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Chapter 1 

Introd uction 

In the electronics industry, circuit designers increasingly r<?ly on advanced computer-aidecl 

design (CAD) software to help them with the synthesis and verification of complicated 

designs. The main goal of (computer-aided) design and associated software tools is to 

exploit the available technology to the fullest. The main CAD problem areas are con­

stantly shifting, partly because of progress within the CAD area, but also because of tlw 

continuous improvements that are being made w.1'.t. manufacturing capabilities. 'With 

the progress made in integrating more and more functions in individual VLSI drcuits, the 

traditional distinction between system and circuit designers now also begins to blur. In 

spite of such shifting accents and in spite of many new design approaches and software 

tools that have been developed, the analogue circuit simulator is ····after sE'vE'ral decades 

of intense usage~st.ill recognized as one of the key CAD tools of the designer. Extens­

ive rounds of simulations precede the actual fabrication of a chip, with the aim to gN. 

first-time-right results back from the factory. 

When dealing with semiconductor circuits and devices. one typically deals with contin-uou$, 

but highly nonlinear, multidimensional dynamic systems. This makes it a difficult topic. 

and much scientific research is needed to improve the accuracy and efficiency with which 

the behaviour of these complicated analogue systems can be analyzed and predicted, i.e., 

simulated. New capabilities have to be developed to master the growing complexity in 

both analogue and digital design. 

Very often, device-level simulation is simply too slow for simulating a (sub )circuit of any 

relevant size, while logic-level or switch-level simulation is considered too inaccurate for 

the critical circuit parts. while it is obviously limited to digital-type circuits only. The 

analogue cirrnit silllnlator often fills the gap by providing good analogue accuracy at a 

reasonable computational cost. Naturally, there is a continuous push both to improve tilE' 

accuracy obtained from analogue circuit simulation, as well as to increase the capabilities 
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for silllulaiillg Y('},V laq.:;c' ('irnILt.s. ('olltailliup,' l1\({,U," thollsau<is of <levief's. Thp:-I(' ':He' t.o 

a large ('xtC'llt cOllfikt illg l'C'lpl.lrr'llH'llts, l){'can<...,c higher ('lCTtIriiCY ('('11(1:--.: to f(\(plin' lllon' 

l'olliplicatc'd 1lIOd{'b, br tlw C"lrfltlt l"OlllPOll(>lltS. whilE· high(\r Sitllllla.t.ioll spp(~d f.(\\'o11r:-l 

til(' ,el('CtiOll of Silllplifi('(l. hut Jp" cl('Cllratc. IlIodd,. Thl' lattl'r lJOhb d"'pitr: th" ~l'lH'ral 

'';IH'{,d illcH'a:--'p of ;-n"nilahl(l ('OlllPl1t.{'l" ]u--trdv\.:aH' on \\,hidl ODe call ntil tll(' ('irctlit sinnilatioll 

soft,\v<-tl'i'. 

Api)rt from Ill(' import2Ctlt 1'01(' of good moclels for ckvicp, mid stlbcirnlits. it. is "Iso wry 

imporlalll 1.0 dp\·('jOjJ ((HI\,(' jJo\\('rful algoritltllio for ",lYiug the hUE\c .sYSI.('lll' of llolililH';n 

('quatiolls that. (,Ol'l'Psjlolld 1'<, e[('ct.l'Ollic c·irl'uit.s, How('\'c1'. in this tll(',is we will fo(,us 

om att.('llt.ioll Oll tit" d('\'cio]llll('ut of cll',-in' ctud snlwil'('ni( lIloc1"b. aBel ill parti('ular Oil 

posslhi1it.ic·s 10 alltolll;-t!(' 11l()(1(·1 dc,\"('lopnH'tlt.. 

III tlip follo-willg' S(·ctiOll;';. r;,('v(lral approadw;.; arE-' outlilled that. aiIll at. t.he g:('u('ratioll of 

device and sllhcircllit IIIO<lPl:-; for 11:--(' ill itn;-J,.logu(' circuit :--illlltlrt1.ors lik() Bi'rkc'l!):v SPICE. 

Philips' Pst.ar, ('21(["1](-" S]Wcl.re. AW1C2Id's Eldo or Awdogy's Sal,pr. A 111llch silll]llifircl 

ow]'"i('w is showl( in Fig. 1.1. C('](('rally stctrtiug frolll ciis('l'('((' bcbaviollral datal. tlIP lllain 

objPri i\'~ is (0 alri\'(' al ('out ill1l0nS lllocl('b t lmt a(Turat.,'l" lllat~b t.hE' (lis('l'Pt.e dat.a. alld 

t.hat fulfill a 11111111wr of addil iOlled l'('(l\lir('llH'llts to lllilk" thPlll snitabl<' for 1]S(' ill ('in'nit 

SilIl1Llat 01':--;, 

IThc" '\'Dnl "di~nd('" in thi:-: ,'Ollj('xt rder:-; to 11w fnd [hfl-i. ci(·vin',,- <'IJI.! ~lJhcirc-lIi1.'-i .ar(' llOt'llla.llv ('h.'ll'­

<ld<'rized (lll(,;;~1--lIl'('d Ill' :-,illlUl.cdvd) ()Idy itl it filli!(' f',~'1 of difr(~r("1l1 I)in~ ,'()l)ditiollS, tiltl(' POill!.;':, ;-wd/or 

rrcqll('lICi(':-' 

I SPICE I 
PhYSical .1 

Measurements 

Device 
1 Simulations 

Subcircuit 
1 Simulations 

PhYSiCal~1 
Modelling 

Table ~I 
Modelling 

Neural ~I 
Modelling 

I Pstar I 
[CadenCej 

Spectre 

I EldD I 

I Saber I 
I '" I 

Fi!-;1]l'(' 1.1: l\'foci('llillg for ('ifnlit Sillllliat.ioll. 
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1.1 Modelling for Circuit Simulation 

In modelling for cifcuit simulation, there afe two major applications that need to lw 

distinguished because of their different requirements. The first modelling application i" 

to dewlap efficient and sufficiently accurate dellice modelB for devices for which no mockl 

is available yet. The second application is to develop more efficient and still sufficiently 

accurate replacement models for subcircuits for which a detailed (network) "model" is oft.en 

already available, namely as a description in terms of a set of interconnectE'd transistors and 

other devices for which models are already available. Such efficient subcirnlit replacement 

models are often ealled macro models. 

In the first applicat.ion, the emphasis is often less on model efficiency and more on having 

something to do accurate rirrnit-level simulations with. Crud ply stated: any mod'" is 

better than no model. This holds in particular for technological advancements leading to 

new or significantly modified semiconductor devices. Then one will quickly want t.o know 

how circuits containing these devices will perform. At that stage, it is not yet crucial to 

have the efficiency provided by existing physical models for other devices-as long as tlw 

differences do not amount to orders of magnitude2 The latter condition nsnally excludE'S a 

direct interface between a circuit simulator and a device simulator, since the finite-elenwnt 

approach for a singlp device in a devi(:e simulator typically leads to thousands of nonlinear 

equations that have t.o be solved, thereby making it impractical to simulate circuits having 

morE' than a few transistors. 

In the serond application, the emphasis is on increasing efficiency without sacrificing too 

much accuracy w.r.t. a complete subcircuit description ill terms of its constituent com­

ponents. The latter is often possible, because designers strive to create near-ideal. e.g .. 

near-linear, behaviour using devices that are themselves far from ideal. For example. a 

good linear amplifier may be built from many highly nonlinear bipolar transistors (for the 

gain) and linear resistors (for the linearity). Special circuitry may in addition be needed 

to obtain a good common mode rejection, a high bandwidth, a high slew rate, low off­

BPt currents, etc. In other words, designing for seemingly "simple" near-ideal bdlin-iour 

usually requires a complicated circuit, but the macromodel for circuit simulation may be 

simple again, thereby gaining much in simulation efficiency. 

At the device level, it is often possible to obtain discrete bPlmvioural data from measure­

ments and/or device simulations. One may think of a data set containing a list of applied 

:2 An additional reason for the fact that thE" complexity of transistor-level models doE'S not matt.::-r "too 
much is that with very Ia.rg-e circuits, containing many thousa.nds of thesof" devir-es, the simulation timE'S ,up 
dominated by the algorithms for solving large sets of {non)linear equations: the time spent in evaluating 
device models grows- only linearly with the number of devices, whereas for most analogue circuit simulator", 
the time spent in the (non)linear solvers grows superlinearly. 
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\'oltage:.; ;-t,ud C'OlTC";';IH)udill.l-', <kvi('(' C'llrrrllt.:-.. hut tlH' lic;t cOllld a1:-;0 involve> COlllhiHalioll:-l 

(If f{llX()~, ('hal"f,!.,('s. voltage" <tlld (,11lT('Ut:-.. Silnilarh', at thc' snl)cilTllit [('vd. 011(' obtaitL~ 

sneil (lisnC'l(' )('liavionral (la.ta frolll llll'ilsmrllH'uts audio!, (snh)(,Ll('tlit simulatiolls. For 

rtlli-Llog'll:p ('ire"nit Sillllll::ltiOll. 1IOWPY('L a n'pl'(,~(,lltaJjOll or pl{'ct.riud hr·havionr is lU'('dpd 

that ('i\ll ill prLlll·Lpl" pmvirl" ell I (lUt('Olllt' for itnv ('ollll)illatioll of input valm's. or /ria., 

(onddi07/h. \\'lH'l"p tlH~ illPllt \'(ll'iahlp:.; an' n~llally a S(:lt of illd(,})C'llclpllt vo1tag(':-.;, SPrtJllliug 

(\ ('oUtiUlIOll,'-, LE'al-valHpd inpl1t spac(' ill'lI ill cast' of II ilHiP] H'lHh·nt. voltag('s. Cow-:c'qlwntly. 

s01l1(-\\',hillg: 11ll1st IH' dOll(' to cirnllHVf'Ht t1tt·l dis(,rete· llHtn]'p of t.11C' datil. ill a data ~C't_ 

Tll{' gellcral nppr()Hdl i:--. to dp\-dop a "rodd that lIot 0111y d()~('h lilat.dlf':--, tIl<' lwhi-n'iolll' as 

s}H'{'ificd ill thC' c1ata sl't_ hl1t al~o _yi('ld~ "J'(Ic\'souahlc·" Ollj('OH](lS for :-;ituatiolls not ;-.;pcC'ifird 

ill 1 h(l data :--:.('t. The' \'aglH' llOt.iOll of H'a:"ollH.hlc' uu1 ronl(,~ rpf(l}":-; to 1->('\'(-'ra1 (-)~p('('t:-;. For 

~it.\latioll:--1 that an' elm,,' <{('('()Ulillg 10 SOlll(' <lii-.,fanCf· HH)<-l.f-:l1l'C to a situa.tioH frmu t.lw 

dat" s('/. thE' tll()d"l OlltcOIl\('S ,1101Ild also lw close' 10 t.he ("OlT('SpOlH\ill[!, olll("()][l<'S for thai 

particular silllatioll from the' data s('t. COlltillllity of it lllc)(kl alreiltlv implies tllis prolwrts 

to SOllJ[' ('XII'lIt, hlll stl"icth .'l)('Hking ollly for illfinit~sLlllal distcwf"s. \\.'p wOllldlt"t he 

,,,rtisfi,,d wit.h c\, (,()l1tillllOIlS hul \\·ildly oscillating inter]lolat.illg lJllld"l ftllldion. Thcrdorp. 

t 11(' notion of n ' i-1S01lablc' ontc'()lll(':--' al~() l'(-'-ft'rs to ('('rtaill (,Ol1St rn.illt:-; 011 t hC' 1l11111b(-\l' of ~igll 

cha.llge:-l ill lIiglwr (l("riy(ttiY(\~ of a ll:lodcL 1),Y f('latiug t.li(l-lIl to t.he IlHlllhf'l' of ;-;igll dl{jllge~ 

in tillite ditieren(','s nllclllatC'd !'rOll I tl](' data sct'l. 'vIncI! mOl"(' nUl ))(' said a.bout Ihis 

topic, hut for Ollr pllrpO~(\~ it ~llOHlcl lH' sufficic'llt. to gin' S()I)H' i<ipa. of \vbat. W(1 IlWan b:v 

rNlsUlla),le )whaviolll". 

A l1lodel tlpw]opeci for Il'<' ill a cin:"it sim,,\ator nonllalh' I·onsists of a S('( of analvl ii'al 

hllH tiOllS that t.Og('t.hN define (11(' lllodc'l on it.s COlltinllous input spacr m". For lllllllrr­

iCid and other reasons, tit., f01ubinat.ioll of functiolls that cOllstit.ut,(,s a llloejd shollld )>0 

"smooth," meaning tluit the modpl and its first---ancl pref('rably also higher partial cleriv­

atiw's iU"E' continuous ill t hc' input vari"blrs. Furthermore, to incorporate "ffeets lik" signal 

propagat.ioll delii)'. a <1"\'i("(' lI1O<1d lllRy lw cOIWtrnctccl from sevrml so-called Cjllasictcttjc 

(suh)lll[Jekk 

A ljua81.stali,· model ('Ol"ists of flllidions c1rsnibing tliP static )wllfl.viour. snpplc'llH'lltl'cl hr 

fUllCtiOllS of which the first till1\' clcrivatiw is ild,kd to tIl(' outCOllll'S of the static outpllt 

functious to giVC' a first o1Cli'r approximation of the dfects of th" rate with which input 

sigllRls change. for pXilmplE', it qll<lsistatic l\IOSfET model llonm1lly cont.ains uonlinl'ar 

lllllltidimPllSiotwl £ltllctiollC,- of thc dPpli~d voltagl's' ,·fot' the static (de) terminal CUlTPuts 

awl <ibn llOlllinpctr 111l1lt.idililt'tlsional ftlllctiollS for P'lllivalf'nt t('rmillRl charges [48J; nH)IC 

detaib will hI' gin'll in ,s('c/ioll 2.4.1. Time' derivatiws of t h" equivaleut terminal chargE'S 

:3Th"" ~()-('::dl(-ld 1)(ll'iatton.dm1l1118hmg sph1"lt .. ~ ar{' ba-'f'd on ("onsiclnailolls ilk..., thp<;p-: spp fOT illstaI1("p 

[11. :-m] [or "OllH' dpvin-' 1l1Odf'lling "ppiicatiolls. 
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form the capacitive currents. Time is not an explicit variable in any of these model func­

tions: it only affects the model behaviour via the time dependence of the input variables 

of the model functions. Time may therefore only be explicitly present in the boundary 

conditions. This is entirely analogous to the fact that time is not an explicit variable 

in, for inst.ance, the laws of Newtonian mechanics or the Maxwell equations, while actual 

physical problems in those areas are solved by imposing an explicit time dependence in 

the boundary conditions. True delays inside quasistatic models do not exist, because the 

behaviour of a quasi static model is directly and instantaneously determined by the be­

haviour of its input variables4
• In other words, a quasistatic model has no internal state 

variables (memory variables) that could affect its behaviour. Any charge storage is only 

associated with t,he terminals of the quasistatic model. 

The Klrchhoff current law (KCL) relates the behaviour of different topologically neighbour­

ing quasistatic models, by requiring that the sum of the terminal currents flowing towards 

a shared circuit node should be zero in order to conserve charge [101. It is through the COr­

responding differential algebraic equations (DAE's) that truly dynamic effects like delays 

are accounted for. Non-input, non-output circuit nodes are called internal nodes, and a 

model or circuit containing internal nodes can represent truly dynamic or non-quasistatic 

behaviour. because the charge associated with an internal node acts as an internal state 

(memory) variable. 

A non-quasistatic model is simply a model that can~via the internal nodes·-represent the 

non-instantaneous responses that quasistatic models cannot capture by themselves. A set 

of interconnected quasistatic models then constitutes a non-quasistatic model through the 

KCL equations. Essentially, a non-quasistatic model may be viewed as a small circuit by 

itself, but the internal structure of this circuit need nO longer correspond to the physical 

structure of the device or subcircuit that it represents, because the main purpose of the 

non-quasistatic model may be to accurately represent the electrical behaviour, not the 

underlying physical structure. 

1.2 Physical Modelling and Table Modelling 

The classical approach to obtain a suitable compact model for circuit simulation has 

been to make use of available physical knowledge, and to forge that knowledge into a 

4Phase shifts are modelled to some extent by quasistatic models_ For instance, with a qllasistatic 
MOSFET model, the capacitive currents correspond to the frequency-dependent imaginary parts of current 
phasors in a small-signal frequency domain representation, while the first partial derivatives of the static:: 
currents correspond to the real parts: of the small-signal response. The la.tter a.re equivalent to a matrix 
of (trans)conductances. The real and imaginary parts together determine the phase of the response w.r.t . 
.an input signal. 
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Ilumerically well-behaw!l model. A monograph all physical MOSFET mod~llillg is j{)r 

installC(' [48]. The Philips' MOST lllodel 9 and bipolar model MEXTRAIVI arc ('xiI,lIt]>lrs 

of advanced physical model" [211. The relation with the underlying device physics awl 

physical structure remains a vcry importflllt flssrt of snch hand-crafted models. On the 

other hand, a major disfldvfllll.age of physical modelling is that it usually tahs years to 

dpvelop a good model for a new device. That has been one of t.he major reasons to cxplorf' 

altf'rnative modelling techniqu{'s. 

Becau.sr of many compli{"atiom, in developing a physiral 11lOI\('I, the resulting modd often 

contains ,,'vera! constnH"tiolls t.hat "rc more of a curve-titting natnr(' illst.0acl oflwing hased 

On physics. This i" cOmIll()]] ill ["asps where analytical l,xprl'ssions can lw ,leriwt\ only for 

idealized asymptot.ic \wbavionr OCClllTillg clrep within distind opnatiug regiolls. Trans­

ition regions in multidimcllsiollal behaviour are then simply- -but certainly not easily-.. 

moclelkd by carf'fully df'signcd transition fUlldions for the desilwl intermediat.e hrlHi\·iour. 

Conscqllclltly', advanced physical models are in practicc at kast part.ly phenomenological 

lIlodels in order to lIl<?Ct. the ac:curacy fllld Rllloothness requirements. Apparently, tlw plw­

nomenological approach offers SOllle advantages when purr physical modelling runs into 

troubk and it is therefore logical and legitimate to ask whet.lH'r a pur"ly phenomenological 

approach would he feasib!.> ;)wl worthwhile. Phenomenological modelling in its ext.rellle 

form is a kind of black-box modelling. !\ivin~ an accurate represpntat.ion of hphaviour 

without. knowing anyt.hing ahout t.he Utl1SPS of that lwbavionr. 

Apart from using phvsical knowledge t.o deriyp or build a lllodel. ouc could also ;)pply 

numerical int.erpolation or approximation of discrete data. The lllfrits of this kiml of hlack­

box approach. anel a 11l1mb('r of useful t.echniques, an' described in detail in [11. 3~, 39]. 

The ll10dpls resulting from tlwsp t,<'l'hniqups are called table modd~. A wry important 

advflutage of tflble lllodellillg tedlllicples is that one can in principle' obtain a ijllasist.atil' 

mockl of any required :t("curacy by providing a sufficient. amount of (sufficiently a('('mate) 

discrete data. Optimi2ation t;'chniqlH's arc not necessary --although optimization can he 

("rnployi'd to further improw the a(·curacy. Table modelling can 1)(> applied without the risk 

of finding a poor tit clue to some local minimum resulting from opt.imizat.ion. However, a 

major disadvantage is that a 'ingle CjuCLsistatic modi'! canllot. eX})l'e~s all kinds of lwltavionr 

rekvant to device and .Sl1 brircuit 11lodPlling. 

Table modelling has so far lwen restricted to the g<?uerRt.ion of a singl;, qllasist.atic lllocld 

of the whole device or sllbcircuit to b(" l11oclellNI. tiwrrby neglecting the ('on5e((U0[1C('S 

of non-inst.alltan~ous rf'SpOllse. Fmt.hHlllore, for rat.lwr fundament.al reasons, it is not 

possible to ohtain even low-diIllensional interpolating table modelo that. are bot.h infinitely 
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smooth (infinitely differentiable, i.e., COO) and computationally efficient5. In addition, the 

computational cost of evaluating the table models for a given input grows exponentially 

with the number of input variables, because knowledge about the underlying physical 

structure of the device is not exploited in order to reduce the number of relevant terms 

that contain multidimensional combinations of input variables6 . 

Hybrid modelling approaches have been tried for specific devices, but this again in­

creases the time needed to model new devices, because of the re-introduction of rather 

device-specific physical knowledge. For instance, in MOSFET modelling one could apply 

separat.e-nested-table models for modelling the dependence of the threshold voltage on 

voltage bias, and for the dependence of dc current on threshold and voltage bias. Clearly, 

apart from any further choices to rednce the dimensionality of the table models, the in­

troduction of a threshold variable as an intermediate, and distinguishable, entity already 

makes this approach rather device-specific. 

1.3 Artificial Neural Networks for Circuit Simulation 

In r!'cent years, much attention has been paid in applying artificial neural networks to 

learn to represent mappings of different sorts. In this thesis, we investigate the possibility 

of designing artificial neural networks in such a way, that they will be able to learn to 

represent the static and dynamic behaviour of electronic devices and (sub )circuits. Learn­

ing here refers to optimization of the degree to which some desired behaviour, the target 

behaviour, is represented. The terms learning and optimization are therefore nowadays of­

ten used interchangeably, although the term learning is normally used only in conjunction 

with (artificial) neural networks, because, historically, learning used to refer to behavioural 

changes occurring through-synaptic and other-adaptations within biological neural net­

works. The analogy with biology, and its terminology, is simply stretched when dealing 

with artificial systems that bear a remote resemblance to biological neural networks. 

5 A piecewise (segment-wise) description of behaviour allows for the us€: of simple, in the sense of 
computationally inexpensive, interpolating or approximating functions for individua.l segments of the input 
space. Accuracy is controlled by the density of segments, which need not affect the model evaluation time. 
HowevE?'t, thE' vahle::i of a simple-e.g'1 low-order polynomial-COC:- functjon and its higher order derivatives 
will not, or not :sufficiently rapidly, drop to constant zero outside its associated segment. To avoid the costly 
evaluation of a., large number of contributing functions, the contribution of a simple function is in practice 
forced to zero outside its associated segment, thereby introducing discontinuities in at least some higher 
order derivatives. The latter discontinuities can be avoided by using very special (weighting) functions, 
but these are themselves rather costly to evaluate. 

GIn some table modelling schemes, like those in [38, 3-9L a priori knowledge a.bout "typical'1 semicon­
ductor behaviour is used to reduce the amount of discrete data required for an accurate representation, 
but that is something entirely distinct from a !edu-ction of the computational complexity of the model 
expressions that need to be evaluated. The latter reduction is very hard to achieve without introducing 
unwante-d discontinuities. 
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As wa~ explained before, in order to model the behavioural ('onse([ueuces of delay", within 

devi('es or subcircuits, J)oH-quasist.,dic (dynamic) modelling i, reqnil"NL This implies thE' 

use of internal nodes with their associated state variables for (leaky) memory, For nu­

merical reaSOllS, in parti(,ular during time domain analysis in it circuit simul",tor, models 

should not only lw aCC'1Imte, bllt also "Bmooth," implying iLt least (:ontinnity of the model 

and its first partial derivatives, In order to deal with higher harmonics in distortion c<na­

lyses, higlwr-order derivatives l11Ufit iLlso be continuous, which is very difficult or costly to 

obtain both with table modelling and with conventionill physicil.1 device moddling. 

Furtherrnofe, contrary to t.lw pmctical situation with t,,,ble modelling, the ]wst infernal 

C'oorrlinil.te system for modelling should preferahly arise automatically, while fewer restric­

tions on the spccificiLtioll of measurements for device simulations for model input would be 

quite welcome to the user: iI grid-free approach would make the usage of autollliltic mod­

elling methods easier, iil('ally implying not mudl more than providing nWiisureltJCll1. dilta 

to the autollliitic moddling procedure, only ellsuring that the selertcd Gilta set sufficient']y 

characterizes ("covers") the devic'.' behaviour. Finally, better guarantc0s for monolon­

icitv, wherever applkablc, can abo be ;V1vantilgeolls, for example in ilvoiding artefiwts in 

simuliltf'(l circuit behaviour, 

Clearly, this list of rf'<juirements for elll automatic uOrl-Cjuasistatic modelling ",'ilpnle is 

ambitious, but the situation is not entirely hopeI<,ss, As it tnrus out, iI number of irk", 

derived from ('ont~lIlpomry ",lvanees in neurill network theory, in particulilr tlw hack­

propagation theory (also called tlw "gcncra!i7,cd delta rnl!''') for feedforwilrd networko, 

together with our recent work on device modelling ilIl(] circllit simulation, cau be rnergecl 

into a new and probably viabk modelling strategy, the foundations of whirh an' assemblt'd 

iu the following chaptNs, 

From the recent literature, oue uny even anticipate that the mc<instrCiLIllS of electronic 

circuit theory ane! neural network theory will in forthcoming decade,s converge into genE'l'ill 

methodologies for the optimization of analogue nonlinear dynamic systems, As iI (lemon­

stration of the viability of sHch 1L merger, iI new modelling method will be described, which 

combines and extends ideas borrowed from methods and application;; ill rkctronic circuit 

and device modelling theory illlClnllIuerical analysis [8, 9, 10,29, 37, ;:\9], t.he popular ('rror 

backpropagatioll method (and other methods) for lIeuriI]nctworks [1, 2, 18, 22, 3G, 44, 51], 

ilnd time domain extellsions to neural networks in order to deal with dynamic systems 

[5, 2::1, 28, 40, 42, 45, 47, 49, 50], The two most prevalent approaches ('xteud f'it.lwl' 

the fully connectec!--r'xccpt f01 the often zero-valued sdf-conncrtiolls Hopfielcl-type net­

works, or the feedfor11lnnl network8 used in backpropagatioll learning, We will basically 

describe extensions illon1; this second line, be('au~e tlw ilbsenee of fecdbiLdc loops greatly 

filcilitates giving theoretical gUilrilntN's on sevp.ml desirable' 1l10del(ling) properties. 
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An example of a layered feedforward network is shown in the 3D plot of Fig. 1.2. This 

kind of network is sometimes also called a multilayer perceptron (MLP) network. Con­

nections only exist between neurons in subsequent layers: subseqnent neuron layers are 

fully interconnected, but connections among neurons within a layer do not exist, nOr are 

there any direct connections across layers. This is the kind of network topology that will 

be discussed in this thesis, and it can be easily characterized by the number of neurons 

in each layer, going from input layer (layer 0) to output layer: in Fig. 1.2, the network 

has a 2-4-4-2 topology7, where the network inputs are enforced upon the two rectangular 

input nodes shown at the left side. The actual neural processing elements are denoted by 

dodecahedrons, such that this particular network contains 10 neurons8 The network in 

Fig. 1.2 has two so-called hidden layers, meaning the non-input, non-output layers, i.e., 

layer 1 and 2. The signals in a feedforward neural network propagate from One network 

layer to the next. The signal flow is unidirectional: the input to a neuron depends only 

on the outputs of neurons in the preceding layer, such that no feedback loops exist in the 

network9 . 

We will consider the network of Fig. 1.2 to be a 4-layer network, thus including the layer 

of network inputs in counting layers. There is no general agreement in the literature on 

whether or not to count the input layer, because it does not compute anything. Therefore, 

one might. prefer to call the network of Fig. 1.2 a 3-layer network. On the other hand, 

the input layer dearly is a layer, and the number of neural connections to the next layer 

grows linearly with the number of network inputs, which makes it convenient to consider 

the input layer as part of the neural network. Therefore one should notice that, although in 

this thesis the input layer is cousidered as part of the neural network, a different convention 

or interpretation will be found in some of the referenced literature. In many cases we will 

try to circumvent this potential source of confusion by specifying the number of hidden 

layers of a neural network, instead of specifying the total number of layers. 

In this thesis, the number of layers in a feed forward neural network is arbitrary, although 

more than two hidden layers are in practice not often used. The number of neurolls in each 

layer is also arbitrary. The preferred number of layers, as well as the preferred number of 

(Occasionally, we will use a set notation, here for insta.nce giving {2,4,4,2} for the 2-4-4-2 topology, 
to denote the set of neuron counts for each layer. Using this alternative notation, the "-" separator in 
the topology specification is avoided, which could otherwise be confused with a minus in c~es where the 
neuron counts are given a:s symbols or expressions instead of as fixed numerical (integer) values. 

SHere, and elsewhere in thi.s thesis, we do not count the input nodes as (true) neurons, although the 
input nodes could a.lterna.tively a.lso be viewed as dummy neurons with enforced output sta-tes. 

90n ly during learning, an error signal-derived from the mismatch between the actual network output 
and the target output-also propagates backward through the network, hence the term "ba<;kpropagation 
learning. l

' This special kind of "feedback') affects only the regular updating of network parameters, but 
not the network behaviour for any given (fixed) set of network parameters. The statem-ent about feedback 
loops in the main text refers to networks with fixed pa.rameters. 
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{2, 4, 4, 2) 

Figure 1.2: A 2-4-4-2 r~erlforward neural net.work example. 

neurons in each of thE' hidden layers. is usualiy det,ermined via cdu('at('d gu('ss('s and some 

trial and error on the problem at hand, to find the simplest network that givps a(,(,f'ptable 

performance. 

S0111(' researchers crf'at(' tillW dOfuaill t'xtt:"IlsiollS to neural llf'tworks via schelnes that call 

Iw loosely described a, beiug tiipped ciehy lines (the AIlMA Illodel used in adaptive' 

filtering also helongs t.o t.his class), 'LS in, e.g" [411. Th"t. discretp-tirne approach ""cu­

tialiy COllcerns ways to evaluate discl'ctized and truncated cOtlvollltioll integrals. In out' 

continuous-time CLpplication, we wish t.o avoid any explicit time discretization in t.he (finally 

r(>sulting) model description. be('ause we later want to obtain a descript.ion in terms of­

continuous-t.ittlP ·differc'lltial ~Cjuatiolls. These diff"r0ntial e([uat.ions call thPll 1)p tlllippecl 

onto equivalent representat.ions that arc :suit.able for liSe in a circuit simulator, which f\pn­

crally contains sophisticat.f'cl lIlethods for automaticaliy seleding appropriate time step 

sizes and integrat.ion orclns. In other words, we should dct.enllin€ the coefficients of it set 

of diffen'ntial equations rather than pilIanwtcrs likf' deb.Vb and tapping weights that llave 

a discrete-timc nature or are associated with a particular pre-ocleeted time' discrctization. 

In oreler to determine the coefficients of a set. of differential equations, we will ill fact !wed 

a temporary discretization to make the analysis tractable, but that discretizatioll is 1101. 

in any way part of the final resnlt, tilE' ne'uml model. 
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1.4 Potential Advantages of Neural Modelling 

The following list summarizes and discusses some of the potential benefits that may ideally 

be obtained from the new neural modelling approach-what can be achieved in practicr 

with dynamic neural networks remains to be seen. However, a few of the potential benefits 

have already been turned into facts, as will be shown in subsequent sections. It should be 

noted, that the list of potential benefits may be shared, at least in part, by other black-box 

modelling techniques . 

• Neural networks could be used to provide a general link from measurements or device 

simulations to circuit simulation. The discrete set of outcomes of measurements or 

device simulations can be used as the target data set for a neural network. The neural 

network then tries to learn the desired behaviour. If this succeeds, the neural network 

can subsequently be used as a neural behavioural model in a circuit simulator after 

translating the neural network equations into an appropriate syntax~such as the 

syntax of the programming language in which the simulator is itself written. One 

could also use the syntax of the input language of the simulator, as discussed in the 

next item of this list. 

An efficient link, via neural network models, between device simulation and circuit 

simulation allows for the anticipation of consequences of technological choices to cir­

cuit performance. This may result in early shifts in device design, processing efforts 

and circuit design, as it can take place ahead of actual manufacturing capabilities: 

the device need not (yet) physically exist, Neural network models could then con­

tribute to a reduction of the time-to-market of circuit designs using promising new 

semiconductor device technologies. 

Even though the underlying physics cannot be traced within the black-box nemal 

models, the link with physics can still be preserved if the target data is generated 

by a device simulator, because one can perform additional device simulations to find 

out how, for instance, diffusion profiles affect the device characteristics. Then one 

can change the (simulated or real) processing steps accordingly, and have the neural 

networks adapt to the modified characteristics, after which one can study the effects 

on circuit-level simulations . 

• Associated with the neural networks, output drivers can be created for automatically 

generating models in the appropriate syntax of a set of supported simulators, for 

example in the form of user models for Pstar or Saber, equivalent electrical circuits for 

SPICE, or in the form of C code for the Cadence Spectre compiled model interface. 

Such output drivers will be called model generators. This possibility is discussed in 



12 CHAPTER. 1, INTRODUCTI01,' 

11101'1' dl't.ail ill sedion~ 2,::;.L 2,5.2, 4.2.1, 4.2.2,2 and Appendix C. Becau~r a maIlllal 

implementation of a S('t. of model equatioll~ is rather error-jlI'Ollf', the automatic 

generation of models ('an help to ensure mutually conoistcnt model implementatIons 

for the various support",1 simulators, Presently, behavi01l1'al model generators for 

Pstar and Berhley SPICE (aud therefore also for the SPICE-compat.ible Cadence 

Spectre) already exist.. It is a relatively small effort to write other behavioural 

model generators on('e the syntax and interfacillg asped, of t.he t.arget simulJlor art' 

thoroughly underst.ood. As soou as a standard AHDL JO appl'ars. it. should b" no 

problem to writ.e a corresponding AHDL model generator, 

• NellIalnctworks "an be generalized to introduce their application to the autolllati(' 

modelling of clevice ami subcircuit propagation delay dfect.R, manifest.ed in out.put. 

phase shifts, step responses with ringing effeets, opamp slew rates, near-resonant. be­

haviour, etc. This implies t.he requirement. for llon-quasistatic (dynamic) modelling, 

which is a main t()('us of t.his t.lwsis, 

Not. only the ever decreasing charact.eristic feature sizes ill VLSI t.echnology canol' 

multirlimcnsional intemctions that. are hard to analy",' physically and mat.lwmat,­

ically, but also t.he ever higher freqllcllcips at which these smaller d('vices ftre op­

prated cause llluitidimensional interact.ions, which in turn lead to major physical 

and mathematical modelling difficulties. This happells not only at thp VLSI level. 

For instancr, parasitic indud,ances and capacitancps clue to packaginf) technology 

becollle nonuegligible at. very high frl'quencies. For di"cret.c bipolar devires, t.his is 

already a serious problem in practical applications. 

At some stage, the physical model, even if one can be derived, may become so 

detailed-·i.t> .. ('ontain so much otructural informat.ion about. the device-that the 

border lwtween device simulation and circuit simulation becomes blurred, at thl' 

expense of simulation ('ffifiency. Although tlu' mathematics becomes more diffinlit. 

and elaborat.e when more physical high-frequency interactions are incorporat.ed in 

t.he ftllalysis, t.ll(' Clctnal beh(!1IioUT of the dcvi(:e Or subeircllit does not necessarily 

become more complicated. Different physic-al causes lllay haw similar behavioural 

effect.s, or partly counteract each other, such t.hat. a simple(r) equivalent behavioural 

model may st.ill cxi,stll. 

10 AHDL = Analogue Hardwa.re Description Language 
11 For examplE', in deep-cmbmicron semiconductor devieE's, S'ignificant. behavioural {'onsequencps art' 

caused by the relative dOnlknanCe of boundary effects, One has to tal..;:e iutu account ttl(' fact that t.he 
eled,rical fi-elds are non-uniform. Thi~ make,,) a local electrica.l threshold dof'pend on the positiCJJI within 
the device. These ll1ultidimpm,ional effects make a thorough math{'mati(:ai a,nalysi:.,; of thE' overa.ll d\~vi('~ 

behaviour cxcPf-'dingly difficult However, the e[pctricaJ cha.racteriClLic:-. of the whole devicE' just IWC.Olllf" 

simpler in the SC'llSe- tha.t allY "sharp" transitions occuning in the Honlineal" twhavioul" of a. largr- devirc 
are HOW '-blurred" h,v thp comhinf'd aV(,l"agillg effect of position-dependent. internal thresholds. In ma.ny 
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Neural modelling is not hampered by any complicated m'uses of behaviour: it just 

concerns the accurate representation of behaviour, in a form that is suitable for it.s 

main application area, which in our case is analogue circuit simulation. 

• Much more compact models, with higher terminal counts, may be obtained than 

would be possible with table models, because model complexity no longer grows 

exponentially with the terminal count: the model complexity now typically grows 

quadratically with the terminal count l2 

• Neural networks can in principle automatically detect structures hidden in the tar­

get data, and exploit these hidden symmetries or constraints for simplification of the 

representation, as is done in physical compact modelling. Given a particular neural 

network, which can be interpreted as a fixed set of computational resources, the 

(re )allocation of these resources takes place through a learning procedure. Thereby, 

individual neurons or groups of neurons become dedicated to particular computa­

tional tasks that help to obtain an accurate match to the target data. If a hidden 

symmetry exists, this means that some possible behaviour does not occur, and no 

neurons will be allocated by a proper learning procedure to non-existent behaviour, 

because this would not help to improve accuracy. 

• Neural network models can easily be made infinitely differentiable, as is discussed 

in section 2.2. This may also be loosely described as making the models infinitely 

smooth. This is relevant to, for instance, distortion analyses, because discontinuities 

in higher model derivatives can cause higher harmonics of infinite amplitude, which 

clearly is unphysical. 

Model smoothness is also important for the efficiency of the higher order time in­

tegration schemes of an analogue circuit simulator. The time integration routines 

in a circuit simulator typically detect discontinuities of orders that are less than the 

integration order being used, and respond by temporarily lowering the integration 

order and/or time step size, which causes significant computational overhead during 

transient simulations. 

• Feedforward neural networks can, under relatively mild conditions, be guaranteed 

to preserve monotonicity in the multidimensional static behaviour. This is shown 

cases\ smooth~a.t least C1-phenomenoiogical models will have less difficulty with the approximation of 
the resulting more gradual transitions in the device characteristics than they would have had with sharp 
transitions. 

12To be fair. the exponential growth could still be present in the size of the target data set and in the 
learning time, because one has to characterize the multidimensional input space of a device or subcircuit. 
Although this problem can in a number of cases be alleviated by using a priori knowledge about the 
behaviour, it may in CErtain cases be a real bottle-neck in obtaining an accurate neural model. 
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ill "enioll :~.3, aDd SllbSl'qlH'lltly' applied to lVIOSFET lllodplling in s,'ctiOll 4.2.3. 

