;;; and v in one particular layer of the chain of

neurons by the required value of the static (real-valued) transfer of H(s).

One can combine the set of poles and zeros of H(s) in a single chain of neurons, using
only one neuron per layer except for the complex zeros of H(s), which lead to two neurons
in some of the layers. One can make use of neurons with missing poles by setting 7y ;. =
Ty, = 0, or make use of neurons with zeros by setting v;;5 = 0, in order to map any given

set of poles and zeros of H{s) onto a single chain of neurons.

2.4.2.3 Constructing H(s) from H(s)

Multiple H(s)-chains of neurons can be used to represent each of the individual elements
of the H(s) matrix of multi-input, multi-ontput linear systems, while the wi;x of an
{additional) output layer /v, with v = 0 and a; = 1, can be used to finally complete the
exact mapping of H(s) onto a neural network. A value w;;x = 1 is used for a connection
from the chain for one H{s)-element to the network output corresponding to the row-index

of that particular H(s)-element. For all remaining connections wi;x = 0.

It should perhaps be stressed that most of the proposed parameter assignments for poles
and zeros are by no means unique, but merely serve to show, by construction, that at
least one exact pole-zero mapping onto a dynamic feedforward neural network exists.
Any numerical reasons for using a specific ordering of poles or zeros, or for using other
alternative combinations of parameter values were also not taken into account. Using
partial fraction expansion, it can also be shown that a neural network with just a single
hidden layer can up to arbitrary accuracy represent the behaviour of linear time-invariant
lumped circuits, assuming that all poles are simple (i.e., non-identical) poles and that there
are more poles than zeros. The former requirement is in principle easily fulfilled when
allowing for infinitesimal changes in the position of poles, while the latter requirement

only means that the magnitude of the transfer should drop to zero for sufficiently high

43 CHAPTER 2. DYNAMIC NEURAL NETWORKS

frequencies, which s often the case for the paris of systewn behavieur that are relevant to

he modelled !,

2.4.3 Representations by Neural Networks with Feedback

Although learning in neural networks with feedback is not covered in this thesis. it is
worthwhile to cousider the ability to represent certain kinds of behaviour when feedback
is applied externally to our neural networks. As it turns out, the addition of feedback allows
for the representation of very general classes of both linear and nonlinear multidimensional

dynamic behaviour.

2.4.3.1 Representation of Linear Dynamic Systems

We will show in this section that with definitions in Eqgs. (2.2), (2.3) and {2.5), a dynamic
feedforward neural network without a hidden layer hut with external feedback suffices
to represent the time evolution of any linear dynaniic system characterized by the state

equation
2 =Ae +Bu+ Cd (2.43)

where A is an exn matrix, @ is a state vector of length w, B and C are . xm matrices. and
u = w(f) is an explicitly thme-dependent input vector of length nr. As usual, ¢ represents
the time, First derivatives w.r.t. time are now ndicated by a dot. Le., & = da/dt,

o = du/dt.

Ee. (2.43) is a special case of the nonlinear state equation
x = flx,) (2.44)

with nonlinear vector function f. This forin is already sufficiently general for circuit sim-
ulation with quasistatically wodelled (sub)devices, but sometimes the even more general

implicit form
Flz, & t) =0 (2.45)

is nsed in formal derivations. The elewents of @ are in all these cases called state variables.

However, we will at first only further pursue the representation of linear dynamic systemns
) 1 P 3

by means of nenral networks. We will forge equation Eq. (2.43) into a form corresponding

Blor example, one will wsually not be interested in accurately modelling for cireuit simulation an
amplifier at frequencics where its wires act as antennas, and where its intended amplification factor has

already dropped far below one.

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 49

to a feedforward network having a {n + m, n} topology, supplemented by direct external
feedback from all n outputs to the first n (of a total of n + m) inputs. The remaining m

network inputs are then used for the input vector w(#). This is illustrated in Fig. 2.12.

By defining matrices

W, 2T+ 4 (2.46)
V. &7 (2.47)
W, 2B (2.48)
V. 2 C (2.49}

with I the n x n identity matrix, we can rewrite Eq. (2.43) into a form with nonsquare

7 X (n 4+ m) matrices as in

(W, W) (2) VL VY (j) - e (2:50)

The elements of the right-hand side @ of Eq. (2.50) can be directly associated with the

neuron outputs y;; in layer £k = 1. We set o; = 1 and 3; = 0 in Eq. (2.5), thereby making

Figure 2.12: Representation of linear dynamic systems by dynamic feedforward
neural networks with external feedback.

CHAPTER 2. DYNAMIC NEURAL NETWORKS

o

the network outputs identical to the netron ongputs. Due to the external feedback. the
(0}

elements of @ in Eq. (2.50) are now also identical to the network inputs e}, i = 0,...,n—1L
To complete the association of Eq. (2.50) with Eqgs. {2.2) and (2.3), we take F{s,1) = i
The wyjy are simply the elements of the matrix (W, W) in the first termn in the left-
haud side of Eq. (2.50), while the v, are the elements of the matrix (V, V] in the
second term in the left-hand side of Eq. (2.50). Through these choices, we can put the
remaining parameters 1o sero, e, 75 =0,y =0and 6 = 0for i =0,...,n = 1

because we do not need these parameters here.

This short excursion into feedforward neural networks with external feedback alveady
shows, that our present set of newral network definitions has a great versatility. Very
general lincar dynamic systews arve easily mapped outo neural networks, with only a
minimal increase in representational complexity, the only extension being the constraints

imposed by the exterual feedback.

2.4.3.2 Representation of General Nonlinear Dynamic Systems

The results of the preceding section give rise to the important question, whether we can
also devise a procednre that allows ug. at least in principle, to represent arbitrary nonlinear
dynamic systems as expressed by Eq. (2.45). That would imply that our feedforward neural
networks, when supplemented with feedback connections, can represent the behaviour of

any nonlinear dynamic electronie circuit.

We will consider the neural networl of Fig. 2,13, As in the preceding section, we will
use a state vector 2 of length » in a feedback loop, thereby forwing part of the network
input, while u = (¢} is the explicitly time-dependent input vector of length . All timing
PATQILeters Ty, Tail Tlig. Tos and Hijn ArC kept at zero, hecanse it turns out that we
do not need them to auswer the abovementioned question. Only the timing parameters
5 of the hidden layer & = 1 will generally he nonzero. We denote the uet input to layer
k=1 by a vector s of length p, with clements s, ;. Similarly, the threshold vector 8 of

length p contains elements 8; 1. Then we have

(W, W) w | " V. V) el - 9 =3 (2.51)
or, alternatively,
€xr
(W, W, V, V) | ¥ | -6=35 (2.52)

<3

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 51

with W, the n x p matrix of weight parameters wi;1 associated with input vector =, V',
the n x p matrix of weight parameters v;;; associated with input vector &, W, the m x p
matrix of weight parameters wi;, assoclated with input vector u, and V', the m x p matrix

of weight parameters v,; associated with input vector .

The latter form of Eq. (2.52) is also obtained if one considers a regular static neural network
with input weight matrix W = (W, W, V, V), if the complete vector {z u = 'il.)T Is
supposed to be available at the network input.

This mathematical equivalence allows us to immediately exploit an important result from
the literature on static feedforward neural networks. From the work of [19, 23. 34]. it
is clear that we can represent at the network output any continuous nounlinear vector
function F (z,u,2,%) up to arbitrary accuracy, by requiring just one hidden layer with
nonpolynomial functions F—and with linear or effectively linearized!® functions in the

output layer.

We will assume that F has n elements, such that the feedback yields
F(z, u, & u) =z (2.53)

In order to represent Eq. (2.45), we realize that the explicitly time-dependent, but still

¥%ee also section 2.2.1.

Famo)—

Figure 2.13: Representation of state equations for general nonlinear dynamic systems
by dynamic feedforward uneural networks with external feedback.

02 CHAPTER 2. DYNAMIC NEURAL NETWORKS

unspecified, fuputs w = w(t) allow ns to define a function F as
Loy D .
Fla, w. &, 4) = flx, x t) + @ (2.54)

where the arguments @, 2 and ¢ should now be viewed as ndependent variables in fhs
definition, and where appropriate choices for w(#) make it possible to represent any expli-

¢itly time-dependent parts of f.

The above approximation can be made arbitrarily close, such that substitution of L. (2.54)

i Eq. (2.53) indecd yields the general state equation (2.43), Le..
flz, &, . t) =0 (2.55)

It should be clear that there is a major semantic distinetion between a funetion definition
like {2.54), which shoukl in principle hold for any combination of arguinent values to have
a nontrivial mapping that fully covers the ¢haracteristics of the system to be modelled,
and relations between [unctions. such as (2.45) and (2.53). which pose implicit relations
among hence restrictions to arguinent values.

Until now, we only considered state equations, while 4 complete analysis of arbitrary

nonlinear dynamic syst.

eins also involves gufpuet equations for nonstate variables of the form

y = G (x,u.u). also kuown as inpui-state-output equations or read-out maep according to

[O. These equations relate the stare variables to the observables, However, with electronic

'f A,
’tl.r \.;‘0}‘\\7

/im SRy
Y ZA\\%

Figure 2.14: Representation of general nonlinear dynamie systems by feedforward
neural networks with external feedback.

2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETWORKS 53

circuits the distinction between the two is often blurred, since output functions, e.g., for
currents, may already be part of the construction—and solution—of the state equations,
e.g., for voltages. As long as one is only concerned with charges, fluxes, voltages and
currents, the output functions are often components of f (. &,t). For example, it may
be impossible to solve the nodal voltages in a circuit without evaluating the terminal
currents of devices, because these take part in the application of the Kirchhoff current law.
Therefore, in electronic circuit analysis, the output equations & are often not considered

as separate equations, and only Eq. (2.45) is considered in the formalism.

Any left-over output equations could be represented by a companion feedforward neural
network with one hidden layer, but without external feedback. The additional network
takes the available @ and w as its inputs, and emulates the behaviour of a static feedforward
neural network with inputs @, w and 4 through use of the parameters v;; ;. The procedure
would be entirely analogous to the mathematical equivalence that we used earlier in this

section.

Furthermore, since x is, due to the feedback, also available at the input of the network
in Fig. 2.13, the companion network for G can be placed in parallel with the network
representing F', thereby still having only one hidden layer for the combination of the two
neural networks. This in turn implies that the two neural networks (for F and for &) can

be merged into one neural network with the same functionality, as is shown in Fig. 2.14.

In view of all these very general results, the design of learning procedures for feedforward
nonlinear dynamic neural networks with external feedback connections could be an inter-
esting topic for future work on universal approximators for dynamic systems. On the other
hand, feedback will definitely reduce the tractability of giving mathematical guarantees
on several desirable properties like unigueness of behaviour (i.e., no multiple solutions
to the network equations), stability, and monotonicity. The representational generality
of dynamic neural networks with feedback basically implies, that any kind of unwanted
behaviour may occur, including, for instance, chaotic behaviour. Furthermore, feedback
generally renders it impossible to obtain explicit expressions for nonlinear behaviour, such

that nonconvergence may occur during numerical simulation.

For the present, the value of the above considerations lies mainly in establishing links with
general circuit and system theory, thus helping us understand how our non-quasistatic
feedforward neural networks constitute a special class within a broader, but also less
tractable, framework. We have been considering general continuous-time neural systems.
Heading in the same general direction is a recent publication on the abilities of continuous-
time recurrent neural networks [20]. Somewhat related work on general discrete-time

neural systems in the context of adaptive filtering can be found in {41].

54 CHAPTER 2. DYNAMIC NEURAL NETWORKS

2.5 Mapping Neural Networks to Circuit Simulators

Apart from the intrinsic capabilities of neural networks to represent certain classes of
behaviour, as discussed before, it is also important to consider the possibilities of mapping
these neural networks onto the input languages of existing analogue cireuit simulators.
If that can be done, one can simulate with neural network models without requiring the
implementation of new built-in models in the source code of a particular eireuit simulator.
The fact that one then does not need access to the sowrce code, or influence the priovity
settings of the shimulator release procedures, is 4 major advantage. The importance of this
simulator mdependence 15 the reagson to consiler this matter before proceeding with the
more theoretical development of learning techniques, described in Chapter 3. For brevity,
only a few of the more difficult or illustrative parts of the mappings will be explained in
detail, although examples of complete mappings are given in Appendix C, sections C.1

and €.2.

2.5.1 Relations with Basic Semiconductor Device Models

In the following, it will be shown how several neuron nonlinearities can be represented by
electrical circuits containing basic semiconductor devices and other circuit elements, when
using idealized niodels that are available in almost any circuit simulator, for instance in
Berkeley SPICE. This allows the nse of neural models in most existing analogue cireuit

sinmlators.

2.5.1.1 SPICE Equivalent Electrical Circuit for F;

It is worth noting that Eq. (2.16) can be rewritten as a conbination of ideal diode functions

and their inverses®® through

o [Is e 1)] + 0 {h (v -)]

%.}—2(31;\.,51[\») = 7 L
Cohh (Z{[("VI/“ 1)] ; : {I@ (PW\’/’ 1)] + 1] (2.56)
s
with
v 2
v, 2 -1

20This also applies to F1 in L. (2.7), althougl we will skip the details for representing 7).

2.5, MAPPING NEURAL NETWORKS TO CIRCUIT SIMULATORS 55

A eéglr/Q
¢ = ———
ORI 4 D2
~82./2
o & €t =1-0a (2.57)

o002 4 052

If the junction emission coefficient of an ideal diode is set to one, and if we denote the

thermal voltage by Vi, the diode expressions become
- ViV _ I =
vy =1, (e o 1) & V=¥ Ia(++1 (2.58)

which can then be used to represent Eq. (2.56) for a single temperature?!. This need for
only basic semiconductor device expressions can be seen as another, though qualitative,
argument in favour of the choice of functions like F» for semiconductor device model-
ling purposes. It can also be used to map neural network descriptions onto primitive
{non-behavioural, non-AHDL) simulator languages like the Berkeley SPICE input lan-
guage: only independent and linear controlled sources??, and ideal diodes, are needed to
accomplish that for the nonlinearity Fu, as is outlined in the left part of Fig. 2.15. Ca-

*The thermal voltage ¥, = kg1'/q contains the absolute temperature 7', and unfortunately we cannot
suppress this temperature dependence in the ideal diode expressions.

*With the conventional abbreviations VOVS = voltage-controlled voltage source, CCVS = current-
controlled voltage source, CC'CS = current-controlled current source, and VCCUS = voltage-controlled
current, source. Zero-valued independent voltage sources are often used in SPICE as a work-around to
obtain controlling currents.

Figure 2.15: Equivalent SPICE circuits for 75 (left) and £ (right).

56 CHAPTER 2. DYNAMIC NEURAL NETWORKS

dence Spectre is largely compatible with Berkeley SPICE, and can therefore be used as a
substitute for SPICE.

2.5.1.2 SPICE Equivalent Electrical Circuit for Logistic Function

The logistic function £ of Eq. (2.6) can also e mapped outo a SPICE representation, for
cxample via
riTs AT 1 { 5 -
L0V —-1) = I & L(V/V) = 3 T+] (2.59)
s
where T is the current through a series connection of two identical ideal diodes, having the
cathodes wired together at an internal node with voltage V. V is here the voltage across

the series connection, When expressed in formulas, this hecomes
L A e) S A (A (2.60)

from which ¥y can be analytically solved as

IATIY
Vo=V l (—%) (261

P4

which, after substitution in Eq. (2.60), indeed yields a current I that relates to the logistic

funetion of Eq. (2.6) according to Eq. (2.59}).

However, in a typical cireuit simulator, the voltage solution ¥ is obtained by a numerical
nonlinear solver (if it converges), applied to the nonlinear subeircuit involving the series
connection of two diodes, as is illustrated in the right part of Fig. 2.15. Consequently, cven
though a mathematically exact mapping onto a SPICE-level description is possible. and
even though an analytical solution for the voltage Vy on the internal node is known (to
us), numerical problems in the form of nonconvergence of Berkeley SPICE and Cadence
Spectre coukd be frequent. This most likely applies to the SPICE input representations of
both Fy and the logistic function £. With Pstar, this probleni is avoided, becanse one can
explicitly define the nounlinear expressions for Fy and £ in the wput language of Pstar.
For Fy, this will be shown in the next section, together with the Pstar representation of

several other components of the neuron differential equation.

An example of a complete SPICE neural network description can be found in Appendix C,
section C.2. That example includes the representation of the full neuron differential equa-
tion (2.2) and the connections among neurons corresponding to Eq. (2.3}, The left-hand
side of Eq. (2.2) is represented in a way that is very similar to the Pstar representation
discussed in the next section. The terms with time derivatives in Eq. (2.3) are obtained

from voltages induced by currents that are forced through linear inductors.

2.5. MAPPING NEURAL NETWORKS TO CIRCUIT SIMULATORS 57

2.5.2 Pstar Equivalent Electrical Circuit for Neuron Soma

When generating analogne behavioural models for circuit simulators, one normally has
to map the neuron cell body, or soma, differential equation (2.2) onto some equivalent
electrical circuit. Because the Pstar input language is among the most powerful and
readable, we will here consider a Pstar description, a so-called user model, for a single
non-quasistatic neuron, according to the circuit schematic as shown in Fig. 2.16. The
neuron model is specified in the following example of a so-called user-defined model, which

simply means a model described in the Pstar input language:

MODEL: Neuron(IN,0UT,REF) delta, taul, tau2;
delta2 = delta * delta;
EC1{AUX,REF) 1n((exp{(delta2*(V(IN,REF)+1)/2) + exp(-delta2*(V(IN,REF)+1)/2))
/ (exp(delta2*(V(IN,REF)-1}/2) + exp(-delta2*(V{IN,REF)-1)/2))
) / delta2;
L1(AUX,0UT) taul; C2(0UT,REF) tau2 / taul;
R2(0UT,REF) 1.0 ;
END;

A few comments will clarify the syntax for those who are not familiar with the Pstar input
language. Connecting (terminal) nodes are indicated by unique symbolic names between
parentheses, like in (IN,QUT,REF). The neuron description Eq. (2.2) is encapsulated in a
user model definition, which defines the model Neuron, having terminal nodes IN, OUT,

and a reference terminal called REF. The neuron net input s;; will be represented by

Figure 2.16: Circuit schematic of electrical circuit corresponding to Eq. (2.2},

03 CHAPTER 2. DYNAMIC NEURAL NETWORKS

the voltage across nodes IN and REF, while the neuron output yi will be represented
by the voltage across OUT and REF. The neuron paranteters delta= dy, tawl=ry 4 and
taul2=ry ; enter ag model arguments as specified in the first line, and are in this example
all supposed to be nouzero. Intermediate parameters can be defined, as in delta2= 6%,
The nonlinearity Fa (s, di) is represented via a nonlinearly controlled voltage source EC1,
connected between an internal node AUX and the reference node REF. EC1 is controlled by
{a nonlinear function of) the voltage between nodes IN and REF. F, was rewritten in terms
of exponential functions exp () instead of hyperbolic cosines, hecause Pstar does not know
the latter. Contrary to SPICE, Pstar does not require a scparate equivalent cleetrical

circuit to coustruct the nonlinearity Fy.

The voltage across ECL represents the right-hand side of Eq. {2.2). A linear inductor L1
with inductance taul conunects internal node AUX and output node OUT, while OUT and
REF are connected by a second lincar capacitor €2 with capacitance tau2/taul, in parallel

with a linear resistor R2 of 1.0 ohm.

It may not immediately be obvious that this additional circuitry does indeed represent
the left-hand side of Eq. (2.2). To see this, one fivst realizes that the total current flowing
through €2 aund R2 is given by y; + tau2/taul %tl;ﬁ because the neuron output yyy, is the
voltage across OUT and REF. If ouly a zero load is externally connected to output node QUT
{which can be ensured by properly devising an encapsulating circuit model for the whole
netwerk of neurons), all this current has to be supplied through the inductor L1, The flux
® through L1 therefore eguals its inductance taul multiplied by this total current, ic.,

dyie ¢ . . S
. ;‘A' Furthermore, the voltage induced across this indnctor is given by

2
Le t o . — Ayip A=y o verltase o
the time derivative of the flux, giving taul ALdt + tau2 7}5— This voltage between AUX

taul y; + tau2

and OUT hag to be added to the voltage y between OUT aud REF to obtaiu the voltage
between AUX and REF. The sum yields the entire left-hand side of Eq. (2.2}, However, the
latter voltage must also be equal to the voltage across the controlled voltage source EC1,
because that source is connected hetween AUX and REF. Since we have already ensured that
the voltage across EC1 represents the right-hand side of Eq. (2.2), we now find that the
left-hand side of Eq. (2.2} has to equal the right-hand side of Eq. (2.2), which implies that
the behaviour of our equivalent circuit is indeed consistent with the neuron differential

equation (2.2).

The neuron net input s, i Eq. (2.3), represented by the voltage across nodes IN and REF,
can be constructed at a higher hievarchical level, the neural network level, of the Pstar
description. The details of that rather straightforward construction are omitted here. It
only involves lincar controlled sources and linear inductors. The latter ave used to obtain

the time derivatives of currents in the form of induced voltages, thereby incorporating the

2.6. SOME KNOWN AND ANTICIPATED MODELLING LIMITATIONS 59

differential terms of Eq. (2.3). An example of a complete Pstar neural network description

can be found in Appendix C, section C.1.

2.6 Some Known and Anticipated Modelling Limitations

The dynamic feedforward neural networks as specified by Eqs. (2.2), (2.3) and (2.5), were
designed to have a number of attractive numerical and mathematical properties. There is

a certain price to be paid, however.

The fact that the neural networks are guaranteed to have a unique de solution immediately
implies that the behaviour of a circuit having multiple dc¢ solutions cannot be completely
modelled by a single neural network, indiseriminate of our time domain extensions. An
example is the nonlinear resistive flip-flop circuit, which has two stable dc solutions—and
one metastable de solution that we usually don’t (want to) see. Circuits like these are
called bistable. Because the neural networks can represent any (quasijstatic behaviour
up to any required accuracy, multiple solutions can be obtained by interconnecting the
neural networks, or their corresponding electrical behavioural models, with other circuit
components or other neural networks, and by imposing (some equivalent of) the Kirchhoff
current law. After all, in regular circuit simulation, including time domain and frequency
domain simulation, all electronic circuits are represented by interconnected {sub)models
that are themselves purely quasistatic. Nevertheless, this solves the problem only in
principle, not in practice, because it assumes that one already knows how to properly
decompose a circuit and how to characterize the resulting “hidden” components by training
data. In general, one does not have that knowledge, which is why a black-box approach

was advocated in the first place.

The multiple dc solutions of the bistable flip-flop arise from feedback connections. Since
there are no feedback connections within the neural networks, modelling limitations will
turn up in all cases where feedback is essential for a certain de behaviour. This does
definitely not mean that our feedforward neural networks cannot represent devices and
subcircuits in which some form of feedback takes place. If the feedback results in unique
dc behaviour in all situations, or if we want to model only a single de¢ behaviour among

123 indeed be able to represent such be-

multiple de solutions, the static neural networks wil
haviour without needing any feedback, because it is the behaviour that we try to represent,

not any underlying structure or cause.

Another example in which feedback plays an essential role is a nonlinear oscillator®, for

#Gee section 2.4.1.
**The word “essential” here refers to the proper functioning of the particular physical circuit. [t might
turn out not be essential to the neural modelling, in the sense that the behaviour can perhaps stiil be

60 CHAPTER 2. DYNAMIC NEURAL NETWORKS

which the amplitude is constrained and kept constant through feedback. Although the
neural networks can casily represent oscillatory behaviour through vesonaice of individual
neurons, there is no feedback mechanism that allows the use of the amplitude of a neuron
oscillation to control and stabilize the oscillation amplitude of that same neuron. The
behaviour of a nonlinear oscillator may for a finite Hme interoal still be accurately rep-
resented by a neural network, hecause the signal shape can be determined by additional
nounlinear neuromns, but for times going towards infinity, there scems to be no way to prevent

that an initially small deviation from a constant amplitude grows very large.

On the other hand, we have to be very careful abont what is considered (im)possible,
because a number of tricks could e imagined. For instance. we may have one uustable®
neuron of which the oscillation amplitude keeps growing indefinitely. The nonlinearity
F of a neuron in a next network layer can be used to squash this signal, after an initial
oscillator startup phase, into a close approximation of a block wave of virtually constant,
and certainly bounded, amplitude. The 7's and m"s in this layer and subsequent layers
can then be used to integrate the block wave a number of times, which is equivalent
to repeated low-pass filtering, resulting in a close approximation of a sinusoidal signal of
constant amplitude. This whole oscillator representation selieine inight work adequately in
a circuit simulator, until numerical overflow problems occur within or due to the unstable

hidden neuron with the ever growing oscillation amplitude.

As a final example, we may consider a peak detector civenit. Such a circuit can be as
simple as a linear capacitor in series with a diode, and yet its full behaviour can probably
not?® be represented by the nenral networks belonging to the class as defined by Eys. (2.2),
(2.3) and (2.5).

The fundaincntal reason seeins to be, that the neuron output variable y;, can act as a
state (memory} variable that affects the behaviour of neurons in subsequent layers, hut it
cannot affect its own future in any nonlinear way., However, in a peak detector circuit, the
sign of the difference hetween input value and output (state) value determines whether or

not a change of the output value is needed, which implies a nonlinear (feedback) operation

represented without feedback. We have o stay aware of this subtle distinction.

211 unstable neurons are prevented by means of parameter constrainis, no neural osciliation will exist,
uitless an external signal first drives the neural network away from the de steady state solution, after
which an oscillation may persist through neural resonance. Other neurons may then gradually turn on and
saturate the gain from the resonant signal to the network ouiput, in order to emulate the startup phase of
the nonlinear oscillator that, we wish to represent,

*Learning of peak deteclion has later alsa been tried experimentally, in order to confinm our expect-
ations. Surprisingly, a relatively close match to the multiple-target-wave data set was at first obtained
even with small 1-1-1 and 1-2-1 networks, bul subsequent analysis showed that this was apparently the
result only of “smart” use of other clues, like the combination of leight and steepness of the curves in
the artificially created time domain target data. Consequently, one has to be careful that one does not.
introduce, in the training data, some unintended coincidental strong correlation with a behaviour that can
be represented by the neural networks.

2.6. SOME KNOWN AND ANTICIPATED MODELLING LIMITATIONS 61

in which the output variable is involved. It is certainly possible to redefine—at least in
an ad hoe manner®—the neuron equations in such a way, that the behaviour of a peak
detector circuit can be represented. It is not (yet) clear how to do this elegantly, without
giving up a number of attractive properties of the present set of definitions. A more general
feedback structure may be needed for still other problems, so the solution should not be

too specific for this peak detector example.

Feedback applied externally to the neural network could be useful, as was explained in
section 2.4.3. However, in general the problem with the introduction of feedback is, that
it tends to create nonlinear equations that can no longer be solved explicitly and that may
have multiple solutions even if one doesn’t want that, while guarantees for stability and

monotonicity are much harder to obtain.

With Eqgs. (2.2}, (2.3) and (2.5), we apparently have created a modelling class that is
definitely more general than the complete class of quasistatic models, but most likely not
general enough to deal with all circuits in which a state variable directly or indirectly

determines its own future via a nonlinear operation.

%" An cbvious procedure would be to define (some) neurons having differential equations that are elose
to, or even identical to, the differential equation of the diode-capacitor combination.

63

Chapter 3

Dynamic Neural Network
Learning

In this chapter, learning techniques are developed for both time domain and small-signal
frequency domain representations of hehaviour. These techniques generalize the back-
propagation theory for static fesdforward neural networks to learning algorithms for dy-

namic feedforwared neural networks.

As a special topic, section 3.3 will discuss how monotonicity of the static response of
feedforward neural networks can be guaranteed via parameter constraints imposed during

learning.

3.1 Time Domain Learning

This section first describes numerical techniques for solving the neural differential equa-
tions in the time domain. Time domain analysis by means of numerical time integration
(and differentiation) is often called iransient analysis in the context of circuit simulation.
Subsequently, the sensitivity of the solutions for changes in neural network parameters is
derived. This then forms the basis for neural network learning by means of gradient-hased

optimization schemes.

3.1.1 Transient Analysis and Traunsient & DC Sensitivity

3.1.1.1 Time Integration and Time Differentiation

There exist many general algorithms for numerical integration, providing trade-offs between
accuracy, time step size, stability and algorithmic complexity. See for instance {9] or [29] for
explicit Adams-Bashforth and implicit Adams-Moulion multistep methods. The first-order

64 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

Adams-Bashforth algorithn: is ideutical to the Forwerd Ewler integration method, while
the fivst-order Adams-Moulton algorithin is identical to the Baeckward Euler integration
method. The second-order Adams-Moulton algorithm is better known as the trapezoidal

integration method.

For simplicity of presentation and discnssion, and to avoid the intricacies of automatic
selection of time step size and integration ordert, we will in the main text ouly consider
the use of one of the simplest. bhut uumerically very stable-—*A-stable” [20]—methods:
the first order Backward Euler method for variable time step size. This method yields
algebraic expressions of modest complexity, suitable for a further detailed discussion in

this thesis,

In a practical implementation, it may be worthwhile? to also have the trapezoidal integ-
ration method available, since it provides a much higher accuracy for sufficiently sinall
time steps, while this method is also A-stable. Appendix D describes a generalized set
of expressions that applies to the Backward Euler method, the trapezoidal integration

method and the second order Adams-Bashforth method.

Equation (2.2} for layer & > 0 can be rewritten into two first order differential equations

by introducing an auxiliary variable zy as iu

Flsimbu) = wu + 1t (j;i#i‘ T Tk %&)
3.1

o g

s T T

We will apply the Backward Euler integration method to Eq. (3.1), according to the

substitntion scheme [10]

fle e t)=0 — fle. T2 4] =0 (3.2)

with a local time step h--which may vary in subsequent time steps, allowing for non-

"Automatic selection of time step size and integration order would be of limited value in our application,
because the input signals to the neural networks will be specified by values at discrete time points, with
unknown intermediate values. Uherefore, precision is already limited by the preselected time steps in
the input signals. Furthermore, it is assumed that the dynamic behaviour within the neural network
will usually be comparable wor.t. dominant tine constants - to the dynamic behaviour of the input and
target signals, such that there is no real need to take smaller time steps than specified {or these signals.
Although it would be valuable to at least check these assumptions by monitoring the local truncation
ervors (ef. section 3.1.2) of the integration scheme, this refinement is not considered of prime hmportance
at the present stage of algorithmic development.

ZTime domain errors are cansed by the approximative numerical differentiation of network input signals
and the acenmulating local truncation errors due to the approximative numerical integration methods. In
particular during simultancous time domain and frequency domain optimization, te be discussed further
on, these numerical errors cause a slight inconsistency between time domain and frequency domain results:
e.g., a linear(ized) neural network will not respond in exactly the same way to a sine wave input when
comparing time domain response with [requency domain response.

3.1. TIME DOMAIN LEARNING 65

equidistant time points—and again denoting values at the previous time point by accents

{"). This gives the algebraic equations

T2,k !

Flspbin) = yae + (yer — i) + . (zak = 21)

s = yik*y,’:k

T1,ik
“h

(3.3)

Now we have the major advantage that we can, due to the particular form of the differential
equations (3.1), ezplicitly solve Eq. (3.3) for y;; and zy to obtain the behaviour as a

function of time, and we find for layer &k > 0

T1,ik T2,ik T2k
Flsinbe) + (B + 25 v + 35 3

Yike 7L,k T2tk
R + o (3.4)
o bk _yik
~ik = h
for which the s;. are obtained from
N1 Ni_1
Z Wik Yjh-1 — B + z Vigk Z5k-1 (3.5)

J=1 J=1

where Eq. (3.1) was used to eliminate the time derivative dy;z.1/dt from Eq. (2.3).
However, for layer k = 1, the required z;¢ in Eq. (3.5) are not available from the time
integration of a neural differential equation in a preceding layer. Therefore, the z;¢ have
to be obtained separately from a finite difference formula applied to the imposed network
inputs y;0, for example using z;9 2 (yio ~ y;‘o)/h, although a more accurate numerical

differentiation method may be preferred®,

Initial neural states for any numerical integration scheme immediately follow from forward

propagation of the explicit equations for the so-called “implicit de” analysis?, giving the

*During learning, the computational complexity of the selected numerical differentiation method hardly
matters: the z;0 may in a practical implementation be calculated in a pre-processing phase, because the
y;,0 network inputs are independent of the topology and parameters of the neural network.

“Here the word “implicit” only refers to the fact that a request for a transient analysis émplies the need
for a preceding dc analysis to find an initial state as required to properly start the transient analysis. This
is merely a matter of prevailing terminology in the area of circuit simulation, where the custom is to start a
transient analysis from a de¢ steady state solution of the circuit equations. Qther choices for initialization,
such as large-signal periodic steady state analysis, are beyond the scope of this thesis.

66 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

steady state belaviour of one particular neuron 7 in layer & > 0 at time £ =0

[Ny
Fik = Z Wik Hpb=1 — 9
=0 J=1
Yik = Flsu.dir) (3.6)
=0
Zik =0
L 1=0
by setting all time-derivatives in Egs. (2.2) and (2.3) to zevo. Furthermore. zjpol,2y = 0

should be the outcome of the above-wentioned numerical differentiation method in order

to keep Eq. (3.5) consistent with Eq. (3.6).

3.1.1.2 Neural Network Transient & DC Sensitivity

The expressions for franstent sensibioity, le.. partial derivatives warf. parameters, can
be obtained hy first differentiating Eqs. (3.1) and (3.5) w.r.t. any {scalar) paraweter p

{indiscriminate whether p resides in this neuron or in a preceding layer), giving

r Ny A
D5 ey i, ‘ Ykt _ A8,
dp T ‘Z::I { dp ZE dp dp
Nyoy ,
(ll',‘_,;\ . X d "“kiljl
+ Z { dp Al + ap

J
OF Osue _ Dy ATk dyie A { Dy
R il R Tl T 7y
OTpak dz ood Pz
+ dpdf T gy Y)
Iz _d (’)t”\;
L o HT((];)

and by subsequently diseretizing these differential equations, again using the Backward

Euler method. However. a preferred alternative method is to directly differentiate the
expressions in Eq. (3.3) wort. any parameter p. The resulting expressions for the two
approaches are in this case exactly the same, i.e., independent of the order of differentiation
w.r.t. pand diseretization wort. . Nevertheless, in general it is conceptually hetter to first
perform the diseretization. and ouly then the differentiation w.r.t. p. Thereby we eusure
that the transient sensitivity expressions will correspond exactly to the discretized time
domain behaviour that will later, in section 3.1.3, be used in the minimization of a time
domain error measure Ey,. A separate approximation, by meaus of time discretization, of a

differential equation and an associated differential equation for its partial derivative w.r.t.

3.1. TIME DOMAIN LEARNING 67

p, would not a priori be guaranteed to lead to consistent results for the error measure
and its gradient: the time discretization of the partial derivative w.r.t. p of a differential
equation need not exactly equal the partial derivative w.r.t. p of the time-discretized
differential equation, if only because different discretization schemes might have been
applied in the two cases.

Following the above procedure, the resulting expressions for layer k > 0 are

k—1
s dawyjp s o 1} _ dfu
_6'1';& = ; dp Yik—1 T Wijk op ap
N p
di’i]k - a.f:j‘k 1}
+ Z ap Tjk—1 F Uik ™
()gm _ F | OF (0s Or1k
7z Fp " s \ Op dap
Tk, Tl Oy | O [— 7p) ;
[] (‘gy) e (3.8)

o)

Lo T R

while initial partial derivative values immediately follow from forward propagation of the
steady state equations for layer k > 0

Ni—1
dsiy [dwuk 8yj,ic71] dgzi\:
= el w2 -

P o]Z_; dp Hezo T o dp
ag'k el F 8s zk

Pl 9 " O =0
Bz — 0

P =0

corresponding to dc sensitivity. The dy;0/0p and dz;0/dp, occurring in Eqs. (3.8) and
(3.9) for & =1, are always zero-valued, because the network inputs do not depend on any

netwark parameters.

The partial derivative notation 8/8p was maintained for the parameters 7 4 and 734,
because they actually represent the bivariate parameter functions (o1, o24) and
7201,k + 0a.r), respectively. Particular choices for p must be made to obtain expres-

sions for implementation: if residing in layer k, p is one of the parameters &, &ip, wijk,

63 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

ke 01k and op g, using the convention that the (neuron input) weight paramcters wyje,
ik and the threshold dy belong to layer k, since they are part of the definition of s in
Eq. (2.3}

Derivatives needed to caleulate the network output gradient via the lnear output scaling

I . .
vr'f R oy + 00 in EqL (2.5) are given by

oA
¢ !J‘l 1\'

)
dr, (3.10)

|
-
=

where the derivative wort. g is used to find network output derivatives w.r.t. network
parameters other than «; and 4, since their influence is “hidden” in the time evolution of
Yiw-

If p resides in a preceding layver. Eq. (3.8) can he simplified, and the partial derivatives

can then be recursively found from the expressions

r N) i
Psp o~ Wi Y k-1 . 05,‘;\-71]
p = g) ik .
/4 = dy ap
Qyie OF [Osp
dp T { Jsip \ Ip
TLik | Tk { Qv ' Toik { dag , .
+ [i T —],_-T] ((';)) 7 (B) } (3.11)
Tk 2.0k
Qui N Oy /
e Agﬁ (Jp)
L oap T h

until one “hits” the layer where the parameter resides. The actual evaluation can he done
in a feedforward manner to avoid recursion. Initial partial derivative values in this scheme

for parameters in preceding layers follow from the de sensitivity expressions

Npoo

st Qifjh—1
jd*- ’ = Wik)
P oli=p ; ! Ip iz
Ql ik — ()_,7: ()s (3.12)
7 im0 dsin I |12y
=0

Dz
T

1=0

3.1. TIME DOMAIN LEARNING 69

All parameters for a single neuron ¢ in layer k together give rise to a newron parameter
vector pl*), here for instance

(£.k)

— T .
P = (Wi W Nk Pk Vil s Vi Ny 2 Oik 5 O Lk OO0k) (3.13)

Ny—) neuron inputs Ni~1 neuron inputs

where the 7's follow from 7, = 7i(o1k, 02) and 7o = 7T2(F1ik, O2.k). All neuron
4 parameter vectors pt*) within a particular layer & may be strung together to form a
vector pt*). and these vectors may in turn be joined, also including the components of the
network output scaling vectors oo = (a1 .-+ an, 1T and 8= (B, -, 8w,)T, to form

the network parameter vector p.

In practice, we may have to deal with more than one time interval (section) with associated
time-dependent signals, or waves, such that we may denote the i,-th discrete time point
in section s by £,;,. {For every starting time ¢, an implicit dc is performed to initialize
a new transient analysis.) Assembling all the results obtained thus far, we can calculate
at every time point #;; the network output vector M) and the time-dependent Ny -row
transient sensitivity derivative matrix Dy, = Dy (fs,,) for the network output defined by

a9t

Diltsi) = p (3.14)

which will be used in gradient-based learning schemes to determine values for all the

elements of p. That next step will be covered in section 3.1.3.

3.1.2 Notes on Error Estimation

Tkhe error® of the finite difference approximation z;0 = (750 — y},n)/h for the time derivat-
ives of the neural network inputs, as given in the previous section, is at most proportional
to A for sufficiently small A. In other words, the approximation error is O(h), as unmedi-

ately follows from a Taylor expansion of a function f around a point ¢, of the {backward)

form
=iy = i) -0 |+ o)
df _ f(tn) - f(tn - h) =
S, = T ow (3.15)

"We will neglect the contribution of roundoff errors that arise due to finite machine precision relevant
to a software implementation on a digital computer. Roughly speaking, we try to use large time steps
for computational efficiency. As a consequence, the change per time step in the state variables also tends
to become lacge, thus reducing the relative contribution of roundoff errors. On the other hand. the local
truncation errors of the numerical integration method tend to grow superlinearly with the size of the time
step, thereby generally causing the local truncation errors te dominate the total error per time step.

70 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

However, this approximation error dees not accuumlate for given network inputs, contrary

to the local truncation error in numerical integration.

The local truncation error is the integration error wade In one tinie step as a consequence
of the diseretization of the differential equation. The size of the local truncation error of
the Backward Euler integration method is Q(A%), hut this error accumulates assuning
equidistant time points to a global truncation error that is alse O(h) due to the O~y
time steps in a given simulation time interval®. Similarly, the O(4?) local truncation ervor
of the trapezoidal integration method would accummlate to an O(h#) global truneation
error, in that case motivating the nse of an O(h%) numerical differentiation method at the
network input, for example
ﬂ — f(fu—rl)'—f(fn) .f(Tﬂ-H) 7,f(tnfl) f“n) — f(f,,,_|)

. 7 1 {3.16)
dt fezi,, fu-H - tn f‘n+| - fu—l fn " fn—t

where the right-hand side is the exact thne derivative at ¢, of a parabola interpolating
the points (fooy, f{fno 1)) (Fo F(E0)) and (fuq0, flt,1 1)), A Taylor expansion of this

expression then viekds

1f [t + 0y — f4, — 1 -
LSNP 70 L el A U D RPYS € (3.17)
A ey, I

for equidistant-time points. Le., for) — 4+, =%, —t,_| = h.

The network inputs at “future” potuts #,, are during newral network learuning already
available from the pre-determined training data. When these are not available. one may
resort to a Bachward Differentiation Formula {BDF) to obtain accurate approxinations
of the time derivative at #, from information at present and past time points [9]. The
BDF of ovder 1 will give the exact time derivative at ¢, of an m-th degree polyuomial
interpolating the network input values at the e 4+ 1 the points £, ..., f,_y . while
causing att error QA" in the time dertvative of the underlying (generally unknown) real

vetwork input function, asswmning that the latter is sufficiently siooth at least ¥

3.1.3 Time Domain Neural Network Learning

The neural network parameter elewents in p have to be determined through some kind

of optimization on training data. For the de hehaviour, applied voltages on a device can

#A more thorough discussion of the relation between local truncation errors and global truncation errors
can be found in [29]. 1 conceptually wrong to simply add the local trunes
global truncation error. because a local truncation error in one time step changes the initial conditions for
the next time step, thereby tracking a different solation with different subsequent local traneation errors.
However. a maore careful analysiy still Jeads to the basic result that. if the local truncation errors in the
numerical solution are O(A™ '), then the global truncation error is O{h™).

ion errors up o arrive at the

3.1. TIME DOMAIN LEARNING 71

be used as input to the network, and the corresponding measured or simulated terminal
currents as the desired or target cutput of the network (the target output could in fact
be viewed as a special kind of input to the network during learning). For the transient
behaviour, complete waves involving (vectors of) these currents and voltages as a function
of {discretized) time are needed to describe input and target output. In this thesis, it is
assumed that the transient behaviour of the neural network is initialized by an implicit
dc analysis at the first time point ¢ = 0 in each section. Large-signal periodic steady state

analysis is not considered.

The learning phase of the network consists of trying to model all the specified de and
transient behaviour as closely as possible, which therefore amounts to an optimization
problem. The dec case can be treated as a special case of transient analysis, namely for
time ¢ = 0 only. We can describe a complete transient fraining set Sy, for the network as

a collection of tuples. A number of time sections s can be part of Sir. Each tuple contains
0)

the discretized time ¢, ;,, the network input vector z,, , and the target output vector
&s;,. where the subscripts s,4, refer to the ¢,-th time point in section s. Therefore, S,

can he written as

S = {sect.ions s,samples & : (54, . :cg(‘]i)s , ‘i’s,is)} (3.18)

Only one time sample per section tg;,—1 = 0 is used to specify the behaviour for a particular
de bias condition. The last time point in a section s is called T;. The target outputs @ ;,
will generally be different from the actual network outputs (*{¢, ;.), resulting from
network inputs mg‘?fs at times ts,, . The local time step size h used in the previous sections

is stmply one of the £, ; (1 —#s5, .

When dealing with device or subeircuit modelling, behaviour can in general” be charac-
terized by (target) currents 4(¢) flowing for given voltages v(¢) as a function of time f.
Here i is a vector containing a complete set of independent terminal currents. Due to
the Kirchhoff current law, the munber of elements in this vector will be one less than the
number of device terminals. Similarly, v contains a complete set of independent voltages.
Their number is also one less than the number of device terminals, since one can take one

terminal as a reference node (a shared potential offset has no observable physical effect in

If, however, input and output joading effects of a device, or, more likely, a subcircuit, may be neglected,
one may make the training set represent a direct mapping from a set of input voltages and/or currents to
another set of input voltages and/or currents now associated with a different set of terminals. Although this
situation is not as general, it can be of use to the modelling of idealized circuits having a unidirectional
signal flow, as in combinatorial (fuzzy or nonfuzzy) logic. Because this application is less general, and
because it does not make a basic difference to the neural non-quasistatic modelling thecory, we do not
pursue the formal consequences of this matter in this thesis.

=1
™

CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

clas

ical physics). See also the carlier discussion, and Fig. 2.1, in section 2.1.2. In such
an #(v(f)) representation the vectors v and 2 would therefore be of equal length, and the
nenral network coutains identical numbers of inputs (independent voltages) and outputs

{independent currents). The training set would take the form
S = {Hv(-tious sosamples iy 1 (Fop o Vg, o ;u,,,_g)} (3.19)

and the actual rvespouse of the neural network would provide #{w(t,,) corresponding
to cc("‘)(:n(m(z‘&,j)). Normally oue will apply the convention that the j-th element of »
refers to the same device or subcircuit terminal as the j-th elenent of © or &. Device
or subeirenit parameters for specifving geometry or temperature can be incorporated by

assigning additional neural network inputs to these parameters, as is showu in Appendix B.

Returning to onr original general notation of Eq. (3.18), we now define a time domain
error measure £y, for accumulating the errors mplied by the differences between actnal
and target outputs over all network outputs (represented by a difference vector), over all

tine points indexed by 75 . and over all sections s,

B EY Y e (w00 -) (3.20)

5

where the error function &,(+) is a function having a single, lience global, minimuw at the
point where its vector argument is zero-valued. Usually one will for semantical reasons

prefer a function & that fultills &,(0) = 0. although this is not strictly necessary.

FEy ds just the diserete-time version of the continuons-time cost funetion Cyy, often en-

countered in the literature:
JaN T N IN . o
Gy = Z / Ery (1’(\)(fﬁ‘) - 1»’5(1-5)) i, (3.21)
s 70

However, target waves of plysical systems can in practice rarely be specified by continn-
ous functions (even though their behaviour is continuous. one simply doesu’t know the
formula's that capture that behaviour), let alone that the integration could be perforimed

analytically, Therefore. Ey, is mueh more practical than .

In the literature on optimization, the scalar function &£, of a vector argument is often

simply half the sum of squares of the elements, or in terms of the inner product

L ‘2
Fulay = 25 = 3 5 (3.22)

3.1. TIME DOMAIN LEARNING 73

which fulfills &,(0) = 0.

In order to deal with small (exponentially decreasing or increasing) device currents, still
other modelling-specific definitions for &, may be used, based on a generalized form
Evr (m("’)(fs), ﬁ:s(ts))A These modelling-specific forms for &, will not be covered in this

thesis.

Some of the most efficient optimization schemes employ gradient information--partial
derivatives of an error function w.r.t. parameters—to speed up the search for a minimum
of a differentiable error function. The simplest—and also one of the poorest—of those
schemes is the popular steepest descent method®. Many variations on this theme exist,

like the addition of a momentum term, or line searches in a particular descent direction.

In the following, the use of steepest descent is described as a simple example case to
illustrate the principles of optimization, but its use is definitely not recommended, due to
its generally poor performance and its non-guaranteed convergence for a given learning
rate. An important aspect of the basic methods described in this thesis is that any general
optimization scheme can be used on top of the sensitivity calculations®. There exists a
vast. literature on optimization convergence properties, so we need not separately consider
that problem within our context. Any optimization scheme that is known to be convergent

will also be convergent in our neural network application.

Steepest descent is the basis of the popular ervor backpropagation method, and many
people still use it to train static feedforward neural networks. The motivation for its use
could be, apart from simplicity, that backpropagation with steepest descent can easily be
written as a set of Jocal rules, where each neuron only needs biaging information entering
in a forward pass through its input weights and error sensitivity information entering
in a backward pass through its output. However, for a software implementation on a
sequential computer, the strict locality of rules is entirely irrelevant, and even on a parallel
computer system one could with most optimization schemes still apply vectorization and

array processing to get major speed improvements.

Steepest descent would imply that the update vector for the network parameters is calcu-

lated from

. T
Ap = — (‘9;)“) (3.23)

where > 0 is called the learning rate. A so-called momentum term can simply be added

8Steepest descent is also known as gradient descent.
?See Appendix A for a brief discussion on several optimization methods.

T4 CHAPTER 3. DYNAMIC NEURAL NETWORIK LEARNING

to Eq. (3.23) by using

OB "
Apnc\w = - (Tf;—) + “Ap])rc’vlous (52’4)

where g > 0 is a paraweter coutrolling the persistence with which the learning scheine
proceeds in a previously used parameter update divection. Typical values for 4 and p
wsed in small static backpropagation neural networks with the logistic activation function
are y = 0.5 and g = 0.9, respectively. Unfortunately, the steepest descent schewe is not
scaling-invariant, so proper values for iy and y may strongly depend on the problem at hand.
This often results in either extremely slow convergence or in wild non-convergent paramcter
oscillations. The fact that we use the gradient w.r.t. parameters of a set of differential
equations with dynamic {electrical} variables in a system with jnternal state variables

implies that we actually perform transient sensitivity in terus of cireuit shuulation theory.

With (3.20), we find that

(E)E—U)l B ; !Z (axu\f(;s,u))"" (di‘);x))l

(3.25)

ap Jdp

= K, , Y-, .,

The first factor hias been obtained in the previous sections as the time-dependent transient
sensitivity matrix Dy, = Dy (t,;,). For &, defined in Eq. (3.22), the second factor in
Eq. (3.25) would become

deu(@\ " o W) .
(T) = W)~ (3.26)

e=EI, @

5.is

=1
ot

3.2. FREQUENCY DOMAIN LEARNING

3.2 Frequency Domain Learning

In this section we consider the small-signal response of dynamic feedforward neural net-
works in the frequency domain. The sensitivity of the frequency domain response for
changes in neural network parameters is derived. As insection 3.1 on time domain learning,
this forms the basis for neural network learning by means of gradient-based optimization
schemes. However, here we are dealing with learning in a frequency domain representation.

Frequency domain learning can be combined with time domain learning.

We conclude with a few remarks on the modelling of bias-dependent cut-off frequencies
and on the generality of a combined static (d¢) and small-signal frequency domain char-

acterization of behaviour.

3.2.1 AC Analysis & AC Sensitivity

Devices and subcircuits are often characterized in the frequency domain. Therefore, it
may prove worthwhile to provide facilities for optimizing for frequency domain data as
well. This is merely a matter of convenience and conciseness of representation, since a

time domain representation is already completely general.

Conventional small-signal ac analysis techniques neglect the distortion effects due to cir-
cuit nonlinearities. This means that under a single-frequency excitation, the circuit is
supposed to respond only with that same frequency. However, that assumption in general
only holds for linear(ized) circuits, for which responses for multiple frequencies then simply

follow from a linear superposition of results obtained for single frequencies.

The linearization of a nonlinear circuit will only yield the same behaviour as the original
circuit if the signals involved are vanishingly small. If not, the superposition principle no
longer holds. With input signals of nonvanishing amplitude, even a single input frequency
will normally generate more than one frequency in the circuit response: higher harmonics
of the input signal arise, with frequencies that are integer multiples of the input frequency.
Even subharmonics can occur, for example in a digital divider cireuit. If 4 nonlinear circuit
receives signals involving multiple input frequencies, then in principle all integer-weighted

combinations of these input frequencies will appear in the circuit response.

A full characterization in the frequency domain of nonlinear circuits is possible when the
(steady state) circult response is periodic, since the Fourier transformation is known to be
bijective.

On the other hand, in modelling applications, even under a single-frequency excitation, and

with a periodic circuit response, the storage and handling of a large—in principle infinite—

6 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

number of harmouies quickly becomes prohibitive. The typical user of neural modelling
software is also not likely to he able to supply all the data for a general frequency donain
chavacterization.

Therefore, a parameter sensitivity facility for a bias-dependent small-signal ac analysis is
probably the best compromise, by extending the general time domain characterization,
whicli does include distortion effects, with the concise smallsigual frequency domain char-
acterization: thus we need (simall-signal) ac sensitivity in the optimization procedures in

acldition to the transient sensitivity that was discussed before.

Small-signal ac analysis is often just called ac analysis for short.
g 3] 3

3.2.1.1 Neural Network AC Analysis

The small-signal ac analysis and the corvespouding ac sensitivity for gradient calculations
will now be described for the feedforward dynamic neural networks as defined in the
previous sections. First we return to the single-neuron differential equations (2.2) and

2.3}, which are repeated here for couvenience;

A2y dyik) o
ATk s Ooil) ﬁ + 11Tk T2ak) ({7; + oy = Flsa. o) (3.27)
Ny Nea dg e
Sk o= Wok Mot — Oa 9 ik 4—()“—7 (3.28)
= et

The time-dependent part of the signals through the neurons is snpposed to be (vauishingly)

sinall, and is represented as the sum of a constant (de) term and a (co)sinusoidal oscillation

sio= s+ Re (S;A-c“’”{) (3.29)
v =y + Re (qu’“") (3.30)

with frequency w and time ¢, and small magnitudes [Si|. |Yie| ¢ the phasors Si and
Y are complex-valued. (The capitalized notation Y should not be confused with the
admittance watrix that is often used in the physical or electrical modelling of devices
and subcireuits.) Substitution of Egs. {3.29} and (3.30) in Eq. (3.27), linearizing the
nonlinear function around the de solution, hence neglecting any higher order terims, and

then eliminating the de offsets using the de solution

de P de 3
g = Fs b (3.31)

3.2. FREQUENCY DOMAIN LEARNING i

yields

Re (—w’mo i Yiee™) 4+ Re (JuwmieYire™t) + Re (Ve =
(3.32)

Re (S,‘kefw't) N B%

s 6

Since Re(a) + Re(b) = Re(a + b) for any complex a and b, and also ARe(a) = Re(Aa) for

any real A, we obtain

Re (— wlmuYue™ + guraYuet + Yielf) =

(3.33)
“)

This equation must hold at all times t. For example, substituting t = 0 and ¢ = 55 (making

Re (.S'ike]ut N 865%

use of the fact that Re(ja) = —Im{a) for any complex a), and afterwards combining the

two resulting equations into one complex equation, we obtain the neuron ac equation
B , g g, . OF)
wir Yy + jwr Y + Yie = Si Tom o (3.34)

We can define the single-neuron transfer funciion

OF
Taty & Yal) _ T (3.35)
* Sip(w) 1+ jwrig — 2o ’

which characterizes the complex-valued ac small-signal response of an individual neuron to
its own net input. This should not be confused with the elements of the transfer matrices
H® a5 defined further on. The elements of H*) will characterize the output response
of a neuron in layer k& w.r.t. to a particular network input. Ty is therefore a “local”
transfer function. It should also be noted, that Ti could become infinite. For instance
with 714 = 0 and u}zTQ).;k = 1. This situation corresponds to the time domain differential

equation

2
T,k % + yirx = Flsin,) (3.36)
from which one finds that substitution of y;x = ¢+ acos(wt), with real-valued constants a
and ¢, and w7941 = 1, yields F(si, fik) = ¢, such that the time-varying part of sy must
be zero {(or vanishingly small); but then the ratio of the time-varying parts of yi and s
must be infinite, as was implied by the transfer function Tjz. The oscillatory behaviour in
yix has become self-sustaining, i.e., we have resonance. This possibility can be excluded by

using appropriate parameter functions 74 = 7101k, T2} and Tog = Te{014k . Taun)-

Kk} CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

As long as 7 4 # 0, we have a tenn that prevents division by zero through an imaginary

part in the denominator of T,y .

The ae relations describing the conuections to preceding layers will now be considered. and
will largely be presented i scalar form to keep thelr correspondence to the feedforward
uetworlk topology more visible, This is often useful, also in a software Lmplementation. to
keep track of how individual neurons contribute to the overall neural network behaviour.