\Vith contem[lOriit'y 1'1Iy"ical models, it is gPlleraily IlO IOllgpr possibk to gl1arall\.c(' 

11louotonicity, ,Ill(' to tilt, complexity of the mathematical awtlysis needed to prow 

lllollotonieity. It is all illlportant property, howpvcr. h('cause many devin's are knowll 

to ha\'e lllonotonic characteristics. A llonrtlonotonic model for such a c\(>vi('(' tllity 

yield mllitipl,' splHiol1s solutions for tlw cirC'l1it iu which it b applied itll(1 it Illity lead 

to llOll(,Ollverg('ll(,(' CVC'U dnrillg tillE' d01Ilaill drcnit siHlulatioll. 

The mOllotollidty p;l1<lntllte,' fur neural llPtworks call 1)(' mailltainf'ci for highly 11011-

linear llllrlticlimell';iol1,'] hl'havionr, which f,O far has not ilrell po;-;sibk with tablt: 

moclcl" withollt r(''luirinp; c:xn'"ivp amount.s of data [39]. Furthermore. the lHono­

tonicity g'uarantpp is optional, such that tlOtlIllonotonic static behaviour call still \)(' 

modeilp,l, il~ it' mu"tratr,1 in section 4.2.1. 

• Stabilityl:l of f(>,'dforwarci lH'ura.l networks can be guaranteed. The stability of h'Nl­

forward neural llPtworb depends sol"ly on the stability of its indivicl nal llCnrlJllS. 

If ail nemons are stal,lp, tlH'll the frcclforward network is also stable. Stability of 

individual ll('tlro,," is ('usured through parameter cilllstraints imposecl upon tl1"ir 

ii~sociatl'd diff('n'lltial equatiolls, as ShOWll ill sections 2.3.2 and 4.1.2. 

• FeeclforwClrd llrnralurtworks c",n be defined in snch a way that it can be guanmtped 

that the llet,worb ('adl have a unique behaviour for a given set of (tinw-dependellt) 

input.s. This implies, as is shown in ocetion 3.1.1.1. that th~ (,OlTPspondillg neural 

nlOd('ls have uuique "olutions in both dc ami trallsi~nt analysis when they arE' ap­

plied in circuit sillllliation. This prop0t'ty ran help th" nonlinear oolver of a circuit 

simulator to cOllwrg" i1Jl(1 it also !trips to avoid opuriolls SOhltiOl1ii to rircuit beha­

viour. 

On the otlwr hand. it is at the same time a lilllitatioll to the tllodf'ilillg capabilities of 

till",,, I!rmal network", for there may bp situations in which Olle wants to mod,,] the 

Ilmlt.iple solutions in t b(' \)rhaviolll" of it resistive devin' or su\;cir(,llit. for E'xctiliple 

wlwl! lllodellillg a flip-flo]). So it must be a ddib0Iate choice, made to help with 

t.lw llH)(lpilillg of il rpstrictNI dass of devices and .'ilrl)('irnlits. In this thesis, the 

uniqueness restriction is accepted in ord('r to malw nst' of tlw associated dE'sirable 

mathematical alll! nllllJ('rical properties. 

• Feedforward nel1r~1 n('/.works can be drfined in sl1ch a way, that the static Iwha­

vioUl" of a lIptwork, i.p .. the de solutiou, can b(' obtailwcI froIll nonlinear hut explicit 

13Sta.hility hPfC reft'r:-; to th/" :-;y~tf'm property that for timf'-~ going: t.owards infinity, and for rOfl;,:;tatlt 

inrlllts to the '''',vstelll under cOIl~id.pri1.tion, and for any :gtarting conditiuH, Uw system movf-'~ into a static 
equilibriuHl ~Lat.e, which i~ abo CiLJI(·d a :-,Ldble f(Jells [101. 
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formulas, thereby avoiding the need for an iterative solver for implicit nonlinear equa~ 

tions. Therefore, convergence problems cannot occur during the dc analysis of neural 

net.works with enforced inputs14 Simulation times are in general also significantly 

reduced by avoiding the need for iterative nonlinear solvers . 

• The learning procedures for neural networks can be made flexible enough to allow the 

grid~free specification of multidimensional input data. This makes the adaptation 

and use of existing measurement or device simulation data formats much {'asier. The 

proper internal coordinate system is in principle discovered automatically, instead 

of ]wing specified by the user (a.~ is required for table models)15 . 

• Neural networks may also find applications in the macrolllodelling of analogue non~ 

linear dynamic systems, e.g., sub circuits and standard cells. Resulting behavioural 

models may replace subcircuits in simulations that would otherwise be too time~ 

consuming to perform with an analogue circuit simulator like Pstar. Thio could 

effectively result in a form of mixed~level simulation with preservation of loading 

effects and delays, without requiring the tight integration of two or more distinct 

simulators. 

1.5 Overview of the Thesis 

The general heading of this thesis is to first define a class of dynamic neural networks, 

then to derive a theory and algorithms for training these neural networks, subsequently 

to implement the theory and algorithms in software, and then to apply the software to 

a number of test~cases. Of course, this idealized logical structure does not quite reflect 

the way the work is done, in view of the complexity of the subject. In reality onE' has to 

consider, as early as possible, aspects from all these stages at the same time, in order to 

increase the probability of obtaining a practical compromise between the many conflkt~ 

ing requirements. Moreover, insights gained from software experiments may in a sense 

"backpropagate" and lead to changes even in the neural network definitions. 

14This will hold for our neural network simulation and optimization software, which makes use of ex­
pressions like those given in section 3.1.1.1, Eq. (3Ji). If behavioural models are gene-rated fOl' another 
simulator, it still depends upon the algorithms of this other simulator whether convergenc€ probrems can 
occur: it might try to solve an explicit formula. implicitlYl since we cannot force another simulator to be 
"smarL" Furthermol'€, if some form of feedback is added to the neural networks, the problems associated 
with nonlinear implicit equations generally reLurn, because the values of network input variable::: involved 
in the feedback will have to be solved from nonlineal' implicit equations, 

1.5 An exception still remains when guarantees for monotonidty are required. MOllQtonicity at all points 
and in each of the coordinate directions of one s:elected coordinate system, does not imply monotonicity in 
each of the dil'e-ctions of another coordina.te system. Monotonicity is therefore in principle coupled to the 
particular choke of a c-oo!'dinat-e system1 as will be briefly discussed lat€l' Olll in. section .3.3\ for a bipolar 
modelling exampl€. 
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In chapter 2. the equations for dynamic feed forward neural networks are defined and 

discussed. The Iwhaviour of individual neurons is analyzed in detaiL In addition, t.he 

representational capabilities of these networks are considered, as well as some possibil­

ities t.o construct equival(,llt el('ctrical circuits for neurone;. thereby allowing t.heir direct 

application in analog'ut> circuit :;inlnlatol's, 

Chapter J shows how the definit.iDns of dmpter 2 can be Ilsed to CDllstnlCt sensitivity­

basE'd lcarniug procP(I1ll'PS for dynamic f('edforward tH'ural networks. The chapt.er has 

two major parts, consisting of sections 3,1 and 3.2. Section 3,1 considers a representa­

tion ill the tilllP (lomain, in which neural llt'tworb lllay hav\' to learn step responsf's or 

otlwr tril.nsiICnt n'SpOJlhC'S. S~ct,ioll 3.2 shows how t.he definitions of chapter 2 can also be 

(,IIlployed in a small-signal h'('Cjllency domain representation, by (l('riving a correspond­

ing spusitivit.y-basccl 1"aInillg approach for tile frequency clolt1C1in. Time domain learning 

call suhseqllf'ntlv h .. cOlllhilH'd with freqlwllcy domain learuing. As a special topic, s('c­

lion ;:\.3 disrnsses how lllollotonicit.y of tilt' static respouse of feedforward neural networks 

can be guaranteed via parameter con,strain!." during learuing. The mOl1otonic:ity property 

is particUlarly import.ant for the development of suitable device models for usc in analogue 

circuit simulator". 

Chapter 4, ,,'nion 4.1. disc'usses s['w'rClI aspects cOllccruing au experim(,lltal software im­

plementation of the tim" domain leR.l'lling and frequency domain lcarnillg technique'S of 

t.hE' prc('('ding dtaptE'1'. S('ctiOll 4.2 t.hen shows a number of preliminary lttodE'lling 1'[>8-

ults obtained wit.h this experimeutal software implempntatioll. The neural modelling ex­

amples involve time domain learning and frequency dOlIlain learning, and uS(' is mad!' of 

the possibility to automatically generate analogne behaviolll'al (macro)models for circuit 

sim1llators. 

Finally, chapter [, elraws sonl(' 1',Ptleml conclusious and sketches H'commenoed dircctions 

for further rescarch. 
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Chapter 2 

Dynamic Neural Networks 

In this chapter, we will define and motivate the equations for dynamic feedforward nE'ural 

networks. The dynamical properties of individual neurons are analyzed in detail, and 

conditions are derived that guarantee stability of the dynamic feedforward neural networks. 

Subsequently, the ability of the resulting networks to represent various general classes of 

behaviour is discussed. The other way around, it is shown how the dynamic feedforward 

neural networks can themselves be represented by equivalent electrical circuits, which 

enables the use of neural models in existing analogue circuit simulators. The chapter ends 

with some considerations on modelling limitations. 

2.1 Introduction to Dynamic Feedforward Neural Networks 

Dynamic feedforward neural networks are conceived as mathematical constructions, inde­

pendent of any particular physical representation or interpretation. This section shows 

how these artificial neural networks Can be related to device and subcircuit mod~ls that 

involve physical quantities like currents and voltages. 

2.1.1 Electrical Behaviour and Dynamic Feedforward Neural Networks 

In general, an electronic circuit consisting of arbitrarily controlled elements can be math­

ematically described by a system of nonlinear first order differential equations l 

dx(t) 
f(x(t)'dt'p) = 0 (2.1) 

1 Actually, we may have a system of differential algebraic equations (DAE'S)~ characterized by the 
fact that not all equations are required to contain differential t€l'ms. However, one can also view such an 
algebraic equation as a special case of a dlffel'ential equation) involving differential terms that are multiplied 
by zero-value-d coefficients. Therefore, we will drop the adjective "a.lgebraic" for brevity. 
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wit.h f a ""dol' fUllctioll. TIl(' lTal-valued" vector x rfLll H'pn'sPllt any mixt.urr of ('lpclrieal 

input varil,blpc, in(.(TWd v'rriable,., Clnd output variahlrs at tiltH'S t. All electrical vl1.riahl" 

can hr a voltClgc'. a ClllTPllt. a char"p or a flux. Tilt' real-valued veet·or p COnU\illS ClI1 the 

circllit anc! ([c'v'icp parallH'ters. ParallH't.ero lll!\Y rrprrsf'nt COJllpOll('nt valucs for r"siot.ors. 

inductors ami rapacitms. or till' width Clnd lpngth of MOSFETs. or allY ollwr quantitipe; 

t.hat. an' fix('(l by the particular choir" of cirellit dc,,,ign fwd mannfCl(fllring process. but 

t.hat lnay, at If'(-t:-;t ill prllH-ipl('. lw adapt.Nl to opthnizp cir(,uit or (]pvi('(' p('ri'onnanc(>. 

COllstants of llalllre. ,.,lIch as t hl' spcc'<I of light or the 1301t."llliUlll constant, are t.h('l'pforp 

not cOll~i,krrcl as pmftlllrter~. It should IH'rhaps lw explicitly stated. that ill this t lwsis 

(i panullPt,pr i.o..; a.hV(t:,-r~ ('OlLKidt'r()cl to he COllstant. f'x('('pt. for a possihh' rq';-lllFl,f updating 

itS part of all optilni"alion procedure' that attempt:, t.o ohtain "dpsirNl hPl'ClViour for tlw 

variabl",., of ClC,YS\'C'lH Lv se/\lThing for a suita,blr srt. of paralll('trr valnes. 

For prart.ical reasons. snell as til(' crncial lllodpi simplicity (to krep the modPi ('valuation 

tilllcs wit.hin prlH'tiral iJoItlHb). Hml to be ablt' to givf' undc'r Cl'rtain C01HlitiollS gl1anLn­

tee's Oll ''"It(' c\l>"i,aLle prop('rtips (lllliqucnpss of solutioll. ttlOllot.oJli(·ity, st abilit~" rIc.). 

wc' will lllOW away h'Olll thi' g(,llC'ml [orn1 of Eq. (2.1), and n'strict the> clC'PPlldpllCics 

to those of layered /",'rlf'ml!'II./(/ T/."nro.i 1/.et/Il(}·r~", excluding illtrmd.iol1" !\mOll)!, cliffr'rent. 

11eufOns within tile sall'\(' laWl'. Two sul"('<]UCllt Ift,'('r" ,IT(' fully intplTOllltNtrri. Tlw 

fcc'dforwanl approach allows t lip defillit ion of nOllli11Pltr nptwork" th:H. do not rpljllire an 

it.erative ttlrtiIod f01 ",h'illf!; state \'ariahlr>, from sd~ of llolllinear r([llatiom; (cont.rary t.o 

tIl(' situatioll \vit 11 1l10St llolllilwar (l]('ctrollic circnits), and thr ('Xi.'-itf'llCl' Of':l unique' ;-;0}11-

(.ion of network state variabl('s for a giVPll spt of net.work inpllts can b~ gUf\ranteed. As is 

COllvi'ntiollal for ["E'Clforwa.rd ,,,,tworko. llellrOllS n'cpivr tlieir input ollly frotll out]luts in 

the layer ill1t1lpdiatciy pr('crding tbr lay0r ill wllkh tlH')' rr'siclc'. A llet input to a lH'llrOn is 

('ollhtrni'tpd as a wpighlNI s\lIn. induding all offsd. of valucs obtained from t.lw prere(ling 

layer. and a llolllinear fUllctioll is applieri to this lIPI input. 

However. illskad of 11sing only it nonlinear function of it n,'t input. each lWUl'On will now 

also involvc' a 1i1l('al' dift('n'lltial r'lUatioll wit.h two intC'l'llal statr vilriRbiPs, (Irivr11 by it 

llOlllill('ar function of thc' lIet input.. while t.he net inj.lnt it.self will include time dlc'riv·fttivps 

of outpute; hOl1l the prPI'('(lill(,; ];1)'''1'. This enable's parh Sillglp lwuron, ill concert witlt it.s 

input connE'ct.ions. t.o rPl'rcspnt it s('cond order hand-pass type filter, which makes ('ven 

individual neurons very Jlowrrful huildillg blocb for moddling. TogethPr thrse lH'HrOllS 

c(lllslitute a d·ynnm.ic fc'cc\folward IH'urallwtwork, in which c'<lch ll('\ll'Oll still f('c·C'i\,ps input 

only front thc' preceding iaypl'. Itt om lIew ne1ll'1J.luptwork Illocklling ftj.lproach, dynamic 

~In thE' I'PIflaitul{'r of this j,1l['~i~, it will n~ry oft!C'tl not b(' explic'itly ::.pf'cifi('d wh-(-'Lht:'l' a variable, para­

lIlCU'1' or functIOn is rpal-v;tllIcd, complpx-valupd or intf',?,f'r-valued. This omissioll IS mainly for reasons of 
)'r-achhility. The app.ropriat.e- \'i-dlH' t) ... P{' should gPIH::Ta.lly lw appar(,Ilt frol)) t.h(· (ont.('xt, application nrca, 
or ("()I)v('nt.iolli'll lIse III th·(, li1t'fClttlr('. 
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semiconductor device and sub circuit behaviour is to be modelled by this kind of neural 

network. 

The design of neurons as powerful building blocks for modelling implies that. we deliber­

ately support the grandmother-cell concept3 in these networks, rather than st.rive for a 

distributed knowledge representat.ion for (hardware) fault-tolerance. Since fault-tolerance 

is not (yet) an issue in software-implemented neural networks, this is not considered a 

disadvantage for Our envisioned software applications. 

2.1.2 Device and Subcircuit Models with Embedded Neural Networks 

The most. common modelling situation is that the terminal currents of an electrical device 

or subcircuit are represented by the outcomes of a model that receives a set of independent. 

voltages as its inputs. This also forms the basis for one of the most prevalent approaches 

to circuit simulation: Modified Nodal Analysis (MNA) 110]. Less commOn situations. 

such as current-controlled models, can still be dealt with, but they are usually treated 

as exceptions. Although our neural networks do not pertain to any particular choir" 

of physical quantities, we will geuerally aSSume that a voltage-controlled model for the 

terminal CUlT<'nts is required when trying to represent an electronic device or subcircuit 

by a neural modeL 

A notable exception is the representation of combinatorial logic, where the rdevant inputs 

and outputs are often chosen to be voltages on the subcircuit terminals in two disjoint 

sets: one set of terminals for the inputs, and another one for the outputs. This choice 

is in fact less general, because it neglects loading effects like those related to fan-in and 

fan-out. However, the representation of combinatorial logic is not further pursued in this 

thesis. because our main focus is on learning truly analogue behaviour rather than on 

constructing analogue representations of essentially digital behaviour4
. 

The independent voltages of a voltage-controlled model for terminal currents may be 

defined w.r.t. some reference terminaL This is illustrated in Fig. 2.1, where n voltages 

W.r. t. a reference t.erminal REF form the inputs for an embedded dynamic feedforward 

neural network. The outputs of the neural network are interpret.ed as terminal currents. 

and the neural network outputs are therefore assigned to corresponding controlled current 
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sourres of Ill(' lllodpi f{)t" th" rlect.rical behaviour of an ('/l+ IH·('rmillal r!pvif(~ or sllbdrcuit. 

Only n ClllT("nts llced to I", explicitly modelld. because the curH'llt. throllr;h t.he single 

r('llH1.illing (I('feIelH'pJ t(,I111ill,,1 follows from tlw EiIchhoff C[llTent. law 'IS the negatiw Sl)lll 

of the II, explicit.lv l1lorkll,'d '·lllTPlltS. 

At first f!;lanC('. Fig. 2.1 lllay s("pm to represent a system with fcedback. Howpver. t.his is not 

[pally the ("a~e, sinC(' tl", inforJIlittion retnrned t.o the terrninftls con("crns a plwsical (juantity 

(current) that is cutirrl\' distilld from the physical quantity used as input (voltaf!;eJ. Tlw 

input-output l"(,latioll of" different physical <[llalltitif's may 1)(' ;essociitter! with t.he sitme SPt. 

of physical de"ic.e 0'- oul)("ir("ui1 terlllinais. but this should not be confused wit h f~eclback 

situations whel"(' outputs Rffpci. t.he inputs Iwrause tlH'Y rl'l"(>,- to, or arc C"OllVPrt"d into, 

tlH' 8itnll2 ph~'sinli qUillltiti,·s. In the ("ase of Fig. 2.1, t.he l'xt.ernitl yollaf!;l's ntilV be .5('t 

irrespective of tilt' t.('rlllinal (·lllTent.s tlULt r<?sult. from thew. 

In spit.c of the reliu("('d lllOdel (evalualion) cOlllph'xity. tIl(' mat.h('lllatical not atiollK in OlE' 

followillj', sections ("an -'Ollletillles become slightly morE' cmnpliratcd t hitn nccdnl for a 

geupral network dpsnipt.ion, due to the illcorporat.ioll of the topological I"(>strictiolls of 

f"I,dfo,-wanl lwtwo,-ks in till' various derh·atiolls. 

o-t -c--I--,:--;~--+-d)-----------:-.,....,..., " J ........... . 

v··· "I:r.-Ac-. ~...........".~...-t-: , .. 

f"l ~I_±-_~~L-~~-+ _____________ ~ 

.ff 

Figure 2.1: A dynalllic frr,(lforward neuritlnetwork "lllbpdd('d in it voltClgC-C()1l1rollecl 

device or suhl"ircuit lllodel for terlllinal Cllt,}"PlltS. 
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2.2 Dynamic Feedforward Neural Network Equations 

2.2.1 Notational Conventions 

Before one can write down the equations for dynamic feed forward neural networks, one 

has to choose a set of labels or symbols with which to denote the various components, 

parameters and variables of such networks. The notations in this thesis closely follow and 

extend the notations conventionally used in the literature on static feed forward neural 

networks. This will facilitate reading and make the dynamic extensions more apparent 

for those who are already familiar with the latter kind of networks. The illustration of 

Fig. 2.2 can be helpful in keeping track of the relation between the notations and the neural 

network component.s. The precise purpose of some of the notations will only become dear 

in subsequent sections. 

A feedforward neural network will be characterized by the number of layers and the nnmber 

of neurons per layer. Layers are counted starting with the input layer as layer 0, such that 

a n('twork with output layer 1\ involves a total of II. + 1 layers (which would have been 

K layers in case one prefers not to count the input layer). Layer k by definition contains 

Nk neurons, where k = 0, ... ,II.. The number Nk may also be referred to as the width of 

laye!' k. Nenrons that are not directly connected to the inputs or outputs of the network 

belong to a so-called hidden layer, of which there are K - 1 in a (II. + l)-layer network. 