For layer & > 1, we obtain from Eq. (3.28)

Nio
Sio= 3wk + pevige) Yieo (3.37)

J=1

since the ¢ ouly affect the de part of the hehaviour. Similarly, fron Eq. (2.4), for the

neuron layer & = 1 connected to the network input
< 0)
S = Z(“‘W + g i) Xj (3.3%)
i=1

with phasor ij] the complex j-th ac source amplitude at the network Input, as in

o= AP Re (N (3.39)

which in input vector notation obviously takes the form

2V = 04 4 e (X“”z»f*") (3.40)
The output of neurous in the output layer is of the form

vk =i+ Re (Vi) (3.41)

At the ontput of the network, we obtain from Eq. (2.5) the linear phasor scaling trans-

formation

L SRRR P L (3.42)

i

since the 4 only affect the de part of the behaviour. The uetwork output can also be
written in the form
N Kde (K)o a4
R = AR g Re (M) (3.43)

with its associated veetor notation

el = 2R g e (X0 (3.44)

3.2, FREQUENCY DOMAIN LEARNING 79

The small-signal response of the network to small-signal inputs can for a given bias and
frequency be characterized by a network transfer matriz H. The elements of this complex
matrix are related to the elements of the transfer matrix H*? for neurons i in the output

layer via
(H), = o (HP); (3.45)

When viewed on the network scale, the matrix H relates the network mput phasor vector

X 1o the network output phasor vector X () through
xW - g x©@ (3.46)

The complex matrix element (H);; can be obtained from a device or subcircuit by ob-
serving the i-th output while keeping all but the j-th input constant. In that case we have
(H); = XI(K)/XJ(D), i.e., the complex matrix element equals the ratio of the i-th output
phasor and the j-th input phasor.

Transfer matrix relations among subsequent layers are given by

N1
H®Y; = Ty S (W + Jwvias) (HED, (3.47)
n=1
where j still refers to one of the network inputs, and k = 1,---, K can be used if we define

a (dummy) network input transfer matrix via Kronecker delta’s as

2

(H,, = 6y (3.48)

The latter definition merely expresses how a network input depends on each of the network
inputs, and is introduced only to extend the use of Eq. (3.47) to k = 1. In Eq. (3.47), two
transfer stages can be distingnished: the weighted sum, without the Tjy, factor, represents
the transfer from outputs of neurons n in the preceding layer & — 1 to the net input S,
while Ty, represents the transfer factor from Sy to Yy, through the single neuron i in layer

k.
3.2.1.2 Neural Network AC Sensitivity

For learning or optimization purposes, we will need the partial derivatives of the ac neural
network response w.r.t. parameters, Le., ac sensitivity. From Eqgs. (3.34) and (3.35) we
have
IF
s

= (1 + T — szz,m) Tix (3.49)

de’
sgk) i

80 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

and differentiation w.r.t. any parameter p gives for any particular neuron

. iy il
PF D53y 4 L OF by _
i)s,-zk i, p 081 Dsir o) dp .
i dik BT {3.50)
‘ 9Ty, AT ine 2O N
(1 + T — u)zTg.;‘A-) —(ﬁ- + (ju)%]‘)l — wi_?f]?) T
from whiclh %;‘L can be obtained as
oTw | o2r sl RF Aoy
ap T ()},?k ’“h,]“' Z‘jp + Db ds i -s‘“:"'f\kl dp
Tk 2 O3
- (Jwﬁl% -’ —fpﬁ) Tik } (3.51)

/ { I+ wemw = wme }

Quite analogous to the transient sensitivity analysis section. it is here still indiscriminate
whether p resides in this particular neuron (layer &, neuron #) or in a preceding layer. Also.
particular choices for p must he macde to obtain explicit expressions for implementation: if
residing iu layer &, p Is one of the parameters &, @ig, wije. Yijn, 01 and oy g, usiug the
convention that the (neuron input) weight parameters wy;q, v 5, and threshold 6 belong
to layer k. since they are part of the definition of sy in Eq. {3.28). Therefore, if p resides

in a preceding layer, Eq. (3.51) simplifies to

O dsiy”
O P lins, Y

= 2 (3.52)

o 1+ jomige — Wi

The ac sensitivity treatment of connections to preceding layers runs as follows. For layer
ko> 1, we obtain frows Eq. (3.37)
Wy

dS; oy (l“'uk (ll_/;\- a3y, k-1
= 1 o —E] Yy 4+ (e b gw) 22— 3.53
= 3 (e T Vi o e) T)

and siinilarly, from Eq. (3.32), for the neuron layer & = I counected to the network input

s No
45,1 duegj dvia Y (0
TN £ AL R 3.54
ap 71(dp t dp) 7 (3:54)

. (0} - .) . .
sinee ‘\E Vig an independent complex j-th ac source amplitude at the network input.

3.2. FREQUENCY DOMAIN LEARNING 81

For the output of the network, we obtain from Eq. (3.42)

axH® day Y.y
= "2y, A
ap dp i ooy ap

(3.55)

In terms of transfer matrices, we obtain from Eq. (3.45), by differentiating w.r.t. p

AH)y _ doy oo, SHT),,
— HY, P L 3 3.56
op d])(i o op (3.56)
and from Eq. (3.47)
AHM), oy, " i}
(T))J = a_pk ;(wink + jw“ink) (H(k U)"j
Ny
dwink dvink {k—1)
+ T Z (= +]W_) (H)n,]
n=1 dp dp
AHE, R
+ (Wink + Juink) OHT D ap Jnj (3.57)
for k=1, -, Ix, with
)y .
M =0 (3.58)
dp

from differentiation of Eq. (3.48). It is worth noting, that for parameters p residing in
the preceding (k — 1)-th layer, 8(H(k'1)),,j/8p will be nonzero only if p belongs to the
n-th neuron in that layer. However, 8T, /8p is generally nonzero for any parameter of
any neuron in the (& — 1)-th layer that affects the dc solution, from the second derivatives
w.r.t. s in Eq. (3.50).

3.2.2 Frequency Domain Neural Network Learning

We can describe an ac training set S, for the network as a collection of tuples. Transfer
matrix “curves” can be specified as a function of frequency f (with w = 27 f) for a number
of de bias conditions b characterized by network inputs wgu). Each tuple of 8, contains for
some bias condition b an iy-th discrete frequency fp;,, and for that frequency the target

transfer matrix!'® I:Ib,z,,, where the subsecripts b, i refer to the ¢,-th frequency point for bias

"OFor practical purposes in optimization, one could in a software implementation interpret any zero-
valued matrix elements in H,;, either as (desired) zero outcomes, or, alternatively, as don't-cares if one
wishes to avoid introducing separate syntax or symbols for don’t cares. The don’t care interpretation
can—as an option—be very useful if it is not feasible for the user to provide all transfer matrix elements.
for instance if it is considered to be too laborious to measure all matrix elements. In that case one will
want to leave some matrix elements outside the optimization procedures.

%2 CHAPTER 3. DYNAMIC NEURAL NETWQORK LEARNING

concition b, Therefore, S, can be written as

i

w = {bi'«lh‘ b with de input w,&tj).samples ih ot (o, s I:Ig,‘,h)} (3.59)

Analogons to the treatment of transient sensitivity, wo will define a 3-cdbueunsional ac
B)
sensttivity tensor Do, which depends on de bias and on frequency, Assembling all network
parameters iito a single vector p. one may write
LA UH(fh.:,) g
D}L('(fl‘lj[,) = N - (3.60)
idp

which will be used in optimization schemes. Each of the complex-valued sensitivity tensors
Do Joi,) can be viewed as (sliced into) a sequence of derivative matrices, cach derivative
matrix consisting of the derivative of the transfer matrix H w.r.t. oune particular (sealar)

parameter p. The elements %ﬁ of these matrices follow from Eq. (3.56).

We still mnst define an ervor fuwcetion for ace, thereby enabling the use of gradient-hased
optimization schemes like steepest descent. or the Fletcher-Reeves ad Polak-Ribiere con-
Jugate gradient optimization methods [16]. Tf we follow the same lines of thought and
similar notations as used in xection 3.1.3. we may define a frequency domain error meas-
ure By for accumulating the errors implied by the differences hetween actnal and target
trausfer matrix (represented by a difference matrix), over all frequencies indexed by 7, and

over all bias conditions b (for which the network was linearized). This gives

3 (H(fr,w,,,) ~H,,) (3.61)

!) i b

By avalogy with &, in Eqg. (3.22), we could choose a sun-ol-squares form. now extended

to complex matrices A via

M

Al
Zi k‘
hd

o

_ <R(\<(A1km2 * (Im((AJmF (3.62)

=~

which is just half the sum of the squares of the amplitudes of all the complex-valued matrix
elements. From the last expression in Eq. (3.62) it is also clear. that credit (debit) for

{(in)correct phase mformation is explicitly present in the definition of £... The derivative

3.2 FREQUENCY DOMAIN LEARNING 83

of £, wor.t. the real-valued parameter vector p is given by

05“ HA (A, 2 e
Z [Re } Re (—(%) + Im ((A)ey) Im((ap)“)] (3.63)
With A = H{fy,,) _Hb,tb we see that the B(QIBW — G(H(gl;:b))k'l are the elements of the

bias and frequency dependent ac sensitivity tensor Dac = Dac{ fo;,) obtained in Eq. (3.60).
So Egs. (3.62) and (3.63) can be evaluated from the earlier expressions.

For E,. in Eq. (3.61) we simply have

e ((foi,) = I:Ib.i,,)

A Z Z p (3.64)

Once we have defined scalar functions £, and E,., we may apply any general gradient-
based optimization scheme on top of the available data. To illustrate the similarity with
the earlier treatment of time domain neural network learning, we can immediately write

down the expression for ac-optimization by steepest descent with a momentum term

DB T
APy = =7 (a;c) + :U'App:'cvious (3.65)

Of course, one can easily combine time domain optimization with frequency domain op-

timization, for instance by minimizing Ay Fy, + Az F,c through

aEtr T 8Eac T
A = - A
Prew 1 |:/\1 (ap) + A (ap)

where A; and Ag are constants for arbitrarily setting the relative weights of time domain

+ PApprevious (366)

and frequency domain optimization. Their values may be set during a pre-processing phase
applied to the time domain and frequency domaln target data. An assoclated training set
S is constructed by the union of the sets in Eqs. (3.18) and (3.59) as in

S = SuUSa (3.67)

The transient analysis and small-signal ac analysis are based upon exactly the sanie set of
neural network differential equations. This makes the transient analysis and small-signal
ac analysis mutually consistent to the extent to which we may neglect the time domain
errors caused by the approximative numerical differentiation of network input signals and
the accumulating local truncation errors due to the approximative numerical integration
methods. However, w.r.t. time domain optimization and frequency domain optimization,

we usually have cost functions and target data that are defined independently for both

34 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

domaing, such that a mininnn of the time domain cost function F need not coincide
with a minhunm of the frequency domain cost function E,e. even if transient analysis and

small-gignal ac analysis are perforimed without introducing numerical errors.

3.2.3 Example of AC Response of a Single-Neuron Neural Network

As an illustration of the frequency domain hehaviour of a neural network, we will caleulate
and plot the transter matrix for the simplest possible network, a 1-1 network consisting
of just a single neuron with a single iuput. Using a linear function F(s;p) = ;. which
could also he viewed as the linearized hehaviour of a nonlinear F{s;;.). we fine that the
1 x 1 “matrix” HV iy given by

@+ g

HN = H{w) = o (3.68)

I+ jwr — Tg-buz
This expression for HN is obtained from the application of Eqs. (3.35), (3.45). (3.47)
and (3.48). For this very simple example. one could alteruatively obtain the expression
for HYY =y inspection” directly from Eqs. (2.2), (2.4) and (2.5).

We may set the pataneters for an overdamped netron, as discussed in section 2.3.1, with
Q = 0.4 and wy = 1010 vad/s, such that 7 = 1/{we@) = 2.5 1079 and r, = 1/uf =
107262 and use ¢ = 1, wr = 1, and » = 107", Fig. 3.1 shows the complex-valued transfer
Hiw) for this choice of parameters in a 3-dimensional parametric plot. Also shown are the
projections of the real aud imaginary parts of H{w) onto the sides of the surrcunding hox.

Fig. 3.2 shows the real and imaginary parts of H{w), as well as the magnitude |H{w)|.

It is clear from these figures that H{w) has a vanishing hnaginary part for very low
frequeneies. while the transfor magnitude |H(w)| vanishes for very high frequencies due
to the nonzero 7. |H{w)| here peaks!! in the neighbourhood of wy. The fact that at low
frequencies the imaginary part ncreases with frequency is typical for quasistatic models
of 2-termiual devices. However, with quasistatic wodels the imaginary part would keep

inereasing up to infinite frequencies, which would be unrealistic.

3.2.4 On the Modelling of Bias-Dependent Cut-Off Frequencies

Another iinportant observation is that for a single nenron the eigenvalues, and hence the
eigenfrequencies and ent-off frequencies, are bias-independent. In general. a device or

subcirenit may have small-signal eigenfrequencies that are hias depeunclent.

lhis kind of peal should not he confused with the near-resanance peals arising from €@ 3 %
those shown t Fig. 2.8 for € = 2 and) = 4. Here we have Q = 0.4 < % but the additional contribution

g in ke (3.68) now canses [{(w)] to Increase with frequency at low frequencies.

like

3.2. FREQUENCY DOMAIN LEARNING 85

Im(H)

logiomega)

5c.10-10 .,
Figure 3.1: Single-neuron network with H(w) = i }()tl"ﬂ‘?jjo_ 10’_“2}0 -

log(omega
T3 g(ga)

Figure 3.2: Re (H(w)) (dotted), Im {H(w)) (dashed), and |H(w)| (solid).

86 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

Nevertheless, a network constructed of neurons as described by Egs. (2.2) and (2.3) can
still overcome this apparent Hinitation, because the transfer of signals to the network
output is hias dependent: the derivative w.r.t. s of the neuren input nonlinearity 7,
varies, with bias, within the range [0.1]. The small-signal transfer througl the neuron

can therefore be controlled by the input bias s, By gradually switching neurons with

different elgenfrequencies on or off through the nonlinearity, one cau still approximate the
belaviour of a device or subeircnit with bias-dependent eigenfrequencies. For instance. in
waodelling the bias-dependent cut-off frequency of bipolar transistors. which varies typically
by a factor of about two withiu the relevant range of controlling collector currents, one
can get very similar shifts in the effective cut-off frequency by calculating a bias-weighted
combination of two (or more) bias-independent frequency transfer curves, having different.
but constant, cut-off frequencies. This approach works as long as the range in cut-off
frequencies is not too large; e.g., with the cut-off frequencies differing by no more than
a factor of about two in a hias-welghted combination of two Dias-independent frequency
transfer curves. Otherwise. a kind of step {intermediate level) is observed i the frequency

transfer curves!?.

As a concrete llustration of this point, one may consider the similarity of the transfer

curves

Hi(w.) = (3.69)
which represents an r-bias dependent first order ent-off frequency, aud
i3 1—u
Holw.o) = — (3.70)

-
T+l L+os

in which two curves with coustaut cut-off frequencies are weighted by Dias-dependent

factors. In a log-log plot, with & in [0,1]. and we/w) = 2, this gives results like those

1}. The continuous curves for |H | are similar to

shown in Fig. 3.3, for & € {0, 7 —i
the dashed curves for |Hy|. A Detter match can, when needed. he obtained by a more
complicated weighting of transfer enrves. Results for the phase shift, shown in Fig. 3.4,
are also rather shwilar for hoth cases. Consequently, there is still no real need to make
714k aldfor 7 dependent on s, which would otherwise increase the computational
complexity of the sensitivity calculations. However, it s worthwhile to note that the left-
hand side of Eq. (2.2) would even then give a linear homogeneous differential equation in
Yiks 90 we could still use the analytic results obtained in section 2.3.1 with the parameters

Ty and 1y replaced by functions 7 (s5) and 72,0 (si). respectively. If paramceter

12 T . . . A
However, one can extend the applicability of the procedure by using a hias-weighted combination of
more than two bias-independent requency transfer curves

3.2. FREQUENCY DOMAIN LEARNING 87

20 log |H|

L . 1 3 log(omega)

=10 ¢

—15 |

=20 F

Figure 3.3: 20log{|H;(log w,z)|) (continuous} and 20log(|Ho(logw,)|) {dashed).

Phase(H)

log(onega)

7.5 3 3.5 i

Figure 3.4: £/ Hq(logw,z) (continuous) and £ Hy(logw, x) (dashed), in degrees.

38 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

functions 7 (&1 . Fa.) and 72(oy . T2) were used. the same would apply with the

parameters oy i, and oy replaced by functions oy (s) and au (s), respectively.

3.2.5 On the Generality of AC/DC Characterization

The question could be raised. how general a small-signal frequency domain characteriza-
tion can be, in combination with de¢ data, when compared to a large-signal time domain
characterization. This is a fundamental issue, relating to the kind of data that is necded to
fully eharacterize a device or subeireuit, indiseriminate of any linitations in a subsequent Ly
applicd modelling scheme, aud Indiscriminate of limitations in the amount of data thar

can be acguired in practice,

One could argue. that in a combined ac/de characterization, the wultiple hias potuts used
in determining the de behaviour and in setting the lincarization points for sinall-signal ac
belaviour. together provide the generality to capture hoth nonlinear and dynamic effects.
If the nmunber of bias poiuts and the number of frequency points were sufficiently large,
one might cxpect that the full hehavdour of any device or subeirenit can he represented up
to arbitrary accuracy. The mnltiple bias conditions would theu account for the nonlinear

effects, while the multiple frequencies wounld account for the dynamic effects.
Intuitively appealing as this argument may seem, it is not valid. This ix most casily
seen by means of a counterexample. For this purpose, we will once again consider the

peak detector cirenit that was discussed for other reasons in section 2.6, The cireuit
}

consists of a linear capacitor in serics with a purely resistive diode, the latter acting as
a nonlinear resistor with a monotonic current-voltage chavacteristic. The voltage on the
shared nade between diode and capacitor follows the one-sided peaks in a voltage source

across the series counection, The diode in this case represents the nonlinearity of the

cirenit, while the series conuection of a capacitor and a (nonlinear) resistor will lead to
a non-guasistatic response. However, when performing de and (small-signal) ac analyses,
or de and ac measurcwents, the steady state operating point will always be the one with
the full applicd voltage across the capacitor, and a zero voltage across the diode. This is
because the de cwrrent throngh a capacitor is zero, while this current s “supplied™ by the
diode which has zero current ouly at zero blas. Consequently, whatever de hias is applied
to the circuit, the de and ac hehaviour will remain exactly the same. being completely

insensitive to the overall shape of the monotonic nonlinear diode characteristic -only

the slope of the cwrrent-voltage characteristic at (and through) the origin plays a role.
Obviously, the overall shape of the noulinear diode characteristic would affect the large-

signal time domain behaviour of the peak detector circuit.

Apparently. we here have an example in which one can supply any amount of e and

3.3. OPTIONAL GUARANTEES FOR DC MONOTONICITY 89

(small-signal) ac data without capturing the full behaviour exhibited by the circuit with

signals of nonvanishing amplitude in the time domain.

3.3 Optional Guarantees for DC Monotonicity

This section shows how feedforward neural networks can be guaranteed to preserve mono-
tonicity in their multidimensional static behaviour, by imposing constraints upon the

values of some of the neural network parameters.

The multidimensional dc current characteristics of devices like MOSFETs and bipolar
transistors are often monotonic in an appropriately selected voltage coordinate system'®.
Preservation of monotonicity in the CAD models for these devices is very important to
avoid creating additional spurious circuit solutions to the equations obtained from the
Kirchhoff current law. However, transistor characteristics are typically also very nonlinear,
at least in some of their operating regions, and it turns out to be extremely hard to obtain

a model that is both accurate, smooth, and monotonic.

Table modelling schemes using tensor products of B-splines do guarantee monotonicity
preservation when using a set of monotonic B-spline coefficients [11, 39], but they can-
not accurately describe—with acceptable storage efficiency—the highly nonlinear parts of
multidimensional characteristics. Other table modelling schemes allow for accurate mod-
elling of highly nonlinear characteristics, often preserving monotonicity, but generally not
guaranteeing it. In [39], two such schemes were presented, but guarantees for monotonicity
preservation could only be provided when simultaneously giving up on the capability to
efficiently model highly nonlinear characteristics.

In this thesis, we have developed a neural network approach that allows for highty nonlinear
modelling, due to the choice of F in Eq. (2.6), Eq. (2.7) or Eq. (2.16), while giving infinitely
smooth results—in the sense of being infinitely differentiable. Now one could ask whether
it is possible to include guarantees for monotonicity preservation without giving up the

nonlinearity and smoothness properties. We will show that this is indeed possible, at least

131n this thesis, a multidimensional function is considered monotonic if it is monotonic as a function of
any one of its controlling variables, keeping the remaining variables at any set of fixed values. See also
reference [39). The fact that monotonicity will generally be coupled to a particular coordinate system can
be seen from the example of a function that is monoctonically increasing in one variable and monotonically
decreasing in another variable, Then there will for any given set of coordinate values (a particular point)
be a direction, defined by a linear combination of these two variables, for which the partial derivative of
the function in that new direction is zero. However, at other points the partial derivative in that same
direction will normally be nonzere, or else one would have a very special function that is constant in
that direction. The nonzero values may be positive at one point and negative at another point even with
points lying en a single line in the combination direction, thereby causing nonmonotonic behaviour in the
combination direction in spite of monotonicity in the original directions.

90 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

to a certain extent '

Recalling that each of the F in Eqs. (2.6), (2.7) and (2.16) is already kuown to be monoton-
ically increasing in its non-constant argument s;z, we will address the necessary constraints
on the parameters of s, as defined in Eq. (2.3), given ounly the fact that F is wonoton-
ically increasing in s,. To this purpose, we make use of the knowledge that the sum
of two or more (strictly) monotonically increasing {decreasing) 1-dimensional funetions is
also (strictly) monotonically increasing (decreasing). This does generally not apply to the

difference of such fuictions.

Througlout a feedforward nenral network, the weights intermix the contributions of the
network inputs. Fach of the network inputs contributes to alf outputs of neurons in the
first. hidden layer £ = 1. Each of these outputs in turn contributes to all outputs of
neurons in the second hidden layer & = 2, cte. The consequence is, that any given network
mput contributes to any particular neuron through all weights directly associated with

that neuron, but also through all weights of all neurons in preceding layoers.

In order to guarantee network de monotonicity, the number of sign changes by de weights
w; g must be the same through all paths from any one network input to any one network
output!®. This implies that between hidden (non-input, non-output) layers, all intercon-
necting w,;, must have the sawe sign. For the output layer one can afford the freedom to
have the same sign for all w,, ;v connecting to one output neuron, while this sign may dif-
fer for different output neurons. However, this does not provide any advantage, since the
same flexibility is already provided by the output scaling in Eq. (2.5): the sign of o; can
set {switch) the monotonicity “orientation” {i.e.. increasing or decreasing) independently
for each network output. The same kind of sign freedom- saime sign for one nenron, but
different signs for different neurons is allowed for the wiy) connecting the network inputs
to layer & = 1. Here the choice makes a real difference, hecause there is no additional
linear scaling of network inputs like there is with network outputs. However, it is hard
to decide upon appropriate signs through continuous optimization, because it concerns a
discrete choice. Therefore, the following algorithm will allow the use of optimization for

positive uyjy, only, by a simple pre- and postprocessing of the target data.

" Adding constraints to mathematically guarantee some property will usually reduce for a given
complexity ihe expressive power of a modelling scheme, so we must still remain careful about possible
detrimental eflects in practice; we might have lost the ability to represent arbitrary monotonic nonlinear
multidimensional static behaviour.

Y he dy thresholds do not affect monotonicity, nor do the 3; offsets in the network output scaling.

3.3. OPTIONAL GUARANTEES FOR DC MONOTONICITY 91

The algorithm involves four main steps:

1. Select one output neuron, e.g., the first, which will determine the monotonicity
crientation!® of the network.
Optionally verify that the target output of the selected neuron is mdeed mono-
tonic with each of the network inputs, according to the user-specified, or data-
derived, monotonicity orientation. The target data for the other network out-
puts should—up to a collective sign change for each individual output—have

the same monotonicity orientation.

2. Add a sign change to the network inputs if the target output for the selected
network output is decreasing with that input. All target outputs are assumed to
be monotonic in the network inputs. Corresponding sign changes are required in
any target transfer matrices specified in the training set, because the elements

of the transfer matrices are (phasor) ratio’s of network outputs and inputs.

3. Optimize the network for positive wi; everywhere in the network. Just as
with the earlier treatment to ensure positive timing parameters, one may apply

unconstrained optimizafion with network models that contain only the square

roots u of the weights w as the learning parameters, i.e., wij = ufjk. and for
instance
Ne—y N1
A 5 dy;k—1 ~
sik = 3w Wik—1 — B+ 2 vik 0 (3.711)
i=1 =1

replacing Eq. (2.3). The sensitivity equations derived before need to be modified
correspondingly, but the details of that procedure are omitted here.

4. Finally apply sign changes to all the w;;; that connect layer & = 1 to the
network inputs of which the sign was reversed in step 2, thus compensating for

the temporary input sign changes.

The choice made in the first step severely restricts the possible monotonicity orientations
for the other network outputs: they have either exactly the same orientation (if their «;
have the same sign as the «; of the selected output neuron), or exactly the reverse (for a;
of opposite sign). This means, for example, that if the selected output is monotonically
increasing as a function of two inputs, it will be impossible to have another output which
increases with one input and decreases with the other: that output will either have to

increase or to decrease with both inputs.

"$With the monotonicity orientation of a network we here mean the No bits of information telling for the
selected network output whether the target data is increasing or decreasing with any particular network
input. For instance, a string “+ — —" could be used to denote the monotonicity orientation for a 3-input
network: it would mean that the target data for the selected network output increases with the first
network input and decreases with the two other network inputs.

92 CHAPTER 3. DYNAMIC NEURAL NETWORK LEARNING

If this is a problem, one can resort to using different networks to separately model the
incompatible outputs. However, in trausistor modelling this problem may often he avoided,
because these are gated devices with a main current entering one device terminal, and with
the approximate reverse current entering another terminal to obey the Kirchhoff current
law. The small current of the controlling terminal will generally not affect the monotonicity
orientation of any of the main currents, and need also not he modelled because modelling
the two main currents suffices (again due to the Kirchhoff law), at least for a 3-terminal
device. One example is the MOSFET, where the drain current [y increases with voltages
Vi and Vi, while the source current I decreages with these voltages. Another example
is the bipolar transistor, where the collector current I increases with voltages Vi and Vi,

while the emitter curremt [, decreases with these voltages'”,

'""I'he choice of a proper coordinate system here still plays an important role. For instance, it turns
out that with a bipolar transistor the collector current increases bul the base current decreases with
increasing Vi and a fixed Vie: the collector current itself is monotonically increasing in both Vi and Vie
under normal operating conditions, so this particular choice of (V.. Vi.) coordinates indeed causes the
monotonicity problem outlined in the mmin text.

Chapter 4

Results

4.1 Experimental Software

This chapter describes some aspects of an ANSI C software implementation of the learn-
ing methods as described in the preceding chapters. The experimental software imple-
mentation, presently measuring some 25000 lines of source code, runs on Apollo/HP425T
workstations using GPR graphics, on PC’s using MS-Windows 95 and on HP9000/735
systems using XWindows graphics. The software is capable of simultaneously simulating
and optimizing an arbitrary number of dynamic feedforward neural networks i time and
frequency domain. These neural networks can have any number of inputs and outputs,

and any number of layers.

4.1.1 On the Use of Scaling Techniques

Scaling is used to make optimization insensitive to units of training data, by applying
a linear transformation—often just an inner product with a vector of scaling factors—to
the inputs and outputs of the network, the internal network parameters and the training
data. By using scaling, it no longer makes any difference to the software whether, say,
input voltages were specified in megavolts or millivolts, or output currents in kiloampeéres

or microamperes.

Some optimization techniques are invariant to scaling, but many of them—e.g., steepest
descent—are not. Therefore, the safest way to deal in general with this potential hazard
is to always scale the network inputs and outputs to a preferred range: one then no longer
needs to bother whether an optimization technique is entirely scale invariant (including
its heuristic extensions and adaptations). Because this scaling only involves a simple pre-
and postprocessing, the computational overhead is generally negligible. Scaling, to bring

numbers closer to 1, also helps to prevent or alleviate additional numerical problems like

94 CHAPTER 4. RESULTS

the logs of significant digits, as well as floating point underflow and overflow.

For de and transient, the following scaling and ungcaling rules apply to the i-th network

input awd the mi-th network output:

o A nultiplicative scaling «,. <uring preprocessing, of the network input values in the
training data, is undone in the postprocessing (after optimization) by multiplying
the weight paraweters ey and v (Le., only in network layer & = 1) by this same
network input value data scaling factor. Essentially, one afterwards inereases the
sensitivity of the network mput stage with the same measure by which the training

imput values had been artificially amplified before training was started.

Shwilarly, a multiplicative scaling ¢, of the network target output values, also per-
formed during preprocessing, is undone in the postprocessing by dividing the c,,-
and fy,-values for the network output layer by the target data scaling factor used in

the preprocessing.

The scaling of transient time points by a factor 7., during preprocessing, is undone
in the postprocessivg by dividing the vy - and 7y ;-values of all neurons by the time
points scaling factor 7, nsed in the preprocessing. All 7 -values are divided by
the square of this factor, hecause they are the coefficients of the second derivative

w.r.t. time in the neuron differential equations of the form (2.2).

A translation scaling by an amount b; may be applied to shift the input data to

positions near the ovigin.

If we uge for the network nput (@ an input shift —b,, followed by a multiplicative scaling «;.
and if we use a multiplicative scaling ¢, for network output m, and apply a time scaling

Ton, we can write the scaling of traiuing data and network parameters as

f.s',i, — Tun [s,(.

0 Q)
(mi,il)? — ((xi”{)r - b:)

(ia.u)m Oy (ﬁ:.s,r,}m

No
Br\l — yr',l 720] Wil
Jj—=1
Wi
wijy e
“j

Yipy

Uik 0 Tun Yok

Tk = Tun Tlik

4.1. EXPERIMENTAL SOFTWARE 95

2
T2k T Tan T2k
Gy — O Oy

Bm — Cm Pm (4.1)

and the corresponding unscaling as

b e L
Trem
(0)
T,0h
@), — =y,
s Py
(Goidm — (54,)m
ERRY
Cm

Wil @ Wi

Ng
Bi1 — it > by wiin

=1

Vijy o = &y Vi
ik

Mk e Zuk
Tan
T1,ik

Tk — —
Tnn
72,1k

Trik < 3
Tan
Qo

(b — —
Cm

B = 2 (4.2)
C"’L

The treatment of ac scaling runs along rather similar lines, by translating the ac scalings
into their corresponding time domain scalings, and vice versa. The inverse of a frequency
scaling is in fact a time scaling. The scaling of ac frequency points, during preprocessing,
is therefore also undone in the postprocessing by dividing the v - and 7 -values of
all neurons by this corresponding time scaling factor 7,,, determined and used in the

preprocessing. Again, all 75 ;z-values are divided by the square of this time scaling factor.

The scaling of target transfer matrix elements refers to phasor ratio’s of network target
outputs and network inputs. Multiplying alt the w;; 1 and v, by a single constant would
not affect the elements of the neural network transfer matrices if all the o, and &, were
divided by that same constant. Therefore, a separate network input and target output
scaling cannot be uniquely determined, but may simply be taken from the dc and transient
training data. Hence, these transfer matrix elements are during pre-processing scaled by
the target scaling factor divided by the input scaling factor, as determined for de and

transient. For multiple-input-multiple-output networks, this implies the use of a scaling

96 CHAPTER 4. RESULTS

nmatrix with elements comiug frowm all possible combinatious of network inputs and network

outputs.

: . : 8 . - 0) . :
The scaling of frequency domain data for de hias conditions Ti . can therefore be written
as

(1'(9(,]{1)' - ((w:()/))e - b,)

ffr.:b — Ltb_{e'
Tun

Crnr
tu'..) = —{H
e {t;

and the corresponding uuscaling as

u) (L.3)

(0)
x)
@y, el
5.0
R iy
.fb\u, = Tun fl:.u,
. It .
(Hb,n.) = T (Hb.,,,) (4.4)
ne Cin e

This discussion on scaliug is cortaiuly not complete, since one can also apply scaling to,
for instance, the error functions, while such a scaling may in principle he differeut for
each network output item. It would lead too far, however, to go into all the intricacies
and pitfalls of Input and output scaling for nondinear dynamic systerns. Many of these
matters are preseutly still under investigation, because they can have a profound effect on

the learning performance.

4.1.2 Nonlinear Constraints on Dynamic Behaviour

Although the neural modelling techniques form a kind of black-box approach, inclusion
of general a priori knowledge about the field of application in the form of parameter
constraints can increase the performance of optimization techniques in several respects.
It may lead to fewer optimization iterations, and it may reduce the probability of getting
stuck at a local minimuwmn with & poor fit to the target data. Oun the other hand, constraints
should not be too strict, but rather “encourage” the optimization techniques to find what

we consider *reasonable” network behaviour, by making it more difficult to obtain “exotic”

behaviour.

The neuron timing parameters 7y i and g should remain non-negative, such that the
neural network outcomes will not, for instance, continue to grow indefinitely with time. If
there are good reasons to assume that a device will not behave as a near-resonant circuit.

the value of the neuron gunality factors may be bounded by means of constraints. Without
1] Y A

4.1. EXPERIMENTAL SOFTWARE

taul

sigma2

Figure 4.1: Parameter function (o ik, o2.4) for Qmax =1 and ¢g = 1.

sigma2

Figure 4.2: Parameter function ma(01 44, 09.5) for Qmaxy =1 and ¢g = 1.

03 CHAPTER 4. RESULTS

such constraints. a neural network may try to approximate, i.e. learn, the behaviour cor-

responding to a band-pass filter characteristic by first growing large but narrow resonance

peaks’. This can uickly vield a erude approximation witl: peaks at the right positious.
It resonant behaviour is qualitatively different fron: the behaviour of a hawd-pass filter,
where the height and width of a peal in the frequency transfer curve can be set ndepend-
ently by an appropriate choice of parameters. Resonant behaviour correspouds to small
710 values, hut band-pass filter heliaviour corresponds to the subsequent dominauce, with
growing frequency, of terms involving vy, 7 g and 7y, respectively. This means that a
first ¢uick approximation with resonance peaks must subsequently be “unlearned” to find
a hand-pass type of representation., at the expense of additional optimization iterations if
tlie neural network is not in the mean time already caught at a local minimum of the ervor

funetion.

It ig worth noting that the computational burden of calenlating 7's from o's aud o's from
s, 1% generally uegligible even for rather complicated transformations. The reason is.
that the actual ac, de and transient sensitivity caleulations can, for the whole training set,
be based on using ouly the 7's instead of the o's. The 7's and o's need to be updated only
once per optimization iteration. and the required sensitivity information w.r.t. the o' s
only at that iustant calenlated via evaluation of the partial derivatives of the paraimeter

functions 7 {7y . T200) and (T ke Tk)

4.1.2.1 Scheme for 7 ;.75 > 0 and bounded 7 ;.

The timing parameter 7y, can be expressed 1o terms of 7y and the quality factor
by rewriting BEa. (2.22) as e = (714 Q)% while a bounded @ may be obtained by
multiplying a default, or user-specified, maximum quality factor (uax by the logistic

function £{o) ;1) as in

Qo) = uax LloLi)

such that 0 < Qo)) < Quax Tor all real-valued oy ;. When using an initial value

a1 = 0, this would correspond to an initial quality factor @ = :E Quax -

Aunother point to be cousidered, 1s what kind of hehaviowr we expect at the frequency
corresponding to the time scaling by 7,,. This time scaling should be cliosen in sueh a way.
that the major thne coustants of the neural network come into play at a scaled frequency
ws 22 1. Also, the network sealing shonld preferably be such, that a good approximation to
the target data is obtained withhnany of the scaled parameter values in the neighbourhoo«

of 1. Furthermmore, for these parameter values. and at w,. the “typical” influence of

'This phenomenon las been observed i1 experiments with the experimental soltware implementation.

4.1. EXPERIMENTAL SOFTWARE 99

the parameters on the network behaviour should neither be completely negligible nor
highly dominant. If they are too dominant, we apparently have a Jarge number of other
network parameters that do not play a significant role, which means that, during network
evaluation, much computational effort is wasted on expressions that do not contribute
much to accuracy. Vice versa, if their influence is negligible, computational effort is
wasted on expressions containing these redundant parameters. The degrees of freedom
provided by the network parameters are best exploited, when each network parameter
plays a meaningful or significant role. Even if this ideal situation is never reached, it
still is an important gualitative observation that can help to obtain a reasonably efficient

neural model.

For w = ws = 1, the denominator of the neuron transfer function in Eq. (3.35) equals
1 + ymax — 725 . The dominance of the second and third term may. for this special
frequency, be bounded by requiring that 7, + 7o < ¢q, with cg a positive real
constant, having a default value that is not much larger than 1. Substitution of 7y =
(r1.4x @)% and allowing only positive 7, values, leads to the equivalent requirement
0 < 7 < 2¢4 /(1 + /1T + 4cgQ?). This requirement may be fulfilled by using the

logistic function L(o2) in the following expression for the 7 parameter function

2¢q)
ok s o248) = Llowa) = {4.6)
I+ \/1 + dea(Q(o1)
and 79 ;. is then obtained from the 7 parameter function
o1+ O2a) = [Ti{onim . o2a) Qo)) (4.7)

The shapes of the parameter functions m1(oy i , G2,i) and (o1, o24x) are illustrated

in Figs. 4.1 and 4.2, using Qmax =1 and ¢g = 1.

We deliberately did not make use of the value of wy, as defined in (2.21), to construct
relevant constraints. For large values of the quality factor (@ 5> 1), wp would indeed be the
angular frequency at which the denominator of the neuron transfer function in Eq. {3.35)
starts to deviate significantly from 1, for values of 7| ;1 and 73 4 in the neighbourhood of
1. because the complex-valued term with 71 4 can in that case be neglected. This becomes
immediately apparent if we rewrite the denominator from Eq. (3.35), using Eqgs. (2.21) and
{2.22), in the form I + 3 (1/Q)(w/wo) — (w/we)?. However, for small values of the quality
factor (@ <« 1), the term with 7, in the denominator of Eq. (3.35) clearly becomes
significant at angular frequencies lying far below wp—mnamely by a factor on the order of
the quality factor Q.

Near-resonant behaviour is relatively uncommon for semiconductor devices at normal op-

erating frequencies, although with high-frequency discrete devices it can occur due to the

100 CHAPTER 4. RESULTS

packaging. The inductance of bounding wires can, together with parasitic capacitances,
forin linear subciveuits with high quality factors. Usnally. some a priori knowledge is
available about the device or subcireuit to be modelled. thereby allowing an educated
gness for Quax. If one preseribes too small a value for Quuay. oue will discover this

apart from a poor fit to the target data—specifically from the large values for o) that
arise from the optimizatiorn. When this happens, an effective and eflicient conntermeasure
s to continue the optimization with a larger value of Quae. The continuation ecan be
done without disrupting the optimization results obtained thus far, by recaleulating the
a values from the latest 7 values, given the new--larger value of Quux. For this reason,
the above parameter functions 7 (e . 7240) and molo . 72,) were also desigued to he
explicitly smawertible functions for values of 71 and 7y, that meet the above constraints
involving €., and ¢y This means that we can write down explicit expressions for o) =

T { Ty ks Toak) and @y g = a7 iy 724). These expressions are given by

714 Cnax

/T2 ik

o (T Tak) = —In

and

2¢4

a1+ J1+dQ?)

with € calculated from Q = T/ Tk -

{+.9)

o Tk s Teg) = —1In

4.1.2.2 Alternative scheme for 7|, 7 >0

In some cases, particularly when modelling filter circuits, it may be diffienlt to find a
suitable value for ¢n. If ¢y 15 not large enough, then obviously one may have put too
severe restrictions to the hehaviour of newrons. However. if it is too large, finding a
correspondingly large negative oy, value may take many learning iterations. Similarly,
using the logistic function to impose constraints may lead to many learning iterations when
the rauge of time constauts to be modelled is large. For reasons like these, the following

simpler alternative scheme can be nsed nstead:

o) = o]’ (4.10)
o onin) = o) Qe (4.11)
with
2 2 ‘Tf ik
[(2(0-2.0.)] = [an;li —_— (-112)

2
L+05 4

4.1. BEXPERIMENTAL SOFTWARE 101

and o and o9, values can be recalculated from proper 71 ;4 and 7254 values using

o) = Tk (4.13)
1
oo Tt s Togk) = — (4-14)
max 1,k _1
T2,ik

4.1.3 Software Self-Test Mode

An important aspect in program development is the correciness of the software. In the
software engineering discipline, some people advocate the use of formal techniques for
proving program correctness, However, formal techniques for proving program correctness
have not yet been demonstrated to be applicable to complicated engineering packages, and

it seems unlikely that these techniques will play such a role in the foreseeable future®.

It is hard to prove that a proof of program correctness is itself correct, especially if the proof
is much longer and harder to read than the program one wishes to verify. It is also very
difficult to make sure that the specification of software functionality is correct. One could
have a “correct” program that perfectly meets a nonsensical specification. Essentially, one
could even view the sonrce code of 4 program as a (very detailed) specification of its desired
functionality, since there is no fundamental distinction between a software specification
and a detailed software design or a computer program. In fact, there is only the practical
convention that by definition a software specification is mapped onto a software design,
and a software design is mapped onto a computer program, while adding detail (also to

be verified} in each mapping: a kind of divide-and-conquer approach.

What one can do, however, is to try several methodologically and/or algorithmically very
distinct routes to the solution of given test problems. To be more concrete: one can in
simple cases derive solutions mathematically, and test whether the software gives the same

solutions in these trial cases.

In addition, and directly applicable to our experimental software, one can check whether
analytically derived expressions for sensitivity give, within an estimated accuracy range.
the same outcomes as numerical (approximations of) derivatives via finite difference ex-

pressions. The latter are far more easy to derive and program, but also far more inefficient

2An exception must be made for purely symbolic processing software, such as language compilers.
In general, however, heuristic assumptions about what is “correct™ already enter by selecting numerical
methods that are only guaranteed to be valid with an infinitely dense discretization of the problems at
hand, calculating with an infinite machine precision, while one knows in advance that one will in practice,
for efficiency reasons, want to stay as far as possible away from these Imits. In fact, one often deliberately
balances on the edge of “incerrectness” (inaccurate results) to be able to solve problems that would
otherwise be too difficult or costly (time-consuming) to solve.

w101 ¢f 9B

ISt I S ur

A1amy

HIO

2

Z
®

Netuork NETO: 36 DE’s
2 neurons, 20 parameters

2 2

NETCB1.LTA).HE1): De/Dalpha
Range € B.900L3R3, 0.2783

METI®].L[A1.NELS: De/Dalpha
Range [0.08195, 0.05025)

T-\

R

Analytical TR sensifivity (soiid)
8 Wunerical sensitivity <bared

analyeical AC sensitivity €coligdk
% Mumerical sensitivity thars)

fletwork NETL: 184 DE's
§ neurons, 48 parangters

AN
/7
A
i / \
/

s

2 3 2

NETL1Y.L[2)1.N[1]: De/palpha
Range [6.10%e-0%, £.49651

sinalytical TR semsitivity (solid}
& Numerical sensitivity {hars)

NETiL).LLZ].N(31: DesDaipha
Range © 0.0005133, 0.33671

Anaiytical AL sensitivity (solid)
& Numerical sensitivity (bars)

Netuork METZ: 524 DE's
8 neurons, 78 paramelers

NETL2].LCL1.N(O): Despsigrai
Range [-9.007525, 0.,03731

Analytital TR sensitivity (sehid)

§ Mumericat sensitivity (pars®

HETE21.LT11.N(D): De/Dsignal
Range [-0.0089568, 8.3666]

pnalytical AC sensitivity (zotid)

2 Nunerical sensitivity (bars)

(4028

FUALJIVHD

SIT15dH

4.1. EXPERIMENTAL SOFTWARE 103

to calculate. During network optimization, one would for efficiency use only the analytical
gensitivity calculations., However, because de, transient and ac sensitivity form the core
of the neural network learning program, the calenlation of both analytical and numerical
derivatives has been implemented as a self-test mode with graphical output, such that one
can verify the correctness of sensitivity calculations for each individual parameter in turn

in a set of neural networks, and for a large number of time points and frequency points.

In Fig. 4.3 a hardcopy of the Apollo/HP425T screen shows the graphical output while
running in the self-test mode. On the left side, in the first column of the graphics mat-
rix, the topologies for three different feedforward neural networks are shown. Associated
transient sensitivity and ac sensitivity curves are shown in the second and third column,
respectively., The neuron for which the sensitivity w.r.t. one particular parameter is be-
ing calculated, is highlighted by a surrounding small rectangle—in Fig. 4.3 the top left
neuron of network NET2. It must be emphasized, that the drawn sensitivity curves show
the “momentary™ sensitivity contributions, not the accumulated total sensitivity up to a
given time or frequency point. This means that in the self-test mode the summations in
Eqgs. (3.20) and (3.61), and in the corresponding gradients in Egs. (3.25) and (3.64), are
actually suppressed in order to reduce numerical masking of any potential errors in the
implementation of sensitivity calculations. However, for transient sensitivity, the depend-
ence of sensitivity values (“sensitivity state”) on preceding time points is still taken into
account, because it is very important to also check the correctness of this dependence as
specified in Eq. (3.8).

The curves for analytical and numerical sensitivity completely coincide in Fig. 4.3, in-
dicating that an error in these calculations is unlikely. The program cycles through the
sensitivity curves for all network parameters, so the hardcopy shows only a small fraction
of the output of a self-test run. Because the self-test option has been made an integral
part of the program, correctness can without effort be quickly re-checked at any moment,
e.g., after a change in implementation: one just watches for any non-coinciding curves,

which gives a very good fault coverage.

4.1.4 Graphical Output in Learning Mode

A hardcopy of the Apollo/HP425T screen, presented in Fig. 4.4, shows some typical graph-
ical output as obtained during simultaneous time domain learning in multiple dynamic
neural networks. Typically, one simulates and trains several slightly different neural net-
work topologies in one run, in order t¢ select afterwards the best compromise between
simplicity (computational efficiency) of the generated models and their accuracy w.r.t.

the training data.

i

=t
o

Oponn SUITIvY| {I0MIOTT [RIT T U] meadoly FF ous

Netuork NETO® 66 DE’s
3 neurens, 36 paraneters

L1822e-03 (-0.35%)

VA

B D expansions: 3
B 1D interpolations: 1
B3 4557201 f =+6.182-03
191 242.58e-02 D =45, 1%¢-89

3 IR: Targets sobid, black

Iteration 96, €=§,1827e-683

.

S

Learning progress piat

NETOLING.5igna2 +1.28-02
NETOLINO .vv1 +7.8e-03
WET0.31phaZ +5.1e-63

Paraneter ypdate plot

detuork HNETL: 218 DE’s
S newrons, 50 paranerers

ol B =
Fi T
7 o
o S
3 2 3

HETL: Ex4.u8fle-U3 \-2.821)

1D axpansions: 9
10 interpelstions: 0

eta =+5.83g-03 £ =+4.0d-03
19l =+3.952-02 OF =42.738-03

Iteration 96. L080ie-03

\[|

Learning progress piot

HET1L2M) .5igma2
NETILIND w1 .
NETILIHL.S1gma} -1.0e-92

Paraneler ypdate plot

R: Input waves (shared»

Iteration 94:
Hetuork 9: scaled
Netuork 1: scaled

Iteration 35:
Netuork B: scaled
Metuork 1: scaled

Ttergtion 96:
Hetuork 0: scaled
Netuark 1: scalad

13
E

E
3

E

WETHOTE [T STATEN £~ %, 059843 (i 4 EII0e-U3T @ 975 UPTFEEsETs

?Te-03: 2 0.07 ¥ decreaser.

£.2235e-03 (was 6.227
208de-23: 3 0.18 % decreasel.

4.2010e-03 Cuas 4.

6.204le-03 (was 6.223%-03: & 0.31 ¥ decrease).
4.20008-03 Cuzs 4.2010e-03: a 02 ¥ decrease).

236 % decrease) .
B2 7 decteage’.

6.18228-03 (uas §.2049le-83: 3
4.090Le-03 (was 4.2008e-83: a

o

TConmana:

FOI1

FUHLJVHD

1185y

SLT

4.1. EXPERIMENTAL SOFTWARE 105

In the hardcopy of Fig. 4.4, a single graphics window is subdivided to form a 3 x 4 graphics

matrix showing information about the training of two neural networks.

On the left side, in the first column of the graphics matrix, the topologies for two different
feedforward neural networks are shown. Associated time domain curves are shown in the
second column. In the network plots, any positive network weights w;j; are shown by solid
interconnect lines, while dotted lines are used for negative weights®. A small plus or minus
sign within a neuron ¢ in layer & represents the sign of its associated threshold €;;. The
network inputs are shown as dummy neurons, indicated by open squares, on the left side
of the topology plots. The number of neurons within each layer is shown at the bottom of
these plots. We will use the notational convention that the feedforward network topology
can be characterized by a sequence of numbers, for the number of neurens in each layer,
going from input {left in the plots) to the output {right). Consequently, NET1 in Fig. 4.4
is a 3-2-3 network: 3 inputs (dummy neurons), 2 neurons in the middle (hidden) layer,

and 3 output neurons.

If there were also frequency domain data in the training set, the second column of the
graphics matrix of Fig. 4.4 would be split into two coluinns with plots for both time domain
and frequency domain results—in a similar fashion as shown before for the self-test mode
in Fig. 4.3. The target data as a function of time is shown by solid curves, and the
actual network behaviour, in this case obtained using Backward Euler time integration, is
represented by dashed curves. At the bottom of the graphics window, the input waves are
shown. All target curves are automatically and individually scaled to fit the subwindows,
s0 the range and offset of different target curves may be very different even if they seem to
have the same range on the screen. This helps to visualize the behavioural structure—e.g.,
peaks and valleys—in all of the curves, independent of differences in dynamic range, at

the expense of the visualization of the relative ranges and offsets.

Small error plots in the third columu of the graphics matrix (*Learning progress plot™)
show the progress made in reducing the modelling error. If the error has dropped by more
than a factor of a hundred, the vertical scale is automatically enlarged by this factor in

order to show further learning progress. This causes the upward jumps in the plots.

The fourth column of the graphics matrix {“Parameter update plot”) contains information
on the relative size of all parameter changes in each iteration, together with numerical val-
ues for the three largest absolute changes. The many dimensions in the network parameter
vector are captured by a logarithmically compressed “smashed mosquito” plot, where each
direction corresponds to a particular parameter, and where larger parameter changes yield

points further away from the central point. The purpose of this kind of information is

3On a color screen, suitable colors are used instead of dashed or dotted lines.

106 CHAPTER 4. RESULTS

to give some insight into what is going on during the optimization of high-dimensional

systems.

The target data were in this case obtained from DPstar siimulations of a simple linear
circuit having three linear resistors connecting three of the terminals to an internal node,
and having a single linear capacitor that connects this internal node to ground. The time-
dependent behaviour of this circuit requires non-quasistatic modelling. A frequency sweep,
here in the time domain, was applied to one of the terminal potentials of this circuit, auc
the corresponding three independent terminal currents formed the response of the circuit.
The time-dependent current values subsequently formed the target data used to train the

neural networks.

However, the purpose of this tine domain learning example is ouly to give some impression
about the operation of the software, not to show how well this particular behaviour can
be modelled by the neural networks. That will be the subject of subsequent examples in

section 4.2.

The graphical output was mainly added to help with the development, verification and
tuning of the software, and only in the secound place to become available to future users.
The software can be used just as well without graphical output, as is often done when
running neural modelling experinents on remote hosts, in the background of other tasks,

or as batch jobs.

4.2 Preliminary Results and Examples

The experimental software has been applied to several test-cases, for which some prelimin-
ary results are ontlined in this section. Simple examples of automatically generated models
for Pstar, Berkeley SPICE and Cadence Spectre are discussed, together with simulation
results using these simulators. A number of modelling problems illustrate that the neural
modelling techniques can indeed yield good results, although many issiues remain to be re-
solved. Table 4.1 gives an overview of the test-cases as discussed in the following sections.
In the column with training data, the implicit DC points at thme t = 0 for transient and

the single DC point needed to determine offsets for AC are not taken into account.

4.2.1 Multiple Neural Behavioural Model Generators

it was already stated in the introduction, that output drivers to the neural network soft-
ware can be made for antomatically generating neural models in the appropriate syntax for
a set of supported shinulators. Such output drivers or model generators could alternatively

also be called simulator drivers, analogous to the term printer driver for a software module

4.2. PRELIMINARY RESULTS AND EXAMPLES 107

Section Problem Model Network Training
description type topology data
4.2.2.1 filter linear 1-1 transient
dynamic
4222 filter linear 1-1 AC
dynamic
4.2.3 MOSFET nonlinear 2-4-4-2 DC
static
41.2.4 amplifier linear 2-2-2 AC
dynamic
4.2.5 bipolar nonlinear 2-2-2-2 DC, AC
transistor dynamic 2-3-3-2
2-4-4-2
2-8-2
4.2.6 video linear 2-2-2-2-2-2 AC, transient
filter dynamic

Table 4.1: Overview of neural modelling test-cases.

that translates an internal document representation into appropriate printer codes.

Model generators for Pstar* and SPICE have been written, the latter mainly as a feasibility
study, given the severe restrictions in the SPICE input language. A big advantage of the
model generator approach lies in the automatically obtained mutual consistency among
models mapped onto (ie., automatically implemented for) different stmulators. In the
manual implementation of physical models, such consistency is rarely achieved, or only at

the expense of a large verification effort.

As an illustration of the ideas, a simple neural modelling example was taken from the
recent literature [3]. In [3], a static 6-neuron 1-5-1 network was used to model the shape
of & single period of a scaled sine function via simulated annealing techniques. The function
0.8sin(r) was used to generate dc target data. For our own experiment 100 equidistant
points x were used in the range [—n,7n]. Using this l-input 1-output dc training set, it
turned out that with the present gradient-based software just a 3-neuron 1-2-1 network
with nse of the Fy nonlinearity sufficed to get a better result than shown in [3]. A total of
500 iterations was allowed, the first 150 iterations using a heuristic optimization technique

{See Appendix A.2), based on step size enlargement or reduction per dimension depending

*In the case of Pstar, the model generator actually creates a Pstar job, which, when used as input for
Pstar, instructs Pstar to store the newly defined models in the Pstar user library. These models can then
be immediately accessed and used from any Pstar job owned by the user. One could say that the model
generator creates a Pstar library generalor as an intermediate step, although this may sound confusing to
those who are not familiar with Pstar.

108 CHAPTER 4. RESULTS

on whether a minimunt appeared to be crossed in that particular dimension, followed by
350 Polak-Ribiere conjugate gradient iterations. After the 500 iterations, Pstar and SPICE

models were automatically generated.

The Pstar model was then used in a Pstar run to simulate the wodel terminal current as
a function of the branch voltage in the range {—w, 7). The SPICE model was similarly
usedd m both Berkeley SPICE3¢T anc Cadence Spectre. The results ave shown in Fig, 4.5.

The 3-ueuron neural network simulation results of Pstar, SPICE3cl and Spectre all nicely

(1IN
-y - - soom (MW D 12.0m
: . kS
TARGEI _ N
PSTAR s00.0m 10.0m
SPICEIC |
SPECTRE N
4000 E %0
© y2eanin
200.0m 6.0m
DPSTAR
[$X}) . . 4 8m
200 . ; 2
~400.Hm ; 00
;
-600.6m) 7 2.0m
. ;
\~
W
-B00.0m — CAbm
a0 20 00 20 40
0 L0 i0 w0
(EIN) VINT

Figure 4.5: Neural network mapped onto several cirenit simulators.

match the target data curve. The difference between Pstar outcomes and the target data

is shown as a separate curve (“"DPSTAR = PSTAR — TARGET").

Of course, Pstar already has a built-in siue function and many other functions that can

be used in defining controlled sources, However, the approach as outlined above would

just as well apply to device characteristics for which no analytical expression is known, for
instance by using curve traces coming directly from measurements. After all, the neural
network modelling software did not “know” anything about the fact that a sine function

had been used to generate the training data.