Network inputs are labeled as x(O) '" (x\O) ,"', x~~ )T, and network outputs as x(l';) '" 

~~~ 
0 ? III ~ • 
0 'Ik • Xl') ~ II ~ x lKJ 

0 rl'ijjJ.k-1 
fJk • 

0 ~ III ? • 
:~: 

• II 

1D.lJ$I" layrr jlll:llJl" kayer 
0······, •• ·,····· 1c-1 k .................. I( 

Figure 2.2: Some notations associated with a dynamic feed forward neural network. 
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)T 

TIlt' neuron out.]lut vedor Uk == (Uu, ,"', .liN, ,k )T ]'rpresfllts the vector of neuron outputs 

for layer k, ron("ininp; it' its "h'nH'nts the output variablf' Yi,,' for each individuc,llH'l1rol1 

i ill layer L Th" lletwork input' will b" treati'd by it c1llltlllly neuron layn k = (J, witb 

l'nioned Ilfllroll ) outputs .Ii,I,() == ,1';0), j = 0", "No. This sOlllPtimes helps to simplify 

tIl<' notatiollS used in tltl' j(Hlnalism. How0VC'r, whE'n counting thp llllm\lPl' of Il(,UrOllS in a 

Hf>twork, we> will not take tl1<' dlll11111Y input lWUl'OUS illto al·count.. 

\Ve will apply the C'ollVl'utioll that Sf'paratiag COllllllas in suiJbc]'ipts an' llsllally Idt 0111. 

if t,hie; doC's not, l'anse confu,sion. For example, it weight. panttn('(('r IL'i,}.k may 1)[' written 

as Wi)" which [(']lreS('llts a wpightillf( fador for the cOlllwctioll fro[lJ; neuron J in layer 

k - 1 to HemOIl 'i iu byer k, Separating ('()lfllllaS cUT normally reCjuirrd with lllllllPl'iral 

valnes for f,ul"eripts, ill order to ciistinguish, for exampk. II'I:!,I,:, frolll Wl.21,:] and ·WI:2.1.1 

unll'ss. of ('ourse. on!' has advan('e lmowlcclg!, about topological rmtrictions that (·xdudp 

the alternative illterpret!ltiollh, 

A weight paralll0ll'r 111,.1' ,('ts the static cOllllPction strength for connecting nClUon j in 

layer k - 1 with neuron i in lay!'r k. by lIlultiplying t.he output I/),!-I by the ,"<'Ihl(' of II',}!" 

All additional weight parameter Uqk will play tIl(' sanH' roll' for th(' fr('Cjucll('Y dC]H'lIcient 

part of the connection c:trE'llgth, wbich is an ('xtrl1SiOll w.1'.t.. static nel1ralnd:worb, It is a 

weighting factor for th" rat" of change ill t,he ontpl1t of nellIOIl J ill layer k -1, 1II1lltiplying 

the tim!.' derivative c1Yj.k_l/dt by thp valnp of t',)". 

In view of the dit'f'l't association of t he extra w<'ight pRralll"tE'l' 1"Jk with dYllflttJic jwha­

viour, it is also consid<'l'ccl to he " timing paralllt't('L Depcn(ling Oil tll!' context of t he' 

discussion, it will tlwrcoforl' be refPlTE'c\ to as either a wright(ing) parallleter or a timing 

parameter. As thl' llotation "lrp"c\v suggests, the paratllP(Prs w'}!' itllll '''ijk arp consickrpd 

to belong to ll!.'uron i in layer k. whkh is analogollS t.o tIl!' fact that nmdt of the weir;ht('(l 

input processing of a biological tH'uron is performed through it,s own hrandlPd d(,lldrit.p[;, 

to det,ermine the orientation of a static hYPf'rplane, by SI'tting tbe latter orthogonal to 

W,k' A thl'!'sbolcl par<tllletf'l' O,.k of lWlll'On i in layer k is then used to deterl1lill(' the 

position. or offset. of fbi,s hYl)l'rplmw w,r.L the origin. S"parating ltyprrplallPs as giVPll 

by W'!"y,'_l-H ik = 0 "re known to form th(' backbone for till' ahility to represrllt arhiimry 

static dassificatiolls in c1islT<'ic probJcollls [361, for example· oe('lIlTing with cOlllbillatorial 

IOlSle, and tlwy ('an playa similar role illlllaking slllooth transitions amollg ('lualitativdy) 

"This diffcrf-i only sbg,htly from the cOHVf'nt.ion III tilt? lIeural network lit,~~rattJr('. whep:' ~ w(tight w,.! 

llsually ]'cprc-s('nts it connection from a IlPuron.i to rt llPllTOn i ill SOllH' h\yf'r. Not :o;p ec if ,v 1 Ilg' whi'(':h la,Vcl' i.,,' 
of tell a ('au~e of confusion, rsp('ci,dly in textbooks that at(.pmpt 1.() ('xpla!Il backpropllgatiol1 tlit'ory, h0C«\I~(, 

OIle then trit:'s t.u put into word" wlwt wOllld have' been far nWff' olwio11S from a w("ll-chosrl1 notation 
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differE'nt operating regions in analogue applications. 

The (generally) nonlinear nature of a neuron will be represented by means of a (generally) 

nonlinear function F, which will normally be assumed to be the same function for all 

neurOns within the network. However, when needed, this is most easily generalized to 

different functions for different neurOnS and different layers, by replacing any occurrence 

of F by F(;k) in every formula in the remainder of this thesis, because in the mathematical 

derivations the F always concerns the nonlinearity of one particular neuron i in layer k: 

it always appears iu conjunction with an argument 8ik that is unique to neuron i in 

layer k. For these reasons, it seemed inappropriate to further complicate, or even clutter, 

the already rather complicated expressions by using neuron-specific superscripts for F. 

However, it is useful to know that a purely linear output layer can be created6 , since that 

is the assumption underlying a number of theorems on the representational capabilities of 

feedforward neural networks having a single hidden layer [19, 23,34]. 

The function F is for neuron i in layer k applied to a weighted snm 8;< of neuron outputs 

YJ,k-l in the preceding layer k ~ 1. The weighting parameters W'.jko V'jk and threshold para­

meter e,k take part in the calculation of this weighted sum. Within a nonlinear function 

F for neuron i in layer k, there may be an additional (transition) parameter i5ik , which 

may be llsed to set an appropriate scale of change in qualitative transitions in function 

behaviour, as is comIllon to semiconductor device modelling7, Thus the application of F 

for neuron i in layer k takes the form F(Sik,i5,k), which reduces to F(S,k) for functions 

that do not depend on 6,k' 

The dynamic response of neuron i. in layer k is determined not only by the timing paramet­

ers V,jk, but also by additional timing parameters 71,lk and T2,ik' Whereas the contributions 

from V'Jk amplify rapid changes in neural signals, the Tl,ik and T2,," will have the opposite 

effect of making the neural response more gradual, or time-averaged. In order to guarantee 

that. the values of Tl"k and T2,ik will always lie within a certain desired range, they may 

themselves be det.ermined from associated parameter functions8 Tl.ik = 7dol,ik' 0'2,;k) and 

T2"k = 72(0'1.lk, 02,ik). These functions will be constructed in such a way that no con­

straint.s on the (real) values of the underlying timing parameters O'I,ik and OZ,ik are needed 

to obtain appropriate values for Tl,ik and 72,ik' 

6Linearity in an output layer with nonlinear neurOns can on a finite argument range also be approxim­
ated up any desired accuracy by appropriate scaling.9 of weights and thresholds, but that procedure is IE-S8 
direct, and it is restricted to mappings with a finite ra.nge< The latter restriction will normally not be a 
practical probl€m in modelling physical systems. 

7In principle j one could extend this to the use of a pa.rameter vector 6 ik , but so far a single scalar DiJ,!. 
appeared sufficient for our applications. 

8The detailed reasons for introducing these parameter fUllctions are expla,1ned furth€f on. 
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2.2.2 Neural Network Differential Equations and Output Scaling 

Th!' differential equatioll for th<' output, or cxcitittiolL y,!; of one parti<'llliu nt'unlll 'i ill 

layer k > 0 is givpn by 

with t.he weight.ed sum .5 of out.puts from lhe preceding lityer 

IVk~ L 

dYk-l 
elt 

2: 10,.1' YJ.1'-1 - eik + 
j=l 

for Ie > 1, itnd oilllilarly for the neuron layer k = 1 COHlH'('ted t.o t.he network inpllt 

,V(J 

2: H'ij,Q ,1'\0) - e"Q + 
j;1 

No d 1'(0) 

2: ') 
l' --'ij,G ell 

);1 

(2,2) 

(2:l) 

(24) 

whirh, as stated bcfor~, is ~ntirdy analogous to having a dUllIltly neuron layer k = 0 with 

enion:eel neuron j outputs y],o == :1';0), In the following, we will occasionally make usc of 

this in order to avoid ea(,h t.ime having to make notat.ional pxcept.ions for the nC1lron layn 

k = 1, and we will at times refer to Eq. (2.3) even for k = 1. 

The net input S,I.; is analogous \,0 the> weighted input signal arriving at the cell body, or 

,soma, of it biologicalllcnroll via its brauchecl dendrites, where its value determincs wlwthrr 

or I10t the neuron will fire a signal through its out]lut, tIlt' axon, and at what spike rate. 

Eq, (2.2) can thereforr h", viewed as HIP matlwmatical d"cnipt,ioll of the nruron cell body. 

In our formalism, we have no analogUl' of a branched aXOll, l>pcause the branching of the 

inputs is sufficiently general for th", feedforward network topology that. we Ilse9 

'JO ne CQuid a"llerllativE'ly vj(;,W t.he set of weights, directed to a, givi:ll layer and coming (rum on-€' particular 
neuron in the precediug layet. (t~ a hranched axon for thc- output of tbitl. particular nC1Hon. T'hE'n w(' would 
no longer lw('d the equiva.lent of dClldrltes, and WE-' cOlild rdahel t.he' weights as Iwlonging to IWllron~ in thl" 
prE'cf'Qing la,Ypr. All this would not ma.ke a.n)' diff-erenc€ to the lletwotk fund.lonaiit.\': it, mcrel.v eOIKPTn~ 
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Finally, to allow for arbitrary networl, output ranges-because, normally, nonlinear func­

tions :F are used that squash the steady state neuron inputs into a finite output range, 

such as [0, Ii or [-1, Ii-the time-dependent outputs YiJ{ of neurons i in the output layer 

K yield the network output excitations x;[() through a linear scaling transformation 

(K) 
Xi ct, YiJ( + (3i 

yielding a network output vector x(I(). 

There is no fundamental reason why a learning scheme would not yield inappropriate 

values for the coefficients of the differential terms in a differential equation, which could 

lead to unstable or resonant behaviour, or give rise to still other undesirable kinds of 

behaviour. Even if this occurs only during the learning procedure, it may at least slow 

down the convergence towards a "reasonable" behaviour, whatever we may mean by that, 

but it may also enhance the probability of finding an inappropriate local minimum. To 

decrease the probability of such problems, a robust software implementation may actually 

employ fUllctions like Tl,ik ;; TI(TI"k, (T2,ik) and T2.ik ;; T2(CTI"k, CT2,ik) that have any 

of the relevant--generally nonlinear·-constraints built into the expressions. As a simplE' 

example, if TI,ik = ULk and T2"k = CT~,ik' and the neural network tries to learn the 

underlying parameters CTI,ik and U2"k, then it is automatically guaranteed that TI.ik and 

72"k are not negative. More sophisticated schemes are required in practice, as will be 

discuss"d in section 4.1.2. In the following, the parameter functions TI (UI,lk, CT2,lk) and 

T2(CTI.ik, (T2,id are often simply denoted by (timing) "parameters" rl,i' and 72,ik, but it 

must be kept in mind that these are only indirectly, namely via the (T'S, determined in a 

learning sdleme. Finally, it should be noted that the TI.,k have the dimension of time, but 

the r2,ik have the dimension of time squared. 

2.2,3 Motivation for Neural Network Differential Equations 

The selection of a proper set of equations for dynamic neural networks cannot be performed 

through a rigid procedUl'e. Several good choices may exist. The final selection made for 

this thesis reflects a mixture of-partly heuristic-considerations on desirable properties 

and "circumstantial evidence" (more Dr less in hindsight) for having made a good choice. 

Therefore, we will in the following elaborate on some of the additional reasons that led to 

the choice of Eqs. (2.2) and (2.3): 

the way we wish to denote and distinguish for ourselves the different components of a neuTa.l network. 
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• A n(}Ulillear, typically siglilOicl J O, fuuction F with at lpil..st two identifiable opt·rating 

regions provides a W'lleral capability for repres"lltiug or approxitrlil.t.ing arbitrary 

disnet" (static) d"ssifications····-pv('n for disjoint sets-- 11sing a static (de) feedforward 

network and requiring HOt lIlore than two hidden layers [36]. 

• A nonlinear. monotonically inneasing and bounded ('onti11uo11s function F also 

l'rovid<,s a gen<'ral capability for represl'nting any conlimwus ul1lltidimcnsiollal (mul­

tivariate) static behaviour up to ally clcsir('d accmacy, using a static fc('c1forwarcl 

network amI rpqlliring lIot more than Olle hidden layn [19,2:>]. R('c('ntIy, it. has c'Vf'll 

be(,11 shown that F uped only be llollpolynomial ill order to provr these 1'('pr(,H'l1l­

ational capallilities [;}4]. Mo1'~ litcratnre on the capa\lilit.ies of neural lletworks and 

fuzzy systems as llllivrrsal static approximators can be found in [4, 7, 24, 26. 21, :l:l]. 

• It will be shown by ("ollst.ruction in s~ction 2.4.1. that t.his abilit.y to represent "!lY 

multidimensional static lwhaviour almost t.rivially extcnds t.o arbitrary 'juasisiatz" 

behaviour, whru Ilsing Eqs. (2.2), (2,3) aud (2.5), while requirillg 110 morC' tllall two 

hicldpll layprs. 

• The use of all illfinit,'ly diffrrentiable, i.e., Coo, funct iOll F makes the whole m'mal 

network infinitely diffnelltiablp. This is relf'vant to till' accnracy of ncural lletwork 

models in clist.ortiou allalyses, but it is also important for tlw efficiency of the higher 

order time integration sdlenws of an analogue circuit. simulat.or in which t.llp llPtlral 

net.work models will 1)(' illcorporate(l. 

• A single nemOn nUl already exactly rrpresellt t.he dyuil.rnic behaviollr of eieme'llt.ary 

but funclamrntallinwT electroni,' ('ircnits like a volt.age-driwn (ullioadecl) RC-stag;e, 

Or all outpUt.-gI'0111Ided RCR-stage from a ladder network. The heuristic but. prag­

matic guidl!line her" is that .,il1lple electronic circ·uit.s should ]If reprl'scnt.a\,le by 

few nE'urons. If not, it. would bCCOlllP donbtful whct.hn more colllpikaled eh,ctronic 

circuits could bp rrprrscnt.cd eftkiently. 

• Tlw term wit.h /"J" pt'Ovici<:o tbe capability for t.imc-different.iation of input cignals to 

the neuron, thereby ampli(ying, or "detecting," mpicl changes in the neurOll input 

sigllals. 

• The terms with Wij), ami "II}, together provide' t.he capability to repreoeut., in a wry 

natural way, t.il(' fnll (,otllplex-valucd admittance mat.rices arisiug in low-frNjllPucy 

ql1asistat.ir l1lodclliug. This ellSUH'S that low-fr~ql1l'll(,Y modellillg nicely fit.s the 

mathematical strllc!nr+' of the tlcnralnet.work. which will gelH>rally sp,',>clllpll'aruing 

10 A sigmoid function is defined d:-' being a. strktly increasing dLtf(,I'('Htiable fUIlction with cL fLnit(' Pingf'. 
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progress. In electrical engineering, an admittance matrix Y is often written as 

Y = e + )wC, where e is a real-valued conductance matrix and C a real-valued 

capacitance matrix. The dot-less symbol) is in this thesis used to denote the complex 

constant fulfilling l = ~ 1. The (angular) frequency is denoted by cv, and the factor 

JW then corresponds to time differentiation. Since the number of elements in a 

(square) matrix grows quadratically with the size of the matrix, we need a struct.ure 

of comparable complexity in a neural network. Only the weight components W'Jk and 

Vijk meet this growth in complexity: the W'Jk can play the role of the conductance 

matrix elements (e)ij, while the Vijk can do the same for the capacitance matrix 

elements (C)'J 11 

• A further reason for the combination of Wijk and Vijk lies in the fact that it simplifies 

the representation of diffusion charges of forward-biased bipolar junctions, in which 

the dominant charges are roughly proportional to the dc currents, which themselves 

depend on the applied voltage bias in a strongly nonlinear (exponential) fashion. The 

total current, consisting of the de current and the time derivative of the diffusiou 

charge, is then obtained by first calculating a bias-dependent uonlinear function 

having a value proportional to the dc current. In a subsequent neural network layer, 

this function is weighted by W'Jk to add the de current to the net input of a neuron, 

and its time derivative is weighted by Vijk to add the capacitive current to the net 

input. The resulting total current is transparently copied to the network output 

through appropriate parameter settings that linearize the behaviour of the output 

neurons. This whole procedure is very similar to the constructive procedure, given 

in section 2.4.1, to demoustrate that arbitrary quasistatic models can be represented 

by our generalized neural networks. 

• The term with TI.,k provic\es the capability for time-integration to the nenrOl1, 

thereby also time-averaging the net input signal Sik' For T2"k = 0 and Vijk = 0, 

this is the same kind of low-pass filtering that a simple linear circuit consisting of a 

resistor in series with a capacitor performs, when driven by a voltage source. 

• The term with T2"k suppresses the terms with Vijk for very high frequencies. This 

ensures that the neuron (and neural network) transfer will drop to zero for sufficiently 

high frequencies, as happens with virtually any physical system. 

• If all the TI,ik and T2,ik in a neural network are constrained to fulfill TI"k > 0 and 

T2.,k > 0, then this neural network is guaranteed to be stable in the sense that the 

time-varying parts of the neural network outputs vanish for constant network inputs 

11 In linear modelling, this applies to a 2-1ayer linear n€ural model with voltage inputs and current 
outputs, llsing F{S,k) == S,k j 71,.1" = T'Uk = 0 and Q:i = 1. The (iil~ and f3i relate to arbitrary offsets. 



28 CHAPTER 2. DYNAMIC NEURAL NETWOH[,S 

and for times going towitros infinity. This topic will be covpred in more d"tail in 

section 2.3.2 . 

• Further Oil, ill section 3.1.1.1, we will also show t.lliit. t.he dlOic.r of Eqs. (2.2) <1.nd 

(2.3) avoids t.he need for a nonlinear solver during de alld t.mnsient analysis of til(' 

neural Iletworks. TllPt'ehy, convergence problems w.r.I .. tlH' dynamic bduwiout' of 

the neural !letworks simply do !lot exist. while the ~tli('ipncy is greittly illlProved hy 

always having just. 011e "it.eration" per tillle stpp. Tilesc are major ac]vantagps ovf'1' 

general circuit. simulation of arhitmry SYRtems having internal nodes for whirh the 

behaviour is governed hy implicit. llonlilwar eqllitt.ions. 

The complete neuron descript.ion from Eqs. (2.2) and (2.3) can act as it (nonliw'ar) 

band-pass filter for appropriat.e parameter settings: the amplitude of til(' ",.}!,-terms will 

grow with frequency aud domillatC' tIl{' 1J"'jk- and eik-tertllS for suffiriently high frequPlleies. 

How('v('r. tlw T] ,ik-term abo grows with frequency, leading to a t.rausfer function amplit.ucle 

on the order of 1'")"/Tl,,I, until T2,j~' fOItH'S into play and gradually reduces the neurou high­

frequency transfer t.o "pm. A band-pass filter approximates the typical behavioUl of many 

physical sy:;tems, and is therefolT an important building block in sy;.tPIIl modelling. The 

non-instantaneous response of a neuron is a consequence of the t.('nns with 71,ik and 72,;k· 

2.2.4 Specific Choices for the Neuron Nonlinearity :F 

If all timing parallleters in Eqs. (2.2) and (2.3) an' uro, i.e" v')! = Tl,ik = 72,,1' = 0, ancl 

if Olle applies the familiar logl.stie function L(si!) 

tlwH one obtains the standard .9tntic (not. even quasi-static) network~ often used with 

the popnirtr error backpropagation method, also known as the generaliz'!d d"lta ruk, for 

feedforward Hellriil lwt.works. Such networb are therefore special rases of our dynamic 

feedforward neural networks. The lo~istic function £(,9,k), as illustrated in Fig. 2.3, is 

r.trirtly monot.onically increasing in Sik. However, we will gC'nerally uoc nomero /I's and 

7':;, and will instead of the logistic function apply other infiuitely smooth (COO) nonliu­

ear modelling functions F. The standard logistic function lacb tlw cornmOll transition 

between highly nonlinear itnd weakly nonlinear behaviour that is typical for semicomillct.or 

devices itnd circuits12 

!.lOne ma.y t.hink of ~iIl:lplf':! E."xamples like the transition in MOSFE:T drain currenLs wbplI going from 
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FO 

-10 -5 

Figure 2.3: Logistic function L(Stk). 

One of tllE' alternative functions for semiconductor device modelling is 

[In (coSh _8'_'k_;_0,_k ) - In (COSh _S'_k_~_O'_k ) 1 

cosh~ 
ln -----''---c-
cosh~ 

29 

10 

(2.7) 

with Oik cJ 0. This sigmoid function is strictly monotonically increasing in the variable Sik, 

and even antisymmetric in Sik: Fl (s,", 8;k) = -Fl (-S;b liik ), as illustrated in Fig. 2.4. 

Note, however, that the function is symmetric13 in 6i k: F I(s,k,6,k) = FI(s"., -6 ik)' For 

10,kl » 0, Eq. (2.7) behaves asymptotically as FI(S;k,Oik) "" -1 + exp(s'k + o,k)/Io,kl 
for S,k < -Io;kl, FI(Sik,O,k) "" s;dl8ik l for -18,kl < S;k < 18ik l, and FI(s'k,8,d "" 

1 - exp(liik - sid/lliikl for Sik > lliikl· The function defined in Eq. (2.7) Heeds to be 

subthreshold to strong inversion by varying the gate potential1 or of the current through a series connection 
of a resistor and a diode, when driven by a varying voltage source. When evaluating L(1.1ft.}kyj,k~]) for 
large positive values of 'l.-Ui;k, one indeed obtains highly nonlinea.r exponential "diode-like" behaviour as a 
function of YJ.k-l for YJ.k-l « 0 or YJ,k-l » 0 (not counting a fixed offset of size 1 in the latter case). 
However , at the same time one obtains an undesirable very steep transition around yj,k-l = 0, approaching 
a discontinuity for Wi}k ----" 00. 

13Symmetry of a non-constant function implies nonmonotonicity. However, monotonicity in pa.rametf'l' 
space is usually not required, because it does not cause problems in circuit simulatioll, wher-e only the d(' 

monotonicity in (electrical) variables counts. 
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H'wri(.t1'll int.o sen-ral lllllllcrically "C'IT diffnellt hut lIlat h(,]llatically cquivaknt. fom" for 

illlprcnlPd lllllllpric.al rohll,,;tuPsH, t.o avoid loss of digit:-:, anel for cotllpnt(--lJiollal f>Hidf>llt'\' in 

the actual illlplplllt'lltat.ioll. Thp fllllctioll is rplatc'd to tIll' logist.ic fllllct.ioll in the SPIlS(' tlmt. 

it. is, it1'itrl from " liIH"lr se,tiillg. t.1ll' integral owr S,I- of t.1l(' differellu' of two t.mllsfomwd 

logistic fnnel ions, obl,lilH'c1 b,' ,;bifting one logistic fUllct.iml hy -0". along thl' s,,,-axis, 

and ,ulOthn logistic fmH'tioli Ilv +/),1-' This const.rnl'tioll cffcctiwly p]'()vicles Wi wit.h it 

polyuomial (lim'aI) rq;ioll and two cxpO)l{'ntial sat.nratioll rcgiom. Tlwrcby we haV(' thr 

pract.ical l'Cjuivalc'llt of two tvpically dominant basis fnllc! ions for selllicollduct.lll' devicp 

llloclPllillg. I.he lllotival iOll for which l'llllS along' similar lilH's of t.hought as ill highly llon­

linE'ar lllultidimpmion,,1 t "blc' llloclPlling [:,91, To show tIl(' illtcgral relatioll l)('twc'('11 £. alld 

Fl. Wl' first. llOt.l' that. tit" logistic fl1llction £. is ['Plat.c'd t.o the t..rlllh functioll by 

2£.(.1) - 1 -1 
1 + r-'/ 

+:r /2 -.J/2 
f' - e 

r +.)'/2 + f -.1/2 
.r 

t.anh -
2 

(2.8) 

The indC'finite int.egral of tite' tC\nh(.r) fllnetion is In(r·osh(.t)) (n<""lectillg tlw intc'gratioll 

('oHstant), as is readily v<:rifil'd by cliff('!'cntiat.illg the latter, and we easily obtaill 

.I £.(.1') d.t l' ( 1') 2 + In ('osh ~ (2.9) 

101 
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such t.hat we find, using the symmetry of the cosh function, 

1 j'3,k ....-:- (.c(r + <'i,k) ~ .c(r ~ Oik)) dx = 
°ik 0 

t [X +2 0lk + ln (cosh x +2 0'k) ~ (X ~26,!, + In (cosh x 20;k) )l~ik (2.10) 

1 cos 1 ~CO~S~l_--,,'-,.-~ 

r 
h~X+O .. ]Sik I ~.+o. 

O'ik ln cosh ~ 0 = 6ik ln cosh Sik0 
which is the Fl(SibOik) defined in Eq. (2.7). Another interesting property is that the 

Fl (Sib bik) reduces again to a linearly scaled logistic function for Oik approaching zero, 

i.e., 

(2.11) 

The limit is easily obtained by linearizing the integrand in the first line of Eq. (2.10) at .r 

as a function of 6,h" or alternatively by applying l'H6pital's rule. 

Derivatives of F 1(Sik,b,k) in Eq. (2.7) are needed for transient sensitivity (first partial 

derivatives only) and for ac sensitivity (second partial derivatives for de shift), and are 

given by 

(2.15) 

The strict mOllotonicity of ;:1 is obvious from the expression for the first partial derivative 

in Eq. (2.12), since, for positive Oik, the first term between the outer parentheses is always 

larger than the second term, in view of the fact that .c is strictly monotonically increasing. 

For negative i5ik , the second term is the largest, but the sign change of the factor 1/0;,. 

compensates the sign change in the subtraction of terms between parentheses, such that 

the first partial derivative of ;:1 W.Lt. 3ik is always positive for 6;k 0/ O. 
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Yet. another choice for F no('s the argull1ent o/h' ouly to control the sharpness of the trans­

ition lwt-w(,Pll lillear and ('xj)oll('uti,d bl'hClvionr, without silllult.alW(lllsly varying t.he si~e of 

the near-linear inh-rval. Pr!'1i1l1illary ,-xllrrience wit.h lllocil'lling J\10SFET de eharadnisl­

iI's illrlicat.es that this hel]ls to avoid unacceptable local lllinima ill th" ClTor fUllctioll (cost 

function) for optilllizatioll llIlaccpptahic ill the sense that lhe results show too gradnal 

near-subthreshold tram;itiollS. Allot-h,-,. choice for F(8'k' bid is therefore ddined as 

(2.16) 

0.5 

F2 

-O'5~ 
-1~ 

wlwre the sqnare of h'k i- 0 avoids tl", \Iced for absolute signs. while it also keeps practical 

values of 6,k for j\10SFET subtluPohold alld bipolar modelling closer to 1, i.e., tlParpr to 

typicltl valups for mo"t otlwr panmlfters ill a suititblv scaled lH'nral network (see also 

:;cctiOll 4.1.1). For illotancc, hfk ;oj 40 would be typical for Boltzlllann factors. Tbe 

properti'" of F2 arf' wry similar to thoop of F J , since it is actually a differently scaled 
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version of Fl: 

(2.17) 

So the antisymmetry (in s) and symmetry (in 0) properties still hold for F2. For ib,ki » 0, 

Eq. (2.16) behaves asymptotically asF2(sik,Oik) '" -1+exp(o;k(Sik+1))/b;k for $ik < -1, 

F2(s,k,l5ik ) '" 5". for -1 < Sik < 1, and FAsibOid '" 1 - exp(-blk(s,k - l))/olk for 

Sik > 1. The transitions to and from linear behaviour now apparently lie around S,k = -1 

and 3ik = +1, respectively. The calculation of derivative expressions for sensitivity is 

omitted here. These expressions are easily obtained from Eq. (2.17) together with Eqs. 

(2.12), (2.13), (2.14) and (2.15). F2(Sik, Oik) is illustrated in Fig. 2.5. 

The functions Fo, Fl and F2 are all nonlinear, (strictly) monotonically increasing and 

bounded continuous functions, thereby providing the general capability for representing 

any continuous multidimensional static behaviour up to any desired accuracy, using a 

static feedforward network and requiring not more than one 14 hidden layer [19, 23]. The 

weaker condition from [341 of having nonpolynomial functions F is then also fulfilled. 

2.3 Analysis of Neural Network Differential Equations 

Different kinds of dynamic behaviour may arise even from an individ ualneuron, depend­

ing on the values of its parameters. In the following, analytical solutions are derived for 

the homogeneous part of the neuron differential equation (2.2), as well as for some spe­

cial cases of the non-homogeneous differential equation. These analytical results lead to 

conditions that gnarantee the stability of dynamic feedforward neural networks. Finally, 

a few concrete examples of neuron response curves are given. 

2.3.1 Solutions and Eigenvalues 

If the time-dependent behaviour of Sik is known exactly (at all time points), the right-hand 

side of Eq. (2.2) is the source term of a second order ordinary (linear) differential equation 

14When an arbitl'ary number of hidden layers .is allowed] one Ca.n devise many altel"nati-v-e schemes. Fot 
insta.nce) a squaring function x ...... xi can be a.pproximated on a small interval via linear combinations of 
an arbitrary nonlinear function F j since a Taylor expansion around a constant c gives Xl = 2[F(c +.r) -
.:F(c) - xF'(c)l/FIl{c) + O(x 3

} The only provision here is that:F is at least three times differentiable (or 
at least fOUT times differentiable if we would hav€ used the more accurate alt-ernativf: x 2 = [F(c + x) -
2F(cl + F(c - xl]/FU(c) + O(x'». These requirements are satisfied by our C= functiollS Fo. Fl and F,. 
A multiplication xy can subsequently be constructed as a linear combination of squaring functions through 
xy = H(x + V)' - (x - y)'J, xy = H(x + y)' - ",' - y'] or xy = -WX - y)' - ",' - y']. A combination 
of additions and multiplica.tions -can then be used to construct any multidimensional polynomial, which in 
turn can be used to approximate any continuous multidimensional function up to arbitrary accuracy. SeE­
also [33]. 
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ill !i,'" Dec·a.usc "" will he sp"C'ific<l at tIl\' llC'twork input. Olllv via vallH'o at. <lisnpt" timp 

poiIlt';, iutf'l"1JH'<iiatC' \"cti1L(,:-; an' llot f(·aJly l~llo\vli. HOV'lPY('L OIl(' could (-lSSlllllP and lllakl' 

nsr of a parti('ular inpnt illt."l'j)oiatioll. e.g .. lill('<1.r, clnring ,'o.c11 t.illl!' stPJl. If, for insi'.flll(,p. 

lillra!' int.('['jJol«t.ion is nsed. t.he diffen'nti,ti l'Cjuatiow; of t he first. hiddell laYI'r k = 1 of 

t.llP llPurl\l net.workh ('1\11 Ill' solved exart.ly (;u18.lytically) for each t.imp int.erval spalllH'd 

by SUbSI'C[l((,Ht. discrl'll' (illl(' point.s of tlw lletwol'k input .. If OllC nsps a piccpwisp linPHI' 

int.l'rpolatioll of tlH' n('1 inpnt. (0 the HC'xt la.wl', for instance sallJpled at tl1\' salllP set of 

hIll{' poillt~ H,~ giV{,ll in tIw Ilf'1 work inpnt specificat.ion, ODe call rppl'at thr pro('(·dnl"(> for 

tlie I)('xt stagl's. and an;tlyt ically solvp t.b,' cliffE'l'(>nt.ial PqlH1tiollS of SnllO"ljlll'nt. lay('}'s. This 

givrs a f)Pllli-;UHtl,vtic solnt.ioll of the ·wholf' lletwork, \~:h.pn' t.hr "sf'lni" rE,fer:::, t.o the forfc,tl 

pipcpwi,,' liuc',,1' shape' Ilf Ih,' timp deppndence of tIlt' nrt inputs to Dl'nrOtls. 

For Pitch ncmOll. itlld for cadi 1 illlP intervaL we wOllld oht.aiu it diffE'n'nt.ial ['quat. ion of the 

form 

at + b (2.115) 

with constanl., ({ and b for a ,ingle sq;IllCUI of the piccI'wiSl' liurar descript.ion of t.he right­

hand sid!' of E'I. (2.2). It i, ""uHlecl here t.hat TI,;k ;:: 0 and T2,ik > 0 (tlH' s]wcial cas!' 

T2.,1 = 0 is Irpitt('d flllt.lll'l' on). 

The hOlllogrlll'olls pMt (with (t = h = 0) can t.lll't1 lw WriU('ll as 

o 

fur which we lmvc " 2:: 0 ;wd "'II > D, llsillg 

auel 

h T1.1J..: 

2T2,1~: 

The <jllality factor, or Q-f<tl'tor, of 1 he differential equatioll is drfilll:d by 

(210) 

(2.20) 

(2.21) 

(2.22) 

Eqllat.ioll (2.19) is solvcd lly wbstit,nting lhk = pxp(At), giving th" chara('t..cristic <'([nalion 

(2.2:3) 
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with solut.ion(s) 

Al.2 = -1 ± )1'2 - w6 

\ 

-1 ± 1d if, > Wo > 0 
-, if 1 = Wo > a 
-, ± ]Wd if a < 1 < wo 

(2.24) 

using 

(2,25) 

The "natural frequencies" A may also be interpreted as eigenvalues, because Eq. (2,19) 

can be rewritten in the form x = Ax with the elements Q"J of the 2 x 2 matrix A related 

t.o 1 and '"'0 through 21' = -(all + a22) and w6 = al1an - al2an. Solving the eigenvalue 

problem Ax = Alx yields the same solutions for A as in Eq, (2,24), 

The homogeneous solutions corresponding to Eq, (2,19) fall into several categories [10]: 

• Overdamped response b > Wo > 0; 0 < Q < ~) 

(2,26) 

with constants Cl and C2, while Al = -1 + I'd and A2 = -I" - I'd are negative real 

numllE'rs. 

• Critically damped response ("( = Wo > 0; Q = ~) 

(2.21) 

with constants C r and C2, while Al = A2 = -I' = -Wo is real and negative. 

• Underdamped response (0 < I' < Wo; ~ < Q < (0) 

with constants C1 and C2, while Al = -I' + )Wd and A2 

conjugate numbers with a negative real part -,. 

• Lossless response (i = 0, Wo > 0; Q = (0) 

(2.28) 

-I' - ]Wd are complex 

(2.29) 

wit.h constants C r and C2, while Al = JWQ and A2 = -JWQ are complex conjugate 

imaginary numbers. 
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A particular solution .IJ;[)(I) of Eq. (2.[8) is givell hy 

( ) 2a",:, 
.IJ,[ (t) = at + /i-----:T II t + b - IITI.,' (2,;30) 

wo 

which is cilsily wrified hy substitntioll ill Eq, (2,18), 

TIl<' cOlllpl('tc ~()lntioll of E'l. (2.11l) i,s therefore giwn hy 

(2.;31) 

\vit.h t.he hOlllOgf'll{,OUS sollltimi sclc'('f(,(l frOlll t.he alJOV{,-llH'ntioll('(l case::.;. 

III thr sjleciill cas!' wlH'l't' TIA' > [) and 72.11. = () ill (2.11l). we hay\, a first order cli!feIt'lltiill 

t'quation, leMlin!; to 

(2.;>2) 

with comtmlt C, whilr'\ = -l/TLik is a lIE'gatiw rNtl1l111ll1wr. 

Froltl the "hove df'l'iVf1t.ioll it is ell'ct,r that cilknliltioll of the sPllli-allillyt.icitl solution. COIl­

taining CXPOIlClltiill. goniolllctrical and/or 'quare root fUllctiollS. is ritther pxp~nsiv['. For 

this reaSOll. ami because a llllllwrical approach is also pilsil,)' app1i,'c1 to any altA'l'tlativr 

ciifferential ("lllatioll, it is prohably lwtt,'r to perform tll<' inl.!'gration of the S(,I'OIlII order 

()J'(linilry (lilll'a1') diffr1'rntial eCjnatioll 11l1111<'Iirally via di,,('reti~ation wit h finite diff('n;il~r~. 

The usC' of fh(' ahow ail"lytici'LI dprivation lies mort' in providing Cjnalitatiw illsi",irt in tlw 

diffrrrnt kinds of iJehal'iolll' that llIay o('cur for ,liffprcnt lJarilm<'t"r srtt.ings, Thi~ is pa1'­

ti('nbuly ,,,pful ill ,lpsiglliup; "uitable nOlllinear pariillleter ('onst.ra.int futlctions Tt." = 

TI(rTl.1", rTl.,d and T2"i = T,(rTllk I rT2.ikl. Tli(' iSS1W will lw considered in more dpf,lil ill 

S('('tiOll 4.1.2. 

2.3.2 Stability of Dynamic Feedforward Neural Networks 

The hOlllOgO)(,()llS difft'rrutial p([11atioll (2.19) is also tlie hOlllOgPtlE'OUS part of E(I. (2.2). 

ylorl'ovl'r, the "OlT,'sponclillg analysi' of the previolls ,('('fioll fnlly cow'rs th(' situ'ltiotl 

wherp t.lw lleuron inputs -VI ,!- -1 from the prec.eding lawr ar(' constant. snch that. "i" is 

('onstant n('('ordiniS to Eq. (2.;,). The S01ll,(,(' tenn F(,SiA"Oik) of Eq. (2,2) is then also 

('onst.ant. In \.Pl'lns of E'l. (2.IS) thi, gives tile constants 11 = 0 and b = F(s,k.h,d. 

If the loss less n'spoll;',' of EC[. (2.20) is suppressed hy itlways having Tl.lk > 0 iw-.t.,'aci 

of til{' parlier conditioll TI." 2: 0, t.hen t.he real part of the natural fr('l[m'neirs A in Eq, 

(2.24) is always npgat.iV('. In th,,! casp. tllP behaviour is etponentially stable [10j. which 

llrt'P implies that for ('onstant nemon inputs til,' tin}('-varyillll, part of the nellIOll Ollt.put 
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Yi,.(t) will decay to zero as t -+ 00. The parameter function 1"1(0"1.,", 0"2.,k) that will be 

defined in sect.ion 4.1.2.1 indeed enSures that Tl,ik > 0. Due to the feedforward structure 

of our neural networks, this also means that, for constant network inpnts, the time-varying 

part. of t.he neural network ontput.s x(K)(t) will decay to zero as t -+ 00, thus ensuring 

stability of t.he whole neural network. This is obvious from the fact that, for constant 

neural network inputs, the time-varying part of the outputs of neurons in layer k = 1 

decays to zero as t -+ 00, thereby making the inputs to a next layer k = 2 constant. This 

in tnrn implies t.hat the time-varying part of the outputs of neurons in layer k = 2 decays 

t.o zero as t -+ 00. This argument is then repeated up to and including the output layer 

k= E. 

2.3.3 Examples of Neuron Soma Response to Net Input Sik(t) 

Although the above-derived solutions of section 2.3.1 are well-known classic results, a few 

illnstrations may help to obtain a qualitative overview of various kinds of behaviour for 

!hdt) that result from particular choices of the net input Sik(t). By using a = 0, b = 1, and 

starting with initial conditions Yik = ° and dYikidt = 0 at t = 0, we find from Eq. (2.18) 

the response to the Heaviside unit step function us(t) given by 

{
Oift<O 

ns(t) = 1 if t;: 0 

Fig. 2.6 illustrates tlll" resulting Yidt) for 72,'" = 1 and Q E {t, %, !. 1, 2, 4. oo}. 

(2.33) 

One can not.ice the ringing effects for Q > !, as well as the constant oscillation amplitude 

for the lossless case with Q = 00. 

For a = 1, b = 0, and again starting with initial conditions Vik = 0 and dVik!dt = 0 at 