4.2. PRELIMINARY RESULTS AND EXAMPLES 109

4.2.2 A Single-Neuron Neural Network Example

In this section, several aspects of time domain and frequency domain learning will be
illustrated, by considering the training of a 1-1 neural network consisting of just a single

neurot.

4.2.2.1 Illustration of Time Domain Learning

In Fig. 2.6, the step response corresponding to the left-hand side of the neuron differential
eguation (2.2} was shown, for several values of the quality factor Q. Now we will use the
response as calculated for one particular value of @, and use this as the target behaviour
in a training set. The modelling software then adapts the parameters of a single-neuron
neural network, until, hopefully, a good match is obtained. From the construction of the
training set, we know in advance that a good match exists, but that does not guarantee

that it will indeed be found through learning.

From a calculated response for mp,, = 1 and @ = 4, the following corresponding training
set was created, in accordance with the syntax as specified in Appendix B, and using 101

equidistant time points in the range ¢ € [0,25] (not all data is shown)

1 network, 2 layers
layer widths 1 1
1 input, ! output

time= 0.00 input= 0.0 target= 0.0000000000
time= 0.25 input= 1.0 target= 0.0304505805
time= 0.50 input= 1.0 target= 0.1174929918
time= 0.75 imput= 1.0 target= 0.2524522832
time= 1.00 input= 1.0 target= 0.4242910433
time= 1.25 input= 1.0 target= 0.6204177826
time= 23.75 input= 1.0 target= 1.0063803667
time= 24.00 input= 1.0 targets 0.9937691802
time= 24.25 input= 1.0 target= 0.9822976113
time= 24,850 input= 1.0 target= 0.9725880289
time= 24.75 input= 1.0 target= .9651188963
time= 25.00 input= 1.0 target= 0.9602048515

From Eq. (2.22) we find that the choices 75 = 1 and @ = 4 imply 7, ;4 = 3.

The neural modelling software was subsequently run for 25 Polak-Ribiere conjugate graci-
ent iterations, with the option F(s;) = s set, and using trapezoidal time integration.
The v-parameter was kept zero-valued during learning, since time differentiation of the
network input is not needed in this case, but all other parameters were left free for ad-
aptation. After the 25 iterations, 71 had obtained the value 0.237053, and 7 the value

110 CHAPTER 4. RESULTS

\ 2 \l“\\\
R W
I
| ‘ ‘\ Dty 0 ““\I\ Y\
i ‘\\\‘\\‘n“
“\\‘\" W

' ' p s “‘\\\‘\‘\\\u‘\li'
,\ f ’ sttty

RN
25 1‘,4”"6 l}[“
/ ‘ m
| ',

l“\‘\‘,\\‘ &
l AR i,
\"

I\ll i e

W
\

- M R

SR

o

0
100
20 40

Figure 4.6: Step respounse of a single-neuron neural network
as 1t adapts during subsequent learning iterations.

0.968771, which correspowuds to @ = 4.1306 according to Eq. (2.22). These results are
already reasonably close to the exact values from which the training set had becn derived.
Learning progress is shown in Fig. 4.6. For each of the 25 conjugate gradient iterations,
the intermediate network response is shown as a funetion of the i;-th discrete time point.

where the notation 4, {in Fig. 4.6 written as i_s) corresponds to the usage in Eq. (3.18).

The step vesponse of the single-neuron neural network after the 25 learning iterations

indeed closely approximates the step response for 74, = 1 and Q == 4 shown in Fig. 2.6.

4.2.2.2 TFrequency Domain Learning and Model Generation

Tn Figs. 3.1 aud 3.2, the ac hehaviour was shown for a particular choice of paraneters in
a 1-1 network. Oue conld ask whether a neural network can indeed learn this behaviour
from a correspouding set of real and imaginary numbers. To test this, a training set
was constructed, containing the complex-valued network transfer target values for a 100

frequency points in the range w @ [107,10'3).

The input file snnn.n for the neural modelling software contained (not all data shown)

1 network, 2 layers
layer widths 1 1

1 input,

1 output

time= 0.0
type= ~1.0

input= 1.0
input= 1.0

target= 1.0

4.2. PRELIMINARY RESULTS AND EXAMPLES 111

freg= 1.591549431e06 Re= 1.000019750 Im= ¢.007499958125
freq= 1.829895092¢06 Re= 1.000026108 Im= 0.008623113820
freg= 2,103934683e06 Re= 1.000034513 Im= 0.009914461878
freq= 2.419013619e06 Re= 1.000045625 Im= 0.011389186090
freg= 2.781277831e¢06 Re= 1.000060313 Im= €.013106239530

freg= 9.107430992eil Re= 0.00007329159028 Im= -0.01747501717
freq= 1.047133249e12 Re= 0.000056544267380 Im= -0.01519893527
freg= 1.203948778el2 Re= 0.00004194037316 Im= -0.01321929598
freq= 1.384248530el12 Re= 0.00003172641106 Im= -0.01149749396
freq= 1.591549431e12 Re= 0.00002399989900 Im= -0.00999995000

The frequency points ave equidistant on a logarithmie scale. The neural modelling software
was run for 75 Polak-Ribiere conjugate gradient iterations, with the option F(s;x) = sk
set, and with a request for Pstar neural model generation after finishing the 75 itera-
tions. The program started with random initial parameters for the neural network. An
internal frequency scaling was (amongst other scalings) automatically applied to arrive
at an equivalent problem and network in order to compress the value range of network
parameters. Without such scaling measures, learning the values of the timing parameters
would be very difficult, since they are many orders of magnitude smaller than most of the
other parameters. In the generation of neural behavioural models, the required unscaling
is automatically applied to return to the original physical representation. Shortly after 5¢
iterations, the modelling error was already zere, apart from numerical noise due to finite

machine precision.

The autormatically generated Pstar neural model description was

MODEL: NeuronTypel{IN,0UT,REF) delta, taul, tauZ;
EC1(AUX,REF) V(IN,REF);
L1(AUX,0UT) taul; <C2(0UT,REF) tau2 / taul ;
R2(0UT,REF) 1.0 ;

END;

MODEL: snnnO{TO,REF);
/* snnn0 topology: 1 - 1 #/

c:Rlarge = 1.0e+15;
c:R1(TC,REF) Rlarge;

c: Neuron instance NET[0].L[1]1.N[0];
L2 (DDX2,REF) 1.0;
JC2(DDX2,REF)
+8.846325e-10%V(TO,REF) ;
EC2(INZ,REF)
+8.846325e-01*V (TO ,REF)
-2.112626e-03-V(L2);

112 CHAPTER 4. RESULTS

NeuronTypel_2(IN2,0UT2,REF)

1.000000e+00, 2.500000e-10, 1.000000e~20;
¢:R2(0UT2,REF) Rlarge;
JC3(TO,REF) 2.388140e-03+1.130413e+00x¥ (QUT2,REF) ;

END; /% End of Pstar snnnO model */

The Pstar wenral network model name snnn0 is dervived from the name of the input file
with target data, supplemented with an integer to denote different network definitions
I case several networks are trained in one run. Clearly, the modelling software had no
problem discovering the corroet valies 7f = 2.5 - 107" and 75 = 1072%2, as can be seen
from the argument list of NewronTypel 2(IN2,0UT2,REF). Due to the fact that we had
a linear problenm, and used a linear neural network, there is no unigque solution for the
remalining paraneters. However, heeanse the modelling ervor hecaie (virtually) zevo, this

shows that the software had found an (alwost) exact solution for these parameters as well.

- yL-axis - a0
Rettl)

- RIS

0y - - === "

T
0.0 1.0G 100G 10T
100.0M (X3 4} 1.0T

amega
Figure 4.7: Fig, 3.1, 3.2 behaviowr as recovered via the neural modelling software,
automatic Pstar model generation, Pstar simulation and CGAP output.

The above Pstar wodel was nsed in a Pstar job that “replays”™ the inputs as given in the
training set®. Fig. 4.7 shows the Pstar simulation results presented by the CGAP plotting

package. This may be compared to the real and imaginary curves shown in Fig. 3.2.

SSuch auxiliary Pstar johs for replaying input data, as specified in the training data, ave presently
antomatically generated when the nser reguests Pytar models from the neural modelling software. These

Pstar jobs are very useful for verification and plotting purposes.

4.2. PRELIMINARY RESULTS AND EXAMPLES 113

4.2.3 MOSFET DC Current Modelling

A practical problem in demonstrating the potential of the neural modelling software for
automatic modelling of highly nonlinear multidimensional dynamic systems. is that one
cannot show every aspect in one view. The behaviour of such systems is simply too rich to
be captured by a single plot, and the best we can do is to highlight each aspect in turn. as a
kind of cross-section of a higher-dimensional space of possibilities. The preceding exampies
gave some impression about the nonlinear (sine) and the dynamic (non-quasistatic. time
and frequency domain) aspects. Therefore, we will now combine the nonlinear with the
multidimensional aspect, but. for clarity only for (part of) the static behaviour, namely for

the dc drain current of an n-channel MOSFET as a function of its terminal voltages.

Fig. 4.8 shows the dc drain current I; of the Philips’ MOST maodel 901 as a function of
the gate-source voltage V,; and the gate-drain voltage Vg, for a realistic set of model
parameters, The gate-bulk voltage V, was kept at a fixed 5.0V. MOST model 901 is one
of the most sophisticated physics-based quasistatic MOSFET models for CAD applica-
tions, making it a reascnable exercise to use this model to generate target data for neural
modelling®. The 169 drain current values of Fig. 4.8 were obtained from Pstar simulations
of a single-transistor circuit, containing a voltage-driven MOST model 901. The 169 drain
current values and 169 source current values resulting from the dc simulations subsequently
formed the training set” for the neural modelling software. A 2-4-4-2 network, as illus-
trated in Fig. 1.2, was used to model the T (V4 Vi,) and I,(Vyy, Vys) characteristics. The
bulk current was not considered. During learning, the monotonicity option was active, res-
ulting in de characteristics that are, contrary to MOST model 901 itself, mathematically
guarenteed to be monotonic in Vog and Vg,. The error function used was the simple square
of the difference between output current and target current-—as used in Eq. (3.22). This
implies that no attempt was made to accurately model subthreshold behaviour. When
this is required, another error function can be used to improve subthreshold accuracy -at

the expense of accuracy above threshold. It really depends on the application what kind

®Many physical MOSFET models for circuit simulation still eontain a number of undesirable modelling
artefacts like unintended discontinuities or nonmonotonicities, which makes it difficult to decide whether
it makes any sense to try to model their behaviour with monotonic and infinitely smooth neural models,
developed for modelling smooth physical behaviour. Physical MOSFET medels are often at best centinuous
up to and including the first partial derivatives w.r.t. voltage of the dc currents and the equivalent
terminal charges. Quite often not even the first partial derivatives are continuous, due ta the way in which
transitions to different operating regions are handled, such as the drain-source interchange procedure
commonly applied to evaluate the physical model only for positive drain-source voltages Vi.. while the
physical model is unfortunately often not designed to be pexfectly symmetric in drain and source potentials
for Vi, approaching zero,

"MOST model 901 capacitance information was not inclueled, althcugh capacitive behaviour could have
heen incorporated by adding a set of bias-dependent low-frequency admittance matrices for frequency
domain optimization of the quasistatic behaviour. Internally, both MOST model 901 and the neural
network models employ charge modelling to guarantee charge conservation.

114 CHAPTER 4. RESULTS

MOST model 901

gt
38

ALUTN
28 A8 8S 18

Fignre 4.8: MOST nwodel 907 de drain curvent Fy(Vor. Vo).

Monotonic 2—4—4—2 Neural Network Model

Figure 4.9: Nenval netwovk de <drain current Ty(Vya. V).

4.2. PRELIMINARY RESULTS AND EXAMPLES 115

(Neural Network) — (MOST Model 901)

st
s 2n as

LS

Teaa.

48 a8 -28 -is

Figure 4.10: Differences between MOST model 901 and neural network.

of error measure is considered optimal. In an initial trial, 4000 Polak-Ribiere conjugate
gradient iterations were allowed. The program started with random initial parameters
for the neural network, and no user interaction or intervention was needed to arrive at

behavioural models with the following results.

Fig. 4.9 shows the dc drain current according to the neural network, as obtained from Pstar
simulations with the corresponding Pstar behavionral model®. The differences with the
MOST model 901 outcomes are too small to be visible even when the plot is superimposed
with the MOST model 901 plot. Therefore, Fig. 4.10 was created to show the remaining
differences. The largest differences observed between the two models, measuring about

3% 107% A, are less than one percent of the current ranges of Figs. 4.8 and 4.9 (approx.

8The Pstar simulation times for the 169 bias conditions were now about ten times longer using the
neural network behavioural model compared to using the built-in MOST model 901 in Pstar. This may
be due to inefficiencies in the handling of the input language of Pstar, onto which the neural network was
mapped. This is indicated by the fact that the simulation time for the neural model in the neural modeiling
program itself was instead about four times shorfer than with the MOST model 901 mode! in Pstar, on the
same HP9000/735 computer. However, as was explained in section 1.1, in device modelling the emphasis is
less on simulation efficiency and more on quickly getting a model that is suitable for accurate simulation.
Only in this particular test-case there already was a good physical model available, which we even used as
the source of data to be modelled. Nevertheless, a more efficient input language handling in Pstar might
lead to a significant gain in simulation speed.

116 CHAPTER 4. RESULTS

4% 107* A). Furtherore, monotonicity end infiwite smoothness are guaranteed properties
of the nenral network, while the neural model was trained in 8.3 minutes on an HP9000/735

('(\]lll)llT(‘I‘q.

This example concerus the wodelling of one particular device. To inelude sealing effects of
geometry and temperatire, one could use a larger training set containing data for a variety
of temperatures and geowmetries!Y. with additional neural network inputs for geometry and
tewperature, Alteruatively, one could manunally add a geometry and tewperature sealing
wode] to the neural model for a single device, although oue then has to he extremely
cantious abont the different geometry sealing of, for instance, de currents and capacitive

cnrrents as known from physical guasistatic modelling.

High-frequency non-quagistatic behaviour can in principle also he modelled by the neural
retworks, while MOST model 901 is restricted to guasistatic behaviour only. Until now,
the need for non-quasistatic device modelling has heen muel stronger in bhigh-frequency
applications coutaining hipolar devices. Static neural networks have also been applied to
the modelling of the de currents of {submicron) MOSFETs at National Semiconductor
Corporation [35]. A recent article on static neural networks for MOSFET wodelling can

be found in [43].

After the above initial trial, an additional experiment was perfornmed. in which several
neural networks were trained simnltancously. To give an inpression about typical learning
behaviour, Fig. 4.11 shows the decrease of modelling error with itevation count for a small
population consisting of fenr nenral networks, each having a 2-4-4-2 topology. The network
parameters were randomly initialized, and 2000 Polak-Ribiere conjugate gradient iterations
were allowed, using a sunm-of-scuares error measure the contribution from Eq. (3.20) with

B (3.22).

Network Error Maximum Percentage
Fq. (3.22) error (A) of range
0 2.4925¢-04 3.40653¢-05 0.46
1 3.96G49e-03 1.17681e-04 1.58
2 3.9226e-03 1.12598e-04 1.51
3 6.91240-04 5.11562e-05 0.69

Table 4.2: DC modelling results after 2000 iterations.

sing the 1000 Polak-Ribicre conjugate gradient iterations

""The parameters for the sealing rules of physical models are in practice alse obtained by measuring a
numbet of different devices. With the Philips’ MOST models 7 and 9. this leads to the so-called “maxi-set,”
applicable to one particular manufacturing procoess.

4.2. PRELIMINARY RESULTS AND EXAMPLES 117

Network 0 —
Network 1 ----
Network 2 -~
Network 3

Error

0.001 ; b

0.0001 4 L L ‘—‘—J
1

10 100 1000 10000
iterations

Figure 4.11: MOSFET modelling ervor piotted logarithnuically as a function of iter-
ation count. using four independently trained neural networks.

Fig. 4.11 and Table 4.2 demonstrate that one does not need a particularly “lucky™ initial

parameter setting to arrive at satisfactory results.

4.2.4 Example of AC Circuit Macromodelling

For the neural modelling software, it does in principle not matter from what kind of sys-
tem the training data was obtained. Data could have been sampled from an individual
transistor, or from an entire (subjeircuit. In the latter case, when developing a model for
{part of) the behaviour of a circuit or subcircuit, we speak of macromodelling, and the
result of that activity is called a meaeromodel The basic aim is to replace a very complic-
ated description of a system—such as a circuit—by a much more simple description-—a
macromodel—while preserving the main relevant behavioural characteristics, i.e., input-

output relations, of the original system.

Here we will consider a simple amplifier circuit of which the corresponding circuit schematic
is shown in Fig. 4.12. Source and load resistors are required in a Pstar twoport analysis,

and these are therefore indicated hy two dashed resistors. Admittance matrices Y of this

118 CHAPTER 4. RESULTS

circuit. were obtained from the following Pstar joh:
numform: digits = 6;

circuit;
e_1 (4,0) 3.4;
tn_1 (4,1,2) *bf1997;
tn_2 (3,2,0) *bf199°;
r_fb (1,3 900,

r.2 (4,3) 1k;
c 2 (3,07 5p;
j_t (2,0 0.2ml;

c_out (3,5) 10u;

c_in (1,6) 10u;

r_input (6,00 1k;

r_load (5,0 1k;
end;

ac;
f = gn(100k,1g,50);
twopert: r_input, r_load;
menitor: yy;

end;

run;

which generates textual output that has the numerie elements in the correct order for

Figure 4.12: Amplifier cirenit used in twoport analysis. and neural macromodel.

4.2. PRELIMINARY RESULTS AND EXAMPLES 119

creating a training set according to the syntax as specified in Appendix B. In the above
Pstar circuit definition block, each line contains a component name, separated from an
occurrence indicator by an underscore, and followed by node numbers between parentheses

and a parameter value or the name of a parameter list.

The amplifier circuit contains two npn bipolar transistors, represented by Pstar level 1
models having three internal nodes, and a twoport is defined between input and output
of the circuit, giving a 2 x 2 admittance matrix ¥'. The data resulting from the Pstar ac
analysis were used as the training data for a single 2-2-2 neural network, hence using only
four neurons. Two network inputs and two nefwork outputs are needed to get a 2 x 2
neural network transfer matrix H that can be used to represent the admittance matrix
Y. The nonnumeric strings in the Pstar monitor output are automatically neglected. For
instance, in a Pstar output line like “MONITOR: REAL(Y21) = 65.99785E-03" only the
substring “65.99785E-03" is recognized and processed by the neural modelling software,
making it easy even to manually construct a training set by some cutting and pasting.
A -trace option in the software can be used to check whether the numeric items are
correctly interpreted during input processing. The neurons were all made linear. i.c.,
F(sir) = six, because bias dependence is not considered in a single Pstar twoport analysis.
Only a regular sum-of-squares error measure—see Eqs. (3.61) and (3.62)—was used in the
optimization. The allowed total number of iterations was 5000. During the first 500
iterations the before-mentioned heuristic optimization technique was used, followed hy

4500 Polak-Ribiere conjugate gradient iterations.

The four admittance matrix elements (¥)11, (¥)12, (Y21 and (¥)as are shown as a
function of frequency in Figs. 4.13, 4.15, 4.14 and 4.16, rvespectively. Curves are shown
for the original Pstar simulations of the amplifier circuit, constituting the target data
Y<i><j>CIRCUIT, as well as for the Pstar simulations Y<i><j>NEURAL of the automatically
generated neural network model in Pstar syntax. The curves for the imaginary parts IM(-)
of admittance matrix elements are easily distinguished from those for the real parts RE(-)

by noting that the imaginary parts vanish in the low frequency limit.

Apparently a very good match with the target data was obtained: for (¥Y)1, (Y)n
and (¥)22, the deviation between the original circuit behaviour and the neural network
behaviour is barely visible. Even (¥)19 was accurately modelled, in spite of the fact that
the sun-of-squares error measure gives relatively little weight to these comparatively small
matrix elements. An overview of the modelling errors is shown in Fig. 4.17, where the
error was defined as the difference between the neural network outcome and the target
value, L.e., Y<i><j>ERROR = Y<i><j>NEURAL - ¥<i><j>CIRCUIT.

120 CHAPTER 4. RESULTS

¥l om0

RECYTICIRCUTT)
IV HCIRCUIT

25 fm
RIGY TINIURALY
BV TINEURAL)

20.0km

15.0m

10m

Sm

on

Aum

1MLk 1t0M i
1NN 100490
LINe 31 1

Figure 4.13: (V) for amplifier ¢ircuit and veural macromodel. The eireuit and
newral model onteomes virtually coineide. IM{YILCIRCUIT) ane
IM(YLINEURALY both approach zevo at low frequencies.

-yl s 'RV

RECY2ICIRCETT
IMEY2ICIRETINTY

RELY INEURALY avom
LMY IR ALY

048

0.0m

i

-2him

M tim

JO0.0k 104 106
X 140000
LG F

Figure 4.14: (Y 3y, for amplifier circuit and wenral macrowodel. The eireuit and
neural wmodel outcomes virtually coincide. INM{Y2ICIRCUIT) and
IM(YZ2INEURAL) hoth approach zero at low frequencies.

4.2. PRELIMINARY RESULTS AND EXAMPLES

syleanis - o N
MY LECIRCUIT)
RECY 12CIRCUITY 00 - o
RE(Y 1 2MEURALY
IMIYIINEURAL)Y - -250.00
-S00.0u
-750.00
-Lom
i.25m
-15m
“L75m
A0m - S . . - .
1000k 10.0M 106
1oM 100.0M
) 3

Figure 4.15: (Y)12 for amplifier cireuit and neural macromodel. IM(Y 12CIRCUIT)
and IM{Y12NEURAL) both approach zero at low frequencies.

- yl-axis - asom N
RE(Y22CIRCUIT) '
IMY22CIRCUIT) 3 0 :
RE(Y2ZNEURAL)
IMY2ZZNEURAL) 0
20.0m
15.0m
10.0m
s0m | .
" _ .
00 k . ;
-5.0m - e o
100Kk 10.0M LG
oM 190.0M
(Loa) F

Figure 4.16: (Y) for amplifier circuit and neural macromodel. The circuit and
neural model outcomes virtually coincide. IM{Y22CIRCUIT) and
IM(Y22NEURAL) both approach zero at low frequencies.

122 CHAPTER 4. RESULTS

RE(YI2ERROR}

40.0u
=8t
IM{Y 12ERROR) 3000
-30.6u
RECYTLERRORY 20000
-200.0u
IM(Y 1 TERROR) 40.0u
-120.0u
RE(Y2IERROR) 4000
-80.0u
IMEY2IEKROR)Y 100.0u
-125.0u
RE(Y22ERROR) 2500
-20.00
IMtYZ2ERROR) 6000
-30.0u

100.0k 10.0M 1.0G

LOM 100.0M

Figure 4.17: Overview of macromodelling errors as a function of frequency.

4.2.5 Bipolar Transistor AC/DC Modelling

As another example, we will consider the modelling of the highly nonlinear and frequency-
cdependent hehaviour of a packaged bipolar device. The experimental training values in
the form of de currents and admittance matrices for a mmnber of bias conditions were
obtained from Pstar shmmlations of a Philips model of a BFR92A npn device. This model
consists of a nonlinear Gunmel-Poon-like bipolar mode] and additional linear compornents

to represent the effects of the package. The corresponding cirenit is shown in Fig. 4.13.

Teaching a neural network to behave as the BFR92A turned out to require many optimiz-
ation iteratious. A unmber of reasons make the automatic modelling of packaged bipolar

devices difficult:

e The linear compouents in the package model can lead to band-pass filter type peaks
ag well as to true resonance peaks that arve “felt” by the modelling software even if

these peaks lie outside the frequency range of the training data. The allowed quality

factors of the neurons st be constrained to ensure that unrealistically narrow

resonance peaks do not arvise (temporarily) during learning: otherwise such peaks

4.2. PRELIMINARY RESULTS AND EXAMPLES 123

must subsequently be “unlearned” at significant computational expense.

e The dc¢ currents are strongly dependent on the base-emitter voltage, and far less
dependent on the collector-emitter voltage {Early effect), while the most relevant
and rather narrow range of base-emitter voltages lies above 0.5V. An origin-shifting

scaling is therefore required to ease the learning.

o The de¢ bage currents are normally much smaller than the collector de currents: that
is what makes such a device useful. However, at high frequencies, the base and
collector currents (both the real and imaginary parts} become much less different in
size, due to the Miller effect. A network scaling based on de data only may then
be inappropriate, and lead to undesirable changes in the relative contributions of

admittance matrix elements to the error measure.

e The position of extreme values in the admittance matrix elements as a function of

frequency is bias dependent due to nonlinear effects.

This list could be continued, but the conclusion is that automatically modelling the rich

behaviour of a packaged bipolar device Is far from trivial.

The (slow) learning observed with several neural network topologies is illustrated in
Fig 4.19, using 10000 Polak-Ribiere conjugate gradient iterations. The DC part of the
training data consisted of all 18 combinations of the base-emitter voltage Vi = 0, 0.4,
0.7, 0.75, 0.8 and 0.85 V with the collector-emitter voltage Ve = 2, 5 and 10 V. The AC

Figure 4.18: Equivalent circuit for packaged bipolar transistor.

124 CHAPTER 4. RESULTS

part cousisted of 2 X 2 adinittance matrices for 7 frequencies f = 1MHz, TOMHz. 100MHz,
200MHBz, 500MHz, 1GHz and 2GHz. cach at a subset of 8 of the above DC bias points:
(Ve Vo) = (0.8.2), {0.5). (0.75.,5), (0.8,5), (0.85,5), (0.75.10). (113,10 and {0.85.10) V.

The largest absolute errors n the terwinal currents for the 18 DC points. as a percent-

100 T T
2-2-2-2 topology -~
2-3-3-2 topology ----
2-4-4-2 topology
2-8-2 topology
ol T e 4
s 4L |
31
o1t - . E
0.01 £ - L L
1 10 100 1000 10000

lteraticns

Figure 4.19: Bipolar transistor modelling error plotted logarithmically as a function
of iteration count.

age of the target current rauge (for each terminal separately), at the end of the 10000

iterations, are shown in Table 4.3.

The 2-4-4-2 topology (illustrated in Fig. 1.2) here gave the smallest overall errors. Fig. 4.20
shows some Pstar sinmlation results with the original Philips inodel and an antomatically
generated behavioural model, corresponding to the 2-4-4-2 neural network. The enrves
represent the complex-valued collector current with an ac source between base and emitter,
and for several base-emitter bias conditions. These curves show the bias- and frequency-
dependence of the complex-valued bipolar transadmittance (of which the real part in the

low-frequency limit is the faniliar transconductance).

I spite of the slow learning, an important conclusion is that dynamic feedforward neural

4.2. PRELIMINARY RESULTS AND EXAMPLES

Topology Max. I, Error Max. I, Error
% of range % of range
2-2-2-2 4.67 2.26
2-3-3-2 4.10 2,82
2-4-4-2 1.58 2.23
2-8-2 1.32 2.62

Table 4.3: DC errors of the neural models after 10000 iterations. Current ranges
(largest values) in training data: 306 pA for the base current I, , and
25.8 mA for the collector current I .

- yl-axis - 5000m (LN
REAL(BIPOLAR) 4
IMAGBIPOLAR) yoppm 4
IMAG(NEURAL}
REALNEURALL 0o 4
4
- Subvar - 3 3
HCOL: 10 2000m 3
VBE: 0.0 :
:’CE: 30 100.0m =~ g
HCOL: 1.0
VBE: 750.0m 00 2
VCE: 5.0]
3 .
HCOL: 1.0 -100.0m 3 .. e
VBE: $00.0m &)
| VCE: 5.0 1
4 2000m - 4
HCOL: 1.0
VBE: 850.0m
VCE: 5.0 H000m - : | . ; : '
0.0 500.0M 106 1.56 206
250.0M 750.0M 125G 1.75G
(1IN F

Figure 4.20: Neural network model with 2-4-4-2 iopology compared to the bipolar
discrete device model.

(1]

126 CHAPTER 4. RESULTS

networks apparently can represent the hehaviour of such a discrete bipolar device. Also,
to avold misunderstanding. it is important to point out that Fig. 4.20 shows ouly a small
part (one out of four admittance matrix elements) of the behaviour in the training data:
the learning task for modelling only the curves in Fig. 4.20 would have been much easier.

as hias appeared frow several other experiments.