t = O. we find from Eq. (2.18) the response to a linear ramp function u,(t) given by 

{ 
0 if t < 0 

",.(t) = t if t ;: 0 

Fig. 2.7 illustrates the resulting Yik(t) for 1"2,ik = 1 and Q E H. t, ~, 1,2,4,00}. 

(2.34) 

From Eqs. (2.30) and (2.31) it is clear that, for finite Q, the behaviour of Vik(t) will 

approach the delayecl (time-shifted) linear behaviour Q. (t - 1"l,ikl + b for t -+ 00. Wit.h 

the above parameter choices for 1"2,ik and Q, and omitting the case Q = 00, we obtain the 

corresponding delays 71,ik E {8, 4, 2,1, !, t}. 
When the left-hand side of Eq. (2.18) is driven by a sinusoidal source term (instead of 

the pn'sE'l1t source term a t + b), we may also represent the steady state behaviour by a 
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Figure 2.6: Unit st"l'l'("]lollse y;dt) for T"2.,k = 1 and q E {*,1,&,L2,4.0CJ}. 
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Figure 2.7: Linear ramp rrsponse y;d t) for T·2.,k = 1 and Q E {i, t. ~, 1, 2.4, (x;.}. 
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0.5 1.5 
omega 

Figure 28: IH(w)1 for TZ"k = 1 and Q E U,;},~, 1,2,4}. 
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Figure 2.9: LH(w), in degrees, for T2"k = 1 and Q E a, t, t, 1, 2,4}. 
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fl'equ~ne'y dOHlilin transfn funct.ion H(w) as t';iVCll by 

H(w) (2.:331 

which for T2;ik = 1 and Q E {~, t, ~, 1, 2,4} results in t.he plots for I H I and LH a~ "liowll 

in Fig. 2.8 and Fig. 2.9, rPkpertivelv. L-tl'i\l' peaks in IHI arise for lari\l' valucs of Q, Th~s,' 

peaks arE" position('cl llC'C\r angular freqllenfies ~' = wu, and tbrir height approximales thc' 

COITPsponding valne of q. The' clIrvc' ill Fig;. 2.9 that geh dosmt to it 180 etcgl\'(' phase' 

shift is the on~ C01T(,SPOllClillg to Q = ,I. At t Itl' ot her ('xt.n'lIll'. the ('mYc' that hanllv get.s 

lwyond a 90 (1<-gr('(' phaoc' shift. rOlTcsponils to Q = ~. Fol' Q = 0 (not shnwn), the' plw,(' 

"hift of the corr""pondillt'; fin,t. order "yst-em would never t';l't iWyOlld 90 ,I<-grecs. 

Frequcncy domain transfer functions of individual neurons and transfer ltlatric~s of lJ('nral 

networks will \)(' clis~n"s('d ill lIIorp detail ill tIll' (,Ollt..ext. of smell-signal ill' allal~'''is III 

sectious 3.2.1.1 and 3.2.3. 

2.4 Representations by Dynamic Neural Networks 

Decisivp for a wid('sprpacl application of dynamic lH'l1l'al llPtworb will he t.he abilii)' of 

thpse IlPtworks to ficj)rpoC)It. a 11llmlwr of important gen!'ml dm;ses of llE'haviouI. This ioouc 

is bpst rOllbiciPn,d separat.<' from the ability t.o construct or lean). it reprpsentatioll of that 

lwhavionr, As ill mathematics. a proof of the exist.encc of a solution t.o a probkm cloes 

not always proviclp t.he capability t.o find or ('onstrud a SOlll1iOll, hut. it at. least. in<iicatl's 

Ih",t, it is worth trying. 

2.4.1 Representation of Quasistatic Behaviour 

III physical moclelling lor circuit si[J)ulatioll, a clevie" is u,,"ally part.itioJl('cl into subUlml,,1s 

or lumps that are de,crihrd qllasist.at.ically, which illlpli~s that the plert rical st.at.,' of "",It a 

part re;;ponds instantaJl{'onsly to t.he appliecl hias. Tn Of hpI words, OlIP cOll"idrrs sllhlllO(kls 

that themselves have no internal noell's with associated char1':('''' 

Dne of the mORt comlllollsit.nM,iolls for a built-in circuit ,'iilllllIator lIlodel i.s that cit tCl'lllinal 

('urrents I(dc) and so-called rqnivalpllt terminal ('harge, Q(rq ) of a device itl'C' clirec\'.l,v and 

llniqnely determined h,v the ('xtrmi111y applied tinH'-deprn<1('nt voltagc'" VU). This is also 

typical for the 'lllasistatic modelling of the intrinsic lwlmviour of l\IOSFETs, ill order 

t.o grt riel of the 1I0lHjllasi:-;tatic clJanuPl charge distrilmt.ion l4~1. Thl' iH'!.llal '[llasistatic 
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terminal currents of a device model with parameters p are then given by 

I(f) = I(dc) (V(t),p) + ~Q(eq) (V(t),p) (2.36) 

In MOSFET modelling, one often uses just one such a quasistatic lump. For example, 

the Philips' MOST model 9 belongs to this class of models. The validity of a single-lump 

quasistatic MOSFET model will generally break down above angular frequencies that are 

larger than the inverse of the dominant time constants of the channel between drain and 

source. These time constants strongly depend on the MOSFET bias condition, which 

makes it difficult to specify one characteristic frequency15. However, because a quasistati(' 

model can correctly represent the (dc+capacitive) terminal currents in the low-frequency 

limit, it is useful to consider whether the neural networks can represent (the behaviour 

of) arbitrary quasistatic models as a special case, namely as a special case of the truly 

dynamic non-quasistatic models. Fortunately, they can. 

In the literature it has been shown that continuous multidimensional static behaviour 

can up to any desired accuracy be represented by a (linearly scaled) static feedforward 

network, requiring not more than one hidden layer and SOme nonpolynomial function 

jIg, 23. 34J. SO this immediately covers any model function for the de terminal current 

15With drain and source tied together, and with the cha.nnel 1n strong inversion (with the gate-sOUTce 
a.nd gate~drain voltage well above the threshold voltage), significant deviations from quasistatic behaviour 
may he expected above frequencies. where the product of gate~sourc€ capadtance·"-which now equals the 
gate-drain capacitance and angular frequency becomes larger than the drain-source conductancE:'. 

v 

Figure 2.10: Represent.ation of a quasistatic model by a feed forward neural network. 
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](dcl(V). Furthennorr, simply by adding another nC'twork ill parilllel. on" call nf course 

also rfpresent. any functioll Q(Cql(V) with a IlCmalllC'twork cOlltaillin); not !lion' thilll Oil!' 

hidden layc'r. HOWf'VPL acronling to Eq. (2.36), we must "del till' tirne-derivatiw of Q(c
oq

) 

to t he de currC'nt ](dcl. This is easilv dOllr with all additiollal lwtwork layer Ie = 3. A 

llnml)fr of nOll?,cro ti',.I,:' ane! zero 1', 1:) vahws are used to copy tl", de CIlITPnts into t hl' 

l1E't input 5,,3 of output n(>llron~ ill this f'xtra layer. ZrIo WI;:) and IlOllz,t;>ro U1),3 V;:lJUE',<" an' 

used to adel the appropriate lime ckrivatives of the eharges, as giv('n by the out.]luts of 

other neurons in LqPI Ie = 2 t.hose of the prt"viously llIC'ntiOllPcl petrallelllPtw(>rk. 

An illustration of the pro{'cdurl' is givpn ill Fig. 2.10 for a :3-i11p1l1. :3-output nrmalurtwork. 

as n~edpd to represent a qllasist.atic model fOI a 4-t.erminal device. (VVf' will not try to 

formalizp and prescribe tlw IiltheI trivial bookkeeping detaib of gi\·ing ('onnet." "aIm'S to 

theWij,:, and v,}:].) TIl(' Tl.," itnd 72.,,, parameters an' kept at zero in all layPl's. The net 

input. of output layer k = J is already the desired outcome of E'l, (2.36) awl must. tlil'It'fore 

be transparcntly passed 011 to tIll' nNwork outputs by using lillear(i~ed) behavionr in F. 

The lat.ter is always possihle by lnaking appropriate use of the linritr scalings that arc 

part of our ueural11etwork definitiolls. A (nearly) lincal' rt'gion of F need not explirit ly be 

present., as in F z, Equivalent linear behaviour cau be obtail1(,d up to any (ksin',l aCClll'itcy 

from allY ('ol1tiuuous F, hy scaling the 1;)i),3 cend tiil,:3 vitlnes by a suffiriently omall factor, 

a11d compensating this ocetling at the network ontput. by a (olTPsponding ullseitling. by 

multiplying the "i values wit.h the invelsE' of this factor. The (),.:l ancl i3, can all I", kt'pt 

at. '1.;f'fO. 

This veIl' simple construdiv(' proc~dllre shm'!" that all qnasistatic mod"],, ar(' rrpresc'lltahl<' 

up to arbitrary accuracy by our cla:'.s of dynamic ll~\Ual networks. It. does not ('xclude the 

pO"oibility thitt the salllP lIlay abo be possible with fewer t han two hidden JaY('ls. 

2.4.2 Representation of Linear Dynamic Systems 

III this section we show timt with our dynarni(' nHlml network definition" Ell'" (2.2). (2.3) 

and (2.5), t1w lwhavio\U of Felly lint'ar time invariant lumped circuit witlt frequ(')}('y trallsfer 

matrix H(s) call be repre",'lltrd rxaetly. Here" is the Laplarp variable, also c,tllc.'cl t.he 

complex freql,ency. 

Vip will first. restrict the disl'1lssion t.o the rqnesellt.ation of a single but arbit.rary d(,lucnt 

H(s) of the transfer matrix H(8). The H(8) for multi-input., multi-output systems nm 

afterwards 1)(' synthesized hy properly merging and/or pxt.ell<iillg the neuralnetworh for 

individual element.s H(s). 

It is known that the behaviour of any uniqucly solvable linear t.ime-invarilitlt lumped circuit 
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can be characterized by the ratio of two polynomials in s with only real-valued coefficients 

!10). Writing the nominator polynomial as n(8) and the denominator polynomial as d(s), 

we therefore havE' 

H( ) = n(s) 
S d(s) (2.37) 

The zeros of d(s) are called the poles of H(s), and they are the natural frequencies of 

the system characterized by H(s). The zeros of n(8) are also the zeros of H(s). Once 

tlw poles and zeros of all elements of H(s) are known Or approximated, a constructive 

mapping can be devised which gives an exact mapping of the poles and zeros onto our 

dynamic feedforward neural networks. 

It is also known that all complex-valued zeros of a polynomial with real-valued coeffi­

cients occur in complex conjugate pairs. That implies that such a polynomial can always 

be factored into a product of first or second degree polynomials with real-valued coeffi­

cients. Once these individual factors have been mapped onto equivalent dynamic neural 

subnetworks, t.he construction of their overall product is merely a matter of putting these 

subnetworks ill series (cascading), 

As shown further on, the subnetworks will consist of one or at most three linear dynamic 

neurons. W.Lt, a single input j, a linear dynamic nenron-with F(Sik) = 8ik -has a 

transfer function hijk(S) of the form 

(2.38) 

as follows from the replacement by the Laplace variable S of the time differentiation op­

erator d/dt in Eqs. (2.2) and (2.3). 

In the following, it is assumed that H(s) is copnme, meaning that any common factors in 

the nominator and denominator of H(s) have already been cancelled. 

2.4.2.1 Poles of H(s) 

In principle, a pole at the origin of the complex plane conld exist. However, that would 

create a factor lis in H(s), which would remain after partial fraction expansion as a term 

proportional to l/s, having a time domain transform corresponding to infinitely slow 

response. This follows from the inverse Laplace transform of l/(s + a): exp( -ail, with 

a positive real, and taking the limit a 1 O. See also [10). That would not be a physically 

interesting Or realistic situation, and we will assume that we do not have any poles located 

exactly at the origin of the complex plane. Moreover, it means that any constant term in 

d(s) -because it now will be nonzero-can be divided out, such that H(s) is written in 
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a form having 1.1)(' constant. t~r1n in d( ~) <,([nal to 1, ant! with til(' COllstallt term in n( s) 

eqnal to tIll" static (dr) transfer of H(s), i.e., H(8 = 0). 

• Complex conjugate poles (1/ ± .Iv). " ilnd b bOUl H'cll: 

The product of., -- (0 +jll) amI" - (0 -)/1) givrs tIl(' qnadratic forlll 82 - 2.", +,,' +1;'. 

If (a, b) # (0.0) it;' iIS;'lllIH'c! \)('[01"<" WI' ('<tn withont dJallg,iu!,: t.ht' pmitiou of poll's 

divide by 02 + /)' <llHIl,\rt 1 - [2a/(u 2 + b2)]., + [1/(0 2 + r})],,2. This (·xact.ly matches 

tlw dl'LIollliui\tor 1 + T]),,s + 72.,k·,2 of hijd.s), with I'('al 71,,! alld T2.," if we tab· 

20 
- (/2 + /)2 

1 

0.2 + 1)2 
(2.:39) 

To eLIsurp stability, we lllay waul. nOIl-positive rcal parh; ill tllC' poles, i.e., (J < 0, 

slIch that indeed TI.," ::> n, \Vr see that 72,," > () is always fulfilled, 

Apparently we catl reprc·sent any complex conjngat(' pair of poi<'s of H(.,), llsing .iust 

a single IH'UrolL 

• Two arbitrary but real poles at, a2' 

The product of" - (I] and" - (Ii gives (11(12 - (01 +(12)8+ ,,', If (('1,0) oJ (0,0) ami 

(n2,O) # (0.0) as aSOlllll"cl hdol'P, we can .. -·-withont changing the position of poles 

divide by 1')1'2 and g('t the quadratic form 1- [(al +1I")/(U1(12)]S+[1/(1I1(f2)),2 This 

exactly mat!'hes the denominator 1 + T] ,ikB + 
T2.,k, if we t.ake 

(II +.(j~ 
TI,II-,: 

(2.40) 

Ttl eilSHre stCLbilit:.-. WI' may iLgain want nOll-pmlitiV!' l'C'al parts in both (reid) pO]!'s, 

i.e" at S 0, (/2 :s; 0, slIch that to!':!'ther with the exclusion of the origill (0, Il), 

T1clk' > (), and also 7i.;k > O. For 1/,1 ~ a2, tIll' same values for 71,1" and 72,lk. arise 

as in the ('iLse with complex COl]jngate zeros (0 ± )u) with v == 0, which is what DIll' 

woule! explTt. 

Appan'ntly WI' (all rt'present two arbitrary real poles of H(s), Llsing jllS! a single 

• One arbitrary but real pole a: 

This implies it polynomia.l fador ,5 - (1,. For (0.,0) # (n,O) as assUIllcd hefo!".-, w~ 
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can--without changing the position of poles-divide by -0 and get 1- (l/o)s. This 

exactly matches tlw denominator 1 + 71.ikS + 72,ikS2 of h'Jds), with real 71.ik and 

T2);', if we take 

o 
T2,ik o (2.41) 

For stability, we will want non-positive real parts for the (real) pole (a, 0), i.e., a :S 0, 

such that together with the exclusion of the origin (0,0), Tl,,' > O. 

Apparently we can represent a single arbitrary real pole of H(s), using just a single 

neuron. 

This provides us with all the ingredients needed to construct an arbitrary set of poles for 

the transfer function H(s) of an electrical network. Any set of poles of H(s) can now be 

represented by cascading a number of neurOnS. 

It should be noted that many pole orderings, e.g., with increasing distance from the origin. 

rnay give an arbitrary sequence of real poles and complex conjugate poles. Since a pair 

of complex conjugate poles must be covered by one and the same neuron, due to its real 

coefficients, OnB generally has to do some reordering to avoid having, for instalKe, olle real 

pole. followed by a pair of complex conjngate poles, followed by a real polE' again: the 

two real poles have to be grouped together to align them with the two neurOnS n('cdE'd to 

represent the two real poles and the pail' of complex conjugate poles, respectively. 

2.4.2.2 Zeros of H(s) 

The individual zeros of the nominator nCs) of H(s) can in general not be covered by 

associated single neurons of the type defined by Eqs. (2.2) and (2.3). The reason is that 

the zero of a single-input neuron is found from W'Jk + S1!'Jk = O. i.e, s = -W'ik/t"jk' 

whilewiJk and viik are both real. Consequently, a single single-input neuron call ollly 

represent all arbitrary rea/-valued zero a of n(s), i.e., a factor (8 - 0), by taking t"ik f 0 

and W'Jk = -av'Jk' The real-valued Wi}k and viik of a single neuron do not allow for 

complex-valued zeros of n(s). 

However, arbitrary complex-valued zeros can be represented by using a simple combination 

of three neurons, with two of them in parallel ill a single layer, and a third neuron in the 

next layer receiving its input from the other two neurons. The two parallel neurons share 

thE'ir single input. With this neural subnetwork we shall be abl" to construct an arbitrary 

factor 1 + aj8 + a2s2 in n(8), with aj, a2 both real-valued. This then covers any possible 
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pair ofrOlllpl('x l'Olljllgat." ",'ros l15 It is wort.h notillg that ill t.ll(' r<"presentatioll of {'olllplpx­

valued Z ('1'00 , OIl(> otill "lIds up with OllP modpll"d zno ]J('r llPllralnetwork layer. bllt llOW 

l1Sillg thIT(' ll('llHH1:-l for hvo Zl'lO::-: inst('ad of two lH'nrOll~ for 1.\VO (rea,}) z£'rO:-l. 

First we ['(,I al)(' 1 , for notational darity. th,' '£'ijl. and l"lk l'"nullrters of t.he sillg;k-illl'llt (.1') 

sillgle-output (.II) m'ural olll111et.work as indicated in Fig. 2.11. 

If Wi' negle('t. for 'implicity of dis('u"ioll. t.llt' poles by telllporarily!' setting all t.he TI"" 

iind T1.ih· of til(' subtl('twork ,'qua.! to zc'ro, thell the t.ransf('l' of till' sllblletwork is obviollsly 

giV('ll by (11'1 + 1'1.')(11'2 + "2") + (11':; + 1':)8)(11'1 + ".18). Sdting"'l = 0,1'\ = 112.1('2 = () 

ami /'2 = 1 ,vic,lrls R terlll !I ,.,2 ill tllt' t]'a",.[('r. alld ,('[ling /111 = I. ('1 = (J I, 11':, = I 

alld I':l = [) yidds :wotl)('r t,frlll 1 + (118 in the trails fer. Togrt her thi" illdeed givE'N the 

al)()ViLllli'lltioIH·d arbitrary factor 1 + 1118 + {i28i wit.h "I. (/2 both rr"l-v,tlllpd. Simi hI' to 

tllp Peulier treatment of complex (Olljugatp poles (a. ± .Jb) with a and Ii both real. W(' filld 

t.hill. the product of" - (II + )1)) itud 8 - (u - .Jb) after divisioIl Ly (/) + b2 lpac.1, to it factor 

1 - [2a/(0'2 + b2)18 + [1/({/2 + li)18'2. This pxactly matdws t.lw form 1 + iqS + (/28'/ if we 

IGOf COllnw it abo COVl'r~ all)' pctlr of rf'.;-d-vcdIH'rI zpros, but Wf' didn't. n<"t'd t.hi~ cOI1s-trudion to p'presf'nt 

real-va.lued ZE'-I'OH. 

17 AllY polc~ ()f l!{::;) that om' \\'()Illd b;:'Vf> ,L'J~o('iat['d with a IH:'Ul'OlI in tlw first of the two la.yl:'r.':l of tlH' 
slIbnctworl{ can ia1er ('a~ily bl:' n . .'intl'ociucf'-d without modifying tht' :.',eros of thp subnet.work. This I::; QO!1f" 

by tlH:' ValllE'~ of Tl,ik ct[Jd T:1,ik of 011(' of the t\\/o paraliel llE'Ur()n~ 1.0 the resp~ctive TI . .!.: rand T2,d" 

of I he neuron. 'I'll(' two pa.rd.lI(,1 ) l('llrU w; then ha.vp ideutica.l pole:-;, which then also arc tlH~ poif's of 
any linf'CLrly' wt'ightpd comlmmiiOll of their outputs. Poles Rsso("iatc·d \-vlill the neuron in the second of thE" 
two [;\).'('1":0; of 1 he :·mlmctwork au; ITJnt roJtt(<'d withollt any 'ip('cial a('t iou 

FigurE' 2.11: Paritllw(,('l' K!'t.tings in a npmal snbnPl.work for tll!' rlT)Ies~lltation of two 
complex ('Otlj ursat,· 7,Pl'OS. 
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take 

2a 
- a2 + &2 

1 

a2 + &2 

47 

(2.42) 

Any set of zeros of H(s) can again be represented by cascading a number of neurons-or 

neural subnetworks for the complex-valued zeros. 

The constant term in n( s) remains to be represented, since the above assignments only 

lead to til(' correct zeros of H(s), hut with a constant term still equal to 1. which will 

normally not match the static transfer of H(s). The constant term in n(s) may be set to 

its proper valne by multiplying the Wijk and Vijk in one particular layer of the chain of 

neurOnS by the rE'quired value of the static (real-valued) transfer of H(s). 

One can combine the set of poles and zeros of H(s) in a single chain of neurons, using 

only one neuron per layer except for the complex zeros of H(s), which lead to two neurons 

in some of the layers. One can make use of neurOnS with missing poles by setting 71.ik = 

72;" = 0, or make use of neurons with zeros by setting Vijk = 0, in order to map any given 

set of poles and zeros of H (s) onto a single chain of neurOnS. 

2.4.2.3 Constructing H(s) from H(s) 

Multiple H(s)-chains of neurons can be used to represent. each of the individual elenwnts 

of the H(s) matrix of multi-input, multi-output linear systems, while the Wijl\. of an 

(additional) output layer K, with VijK = 0 and (l;, = 1, can be used to finally complete the 

exact mapping of H(s) onto a neural network. A value Wijl, = 1 is used for a connection 

from the chain for one H(s)-element to the network output corresponding to the row-index 

of that particular H( s )-element. For all remaining connections W,)l;~ = O. 

It should perhaps be stressed that most of the proposed parameter assignments for poles 

and zeros are by no means unique, but merely serve to show, by construction, that at 

least one (~xact pole-zero mapping onto a dynamic feedforwarcl neural network exists. 

Any nnmerical reasons for using a specific ordering of poles 01' zeros, or for using oth~r 

alternative combinations of parameter values were also not taken into account. Using 

partial fraction expansion, it can also be shown that a neural network with just a single 

hidden layer can up to arbitrary accuracy represent the behaviour of lineal' t.ime-invariant. 

lumped circuits, assuming that all poles are simple (i.e., non-identical) poles and that there 

are more poles than zeros. The former requirement is in principle easily fulfilled when 

allowing for infinitesimal changes in the position of poles, while the latter requirement. 

only means that the magnitude of the transfer should drop to zero for sufficiently high 
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fr(·(lll('lleips. wl,ieh is Oft."ll tIl(' ('<tsr f()l' th,· parts of Syst('lll behaviour that arc rrlcv<tllt to 

1w moddied lb 

2.4.3 Representat.ions by Neural Networks with Feedback 

Although Iparning ill ]l('l1rai ll<'1worb wit It feedback is Bot covpred in t.his t,h(·si,. it is 

wortl"',hil(' to (OllSic\tor th,' ability to repn'S('nt ('ertain kilHb of b~haviour Wlt"ll feedback 

is applird ,'xlPl'llally to our lH'tll'allldworks, As it tmns out, thE' additioll of fppdback ,diow:; 

for thr H'pres"BtatioB of VCl)' gem'ral ch,:;s(', of l)()tlt linf'al' ,mel llolllillrar llllllticlinwnsicJIlal 

clyTllctluir be hhviour 

2.4.3,1 Representation of Linear Dynamic Systems 

'IV" will show ill this oe('(ioB tllat wit.h definitiono in Eqs. (2,2), (2,:3) and (2.5), a dynamic 

fe"elforwanl lleural llctwork without a hittell'll lily,'r but witlt external f('Nlback sutfin', 

t.o rrprrfl.Pllt t.he tilIl!? (l\'olut.ioll of any liw'ar dyualllk SYS!'('lll dU-Lract.prizE'd b,Y tllP !;ta.te 

equation 

x=Ax+Bn+Cu (2.43) 

w!Jere A is all II x 1/ lIlal rix, x is a "fa.te '1'N:t01' of I(>llgt h n. B alld Carl' 17 x In lllatricp~, and 

u = u(l) is an pxplicitiy tilll,'-d(']H'll(it>llt l,nput 71ect01' of kngth Til, As u,'oual. t ['('P['('S('llts 

(he t.ime, First clerivatiwo W.Lt. timp Axe lIOW imlieatl'd by a do/.. i.e" x == d;r/dl, 

it == clu/clt, 

Eq, (2.4:3) io a s])('cial ('asi' of t.he llOlllill('ar statc r<Iuation 

x = !(x, t) (2.44) 

with nonlilH'ar v('etm frlllnioll !, This form is already sutfici(,lltly gPIH'ral for circuit sim­

ulatioll with ([nasistal'ically lllodelled (sub)clrvicps. hut sOlllE'tiltlcs till' ('Wll lllore gelleral 

implicit form 

!(x, x, I) o (2.45) 

is used ill formal derivat.ions, TI ... elclllcnt.s of x are in all t,ll('se ('asps callpd "taie vrLnnliif',\. 

HowevPl'. we will at first only furtlt(']' pursue the reprpselltatioll of lint'ar dynamic SystClllS 

by llleans of nellrai ll"twork;;, 'IV" will [orgp l'quatioll E'l. (2.43) into a form C'oITE':iponcling 

18F'or i-X.fI.IHple, Olli' will 1l~11itll.v not \w inkH'~'kd in accurately lllodelling for CllTuit simulation 
amplifier at frcqu{"no:i(':;: i~-'hcrc it:., ",vire;; fv.:1 U~ (l.Ilt(\IHH:tf-l, and wiwl"I' it,,) lni,pnc1p(] amplification fact.O)' bets 
a.lrrady dropppd fen lwlm·v 01H'. 
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to a feedforward network having a {11 + m, 11} topology, supplemented by direct external 

feedback from all n outputs to the first 11 (of a total of 11 + m) inputs. The remaining m 

network inputs are then used for the input vector u(t). This is illustrated in Fig. 2.12. 

By defining matrices 

WI 
6 

1 + A (2.46) 

VI ~ -1 (2.47) 

W" 
6 

B (2.48) 

V" 
6 

C (2.49) 

with 1 t.he 1'1 x n identity matrix, we can rewrite Eg. (2.43) into a form with nOllsquar(' 

n X (n + m) matrices as ill 

(2.50) 

The elements of the right-hand side x of Eg. (2.50) Can be directly associated with the 

nE'uron outputs Yi.] in layer k = 1. We set cti = 1 and f3i = 0 in Eq. (2.5), thereby making 

Figure 2.12: Representation of linear dynamic syst.ems by dynamic feed forward 
neural networks with external feedback. 
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t.he net.work Olltpllts idcntical t.o t hr !let1fon ontpnts. Dm' t.o tilt' ext"rnal fr('dba~k. t Iw 

e]('lIWtlts of x ilt E'l. (2.;'0) iI.n' 1l0W abo idl'ttl ical t.o t Iw tH'twork inputs .1')0), i = D,. ., n -1. 

To complete t.he association of E'l. (2.50) with Eqb. (2.2) iLlld (2.:3). w" takr Fhkl = ',!" 
TIl(' 11',).1 are ,impl,' t.1tp ph'tll"llls of t.hl' mat.rix (W" W,,) ill tIl(' first term ill the left­

hallc! sid,' of Eq. (2.;:;0), wldlp lhe i"i.1 all' the d(,lll('nis of tbe lIlat.rix (V., V,,) ill til!' 

s('('[)I1d tern1 ill ttl(' lrfl-lr;wd ,i,l" o[ Eq. (2.,,0). Throllgh till'S" ('hoicl's, we can pHI tl«' 

n'ltlaillillg paIamrt.('rs In %('t'O. i.l'" 71.i.1 = O. 72.d = () i1mllli.1 = 0 for i = 0, .. , /I - 1. 

hp('ansf' \'i,:(' do not tlPr,d t IlC\I..,(' p(j,rallH'f(\r~ 1j(>l'C>. 

Tbis shmt PXC1\t',iOll into [('r([forward lteural ltPtworks witlr ('xtrrual feedback alrpaily 

shows, t hat our ]It'('srltt Sl't of JI('1ll'al network dpfinitiolls ha, a F;r('itt. vC'n,atilit.y. \'1'1')' 

gPltnal lil\l'ar d~'mulli,' SV,IPlll:-; are l'a.~ily tlliCPP<'<\ oulo 11emal jH't.works. with 0,,1\' it 

Injuiul(-t.\ inrr("asp ill r('prp~(,llt .a.t.iolla.l fOltlplcXlt.y. t h(' Ollly pxt<~n;-.;iotl lH'iug t hr (·Ollst.raillt.~ 

itll]>osrc.l h,' t.he ('xt(,l'IlHI [,,('d]'a('k. 

2.4.3.2 Representation of General Nonlinear Dynamic Systems 

TIll' l'('sllit .. S of tl1<' pn,(·,'diu" ",ct..io11 gin' ris(' t.o t.hl' import.anl qU('StiOll, whptiler WC' call 

also d('yisl' a PWCT<illl'(' t llilt a!lows us. itt kast ill prill('iplo, t.o t'('pt'E"(,lIt ,U'hit.l'ill'~· 1IoniitlPar 

dyna.lllic 'YSt."1I1f; <-lS rxpri"""ll bv Ell. (2.45). That. woul(l itllply that our fprdforwarcllll'llud 

llf'twol'ks, wlwtl sllpplptltl'tlt.('d \vit.h krdlJa.('k cOllnectious. (';\Il rq)IPSE'llt thl' h"'LAviOltl' of 

all:v 110l1liuc'iU dYll.alllic ('}('('tlouic circuit. 

,VI' will c'OllsidpI tl](' lLPltl'al Il('t.work of Fig. 2.1:.\. As ill t.1](' ]It·(,(,pdill!,; sediot1. wc' will 

LtSp a statp ""d.or x of IC'ugt.lr 1/ ill a fppriiJack loop. tl]('l'('hy i(ll'lllillg pc;rt. of tilP lLPlwork 

input, whil(> 'u, = u( t) is t.III' explicitly timp-rlepPlJ(lpllt illjlllt. V('('\..()l' of I"llgt It 1/1. All t.itllillg 

paralllf'trI'S 71.1, I, 7'2./,1 T[,I,2_ T2.1.'2 and /11},'2 an' krpt at '/,~lro, }w('(tu:w it tlllW'; Ollt t.hat ,,\i(' 

do HOt. ll('l'd rhc'llI t.o alLSw,', t.11I' ahm'p-ltlPlltioned Ijlll'St.illll. OnlY t.l1(' t.iming jlitIalllf'fet's 

",).1 of t.lw hidd('Hla,ver k = 1 will W'l1l'rally 1)(' nouzel'(), \y" 'knotl' th" llPt illjlllt. to lawr 

k = 1 hy H VPl'tur s oj' I(,llgt.h p, wit.1t e\('nH'llt.o "',1. Similarly, th" thn'sholll ,'('dor () of 

lengt.h 11 ('olltains "](,HH'llto (!, 1 ThOll w0 havE' 

(W, W,,) ( Xv) + (V, V,,) ( : ) - e s (2.51) 

01'. altl'rttatiyC'ly, 

V,,) (u ~:'l- " (W.,. w" V., d. <7 s (2.52) 



2.4. REPRESENTATIONS BY DYNAMIC NEURAL NETIVORKS 51 

with W,the 11 x p matrix of weight parameters Wij.1 associated with input wctor x. V, 
the n x p matrix of weight parameters 'V,j.1 associated with input vector x, W u the III x p 

matrix of weight parameters Wij'! associated with input vector u, and V u the m x p matrix 

of wlC'ight. parameters V,).1 associated with input vector u. 

The latter form of Eq. (2.52) is also obtained if one considers a regular static neural network 

with input weight matrix W =0 (W X W u V x V u), if the complete vector (x u X U)T is 

suppost'd to be available at the network input. 

This mathematical equivalence allows us to immediately exploit an important result from 

the literature on static feed forward nE'ural networks. From the work of [19, 23. 34]. it 

is clear that we can represent at the network output any continuous nonlinear vector 

function F (x, u,.n, u) up to arbitrary accuracy, by requiring just one hidden layer with 

nonpolynomial functions F-and with linear or effectively linearized19 functions in the 

output layer. 

We will assume that F has n elements, such that the feedback yields 

F(x, u, x, u) x (2.53) 

In order to represent Eq. (2.45), we realize that the explicitly time-dependent, but still 

19See also section 2.2.1. 

jF(.,.,x,·)=·I ...... 

Figure 2.13: Representation of state equations for general nonlinear dynamic systems 
by dynamic feedforward neural networks with external feedback. 
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L, 
F (x. u. x. 'iL) "" f (x. x. t) + x 

\\,'here til£' aTgllllH'llt~ x. X and t shol1lcl uO\-\" be' vic'\v(·d a:-- illdplH'll<irllt variabh's in !'flu; 

ri f'.fini.ti on, ami wlH'],(' ilpproprii1J.;> choices for u(l) tlliikp it possible to rPl)l'('scllt anv ,'xph­

('itly Iinw-dPjH'lI,kllt pa.rts (If f. 

T!J" above approximClti()]1 1',\11 be lllad" arbitrcLrily do,p, slIch that snl"tit1ltion ofE". (~.54) 

in EC]. (2.5:3) inci('('rl yi('\,b tlt(' g"lwl'al stat(' ('<111atio11 (2.4.3). 1.(' .. 

I(x, x. t) = 0 (2.5:') 

It slioul,l lw drar that th"n' is it majm s(,llliintic rlistillctioll hC'tw('I'1J a. fll11Ctioll I\ptillitioll 

like, (2.54), which shollld ill prin('ipli' ltold for an'lI ,'ombinatio11 of ,ng1ll1lC'llt vallie, to hClH' 

a 11011t,l'ivi<l.1 mapping tltat f1l11y ('()\','rs the characteristics of t.he SYSt."lll t.o hl' 1110<\('11<>11. 

awl r"'aticllLs hrtW("'ll ['lllctio!»;. such ;" (2.45) illlCl (2.5;»). whi(,h pos,' impli('it n,lations 

.:tll 10 llg 11("11('(' n\'-itrict lOH.'-l to Hlg-Ullll'l1t vnht('.<O.\, 

trutil 110V/. v .. '(' only {,(HlSidt'H·d slate ('quatio1l,s, whilE" a (,OlH]ll(lt(·~ anH.lysi;-.; of al'hi.l'{)r~' 

llonlill<'al' dynamic s,·;;h'ttls also involws output cq'Untw'II.s for tlOnstate v;niablc·, of t.!H' forlll 

y = G (x, u. it). a.lso Imo\\'lJ as inpu/·st(l.te-IJ"tJllJ.t equa/um" or l'P!l.d-(mt mal' according to 

[9j. 'I'ltpsp P'l"Rtions Il'lat(' the st.at" varialJI('s to Ih,· ohs('rvahlps. Howl'wl'. with ('j('ct.nlllic 

Fignrr 2,14: Rept'l'S('lltatioll of general nOHlin"ar dynamic SYSt."IlIS hv fI'E'dforward 
ll('>tll'aJ lld\\'orkf-' wit.h pxt.f'l'lw..l feedbiH'k. 
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circuits the distinction between the two is often blurred, since output functions, e.g., for 

cnrrents, may already be part of the construction-and solution-of the state equations, 

e.g" for voltages. As long as one is only concerned with charges, fluxes, voltages and 

currents. the output functions are often components of f (:l:, X, t). For example, it may 

be impossible to solve the nodal voltages in a circuit without evaluating the terminal 

currents of devices, because these take part in the application of the Kirchhoff current law. 

Therefore, in ricctronic circuit analysis, the output equations G are often not consid€'red 

as separate eqnations, and only Eq. (2.45) is considered in the formalism. 

Any left-over output equations could be represented by a companion feed forward neural 

network with olle hidden layer, but without external feedback. The additional n!'twork 

takes the available x and u as its inputs, and emulates the behaviour of a static feedforward 

neural network with inputs x, u and 11, through use of the parameters V'J.l. The procedure 

would be entir<2ly analogous to the mathematical equivalence that we used earlier in this 

section. 

Furthermor<2, since :l: is, duE' to the feedback, also available at the input of the network 

in Fig. 2.13, the companion network for G can be placed in parallel with th« nf'twork 

representing F, thf'rf'by still having only one hidden layer for the combination of the two 

neural networks. This in turn implies that the two neural networks (for F and for G) can 

be merged into one nemal network with the same functionality, as is shown in Fig. 2.14. 

In view of all these very general results, the design of learning procedures for feed forward 

nonlinear dynamic nemal networks with ext.ernal feedback connect.ions could be an inter­

('sting topic for future work on universal approximators for dynamic systems. On the other 

hand, fef'dback will definit.ely reduce the tractability of giving mathematical guarantees 

on several desirable properties like uniqueness of behaviour (i.e., no multiple solut.ions 

to the network equations), stability, and monotonicity. The representational generality 

of dynamic neural networks with feedback basically implies, that any kind of unwanted 

behaviour way occur, including, for instance, chaotic behaviour. Furthermore, feedback 

generally renders it impossible to obtain explicit expressions for nonlinear behaviour, such 

t.hat nonconvergence may occur during numerical simulation. 

For the present, the value of the above considerations lies mainly in establishing links with 

general circuit and system theory, t.hus helping us understand how Our non-quasistatic 

feedforward neural net.works constitute a special dass within a broader, but also less 

tractable, framework. We have been considering general continuous-time neural systems. 

Heading in the same general direction is a recent publication on the abilities of continuous­

time recurrent neural networks [201. Somewhat related work on general discret{'-time 

twural systems in the context. of adaptive flltering can be found in [411. 
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2.5 Mapping Neural Networks to Circuit Simulators 

Apart from tll(' intrinsic ('al'"hiliti~s of lWllml n~tworks to rcpH'sPllt ceIt.ain class('" of 

behaviour, as cli"cusscd bc,fore, it. is also impoIt"wt to cow;ideI the possibilities of mapping 

t,hese Ileuml lwtworb ont.o 1.1)(' input languar;t's of ('xi,sting analogue (,in'uit sinmlators. 

If that c:tn be done, Olll' can silllulate wit.h n~ural network models withont I'i'Cjniring t.h(' 

implementation of 11('W bllilt-in models in ttl(' SClurC(' ('od(' of a particllbx ril'cnit simulator. 

TIl(' fact that one then clot's not need anTSS t.o tll(' ,O\ll'C(' ('ode, or illfinPllCl' t.hC' priority 

settings of t.he simulator relr:tS(' procedures, io a major aclvantagp. Th", important'"~ of this 

simulator illcl"jlC'ml('ll('(' if, the reasoll to ('oHoidPI' t his matte]' hd()t,E' proc('eding wit h (, he 

mOl'e tlworrtical clevelopnwllt of ka1'lling tedllliqncs, drscrihpd in Chapt('r 3, For br('vity, 

Ollly a f('w of t.he mOrE' dillienlt 01' ilhlstratiw p;ut.s of til(' lllappilLgs will he ('xplainc<l in 

detail. Cilthollgh eXCilllplps of c'Olllpletr mappings arc giwn in Appelldix C, "pet ions C.l 

ami C,2, 

2,5,1 Relations with Basic Semiconductor Device Models 

In the following, it will lw shown how ,evpral lleUIOll nonlilH'aIiti"s call hE' reprt'st'Jltrel hy 

e]r<:tricCll circllits cont.Clininr; basic s(,llliC'Onclnrtor dcvic,'s ,wei ot.her circuit rjpltlPnts, whc'lI 

mille; idealized moclels t.lmt arT ftvllilablf' in almoot lilly circuit >;imulator, for in>;tancE' in 

Ber1H'lry SPICE, This allow,", t 11C' use of neural lllocIels in most ('XiS1'illf\ analogue circuit 

"illlUllltors, 

2.5.1.1 SPICE Equivalent Electrical Circuit. for :F2 

It. is wort It not.illg that E'l, (2.1G) can be r(,Wl'it.t~ll as a cOllliJinat.ion of ideal diode fuuctions 

!lnd t h"ir illVPI'SfS'20 t.hrough 

('] [I., (pIC,!\,/ - 1)] ) 
+ 1 (2,5G) 

with 

,'1 6. o;!vi . 
+~8,!, 

1'2 
6. /lfk l ; -l'l -~h'(A' = 

2°This 0..1::10 applif' . .., to Fl in Eq. (2.7). a.h.hough wp will skip t h~' dd;;..j]" for representing FJ 
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6 f5;k/2 
CJ 

e -51k /2 e5;d2 + 
6 e-6?d2 

C2 
e-81d2 + eDtk/2 

1 - Cl (2.57) 

If the junct,ion emission coefficient of an ideal diode is set to one, and if we denote the 

thermal voltage by V" the diode expressions become 

(2.58) 

which can then be used to represent Eq. (2.56) for a single temperature21. This need for 

only basic semiconductor device expressions can be seen as another, though qualitative, 

argnnwnt in favour of the choice of functions like F2 for semiconductor device model­

ling purposes. It can also be nsed to map neural network descriptions onto primitiw 

(non-behavioural, non-AHDL) simulator languages like the Berkeley SPICE input lan­

guage: only independent and linear controlled sources22 , and ideal diodes, are needed to 

accomplish that for the nonlinearity F2, as is outlined in the left part of Fig. 2.15. eft-

21The t.hermal voltage V( = kBTJq contruns the absolute t.emperature T, and unfortunately we cannoL 
~uppress this temperaturE' dependence in the ideal diode expressions. 

:l2With the conventional a.bbreviations VCVS = voltag€-controlled voltage source, CCVS = current­
controU!?d voltage SOllrCe, cees = current-controlled current source, a.nd VCCS :::; volta.ge-controlled 