4.2.6 Video Circuit AC & Transient Macromodelling

As a final example, we will cousider the macromodelling of a video filter designed at
Philips Semiconductors Nijmegen. The filter has two inputs and two outputs for which
we would like to find a macromodel. The dynamic respounse to only one of the inputs
was known to be relevant for this case. The nearly linear integrated cirenit for this filter
containg about a lnadred bipolar transistors distributed over six blocks, as illustrated
in Fig. 4.21. The rvightmost four TAUxxN blocks constitute filter circuits, cach of them
having a certain delay determined by internal capacitor values as selected by the designer.
Fig. 4.22 shows the cireult schematie for a single 40us filter section. The TAUINT block
i the block diagram of Fig, 4.21 performs certain interfacing tasks that are not relevant
to the macromodelling. Similarly, the de biasing of the whole filter circuit is handled
by the TAUBIAS block. but the functionality of this block need not be covered by the
macromodel. Fronn the civenit schematics in Fig. 4.24 and Fig. 4.25 it is clear that the
possibility to neglect all this peripheral circuitry in macromodelling is likely to give by
itsell a significant reduction in the required computational complexity of the resulting
models. Furthermore, it was known that cach of the filter blocks behaves approximately
as a sccond order linear filter. Knowing that a single neuron can exactly represent the
behaviour of a second order linear filter, a reasonable choice for a neural network topology
in the form of a chain of cascaded nenrons would involve at least four non-input layers. We
will nse au extra layer to accommodate some of the parasitic high-frequency effects. using
A 2-2-2-2-2-2 topology as shown in Fig. 4.23. The neural network will be made linear in
view of the nearly linear filter ¢ireudt, thereby again gaining a reduction in computational
complexity. The linearity inplies F(s;) = s for all nenrons. Although the video filter
has separate input and output terminals, the modelling will for convenience be doue as
if it were a 3-terinal device in the interpretation of Fig. 2.1 of section 2.1.2, iu order to

make nse of the presently available Pstar model generator!!,

The training set for the neural network cousisted of a combination of time donain and

"' vequired, this particular electrical interpretation or assumption could afterwards easily be changed
by hand through the addition of two (output) terminals and changing the controlled terminal current
sources into corresponding controlled vollage sources for the added output terminal nodes. This does not
have any significance 1o the neural modelling problem itself, however, because the mapping to an electrical
or physical simulation model Is part of the post-processing.

4.2. PRELIMINARY RESULTS AND EXAMPLES 12

-1

TTWCCAW VTR VOCEWVTTR VICAMVECR VCCA WUEEA
VREFMVREF VREF MVREF m[r-{\ﬁ-[r WIFHVRFF
) R 1 poves
Lo ! 1 1.2 i
DA DAL OB [DA DBAH DA 084 H UM
[1048 DBE [DAB CBE MDA DBBHDAB o
:jww: Hnewo HPRD M NPND NP4 H NPND NPHDENP Y senpko
o elonna M GHO:. o GNDA M GNDA GNDa [GNDS GNDA e GMNT SNDa e
Figure 4.21: Block schematic of the entire video filter circuit.
[LJ @ N
veeh 4 @ .-
R1 R2? R3 R4
2 1 502037 2] 582037 2] seee3rc 8allT o007k
= = = B
b4
n & 2 3 Tra
4 k- z
PNPD 4 = S N 4 ~Fr
@ o5
o |
= ® oo
T e
ES
z
o P
o 3
| {
=zl e ELm
. .
oan [E: 3
o p———
19 i)
o Qj
B :>(K
VREF 4 & rer
9 e
-) [
NPND i =y F Fj 4 D
RS Rb R7 RS
=al | s.eze37x 24 502037k adl | 502037k =4[] 562037k
= = & =
cHDA 4 +) crDi

Figure 4.22: Schematic of one of the four video filter/delay sections.

frequency domain data. The entire circuit was first simulated with Pstar to obtain this
data. A simulated time domain sweep running from 1MHz to 9.5MHz in 9.5us was appHed
to obtain a time domain response sampled every 5ns, giving 1901 equidistant time points.
in addition, admittance matrices were obtained from small signal AC analyses at 73 fre-

128 CHAPTER 4. RESULTS

Figure 4.23: The 2-2-2.2-2-2 feedforward wenral network nsed for macromodelling the
video filter ¢ipenit.

TAUINT

Ve il —— 7
| !
mowes 1w "3 "
VECh—ai) soprmyrcre]| soome YOCA_) 55y YOOy
VeCh S| Sazeatk —a5|| Somoim VOCA_T| | semeire —a) | wozesn
5 73 '3 voca s
" u 15 v
@ 0281 00010 51y 150014
- s L L
DOU#.—__“_,‘WW
ong p———ny
!
ol -
vmle
o
k1
l W
1
wr
VECA i Spumn
WCCA_T|| pamem

Figure 4.24: Schematic of the video filter interfacing cirenitry.

quencies running from 110kHz to T00MHe, with the sauple requencies positioned almost
cquidistantly on a logarithunic frequency scale, Because ouly one input was considered
relevant, it was morve efliclent to reduce the 2 X 2 admittance natrix to a 2 x 1 matrix

rather than including arbitrary (e.g.. constant zero) values in the full matrix.

A cowparison between the outcomes of the original transistor level simulations and the

4.2, PRELIMINARY RESULTS AND EXAMPLES 129

TAUBIAS

VCC»\IC 1'\@&
L R R Rd
WL YCCA VCCA, TA,
SaPa TP =1 spers =] s
VI Swmeix VGGA Seasin Wﬂl.nauzmx u;.‘[gsmm
™ s Hy 7s
4 Fheo
W
aaza
L84
n
VREFl. - 4 vrer
o
920
T
11 Ti9
NehD @ 2t PP NPND
| |
VOGA g1 o,
poPes
A,
ol S T voeh] S
3ok ShoP EA) Spons, =] ors
W 523 VCCA, 2523 VCCAm | s.oz03me WCCAA| | sar.ame vOCA. At
s £ 75 g SpPe
veea] | suein
S
GNDA _) & o

Figure 4.25: Schematic of the video filter biasing circuitry.

Pstar simulation results using the neural macromodel is presented in Figs. 4.26 through
4.30. In Fig. 4.26, VINI is the applied time domain sweep, while TARGETO0 and TAR-
GET1 represent the actual circuit behaviour as stored in the training set. The corres-
ponding neural model outcomes are I(VIDEOD_1\T8) and (VIDEOQO 1\T1). respectively.
Fig. 4.27 shows an enlargement for the first 1.6us, Fig. 4.28 shows an enlargement around
Tis. One finds that the linear neural macromode] gives a good approximation of the
transient response of the video filter circuit. Fig. 4.29 and Fig. 4.30 show the small-signal
frequency domain response for the first and second filter output, respectively. The target
values are labeled HROCO for Hgy and HR1CO for Hyg, while currents [{ VIDEQO_1\T0)
and [(VIDEOO_I\T1) here represent the complex-valued neural model transfer through
the use of an ac input source of unity magnitude and zero phase. The curves for the
imaginary parts IMAG(-} arve those that approach zero at low frequencies, while. in this
example, the curves for the real parts REAL(.) approach values close to one at low fre-
quencies. From these figures, one ohserves that also in the frequency domain a good match

exists between the neural model and the video filter circuit.

130

TARGET(
[VIDECK_(NTOY

TARGET!
1VIDEOD_IVT LY

Fignre 4.26

- yl-axis -

VINI

TARGETO
TARGET!

TV IDEOO_INTH
NV IDEGO_INT)

Figure 4.27:

OlL0m
KAV
o
S30.0m
60.0m
60.0m
J0.0m
.0
-308m
~60.0m
61 Om
30.0m
0.0
=30.0m

-60.0m
[EA8) 4.0u

Tiwe domain plots of the input and the two outputs of the video filter

cirenit and for the newral macromaodel.

60.0m

40.0m

20.0ny

Q) e

-200m

-40.0m

-60.0m
0 800.40n

400.0n

Enlargement of the first 1.6ps of Fig. 426,

e

CHAPTER 4. RESULTS

[Rexin

T

4.2. PRELIMINARY RESULTS AND EXAMPLES 131

ym 60.0m e - - - -
o B PN
30.0m o \\ o . o S
0.0 P = T x X R
. RS > * >
00w o R
-60.0m
TARGETO 60.0m
KVIDEQD_INTO) 30.0m
00
-30.0m
-60.0m
JARGET! 60.0m T - -
HVIDEOO_IKTD) 30.0m
00
-300m o
€00m | R I .
6.9u 7 Tl
695 7.05u
T
Figure 4.28: Enlargement of a small time interval from Fig. 4.26 around Tus, with
markers indicating the position of sample points.
-yl-axds - [T S— S
REAL((VIDEOO_IXTO))
IMAG{I(VIDEOU_INTO)) i
REAL(HROCO} 10 RN ;o
IMAG(HROCO} - P ot
= ~ i L I
N oo T
b ; .,
S000m . AN J f\\ \ Do
h S S
\, i H o i
N L i
; b
00 \ L
[R .
T \ / i i N
s N ! ' b “'/
: . Yo ; [
-500.0m Yo / oo
> VA
~ A / Vo
~ . \\ j o
SN LA
a0 - e Ny (SRR
\
| ‘/
| '
-5 ; ey -
1000k 10.0M
1.0M 100.0M
F

Figure 4.29: Frequency domain plots of the real and imaginary parts of the transfer
(H)oo for both the video filter circuit and the neural macromodel.

132 CHAPTER 4. RESULTS

-y laxin- 15
REALUYIDEOD NI
IMAGEHVIDEQO_INTI)

REALHRICH) 1o
IMACHER 1Ty Co S
Lo D
N i
SO0 ' v
i !
“‘ ! !
4.0 ,
.
-SU0.0m : : ' 3
i | ' l
Lo
-l
s .
10008 10.0M
1.oM 100.0M

Figure <£.30: Tregquency domain plots of the real and imaginary parts of the transfer
(H) for both the video filter cirenit and the newral macromodel.

In the case of macro-modelling. the usefulness of an accurate model is determined by the
gain in simnlation efficiency!. In this example. it was found that the tihne domain sweep
wsing the ueural macromodel van aboul 25 times faster than if the original transistor
level eivcuit. deseription was nsed. deereasing the original 4 nmiuute simmlation time to
abont 1) secomds, This is elearly o significant gain if the filter s to be used repeatedly
as o standard building block. and it especially holds 1l the desiguer wants to sinmlate
larger circuits in which this filter ix just oue of the hasic huilkding blocks. The advantage
in shimulation speed should of convse he balanced against the one-time offort of arriving at
a proper macrontodel. which may casily take on the order of a few man days and several

hours of CPU time before sulficient confidence about the model has heen obtained,

Tn this case, the W-nenron model for the video filter was obtained 1 slighthy less than au
honr of learning time on an HPOOOO/ T35 conmputer. using a maximmm (uality factor con-
straint Quas = 5 1o disconrage resonance peaks from ocowrrving during the early learning
phases. The results shown here were obtained through an iuitial phase using 750 itera-
tions of the heuristic technique first mentioned i section 4.2 and ontlined in seetion A2,

followed Dy 250 Polak-Ribiere conjugate gracient iterations®. The decrease of madelling

P Contrary to the usual application in deviee modelling we here alrcady frane a model, albeit in the form
of a complicated transistor-lovel deseription.

P shonld be remarked. though, that any minor change in ihe implementation of even a “standard”
optimization algorithm like Polak-Ribicre can significantly affect the required number of iterations, so
ome should view these anmbers only as rough or qualitative mdications of the learning effort involved in

4.2. PRELIMINARY RESULTS AND EXAMPLES 133

error with iteration count is shown in Fig. 4.31, using a sum-of-squares error measure—the
sum of the contributions from Eq. {3.20) with Eq. (3.22) and Eq. (3.61) with Eq. (3.62).
The sudden bend after 750 iterations is the result of the transition from one optimization

method to the next.

100 T T T T ¥ T T T
"video_iters" ——

Error

001 1 1 i 1 1 11 | 1 |
0 100 200 300 400 500 800 700 800 900 1000
lterations

Figure 4.31: Video filter modelling error plotted logarithmically as a function of it-
eration count.

modelling. As a general observation, it has been noticed that the required iteration counts normally stay
within the same order of magnitude, but it is not uncommon to have variations of a factor two or three
due to, for instance, a different random initialization of neural network parameters.

Chapter 5

Conclusions

To quickly develop new CAD models for new devices, as well as to keep up with the growing
need to perform analogue and mixed-signal simulation of very large circuits, new and more
efficient modelling techniques are needed. Physical modelling and table modelling are to a
certain extent complementary, in the sense that table models can be very useful in case the
physical insight associated with physical models is offset by the long development time of
physical models. However, the use of table models has so far been restricted to delay-free
quasistatic modelling, which in practice meant that the main practical application was in
MOSFET modelling.

The fact that electronic circuits can usually be characterized as being complicated nonlin-
ear multidimensional dynamic systems makes it clear that the ultimate general solution
in modelling will not easily be uncovered—if it ever will. Therefore, the best one can do
is try and devise some of the missing links in the repertoire of modeiling techniques, thus
creating new combinations of mode] and modelling properties to deal with certain classes

of relevant problems.

5.1 Summary

In the context of modelling for circuit simulation, it has been shown how ideas derived
from, and extending, neural network theory can lead to practical applications. For that
purpose, new feedforward neural network definitions have been introduced, in which the
behaviour of individual neurons is characterized by a suitably designed differential equa-
tion. This differential equation includes a nonlinear funection, for which appropriate choices
had to be made to allow for the accurate and efficient representation of the typical static
nonlinear response of semiconductor devices and circuits. The familiar Jogistic function

lacks the common transition between highly nonlinear and weakly nonlinear behaviour.

136 CHAPTER 5. CONCLUSIONS

Furthermore. desirable mathewatical properties like continuity, monotonicity, and stabil-
ity played an mportant role in the many considerations that fnally led to the set of neural
network definitions as presented in this thesis. Tt has Deen shown that any quasistatic he-
haviour can up to avhitrary precision be represented by these neural networks. iu case there
is ouly one de solution. In addition, any linear dynamic behavionr of lumped systems can
be covered exactly. Several relevant examples of nonlinear dynamic hehaviour have also
heen dewonstrated to fit the mathemnatical structure of the neural networks, although not

all kinds of nonlinear dynamic behaviour are considered representable at present.

The standard backpropagation theory for static nonlinear mmltidimensional hehaviow in
feedforward neural networks has been extended to include the learning of dynamic re-
sponge in both time domain and frequency domain. An experimental software implement-
ation lhas already yielded a nmiber of encouraging preliminary results. Furthermore. the
neural modelling software can. after the learning phase, automatically generate analogue
Behavioural macromodels and equivalent subeircuits for use with circuit simulators like
Pstar, Berkeley SPICE and Cadence Spectre. The video filter example in section 4.2.6 has
demonstrated that the new techniques can lead to more than an order of maguitude re-
duction in (transient) simulation time, by going from a transistor-level circuit deseription

to a macro-model for use with the same cirenit simulator,

All this does certainly not finply that one can now casily and quickly solve any modelling
problem by just throwing in some measurement or shunlation data. Sewe behaviour is
heyoud the representational hounds of our present fecdforward neural networks, as has
been addressed in section 2.6. Tt is not yet entively clear in wlich cases, or to what extent,
feedback in dyuamic neural networks will be required iu practice for device and snbeireuit
modelling, It has heen shown, however. that the introduction of external feedback to our
dynamic nenral networks would allow for the representation, up to arbitrary accuracy, of
a very general class of nonlinear multidimensional implicit differential equations, covering
awny state equations of the form f (@, @.#) = 0 as used to express the geueral time evolution
of electronic cirenits. It even makes these neural networks "nniversal approxitmators™ for
arbifrary coutinuous nonlinear mnltidimensional dynamic behaviour. This will then also
include, for instance, multiple de solutions (for modelling hysteresis and lateh-up) and

chaotic hehaviour,

Still, 1 secms fair to say that many issues in nonlinear mmltidinensional dynamic modelling
are only beginning to be understood, and more obstacles are likely to emerge as expevience
accumulates. Slow learning can in some cases be a hig problem, causing long learning

times in finding a {local) minimum'. Since we are typically dealing with high-dimensional

"The possibility of implementation crrors in the complicated sensitivity ealeulations has heen largely
eliminated by the software self-tesi. option. thereby making errors an unlikely reason for slow learning.

5.2. RECOMMENDATIONS FOR FURTHER RESEARCH 137

systems, having on the order of tens or hundreds of parameters (= dimensions), gaining
even a qualitative understanding of what is going on during learning can be daunting.
And yet this is absolutely necessary to know and decide what fundamental changes are

required to further improve the optimization schemes.

In spite of the above reasons for caution, the general direction in automatic modelling as
proposed in this thesis seems to have significant potential. However, it must at the same
time be emphasized that there may still be a long way to go from encouraging preliminary
results to practically useful results with most of the real-life analogue applications.

5.2 Recommendations for Further Research

A practical stumbling block for neural network applications is still formed by the often
long learning times for neural networks, in spite of the use of fairly powerful optimization
techniques like variations of the classic conjugate-gradient optimization technicue, the nse
of several scaling techniques and the application of suitable constraints on the dynamic
behaviour. This often appears to be a bigger problem than ending up with a relatively
poor local minimum. Consequently, a deeper insight into the origins of slow optimization
convergence wouid be most valuable. This insight may be gained from a further thorough
analysis of small problems, even academic “toy” problems. The curse of dimensional-
ity is here that our human ability to visualize what is going on fails beyond just a few
dimensions. Slow learning is a complaint regularly found in the literature of neural net-
work applications, so it seems not just specific to our new extensions for dynamic neural

networks.

A number of statistical measures to enhance confidence in the quality of models have not
been discussed in this thesis. In particular in cases with few data points as compared to the
number of model parameters, cross-validation should be applied to reduce the danger of
overfitting. However, more research is needed to find better ways to specify what a near-
minimum but stiil “representative” training set for a given nonlinear dynamic system
should be. At present, this specification is often rather ad hoc, based on a mixture of
intuition, common sense and a priori knowledge, having only cross-validation as a way to
afterwards check, to some unknown extent, the validity of the choices made?. Various forms
of residue analysis and cross-correlation may also be useful in the analysis of nonlinear

dynamic systems and models.

Related to the limitations of an optimization approach to learning is the need for more

*Or rather, cross-validation can only show that the training set is nsufficient: it can invalidate the
training set, not {really) validate it.

138 CHAPTER 5. CONCLUSIONS

“constructive” algorithims for mapping a target behaviowr outo neural networks by using a
priori knowledge or assumptions. For combinatorial logic in the sp-form the selection of a
topology and a parameter set of an equivalent feedforward neural network can be doue in
a learning=free and efficient manmer—the details of which have uot heen included in this
thesis. However, for the more relevant general classes of analogue hehaviour, virtually no
fast schemes are available that go beyond stmple linear regression. On the other hand,
even if such schemes cannot by themselves capture the full richness of analogue helhaviour,
they way still serve a useful role in a pre-processing phase to guickly get a rough first
approximation of the target behaviour. Inother words, a more sophisticated pre-procegsing
of the target data wmay yiekl a much better starting point for learning by optimization,
thereby also increasing the probability of finding a good approximation of the data during
subsequent learning. Pole-zero analysis, in combination with the neural network pole-zero
mapping as outlined in section 2.4.2, could play an important role by first finding a linear
approximation to dyuamical systewn behaviour.

Another important iter that deserves more attention in the future is the issue of dynaimnic
neural networles with feedback., The significant theoretical advantage of having a “uni-

stetns will have to weighed against the disadvantages

versal approximator” for dynamic

of giving up on explicit expressions for hehavionr and on guarantees for unigueness of
behaviour, stability and static monotonicity. In cases where feedback is not needed, it

ctearly remaing advantageous to make use of the techuiques as worked out in detail in this

thesis, because it offers much greater control over the various kinds of behaviour that one
wants or allows a dynamic neural network to learn. Seen from this viewpoint, it can be
stated that the approach as presented in this thesis offers the advantage that one can in
relatively small steps trade off relevant mathematical guarautees against representational

power.,

139

Appendix A

Gradient Based Optimization
Methods

In this appendix, a few popular gradient based optimization methods are outlined. In
addition, a simple heuristic technique is described, which is by default used in the experi-
mental software implementation to locate a feasible region in parameter space for further

optimization by the one of the other optimization methods.

A.1 Alternatives for Steepest Descent

A practical introduction to the methods described in this section can be found in [17], as

well as in many other books, so we will only add a few notes.

The simplest gradient-based optimization scheme is the steepest descent method. In the
present software implementation more efficient methods are provided, among which the
Fletcher-Reeves and Polak-Ribiere conjugate gradient optimization methods [16]. Its de-
tailed discussion, especially w.r.t. 1l-dimensional search, would lead too far beyond the
presentation of basic modelling principles, and would in fact require a rather extensive
introduction to general gradient-based optimization theory. However, a few remarks on
the algorithmic part may be useful to give an idea about the structure and (lack of) com-
plexity of the method. Basically, conjugate gradient defines subsequent search directions

s by
BT _g(k+1) + AR5l (A1)

where the superscript indicates the iteration count. Here g is the gradient of an error or

cost function E which has to be minimized by choosing suitable parameters p; g = VE,

T
or in terms of notations that we used before, g = (%%) . If %) = 0 Yk, this scheme

140 APPENDIX A, GRADIENT BASED OPTIMIZATION METHODS

corresponds to steepest desgeent with learning rate i = 1 and momentum g = 0, see
Eq. (3.24). However. with conjugate gradient, generally only #9 = 0 and with the
Fletcher-Reeves scheme, for A =1,2....,

ety i)

FLUS i fe (A2)
gt gt

while the Polak-Ribiere scheme involves

(ktd) (A+1}

g*h'yg
g(k)ig(k)

P (A.3)

For quadratic functions E these two schemes for 3% can be shown to be equivalent, which
implies that the scheines will for any nenlinear function £ behave similarly near a smooth
minitmuny, due to the nearly quadratic shape of the local Taylor expansion. New parameter
vectors p are obtained by scarching for a winimum of £ in the s direction by calculating
the value of the scalar parameter o which minimizes E(p'*) 4+ o s/%). The new point iu
parameter space thus obtained becomes the starting point p* D for the next iteration,
i.c., the next 1-dimensional search. The details of 1-dimensional search are omitted here,
but it typically involves estimating the position of the minimuw of E {only in the search
direetion!) through interpolation of subsequent points in each 1-dimensional search by a
parabola or a cubic polynomial, of which the minima can be found analytically. The slope
along the search direction is given by % = s'g. Special measures have to be taken to

ensure that E will never inerease with subsequent iterations.

The backgronad of the conjugate gradient method lies in a Gram-Schinidt orthogonaliza-
tion procedure, which simplifies to the Fletcher-Reeves schene for quadratic funetions. For
quadratic functions, the optimization is gnaranteed to reach the minimum within a finite
number of exact 1-dinmensional searches: at most 2, where v is the number of parameters
in E. For wore general fors of E, no such guaraniees can be given, and a significant
amount of heuristic knowledge is needed to obtain an implementation that is numerically
robust and that has good convergence properties. Unfortunately, this is still a bit of an

art, if not alchemy.

Finally, it should be noted that still more powerful optimization methods are kuown.
Anmong them, the so-called BFGS quasi-Newton method has become rather popular,
Slightly less popular is the DFP guasi-Newtow method. These quasi-Newton methods
huild up an approximation of the inverse Hessian of the error function in suecessive iter-
ations, using ounly gradieut information. In practice, these methods typically need sowe
two or three times fewer iterations than the conjugate gradient wethods, at the expense of

handling an approximation of the inverse Hessian [16]. Due to the matrix multiplications

A.2. HEURISTIC OPTIMIZATION METHOD 141

involved in this scherne, the cost of creating the approximation grows quadratically with
the number of parameters to be determined. This can become prohibitive for large neural
networks. On the other hand, as long as the CPU-time for evaluating the error function
and its gradient is the dominant factor, these methods tend to provide a significant saving
(again a factor two or three) in overall CPU-time. For relatively small problems to be char-
acterized in the least-squares sense, the Levenberg-Marquardt method can be attractive.
This method builds an approximation of the Hessian in a single iteration, again using only
gradient information. However, the overhead of this method grows even cubically with
the number of model parameters, due to the need to solve a corresponding set of linear
equations for each iteration. All in all, one can say that while these more advanced optim-
ization methods certainly provide added value, they rarely provide an order of magnitude
{or more) reduction in overall CPU-time. This general observation has been confirmed by

the experience of the author with many experiments not described in this thesis.

A.2 Heuristic Optimization Method

It was found that in many cases the methods of the preceding section failed to quickly
converge to a reasonable fit to the target data set. In itself this is not at all surprising,
since these methods were designed to work well when close to a quadratic minimum,
but nothing is guaranteed about their performance far away from a minimum. However,
it came somewhat as a surprise that under these circumstances a very simple heuristic
method often turned out to be more successful at quickly converging to a reasonable

fit—although it converges far more slowly close to a minimumn.

This method basically imvolves the following steps:

Initialize the parameter vector with random values.

*

Initialize a corresponding vector of small parameter steps.

Evaluate the cost function and its partial derivatives for both the present parameter

vector and the new vector with the parameter steps added.

For all vector elements, do the following:

If the sign of the partial derivative corresponding to a particular parameter in the
new vector is opposite to the sign of the associated present parameter step, then
enlarge the step size for this parameter using a multiplication factor larger than one,
since the cost function decreases in this direction. Otherwise, reduce the step size

using a factor between zero and one, and reverse the sign of this parameter step.

142 APPENDIXN A, GRADIENT BASED OPTIMIZATION METHODS

s Update the present parameter vector by replacing it with the above-mentioned new

veetor, provided the cost function did not nereage (too much} with the new vector.

o Repeat the former three steps for a certain number of iterations.

This is essentially a one-dimensional bisection-like search scheme which has been rather
boldly extended for use in multiple dimensions, as if there were no interaction at all
among the varions diisensions wort. the position of the minima of the cost function.
Some additional precantions are needed to avoid (strong) divergence, since convergence is
not guaranteed. One may, for example, reduce all parameter steps using a factor close to
zero if the cost function would merease (too much). When the parameter steps liave the
opposite sign of the gradient. the step size reduction ensures that eventually a sufficiently
small step in this (generally not steepest) descent divection will lead to a decrease of the
cost function. as long as a miinimun has not been reached.

After using this method for a certain munber of iterations. it s advisable to switeh to one
of the methods of the preceding seetion. At present. this is still done manually, but one

could concetve additional heuristics for doing this antomatically.

143

Appendix B

Input Format for Training Data

In the following sections, a preliminary specification is given of the input file format used for
neural modelling. Throughout the input file, delimiters will be used to separate numerical
items, and comments may be freely used for the sake of readability and for documentation

purposes:

DELIMITERS

At least one space or newline must separate subsequent data items (numbers).

COMMENTS

Comments are allowed at any position adjacent to a delimiter. Comments within nunbers
are not allowed. The character pair ”/*" (without the quotes) starts a comment, while
“%/” ends it. Comments may not be nested, and do not themselves act as delimiters. This
is similar, but not identical, to the use in the Pstar input language and the C programming
language. Furthermore, the "/* ... */” construction may be omitted if the comment
does not contain delimited numbers.

Example:

Any non-numeric comment, or also a
non-delimited number, as in V2001

/* Any number of comment lines, which
* may contain numbers, such as 1.234

*/

B.1 File Header

The input file begins—mneglecting any comments—with the integer number of neural net-
works that will be simultaneously trained. Subsequently, for each of these neural networks
the preferred topology is specified. This is done by giving, for each network, the total

144 APPENDIX B. INPUT FORMAT FOR TRAINING DATA

integer mamber of layers' I+ 1, followed by a st of integer numbers Ny ... Ny for the
width of each layer. The nwuber of network inputs Ny must be equal for all networks,

and the same holds for the nunber of network outputs Ny

Exanple:
2 /* 2 neural networks: */
3 323 /% 1st network has 3 layers in a 3-2-3 topology */
4 3443 /* 2nd network has 4 layers in a 3-4-4-3 topology */

These neural network specifications are followed by data about the device or subcircuit
that is to he modelled. First the number of controlling (independent) input variables of a
device or subeirenit is specified. given by an integer which should - for consistency - equal
the nmuber of inputs Ny of the neural networks. It is followed by the integer number of

{independent) output variables, which should equal the Ny of the neural networks.

Example:
input variables # output variables
3 3

After stating the number of nput variables and output variables, a collection of data
blocks i specified, in an arbitrary order. Eacli data block can contain cither de data aned
(opticually) fransient data. or ac data. The format of these data Dlocks is specified in
the sections B.2 and B.3. However, the use of neural networks for modelling electrical
behaviour leads to additional aspects concerning the interpretation of inputs and outputs

in terms of electrical variables and parameters, which is the subject of the next section.

B.1.1 Optional Pstar Model Generation

Very often, the input variables will represent a set of independent terininal voltages, like
the o discussed in the context of Eq. (3.19), and the ountput varviables will he a set of
correspouding indepeudent (target) terminal currents i. In the optional automatic gen-
cration of wodels for analogue civenit simulators, it is assumed that we ave dealing with
such voltage-controlled models for the terminal currents. In that case, we can interpret
the above J-iuput, 3-output examples as referring to the modelling of a 4d-terminal device
or subeireuit with 3 independent terminal voltages and 3 independent terminal currents.
See also section 2.1.2. Proceeding with this interpretation lu terins of electrical variables,
we will now deseribe how a neural network having more inputs than outputs will be trans-

lated during the automatic gencration of Pstar behavioural models. Tt is not allowed to

"Here we include the input layer in counting layers, such that a network with A + 1 layers has A — 1
hidden layers, in accordance with the conventions discussed earlier in this thesis. The input layer is layer
k= 0, and the output layer is layer & = AL

B.2. DC AND TRANSIENT DATA BLOCK 145

have fewer inputs than outputs if Pstar models are requested from the neural modelling

software,

If the number of inputs Ny is larger than or equal to the number of cutputs Ny, then the
first Ny (1) inputs will be used to represent the voltage variables in v. In a Pstar-like nota-
tion, we may write the elements of this voltage vector as a list of voltages V{T0.REF) ...
V(T< Ny —1 > ,REF). Just as in Fig. 2.1 in section 2.1.2, the REF denotes any reference
terminal preferred by the user, so V(T<i> REF) is the voltage between terminal (node)
T<i> and terminal REF. The device or subcircuit actually has Ny + 1 terminals, because
of the (dependent) reference terminal, which always has a current that is the negative
sum of the other terminal currents, due to charge and current conservation. The Ny
outputs of the neural networks will be used to represent the current variables in z, of
which the elements can be written in a Pstar-like notation as terminal current variables
I{T0) ... {T< Ni —1>). However, any remaining Ny — Ny inputs are supposed to be
time-independent parameters PARQ ... PAR< Ny — Ny — 1 >, which will be included as

such in the argument lists of automatically generated Pstar models.

To clarify this with an example: Ny =5 and Ni = 3 would lead to automatically generated

Pstar models having the form

MODEL: Neural¥et(TO,T1,T2,REF) PARO, PAR1;

END;

with 3 independent input voltages V(TO,REF), V(T1,REF), V(T2.REF), 3 independent
terminal currents I{(T0), I{T1), I{T2}, and 2 model parameters PARO and PARL.

B.2 DC and Transient Data Block

The dc data block is represented as a special case of a transient data block, by giving only
a single time point 0.0 (which may also be interpreted as a data block type indicater).
corresponding to ¢,;,—; = 0 in Eq. (3.18), followed by input values that are the elements

of %

CR

and by target output values that are the elements of &, .

In modelling electrical behaviour in the way that was discussed in section B.1.1, the wi?i),
of Eq. (3.18) will become the voltage vector v of Eq. (3.19), of which the elements will be
the terminal voltages V(TO.REF) ... V(T< Nx — 1 > REF), while the a,;, of Eq. (3.18)
will become the current vector i”s of Eq. (3.19), of which the elements will be the terminal

currents [{T0) ... [{(T< Ny —1>).

146 APPENDIX B. INPUT FORMAT FOR TRAINING DATA

Example:

0.0 /* single time point */
3.0 4.0 5.0 /* bias voltages */
5.0e-4 -5.0e-4 0.0 /* terminal currents */

However, it should be emrphasized that an interpretation in terms of physical quantities like
voltages and currents is ouly reguived for the optional antomatic generation of hehavioural
wodels for analogue circudt simulators. It does not play any role in the training of the

underlyiig neural networks.

Extending the de case. a transicut data block is represented by giving multiple tine points
Fyios always starting with the value 0.0, and in increasing thme order. Time points need

. . S . 0
not be equidistant. Each time point i followed by the elements of the corresponding .r(g ,)

K

and @ ;.

In the electrical interpretation. this amounts to the specification of voltages and enrrents

as a [inction of thme.

Example:

time voltages currents

0.¢ 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0

1.0e-9 2.5 4.0 5.0 4.0e-4 -4.le-4 0.0
4.0 4.0 b0 3.0e-4 -3.3e-4 0.0

2.5e-9

B.3 AC Data Block

The swall-signal ac data block s distinguished from a de or transient data block by
starting with a data block type indicator valne -1.0. This mumber is followed by the de
. 0 . .
bias represented by the elements of x;/ Vas in Eq. {3.59).
RN . fi . - .,

Tn the electrical interpretation, the elements of ch Y are the de hiag voltages VITOREF) ...
V(T< Ny — 1 = REF).

After specifying the de hias. the frequency values fi 5, are given, each of them followed by
the real and huaginary values of all the elemenis of an Ny x Ny target transfer matrix
H; i, The vequived order of matrix elements is the normal reading order, Le.. from left to

right, one row after the other?.

In the electrical interpretation. the transter matrix contains the real and hnaginary parts

Z'I:his gives) .)) X
Re((Hpa o) Im{{ sz, Joo) - RetE g dowvg —1) In{(Ha oy —1) Re((Hs, Jio) In((Hy i, o) -
Re((Fpi)1 v 1) bn{(EL) 1oveg 1) e o Re({Hpi, dae -1 a0 1) Tm{(H 3) a0 o0 vpe 1)

B.3. AC DATA BLOCK 147

of Y-parameters®. I:Ib,,—b is then equivalent to the so-called admittance matrix Y of the
device or subcircuit that one wants to model. The frequency fi; and the admittance
matrix Y have the same meaning and element ordering as in the Pstar specification of a
multiport YNPORT, under the assumption that a common reference terminal REF had
been selected for the set of ports [13, 14]:

f1 ylir yi1i yi2r y12i ... ym;mr ymmi
2 ylir ylii yi12r yi2i ... ymnr ymmi
fn ylir y1ii y12r y12i ... yoor ymmi

where the r denotes a real value, and the i an imaginary value. The admittance matrix
Y has size Ny x Ng: Ny is here denoted by m. The ykl=sy<k><l> = (¥)iy can be
interpreted as the complex-valued ac current into terminal T<k> of a linear(ized) device
of subcircuit, resulting from an ac voltage source of amplitude 1 and phase 0 between

terminal T<1> and terminal REF.

Frequency values may be arbitrarily selected. A zero frequency is also allowed (which can
be used for modelling d¢ conductances), The matrix element order corresponds to the

normal reading order, ie.. from left to right, one row after the other:

read in the order:

/ {ylir,y11i) ... (yimr,yimi) \ 1 2 S m
H=Y= | {y2ir,y21i} ... (y2mr,y2mi) | m+1 m+2 2m
\ (ymlr,ymli) ... (ymmr,ymmi) / (m-Dm+l (m-1)m+2 ... m*m

Clontrary to Pstar, the application is here not restricted to linear multiports, but includes

nonlinear multiports, which is why the dc bias had to be specified as well.

Example:
type dc bias voltages
-1.0 3.0 4.0 5.0
frequency ykir ykli yk2r yk21 yk3r yk3i
1.0e9 1.3¢-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /% k=1 */
1.3e-3 1.1le-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /% k=2 %/
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /x k=3 */
2.3e9 2.1e-3 1.0e-3 0.7e-3 1.5e-3 0.2e-3 2.0e-3 /x k=1 %/
1.0e-3 0.le-3 0.8e-3 0.2e-3 0.6e=3 3.1e-3 /*x k=2 */
1.1e-3 0.1le-3 0.5e-3 0.7e¢-3 0.9e-3 1.1e-3 /% k=3 */

Optional alternative ac data block specifications:

3S.parameter input is not (yet} provided: only Y-parameters can presently be used.

148 APPENDIX B, INPUT FORMAT FOR TRAINING DATA

Alternatively, ac data blocks may also be given by starting with a data block type indicator
value -2.0 instead of -1.0. The only difference is that pairs of numbers for the complex-
valued elements in Y are interpreted as (amplitude, plase) instead of (real part, imaginary
part). The amplitude given must be the absolute {(positive) amplitude (not a value in
decibel). The phase must he given in degrees. If a data block type indicator valne -3.0
is used. the (amplitude, phase) form with absolute amplitude is assumed during input

processing. witl the phase expressed in radians.

B.4 Example of Combination of Data Blocks

Taking the above example parts together, one obtains, for an arhitrary order of data
blocks:

neural network definitions

2
3 323
4 3443
inputs and outputs
3 3
ac block
-1.¢ 3.0 4.0 5.0
1.0e9 1.3e-3 1.1e-3 0.3e~-3 0.8e-3 0.3e-3 3.1le-3
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1le-3
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.le-3
2.3e9 2.1e-3 1.0e-3 0.7e-3 1.5e~3 0.2e-3 2.0e-3
1.0e-3 0.1le-3 0.8e-3 0.2e-3 0.6e-3 3.le-3
1.1e-3 0.1e-3 0.5¢-3 0.7e-3 0.9¢-3 1.1e-3
transient block
0.0 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0
1.0e-9 3.6 4.0 5.0 4.0e-4 -4.le-4 0.0
2.5e-9 4.0 4.0 5.0 3.0e-4 -3.3e-4 0.0
dc block
0.0 3.0 4.0 5.0 5.0e-4 -5.0e-4 0.0

The present experimental software implenentation can read an input file containing the

text of this example.

Only numbers arve required in the input file, since any other (textual) information is
automatically discarded as covnnent. In spite of the fact that no keywords are used. it is
still easy to locate any ervors dute to an aceidental wisaligninent of data as a consequence of
some missing or superfluons mmnbers. For this purpose, a -trace software option has heen
implentented, which shows what the neural modelling program thinks that each number

represents.

149

Appendix C

Examples of Generated Models

This appendix includes neural network models that were automatically generated by the
behavioural model generators, in order to illustrate how the networks can be mapped onto
several different representations for further use. The example concerns a simple network
with one hidden layer, three network inputs, three network outputs, and two neurons in
the hidden layer. The total number of neurons is therefore five: two in the hidden layer
and three in the output layer. These five neurons together involve 50 network parameters.

The neuron nonlinearity is in all cases the Fy as defined in Eq. {2.16).

C.1 Pstar Example

/***#***********
* Non-quasistatic Pstar models for 1 networks, as *
* written by auntomatic behavioural model generator. *
***/

MODEL: NeuronTypel(IN,OUT,REF) delta, taul, tau2;
delta2 = delta * delta;
EC1(AUX,REF) 1n((exp(delta2+«{V(IN,REF)+1)/2) + exp(-delta2*(V(IN,REF}+1)/2))
/ (exp(delta2*{V(IN,REF)-1)/2) + exp(-delta2*(V(IN,REF)-1)/2))
) / delta?;
L1(AUX,QUT) taui; C2(QUT,REF} tau2 / taul ;
R2(0UT,REF) 1.0 ;
END;

MODEL: Thesis0Q(T0Q,T1,T2,REF);
/* Thesis0 topology: 3 - 2 - 3 #/
c:Rlarge = 1.0e+15;
c: Neuron instance NET[0].L[1].N[0];

L4 (DDX4,REF) 1.0;
JC4(DDX4,REF)

150 APPENDIX . EXAMPLES OF GENERATED MODELS

+1.790512e-09+V (TO,REF)-1.258335e-10%V(T1,REF)+2.022312e-09*V (T2, ,REF} ;
EC4(IN4,REF)
~6.708517e~02+V (TO ,REF)-4.271246e-01*V(T1 ,REF) -7 .549380e-01+V (T2 ,REF)
+4.958681e-01-V(L4);
NeuronTypel_4(IN4,0UT4 ,REF)
1.369986e+00, 6.357758e-10, 6.905401e-21;
c:R4(0UT4,REF) Rlarge;

¢: Neuron instance NET[O].L[1].N[1];
L5 (DDX5,REF) 1.0;
JC5(DDX5,REF)
+1.933749¢~-09*V(TO,REF) +1.884210e-10*V (T1,REF)+2.656819e-09*V(T2,REF) ;
EC5(IN5,REF)
+1.895829e-01*V (TC,REF)+3.461638e-01*V(T1,REF)+1.246243e+00*V (T2 ,REF)
-2.266006e-01-V(L5);
NeuronTypel 5(IN5,0UTS5,REF)
1.458502e+00, 9.067704e-10, 5.114471e-20;
c:R5(0UTH,REF) Rlarge;

c: Neuron instance NET[0].L[2].M[0];
L6 (DDX6,REF) 1.0;
JC6 (DDX6 ,REF)
+2.202777e-10%V{0UT4,REF)+2.865773e-10xV(0UT5,REF) ;
ECE6(IN6,REF)
+1.425344e+00#V (QUT4,REF)-1.075981e+00*V (OUTS,REF)
+3.051705e-02-V(LE) ;
NeuronTypel_G(ING,DUTG,REF)
1.849287e+00, 7.253345e-10, 3.326457<¢-20;
¢:R6(QUTE,REF) Rlarge;
JCG(TO,REF) —1.249222e-~01-2.884799e-01+V(0UT6,REF};

c: Neuron instance NET[O].L{2].NW[1];
L7 (DDX7,REF) 1.0;
JC7(DDX7 ,REF)
+9.147703e~10%V(QUT4 ,REF) +5 . 598127e-10%V (QUT5 ,REF) ;
EC7 (IN7,REF)
+6.118778e-01#V (QUT4,REF}-2.250382e-02+V (QUT5 ,REF)
-1.391824e-02-V(L7);
NeuronTypel _7(IN7,0UT7 ,REF)
1.732672e+00, 2.478904e-10, 1.471256e-21;
<:R7(0UT7 ,REF) Rlarge;
JC10(T1,REF) ~8.017604e-02+5.439718e+00*V (0UT7 ,REF) ;

¢: Neuron instance NET[0].L[2].N[2};
L8 (DDX8,REF) 1.0;
JC8(DDX8,REF)
-5.037256e-11*V(0UT4,REF)-2.066628e~10*V (QUTS5,REF) ;
FC8(IN8,REF)
+1,891435e+00*V (QUT4,REF)-8.019724e-01%V{0UT5,REF)
+2.801973e-01-V(L8);
NeuronTypel_8(IKN8,0UT8,REF)
1.894981e+00, 1.096576e-09, 5.602805e-20;
<:R8{(QUT8,REF} Rlarge;

C.2. STANDARD SPICE INPUT DECK EXAMPLE 151

JC11(T2,REF} 2.267318e-01-2.024442e-01+V(0UT8,REF);

END; /* End of Pstar Thesis0 model */

C.2 Standard SPICE Input Deck Example

ook K 3K o 3K 3K 3K 3 3K R oK 3 oK e ok e Skl Sk sk S 3k Sk 3K ok ok s R ok R ke R ke ok S ok ko R o Rk ek kR ok
* Non-quasistatic SPICE subcircuits for 1 networks, *
* written by automatic behavioural model generator. *
ek ok e ok 2k ok ok sk ok ok ok ok ok ok oKk sk K oK Sk 3 K 3 0K Sk sk K sk i sk s ok R OK SO 3k ok 3k ok R i ke ok ke R ok

This file defines 1 neural networks:

* _SUBCKT NETO 1 2 3 899 with 3 independent terminal currents

*

* TEMP = 2,7000000000000000E+01 CtoK = 2.7314999999999997E+02
* BOLTZ = 1.3806225999999997E-23 (Boltzmann constant k)

* CHARGE = 1.6021917999999999E-19 (Elementary charge q)

¥ =>T = 3.0014999999999997E+02 Vt = 2.5864186384551461E-02

* N must equal q/(kT) == 1/Vt at YOUR simulation temperature TEMP!!!
.MODEL DNEURON D (IS= 1.0E-03 IBV= 0.0 CJO= 0.0 N= 3.8663501143113841E+01)
Re-generate SUBCKTs for any different temperatures.

Also, ideal diode behaviour is assumed at all current levels! =>

Make some adaptations for your simulator, if needed. The IS value

can be arbitrarily selected for numerical robustness: it drops

out of the mathematical relations, but it affects error control.

Cadence Spectre has an IMAX parameter that should be made large.

L B

.SUBCKT NETOLINC 1 2 999

% Neuron instance NET[0].L[1].N[0]

R1 1939 1.0

E1 4 999 1 999 1.0

Vi 4 5 0.0

E10 10 999 5 999 9.3843029994013438E-01
D10 10 15 DNEURON

V10 15 999 0.0

E20 20 999 5 999 -9.3843029994013438E-01
D20 20 25 DNEURON

V20 25 999 0.0

F30 999 30 V10 8.6725011215183601E-01
F3b 999 30 V20 1.3274988784836392E-01
D30 30 999 DNEURON

F40 999 40 V10 1.3274988784838392E-01
F45 999 40 V20 8.6725011215163601E-01
D40 40 999 DNEURON

G5 5 599 30 40 5.3280462068615719E-01
HB0 50 %98 V1 1.0

LB0 50 2 6.3577589508364058E-10

RBO 2 999 1.0

Ch0 2 999 1.0861375379500281E-11

.ENDS

152 APPENDIX C. EXAMPLES OF GENERATED MODELS

.SUBCKT NETOCL1N1 1 2 999

* Neuron instamce NET[0].L[1].N[1]

R1 1999 1.0

E1 4 999 1 999 1.0

V1 4 5 0.0

E10 10 999 5 999 1.0636136179961743E+00
D10 10 15 DNEURCN

V10 15 999 0.0

E20 20 999 5 999 -1.0636136179961743E+00
D20 20 25 DNEURON

V20 25 939 0.0

F30 999 30 V10 8.9352149294460403E-01
F35 999 30 v20 1.0647850705539598E~01
D30 30 993 DNEURON

F40 999 40 V10 1.0647850705539598E-01
F45 999 40 V20 8.9352149294460403E-01
D40 40 999 DNEURON

Gb 5 999 30 40 4.7009552297947205E-01
HBEO B0 999 V1 1.0

L850 50 2 9.0677037473784523E-10

R50 2 999 1.0

€50 2 9399 5.6403157684469542E-11

.ENDS

.SUBCKT NETOL2NO 1 2 999

* Neuron instance NET[0].L[2].N[O]

R1 18989 1.0

E1l 4 999 1 999 1.0

Vi 4 5 0.0

E10 10 999 5 999 1.7099305663270813E+00
D10 10 15 DNEURON

¥10 15 999 0.0

E20 20 999 5 999 -1.7099305663270813E+00
D20 20 25 DNEURON

V20 25 999 0.0

F30 999 30 V10 9.6831951188735381E-01
F35 989 30 V20 3.1680488112646179E-02
D30 30 999 DNEURQON

F40 999 40 V10 3.1680488112646179E-02
F45 999 40 V20 9.6831951188735381E~-01
D40 40 999 DNEURON

G5 5 999 30 40 2.9240953395785913E-01
H50 B0 899 V1 1.0

L50 50 2 7.2533448996746825E-10

RBO 2 899 1.0

CB0 2 999 4.5861006433956426E-11

.ENDS

.SUBCKT NETOL2N1 1 2 999

* Heuron instance NET[0].L[2].N[1]
Rl 1999 1.0

El 4 999 1999 1.0

Vi 4 5 0.0

C.2. STANDARD SPICE INPUT DECK EXAMPLE

E10 10 999 5 998 1.5009030008888708E+00
D10 10 15 DNEURON

V10 15 9899 0.0

E20 20 999 5 998 -1.5009030008888708E+00
D20 20 25 DNEURON

V20 25 999 0.0

F30 999 30 V10 ©.5265564929569439E-01
F35 999 30 V20 4.7344350704305857E-02
D30 30 999 DNEURCN

F40 999 40 V10 4.7344350704305657E-02
F45 999 40 V20 9.5265564929569439E-01
D40 40 999 DNEURON

GE 5 999 30 40 3.3313273719803212E-01
HEO B0 999 V1 1.0

Lo0 60 2 2.4789035420970444E~10

RGO 2 998 1.0

C&0 2 999 5.93510664405611015E-12

.ENDS

.SUBCKT NETOL2N2 1 2 999

* Neuron instance NET[0].L[2].N[2]

R1 1999 1.0

Ei 4 999 1 999 1.0

Vi 4 5 0.0

E10 10 999 5 999 1.7954759016151536E+00
D10 10 15 DNEURON

V10 15 999 0.0

E20 20 999 5 999 -1,7954759016151538E+00
P20 20 25 DNEURDN

V20 25 999 0.0

F30 999 30 V10 9.7316774616780659E-01
F35 999 30 V20 2.6832253832193342E-02
D30 30 999 DNEURON

F40 999 40 V10 2.6832253832193342E-02
F45 999 40 V20 9.7316774616780659E-01
D40 40 999 DNEURON

Gb 5 999 30 40 2.7847770028559875E-01
HBQ 50 999 V1 1.0

L50 50 2 1.0965763466052844E-09

REQO 2 999 1.0

C50 2 999 5.1094529090818392E-11

.ENDS

.SUBCKT NETOQ 1 2 3 989
* Network 0 topology: 3 - 2 - 3
G2 999 11 1 999 -6.7085165083464222E-02
G1 999 10 1 999 1.7905117030211314E-09
G4 999 11 2 999 -4.27124556761636123E-01
G3 999 10 2 999 -1.2583350345102781E-10
3
3

[

G6 999 11 3 999 -7.5493795848363306E-01
G5 999 10 3 999 2.0223116907395013E-09
T11 399 11 4.9586810996833493E-01
L10 10 999 1.0000000000000000E+00

153

154 APPENDIX C. EXAMPLES QF GENERATED MODELS

G7 992 11 10 999 1.00000000C000000CE+C0
X11 11 12 999 NETOL1NO

G10 999 14 1 999 1.8958285166932167E-01
G9 999 13 1 999 1.9337487686116938E-09
G12 999 14 2 999 3.4616377160667428E-01
G11 999 13 2 999 1.8842096327712685E-10
G14 999 14 3 999 1,2462426190134208E+00
G13 999 13 3 999 2.6568190323453482E-09
114 999 14 -2.2660081812223654E~01

L13 13 999 .0000000000000000E+00

G15 999 14 13 999 1.00000000C0000C00E+0O
X14 14 15 999 NETOL1N1

G18 999 17 12 999 1.4253444817664417E+00
G17 999 16 12 999 2.2027769755558099E-10
G20 999 17 15 999 -1.0759814652523116E+00
G19 999 16 15 999 2.8657725035783068E-10
I17 999 17 3.0517054260507383E-02

L16 18 999 .0000000000000000E+00

G21 999 17 16 999 1.00600000000000000E+00
X17 17 18 999 NETOL2NO

G24 1 999 18 999 -2.6847994620332268E~01
I18 1 999 -1.2492219829255186E-01

G26 998 20 12 99% 6.1167782976390769E-01
G25 999 19 12 999 9.1477032544690288E-10
G28 999 20 15 999 -2.25038170772506856E-02
G27 999 19 15 999 5.5981269686469661E-10
I20 999 20 -1.3918243186941530E-02

L19 19 999 . 0000G0030C000C00E+00

G29 999 20 19 999 1.0000000000000000E+00
X20 20 21 999 NETOL2N1

G32 2 999 21 999 5.4397177239052902E+00
121 2 999 -8.0176040232393930E-02

G34 999 23 12 999 1.8914346798991264E+00
G33 999 22 12 999 -5.0372564367972412E-11
G36 998 23 15 999 -8.0197243940349203E-01
G35 999 22 15 999 -2.0566284076395966E-10
123 999 23 2.6019731842095845E-01

L22 22 999 1.0000000000000000E+00

G37 999 23 22 999 1.0000000000000000E+00
¥23 23 24 999 NETOL2N2

G40 3 999 24 999 -2.0244416743534960E-01
124 3 999 2.2673179954870881E-01

JENDS

—_

—

-

C.3 C Code Example

3 o o ok ke s ok ok ok o 3 o ook ok ok oo o o f o kst kol o o ok sk o o ok ok ke ok ok ok
* Static (DC) C-source functions for 1 networks, as *
* written by automatic behavicural model generator. *
ot fe e ek sk oo e ok e o 0K Sk ek ok ok Sk o Kok o K K R R KR R R K R K KR R AR KK

double f{double s, double d)

C.3. C CODE EXAMPLE 15

(34

{
return(log(cosh(0.5%d*d* (s+1.0))/cosh(0.5+dkd* (s-1.0))3/(d*d));
}

/* Network O topology: 3 - 2 - 3 %/
void net(®(double in®, double inl, double in2
, double *out0, double *outl, double *out2)

{

double net01in0;

double net0linil;

double net012n0;

double net012ni;

double net0l2n2;

/* Neuron instance NET[0].L[1].N[0] */

netOling =

£(-6.7085165083464222e-02 * in0
-4.2712455761836123e~01 * inil
-7.5493795848363305e-01 * in2
+4.9586810996633499e-01, 1.3699856203187932¢+00) ;

/% Neuron instance NET[O3.L[1].N[1] */
net0linl =
£(+1.8958285166932167e-01 * in0
+3.4616377160567428e-01 * inl
+1.2462426190134208e+00 * in2
-2.2660061612223554e-01, 1.4585017092867422e+00) ;

/* Neurcn instance NET([0].L[2].N[0] =/

net012n0 =

£(+1.4253444817664417e+00 * net011n0
-1.0759814652523116e+00 * net0linil
+3.0517054260507383e-02, 1.8492866550792397e+00) ;

*outd = -1.2492219829255186e-01 -2.6847994620332258e-01 * net012n0;

/* Neuron instance NET[0].L[2].N{1] */

net012ni =

£ (+6.1167782976390769e-01 * net011in0
-2.25603817077250656e-02 * net0llnl
-1.3918243186941530e-02, 1.7325720769368317e+00);

*outl = -8.0176040232393930e~02 +5.4397177239052802e+00 * net012ni;

/* Neuron instance NET[Q].L[2] . N[2] =/

net(l2n2 =

f(+1.8914346798991264e+00 * net01iinl
-8.0197243940349203e-01 * net0linl
+2.6019731842095845e-01, 1.8949806867697379e+00) ;

*out? = 2.2673179954870881e-01 -2.0244416743534960e-01 * net012n2;

156 APPENDIX C. EXAMPLES OF GENERATED MODELS

C.4 FORTRAN Code Example

sk 3k A o o ok ok e o 3K o ok obe ok o ofe ke sk 3k ok ok sk kol Kk ke o oF o f e e 30k e e s e sk ok sk ok R
* Static (DC) FORTRAN source code for 1 networks, *
* written by automatic behavioural model generator. *
SRR R ok R K K oK o 8 ok Kok oK Sk e kR o o o R oo ok ok K K ok ko o o R R

G Qaa

DOUBLE PRECISION FUNCTION DF(DS, DB)

IMPLICIT DOUBLE PRECISION (D)

DD2 = DD % DD

DF = LOG{ (EXP(DD2*(DS+1D0)/2D0)
+ EXP(-DD2x(DS+1D0) /2D0))
/ (EXP(DDZ*(DS-1D0)/2D0)
+ EXP{-DD2%(DS-1D0) /2D0))
)/ DD2

+ o+ o+ o+

END

C Network O topology: 3 - 2 - 3
SUBROUTINE NETO(DINO

, DIN1

. DINZ

, DOUTO

, DOUT!
DQUT2)

+ + + + +

IMPLICIT DOUBLE PRECISION (D)

C Neuron instance NET[0].L[1] .N[0]
DING =
DF (-6.7085165083464222E-02 * DINO
-4 .2712455761836123E-01 * DIN1
-7.5493795848363305E-01 * DIN2
+4.9586810996633499E-01, 1.3699856203187932E+00)

oo+

C Neuron instance NET[0].L[1].N[1]
DIN1 =
DF(+1.8958285166932167E-01 * DINO
+3.4616377160567428E-01 = DIN1
+1.2462426190134208E+00 * DIN2
-2.2660061612223554E-01, 1.4585017092867422E+00)