current source. Zero-valued independent voltage sources are often used in SPICE as a work-around to 
obtain controlling currents. 

L r 

Figurp 2.15: Equivalent SPICE circuits for F2 (left) and £ (right). 
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dellce Sp(·(·trr is lal'?;ely ('Ol1lpatilll,' with Berkeley SPICE. and call thPl'0fol'(, hc' Ilsl'd ,ts it 

sllbstitllt.e for SPICE. 

2.5.1.2 SPICE Equivalent Electrical Circuit for Logistic Function 

TIl!' logi~t.ic function L of Eq. (2.6) can also lw mapped cmt.o a SPICE l'rpI'Ps('ntatioll. for 

CX.Fl"Illple via 

I,(2L(V/Vi)-l) = I q qV/vi) = ~ (l:.+1) 
2 I., 

(2.09) 

whel'e I is t.he (,Ul'l'('ut throngll a s('ric's l'Onnedion of t.wo idcntical ideal diodc's, hewing the 

('at hades wired t.og('ther at. all intPl'llal nod,' with volt.age la. F is hprE' til(' voltagl' aCTORS 

the series connNtioll. VVIWll expressed in formn!as, t.his hecomes 

(2.00) 

from which, i) can Iw analyt.ically solved as 

(2.61 ) 

whirh, after substitutioll ill Eq. (2.60). indeed yields a ('urrent I that relalPs t.o the logistic 

function of Eq. (2,6) [1{'cording to Eq. (2.(i9). 

HowPVPI', in it typical circuit .c,imul"tor. the voltage solut.ion > 0 is obtaiued by 11. ll\lllH'ri('AI 

nonlinear s(}lWr (if it cOllwrg('s), applif'd to t.he nonlillPar sllhci]'('uit. involving t.1H' spries 

('ouIlP('(.ioll of two diodes. as i,., illmtrated in the right part of Fig, 2.15. C'oIlseqm'nt.ly. ('VPll 

though it matllC'll1ati('a.lly exact mapping onto a SPICE-level ckr,nipt.ion is l'0s;,ibh'. and 

evpn t.hough an analytical solutioll for the voltage V'() OIl th(' iutpl'tlal uode is known (to 

1Is), numeric'al problf'ms in 1.110 form of UOUCOllVPrgence of I3erkrtcy SPICE iwd C'adC'llCf' 

Spcctte could be fr<"qu('llt. This lllOot likely applies to the SPICE iupnt repn's('\ltations of 

both F2 and tlr(' logistic function L. ,Vith Pstar. this problem is avoided, IwntusP 01lC' call 

explicitly define t.he llolllinear expressions for F, and L ill th~ illpll1. language of P,c,tar. 

For F2 , t.his will be shown in the next section, togeth('r with tl](' P,;t.ar rept'('s~llt"tioll of 

several other compon~llts of the neUWll differential eqllat.ic)ll. 

An example of a complete SPICE neural network descriptioll c:au be found ill Apppndix C. 

section C.2. That. ('xalllpir' illclmlps til(' re]Jr('s('nt~ti(lll of ttl(' fulll"'llroU differential ("iua­

tion (2.2) cwt! t.he connections aIilong neurOlls ('()I't'Pspclllding to Eq. (2.:3). Thl' ldt-bilnd 

side of Eq. (2.2) is H')lrpS('ulC'd ill a way that is VPI)' similar to tltE' rsta!' rrprpsputatiOlI 

discllssed ill tlrr llext sP('tion. The term:; with timp df'rinlti\'cs in ECj. (2.:3) are oi>taillrd 

from voltages illclll{,(,cl by ClllTcnts that an' fOI'Cpd through linear inductors. 
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2.5.2 Pstar Equivalent Electrical Circuit for Neuron Soma 

~When generating analogne behavioural models for circuit simulators, one normally has 

to map the nemon cell body, or soma, differential equation (2.2) onto SOme equivalent. 

electrical circuit. Because the Pstar input language is among the most powerful and 

readable, we will here consider a Pstar description, a so-called user model, for a single 

non-quasistatic nemon, according to the circuit schematic as shown in Fig. 2.16. The 

neuron model is specified in the following example of a so-called ·uoer-defined model, which 

simply means a model described in the Pstar input language: 

MODEL: Neuron(IN,OUT,REF) delta, tau1, tau2; 
delta2 = delta. delta; 
EC1(AUX,REF) In( (exp(delta2*(V(IN,REF)+1)!2) + exp(-delta2*(V(IN,REF)+1)!2)) 

! (exp(delta2*(V(IN,REF)-1)!2) + exp(-delta2*CV(IN,REF)-1)!2)) 
) ! delta2; 

L1(AUX,DUT) tau1; C2(DUT,REF) tau2 ! tau1; 
R2(DUT,REF) 1.0 ; 

END; 

A few comments will clarify the syntax for those who are not familiar with the Pstar input 

language. Connecting (t.erminal) nodes are indicated by unique symbolic. names between 

parent hes<:'s , like in (IN, OUT, REF). The neuron description Eq. (2.2) is encapsnlat.ed in a 

user model definition, which defines the model Neuron, having terminal nodes IN, OUT, 

and a reference terminal called REF. The neuron net inpnt 8ik will be represented by 

1m L ______ ~ 

Figure 2.16: Circuit. schematic of electrical circuit corresponding t.o Eq. (2.2). 
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the voltage alTO~S llodf's IN and REF. whik the neuron output fJik will be rcprCsfllted 

by the vohagr.' anoc;s OUT am] REF. TIlP nemon pMalll('ti'rS delta= O,k. taul=T1A aJl(1 

tau2=T2.ik entt'r as mockl argllltlPllts as specifieci ill the first line. and ;ue in this exalllpl" 

all suppo~ed to be nonzero. Intennecliate paranwtns ('an lw clefilll'CL a" in del ta2= b~, .. 

The nonlinearity 1'2(.';'. bid is n'pr('srnted via a ll()l1lir10arly controlled voltage source' EC1. 

cOllIl('ctrd bet-wi'pn all illt('l"lWJ llode AUX and the rekrem'l' node REF. Eel i,; ("ontrolle,] hI' 

(a nonlinear fllnetion of) tlte volta,;e betwpen nocks IN and REF. 1'2 was I'p\vrittcll in terms 

of expOllclltial fllnctions expO imtE'ad of byp('rbolic cosines, Iwcansp Potar docs not know 

t.he lattrr. Contrary to SPICE, Pst.ar doC's not require a. sq}aratl' pqllival('ut l'!rctrical 

circuit to COllst.ruct t.ll(> IlOIllill('arit~1 F 2 -

The voltag;(' ,lcrOS.'; Ee1 rC'jlrcs('nts thl' right-hand sirk of E'l. (2.2). A liIlear inductor L1 

with illlluctalJce taul conllccts internal node AUX and out]lllt llodp OUT, whik OUT a1lel 

REF are ,'0111wcted by a. s('('ollcllinear capacitor C2 wit.h capacitance tau2/taul, in parallel 

with a lilH'iir l"<'sistnr R2 of l.O ohm. 

It may 1Iot illlt11cc1iat.dy 1)(' obvious 1 hat this additional cil'Cllitry di)f'S indpecl )'cpn'spnt 

ttiP left-hand sick of Eq. (2.2). To Sf'f' t.his, one first l'l'aliz('s that till' total (,111'1'(,I1t. flowing 

through C2 and R2 is given by /J," + tau2/taul ~. bN·,Ulse the lll'llroll output I]'"~ is the 

voltagp across OUT and REF, If only a zero load is extc'rnally c011lwctecl to output nod" OUT 

(which can lw ellsnred be' properly devising an encapsulating circuit model for the whole 

Betwork of lll'llrOBS), all thi" ('urn'llt has to I)(' supplied through tIl(' inductor LL The flux 

iP through Ll therefore equiI],; its inductance taul multiplied by this tot.al cnnent, i.e .. 

taul y" + tau2 ~. Furthermore, the voltage induced across tllis iwluctor is giVl'n by 

tll(' time derivative of tJw !lux, giving taul ~lt'" + tau2 d
C
]' Iii'. This voltage l)('twrell AUX 

,. (t 
and OUT has to lw aclded to tile voltilge !},k IlPtWl'(,ll OUT awl REF to obtain tIlE' voltage 

lwtw('('n AUX and REF, The SI1111 )'iekls the entire left-hand side of Eq. (2.2). How(,Vl'r, tl1f' 

latter volt.agi' tnllst also be ('(111al to Ow voltage a(TOSs the ('ontrolll'(] voltage S()Ur(,(' ECL 

because that sourcr is connected lwtwl'pn AUX and REF, Siner' we have already ensured that. 

t.ll(' volta!\(, ano"., ECl ["('pH'sents the right-hand sid" of Eq, (2,2), we now find that. the 

lpft-hand si(l<' of Eq. (2.2) has to equal the right-hand side of Eq, (2,2). which impJjl)s that. 

the lwhavionr of our equivalent circuit is indeed ('on~i:,t('nt with the m'uron diffc'rential 

equation (2,2). 

The nemon net input ",( in E'l. (2.:3). representeel bv the \'o!taw' <lcross nodes IN am! REF, 

can he constructed at a higher hinarchical level, the lH'lUal lwtwork I('\'d. of the P,tar 

desrriptiOlI. The (It'tails of t.hat rathn straightforwltrd construction are o111itkd l!prp, It 

only involves linear l'Olltrnlkd sources and lilH'ar in(]llctors, The iattN ilIt' Ilsed to obtain 

the til11P derivatives of ClllT('llts in the form of induced volt"f(l'S, thereby incorporating the 
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differential terms of Eq. (2.3). An example of a complete Pstar neural network description 

can be found in Appendix C, section C.l. 

2.6 Some Known and Anticipated Modelling Limitations 

The dynamic feed forward neural networks as specified by Eqs. (2.2), (2.3) and (2.5), were 

designed to have a number of attractive numerical and mathematical properties. There is 

a certain price to be paid, however. 

The fact that the neural networks are guaranteed to have a unique de solution immediately 

implies that the behaviour of a circuit having multiple de solutions cannot be completely 

modelled by a single neural network, indiscriminate of Our time domain extensions. An 

example is the nonlinear resistive flip-flop circuit, which has two stable dc solutions-and 

one metastable dc solution that we usually don't (want to) see. Circuits like these are 

called bIstable. Because the neural networks can represent any (quasi)static behaviour 

up to any required accuracy, multiple solutions can be obtained by interconnecting the 

neural networks, or their corresponding electrical behavioural models, with other circuit 

components or other neural networks, and by imposing (some equivalent of) the Kirchhoff 

current law. After all, in regular circuit simulation, including time domain and frequency 

domain simulation, all electronic circuits are represented by interconnected (sub)models 

that are themselves purely quasistatic. Nevertheless, this solves the problem only in 

principle, not in practice, because it assumes that One already knows how to properly 

decompose a circuit and how to characterize the resulting "hidden" components by training 

data. In general, One does not have that knowledge, which is why a black-box approach 

was advocated in the first place. 

The multiple de solutions of the bistable flip-flop arise from feedback connections. SincE' 

there are no feedback connections within the neural networks, modelling limitations will 

turn up in all cases where feedback is essential for a certain de behaviour. This does 

definitely not mean that our feedforward neural networks cannot represent devices and 

subcircuits in which some form of feedback takes place. If the feedback results in unique 

dc behaviour in all situations, or if we want to model only a single dc behaviour among 

multiple dc solutions, the static neural networks will23 indeed be able to represent such be­

haviour without needing any feedback, because it is the behaviour that we try to represent, 

not any underlying structure or cause. 

Another example in which feedback plays an essential role is a nonlinear oscillator24 , for 

23 See section 2.4. L 

24The word "essential" here refers to the proper functioning of the particular physical circuit. It might 
tUrn out not be essential to the neural modelling, in the senSe that the beh.aviouT can perhaps stilL be 
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which the alllplitude is collstrClinpd allli kept constant througb ferdhhck. Altbougb tll(' 

llPlll"alll('tworb can ('"silv l"('pr('sPllt (J.';cillatory brhaviour t brough t'CoOWHlcr of individual 

llPurono. \.I1('r(' i" IlO fr('dbftck lllcchanislll thCl\ allows till' nsp of t 110' il.ltlplitllti(' of" lI(>llHlll 

0", illation to control and stabi1izp til(> oscillation alllplitmiP of that same' Ill'UIOll. The 

behaviour of a llCllllilH'ar oscillator lllay for a fin·tll' time in/cl"nal still \H' accurati'ly t'rp­

lrsrntpci by a llPllral nPlw[ll'k. 1)('('anO(' thp signal shape call Iw (lrh'rmillnj by additional 

nonlinear IWllrons, but fm til1)(,S going towards infinity. tlien' ,,'pms to)(' no way to p1'<'vcnt 

I' hat an initially small deviCLtioll from a ('onst,ant alllplit.lHlf' liJ'Ows wry la.1"g('. 

Ou t.h~ other ham!. we 11ilvI' to ))(' verI' careful about \Vh,,!. is cousidered (illl)pos.siblp, 

because a tlumlwr of tril'ks ('ould he imagined. For illstfl1we. we lllay hilV" one 111lst.ahle"~ 

lJ('nrou of which the OSCillklti[JlI amplit.ude keeps gTowillg im1diuiteiy. The nonlilH'arity 

F of a llrnrOu ill a next llf'twork layer can be> nsed to squash this signal. after all initiid 

oscillator startup plmse. illto a dose CLpproxitnilt.ion of a hlock wave of virt.u"lly con8iant. 

and certainly bounded. alllJllitude. The 'l'S and '2" in t.his layer am! suhsequent layers 

can t.hell he used to integrat!' the block wave a num1)!'r of till!!'S, "IV hiclt is equivalcnt 

to repeat.ed 10w-pa~o filt.ering, reRllltiug in a clo",' approximat.ion of it sinusoidal signal of 

COllstClnt alllplit.nci('. This whoh> oscillator representation S('\H'1lle might work acle([1lfl.teiy in 

a circuit. simulator, until llllltlericfli owrflow pr()bl<:m~ OCCllr within Or elm' t.o the l111stabl(' 

hicldell neuron with t.ll<' ('V('I gIOwillg oscillation a111plil.11(lc. 

A~ a final ('xarnpI8. Wf' may cOll~ider a peak cipte("(or circuit. Such fI l'ircuit CiW h,' as 

simple flS a linear <:>apacitor in s('ries with it diode, and yet. it.s full h"havionr call probably 

not.~G be represented by t.hp l1('ural net.works belonging to the class as defined by ECjs. (2.2), 

(2.3) and (2.5). 

The fundamental H'ftSOll s{'elllS to be, t.hat t.h" nrmOn outpnt variable y". (,fill act as it 

stat.e (111('111ory) varictbl" that affecI.6 the bellf\viour of nCmOuS ill subsequent layns. but it 

cannot aifpct its own fut me in any nonlinear way. However, in a prilk c\pt.ector circuit.. the 

sign of the diif<:'rrnc(' )wt.ween input. value ami output. (s1 at.l') value drtcrmillPs whetlwr or 

not a chaugl' of t.ile 011t.PIlt. value is neecled, which implies a tJonlin('ar (ft'eclbilck) operat.ion 

representprj wlthmli. f{'-f'dback "VVt' ha.vt' to stay awan:~ of this 1iubUe Ji:;tinc:tion. 
25 If unstable neurolls arp pre-vente'.! by Hlt'a-n::> of paranwtf'f {"01lstrainl.s, no Ilel1ra..-l oscill<~tioll will <"xi="t, 

unless an external signal f1r.~t drive.:; the llC'ural lleLwOl'k away from Llw de steady stat" ~olutioll, hfti~r 

whkh all oscillation may persist tlHough nellral I'CSOnallc-e. Other JlPuwnc, may then gra,dua.lly t.l1rn 011 and 

5aturatf' the gain from the rc:",ollanl :;igHal to t.he Iletworl< out.put., in melt'!' to emuJat(' t.he startup pha.hC' of 
the llonlluea.r o~ciHator that WI?' wi~h to rqnt·s.;>n1... 

20 Learning of peak dctc'diull has iaJEcr abo bf'PI1 tri(>d \'xp(~rirnt'lltally, in ordf'l' to COli firm our E'XI1-P"ct­
ations. Surprisingty, (l relativply do'w ltmtdl to Lh(-' multiple-ta.rgd,-\vav(' data. ,,€t was- at firr->1. o-b((l,int·d 
PVf>n wit.h ~)1lall 1-1-1 and 1-2-1 net.work", hut ~llb~f'qllf'nt allalvsis showed that this w.as appa.rentl.v lile 

rp.sult only of "smart" ll~C' or other dm_'~, like tho? ('"ombinatiol1 of h~'igh.t Rnd St.CCPIlC'SS of t.h(~ ('urves in 
the itrtificiaLly cL"t'att'd time doma.in ta.rget ddtd. Cml~equE'ntly\ 011(' hit."i' t.o be (dJ'€iul thi'Lt OIl(' do-e.'S not. 
introducE', in t.ll(' tra.ining ditta., SOrIlf' unint.ended coincidental strong correlation with a. behdviCJuf tha.t U!1i 

be represent.ed by the nE'Ul'.fI.1 networks. 
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in which the output variable is involved. It is certainly possible to redefine-at least in 

an ad hoc manner27-the neuron equations in sudl a way, that the behaviour of a peak 

detector circuit can be represented. It is not (yet) clear how to do this elegantly, without 

giving up a number of attractive properties of the present set of definitions. A more gelwral 

feedback structure may be needed for still other problems, so the solution ~hould not be 

too specific for this peak detector exam pie. 

Feedback applied externally to the neural network could be useful, as was explained in 

section 2.4.3. However, in general the problem with the introduction of feedback is, that 

it tends to create nonlinear equations that can no longer be solved explicitly and that may 

haw mUltiple solutions even if one doesn't want that, while guarantees for stability and 

monotonicity are much harder to obtain. 

With Eqo. (2.2), (2.3) and (2.5), we apparently have created a modelling <"lass that is 

definitdy more general than the complete class of quasistatic models, but most lik"ly not 

general enough to deal with all circuits in which a state variable directly or indirectly 

determines its own future via a nonlinear operation. 

27 An obvious pr-ocedure would be to define (some) neurons ha.ving differential equations that are clost' 
to, or even identical to, the differentia.l equation of the diode-capacitor combination. 
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In this chapter, learning techniqnes are developed for both time domain and small-signal 

frequency domain repres('ntations of behaviour. These techniqnes generalize the back­

propagation theory for static feed forward neural networks to learning algorithms for dy­

namic feedforward neural networks. 

As a special topic, section 3.3 will discuss how monotonicity of the static response of 

feedforward neural networks can be guaranteed via parameter constraints imposed during 

learning. 

3.1 Time Domain Learning 

This section first describes numerical techniques for solving the neural differential equa­

tions in the time domain. Time domain analysis by means of numerical t.ime int.egration 

(and differentiation) is often called transient analysis in the context of circuit simulation. 

SUbsequently, the sensitivity of the solutions for changes in neural network parameters is 

derived. This then forms the basis for neural network learning by means of gradient-basE'd 

optimization schemes. 

3.1.1 Transient Analysis and Transient & DC Sensitivity 

3.1.1.1 Time Integration and Time Differentiation 

There exist many general algorithms for numerical integration, providing trade-offs between 

accuracy, time step size, stability and algorithmic complexity. See for instance 19] Or [29) for 

explzcit Adams-BashfoTth and implicit Adams-Moulton multIstep methods. ThE' first-order 
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Aclitllls-Bashforth alf!;orithlil ic; idcntical to tllC' F01'11'(/.lIl Euler' int"gratiol1 llwtliod. while> 

tile firot order Aclams-I\-iOldtOli ,ilgolithm is iO('l1t.ical to tlw Backwa:,.d ErtleT integration 

lIwthod. TIl(' scmlld-ord"r Adallls-l\Ioultoll algorithm is hetter known as the Im.pezoidal 

intpgrlitioll lllc·thod. 

For simplicit), of prcscnt"tion and di.sclls"ion, lilld to avoid the intricacies of autolll"tic 

splcction of time step si,,, and int..,gratioll orderl, we 'kill in the main \.c'xl only comick .. 

tite usc of OllP of tllP silllplest. Imt 11l1lllerically very stable ---"A-stahle" [29]-····metllOds: 

tlw first. order Backward Elll('1 tnethod for v<triable tilllP stqJ size. This llwt hod yidds 

"lgpl>nlic ('xprCSsiollS of lllodest ("(llIlplexit.y, 51litable for i\ furt.her detailed clis('ussioll ill 

this (Iwsis. 

III a praetical implelllPllt atioll, it. IllitV lw worthwhik2 to also bav(' the l.rap(·zoidal int ('g­

ration llld.hod ,,,",,il,,]'I(', sitl("c' it l'ro\'idc's a much higher accuracy for ';uf6d"lltiy ,Sill"]] 

tillle stc'ps, whilv tid, method is "Iso A.-stahle. Appendix 0 rlcslTilws a [;el](,1aliz"cl s<!t 

of cxprcf;sions that. applies to t.he Bflckward Euln method, t.br t.rapezoidal intPgmt.ion 

l1wthocl and t.he sccond ordpr Aclallls-Bashforth llwthod. 

EC[1Jatioll (2.2) for lay,,!" k > 0, an b(' 1Pwrit.tpll into t.wo first. orclc'r differential pCluat.ions 

b.y introducing all a.uxiliary variahlEJ 0-:,.1. a:-; ill 

[ 

F(",k, bid 

· ... ih· 

0.1Ld.: + ~ 'v,A' + TI,i!' elf 7"2.1" dt 

~ 
elf 

(3.1) 

vVe will apply t.he Backward Elll,',. intcgmtion method t.o Eq. (3.1), accordillg t.o the 

suhstitut.ion scheme [10] 

f (x. x. f) o ( ') x-x 
f x'~J-I.-,t =0 

with it local timc st.ep II which lllay vary in sl1bse([llrnt t.ime st.eps, allowiug for llOI1-

I Aut.omati, selection or tillH' "tel' siz(' and illt.t'gra,tion order would \)(' of limited valuE' ill onr applicatioll, 
bE'Cnl.l'5f' tlw input signalc; 1.01.11.., llPlll'al 11r:t,works will 11f' ~pe("ifi{'d by valuo?s at di::;cn:'tE' til:YJ(' pOlnts, with 

1l11knoWll int.o::rrw::.'di::l'\,€, vhille"l. Th<'rcfOl'c, precision is ain'ady iimitC'd hy thl':' presdecteJ LiInE' skp;O; in 
t.be LBput ~igna.ls FllrLlwllllor('. it b i:'t~~un)('d 1 bat thE" dynalllic bt=haviouf 1mUnn the lleurrtl network 
will us-ually hp compa,rabk' w J' L dOlllin,tnl t.iIHot' constant1i to thE' dynamic behaviour of the input and 
target signals, ;'-;!lcb that tlH"n~ is 110 real llt't,J to take bJJlaller tinw st('pi'i t.han .'~pedfi{;d fOol' these signals 
Alt.hongh it would Iw valurthk to at II-'(\;,;t ch('('k t.ll(-'SP assumptiOTlb by monitoring the local trun(,ation 
f'LTors (ct'. section :tl,'2) of tlw in1egri'lt.iol1 :-,.chC:'m~:, thic. I'rfinem-ellL is ont. considt-'red of prLllI(, Importance 

at t.he pref:>t'll.L f:>f,agp of r-tlgorithmic deveiol--llllE'llt. 

2Til1H' domain ('1'1'0.1':--> a 1'+' cCLlls .. d b.v the a.pproximat.ive' nUIlleriod difkrentiation of no?twork input signahi 

:;1,Dd ihE' rLccllllllllating local t1'utH'8t.ioll rrrors due LO t.hp approxirn'::lJivF Ilunwrica.l iIl.tegration me1hods. In 

paorti(Ouiar during :',jIHultatlf~()lls tinH' dornctill fwd fr<'quellcy domain optimization, to b~ discliS:;::,pJ further 

Oil, the:::;e IlUIIlt'r1("(ti t~rrnrs ('iLUS(' a slight in('onsistc-ncy between t.imf' dOlllalIl a.nd frequency dotrlflin n'b'ults: 

~o'.!!,., a.. iiuear(1;r,pd) rl('lIral IH'twork will 11.0. n-'spond in exactly the sa.llIe way t.o .it sine Wi:l\/(~ input wht.'l1 

comparing tinlf' domain )"('spons(' with fn'quo"l\('Y domain re-sponsf'. 
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equidistant time points-and again denoting values at the previous time point by accents 

( '). This gives the algebraic equations 

[ 

F(S,k. 6,kl 

Z/,k 

(3.3) 

Now we haw the major advantage that we can, due to the particular form ofthe differential 

equations (3.1), explicitly solve Eq. (3.3) for y,k and ~,.!' to obtain the behaviour as a 

function of time, and we find for layer k > 0 

!Jik 

, 
Y,k - Yi! 

h 

+ (¥ + 

for which the 8ik are obtained from 

N k _ 1 N k - 1 

72 ik r 

+ h~ik 

2::: Wijk Yj.k-l - eik + 2::: Vi]k Zj,k-l 

j=1 J=l 

(3.4) 

(3.5) 

where Eq. (3.1) was Llsed to eliminate the time derivative dYj,k_r/dt from Eq. (2.3). 

However, for layer k = 1, the required zi,O in Eq. (3.5) are not available from the time 

integration of a neural differential equation in a preceding layer. Therefore, the Zj,O haw 

to be obtained separately from a finite difference formula applied to the imposed network 

inputs Yj,Q, for example using Zj,O ~ (Yi,o - Y~,o)lh, although a more accurate numPrical 

differentiation method may be preferred>, 

Initiallleural states for any numerical integration scheme immediately follow from forward 

propagation of the explicit equations for the so-called "implicit de" analysis4
, giving the 

3Dul'ing loearning, the computational complexity of the selected numerical differentiation method hardly 
matters; th€ Z},o may in it praA::ticaJ implementation be calculated in a pre-processing pha.se. because- the­
Yj,O network inputs are independent of the topology a.nd pa.rameters of the neural networl<. 

4Here the word "implicit" only refers to the fact that a request for a transient analysis: tmpli€5 the need 
for a preceding de analysis to find an initial state as required to properly start the transient analys~s. This 
is merely a matter of prevailing terminology in the area of circuit simulation. where the cust.om is to start a 
transient analysis ftorn a de steady statE' solution of the circuit equations. Other choices for initialization. 
such as iarg"e-signal periodic steady state analysis, are beyond the scope of this thesis. 
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stc·ady statp behaviour of onE' l'luticular n('uron i in la),pr !.: > 0 at tim" t = 0 

."kl,=o 

y,,·1 
1=0 

;\.'J. I 

L "'"k }f).k-l - I)" 
;--1 

~"·ll=1l 0 

(:l.G ) 

hy "'tting all tinl<'~r1"ri,·".ti\"('s in Eqs. (2.2) and (2.3) to ,('ro. Fmthprmorc'. ",.01 1=0 = 0 

shonlel I", t.ll(' ont(,Olll(' of til(' ah()V('~lll(,lltioll('d lllllIlrrical diffcrclltiatioll met.hod in order 

to kN'p E{J. (:}.S) collsid(,llt with Eq. (3.6). 

3.1.1.2 Neural Network Transient & DC Sensitivity 

Th" I'xprc'ssiOllS for 11'1111811:'111 scnsili'i,ity. i.(' .. partifCl ciPrivatiV('s w.r.t.. paramPlns. ('all 

1)(' ohtained hy first cliffert'lltiatillt': Eqs. (3.1) and (3.5) w.r.t. allY ("'alar) paralll<'tl'r jJ 

(ill<liscriluillatE' whptlwr JI ("('sidc's ill this lwnron or in a pn'C'{'dillg layer). gi"ing 

~ up 

iJ:F 
djJ 

~ _ (I (~) up - ill £II) 

(3.i) 

and hy sllbs('CjIWllt Iy (lisnl't.izing tlwsp clifferpntial ('qnations, a);ain nsin); til(' Dac'kward 

Eule'r method. How('veL a prpferrE'd altt'rnative met hod is to ciirE'cUy diffPfE'lltiatp t hc' 

<'xpressiol1s ill Eq. (:3.3) W.Lt.. allY parallwtpr p. The n·sultillg ('xpn'"iolls for th' two 

approach!'s ar" ill this ('asE' C'xactly t he salliE'. i.e .. illdplWlldeut of thl' onkr of diffpI('Ilt.iatioll 

W.Lt .. j! anel ciis(TPtizatio\l \V.r.t. t. N('v('rtheleso. in gl'llf'ral it is COllfcptually betlC'I 10 first 

jll'rf(>rIll tlH' (lisnC'ti7atioll. ''''(] oldv tl)('n the diffen'!ltiatioll W.r.t. p. Thrrrhy we ('!lSIlr(' 

that. the tran.sient sE'nsitivity expressions will correspond exactly to the dis(Tc·ti7,·('c1 l.illl(' 

domain behaviour that will latrt·, ill s0ctioll 3.1.3, 1)(' IlsNl in th" minimizatioll of a tillH' 

clomain ,'rror lllP;tSllre E\,. A sppamll' :tppl"OXilllatioll, by lllPallS of tint(' discreti~atioll, of a 

c1iffprpntial p,«ratioll awl all a800ciMpd differelltial equatioll for its partial derivative' w.r.L 
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p, would not a priori be guaranteed to lead to consistent results for the error measure 

and its gradient: the time discretization of the partial derivative w,r,t, p of a differential 

equation lleed not. exactly equal t.he partial derivat.ive w.r,t" p of t.he time-diseretized 

differential equation, if only because different discretization schemes might have been 

applied in the two cases, 

Following the above procedure, the resulting expressions for layer k > 0 are 

fuik _~l [dW'ik OYi,k-l] 
01' - L -d- Y,i.k-l + Wijk -a--

J~l p P 

Nk_' [d "'] " Vijk '" UZJ,k-l + L -d- ~J,k-l + Vijk -a--
;=1 p p 

{ %f + ~ ( ~) - aa~ik Z,k 

+ [¥+17] (~)' 
+¥(~) } 

/ {
I + Tl,ik + T2,ik } --,;:- --;:;:r 

( 0i.!k)',k ) 
~ = OJ) 
01' h 

(~) 

(3,8) 

while initial partial derivative values immediately follow from forward propagation of thr 

steady state equations for layer k > 0 

~I p t~O 
OYj,k-11 ] dB,,, + W',jk -0-- - dp 

p t~O 

~I p t~O 
(3,9) 

~I p t~O 
o 

corresponding to de sensitivity. The &Yi,O/oP and oZ),%p, occurring in Eqs, (3,8) and 

(3.9) for k = 1, are always zero-valued, because the network inputs do not depend on any 

network parameters, 

The partial derivative notation a/ap was maintained for the parameters 'l,ik and '2.1k. 

because they actually represent the bivariate parameter functions 1') (Ul,i\" U2.ik) and 

'2 (Ul,'k . U2,ikl, respectively, Particular choices for p mllst be made to obtain expres­

sions for implementation: if residing in layer k, p is one of the parameters 6,k. e,k" IL"Jko 
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('"", (TI", itwl (Tv,. IlSillP; the ('onv('ntion that the (neuron iUjJlll) weight par~,lll('kr' /I',j(-. 

I',jk imd tile tbn',hold fl., hl'long t.o ];,y('r k, sincr they arc ]liCrt of t.h .. definition of .;'" iu 

E(l. (2,3), 

Derivat.ives llCNlrd t.O cciklllitt.c' the llrt.work output gmdi,'nt ,·ia t.he linear out.put, ,caliut; 

f'~J\'! = rt', ihl\' + til ill Eq. (2.!J) an' givell by 

(:.\ LO) 

wh('l'(' thl' dcriv«tivr w.r,t. .I/.!, is \1s('(1 t.o find nf'\.work OUt.Pllt dcrivat.iV('s W,1'.t" network 

paralllrt.f'r, 0111<'r t.hlW 0, and ;)" ,inCl' tlH'ir illflurllcr is "hiddc'll" in t.11I' t.illH' ('vu]lltiou of 

If jI r('"idE's in it pn,('('clilll!; Ia.WI. Eq, (3.8) ran 1)(' simplificrl. amI the pi",tial dl'Iivat.i\'E's 

call t hell lJE' IPC'ur:-iiH'iy fotlnd [rolll tIl(' (,X}JrPSl-'iOllS 

i.!JA { UE (~) Up ~ iii) 

{ 
(~) 

} CUll 

llnt.il OlH' "hit.s" t hl' la)'l'r whcre the pilralllrt.cr resic\(>s, Thp actual ('valuat.ion can 1){' dOlle 

ill a fccdforwfml manuel' to ,(void )'('('1)r,ion. Init.i«] p«rt.ial dprivalivi' valllE's iu this Sd'PlllE' 

for parillllE't.f't'S in ])l'pcN1inp; lay"rs follow from the de sf'llsitivity pxprpssiolls 

~l, U,lj.l,"_11 L- OI}I.' -,--
1=1 dp I~O 

UF <bR1 
U"" up I=() 

(:}.12) 

() 
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All parameters for a single neuron i in layer k together give rise to a neuron parameter 

vector p( .. k). here for instance 

(3.13) 

'/\'1.1-1 neuron inputs N k _ 1 neuron inputs 

where the T'S follow from TL,k = Tj(O'I.ik, 0'2,ik) and T2.ik = T2(0'1.ik, O'z.,d. All n",uron 

i parameter vectors p(i.k) within a particular layer k may be strung together to form a 

vector p(k). and these vectors may in turn be joined, also induding the components of the 

network output scaling vectors ex = (001 , ... , aN" )T and f3 = (/31 , ... ,PNK' )T, t.o form 

the network paullnet,,,,r vector p. 

In practice, we lllily have to deal with more than one time interval (section) with associated 

time-depen<:lpnt signals, or waves, such that we may denote the is-th discrete time point 

in section s by is.i,. (For every starting time ts,1 an implicit de is performed to initialize 

a new transient analysis.) Assembling all the results obtained thus far, we can calrulatr 

at every time point, ts,i, t,he network output vector x UO , and t,lw time-dependent. NJ,-row 

transient sensitivity derivative matrix Dtl' = Dtr(t",,) for the network output defined hy 

,,(K)(t ) D.( ) ~ uX S,I, 
tt t",., - op (3.14) 

which will be used in gradient-based learning schemes to determine values for all the 

dements of p. That next step will be covered in section 3.1.3. 

3.1.2 Notes on Error Estimation 

The error5 of the finite difference approximation Zj,O = (Yj,O - y~,o)/h for thf' time derivat­

ives of the neurall1etwork inputs, as given in the previous section, is at most proportional 

to h for sufficiently small h. In other words, the approximation errol' is O(h), as immedi­

ately follows from a Taylor expansion of a function f around a point t" of the (backward) 

form 

f(tn -il) 

I(t,,) - ~(t" - h) + O(h) (3.15) 

5V\!e will neglect the ('ontribution of roundoff errors tha.t arise due to finite machine precision relevant 
to a softwarE'; implementation on a digital computer. Roughly speaking, we try to use large time steps 
for computational efficlency. As a consequence, the change per time step in the state variables also tends 
to become large, thus reducing the relative contribution of roundoff errors. On the other hand. tht' local 
truncation errors of the numerical integration method tend to grow super linearly with the size of the time 
step_ thereby genera.lly causing the local truncation errors to domina.te the total error pE'f time step_ 
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H'Hvrvrr, t.his appl'OXilllRtiOll ('iTor dOf'fl- not ;-t(Tllllntiatt· for [2;iV011 llPt\\'ork 11lpnts, cOllt.l"ar:,.' 

to til" lori'll t rllllCCltioll ,'Hor ill llllllH'rical integl'a\.ioll. 

T1H' lo(;n1 tru1tcld-iOll (i] rm i~ tht' illt('grat.ioll error llHldp ill OlH' t.inH' :-;tPp dl-> a e{)w';clqlH'llcP 

of thp diRndizat.ioll of Hl(' diff('I'C'lltial pqllatiOll. TllP Rio" of th,' loca.! \.l'1lltcatioll ('HOr of 

th,: I3ackwanl Eulpr illt('grCltioJ) 1))e\.hod iR O(h"). Imt Uli, "ITor aCcUlllllht('h ,tS';lllllillf!; 

l'qnidisi.ant tiltH' poiut, to i1 !I/o/m/ tnmmtion (:rIO" thil t if; abo O(h) dlle t.o (h,' O( 1,- 1 ) 

t.imp '(.P[Jh ill ii givpu hilllulatiou tim(' ill\.('rva(3. Similarly. the O(lil) lOCHl tnlll('atioll ('nor 

of the tnllwzoic1al integrat.ioll llH'thod would nlTllllllllate to an O(h2) global t.nlll('atioll 

error, ill that case lliotivatiuf; the IN' of iUl O(hz) 111111)(,l'i(',,1 cliffprelltia.tiou lllE'titod iiI, til(' 

w:t\vork illput., for (,Xd,lllpll' 

(:\16) (If I 
elt 1=1. 

f(t"f I) - f(i,,) 

wllfrp (.]W rip;ht.-1Hlnd ,ide is tll(' ('Xiict. tilll!' derivativp at. I" of" para,bob iut,prpolatiIlg 

th(' points (1"-1./(1,,-1))' (t".f(f,,)) alld (t,,+I . .f(t,,+I))' A Taylor ('xjliillRioll of this 

expn'S'sloll t.1E'1l ~'ipld,,,, 

rlfl = f(t,,+II)-/(I,,-II) + 0(11') 
elf 1=1" 21> 

for ('CjuicliRtiint timp POillt.h. i.('" for 1,,+1 - I" = t" - t,,-l = h. 

The nPlwork in!)lI!s ilt "fntlll'l'" point." t,,-+ I arc cimini!, n('11ml ltC'twork l,'awillg "lreach' 

il.Viiilithle from the pn'-det.rnllillPd t.mining data. '."heu thps!' a.n' not ;waila.hlc'. one llla~' 

resort to it J3ad:II!!J'I'd Diflr n' 11 t-i a i'lO 11 Formula (I3Df) 10 obtain IHTlll'iit.P II.ppIOXillUltiollS 

of tite timp c1erivatiw> at I" from inforlllation at present aud past tiuH' point.s [91. ThE' 

BDF of onll'r 111 will gi\T the exact tinl(' derivativE' at I" of all m-th ''''gI'C'(' pOI~'ll()llliiil 

iIltprpolatinf; tlt(' uet.work i11])11(. ntilws at. the III + 1 tillle poinb I" 

r'ansing all ,'ITCll' 0(11."') in tit(' tillle cllTi\'iltivp of the lIll(lerlving (grlll'ritHv unknown) Te(J.l 

network iU!)lIt fllllCtiUll, ""Il111inr; that tite latter is sllffi('i('1I1iy Sllloot It a( l!'ast ('",+1 

3.1.3 Time Domain Neural Network Learning 

TIl(' n('ural uetwork parallwt(,I cl('lllPll(S ill P ha"l' to 1)(' d('\."nllilH'd thm\lgh ,Dille kiud 

of optilllizatioll on traillillg elata. For th(' d(' hC"haviollr. appliC'd \'oltag('i-l 011 a c]pvicp {'au 

Ii l\ more 1 borough dl,~C1U"i::;i()1l of (h(' rf'iat.iol\ l)f'tw(,c~1l local 1,runciltioll (·nor:-. <i,lId ~Iohal I.rullcitt iOll (-Tror..; 

call llf> tnllllri ill ['29]. It. i:-; rCll){'~'pt11rtlly wrollg 10 ~impJ:v "dd , .. ](' Io-('(d irllilcatiml {'rrm'f:I Itp to aniv\-' (-Ii the 
global tnlll{'a,tlOll ('HOI'- hp,;'lllS(' a.local trutlcation error in (Jill-> l.inlC' ",-1.('p ("hallg,p~ the initial condltiotl:" for 

i.h(~ H('xt t.imt:' stPj), \.Jwl'C'h,v i l'.!-lcking a dirfcH'llt f;olut,ion with diff{'[('ILt :-'UbS'('qIWllt local ")"Illlea.tion f'1'i'[)rc,. 

llow~v"'L fI !1Hlt'(' c.(lrdlll .fIllalv"i, ..,til! )c;l(j-.; to t1w lH'lsic rpF;lll1. iliat .. if t.he loca.l Lrullca.1ioll ('nors in t.he 

1l11l11CricnJ solutioll a.re O(h m +1
). (it('n t.he' gloh81 t.l'lIlIcaiion ~~r1'Dr ie. O{h"'). 
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be used as input to the network. and the corresponding measured or simulated terminal 

rurrent.s as the desired Or target output of the network (the target output could in fact 

be viewed as a special kind of input to the network during learning). For the transient 

behaviour, complete waves involving (vectors of) these currents and voltages as a function 

of (discretized) time are needed to describe input and target output. In this thesis. it is 

assumed that the transient behaviour of the neural network is initialized by an implicit 

de analysis at the first time point t = 0 in each section. Large-signal periodic steady state 

analysis is not considered. 

The IE'arning phase of the network consists of trying to model all the specified dc and 

transient behaviour as closely as possible, which thereforE' amounts to an optimization 

problem. The de case can be treated as a special case of transient analysis. namely for 

time t = 0 only. We can describe a complete transient training set Sir for tlH' network as 

a collection of tuples. A number of time sections s can be part of Str. Each tuple contains 

the diseretizl'd time I •. i" the network input vector x;~L ' and the target output. vector 

is.". where the subscripts s. is refer to the i,-th time point in section s. Therefore. Str 

can b", written as 

Str = {sections s, samples is : (is.i, , "';~l, . is",)} (3.18) 

Only one time sample per section t",,=1 = 0 is used to specify the behaviour for a pa.rticular 

de bia., condition. The last time point in a section s is called Ts. The target outputs i si, 

will generally be different from the actual network outputs ",([{)(t,,;,), resulting from 

network inputs "';~}, at times i"r, . The local time step size il used in the previous sections 

is simply one of the 1,.i,+1 - ts,i, . 

\Vhen dealing with device or sub circuit modelling, behaviour can in general7 bE' charac­

terized by (target) currents i(t) flowing for given voltages v(t) as a function of time t. 

Herp i is a vector containing a complete set of independent terminal currents. Due to 

the Kirchhoff current law, the number of elements in t.his vector will be one less than the 

number of device terminals. Similarly, v contains a complete set of independent voltages. 

Their llumber is also one less than the number of device terminals, since One can takE' one 

terminal as a reference node (a shared potential offset has no observable physical effect in 

'If, however, input and output loading effects of a device. or, more likely, a subcircuit, may be neglf'ctf'ci. 
one may make the training S€t repr€'sent a. direct mapping from a set of input voltages and/or ("urre-Ilts Lo 
another set of input voltages and/or currents now as.socia.ted with a different set of terminals. Although thifl 
situation is not a.s general. it can be of us€' to the modelling of idealized circuits having .a unidirectional 
signa.l flow, a.s in r-ombinatorial (fuzzy or non(uzzy) logic. Because this application is less general, and 
because it does not make a basic difference to the neural non-quMistatic: modellillg theory, Wf' d-o not 
pursue the formal conseqllenc('s of this matter in this thesis. 
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da.,sical physics). S~C also th" earlier discl1ssion, and Fig, ~,l. in scctiou 2,1.2, In ~n('h 

fin i(v(t)) rcpr<'scntation t.lH' wc(,ors v amI i would tlierefor<e he of pqual Ipllgth, and tIll' 

npmal net.work coutaius id('lltical 1111ll1bers of illputs (ind"l)('ndf'nt voltage·s) and outputs 

(ind"j)"lld"llt ClUr"llts), The training sd would tab' thl' form 

) } (;),19) 

"nel tlw actual ['('spouse of t IH' 11<'l1nll ll('twork would provide i( v( t •. ,J) cOI1'rspolldillg 

to x(J{}(xIO}(t ',(, )), :\ormall,v ow' will apply 1,1)(' COllVf'lIlion that t.lw J-th dc-meut of 'v 

refers to th~ sallie ,\c'vi('(' or sn1l,ircnit tNminal as the .I-th "I(,llleut of i or i, Df'"i",' 

or sllhdrcllit parallH'trrs for ~lW('if\illg g('ollH"tr,v or t,Pllip('rC1J,nfr can be iucorporatt,d Lv 

assigning additionalw'lllal uetwork input,s to th('se paranH'!l'rs, as is shmvll in Ap]>pn<iix n, 

RE'l.nrninp; to Ol1r original gC'l1pral 11otatioll of Eq, (3,18), W0 HOW dPlille a timp dOlll<\iu 

"rror measl1l'(' F t ,· for acclllllnlating tlH' Prrors implied by the cliifl'rc'n('Ps l1('tW0(,11 aetn,,1 

awl targd, ont-puts OY(,), all nf'twork ollLpllts (rqJI(>s(·nl,·d by a c1ifkrt'l1Cl' wetor). ovn cell 

tilli(' point.s tnc1(:.x{~d b:v i.~ .• tllCl ov(>1' all S{)('tiOllS ,"I, 

Et., D L L Etl (xll'}(t,.i,l-

18 

(:l.20) 

when' til(' error functio11 E,(.(·) is ij, fUllttioll havillg a singl(', hellc,' glohal, minimulll at th(' 

)lOillt wlwre ils vc'('tor argument is 7(·ro-vahl(,(1. Usually nIH' will for S('lll<wtical 1'('<1S011S 

prpfer a functioll t thitt fulfills (tr(O) = n. although this is not strietly ll('('('s,ar~'. 

E,(, is just the' discrl't.('-t.illH' wrsiOll of the rontilllLOns-timr cost fuuct.ion ell" oft'('Jt ('ll­

('onnt"!',,,l in til" litrrat1ll'(': 

How('ver, taq;['I waV('s of pll)'siea,l s)'stnns C,ill in practic'<' rarely he specified by cont,inll­

om functions ((,Y('ll thOlli1,h 1 hpir behaviom is fontinnon" O1le simply dO('Sll't InlOW the 

formllla's that capture tbat bc'haviollr), jet aloll~ that tILe int<'gration could he prrforllll'c\ 

analytically, Tlwrdore. E". is nlllch more practical than Cc,·· 

In tlw lit,('nltm(' 0\1 optimil.atio\1, tbe scalar function £". of it \'Petor ilrgllllwllt is OftC'll 

simply half thp sum of sqnar", of the· <,IPlllPlltS, or ill terms of til(' illlwr prod\lct 

x'x 

2 
0·22) 
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which fulfills [lr(O) = o. 

In order to deal with small (exponentially decreasing or increasing) device currents, still 

other modelling-specific definitions for [tr may be used, based on a generalized form 

[n (m(l\)(t8), xs(ts)). These modelling-specific forms for [,r will not be covered in this 

thesis. 

Some of the most efficient optimization schemes employ gradient information--partial 

derivatives of an error function W.Lt. parameters-to speed up the search for a minimulll 

of a differentiable error function. The simplest-and also one of the poorest-of those 

schemes is the popular steepest descent methodS Many variations on this theme exist, 

like the addition of a momentnm term, or line searches in a particular descent direction. 

In the following, the use of steepest descent is described as a simple example case to 

illustrate the principles of optimization, but its use is definitely not recommended, due to 

its generally poor performance and its non-guaranteed convergence for a given learning 

rate. An important aspect of the basic methods described ill this thesis is that any general 

optimization scheme can be used on top of the sensitivity calculations9 . There exists a 

vast literature OIl optimization convergence properties, so we need not separately consider 

that problem wit.hin our context. Any optimization scheme that is known to be convergent 

will also be convergent. in our neural network application. 

Steepest descent is the basis of the popular elTor backpropagation method, and many 

people still use it to train static feedforward neural networks. The motivation for its use 

could be, apart from simplicity, t.hat backpropagation with steepest descent can easily be 

written as a set of local rules, where each neuron only needs biasing information entering 

in a forward pass t.hrough its input weights and error sensitivity information entering 

in a backward pass through its output. However, for a software implementation on a 

sequential computer, the strict locality of rules is entirely irrelevant, and even on a parallel 

computer system one could with most optimization schemes still apply vectorizatioll and 

array processing to get major speed improvements. 

Steepest descent would imply that t.he update vector for the network parameters is <:calcu­

lated from 

(
8Elr)T 

-1/ 7f.P (3.23) 

where 1/ > () is called the learning rate. A so-called momentum term can simply be added 

8StoE'E'pest. descent is a.lso known as gradient descent, 
OSee Appendix A for a brief discussion on several optimiza.tion methods. 



14 CHAPTER 3. DYNA.bJIC NEUR:1L l~'ETW()R1( LEARNI;VG 

(:3.24) 

wher!' ji ::: 0 is a parcull('tc'r cOlltmlling lhp persist. (,lin' with which (h,' learning SdWllH' 

proceeds ill a pn'viomdv Ilsed pamlllrt.('r Ilpcill.te direr-t.ioll. Tvpical val1l<'s for '/ and II 

11Kl'(\ in small st.atic hackploplLj!,fttioli lll'nrailletworks wit 11 t.ll(' logistic adivat ion fUllction 

arp 1/ = O.G aHe! ji = (J.D, lToppctivrly. Unforl Ilnately, the st.('qH'sl dpsc{'ul "'hrlllf' i,.; llol 

scaling-invariant, sO proper v,du('~ for 1/ awl/i Illay stroll"l:; eiepe'ntl On th" problc:lll at hand. 

This oftt'll n.':-:"ults ill (\it}H'r clxt.rc~lllE~l.y slow COlIVE'rgP1H'p 01' ill \~'ild 1l0l1-('OIlV(,l'g'Pllt pal'(-tnl('trr 

oscillat.ions. Th" fact that. WI' nSP the gradient w.1'.I. jJClralllPters of it sct of differential 

eqllatiom wit.h dynamic (Pl,'ctrical) variable's in a sy;;t.('ltl witb int.('l'llal .,trLte variables 

implies t.hat we arl,uallv perform transiPllt sfnsitivity ill tPrltlS of circuit simulation tlwOIY. 

With (3.20), wr tine! that 

( OEtr)T = ~ ~ 
op S i., 

(
JE.,(x)) 11 

ox . _ 1(1 . 
X_Xl (I,." )-x, .• , 

The first. factor has IJrell obtainrd in the previous S('niOllS as the tilLlc-cleprndent trallsienj. 

oellsitivity lllflirix D l , = D".(t,;.,). For El ,· defined in Eq. (3.22), t.he seco11(1 be-tor ill 

Eq. (3.25) wonltl 1)('cotllP 
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3.2 Frequency Domain Learning 

In this sert.ion we consider the small-signal response of dynamic feedforward neural net­

works in the frequency domain. The sensitivity of the frequency domain response for 

changes ill neural network parameters is derived. As in section 3.1 on time domain learning, 

this forms the basis for neural network learning by means of gradient-based optimization 

schemes. However, here we are dealing with learning in a frequency domain representation. 

Frequ(>ncy domain learning can be combined with time domain learning. 

IVe conclude with a few remarks on the modelling of bia.s-dependent cut-off freqnencies 

and on the generality of a combined static (de) and small-signal frequency domain char­

acterization of behaviour. 

3.2.1 AC Analysis & AC Sensitivity 

Devices and sub circuits are often characterized in the frequency domain. Therefore, it 

may prow worthwhile to provide facilities for optimizing for frequency domain data as 

well. This is nwrE'ly a matter of convenience and conciseness of representation, since a 

time domain representation is already completely general. 

Conventional small-signal ac analysis techniques neglect the distortion effects due to cir­

cuit nonlinearities. This means that under a single-frequency excitation, the circuit is 

supposed t.o respond only with that same frequency. However, that assumption in gen('ral 

only holds for linear(ized) circuits, for which responses for multiple frequencies then simply 

follow from a linear superposition of results obtained for single frequencies. 

The linearization of a nonlinear circuit. will only yield tIlE' same behaviour as t.he original 

('ircuit. if the signals involved are vanishingly small. If not, the snperposition principle no 

longer holds. \Vith input signals of nonvanishing amplitude, even a single input freq\lency 

will normally generate more than one frequency in the circuit response: higher harmonics 

of the input signal arise, with frequencies that are integer multiples of the input frequency. 

Even subharmonics can occur, for example in a digital divider circuit. If a nonlinear circllit 

receives signals involving multiple input frequencies, then in principle all integer-weighted 

combinations of these inpnt frequencies will appear in the circuit response. 

A fnll characterization in the frequency domain of nonlinear circuits is possible when the 

(steady state) circuit response is periodic, since the Fourier transformation is known t.o be 

biject.ive. 

On the other hand, in modelling applications, even under a single-frequency excit.at.ion, and 

with a periodic circuit response, the st.orage and handling of a large-in principle infinit.e--
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llllmbcr of hmlllolliCfi <jlliddy l)(,l'OllIl'S prohibitive. Th,' typical Hspr of ll(,lual mocklling 

soft.w<ll'c' is also llot likely 10 bc' abl" to snpply all t.he dilla jell a gPlll'ral fU'CjIl,'llCV clolllaill 

charactcrizatioll. 

Thl'rl'for('. ,\ l"'lallletrr sf'w;it.ivitv facility for a bias-clqwll{knl snmll-sigllal ;H' analysis is 

probably til(' best ('OIIlPHllllisp, IJY pxkmlillg the gPllrral tittll' dOlllain chara(,\prizHtion. 

which doC's indueh' distortion dfpd.s. with the concise slllall-sigHal frpCJlwll('y domaill ('iJal­

adrrization: Ihm we tt('('cI (slllall-,sigmd) al' sensitivity ill the optimization pwcC'clnJ'('s ill 

itclditioll to thp tlanoic'nt Sl'llsitidty that. was disC'ltRsp<1 bdoJ'l', 

Slllall-sigll,,1 etC analysis is Oft"ll jns! C'ilJINI it(' analysis !(It' short, 

3.2.1.1 Neural Network AC Analysis 

The olllall-sigllal 't<' allal,'sis and 01(' cOJTespclllcling nC 8f118itinity for gradicnt. calc'ulatiolls 

will ttOW be dc'snilwcl for tiL<' f",·dforward dynamic npmal networks as cldi",'c! itt the 

prrvions ~Pc\ ions. First w" rrtllIIl to the sillgl,'-rl('nron diffc·rel1t.i,tl rqlrations (2.2) anel 

(2.3), which aIP 1'('p('at('(\ here f(Jr c'ottwllirucr: 

(3.27) 

N).:_I ,\'A'-I 

clYJ.k-1 
Hlk I: ·U'i)~: ,q)"'-I - lIik + I: Uj ,f.: 

)=1 )=1' 
dt 

(:U8) 

The tilllP-depeudeut pc,rt of I Ire siguflls through (,he lleuron, is supposed to lw (vauishiltgly) 

small, "!lei is represented as the :-mlll of a com;tant (de) '('I'm amI a (co )sinnsoidal oscilla.tion 

S.u..; = 

(:3.30) 

with frr(jlleucy w' anc! time t. awl slllall nragnit.u(\e,s IS,,·I. IY~,_I the pltaso'!'" S,k and 

y;,_ are cOlllpkx-vahw(1. (The capitalized not.ation Y,k s110111d ltot be' confused with thE' 

aclmittallcP matrix t.ltat is Oft.f'll llSf'd ill til(' physical or pl~('tri('a\ lllodelling of d0vices 

allCl sllbcircuits.) Snhstitution of Eqs. (3,2G) and (3.30) ill Eq. (3.27), linearizing tile 

llCmlinear fUllction Moullel t he de sollltioll, IlPllCP neglecting flny higher OrchT terltts. illHl 

thf'll diminating tlte ek offset s using the dc solutioll 

(:U1) 
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yields 

(3.32) 

Sinei' Re«Lj + Re(b) = Re(a + b) for any complex a and b , and also ARe(a) = Re(Aa) for 

any real A, we obtain 

(3.33) 

This equation mnst hold at all times t. For example, substituting t = 0 and t = f:;; (making 

use of the fact that Re(Ja) = -Im(a) for any complex a), and afterwards combining the 

two resulting equations into one complex equation, we obtain the neuron at equation 

(3.34) 

We can dE-fine the single-neumn transfer function 

(3.35) 

which characterizes the complex-valued ac small-signal response of an individual neuron to 

its own net input. This should not be confused with the elements of the transfer matrices 

H(k), as defined further on. The elements of H(k) will characterize the output response 

of a neuron in layer k w.r.t. to a particular network input. Tik is therefore a "local" 

transfer function, It should also be noted, that T,k could become infinite, For instan,f' 

with Tl,ik = a and W 2T2;ik = 1. This situation corresponds to the time domain differential 

equation 

(3.36) 

from which one finds that. substitution of Yik = c+ acos(wt), with real-valued constants a 

and c, and W 272A = 1, yields F(S·ik. 8,k) = c, such that the time-varying part of 8ik must 

be zero (or vanishingly small); but then the ratio of the time-varying parts of Yik and s", 

must be infinite, as was implied by the t.ransfer function Tik . The oscillatory behaviour in 

Y,k has become self-sustaining, i.e., we have resonance. This possibility can be ('xcluded by 

using appropriate parameter functions 7Uk = 7) (a),,", a2.ikl and 72,ik = 72(a],ik, a2,id· 
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A, IOllg ii, Tl.," # D, W(' hilVl' <1 tel'll) that. pl'('v('nt~ clivioioll by Z('t'O t,lll:OllglJ au ill\C\gilldry 

part ill the (kuolllillatOl' of T" 

The <1(' n'latiolls d"s('l'iiJing tlt,· C'Olll1,·ctiollS to I))'p('('ciillg laFt's willuow hr cOllSiciPtwl. and 

'kill larg"]" I", prrN'lltcd ill ,calar j()l'lll to k('pp their ('otT("pouclellcP to t.he f,·pclforwarcl 

ul·twork topolol-\Y mOl'e \'isiiJlc. Tllis i, OfjPll useful. also in a ooftware illJpl('tlH'nl >tUOtl. to 

k('c'P tra.ck of ho,v individual lH'lllOUS contribnt,e t.o the c}vf'rall llf'nralllE'twork bphaviollL 

For !ayrr k > I. we obt"itl [rOll! Eq. (3.28) 

.\'~,. I 

L:: ((f',), + ,IvJl',)d I;J-t 
,=1 

sinc\' t.hE' I!i, ollly "fhyt. tlll' (k part of th .. iJdla.viour. Similarly. fmm Eq. (2.4). for t.ht' 

IrE'mOlI lay!'!' k = 1 (,(llllll·(·ted to the lle\'work illput 

.5,.,1 (3.30:) 

with ph""o!' X~O) t.he ('ollllll,'" .i-th ae SOllIep amplitucle at I,he nctwork input. as ill 

which in illPllt \-'('dor llot.iltiOlJ obviousl), takes the forlll 

The (lUtPllt of ll\'nrOllS ill Ih" oulpllt layer is of thp forlll 

At tliP ontpllt of Ih,' llelwork, we obtain from Eq. (2.5) Ill(' linrar philsor scaling trans­

forlllation 

(342) 

sinc'" t.lw ,!, only affect IIH' (1< part of the' bl'iJaviouL TIlt' nPlwork out.put. can also 1)(' 

written in the form 

(:343) 

wit hits associat,'d ""ctOl' notation 

(3.44) 
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The small-signal response of the network to small-signal inputs can for a given bias and 

frequency bp characterized by a network transfer matrix H. The elements of this com]llex 

matrix are rPlated to the elements of the transfer matrix H(I{) for neurons i in the output 

layer via 

(3.45) 

\Vhen viewed on the network scale, the matrix H relates the network input phasor vector 

X(O) t.o t.he network output phasor vector X(H) through 

(3.'16) 

The complex matrix element (H)'J can be obtained from a device Or sub circuit by ob­

serving the i-th output while keeping all but the j-th input constant. In that case we have 

(H)ij = X;KJ /X;oJ, i.e, the complex matrix element equals tlw ratio of the i-th output 

phasor and the j-th input phasor. 

Transfer matrix relations among subsequent layers are given by 

Nk-l 

(H(k))ij = T", L (Wmk + JWVink) (H(k-l))nj (3.47) 
n=l 

where j still refers to one of the network inputs, and k = 1,··· ,I{ can be used if we define 

a (dummy) network input transfer matrix via Kronecker delta's as 

(3.48) 

The latter definition merely expresses how a network input depends on each of the net.work 

inputs, and is introduced only to extend the use of Eq. (3.47) (.0 k = 1. In Eq. (3.47). two 

transfer stages can be distinguished: the weighted sum, without the T," factor, represent.s 

the transfer from outputs of neurons n in the preceding layer k - 1 to the net input S", 

while T,k represents t.he transfer factor from 5 i k to Yik through the single neuron i in layer 

k. 

3.2.1.2 Neural Network AC Sensitivity 

For learning or optimizat.ion purposes, we will need the partial derivatives of the ac neural 

network response w.r.t. parameters, i.e., ac sensitivity. From Eqs. (3.34) and (3.35) we 

have 

8F I 
as·,. [de) c. 

1-.... 5;1" ,lJtk 

(3.49) 
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ane! diff~rE'ntiali()ll 'A .1'.t. ,lUY paralll,>jer J! givE's for allY parti("lllar neuron 

frolll whi"h ~ can iJP 0],1 aill[>cl '" uJ! 

& 
Up { .~ 

dp 

} 

(3.50) 

(:3.51) 

Quite ilnalogous to the' transient _"'ll.,itivity analy,i, O['ction, it is here otill illclisnilllinate 

wh<c>ti1pr]J resiel,>s in t.his parti"lllar lWlll'On (layer k, uellIOl! i) or in a preceding lay"r Abo. 

particular dIDi,''';; for j! lllust }w Illad!' to ohtain explicit cxpt'('ssions for implement.ation: if 

r('~]dillg ill laY(>l" k; jJ is 011(' of the parallwto'1-) 6,;." ed., 1 W;J~" ttl) 1,;_ UL'lh! and (J""2,d,;< uoiug tli(' 

COlwPlltion that the (Uf'llt"Oll iUl'llt) wf·ight paranwt("rs w,)A-. /"jk, and threshold fiik I)('lollg 

to layer h;, silKe th<'y are part of the ddinitioll of s,,- ill Eq. (3.28). Thcr<'forc, if j! resides 

in a precwliu[,; layer, Eq. (:1.,;1) silllplifies to 

I 

" (de) 

O"F '~I!' 
~ .,d,·) , UIJ 

I ~II.; .(iik 
(:1.52) 

The fU' sensitivity treatnl('nt of c()]llH'rt.ions to prr'cl'dillg Jayrrs runs as follows. For layer 

Ie > L w[' obtain frolll Eq. (:,\.:31) 

J}~'k-Il 
up 

awl similarly, from Eq, (3,:38), for tlw HellIon layer Ie = 1 ('OllIlPCt.l'd to t.he nrt.work i11])1\t. 

uS,,) _ ~ (<111".1.1 . dl"),I) \.(0) -- - L ~~ + Jw'-- .' up ;-1 df! . dp J 

,incr X.i O
) is CIt! indepcmknt ('omplex )-th it(' some" amplitude at tbe Hctwork input. 
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For the output of the network, we obtain from Eq. (3.42) 

aX(I\) 
--'-

ap 
do, y. aY,J\ 
dp ,j{ + 0, ap 

In terms of transfer matrices, we obtain from Eq. (3.45), by differentiating w.r.t. p 

"(H) d C>(HUn),) 
_U __ ij = --'l't (HU'·)),. U , 

" J+Oi "p up dp U 

and from Eq. (3.47) 

a(H(k))ij 

ap 

for I.: = 1"" .1,', with 

o 

(
dWink d'Um!,) (H(k-l)) 

elp + Jul dp Hi 

81 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

from diffE'rentiation of Eq. (3.48). It is worth noting, that for parameters p residing ill 

the preceding (I.: - I)-th layer, &(H(k- ll )nj/&P will be nonzero only if p belongs to the 

n-th neuron in that layer. However, &Tik/ap is generally nonzero for any parameter of 

any neuron in the (I.: -1)-th layer that affects the de solution, from the second derivatives 

w.r.t.. $ in Eq. (3.50). 

3,2.2 Frequency Domain Neural Network Learning 

We can describe an ac training set Sac for the network as a collection of tuples. TransfE'r 

matrix "curves" can be specified as a function of frequency f (with w = 27[ f) for a number 

of de bias conditions b characterized by network inputs xiO). Each tuple of Sac contains for 

some bias condition ban ib-th discrete frequency !b,h' and for that frequency the targE't 

transfer matrix10 Hb"" where the subscripts b, ib refer to the ib-th frequency point for bias 

IOFor prao::ticai purposes in optimization, one ('ould in a. software implementation interpret an.\' zero­
valued ma.trix elements in lIfo,,/, either as (desired) zero outcomes, or, alternativeiy, .as don't-car-es if one 
wishes to a.void introducing separate syntax or symbols fot don't car-es. The don't care interpretation 
ca.n-as a.n option-be very useful if it is not fea.sible for the user to provide a.ll LransfeI matrix -elements, 
for instance jf it is cDnsidered to be too laborious to measure all ma.trix elements. In that ca.-s€ une will 
want to leave some matrix elements outside the optimization procedures. 
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condition h. T1H'l'pfol'('. S.L( C;')ll Iw writtpll as 

Aualogun;--, t.o tht, t.n'a.t.lIH'lit of triillSi('llt. i-i(>llsitivit.YI W(' \\'ill d(\Hllt~ a :3-(linwl)siotli-"j,1 aC' 

srllsitivity t('mOl' D a " whirll d('j)(,llC\s Oll dc' bias ami Oll fr<''ltl('tlc,V, Assembling ,,11 llC'twork 

parc-HllC'tel'S ill!'o a i-lillglcl \-"(\('1.01" p. OlW HlltY \vriu·· 

which will hr IIs('d ill optillli''(aticJIl ,,,It(,lIl<',S, Each of t 11<' ('olllplex-vaillC'd s('nsitivitv II'nsors 

D;tc(!b.i/J (,(l1l ])(l Vip\Vl,d a~ C .. ;}i('(-'cl into) a ~rq1L(-"llCP of ch'rivativp llle:\.trjn':-.. ('~\.dl d~lriyative 

lllat.rix ('om,istillg of the cli'riva.ti\'(' of tlw tra,nsfer llliltrix H W,I.t. OlJ(' pal'ti('ulC\r (s('alar) 

ll"xam('t('r ii, Th,' 1'1<'\11('"ts iJ{~);j of tltes~ matric'ps follow from EC], (3,SG), 
jJ 

\Vr s!.ill lllnst ddinc' an elTor fml<'tioll for i\C', tlt(,H'by enabling til(' \lS(' of gradic'llt-ImSl'd 

optimi.(at.ioll sc-lH'tlH'S lik" st "('1"",1 d""'Ptlt.. Ol' til(' Flctc-l,,'r-Hc'('\'('S a,wl Polak-niiJic'rp COll­

JUIia.t.,' gratli('llt Opt.illli:catioll lIlC't hods IJ GI, If we follow l he' ,allle' lill(," of tllOllgltt anel 

similar notal ions as Ilsl'c1 ill ",'nion :3,1.:3, we lllay c1ellll(, a (rc'([\1('\I('Y dOlllain error lll('aS­

un' E;-l(' for ;V'('Hlllnlatlllg t,ltf' ('ITOL'; illlpliNl hy t.hf> difff'r('lH'(\~ ht1t\Vt'()1l aet.na,] and ta.rgf't 

trallSirr Illatrix (rep]'('Sl'lllrtll)\' d ditfC'l'rllcr mfltrix), OWl' all frrquellci('s indexl'd h)' Ii> ftJl(1 

OWl' idl Ilias ('onclitiom Ii (for which the ]l('twork wa.s linE'ilri/'pcl), Thi" g'iws 

(:]01) 

D\' allitlo?;\' wit.h El., ill Eq. (:1,22), WI' I'ollid choosr a SUlll-o[-sCjuares fortn, nllw ('xtcnc](,d 

to CQ1uph'x lllatri('()~ A vi(-\ 

ta,(A) L 
(AJh.I(A)", 

L I(Akll ' 
2 

_. 
2 u ".I 

(n" ((Alk,d)l '2 

L + (Im ((A)u)) 
(:),62) 

!,I 
2 

which i,s j11.';t in;lf tile slim of til(' squa]'('s of til" alllplitudes of all the complex-valu('d lllilt,rix 

(·'ll'IlH'nts. Frolll 11«' lil,1 l'xp1'('ssioll ill E(l, (:3.62) it is d,bo ('!Par. tiHit. c]'rclit (dehit.) for 

(in)('olTc('(. phase infol'lliation is l'xplicit.lv pr('s<?llt ill thE' d<?jillitioll of ["c' The derivativE' 
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of Cae w.r.t. the real-valued parameter vector p is given by 

DE~c(A) = L [Re((Alk,£l Re (&(Ah.,) + Im((Akd 1m (&(A)k')] 
&p kJ up up 

(3.63) 

With A = HUb",) - Hb"b we see that the U(~;k' = D(H(b~i!') hJ are the el0m0nt8 of the 

bias and frequency dependent ac sensitivity tensor D.c = D.c(!&.ib) obtained in Eq. (3.60). 

So Eqs. (3.62) and (3.63) ran be evalnated from the earlier expressions. 

For Eac in Eq. (3.61) we simply have 

DEa<' 
op 

DE.o (H(!&.i&) - Hb•ib ) 

op (3.64) 

Once we have defined scalar functions Eae and E.c. we may apply any general gradient­

based optimization scheme on top of the available data. To illustrate the similarity with 

the earlier treatment, of time domain neural network learning. we can immediately writ.t' 

down the expression for ac-optimization by steepest descent with a momentulll term 

(3.65) 

Of conrse, one can easily combine time domain optimization with frequency domain op­

timization, for instance by minimizing AIEtr + A2Eac through 

(3.66) 

where Al and .\z are constants for arbitrarily setting the relative weights of timl.' domaill 

and frequency domain optimization. Their values may be set during a pre-processing phase 

applied to the tillle domain and frequency domain target data. An associated training set 

S is const.ructed by the union of the sets in Eqs. (3.18) aud (3.59) as in 

S = Stc uSac (3.67) 

The transient analysis and small-sigual ac analysis are based upon exactly t.he same set of 

neural network differential equations. This makes the transient analysis and small-signal 

ac analysiii Illutually consistent to the extent to which we may neglect the time domain 

errors caused by the approximative numerical differentiation of network input signals and 

t.he accumulating local truncation errors due to the approximative numerical integration 

methods. However, w.r.t. time domain optimization and frequency domain optimization. 

we usually have cost functions and target data that are defined independently for both 
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c10111ail1s. such that. a lllil1illJlllll of t.lH' timp domain ('ost. j'ull('t.i(Hl Etc llPpd not. ('oiu('icle 

wit h a miuilll1l111 of i he frcCjIII. 'llC.\' clomain cOot functioll E a ,,, (,VPu if transient. analysis "m1 

:=-;tnall-f-:ignal ac allaly~is ;-lX(' p(>rfOl'llWd \vithout introcincillg ImnlPl'i('al errors. 

3,2,3 Example of AC Response of a Single-Neuron Neural Network 

As an iilllstl'at.ic}]l of t.he fn''1llPllcy ciolllain lwhaviollt' of a lH'1\l'allH't.wo1'k. we will caknlat,c 

and plot the tn'msfer lllilJrix fl.ll' thC' "illlpksi possiblP network. a 1-1 urtwork ('ollsi.sting 

of just a ~illg-lr IH'nHJll \vit.h a :-.iIlglp illPllt.. Using a. linf';u fnllctioll F(.'-i 1h·) = ,'In.'' \\"hich 

cOllld al"o 1)(' viewer1 as t.hE' lil1Pclt'iwd behaviour of a ll<llliinear F(8ik)' wr' find t.lmt. thr 

I x 1 "lItatrix" HI /, I is gi\'C'1l hv 

(3.G~) 

This ('xP)'('S.SiOll £01' H(/') IS ol'\.aiu('d from the applicatioll of E'ls. (:1.3,,). (:3.4,,). (3,47) 

and (3.4S). For thi" wrv Silllp[,' PXcLlllplf'. O1W could altl'l'llativf'ly obt.ain t.he expreosioll 

lor H(f{) "by inspprtioll" clin'('tl." froll! Eq", (2,2), (2.4) nIHI (2,S). 

\Ve ma)' set t.he param('(c'1s for ;(1l OVI.'rdalllp0d tlP 1l1'O 11. as discus,,('cl ill s('('tion 2.:3.1. wit h 

Q = 0.4 alld w'O = lOlll rad/s. s11ch IIlai 'I = l/(uJoq) = 2.::;.10- 10 " and '2 = I/",,(] = 

10' 20s2. aBCl usc (\ = 1. Ii' = 1. and I' = 10-\'. Fig. :3.1 show." tl)(' cOllll'lex-vahwr! tralls!'r·r 

H(o.!) for this choice' of PM;lllll't.NS ill a :J-tlitllPllSiollal paritllll.'t.ri(' plot. Also shown al'(' the 

]lmj(·ct.ions of t.1H' H',t] and illlct!,;illarv parts of H(uJ) onto I.hp sid,'" of the smrounrlill!l; hox. 

Fi!l;. :3.2 shows t.hp !'I.'al and illlagillar)' part.s of H(uJ). as w('11 as t.1l(' lllag)lit.ude IH(wll. 

It. is dl'iu from t.h",(' figllIl.'s t.hat. H(uJ) has a vanishill!', illlat\iuctry part. for "('l'\' low 

fn·qIH'IH·il.'s. whill· t.he t.mmfl'r lllH.1\llitnclP IH(uJ)1 vanisllc·s fOI wry high frpCju('llcies ,11][' 

t.o t.lll.' non"ero T2, IH(u.!)11H'J'l' [leaks ll ill t.11<' ll0ighhoul'hood of uJo. TIl(' fact t.hat. at. low 

frpqllPllcip~ t.he ilnaginary pa.rt iU(T('{tS('S wit 11 fr(,CPH'IH'Y is t)'pjcal for qnasistatic llHl-dpls 

of 2-trrllliual d(,\'icE's. How('wr. with qnaoistiltic lllockl, t.h" imal!;inary part wOllle! kf>ep 

11lfT(·.;-tsillg lip to iufinitc' fl"0q11(' 11 ci()::-; , whkh would 1)(' 11111'('a11stlc 

3.2.4 On the Modelling of Bias-Dependent Cut-Off Frequencies 

Allother illlport.allt. ohsl.'rvat.ioll is that for it siugle U('\UOtl the pigPllvalUl.·s, "llIi hellcc tlIP 

pigcnfrequPllciN'; and ("nt-ofF frt'qllc'U('i('s, arf' biCLs-£ndpp('}l(iellt. III gf'BrraL (l" ckvi('(\ or 

sni)('ircnit lllay have sllIilll-si!',lml pi!l;rnfl'f'qlwncif's that an' hias lipppudptlt. 

ll,{,hi::; kind of I)f'a.k ~hO\lld HOt. Ill' COllfllSf'd with t.il(' ncar-]"('f;OlI;UICE' ppak:-. arisillg frnm q » j. ljk~' 

t.llO:"W ':lboWIL III FIg. Lf; for q = :2 <-tlld Cd =.1. ]-[(>1"(-' we have Q = 0..1 < &. hut t.lw addit.ion;.d contributioll 

} __ v'I' in I';q. (:).(;k) now caIlS('" I/IC .. ))i to llln'paSf' With frf'qUE'T1c.\' Fli. low fJ'(~qlH-'ll("ies. 
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Figure 3.1: Single~neuron net.work wit.h H(w) = 1 + 10 10. JW _ 10 20. w2 . 
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Figure 3.2: Re(H(w)) (dotted), Im(H(w)) (dashed), and IH(w)1 (solid). 
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Nl'V('rt.hdeso, a lletwork ('on.,tl"1lct,('<i of lll'nrOll~ itS drscril",d hv E(IS. (2.2) and (2,:3) ('all 

st.ill OV('I"('Olll" I.hi" itppitrPllt Ii mitation. hl'('all~" HlP trallsf"r of :-;iJ2:1mls to the llPI work 

output is hias drpnl(lcllt: tIl(' dE'l'ivat.iv(' W.Lt. -'i! of tl", IIl'mOll input nonlinearity F2 

varico, with hias, within thr' r,\ng!' [D. I], TIl(' 'llld,ll-sigllal tmnsfer throu~h til(' Ileuron 

("dll th('refo]'(' IH' (',mtrollrd b,v (.]1(' input. hias 8". By graclnall,' "witching lll'nI"OllS with 

,liff('r!'ut ('ig('ldreqll('udl's Oil or off through Ih,' IlOllliJlPil,rity, ollr can still approximatl' ttl<' 

hdlaviour of a cl~vi«' or s\\hci]'( Hit wit h bias-dependeut eigrufr('(l'l<'llci('s. For instan('('. ill 

mod('lliug tit" bii\s-rl"lwlldput ('lit-off frP'lUPllCV of hi polar transistors, whi('h varies t\"picall,' 

by it fact.or of about l\WI wit hill the [,(,levant rang<, of controlling coiled or ('lllT"llt.S, OlH' 

[",In g('(, very silllihr shifts ill t IH' dIed;v(' cut-off frpCj\l('llCY by cakulclting a biils-w('ightl'd 

comiJination of two (or lllOl'(') hias-I:'/I(kppnc!Pllt fn''11.]('11(·.'' transfer Clll"V{,S, having clifkrclli. 

but comtant. cut-off fn'{jw'lHir's, This approach works as IOllg as tltp range in nlt-oif 

fre(jlll'nci(·, is lInt too large': P,g" with t.}((' cut-off frcc[\l('lll"ies rliffrritlg by 110 ellorp than 

a fact.or of about two iu a biils-weightec! cOlllhillation of two hias-inr]('pl'lJ(!<-nt frC([ll('llC"." 

t.ransf,'r ('urVl'S, Otherwis,'. a, killei of S«'F (intpl'lllPdiatp h'wl) i, oiJservl'd ill tit,. freql\('llC'" 

trans!,:r CllrY{'SI1. 

As a coline\(' illnstratioll of this poillt, otH' mcty ('ollsidn till' similarity of the trallsfer 

Cllrv('s 

1 + )w [eI... + 1 - xl 
' 1.,-1,):: w'l 

(:3.69 ) 

which represents an x-hi", rl<']>"lH]rllt first oreier "Ilt-off frc'qll(,lH'Y. awl 

(;J.iD) 

ill which two C\l1'\"('S wilh ('()]lstallt. cut-off frecl'wllcim all' wl'igltted by hias-d"]H'lld0nt. 

hctors. In it lOIS-log plot., with ,r in [0.1]. and w~/w'l = 2, tltis giws results lib' thosE' 

shown in Fig. ;),:;, for ,t' E {(),:j,&,i,l}. Th<, continuous curves for IHII ;uE' similar to 

til<' dashed curv"s fOI IH,I A I)('ttrr mat.eh can, VCh('ll lWi'eI(',1. hr obtailH'd l,y a IllOIP 

(ompli(akd wrif(htillg of trallsfer CI1\"\"('S. n ,'snIts fm t hr' phase ,shif'!. shown in Fig. 3A, 

arc' also rather similar for hot h {'asps. COlls('(lllrutly, I h('lc is .,till 110 rea} Iwed to meekp 

TI", and/o), 1"2", clq)(,Jld(,llt ()ll s," which would otlH'l'wi;;r' il)('1'("",(, the C"Ollljl1Jtational 

complexity of t.hr spnsitil'ity calculations. Howpv('l', it is worlhwhile to llote I.hat the ldt­

haud si<\e' of Eq. (2,2) w01lld ('wn tll('ll giv<' a lin(,Hr hOItlO)';C'll(,Oll., diffel"ellti!ll "C[1Jation ill 

",IJik, so we could still US" t,ltl' allal"tic results ohtailH'cl ill Sf,ctioll 2,;3,1 with the paIHlllPlers 

TI," and T:/" l"Ppleec<'d h~' fumtiollS TI.,kls,d and T:/"ds,kl. 1"C'spc,ctiyl'ly, If paralll,'t('I 

12How('vr'r, Oll(' call ,'xlf'lld tlJ(' applici-Ihilily of til(' IHOC(~duri' hy lH;in~ il,. hi«:-,:-w("ighl('d cOluhillaci(JIl ()f 
morE'- than two hI3c,-inrl(']W1H!nlt rrC'(]IIC'Ilf'Y lran"fPr Ctlr\,pc, 
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Figure 3.3: 201og(IH t (logw,x)l) (continuous) and 201og(IH2 (1ogw,x)l) (dashed). 
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Figure 3.4: L H1(logw,x) (continuous) and L H2 (logw,x) (dashed), in degrees. 
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fUllct.ions TI(()'L"', ()"2",') and T~(()'I.'k' ()'7.,d wet'e lls!',L til<' sallie would applv with thp 

parallH·t,{,l"S Ol,d,' anel Cf'.!)/.,-, r('placpcl by fllHctioll~ 17"1.I1..(8i1.') (i,lLd (J2.lk(.";/j.,.), rf'sp(>l·Uv(·h'. 

3,2,5 On the Generality of AC/DC Characterization 

The qllest iOll could IH' l'ilise'd, how g('l]('ral a slllall-signal frNjll0n('y dOlllain charadcriza­

timl call hc, ill COllll,iuat.iolI wi( h d(' data. whell COlllllClH·d to it largp-signal limp dOl)l'lill 

chantcteri:0atioll, Thi:-; i~ a IUlldaUH'lltal 1::-;:-;11(', n·latiug to tIl{' kiud of dat.a t hal' i~ l)()(·dcd to 

fully charackriYo(' a (,,"vi('(' or snileircllit., indiscriminate of allY Iimitatiolls ill a snilspqucllll.,· 

applied lllOddlillg ~('hf'llH>, flud iudif;crinlilla1p of lil11itatiou:-1 ill th(, alllOtutt, of data t hd.t 

cau hi' ac([nired ill practice, 

One could Mg'm', t.hat. in a cOlllbill('d ae/de dlaraeterizA.tiol1. thp unliti])le ilias points 11,,'d 

in deterll1ining t.lll' dl' Iwhavionr and in setting til(' lin('Mizatioll POillb for slllitll~,iglla.1 etC 

llChavionl'. logcthn provil](' (he g(,ll~rality' to caplun' i)()(h Iloulillear and (i);uiilllic "ff"rt,.;. 

If the llnmbcr of bias POillt., and the nlll1lJWl' of fn''lUClll'V points we1'(' sllffi('i(,ljtl~" \'Lrgr, 

ow' might expect that th(' fnlll)('havionr of aliI' elf'vicp or "'lli)('il'(,l1il Celn he' reprp,sPlltPd 111' 

to ariJitrary accuracy, The llllllt.ipic hias conditiolls woulr1 t il('u a(TOmlt for I he llOlllill('ar 

"ffpcts, whik the multiple fn:'lnellci"s would 8.cconllt for the dynamic dIeds. 

Illtllitiv('ly apppalillg <-l:-- t.hi~ rUgtllllt'llt lllay ~(,f)]H, it i,~ llOt. valid. Thls b 11lOSt. ('(Lsily 

seell br lllPans of a ('ollntcl'exatllplc, For t.his pl.lrpo~(', \\'(' will Otl('(l again ('ollsic1("l" thE' 

peak cl('\,['c'tor cir('nit t bal was di.sclLssNI for othpJ' ]'('itsons ill ,S('CtiOll 2,G, The circllit 

consists of a liueal' capacitor ill "'riC's with a j1mel:" resisl iw diode, t,he lattn "cling it,.; 

Ft nonlinear resistor \~'ilI1 a Hlollot.onic ("lllT(~llt-voltagl? dl.;-u'a.ch)risti(' Thp volt.::t,e;f' 01] the 

~h<lreclllod(' iwt.w('cll dio<i(' and (,,,-])It('it.01' follows t.he Ollr-si(krljwftks in a voltf\ge SOllrcr 

aCTOSS the snics fOllll('ctiOll. The diode in this fas<' n']ll'l',,'nts til\' lHlIllillParity of til{' 

circllit, while the sprips COI1U<'ct.ioll of,t cap,vito[' and it (nonlilH'M) l'('sistor will Ii'ad to 

(t lloIl-qnasista.t.ic rf'."ilH)ll,SI? HOVleV(>l\ wbrll pcrfonning (k (tnd (;-;lnall-sigllal) (\.(' anal:VAf'fl, 

or de ami ac lllC'H'sllH'lll('llt:<, the stpaclv steele opnating ]loil]! will alwit,V' IlP till' O]]e with 

thr fnll "ppli(·d voltagl' across the capacitor, anri a 7.(']'0 \"nltitgr i\cross til(' diode. This is 

h~ci\llse tlw dc ('mrent lhrollgh it capacitor is Z('l'O, whilr Uli, ClIlT('nt is "sl\]lpli,'d" h~" the 

c\iod(' which has zc'ro (HITrnt onlv ilt h0ro hias. COllS(''lUnltly, whatever de hi;\s is "I'pli('d 

t.o 1.11(' circniL till' ck ;Lud iI(' ilt'licl\'io\l1' will remain rXfll't l~" tit" SCUl"'. i)('illg ('lllllpletely 

insensitive' to the oVC'rali Sh,lj)(' of the mOl\ot.onic nonlincar dioele chanletE'ristic only 

t,hp slopt' of t.llI' clllwlIt-voltagr charact.('l'istic: at (and throngh) tlw origin plays it role, 

Obviously, the ov('rall shapc of th" nonlin('itr diodc charfL('IPristic wonld aff('ct t h(' lar[';p­

signal tinl(' domain l)('ilaviollr of t,hE' pf'ak rle(.f'ct()j' circnit, 

Apparellt.ly. IVP hen' haw all ('xallljli(' in which one' (';til snpply iLllV amo1lnl of dc and 
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(small-signal) ac data without capturing the full behaviour exhibited by the circuit with 

signals of nonvanishing amplitude in the time domaiu. 

3.3 Optional Guarantees for DC Monotonicity 

This section shows how feed forward neural networks can be guaranteed to preserve motlo­

tonicity in their multidimensional static behaviour, by imposing constraints upon the 

values of some of the neural network parameters. 

The multidimensional de current characteristics of devices like MOSFETs and bipolar 

transistors are often monotonic in an appropriately selected voltage coordinate system lJ 

Preservation of monotonicity in the CAD models for these devices is very important to 

avoid creating additional spurious circuit solutions to the equations obtained from tIlE' 

Kirchhoff current law. However, transistor characteristics are typically also very nonlinear, 

at least in some of their operating regions, and it turns out to be extremely hard to obtain 

a model that is both accurate, smooth, and monotonic. 