+ o+ o+ o+

o Neuron instance NET[0].L[2].N[0]
D2NO =
+ DF(+1.4253444817664417E+00 * D1NO
-1.0759814652523116E+00 = D1N1
+ +3.0517054260507383E-02, 1.8492866550792397E+00)

3

DOUTO = -1.2492219829255186E-01-2.68479946203322568E-01 * D2NO

C Neuron instance NET[O1.L[2].N[1]
D2N1 =
+ DF(+6.1167782976390769E-01 = DINC

C.5. MATHEMATICA CODE EXAMPLE

+ -2.2503817077260656E-02 * DiN1
+ -1.3918243186941530E~02, 1.7325720769358317E+00)

DOUT1 = -8.0176040232393930E-02+5,4397177239052902E+00 * D2N1

C Neuron instance NET{0].L[2].N([2]
D2N2 =
+ DF(+1.8914346798991264E+00 * D1INQ
+ -8.0197243940343203E-01 * DiN1
+ +2.6019731842095845E-01, 1.8949806867697379E+00)

DOUT2 = 2.2673179954870881E-01-2.0244418743534960E-01 » D2N2
END

C.5 Mathematica Code Example

(*** \
* Static (DC) Mathematica models for 1 networks, as * \
* written by automatic behavioural model generator. * \
***)

Clear[f]
fis_,d 1 := 1/d"2 Log [Cosh{d"2 (s+1)/2] / Coshld™2 (s-1)/2]1]
Clear [x0,x1,%2]

(* Network O topology: 3 - 2 - 3 %)

Clear[net0lin0] (* Neuron instance NET[0].L([i].N{0] =)
net0lin0[z0_,z1_,x2_] = \
£[-0.6708516508346424 10"-1 x0 \
-0.4271245576163612 107+0 x1 \
-0.7549379584836331 107+0 x2 \
+0.4958681099663350 107+0,+1.3639856203187932 10°+0]

Clear[net01linl] (* Neuron instance NET[0].L[1].N[1] %)

netOlinlfxC_,x1_,x2_] = \

f[+0.1895828516693217 10"+0 xC
+0.3461637716056743 107+0 x1
+1.2462426190134208 107+0 x2
-0.2266006161222355 10°+0,+1.4

o~

85017092867422 10°+0]

Clear [net012n0] (* Neuron instance WET[0].L[2].N[0] %)

net012n0{x0_,x1_,x2_] = \

£[+1.4253444817664417 107+0 netOlinC{x0,x1,22] \
-1.0759814652523116 10740 net0linl[x0,x1,x2] \
+0.3051705428050739 107-1,+1.8492866550792397 10°+0]

netOoutputOix0_,z1_,x2_] := -0.1249221982925519 10°+0 \
-0.2684799462033226 10°+0 net012n0[x0,x1,x2]

Clear[net012n1] (* Neuron instance NET[0].L{2].N[1]1 *)
net0l2nilx0_,x1_,x2] := \

158 APPENDIX C. EXAMPLES OF GENERATED MODELS

£ [+0.6116778297639077 107+0 net011n0[x0,x1,x2] \
-0.2250381707725066 107 -1 net0linl[x0,x1,x2] \
-0.1391824318694153 107-1,+1.7325720769358317 107+0]

netOoutputl[x0_,x1_,x2_] := -0.8017604023239395 107-1 \
+5.4397177239052902 107+0 net012n1[x0,x1,x%2]

Clear[net012n2] (* Neuron instance NET[0].L{2].N[2] #)
net012n2[x0_,x1_,x2.] = \
£[+1.8914346798991264 107+0 netOlin0[x0,x1,x2] \
—0.8019724394034920 107+0 net0lini[x0,x1,x2] \
+0.2601973184209585 107+0,+1.8949806867697379 107+0]

netOoutput2[x0_,x1_,x2_] := +0.2267317995487088 107+0 \
-0.2024441674353496 10°+0 net012n2[x0,x1,x2]

159

Appendix D

Time Domain Extensions

In this appendix, we will siightly generalize the numerical time integration and transient
sensitivity expressions that were previously derived only for the Backward Euler integ-
ration method. The main purpose is to incorporate the trapezoidal integration method,
because the local truncation error of that method is O(A®), with h the size of the time
step, instead of the O(h?) local truncation error of the Backward Euler integration method
[9]. For sufficiently small time steps, the trapezoidal integration is therefore much more
accurate. Ag has been mentioned before, both the Backward Euler integration method
and the trapezoidal integration method are numerically very stable—A-stable—methods
[29]. The generalized expressions, as described in the following sections, have also been

implemented in the neural modeliing software.

D.1 Generalized Expressions for Time Integration

From Egs. (3.1} and (3.5) we have

Flsurbin) = Yk + TLik Q(Z#& + Toik %—f‘ :
(D1
o - i
“ik dt
with, for £ > 1,
N1 Ni_1

dyj k-1
sk = 3 Wik Ypke1 — Ok D Vi fﬂt
=i =1

Ny Ny

= Z Wik Yih—1 — Bk + Z Vijk #j k=1 (D.2)
=1 =1

160 APPENDIX D). TIME DOMAIN EXTENSIONS

The sy are now directly available without differentiation or integration in the expressions
for neuron ¢ in layer b > 1. since the 3,40 are “already™ obtained through integration in
the preceding layer & - 1. The special case & = 1, where differentiation of network nput
signals is needed 1o obtain the z; 4. s obtained from a separate numerical differentiation.

One may use Eq. (3.16) for this purposc.

Eq. (D.1) may also be written as

125 .
T2 ik (Tffl‘ = Flsigpa O] = mir ~ Trik S
(D.3)
(]-,f ik _
dF T vk
We will apply a discretization according to the scheme
. D ox-
flow &, t) =0 — f(£|:1:+§2:1: 5 .f) =0 (D.4)
Y

where values at previous time points in the discretized expressions are denoted by ac-
cents (). Consequently, a set of implicit nonlinear differential——or differential-algebraic-—
equations for variables in the vector @ is replaced by a set of implicit nonlinear algebraic
equations from which the unknown new x at a new time poiut £ = t 4+ owith 4 > 0
has to be solved for o (known) previous @' at time . Different values for the parameters
& and €& allow for the selection of a particular integration scheme. The Forward Euler
method i3 ebtained for £ = 0, & = 1. the Backward Buler method for £ = 1, & =0, the
trapezoidal ntegration method for £ = & = % and the second order Adams-Bashforth
method for £ = % & = 7% [9]. See also [10] for the Backward Euler method. Ini all these
cases wo have £, = 1 - &, In the following, we will exclude the Forward Euler variant,
since it would lead to a number of special cases that require distinct expressions iu order

to avoid division by zero, while it also has rather poor nunierical stability properties.

Using Eq. (D4), we obtain [rom Eq. (D.3)

.
2k = 2,)
Ty = & {F (s dn) = Y = Trik i)
|2

b8 A F Uy b)) — W — Tk) (D.5)

T '
L},'/L& = &z + &y

D.1. GENERALIZED EXPRESSIONS FOR TIME INTEGRATION 161

Provided that £; # 0—hence excluding pure Forward Euler—we can solve for g, and z;

to obtain the explicit expressions

Vi, = { E}F (s, i) + €18 F (54, bin)
+ [*élfl + a3~ Tk QTM] Uik + é—/—é—ﬁm 5 }
(D.6)
/ { &+ al + g }
L= yik"’y"g« I
L 3 1 Tk

where division by zero can never occur for & # 0, & # 0. This equation is a generalization
of Eq. (3.4): for £ =1 and & = 0, Eq. (D.6)} reduces to Eq. (3.4).

162

D.2 Generalized Expressions for Transient Sensitivity

APPENDIX D.

TIME DOMAIN EXTENSIONS

The expressions for trausient seusitivity are obtained by differentiating Eqs. (D.2) and

(D.6) woat. any (scalar) parameter p (indiseriminate whether p resides in this neuron or

in a prececding laver), which leads to

i

I35

=
=

a=1

|
|

vy,

dp

dp

Sy
G T wis ﬁ’;rl - S

(].E‘,IA. N

which is idextical to the first equation of (3.8), and

[oyn y [{OF aF Dsn
R ACARCANC]
o [fary | oreEy (o)
+ 182 {(Dj) + (DTJA) (‘D‘J‘AJ
e Ok L1 0719k
ST h dp '
+ [*5152 + élflflm %L] (%ﬁ)&)
+ Iy e '
+ Mg (T;}) T T TRk ('()]TA)} }

which generalizes the second and third equation of (3.8).

(D7)

(D &)

For auy integration scheme, the initial partial derivative values are again, as in Eq. (3.9},

ohtained from the forward propagation of the steady state equations

N

k1 s

Dsir oy By k-1
Sok| = — +ow

P li=0 Jz:l { dp =0 Tk
Sy JF JF Osyy

P =0 dp T Psi |y
%!A =0

L li=0

corresponding to de sensitivity,

e

iy
dp

(D.9)

D.3. TRAPEZOIDAL VERSUS BACKWARD EULER INTEGRATION 163

D.3 Trapezoidal versus Backward Euler Integration

To give an intuitive impression about the accuracy of the Backward Euler method and the
trapezoidal integration method for relatively large time steps, it is instructive to consider
a concrete example, for instance the numerical time integration of the differential equa-
tion # = 2wsin(27t) with 2(0) = —1, to obtain an approximation of the exact solution
x(t) = —cos(2wt). Figs. D.1 and D.2 show a few typical results for the Backward Euler
method and the trapezoidal integration method, respectively. Similarly, Figs. D.3 and D.4
show results for the numerical time integration of the differential equation & = 2w cos(2wt)
with 2(0) = 0, to obtain an approximation of the exact solution z(t) = sin{2xt). Clearly,
the trapezoidal integration method offers a significantly higher accuracy in these examples.
It is also apparent from the results of Backward Euler integration, that the starting point
for the integration of a periodic function can have marked qualitative effects on the ap-

proximation errors.

164 APPENDIX D. TIME DOMAIN EXTENSIONS

-1

Figure D.1: The exact solution () = —cos(2wt) (solid line} of & = 27 sin(2nt),
r{0y = =1, t € [0.2]. compared to Backward Euler integration results
using 20 (large dots) and 40 (small dots) equal time steps, respectively.
The scaled sonree funetion sin{2at) is also shown {(dashed).

1}
0.5 - i
¥
//
-0.5
-1
Fignre D.2: The exact solution #(#) = —cos(2nt} (solid line) of + = 2wsin(2wi),

2(0) = =1, t € [0.2]. compared to trapezoidal integration results using
20 (large dots) and 40 (small dots) equal time steps, respectively. The
scaled souree function sin(2#?) is also shown (dashed).

D.3. TRAPEZOIDAL VERSUS BACKWARD EULER INTEGRATION 165

Figure D.3: The exact sclution «(t) = sin{2x¢) (solid line) of & = 27 cos(2at), 2(0) =
0, t € [0,2], compared to Backward Euler integration results using 20
{(large dots) and 40 {(small dots) equal time steps, respectively. The
scaled source function cos(2#t} is also shown (dashed).

1 F

Figure D.4: The exact solution z(f) = sin(2=t) {solid line) of & = 27 cos(2mt), z(0) =
0, t € [0,2], compared to trapezoidal integration results using 20 (large
dots) and 40 (small dots) equal time steps, respectively. The scaled
source function cos(27¢) is also shown (dashed).

BIBLIOGRAPHY 167

Bibliography

(]

2

8

(9]

(10]

(1]

S.-I. Amari, *Mathematical Foundations of Neurocomputing,” Proc. [EEE, Vol. 78,
pp. 1443-1463, Sep. 1990.

J. A. Anderson and E. Rosenfeld, Eds., Neurocomputing: Foundations of Research.
Cambridge, MA: MIT Press, 1988.

G. Berthiau, F. Durbin, J. Haussy and P. Siarry, “An Association of Simulated An-
nealing and Electrical Simulator SPICE-PAC for Learning of Analog Neural Net-
works,” Proc. EDAC-1993, pp. 254-259

E. K. Blum and L. K. Li, “Approximation Theory and Feedforward Networks,” Neural
Networks, Vol. 4, pp. 511-515, 1991.

G. K. Boray and M D. Srinath, “Conjugate Gradient Techniques for Adaptive Fil-
tering,” J[EEE Trans. Circuits Syst.-I, Vol. 39, pp. 1-10, Jan. 1992.

R. K. Brayton, G. D. Hachtel, C. T. McMullen and A. L. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
19384.

J. J. Buckley and Y. Hayashi, “Fuzzy input-output controllers are universal approx-
imators,” Fuzzy Sets and Systems, Vol. 58, pp. 273-278, Sep. 1993,

G. Casinovi and A. Sangiovanni-Vincentelli, “A Macromodeling Algorithm for Analog
Circuits,” IEEE Trans. CAD, Vol. 10, pp. 150-160, Febh. 1991,

L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Circuits. Prentice-
Hall, 1975.

L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits. McGraw-Hill,
1987,

W. M. Coughran, E. Grosse and D. J. Rose, “Variation Diminishing Splines in Sim-
ulation,” SIAM J. Sci. Stat. Comput., vol. 7, pp. 696-705, Apr. 1986.

163

(12]

[13]

[14]

(19]

20

21

[22

23]

[24

BIBLIOGRAPHY
J. J. Ebers and J. L. Moll, “Large-Signal Behaviour of Junetion Transistors,” Proc.
LR.E., vol. 42, pp. 1761-1772, Dec. 19564.

Pstar User Guide, version 1.10, Internal Philips docnment from Philips Electronic

Design & Tools, Analogue Simulation Support Centre, Jan. 1992,

Pstar Reference Manwal, version 1.10, Iuternal Philips document from Philips Elec-

tronic Design & Tools, Analogne Simulation Support Centre, Apr. 1892

F. Goodenough, *Mixed-Sigual Simulation Searches for Answers,” Electronic Destgn.
pp- 37-50, Nov. 12, 1992,

R. Fletcher, Practical Methods of Optimization. Vols. 1 and 2, Wiley & Sons, 1930,

W. H. Press, 5. A. Teukolsky, W. T. Vetterling and B. P. Flanncry, Numerical Recipes

in C., Cambridge University Press, 1992.

P. Triedel and D. Zwierski, Iniroduction to Newral Networks. (Introduction aux
Reséanx de Neurones.) LEP Technical Report C 91 503, December 1991,

K.-I. Funahashi, “On the Approximate Realization of Continuons Mappings by Neural
Networks,” Newral Networks, Vol, 2, pp. 183-192, 1939,

K.-I. Funahashi and Y. Nakamura, “Approximation of Dynamical Systems by Con-
tintous Time Recurrent Neural Networks,” Newral Networks, Vol. 6, pp. 801-806,
1693.

H. C.de Graafand F. M. Klaassen, Compact Transistor Modelling for Circuit Design.
Springer-Verlag, 1990.

D. Hammerstrom, “Neural networks at work,” IEEE Spectrum, pp. 26-32, June 1993,

K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward Networks are
Universal Approximators,” Newral Networks, Vol. 2. pp. 359-366, 1989,

K. Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neural
Networks, Vol. 4, pp. 251-257, 199].

D. R. Hush and B. G. Horne, *Progress in Supervised Neural Networks,” JTEEE Sign.
Proc. Mag.. pp. 8-39, Jan. 1993.

Y. Ito, “Approximation of Functions on a Compact Set hy Finite Sums of a Sigmoid
Function Without Scaling.” Neuwral Networks. Vol. 4, pp. 817-826, 1091,

BIBLIOGRAPHY 169

(27]

(30]

(31]

[37]

(38]

(39]

(40]

Y. Ito, “Approximation of Continuous Functions on R? by Linear Combinations of
Shifted Rotations of a Sigmoid Function With and Without Scaling,” Neural Net-
works, Yol. 5, pp. 105-115, 1992.

J.-S. R. Jang, “Self-Learning Fuzzy Controllers Based on Temporal Back Propaga-
tion,” IEEE Trans. Neural Networks, Vol. 3, pp. 714-723, Sep. 1992.

D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing. Books/Cole Publishing Company, 1991.

D. Kleinfeld, “Sequential state generation by model neural networks,” Proc. Natl.
Acad. Sei. USA, Vol. 83, pp. 9468-9473, 1986.

G. J. Klir, Introduction to the methodology of switching circuits. Van Nostrand Com-

pany. 1972,
B. Kosko, Neural Networks and Fuzzy Systems. Prentice-Hall, 1992.

V. Y. Kreinovich, “Arbitrary Nonlinearity Suffices to Represent All Functions by
Neural Networks: A Theorem,” Neural Networks, Vol. 4, pp. 381-383, 1991.

M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer Feedforward Networks
With a Nonpolynomial Activation Function Can Approximate Any Function,” Neural
Networks, Vol. 6, pp. 861-867, 1993.

Ph. Lindorfer and C. Bulucea, “Modeling of VLSI MOSFET Characteristics Using
Neural Networks,” Proc. of SISDEP 5, Sep. 1993, pp. 33-36.

R. P. Lippmann, “An Introduction to Computing with Neural Nets,” JEEE ASSP
Mag., pp. 4-22, Apr. 1987.

C. A. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley, 1989.

P. B. L. Meijer, “Table Models for Device Modelling,” Proc. Int. Symp. on Circuits
and Syst., June 1988, Espoo, Finland, pp. 2593-2596.

P. B. L. Meijer, “Fast and Smooth Highly Nonlinear Table Models for Device Mod-
eling,” IEEE Trens. Circuits Syst., Vol. 37, pp. 335-346, Mar. 1990.

K. S. Narendra, K. Parthasarathy, “Gradient Methods for the Optimization of Dy-
namical Systems Containing Neural Networks,” IEEE Trans. Neurel Networks, Vol.
2, pp. 252-262, Mar. 1991.

170 BIBLIOGRAPHY

[41] O. Nerrand, P. Roussel-Ragot, L. Persounaz and G. Dreyfus, “Neural Networks and
Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms,” Newral Com-
putation, Vol. 5, pp. 165-199, Mar. 1993.

[42

R. Hecht-Nielsen, *Nearest matched filter classification of spatio-temporal patterns,”

Applied Optics, Vol. 26, pp. 1892-1899, May 1937.

43

P. Ojala, J, Saarinen, P. Elo and K. Kaski, *Novel technology independent ncural
network approach on device modelling interface,” IEE Proc. - Circuits Devices Syst.,
Vol. 142, pp. 74-82. Feb. 1995.

[44] D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed Processing, Erplor-
ations tn the Microstructure of Cognition. Vols. 1 aud 2. Cambridge, MA: MIT Press,
1986.

[45] F. M. A. Salam, Y. Wang and M.-R. Choi. “On the Analysis of Dynamic Feedback
Neural Nets,” TEEE Trans. Circuits Syst., Vol. 38, pp. 196-201, Feb. 1991.

[46] H. Sompolinsky and I. Kanter, “Temporal Association in Asymmetric Neural Net-
works,” Phys. Rewv. Lett., Vol. 57, pp. 2861-2864, 1986,

{47] J. Sztipanovits, “Dynamic Backpropagation Algorithm for Neural Network Controlled
Resonator-Bank Arvchitecture,” IEEE Trans, Circuits Syst.-II, Vol. 39, pp. 99-108,
Feb. 1992.

[48] Y. P. Tsividis, The MOS Transistor, McGraw-Hill, 1983.

[49] B. de Vries and J. C. Principe, *The Gamma Model - A New Neural Model for
Temporal Processing,” Newral Networks, Vol. 5, pp. 565-576, 1992

[50] P. J. Werbos, “Backpropagation Through Time: What It Dees and How to Do it.”
Proc. IEEE, Vol. 78, pp. 1550-1560, Oct. 1990.

oT
faeiy

B. Widrow and M. E. Lehr, “30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation,” Proc. TEEE, Vol. T8, pp. 1415-1442, Sep. 1990.

[62] C. Woodford, Soleing Linear and Non-Linear Equations. Ellis Horwood, 1992,

SUMMARY 171
Summary

This thesis describes the main theoretical principles underlying new automatic modelling
methods, generalizing concepts that originate from theories concerning artificial neural
networks. The new approach allows for the generation of {macro-)models for highly non-
linear, dynamic and multidimensional systems, in particular electronic components and
(subjeircuits. Such models can subsequently be applied in analogue simulations. The pur-
pose of this is twofold. To begin with, it can help to significantly reduce the time needed
to arrive at a sufficiently accurate simulation model for a new basic component—such as
a transistor, in cases where a manual, physics-based, construction of a good simulation
model would be extremely time-consuming. Secondly, a transistor-level description of a
(sub)circuit may be replaced by a much simpler macromodel, in order to obtain a major

reduction of the overall simulation time.

Basically, the thesis covers the problem of constructing an efficient, accurate and numeric-
ally robust model, starting from behavioural data as obtained from measurements and/or
simulations. To achieve this goal, the standard backpropagation theory for static feedfor-
ward neural networks has been extended to include continuous dynamic effects like, for
instance, delays and phase shifts. This is necessary for modelling the high-frequency be-
haviour of electronic components and circuits. From a mathematical viewpoint, a neural
network is now no longer a complicated nonlinear multidimensional function, but a system
of nonlinear differential equations, for which one tries to tune the parameters in such a

way that a good appreximation of some specified behaviour is obtained.

Based on theory and algorithms, an experimental software implementation has been made,
which can be used to train neural networks on a combination of time domain and frequency
domain data. Subsequently, analogue behavioural models and equivalent electronic circuits
can be generated for use in analogue circuit simulators like Pstar {from Philips), SPICE
(University of California at Berkeley) and Spectre {from Cadence). The thesis contains a
number of real-life examples which demonstrate the practical feasibility and applicability

of the new methods.

SAMENVATTING 173
Samenvatting

Dit proefschrift beschrijft de belangrijkste theoretische principes achter nieuwe automat-
ische modelleringsmethoden die een uitbreiding vormen op concepten afkomstig it the-
orieén betreffende kunstmatige neurale netwerken. De nieuwe aanpak biedt mogelijkhieden
om {macro)modellen te genereren voor sterk niet-lineaire, dynamische en meerdimen-
sionale systemen, in het bijzonder electronische componenten en {deel)circuits. Zulke
modellen kunnen vervolgens gebruikt worden in analoge simulaties. Dit dient een tweeledig
doel. Ten eerste kan het helpen bij het aanzienlijk reduceren van de tijd die nodig is om
tot een voldoend nauwkeurig simulatiemodel van een nienwe basiscomponent—rzoals een
transistor—te komen, in gevallen waar het handmatig vanuit fysische kennis opstellen
van een goed simulatiemode] zeer tijdrovend zou zijn. Ten tweede kan een beschrijving,
op transistor-niveau, van een (deel)circuit worden vervangen door een veel eenvoudiger
macromodel, om langs deze weg een drastische verkorting van de totale simulatietijd te

verkrijgen.

In essentie behandelt het proefschrift het probleem van het maken van een efficient,
nauwkeurig en numeriek robuust model vanuit gedragsgegevens zoals verkregen uit metin-
gen en/of simulaties. Om dit doel te bereiken is de standaard backpropagation theorie
voor statische “feedforward” neurale netwerken zodanig uitgebreid dat ook de continue
dynamische effekten van bijvoorbeeld vertragingen en fasedraaiingen in rekening kunnen
worden gebracht. Dit is noodzakelijk voor het kunnen modelleren van het hoogfrequent
gedrag van electronische componenten en circuits. Wiskundig gezien is een neuraal netwerk
nu niet langer een ingewikkelde niet-lineaire meerdimensionale funktie maar een stelsel
niet-lineaire differentiaalvergelijkingen, waarvan getracht wordt de parameters zo te be-
palen dat een goede henadering van een gespecificeerd gedrag wordt verkregen.

Op grond van theorie en algoritmen is een experimentele software- implementatie gemaakt,
waarmee neurale netwerken kunnen worden getraind op een combinatie van tijd-domein
en/of klein-signaal frequentie-domein gegevens. Naderhand kunnen geheel automatiseh
analoge gedragsmodellen en equivalente electronische circuits worden gegenereerd voor
gebruik in analoge circuit-simulatoren zoals Pstar (van Philips), SPICE (van de universiteit
van Californié te Berkeley) en Spectre (van Cadence). Het proefschrift bevat een aantal
aan de praktijk ontleende voorbeelden die de praktische haalbaarheid en toepashaarheid

van de nieuwe methoden aantonen.

ot

CURRICULUM VITAE 17
Curriculum Vitae

Peter Meijer was born on June 5, 1961 in Sliedrecht, The Netherlands. In August 1985
ke received the M.Sc. in Physics from the Delft University of Technology. His master’s
project was performed with the Solid State Physics group of the university on the subject

of non-equilibrium superconductivity and sub-micron photolithography.

Since September 1, 1985 he has been working as a research scientist at the Philips Re-
search Laboratories in Eindhoven, The Netherlands, on black-box modelling technignes

for analogue circuit simulation.

In his spare time, and with subsequent support from Philips, he developed a prototype
image-to-sound conversion system, possibly as a step towards the development of a vision

substitution device for the blind.

STELLINGEN

behorende bij het proefschrift

Neural Network Applications in
Device and Subcircuit Modelling
for Circuit Simulation

vaill

Peter B.L. Meijer

. Cynici die het praktisch nut van neurale netwerken aanvechten

diskwalificeren daarmec zichzelf.

. Een stapsgewijze uitruil van uitdrukkingskracht tegen gegaran-

deerde model-eigenschappen is een groot voordeel van de aanpak
zoals geintroduceerd in dit proefschrift.
(Dit proefschrift, hoofdstuk 5.2)

De tocpassing op grote schaal van neurale netwerken binnen
circuit-simulatie 1s slechts een kwestie van tijd. Een verruiming
van de definitie van neurale netwerken kan deze tijd desgewenst
tot nul reduceren.

. De op handeu zijnde standaardisatie van analoge hardware be-

schrijvingstalen (AHDL’s), zoals VHDIL-A en Verilog-A,| leidt
de aandachit af van de werkelijke modelleringsprohlemen.
(Dit proefschrift, hoofdstuk 1.4).

. Veel onderzoekers van neurale netwerken verwarren de noodzaak

van het discretiseren van de tijd in niet-lineaire differentiaalver-
gelijkingen met de noodzaak om tot tijd-discrete modellen te
komen.

(Dit proefschrift, hootdstuk 1.3).

. De grote toegevoegde waarde van terugkoppeling voor neurale

netwerken bevestigt de waarde van een goede opvoeding, maar
laat ook zien dat een simpele opvoedkundige terugkoppeling
waarschijulijk volstaat.

(Dit proefschrift, hoofdstuk 2.4.3.2).

10.

11.

12.

. Het verdwijnen van paranormale verschijnselen bij nauwkeuri-

ger waarneming laat de mogelijkheid open van een onbedoelde
reduktie van macroscopische waarschijnlijkheidsgolven onder in-
vloed van de gangbare wetenschappelijke onderzoeksmethoden,
zodanig dat het resultaat consistent is met de hypothese van het
niet-bestaan van het paranormale.

. Het thuis laten uitvoeren van chirurgische ingrepen kan de kans

op onbehandelbare infecties helpen verlagen.

. Formele correctheidsbewijzen voor computerprogramma’s zijn

geen bruikbaar alternatief voor het aan de praktijk toetsen van
computerprogramma’s, en zullen dat ook nooit worden.

Een wet die het voorkomen van censuur op Internet onder-
steunt zal in Nederland voor iedereen aanvaardbaar zijn, op
voorwaarde dat die wet alleen schriftelijk wordé bediscussieerd
en vastgelegd.

De grote commerciéle belangen bij de ontwikkeling van multi-
mediasystemen voor de massa dragen onbedoeld bij tot een ver-
snelde ontwikkeling van hoog-technologische hulpmiddelen voor
gehandicapten.

Binnen de psychologie is de noodzaak of wenselijkheid van het
hebben van een ik nocit overtuigend aangetoond. Op het ter
discussie stellen van het ik als zodanig blijkt, ondanks de talloze
persoonlijke en maatschappelijke problemen die met dat ik, of
veelvouden daarvan (MPS), samenhangen, nog steeds een tahoe
te rusten.

	Voorblad

	Contents

	List of figures

	List of tabels

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Appendix A

	appendix B

	Appendix C

	Appendix D

	Bibliography

	Summary

	Samenvatting

	CV

	Stellingen