Table modelling schemes using tensor products of B-splines do guarantee monotonicity 

preservation when using a set of monotonic B-spline coefficients [11, 39], but. they can­

not accuratE'ly describe-with acceptable storage efficiency-the highly nonlinear parts of 

multidimensional characteristics. Other table modelling schemes allow for accurate mod­

elling of highly nonlinear characteristics, often preserving monotonicity, but generally not 

guaranteeing it. In [39], two such schemes were preseuted, but guarantees for l1lonotonicity 

preservation could only be provided when simultaneously giving up on t.he capability to 

efficiently model highly nonlinear characteristics. 

In this thesis, we have developed a neural network approach that allows for highly nonlinear 

modelling, due to the choice of Fin Eq. (2.6), Eq. (2.7) or Eq. (2.16), while giving infinitely 

smooth results-in the sense of being infinitely differentiable. Now one could ask whether 

it is possible to inclnde gnarant.ees for monotonicity preservation without giving up the 

nonlinearity and smoothness properties. We will show that this is indeed possible, at least 

131n this thesis, a multidimensional function is considered monotonic if jt is monotonic as a function of 
any Olle of its controlling variables, keeping the remaining vaJ'iables at any set of fixed values. See also 

reference [39-]. The fact that monotonic]ty will generally be coupled to a particular coordinate system can 
be seen from the example of a function that is monotonically increasing in one variable and monotonically 
decrea~ing in another variable, Then there will for any given set of coordinate values (a particular point) 
be a direction, defined by a linear combination of the::::e two variables, for which the pal'tial derivative of 
the function in that new direction is ZeTO. However! at other points. the partial deriva.tive in that sanit' 
direction will normally be nonzero, or else one would have a very special function that is constant in 
that direction. The nonzero values may be positive at one point and negative at another point even with 
points lying on a single line in the combination direction, thereby causing nonmonotonic b€haviour in the 
{ombination direction in spite of monotonicity in the original directions. 
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Rc'callill[,; tbat ('ach of t.llP:F in E'ls. (2.G). (2.7) and (2.IG) is already lmowll to 1)(' nHlllotoll­

ically iu('reasing ill its llOll-('on:...;tallt, :-ll'gnlllPllt. Sib W0 will acldres~ the ll('('{'Ssal'Y (,011stralllts 

Oll the parmllet.pr'; of s,!. a, ,\enllce] ill Eq. (2.3). given only the' faet t.ilat :F is nHlllo\(m­

ically increasing in S,k. To t.his purpOS(" WE' make usc' of tho knowkdge' that til(' ,lllll 

of t.wo or n1Or(' (strictly) monotonically incTciLsing (clc(Tca,ing) l-clitll('u,<ional fUllctions i., 

also (s!.ridly) nH)llotollicail), iunT<lsing (decreasing). This does gelleIfllly not apply to th,' 

diiferrncr of such function,. 

Throughollt a. f('edforward 1l('uml 11('twork. t 11(' wpights illll'rlllix the cOlltriimtions of the 

llE'twork illput~. Each of til(' llPtwork input" contrihu\.cs to ail outpnts of tH'llrclll~ in the 

first hiclci011 lay,'r k = 1. Ea.ch of these outputs in turn cOlltrillUtrs to all outputs of 

tlPllrons in t11(' ,,'coml hicldl'll layer k = 2, ete. Thc COllsP'lnPllCP is. t hat any giv{'ll ll('t.WOlk 

input contributes to ilIly palticlllilI neurOn throngh all Wtd~·hts directly associiltecl with 

that uenrOll, but illso through all wpights of fLll ll('UfOnS in prpc{'diug laycls. 

In order to guaralltcr llC'l.work clc monotonicity. the llulll]JCr of sign changes by d, weight.s 

llI,jk must be the samp t.hrough all paths from any Oll(, IH'twork ill]Jut to "Ill' one lll'twork 

ontput. l
'. This implies thilt 1wtwccn hidden (non-input, non-C)1Jtpllt) layers. all illtncoll­

neeting Wi)!" mm! haw Ibe "aIllp sigu. For the output layer 011(' "'W fLfford tile frpeciolll to 

have the same sign for all In,).!, cOllnccting to Otlf' output \lC'nrOll. while this sign Illay dif­

fer for ciiffecent output nfmollS. HOWPWI, this cloes not provide ftny ftdvanta.ge. sillel' the 

same flexihility is alr",uly provickd bv th,' output ~calinfS in Eq. (2.5): the sigll of n, can 

set (switch) t.he ll10110tOllicitl' "orientation" (Le .. increa.sillg (lr derrefLsing) illc1epcn<.\l'11tly 

for {'ach lwtworl< output. The samp kind of sign f"'('dolll· same sign for Oll(' llrmOll, hnt 

different signs for diffpcPllt lH'nWnS is allowed foc the u"J.J cOIllJeeting the network inputs 

to layer k = L Hne t be choice makes a [('al difference. Iwcaus(' theIe if; no aclrlitional 

lillcar scaling of network inputs like there is with network outputs. However. it is hare! 

to decide llpon appropriate signs throug·h continuom; optimization. )WClillSP it COllCPrIlS a 

dis(Tl'te dlOieC. Therefore. til(' following lilgorithm will allow t.lle usc of optimizaticHl for 

posit.ivr 11',)" only, by a sillll'ir per- and postproc0ssing of the targpt data. 

11 Adding constraints to n)a,1JH'l1laticaJI.y gnardll!,ee some propi?rty will u~ma.Uy reduce for a giv(>)1 
complexity the expressive power of a modellilLg ::lclieme, w we HlllSi ~t.ill remain careful about. pO~i'lible 

detrimE'ntal ~ffe("t.., in pl'actic"e: Wf; might havt' Jo~t tiw ability t.o represent arb"tnJ'ry TTlOTlotOIllC HOlilinear 

lIlultidimcnsiOll,\[ ~t,a,tic belw.vlonr. 
lG-Tlw 0,1., thre.sbolJ,'o do not. affpc\. lUollotonicity, nor rio til(' j3 , oIf;·,ot'b in thf' tle-twork 01l1.])1l1 sea-lillI!" 
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The algorithm involves four main steps: 

1. Select one output neuron, e.g., the first, which will determine the lllonotonicity 

ol-ientation 16 of the network. 

Optionally verify that the target output of the selected neurOn is iudeed mono­

tonic with each of the network inputs, according to the user-specified, or data­

derived, monotonicity orientation. The target data for the other network out­

puts should-up to a collective sign change for each individual output-have 

the same mono tonicity orientation. 

2. Add a sign change to the network inputs if the target output for the selected 

n"twork output is decreasing with that input. All target outputs are assumed to 

be monotonic in the network inputs. Corresponding sign changes are required in 

any targt't transfer matrices specified in the training set, because t he elements 

of the transfer matrices are (phasor) ratio's of network outputs and inputs. 

3. Optimize the network for positive W'Jk everywhere in the network. Just as 

with the earlier treatment to ensure positive timing parameters, one may apply 

unconstrained optimization with network models that contain only the square 

roots IL of the weights W as the learning parameters, i.e., Wi}k = ILfJk' and for 

instance 
Nk~l. 

S,k L:, L UTjk Yj.k- L - I)ik + 
)=1 

N
k

_
1 

L 1.Jijk 

J=1 

dYj,k-1 

dt 
(3.71) 

replacing Eq. (2.3). The sensitivity equations derived before need to be modified 

correspondingly, but the details of that procedure are omitted here. 

4. Finally apply sign changes to all the W'J,l that connect layer /,; = 1 to the 

network inputs of which the sign was reversed in step 2, thus compensating for 

the temporary input sign changes. 

The choice made in the first step severely restricts the possible monotonicity orientations 

for the other network outputs: they have either exactly the same orientation (if their 0:j 

have the S,lme sign as the 0:i of the selected output neuron), or exactly the reverse (for Qj 

of oppositf' sign). This means, for example, that if the selected output is monotonically 

increasing as a function of t.wo inputs, it will be impossible to have another output which 

increases with one input and decreases with the other: that output will either have to 

increasp or to decrease with both inpnts. 

ltiWith the mono tonicity orientation of a networl< we here mea.n the No bits of information telling for the 
sele<:ted n-etwork outptlt whether the target data js increasing or decreasing with any particular network 
input. For instance, a. string "+ - -jl could b-e used to denote the monotonicity orientation for a 3-input 
network: it would mean that the target data for the selected network output ~ncr€ases with the first 
network input and decreases with the two other network inputs. 
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If t.his is ;\ pro"I~Ill, OllE' ('an n·sort. t.o using c1i/focr('ut networks t.o separately lIlodel t.he 

incompatible outputs, 1!own'('c in transist.or 1Il0d"lling t.his probl('llllllay oft,f'n })(' avoidE'(!. 

bpcause tllPop ;\r(' gat.,.d devices wit.h a lll:-till C1lt'l'ent c11krillg one clcvic(' t.nminal. '\lid with 

tIl(' appl'oxima«' 1'('\'<'1'S(' ('\llTPnt entering :-tuot her terruinal to obey the Eit'('hllOff ('\I1T('l1l, 

law, The small Clur('nt of tllP controlling tcrminal will g('l1('\';Llly not. affect. the lllo11otonicity 

oripntat.ioll of any of t.he main ('uIT('nts, amI need also uot 1)(> lllockll('d IwcauO(' moddling 

the two main r\Urcnt.s sutfi('(·" (again duE' t.o the Kirchhoff law). at. I('ast. for a 3-t.cl'luillal 

clevice, Onp rxample is t.1l(' \!OSFET, where the draitl ('l\l'lTtlt. Id illcreacoeo with mltaR'"s 

\ ~s and V~'l. witii<' t.it(' :i01U'('(' ('Ut'l'('ut Is den('ases wit.h t.1l",e volt.ag('o, Auot Iwl' l'xalllph' 

i" the bipolar t.r:lllsistor, where thE' ('ollector (,Ul'l'('nt Ie' illneaseR wit.h voltages Vlwanell'in' 

whilt, t.lw <'mit.t.el' current. I" c1P('f('ases with thesr voltages I" 

17The choke of .n. proper- coordlHaLe "yste[Jl her<' still play~ nil important role. For instance, it turn=-: 
out tha.t wil h a. bipolar tr(trl~i~tor t.h~ collector current increasps hu( thE' I)asp CUrl"rnt decrease,,; wiLh 
lI1creasing \/~,p and a. fixed Vil"; thf~ collf'ctor current itEldf is Hlollotonicc!"liy iJ)ncasing in both ~~'(' a.lld hf' 
under normal opfOrat,ing c()nditlOH~_ ~o this partiCldar choice of' (V'n ,\'[,.,..) c00rciinat('$ indccd came-s the 
mOHotoalcitv prohlpnl olltlilH,d ill lIlP ulain f,pxt. 
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Chapter 4 

Results 

4.1 Experimental Software 

This chapter describes some aspects of an ANSI C software implementation of tlw learll­

ing methods as described in the preceding chapters_ The experimental software imple­

mentation, presently measuring some 25000 lines of source code, runs on Apollo/HP425T 

workstations llsing GPR graphics, on PC's using MScWindows 95 and 011 HP9000j735 

systems using XWindows graphics. The software is capable of simultaneously simulating 

and optimizing an arbitrary number of dynamic feedforward neural networks in time and 

frequency domain. These neural networks can have any number of inputs and outputs. 

and any number of layers. 

4.1.1 On the Use of Scaling Techniques 

Scaling is used to make optimization insensitive to units of training data, by applying 

a linear transformation-often just an inner product with a vertor of scaling factors---to 

the inputs and outputs of the network, the internal network parameters and the training 

data. By nsing scaling, it no longer makes any difference to the software whether, say, 

input voltages were specified in megavolts or millivolts, or output currents in kiloamperes 

or microamperes. 

Sonw optimization techniques are invariant to scaling, but many of them~·-e.g., steepest 

descent---are not.. Therefore, the safest way to deal in general with this potential hazard 

is to always scale the network inputs and outputs to a preferred range: One then no longer 

needs to bother whether an optimization technique is entirely scale invariant (including 

its heuristic extensions and adaptations). Because this scaling only involves a simple pre­

and postprocessing, the computational overhead is generally negligible. Scaling, to bring 

numbers doser to 1, also helps to prevent or alleviate additional numerical problems like 
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t IlP loss of significant digits. as wpll ctS floating point llm1<'rflow aJl(i overflow. 

For de iwd tranSif'llL tlH' followiufl scaling and ul10nding rules apply to tlw i-til lwtwork 

illj)nt awl !.lIP 111-1.11 n<'1work output: 

• A llluitiplicativ(> scaling (I" dll1'ing prcproc!'ssing. of t.llp llPtwork input valllr:; in th(' 

t.rctining elata, is 11ll<101lP iu th(> postprocessing (aftcr uptimization) ily llllllt,iplyillfl 

t.Ill' weight paml!l(>\.ns I"'j.l awl 1'". 1 (i,"" only in network layn k = 1) by this "Imp 

lletwork illpltt vahw data ~('.(llillg fa.dor. ES~:Wllt.iallYi (HIP aJt(>rward:--; illCTra~(l-~ the 

~(,ll:-;itivit.y of t.Il<' lH'twork illpnt stagt' ,\lit h tllr Sd,lll(\ lllP<-1Snrc' by v.,rhieh t hp t.raining 

illpnt values har! be'l'lI iLrt.ificiall)· alllpliiif'd Iwl'or(> i miniu!,; was startl'cl. 

• Silllilarly, a lllnitiplicat.iv(' scaling ('", of (IH' network LU-g<·t output valnes, also ppr­

forlllPcl dlll'ing ]llTproc,",sinp;, is 11l1done in the postpro['csfling by ,lividillg tbe (1",­

iiwl ;!m-vall(('o for tIll' llPlwork output lay('!' by thp i arget. d,da s('alillg f;;,clor used in 

tlw prq)l'()('('SSillfj. 

• Tilt' Healing of t.rallsi(\nt tillH' points by a facto!' Tn }1' during prepro(,('Rsing, is uudone 

in the postpn)('cssillfl be' diviriiug the 1I,)k- and 1'1.,",-v;;,llles of ;;lInemon;; by thp tinw 

points s(,dlint; fact.or Tn" 11s('e[ in the ]lr('proressillg. All Tj",,-valllPs are diviC\(·ci by 

th,. SC[Uiti'<' of this factor, [weanse t.hey are th,. ('opffieicuts of t.he Sl'c'()!l(1 deriv;;tiw 

W.Lt. lime in Ill" W'\lT()]l diffpIential "([lla(.ions of t.he form (2,2), 

• A (,ril,llslcllion ocalitlg by all alllOullt b, may be flppiicc1 to shift the input data to 

positiollS l1('ar the origin. 

If WP usc for the' lH'lwork illPllt i all input shift -b" followp(] by a lI111ltiplieilt,iV<' scaling ((" 

and if w,' lISi' a llwltiplicatiw s(,1tlinfl em for network olllpllt IJI. Clnd apply it t.illl!' ~Ci:rling 

T lIu , '17."(> can 'ivrjtp t h(, scaling of traiuing; data and network pa.ra111E.'tE;'l'S a.q 

t.S\I, Til II tl!,/, 

(x~~?), (Ii ((x;~?, ), - I),) 
(X,u,)m ('In (x.,,,,),,, 

,Vu 

e,,1 ~i,1 -Lb ) W,), I 

)-1 

Wt).i ~ 
OJ 

I'i). ! ~ 
(f) 

II})/.._ It/II l'UJ..' 

Tl,ik Til II TLI~ 
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(4.1) 

and the corresponding unsealing as 

ts,i$ +- ~ 
Tun 

(0) 

(X~O!.), Xs,,)" + bi 
o'l, 

(:i:"iJm 
(:i: s,l,)m 

em 
·Wi),l aj 'W"U-,l 

No 

lii,l lii,l + 2:= bj Wij,! 

j=l 

t1ij.1 aJ Vt},l 

U1J k 
7ItJ k 

Tnn 

Tl,ik 
Tl,ik 

Tnn 

Tl,ik 
T2,1:k 

T~n 
am 

Ctm <-
em 

/3m 
Pm 
em 

(4.2) 

The treatment of ac scaling runs along rather similar lines, by translating the ac scalings 

into their corresponding time domain scalings, and vice versa, The inverse of a frequE'ncy 

scaling is in fact a time scaling. The scaling of ac frequency points, during preprocessing, 

is therefore also undone in the postprocessing by dividing the V'Jk- and T1"k-values of 

all neurons by this corresponding time scaling factor Tnn , determined and used in tlw 

preprocessing. Again, all T2,ik-values are divided by the square of this time scaling factor. 

The scaling of target transfer matrix elements refers to phasor ratio's of network target 

outputs and network inputs. Multiplying all the W,),l and V,),l by a single constant would 

not affect the elements of the neural network transfer matrices if all the C>m and i3m were 

divided by that same constant. Therefore, a separat.e network input and target output 

scaling cannot be uniqnely determined, bnt may simply be taken from the de and transient. 

training data. Hence, these transfer matrix elements are during pre-processing scaled by 

the target scaling factor divided by the input scaling factor, as determined for de and 

transient. For multiple-in put-multiple-output networks, this implies the lise of a scaling 
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Ilmtlix with delHl'llts ('Oluiu/\ hOlll all possible cOl1lhiuC\tiolls of uI't.wol'k inpnts and lH'tWOl'k 

ontputs. 

The scalinl': of fl'Plllwlln' dOloain data for de Lias conditions x;Q}, can therefor!" 1)(' writtru 

a:-: 

and titc' COlTcspcfllciing llllsnliu!', as 

(x:O/), 

.h"" 

((I) ) 

~+!)! 
ii, 

(.1.3) 

(1.4) 

Thio diocnssion on "caliug is ('('rtccilily not cOll1pkt(,. sincr onp can ,dsa a]l]lly scaling t.o. 

fm inst.anct'. t.lw ('1'1'01' hlllctiOllS, wllilr "neh a scalinp; lllay ill principle Iw diff"IPUt for 

P'H'!J lwtwnrk output it.elll. It would Icae! too bu, hOWI'VPL t.o go into all the intricacic'.s 

'1llcl pit!';llls of input ,mel outpul "'aling for nOlllin('iir dYllamic systems. Many of these' 

lllaHers <1.re ]HPSPll(.ly sl ill 1l1lllPr illv('stigiltioll, bec<1.usI' they call havp a profound elIt'd On 

tlw I<'arning perfol'lll i1.l ({"'. 

4.1.2 Nonlinear Constraints on Dynamic Behaviour 

Although t.he Ileuml lllod<'llillg techniques form a kimi of black-box approach, inclusion 

of general a priori knowlcdg(' "hout t.1l(' field of applicat.ion in tlw farlll of paranwter 

constrailLt.s Can inO'{'as0 the performalln' of aptimi~ation techniques ill several rrs])",rts. 

It may lead to fewer optilnizatioll it.I'mtions. and it may twluce the probability of gett.ing 

st.uck at a localminimulll with 't Jloor fit to t.he target data. On the otlwr hand, const.raints 

bhould nOt 1)(' too strict. iJtll rather "l'ucourage" t.1H' optimization techniques to find wilat 

we cOll:iirlrr "re<1.sonabk" lll'twork iwlutviour. by making it mon' difficnlt to ohtain '\'xotic" 

behaviour. 

The nemon timing paralll('l,('l'S TI,'" and T2.,' should relllain non-negat.iv", sl1rh that til(' 

lleuntl network OU«'Ollll'S willllot, I(ll instance, cOlltimlt' to grow illdefinitdy with tillle. If 

tlwre are good reaSOllS to ctSSllltlr t.hat. a clevic,' will Hot Iwbavp as a near-resonanl circuit. 

th(' valul' of the n('uron qnalitv factors may lw bOllucled by ()l('ans of const.raints. 'Without 
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taul 

Figure 4.1: Parameter function Tl(aj,ik. a2,ik) for Qm"x = 1 and Cd = 1. 

Figure 4.2: Parameter function 72(al"k, a2,ikl for Qm.x = 1 and Cd = 1. 
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SHch (>onsi'raints, a IH.l.lll'alll('t.\\·ol'k lll.;-lY try to c),pprOXinlah" i.('" i('arll, th(l Iwhaviolll' (>01'­

responding!o H balld-pH'" hlkr {'hararteristi{' by firs! g]'owillg larg!' hilt ]HlrrOW H'SOll1Ul(',' 

peahl, This ('all '{lliddy vide! a ('I'llde Rpproximation with ])(·aks at t.he right positions, 

hut reSOllH11t. lwitaviolll' b ,[ualitilt.ively clitIE'rpnt from tIl{' iwhavionr of it imll(I-]lH,", hltPl', 

",h,'1'(, the hrii\ht amI widt,h of a peak ill tIlE' freC[1H'll('Y transfer ('lll'\'(' nUl 1)(' sd illdrp(,ll(l­

"llt.ly 1)\, il11 ilppropriitll' choi{'(' of pamllwt.ers. Rpsonallt Iwhavionr ('OlT('S]lOll(['; to Slll"n 
Tl,k valllPs, 1m! hfUld-[,,",s filter iwh",'iolll' corresponds t,o t.lw snhsrqll('llt dOlllillilllCP. with 

growiug frC'qnf'l}('Y, of t,{'rtUS 111Yoh-illg llIJ/.·' T[ ,JI.: and Tl,d .. -, f('sppctivpl:ir. Thjs J1H'allS t hat a 

first 'plick :ipproXilll:itioll wit h rrSOllHllCP peaks mllst. snbs"(jIH'Ilt.ly 1)(' "UUi"flrIlPe!" to lillll 

a hand-pass type of j'('p]'('sent ation, itt ! he ('xp(,llse of addit.ional optilllizatioll itrm! ions if 

tIl{' ll('llraltwtwork i~ Hot ill t.lw· IlH'(\u t.in1f' already caught at;-t locallllillilllllilt oftll(:l PlTOl' 

fUllctioll. 

It is worth llotillg tlmt the comput.ational b1ll'nen of caknlating T', frolll u's aut! (T', from 

T':-;, i~ g(>llC'rall~' ll('giigil)lr (>VPll i{)[ rathef c0111plkatpd tl'i-lw.;fOl'l"llatiollf-;. Th(, 1'('(-LSOll i~, 

thnt the' actual a(', de alld tmn"icnt s<'usiti"it.y ('"knlat,iol1s Cilll, for t.he whole tmillillg "d" 

lw haser] Oil using oulo' tl«' y'" inst.p"d of t.lw u's, TIl(' T's alld (7'S llrce! t.o h(' npdatNI Oil Iv 

Oller 1)('1' op1 jUliallioll it.<'rat,iolJ. iiud r he r("luirec1 sCllsit.ivitv inforIWltion W.r. t. t,he (7',S is 

olllo' at that inslnut ('ak,llaled vi" "qlnatiou of tl](' piLltial d{'ri"ativps of tit,· l'ara(](('tn 

f11llC'tioll" YI (iTl.,", iT2"d fwd Tl (iT I.,! .. iT2"d. 

4.1.2.1 Scheme for TI.",T!A > 0 and bounded TI,'l' 

The timing parameter Tl.lk (,,\.11 I", ('X]}]'('SRl'd ill t.CIlIlR of TI," and tlu' qualit.v fa.ctor q 
by rpwriting Eq. (2.22) aR TLA (TI .,k Q)2, whik a bOllll(lrd q may 1)(' obtained by 

ulllltiplyiuf( R drfault, or nser-specifi('d, maximum quality factor Q",ax hy t.he logist.ic 

fnnct.ioll .c( rTl ".J as in 

(l.5) 

Silch IheLI () < (j(rTl.i,) < (j""" for ,dl real-valueci (71.1'" \Vhpll using an initial \'<1.111<' 

iTtA' = O. t.his would COtTPsponci 10 an initild qn"lity fact.or Q = 1 (jill'" 
Auot,llPl' point t.o 1)(' ('OllSidpl'pd, is whitt. kind of IJPh"vionr we ('xP('ct at tIll' fr(''lnPllCV 

corr('spollcling t.o thr t.illH' ~('alil1g by Tun. TIlL" tinlP scaling should IH' C110;-;011 ill ~l1('b a w;-t,y. 

t.ltilt. nw llIa.ior tillle (·Oll,tcmt., of t.hE' Hcmal llPtwork COlll(' into play <1.t il s('al{'d frr<jlll'llC)' 

w, "'" 1 Also, t.he ll(,lwork scaling ,hol1l(lpH,j"rably iw ,nell, that. a good "pproxililation t.o 

thl' t.arget. dat it is obtaill(,d with lllany of t 1)(' scal('d panltllC'ter v:1.IIlPS in the Iwighbourhood 

of 1. FIl1't.il('l'ltlon', COl t h('s(' palltm('(n \'((11[('", Hilt! at w" t,ll0 "typical" inIlll('n('(' of 

lThis plWllOlll(,LlOll lJa~ h(~'-'II oh'-.I'I'\'pd ill f'XP('rJIlWIl1.s wii II till' (,X]H'l'Illl('ll1.al :'iofi \van-' illlplf'Illf'llta1.ioll. 
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thp parameters on the network behavionr should neither be completely negligible nor 

highly dominant. If they are too dominant, we apparently haw a large number of other 

network parameter~ that do not playa significant role, which means that, during network 

evaluation, much computational effort is wasted on expressions that do not contribute 

much to accuracy. Vice versa, if their influence is negligible, computational "ffort is 

wasted on expressions containing these redundant parameters. The degrees of freedom 

provided by the network parameters are best exploited, when each network parametlCr 

plays a meaningful or significant role. Even if this ideal situation is never rpached, it 

still is an important qualitative observation that can help to obtain a reasonably efficient 

neural model. 

For w = w, = 1, the denominator of the neuron transfer function in Eq. (3.35) equals 

1 + )Tl,ik - 7Z,ik The dominance of the second and third term may, for this special 

frequency, be bounded by requiring that Tl"k + T2,ik < Cd, with Cd a positive real 

constant, having a default value that is not much larger than 1. Substitution of T2,ik = 

(Tl,'k Q)2 and allowing only positive Tl,ik values, leads to the equivalent requirement 

o < 7Uk < 2Cd / (1 + )1 + 4CdQ2). This requirement may be fulfilled by using the 

logistic function £( (f2.ikl in the following expression for the TI parameter function 

(4.6) 

and T2,ik is then obtained from the 72 parameter function 

(4.7) 

The shapes of the parameter functions 7} kl,'k , (f2,ik) and 72 ((fl.ik , (f2;,kl are illustrated 

in Figs. 4.1 and 4.2, using Qmax = 1 and Cd = 1. 

We deliberately did not make use of the value of wo, as defined in (2.21), to construct 

relevant constraints. For large values of the quality factor (Q:2> 1), <.Va would indf>edlw tlw 

angular freqnency at which the denominator of the neuron transfer function in Eq. (3.35) 

starts to deviate significantly from 1, for valnes of Tl"k and1"2"k in the neighbourhood of 

1. because tbe complex-valued tprm with Tl,ik cau in that case bi" neglected. This becomes 

immediately apparent if we rewrite the denominator from Eq. (3.35), using Eqs. (2.21) and 

(2.22), in the form 1 + J (l/Q)(w/wo) - (w/wO)2. However, for small values of the quality 

factor (Q « 1), the term with T}"k in the denominator of Eq. (3.35) clearly becomes 

significant at angular frequencies lying far below wo-namely by a factor On the ordpr of 

thp quality factor Q, 

Near-resonant behaviour is relatively uncommon for semiconductor devices at normal op­

erat.ing frequencies, although with high-frequency discrete devicE'S it can occur due to the 
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packagillg. ThE' incind.,\.ttC<' of howling wires call, together with jJara:sitic capacitallcP" 

form lillE'ar slllwirclIits with high qllality factor;;, USllally. SOln" it priori kllowkdgr is 

<1v"ilal,I" abon( the ,It-vi,,' or s111){'.ircnit to lw lll()(lpllpcl. t.lwrl'hy allowing all ",lucatecl 

gnps, for (,iB'''X' If OH,' ]>1'c;;nil)('s too ;;lllall Cl vCllnp for (j"'hX' one will clis(oV('r this 

apart hom it poor fit. to t.h" t;crgct ,lata ·-sp.,cifir·;,lly frolll tIl<' brgc VI1tU'" for ill that 

aris,' hom tlH' optillli7ation. \Yhrn this happeHs, all pjf(,c\.iw and dfident C()l]llt('rlllNlsn)'(' 

is to c'olltitlllP tllf' opt.illlizatilJll wit h a larger value of Qm"x' The (:ontinuation can be 

doue without clisrtlptillg tIll' optillli~ation results obtllinc,l tIil1;; far, by recakuIatill1', tire 

(J valllf"s frolll tIHl lat(lst T v{lhws, giV('ll tIl(' lH'\V---iRrg('r vaillc of QtnhX" For this H'a.Son, 

thl' aLow ]HUIHlH'tel' flilldillllS Tt ({ft.il, (fl.lh') ,mcl T,(at,i-k, ill ,A-! wrrr also dc',ig;llPd (0 1)(' 

I'xplicit ly '/n'/wl tible Iii II dill'll.l for \'al!ws of 71,/" awl T"I" lilat llleet t lip "how (,()llst.raints 

iuvolviug QIllil.X. R1Hl ('d" Thi:-.. lllf'fUl;.i that \Ve' ('(-l,.H \vrjf(' down explicit (-'xpr(=>s~iotl:-; ±<U" .oj ,II.. 

<l.l (Tj "I;"" T2"J~·.l awl (T'2)t. = (T2( Tj,I/.." T1,i1,:), Tlwse ('xprpsKiolli" ~UP gi\"Cll h,'l-' 

alld 

(-UJ) 

4.1.2.2 Alternative scheme for Tl,'·, TUk 2: 0 

In oOll\(' casrs, pMti<-n]arly whell modl·lling filtrr circuits, it may Iw difficult to fillcl " 

Sl1it."hk vah", for Cd. Tf C,j is not large ellongh, th~ll olrl'iously 011(' Ill"Y haVE' put too 

.,,'wn' I(\strictlolls to 111(' ilPhaviollI of Jl('mOllS, HOW(,VC'L if it is too lariir, findillg a 

(,{)lTC'~pOlldillg·ly 1arg,c' ll('gativ(l fJ2,,1.' "\-latllC' Iua}' take mallY l(,CLl'llillg jt('ratioll~. Siwilarly, 

llsillg HI(' log;ist.ic fund ion to imposc COllst raints may lear! to mallY 10!trning it,'mtions whell 

IlH' rallg" of timc' C'Ollstants 1.0 1)(' 111(),ll'lkd is large. For rell~()1l0 likc' tll('s(', til<' followillg 

simpler altcl'llativ(' Sdll'IlIl' call 1)(' 11sed ill.'\Cfl,l: 

(4.11) 

with 

(-1.12) 
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and 0"1.,;- and 0"2,,;- values can be recalculated from proper 'Tl,ik and 'T2.ik values using 

(4.13) 

(4.14) 

4.1.3 Software Self-Test Mode 

An import.ant aspect in program development is the correctness of the software. In tilE' 

software engint'ering discipline, some pE'ople advocate the USE' of formal techniques for 

proving program correctness. However, formal techniques for proving program correctness 

have not yet been demonstratE'd to be applicable to complicated engineering packages, and 

it seems unlikely that these techniques will play such a role in the foreseeable future 2 

It is hard to prove that a proof of program correctness is itself correct. especially if the proof 

is much longer and harder to read than the program one wishes to verify. It is also very 

difficult to make sur\' that the specification of software funct,ionality is correct. On\' could 

haw a "corred." program that perfectly meets a nonsensical specification. Ess€'ntially. one 

could ewn view the source code of a program as a (very detailed) specification of its desired 

funct.ionality, since t.lwre is nO fundamental distinction betw€'en a software specification 

find a detailed software design Or a computer program. In fact, there is only the prattical 

convention that by definition a software specification is mapped onto a software design, 

and a software design is mapped onto a compnter program, while adding detail (also to 

be verified) in each mapping; a kind of divide-anel-conquer approach. 

\Vhat Olle can do. however, is to try several methodologically and/or algorithmically very 

distinct routes to the solution of given test problems. To be more concrete; one can in 

simple casps derive solutions mathematically, and test whether the software gives the same 

solutions in these trial cases. 

In addition, and directly applicable to our experimental software, one can cherk whether 

analytically elerived expressions for sensitivity give, within an estimated accuracy range. 

the same outcomes as numerical (approximations of) derivatives via finite difference ex­

pressions. The latter are far more easy to derive and program, but also far more inefficient 

'2 An exception ml1st be made for purely symbolic procE'ssing software. such as language compiiC'rs. 
In genera11 however1 heuristic assumptions about what is '(correct" already enter by sE'iecting numerical 
methods that. are only guaranteed to be valid with an infinitely dense disCTf'tization of the problems at 
ha.nd, ,alculat.ing with an infinite machine prec1sion , while one knows in advance that one will in practlcE', 
for efficien-cy rcas:ons, want to stay as far as possible awa.y from these limits. In fact, one often deliberatel.y 
balances on the- edge of "incorrectness'l (inaccurate results) to be able to solve problems that would 
otherwise; bE' too difficult or costly (time-consuming) to solve. 
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to cakulate. During network optimization, one would for efficiency use only the analytical 

sensitivity calculations. However, because dc, transient and ac sensitivity form the core 

of the neural network learning program, the calculation of both analytical and numerical 

derivatives has been implemented as a self-test mode with graphical output, such that one 

can verify the correctness of sensitivity calculations for each individual parameter in t.urn 

in a set of neural networks, and for a large number of time points and frequency points. 

In Fig. 4.;3 a hardcopy of the Apollo/HP425T screen shows the graphical output while 

running in tlw self-test mode. On the left side, in the first colnmn of the graphics mat­

rix, the topologies for three different feedforward neural networks are shown. Associated 

transient sensitivity and ac sensitivit.y curves are shown in the second and third column, 

respectively. The neuron for which the sensitivity w.r.t. one particular parameter is be­

ing cakulated, is highlighted by a surrounding small rectangle-in Fig. 4.3 the top left 

nenron of network NET2. It must be emphasized, that. t.he drawn sensitivity curves show 

the "momentary" sensitivity contributions, not the accumulat.ed total sensitivity up to a 

given time or frequency point. This means that in the self-test mode the summations in 

Eqs. (3.20) and (3.61), and in the corresponding gradient.s in Eqs. (3.25) and (3.64), are 

actually suppressed in order t.o reduce numerical masking of any potential errors in the 

implementation of sensitivity calculations. However, for t.ransient sensitivity, the depend­

ence of sensitivity values ("sensitivity st.ate") on preceding time point.s is still taken into 

account, because it is very important. t.o also check t.he correctness of this dependence as 

specified in Eq. (3.8). 

The curves for analytical and numerical sensitivity completely coincide in Fig. 4.3, in­

dicating that an error in these calculat.ions is unlikely. The program cycles through the 

sensitivity curves for all network parameters, so the hardcopy shows only a small fraction 

of th" out.put of a self-test run. Because the self~test option has been made an integral 

part of the program, correctness can without effort be quickly re-checked at any mom"nt, 

e.g., after a change in implementation: one just watches for any non-coinciding curves, 

which gives a very good fault coverage. 

4.1.4 Graphical Output in Learning Mode 

A hardcopy oft.he Apollo/HP425T screen, presented in Fig. 4.4, shows SOme typical graph­

ical out.put as obtained during simultaneous time domain learning in multiple dynamic 

neural networks. Typically, one simulates and trains several slightly different neural net­

work t.opologies in one run, in order to select afterwards the best compromise between 

simplicity (C'omputational efficiency) of the generated models and their accuracy w.r.t.. 

t.he training data. 
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In the ha,dcopy of Fig. 4.4, a single graphics window is subdivided to form a 3 x 4 g,aphics 

matrix showing infoIlllation about the training of two neural networks. 

On tlw left side, in the first column of the graphics matrix, the topologies for two different 

feedforward neural networks are shown. Associated time domain curves are shown in the 

second column. In the network plots, any positive network weights WiJk are shown by solid 

interconnect lines, while dotted lines are used for negative weights3 . A small plus or minus 

sign within a neuron i in layer k represents the sign of its &'lsodated thresholrl g;k. The 

network inputs are shown as dummy neurons, indicated by open squares, on the left side 

of the topology plots. The number of neurons within each layer is shown at thp bottom of 

tlwse plots. We will use the notational convention that the feed forward network topology 

can be characterized by a sequence of numbers, for the number of neurons in each layer, 

going from input (left in the plots) to the ontput (right). Consequently, NETI in Fig. 4.4 

is a 3-2-3 network: 3 inputs (dummy neurons), 2 neurons in the middle (hidden) layer, 

and 3 output neurons. 

If there w('re also frequency domain data in the training set, the second column of the 

graphics matrix of Fig. 4.4 would be split into two columns with plots for both time domain 

and frequency domain results~-in a similar fashion as shown before for the self-test mode 

in Fig. 4.3. The target data as a function of time is shown by solid curves, and the 

actual network behaviour, in this case obtained using Backward Euler time integration. is 

represented by dashed curves. At the bottom of the graphics window, the input waves are 

shown. All target curves are antomatically and individually scaled to fit the subwindows. 

SO t,he range and offset of different target curves may be very different even if they s~em to 

have the same range On the screen. This helps to visualize the behavioural structure-~e.g .. 

peaks and valleys-in all of the curves, independent of differences in dynamk range. at 

the expense of the visualization of the relative ranges and offsets. 

Small error plots in the third column of the graphics matrix ("Learning progress plot") 

show thl2 progress made in reducing the modelling error. If the error has dropped by more 

than a factor of a hundred, the vertical scale is automatically enlarged by this factor in 

order to show further learning progress. This causes the upward jumps in the plots. 

The fourth col umn of the graphics matrix ("Parameter update plot") contains information 

on tlw relative size of all parameter changes in each iteration, together with numerical val­

ues for the three largest absolute changes. The many dimensions in the network paramet.er 

vector are capturlC'd by a logarithmically compressed "smasherl mosquito" plot. where "aell 

direction corresponds to a particular parameter, and where larger parameter changes yield 

points furt.her away from the central point. The purpose of this l,ind of information is 

JOn a color screen, suitable colors are used instead of dashed or dotted lines. 
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t.o give ~()llle ill~ight into what is going on during the optimization of high-dinl('nsional 

systelll'" 

The target data were ill this case obtain('d from P~tar silIllllations of 0. simple liuPfu 

circnit having thrICe lim'"r rt'siston, conneeting thre~ of t.lw terminals to au illtenml nodl'. 

and having a single linear capacitor that COlmects this inlPrnalllode to groulllL Tlw tiUl(>­

dependent behaviour of this circuit requires nOll-quasistittic modelling. A h'equency swepp, 

here ill t.he tiUll' domaill. was appliNI to one of t1l(> terminal potentials of this circuit, ami 

the corresponding tluet' ilHleppudent t.nlllill8.1 CUlTc'nts fOrtlll'd tl)(' response of the circuit. 

The t.iItlc-dependent current valucs subsequently fOrtlwd the target data uoed1 () trail! t hp 

neural networks. 

Howewr. tht' purpose of thio tilllP dOIll8.in learning example io ouly to give SOIlW itlll)1'C'osioll 

about thc operation of the softwarE'. llot to show how well tllis particulrtr hl'havi[}Ul' call 

b(' modelled I,y tllf nemal networks. That will be the subjed of subsequcnt exalllples ill 

section 4.2. 

TIl(> graphiuII [}utput, was mainly added to help with the development. verification and 

tuning of the software, and only in the s('('ond place to brcollle available to f\ltun' nsers. 

TIl(' software call lw used just as well without gr8.phical output, as is oftpn dOllc' when 

running neural modelling experitllPllts on remote hOots. in the bdd<grouud of other tasks. 

or as batch jobs. 

4.2 Preliminary Results and Examples 

The experimental software has b~en applicd to :.;everett t",t-CitSE'S, for which HOme prelilllin­

ary results are outlinpd in this ,('(tiOI1. Silllple examples of automatically geuC'rat.rll modc'ls 

for Pstar, Berkcky SPICE and Caclem:e Spectre arT discussed, toget,lwr with silllulation 

results using these sinllll8.tors. A numj,pt of modelling probkms illustrate that t.he ueural 

modelling tedllliques call indeed yield good [Psults, although many iss lIPS relllain to be H'­

solved. Tabl!' 4.1 gives an overview of thc' kst-cases ao discn:.;sed ill the following sections. 

In the columll with training elata, 1.111' implicit DC points at time t = 0 for transil'nt and 

the single DC point nepcied to detl'rllline offsets for AC an' not t8.ken into account. 

4.2,1 Multiple Neural Behavioural Model Generators 

It was 8.1n'ady stated in the iutroclllrtioll, that output driver, to the I1Pural network soft­

ware can be lll8.d~ for alltol1Mtically gE'nerating llcnralmodPls ill tltt' appropriate syntax for 

a set of supported simulators. Such output drivers or model generators {'ould ait"rHatively 

a1:,;o be callecl simulator drivers. analogous to the tprm prilltN driver for it software moclule 
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Section Problem Model Network Training 
description type topology data 

4.2.2.1 filter linear 1-1 transient 
dynamic 

4.2.2.2 filter linear 1-1 AC 
dynamic 

4.2.3 MOSFET nonlinear 2-4-4-2 DC 
static 

4.2.4 amplifier linear 2-2-2 AC 
dynamic 

4.2.5 bipolar nonlinear 2-2-2-2 DC,AC 
transistor dynamic 2-3-3-2 

2-4-4-2 
2-8-2 

4.2.6 video linear 2-2-2-2-2-2 AC, transient 
filter dynamic 

Table 4.1: Overview of neural modelling test-cases. 

that translates an internal document representation into appropriate printer codes. 

Model generators for Pstar4 and SPICE have been written, the latter mainly as a feasibility 

study, given the severe restrictions in the SPICE input language. A big advantage of the 

model generator approach lies in the automatically obtained mutual consistency among 

models mapped onto (i.e., automatically implemented for) different simulators. In the 

manual implementation of physical models, such consistency is rarely achieved, or only at 

the expense of a large verification effort. 

As an illustration of the ideas, a simple neural modelling example was taken from the 

recent literature [3]. In [3], a static 6-neuron 1-5-1 network was used to model the shape 

of a single period of a scaled sine function via simulated annealing techniques. The function 

0.8 sin(:r) was used to generate de target data. For our own experiment 100 equidistant 

points .c were used in the range [-n, n]. Using this I-input I-output dc training set, it 

turned out that with the present gradient-based software just a 3-neuron 1-2-1 network 

with use of the :F2 nonlinearity sufficed to get a better result than shown in [3]. A total of 

500 iterations was allowed, the first 150 iterations using a heuristic optimization technique 

(See Appendix A.2), based on step size enlargement or reduction per dimension depending 

41n the case of Pstar, the model generator actually creates a Pstar job, which1 when used as input for 
P:;tar. instructs Pstal' to .'~tore the newly defined models in the Pstar user library. These models can then 
be immediately accessed and used from any Pstal' job owned by the user. One could say that the model 
generator creates a Pstar library generaLor as an intermediate step, although this may sound confusing to 
those who are flot familiar with Pst-ar. 
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on wlwthcr a millillllllll ap]l,'ar<'d to 1)(' (TOSSE'd ill that particnlar dilIlPllSioll, followed by 

3:;0 Polak-Rihi('I(' cOlljugate gradiellt ilc'ratione;. After til" "Illl il('rations, Pst'll' ami SPICE 

lllOdcl::-:. ",Ten' dJJt.olH.Ctticall.v flPllf'r8J,()cL 

Tll<' Pst.;,r lllo,kl was t.lH'll ,,,c'd in a Pstar run to 8inmia!c' the lllodel tprIllinal ClllT"lIt as 

a function of the branch vollage in thl.' wug(' 1-7<,7il TIl(' SPICE nlOcll'l wa.' similar!:; 

used in both Berki'ley SPICE:Jcl and Caclel1n' Spectre. The results arc .ShOWll in Fif\. 4.5. 

The ;)-ll('uroll rH'UralllC'twork Silllllhtioll r('snlt.s of Ps\ar. SPICE3cl "nei Spl'dn' all llicf'ly 

(LIN) 
- y I-<IXI~ XO[)(l1ll 

rLlNJ 12_(IJII 

"IARGEI 

PSTAR 600lhn IO.OIll 

:SPICElli 

:'.PECTRE 
40().Om X Om 

• ~2.d-'l~ . 
200Jlm ()Om 

l)P:STAR 

0.1) 40m 

200.01ll 10m 

.41)0.0111 (l,1l 

·()()O.Om 20rll 

-l:lO().O.,1 ._- .:I,()III 

-4,0 -lll 00 2.0 4\) 
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Figure' 4.5: N pural llE'twork mappc'cI Ollto several circuit sillmlators. 

lll"trh the t:ug<,t. dat.a cur\"('. The difference bet.ween Pstar outcomes ;wel thr t"r~et dala 

is ShOWll as " separate' CllIvr ("DPSTAR = PSTAR - TAI1GET"). 

Of COHrS(', Pstar already hfts a built-ill sille hmdioll and lllany other functions that can 

lw uspd in ddining controlled SOlll'ep". However, the approach a" outlilwd abow would 

just as w('ll apply to device' cllaraetl'l'isties for whirh no analytical exprpssion is known. for 

instance by usill~ CUlT(' tracrs coming directly frOlll llH'''S1ll'C'lllPl1tS. After "II. the l1C'ural 

network modelling softwarl' did not "know" anything about tlw fad that a SillC fUlJ(tioll 

hac! heen used to geuC'nI.t.e thr trflitlill~ data, 
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4.2.2 A Single-Neuron Neural Network Example 

In t.his section, several aspects of time domain and frequency domain learning will be 

illustratt'd, by considering the training of a 1-1 neural network consisting of jllSt. a single 

neuron. 

4.2.2.1 Illustration of Time Domain Learning 

In Fig 2.G, the step response corresponding to the left-hand side of the neuron differential 

<'quation (2.2) was shown, for several values of the quality factor Q. Now we will lISe t.ll{' 

response as ,alculat.ed for one particular value of Q, and use this as the target behaviour 

in a training set. The modelling software then adapts the parameters of a single-neuron 

neural network, until, hopefully, a good match is obtained. From the c.onst.ruct.ion of the 

training set, we know in advance that a good match exists, but. that does not guaranteC' 

that it will indei'd be found through learning. 

From a calculated response for T2.,k = 1 and Q = 4, t.he following corresponding training 

set was created, in accordance with the syntax as specified in Appendix B, and using 101 

equidistant time points in the range t E [0,25] (not all data is shown) 

1 network, 2 layers 
layer widths 1 1 
1 input, 1 output 
time= 0.00 input= 0.0 target~ 0.0000000000 
time= 0.25 input~ 1.0 target= 0.0304505805 
time= 0.50 input~ 1.0 target~ 0.1174929918 
time= 0.75 input= 1.0 target~ 0.2524522832 
time= 1.00 input= 1.0 target= 0.4242910433 
time= 1. 25 input= 1.0 target= 0.6204177826 

time= 23 75 input= 1.0 target= 1.0063803667 
time= 24 00 input= 1.0 target: 0.9937691802 
time= 24.25 input= 1.0 target= 0.9822976113 
time= 24.50 input= 1.0 target= 0.9725880289 
time= 24 75 input= 1.0 target= 0.9651188963 
time= 25.00 input= 1.0 target= 0.9602046515 

From Eq. (2.22) we find that the choices T2,ik = 1 and Q = 4 imply Tj,ik = t· 
The neural modelling software was subsequently run for 25 Polak-Ribirre conjugate gl'acli­

ent iterations, with the option F(Sik) = Bik set, and using trapezoidal time integration. 

The v-parameter was kept zero-valued during learning, since time differentiation of the 

network input is not needE'd in this case, but all other parameters were left freE' for ad­

aptation. After tlw 25 iterations, 7) had obtained the value 0.237053, and 72 the value 
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----::4<:0---6600---8800---10100° 

Fignn' 4.0; Slc'p r(,'pOllst· ()f a ,inglp-1H'llron ll(>ural twtwork 
as it "<lapt.' during s1lbs('(jllPtlt learning itf'rations. 

O.%~TTl. which cOlTrsp()ll(h tn Q = 4.1306 according to Eq. (2.22). These r('c;ulb fire 

alrpacly r('aoollit},ly dose' to the ex"d valnrs from wbich the training sd. had \W('ll derived. 

Lpaming [ll'ogn'ss is shown ill Fig. 4.0. For pach of the' 23 cOlli Itgatc' gradient iteratiolts. 

tilE' intl'rnH'rliatl' network l"{'SPOll'" is ,hOWll as a function of (lw I,-th clis(T{'t<:' tillll' ]loint. 

wlwre the nota.tion t., (in Fig. 4.G writtr[l as Ls) corresponcis to the nsage in Eq. (:3.18). 

TIle .,(c']) reS])OllSl' of t hp ,inglc'-lll'l]rOlI lleltml network aft"r the 2::; lr!tming itemt i011s 

intlppd clm,ply "pproxinlatc', the· ,\pp rpspOllse for T2.1k = 1 a11d Q = 4 shown ill Fig. 2.0. 

4.2.2.2 Frequency Domain Learning and Model Generation 

III Fig.,. :3.1 am1 :3.2, tire eli" h<'ll<ivionr was shown for a part.inliar choice of jHlranwtcrs ill 

a 1-1 u('twork. OUP ('onlt! il.,k wl](,ti]('r a lwural network call ilHt~ed l('arn this belmvio\ll" 

frOlll a ('OITf'spowling Sl't of rcal ,wd imaginary 11\\1111)(-'1's. To tesl this, a tmillillg set 

was r011stnt('(.ptl, containillf,\ 11](' cOlllplc-x-vaiup<! llC't.work tmnsfer targpt valllPs for a 100 

fn'qnPllcy points ill til(' rimE'/' uJ E [10',10 1;1]. 

The input file snnn. n for til(' l]('nral modelling software containrd (not all data shown) 

1 network, 2 layers 

layer widths 1 1 
1 input, 1 output 
time= 0.0 input= .0 target= 1.0 
type= -1.0 input= .0 
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freq= 1. 591549431e06 Re= 1.000019750 Im= 0.007499958125 
freq= 1.829895092e06 Re; 1.000026108 1m; 0.008623113820 
freq= 2.103934683e06 Re; 1. 000034513 1m; 0.009914461878 
freq= 2.41901361ge06 Re= 1. 000045625 Im= 0.011399186090 
freq= 2.781277831,,06 Re= 1. 000060313 1m; 0.013106239530 

freq= 9.107430992e11 Re= 0.00007329159029 Im= -0.01747501717 
freq= 1.04713324ge12 Re= 0.00005544257380 Im= -0.01519893527 
freq~ 1.203948778e12 Re~ 0.00004194037316 Im= -0.01321929598 
freq= 1.384248530e12 Re= 0.00003172641106 Im= -0.01149749396 
freq= 1.591549431e12 Re= 0.00002399989900 Im= -0.00999995000 

The frequrncy points are equidistant on a logarithmic scale. The neural modelling software 

was run for 75 Polak-Ribiere conjugate gradient iterations, with the option F(s,;.) = S,k 

set, and with a request for Pstar neural model generation after finishing the 75 itNa­

tions, The program started with random initial parameters for the neural uetwork. An 

internal frequency scaling was (amongst other scalings) automatically applied to arriw 

at an equivalent problem and network in order to compress t.he value range of net.work 

parameters, Without such scaling measures, learning the values of the timing parameters 

would be wry difficult, since they are many orders of magnitude smaller than most of tIl(' 

other parameters, In the generation of neural behavioural models, the required unsealing 

is automatically applied to return to the original physical representation. Shortly after 50 

iterations, the modelling elTor was already zero, apart from numerical noise due t.o finit.l' 

machine precision. 

The automatically generated Pstar neural model description was 

MODEL: NeuronType1(IN,OUT,REF) delta, tau1, tau2; 
EC1(AUX,REF) V(IN,REF); 
Ll(AUX,OUT) taul; C2(OUT,REF) tau2 / taul 
R2(DUT,REF) 1,0 ; 

END; 

MODEL: snnnO(TO,REF); 

/* snnnO topology: 

c:Rlarge = 1.0e+15; 
c:Rl(TO,REF) Rlarge; 

- 1 */ 

c: Neuron instance NET[O] ,L[l] .N[O]; 
L2 (DDX2,REF) 1,0; 
JC2(DDX2,REF) 

+8,846325e-10*V(TO,REF); 
EC2 (IN2, REF) 

+8. 846325e-01*V(TO ,REF) 
-2. 112626e-03-V(L2); 
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NeuronType1_2(IN2,DUT2,REF) 
1.000000e+OO, 2.500000e-10, 1.000000e-20; 

c:R2(OUT2,REF) Rlarge; 
JC3(TO,REF) 2.3SS140e-03+1,130413e+OO*V(DUT2,REF); 

END; /* End of Pstar snnnO model */ 

CHAPTER 4. RES['LTS 

Tilt' Psi ,n IH'llral Il('t.work lttod,,] llall)(' snnnO is de>rivrd hOlll t.ho n!lIlIr of t.he inp\lt hlp 

wit.h tar)!,,'t data. sll])pl(,llH'lIt('<1 with an illtq;rr to dOllo\.(· cliff('Il'llt llPtwork drfinitiolls 

ill nt~l' ~(->vf.~ral ll('tworks (up trrl,i)ll'd ill Olle nul. CI.'arl)" tl](· 1l10(h'Jliug- ;-;oftWiiH' 11.(l.d uO 

probklll clis('ovcrillp; 1.11(' corn'c( vaiIlPs 71 = 2.5.10- 1°., alld 7, = 1O- 20s", as ('an 1)(' S('l'll 

hOlll the argumeut list of \""llronTypl'L2(I'-I2,OUT2,I1:EF). DU(' to the fart t.hat we had 

a lillear prohlelH, and \lsrd " liw'"r 1 li'll ral llPtwork, tlwrp is no IIniqll(, ,mlul.ioll for til(' 

r(,lllailling paralll('trrs. How('\",r. hl'caw,(' th" lllocldlill)!, rrror bpcalll(, (virtnally) z('ro. this 

s!tows that tl](' softwal t' hac! jel1luc! an (iill11081) ('xad SollltiOJJ for tll('S(' paralllPt('I-" as welL 

yl-il.l;h 411 
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FignI<' '1.7: Fig. 3.1. :.l.2 i",lwvionI as I<'('()v('n~d via tire' u('ural lllodelling software, 
autulllatic P0tar 1l10cld gT)ll(~ration, Pstar sinlulatjoll and CGAP output. 

TllP aiJovE' Pstar lllodd was nope! ill a Pslar job that "replays" tit" inputs as giv(,11 ill tlu' 

training S(,(.5. Fi)!,. 4.1 shows the P,tM sillllliatioll [('suIts pr(,Sl'ntrd by til(' CGAP plotting 

padmp;p. This lllay lw colllpar('ci to the IPal ane! imaginary furV"S shown ill Fig. 3.2. 

CiSlich auxiliary 1'c;t.<H johs for l'(\playing illPllt daLL, ,L'l specified ill Lh{\ t.ra.ining data, arf' ])ff's(lntl:\' 
illlt.omaticall,v gC1H'rat(·d wilen t hi' \1:-.(')' ]"{'Cju(",is Ps1ar models from the lWlual modelling ':ioftwal'f'. ]'lIPS;' 

l\,ta.r joh.'l Arc V('1'!' li'-,(>i"ld for V"J i (j( .;lI.jO\l Hlld plo1.1 ing purp0"'('<' 
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4.2.3 MOSFET DC Current Modelling 

A practical problem in demonstrating the pot.ential of the neural modelling software for 

automatic moddlillg of highly nonlinear multidimensional dynamic systems. is that OIW 

cannot show ewry aspect in one view. The behaviour of snch systems is simply too rich to 

be captured by a single plot. and the best we can do is to highlight E'ach aspect in turn. as a 

kind of (Toss-section of a higher-dimensional space of possibilities. The preceding ('xall)ples 

gave some impression about the noulinear (sine) and tlw dynamic (non-quasistatir. tim" 

and frequrncy domain) aspects. Therefore, we will now combine the nonlinear with the 

multidimensional aspect, but for clarity only for (part of) the static behaviour. namely for 

tlw de drain current of an n-channel MOSFET as a function of its terminal volt.ages. 

Fig. 4.8 shows th1' de drain curr1'nt Id of the Philips' MOST model 901 as a funct.ion of 

the gate-somee voltagf Vas and the gate-drain voltage Y~d, for a realistic set. of model 

paramNers. The gate-bulk volt.age Vgb was kept. at a fixed 5.0V. MOST modrl 901 is aile 

of the most sophisticat,xl physics-based quasistatic MOSFET models fm CAD applica­

tions, making it a reasonable exercise to use this model to generate target data for neural 

modelling6 The 169 drain current values of Fig. 4.8 were obtained from Pstar simulations 

of a single-transistor circuit, containing a voltage-driven MOST model 901. The 169 drain 

current values and 169 source current values resulting from t.he dc simulations subsequent.ly 

formed tlw t.raining set 7 for the neural modelling software. A 2-4-4-2 network. as illus­

trated in Fig. 1.2, was used to model the Id(Vqd , Vqs) and I.(Vgd , Vgs) characterist.ics. The 

bulk current was not {'onsidercd. During learning, the monotonicity option was active. res­

uIting in de characteristics tbat are, contrary to MOST model 901 itself. mathemat.ically 

guaranteed t.o be monot.onic in Vg • and Vg$' The error funct.ion used was t.he simple square 

of the difference between output current and target current--~a~ used in Eq. (3.22). This 

implies t.hat no att.empt was made to accurately model subthreshold be.haviour. \Vhen 

this is required, another error function can be used to improve subthreshold accuracy ·at. 

the expense of accuracy above threshold. It. really depends on t.he application what. kind 

6Many physical MOSFET models for circuit simulation still contain a number of undesirable moof'lling 
artefacts like unintended discontinuities 01' nonmonotonicities, which makes it difficult to decide whcthn 
it makes any sense to try to model their behaviDur with monotonic: and infinitely smooth nf'llrFtl modf-Is. 
dpveloped for modelling smooth physical behaviour. Physical MOSFET models are often at twst continuous 
up to and induding the first partial derivatives w.r.t. voltage of the de currents and t.he cquivak·nt 
terminal charges. Quite oftE"n not even the first partial dE'fivatives are continuolls, dlle to the way in which 
transitioll,:; to different opE'ra.ting regions are handled, such as the drain~soUl'Ce int.f'l'change procedure 
commonly applied to evaluate the physical model only for positive drain-source volta.ges Vds. whil~ the 
physical model is unfortunately often not designed to be perfectly syrnmetdc in drain and source potent.ial;,,; 
fol' \Ids approaching zero, 

'MOST model 901 capacitance information was not included, although capacitive behaviour ("ould have 
been incorporated by adding a set of bias~dependent low-fre-quen-cy admittance matrices for frequcn("y 
domain optimization of the quasistatic behaviour. lnternally, both MOST model 90] and thE' n€'ura.l 
ndwork models employ charge modelling to gua1"ante~ charge conservation. 
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MOST lYlodel 901 

Monotonic 2-4-4-2 Neural Network Model 
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(Neural Network) - (MOST Model 901) 

Figure 4.10: Differences between MOST model 901 and neural network. 

of eITOl" meaSure is considered optimal. In an initial trial, 4000 Polak-Ribiere conjugate 

gradient iterations were allowed. The program started with random initial parameters 

for the neural ll<'twork, and no user interaction or intervention was net'ded to arrive at 

behavioural models with the following results. 

Fig. 4.9 shows tlIP dc elI·ain current according t.o t.he neural network, as obtained from Pstar 

simulations wit.h t.he corresponding Pst-ar behavioural models. The differences with t.he 

MOST model 901 outcomes are too small to be visible even when the plot is superimposed 

with the MOST model 901 plot. Therefore, Fig. 4.10 was created to show the remainillg 

differences. The largest differences observed between the two models, measuring about 

3 x 10-) A, are less than one percent of the current ranges of Figs. 4.8 and 4.9 (approx. 

8The Pstar simulation times for the 169 bias conditions were now about ten times longer using the 
neural network behavioural model compal'ed to using the built-in MOST model 901 in PstaL This may 
be due to in(':ffi.ciencies in the handling of the input language of Pstar I onto which the neural network wa.s 
mapped. ThIS is indicated by the fact that the simulation time for the neural model in the ne-ural modelling 
program itself was instead about foul' times shorter than with the MOST model 901 model in Pstar. on the 
same HP9000j735 computeI'. However, as was explained in section Ll. in device modelling the emphasis is: 
less on s.imulation efficiency and more on quickly getting a model that is suitable for accurate flimu!ation. 
Only in this particular test-ca...,e there already wa.s a. good physical model available, which we even used as 
the $OUn'e of da.ta to be modelled. Nevertheless, a more efficient input language handling in Pstar might 
lead to a significant gain in simulation speed. 
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4 X 10-') A), furthermore, 1//0'1I()/()'IIIC'it:rJ "nd injin'itc YffI.()ot,hll{',% arc (rll,(I./'ILnt~(;d prop('rties 

of t.lH' ll('llralndwork, \\·hih, til(' tH'm,d Il\odd was lrainrci in 1),:3 lllillut{'S on all HP0000/iJ5 

('olll]lutel'~ , 

This ('xCllllpk ('O!l(TI'llS th" 11lOd,'llinf', of one particular rl('vi('c. To illciltdt, s('aliB),; df('('i.s of 

g('ol1lE'try anel t,l'ltljlPratl1r(', Ottt' ('ould USl' a largE"l' t.raining ",t ('ontaining data for a vari('ty 

oftc'lll]Wnttmrs alld gl'OlIIt'trirs tO , with ItdditionalllrllmlllHwork illpnts for gpolll('trv ILltd 

tCllll)('ratnr(', Alt'('rllatiwI)', OIl(' ('oult] manually add a grOlll('t.l'Y and t(,lllprratllJ'(' s(,aling 

mode] t.o tl](' Ilt'lllal lltodd for a silli>;ll' (10vicr, ItltllOnglr ow' th(,ll has to ])(' ('xtn'lIlely 

('CtI1tioliS ailllllt til(' difft'rrnt. f',eoll1PlI'Y s('"lillg of. for illsti\ll('(', d(' CLllT(,llts "11(\ ca,pa.cit.in' 

('1l1TC'tLt.S as kllO\\-ll frolll ph~'sici--ll qlla~i:..;tatk HlOCkllillg. 

High-fnlqllPllCY lioll-qna:-.isl,;-\t it iw·havionr ("('1.11 ill pl'il1('ipl{' also 1)(-' u)(Hkl1C'cl hy the· llf'llral 

ll('tworb, whilt> l\-JOST lIHHld 901 is restrict('d to Cjlla.sislatic ]whavionr 0111)', [IBtilIJO\\', 

tlH' ][('C(\ for 1l01Hjlla,istati(' d('\'ic(' 11lOdplling has hpPll lllll"h stIOllger ill bigll-f"'([lIPIl"!, 

applications ('oulaillillg hipolar c1evic('s, StatiC' ll('llm\llPtworks bav(' also i)(,(,1l app\i('(\ to 

Ihe lllocldlillf\ of till' (\r- ClIl't'I'llh of (sllblllicrl)lt) 'dOSFETs al "atinnal Setlli('o1H!lIt'lor 

Corporar.iotl [:331. A r('('('lIt arlit'll' 011 stati(, Hemal netwol'b for l\1()SFET lllo(lf'!ling ('all 

h(' [0(111(1 in [nl, 

Aftel' I.h(' abow illitial tri,ll, 1\11 ;\-"dilioll"l ('XIWl'iJ1l('Bt wetS ]H'rfOI'1I1('ll. ill which "'\'pml 

llPllralIH't\\'ork:-; w('n~ t,raiul:\d :..;ilHl1itallf'()lls1y. To give all ilIl}H·(1~;.:ioll a,hout. t.ypica1 l('aruiug 

iwhet\'iolt1', fig, 4,11 sll()wS tl1(' (\(o(,l'pa,,,, of lllOdelling ('rror with it('1'at,ioll (,01111!. for a small 

popnhl"t.iC)H com·,i:-.tiug of 1'0111' llP1H2d l11't-:work;:..:, carll hAying n. 2-4-4-2 topology, TIl(' nrtwork 

paranH'tl'l's W(,I'(, nwdOllily initializ(,(l, ;\IIel 21)00 Polak-Ribi(,Il' ('onjugaj,(' gradiPlll it.('ratiOllS 

\WIT ,dlow('tl, nsillf; i\ SlIlil-of-sq\litrt'~ (']'l'or 1l1('ItSnr{' til!' ('olltrihutioll from Sq, (:3,20) wit.h 

Eq. (:322) 

Network Error Maximum Percentage 
Eq. (:322) error (A) of range 

0 2.4923('-04 3.40G5:k-OG ()iI(j 

1 :3,%49('-[J:) 1.17681('-0·1 1.:110 

:2 :j.<)22Gc-()3 1.125!Jtll'-04 1.51 

:3 G,!J124('-lJ4 3,115G2('-0;) ()G') 

Table 4,2: DC' motldlillg It'sulis after 2000 i(.('ratiolls, 

llUsinf1, I,he WOO Polak-Bihi{'l'f' COil j ug:<:d,(-' ~r,Ltlif'tlL iler<tLiou~ 
10'1'1\(, pa.ranwi,/;'l''''' for the sea-linf', r1Lif's of physic-a I models are in pra,din' <:Lbo oh1ailwd b,v llH'.'l.'dlt'iIlFl, a 

ll11tlliwr of dift"('J'C'llt devin's, \\'ith tilt' Philip'" 1\10ST moddc-. 7 a.nd g, t.hit.lf'a.d:-. 1.0 the ilo-ci:l,lkd "lTl(I,xi-s(~i.," 

appllCil,hlc- to OIH' pnr1.icnl.1r Ill<Hl1I[;\ctllritl-!!: jll'()('("'-!. 
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Figur~ 4.11: MOSFET modelling error plotted logarithmically as a function of itE'r­
ation count. using four independently trained neural nE'tworks. 

Fig. 4.11 and Table 4.2 demonstrate that one does not llE'ed a particularly "lucky" initial 

parallwter set.ting t.o arrive at satisfactory results. 

4.2.4 Example of AC Circuit Macromodelling 

For the neurallllodl?lling software, it. does in principle not mat.ter from what. kind of sys­

tem the training data was obtained. Data could have bel"l1 sampled from all individual 

tran"istor. or from an ~ntire (sllb)circuit. In t.he latter case, wlwn developing a model for 

(part of) the behaviour of a circuit or subcircuit, we speak of macromodelling. and the 

n'sltlt of t.hat activity is called a m.acmm.odel. Th~ basic aim is to replace a wry complic­

ated descript.ion of a syst.em-such as a ,ircuit-~by a milch more simple d(>scIipt.ion~--a 

macromodel-whill' prf'sf'rving the main Iel~vant behavioural characterist.ics, i.e .. in])UI­

ontput rdations, of th" original system. 

Here we will consider a simple amplifier circuit of which the corresponding circuit. schematic 

is shown in Fig. 4.12. Source and load resistors are required in a Pstar twoport analysis. 

and these ilre therefore indicated by two dashed resist.ors. Admittance matrices Y of this 
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circuit. W0r(' obt"iup([ frolll t.hl' following PstaI job; 

numform: digits ~ 6; 

circuit; 
e - 1 (4,0) 3.4; 

tn_ 1 (4,1,2) )bf199' ; 
tn_ 2 (3,2,0) 'bf199' ; 
cfb (1,3) 900; 

r - 2 (4,3) lk; 
c_2 (3,0) 5p; 

J- 1 (2,0) O.2ml; 
c_ out (3,5) lOu; 
c - 1ll (1,6) lOu; 
r~input (6,0) lk; 
T_load (5,0) 1k; 

end; 

ac; 
~ gn(100k,lg,50); 

twoport; r_input, r_load; 
monitor: yy; 

end; 

run; 

CHAPTER 4. IlESC'LT8 

which gPlll'raks text.llid OlltPl.1t (.h,,(. has the 1111111rl'·ic eiC'IlH'llts ill the (,OlT('cj order for 

Figur(' 4.12: Amplifier cir(,uit 11s('d in twoport analysis. and IlPuml llla(TOlllot\l'L 
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creating a training set according to the syntax as specified in Appendix B. In the above 

Pstar circuit definition block, each line contains a component name, separatlC'd from an 

occurrence indicator by an underscore, and followed by node numbers between parentheses 

and a parameter value or the name of a parameter list. 

The amplifier circuit contains two npn bipolar transistors, represented by Pstar level 1 

models having three internal nodes, and a twoport is defined between input and output 

of the circllit, giving a 2 x 2 admittance matrix Y. The data r('sulting frol11 the Pstar ac 

analysis were nsed as the training data for a single 2-2-2 neural network, hence using only 

four nemons. Two network inputs and two network outputs are needed to get. a 2 x 2 

neural network transfer matrix H that can be used to represent the admittance matrix 

Y. The nonnumeric strings in the Pstar monitor out.put are aut.omatically neglected. For 

instance. in a Pstar output line like "MONITOR: REAL(Y21) = 65. 99785E-03" only t.he 

substring "65. 99785E-03" is recognized and processed by the neural modE-lling software, 

making it easy even to manually construct a training set by some cutting and pasting. 

A -trace option in the software can be used to check whE-ther the numeric items arC 

correctly interpret.ed during input processing. The neurons were all mad" linear. i.e., 

F( S,k) = Sik, because bias dependence is not considered in a single Pstar twoport analysis. 

Only a regular sum-of-squares error measure-see Eqs. (3.61) and (3.62)-was used in tllf' 

optimization. The allowed total number of iterations was 5000. During the first 500 

iterations the bE-fore-mE-l1tioned heuristic optimization technique waS used, followed by 

4500 Polak-Ribiere conjugate gradient iterations. 

The four admittance matrix elements (Y)ll, (Yh2, (Yht and (Yh2 are shown as a 

function of frequency in Figs. 4.13, 4.15. 4.14 and 4.16, respectively. CurVE'S are shown 

for the original Pstar simulations of the amplifier circuit, constituting the target data 

Y<i><j>CIRCUIT. as wdl as for the Pstar simulations Y<i><j >NEURAL of the automatically 

generated neural network model in Pstar syntax. The curves for the imaginary parts IM(·) 

of admittance matrix elements are easily distinguished from those for the real parts RE(·) 

by noting that the imaginary parts vanish in the low frequency limit. 

Apparently a very good match with the t.arget data was obtained: for (Y)ll, (Yb 

and (Y)22, the deviation between the original circuit behaviour and tlw neural network 

behaviour is barely visible. Even (Yh2 was accurately modelled, in spite of the fact that 

the sum-of-squares error measure gives relatively little weight to these comparatively small 

matrix elements. An overview of the modelling errors is shown in Fig. 4.17. where the 

error was defined as the difference between the neural network outcome and tIl<' target 

value, i.e" Y<i><j>ERROR = Y<i><j>NEURAL - Y<i><j>CIRCUIT. 
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Figure 4.15: (Y)12 for amplifier circuit and neural macromodel. IM(Y12CIRCUIT) 
and IM(Y12NEURAL) both approach zero at low frequencirs. 
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Figure 4.16: (Y)22 for amplifier circuit and neural macro model. The circuit and 
neural model outcomes virtually coincide. IM(Y22CIRCUIT) and 
IM(Y22NEURAL) both approach zero at low frequencies. 
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Figure 4.17: OVPl'yjl'W of lIlacrolllocidling ('nors a, a fUlIction of fr<'([lWllcy. 

4.2.5 Bipolar Transistor AC/DC Modelling 

A~ another examplc·. we will comider the modelling of the highly llc}Illill<'ar and fr('qll('llCY­

dejlellc\ellt bdmviolll of it JliiC'kaged bipolar clevic{'. The C'Xl"'l'illlPntal training Vallll'.S in 

the forlll of de ClllT01\.S awl adlllit.tll.llfe matriees for a 1l1l1ll\lPr of bias couciitiolls wpn> 

obtaillcd frOll! PstiH oillllll"tiollo of it Philips modd of a I3fn92A IIprl. clevice. This lllodel 

comist.s of it llonliu(,Clr Gllnllll(,I-POClll-like bipolar mod(,1 and additional linear ('OIllPOllPllts 

to I'('PI'P~('tlt the (,[fc('ts of t.he package. The correspondiug circuit is ~hown in Fip;. 4.1/). 

Teaching a n('uralnetwol'k to bel1<we a~ t.he I3FR92A t.ul'lH'd out t.o r~'lui1'(' many optillli~­

at.ion iteratious. A llllln\wr of t'('aSOllS make the autoltlatic modelling of padmgcc] ]Jipolal' 

,],'vi('('s dif!i(')t!t: 

• The lin0ar ('OllljH)lli'llts ill tIl(' package model can ]pad to hand-pass filtcr type Jl"aks 

as w{'11 ao to tnl(> resouallCC' ]>paks t hht al'e "felt" by t.ll(' lllod{'lIing soft wan' nTll if 

the'se' peaks lit' oulsiejp the frrqU<:llcy mllg" of th" training data. The allow(>d Cju,tlit.y 

fartors of t 1[(· llC'1lfOll~ lllust hp cotlst.rained to ensur(, t.hl1t l111l'ealistically llalT(}W 

reSOlw'Il('p pPl1ks do not. arise (temporarily) dmillg learning: otherwis(' ~llch lwaks 
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must subsequently be "unlearned" at significant computational expense. 

• The de currents are strongly dependent on the base-emitter voltage, and far less 

depE'ndellt on the collector-emitter voltage (Early effect), while the most relevant 

and rather narrow range of base-emitter voltages lies above 0.5V. An origin-shifting 

scaling is tlwrefore required to ease the learning. 

• The de base currents are normally much smaller than the collector de currents: that 

is what makes such a device useful. However, at high frequencit's, the basIC ane! 

collector currents (both the real and imaginary parts) become much less different in 

size, due to the Miller effect. A network scaling based on de data only mily tlWll 

be inappropriate, and lead to undesirable changes in the relative contributiOlls of 

admittance matrix elements to the error measUI'E'. 

• The position of extreme values in the admittance matrix elements as a function of 

frequency is bias dependent dne to nonlinear effects. 

This list could be continned, but the conclusion is that automatically modE'lling the rich 

bE'haviour of a packaged bipolar device is far from trivial. 

The (slow) learning observed with several neural network topologies is illustrated in 

Fig 4.19, using 10000 Polak-Ribiere conjugate gradient iterations. The DC part of the 

training dat.a consisted of all 18 combinations of the base-emitter voltage Vbe = 0, 0.4, 

0.7.0.75,0.8 and 0.85 V with the collector-emitter voltage Vee = 2, 5 and 10 V. The AC 

Figure 4.18: Equivalent circuit for packaged bipolar transistor. 
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pa.rt ('ollsist.('(1 of:2 x 2 aillliittall('(' lllCl.t.riu's for, frE'Cjllt'llci,'s f = I ~H-/z, 100'vIHz. l()O"IHz. 

20()l\IHz, GOOl\IHz, lCHz ill](i 2GH". (',~dl at a :inLs('t of tl of t.h" abm'(' DC hias poillts: 

(Ii" ,1;,) = (().~,2). (O.!)), (O,:),S), (O.~,!)), (O.~J,5), (0.1:),10), (0.::-;,10) awl (0::-;5,10) V. 

10 
~----.--.-;:- :"'::>,,-.-----

0.1 

0.01 
1 10 100 

Iterations 

2·2·2·2 topology 
2·3·3·2 topology 
2·4·4-2 topology 

2-8-2 topology 

1000 10000 

Fi";l1r(' 4.19: DipolaI tIilllsistnI mod('Hill"; ('nor plo\t('d IO!\clrit.hlllically as it Inllction 
of it,('ratioll ("Ol1llt. 

ag" of the taIg0t elllT('llt Iallge (f()[· ,'ach terminal s(>parah'I)'), at th" ('11(1 of th,' 10000 

iterations. are shown in TablP 4.3. 

The 2-,1-,1-2 tupology (illllStratecl ill Fig. 1.2) hPIT p;aV(' tll{' slllidl"st oVl'Iall "nm:';. Fil\. ·-I.2U 

shows SOlll(' Pstar siulltlat.ioll J'('sults with th(' ori,,;illill Philips ltlodl'l and an alltoIllfitically 

gTllf'mtC'cl Iwhavionntl 11lOd,,1. (,OlT":iponcling to the 2-4-,1-2 HE'ural net.work. 1'1", Cllty", 

rppresE'-nt thE? ('olllplex-vahwd ('ollec10r ('urrent vV'ith all (1,(' ~OllIT{\ h("hv(,>(>u baSt' aud ('lllitt(ll'. 

and for ,('wral base-(,lllit(.(>r bias conditions. These ClHV('S SllOW til!' bias- ami fn'qlJ('Il(,Y­

ckpenQ('nce of the complex-vahwc! bipolar t.mnso.c!lllittaIlcl' (of which t he real part ill t h,' 

low-frequency limit is til(' familiar t.rallsCollcluctane,'). 

III spitc of th,' slow learning. all importallt couclusion is t.hat dynamic f(,('dIorward nema1 



4.2. PRELIMINARY RESULTS AND EXAMPLES 

Topology Max. h Error Max. Ie Error 
% of range % of range 

2-2-2-2 4.67 2.26 

2-3-3-2 4.10 2.82 

2-4-4-2 1.58 2.23 

2-8-2 1.32 2.62 

Table 4.3: DC errors of tIl<' neural models after 10000 iterations. Currpnt ranges 
(larg~st values) in t.raining dat.a: 306 IIA for the base current 10 . and 
25.8 mA for t.he collector current. Ie . 
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Figure 4.20: Neural n('twork model with 2-4-4-2 topology compared to the bipolar 
discrete device modeL 
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ll~tw()rks appitH'll(lv CO'/l. H'[Hl''''llt. tht, 1)('haviollr of snch a clisn('(c llipolar tkvicp. Abo. 

to avohl miSUll(krstawILu,;. it LS import aut to ]loiut out that Fig. 4.20 shows only" small 

pmt (OUE' out of four H.dmitt1Ul(p matrix d(,lllPlltS) of tIl(' b(>h<lviollr ill tllP tTailling data: 

thE' lc'crnillg task for HlOdclling on!:/j til(' curws in Fig. 4.20 would have 1W(,11 lUnch easL!'r. 

as has app('iUTd from s!'wml olhn exp('rilUPuts. 

4.2.6 Video Circuit AC & Transient Macromodelling 

As a fill"l t'xitllljllc'. Wi' will collsider the lllH,(TOlIlO(lplliuf; of it vicipo lilter designed at 

Philips SC'lllicoJl(luctors ~Ljme'p/,Jl_ ThE' lilter has two inpllts ,wcl two outputs for which 

we woul(1 lib, (0 filld a lIIiIlT011lt)(h'i. Tl'll' dynamic l,(,S]JOllSl' to ollly one of till' illputs 

was kuowll to 1", rE'l('vaut for this case. The urarly hllC'ar illt('gm.tcci circnit for this filtpr 

c(}Htllins lIiJOllt it 11l1llcll'I'cl bipolar tr'tHsistors ciistri1mtrrl oW'r SLX hlocb, as illustrated 

Lll Fii\. 4.21. TI", rir;htlllos( fom TAl'xxN blocb; constitute filter circuLts. ('ach of tlWlll 

havill,; a certain <ldac; (iPt<'rllliucd by int<'Illal capacitor valups as seh'lte<i by t1l(' cif'sigurr. 

Fig_ 4.22 shows th" circuit scllI'luatic for a SLUg'" 40ns filter cl'ctiou. Thl' TAUINT block 

iu till' block <iLagranl oj Fig_ ·1.21 j)erfurllls ccrtaLH illtcrfn.cing tasks that arf' Hot rd,'vant 

to the' maCTolllIHlelliug_ SLmil"r1)" tll(> (Ie biasLng of the who'" filt!,!, circuLt is hamlled 

hy thE' TAUBIAS hlock. hilt the fllllctLonality of this hlock HC'f''' HOt Iw c'ovi'recl hy the 

macwlllotld. From til(' circuit. Sdl!'llliltics ill Fig. 4_24 "lu1 Fig. 4.25 it. is dear that the 

possibility to lH'gkn all this ])(·ripirrral circuitry ill llla(TOlllOdellillg is likely to give hy 

it".;plf a sigllilicallt r,·d11cti01l ill tire rpquir('cl computatioual complexity of the resllltinf; 

lllodeis. FllrtlH'n!lol'('. it was known that ('aeh of tlw filt('r bloeb behaves approximately 

as a second order lllH"ar filt('L Kllowiug t hat a single lH'Ul'On C~Ul C'xactly l'('prf'sput tlir 

hC'ilavionr of a "'('Otul mel,,!, linl'"r filter. a n'asonable c110ic(' for a m'ural network topology 

in the forlll of a chain or ""cad('d nenrOllS wonld involv(' at least fOllr !lOll-input lavers. \Ve 

wLll nol' all extra layn t () a('Collllllodatc ~()lll(' of the parasLtir irLgh-frE'C[lH'wy efkct.s. Ilsinp; 

a 2-2-2-2-2-2 lopolop;y as ShOWll iH Fig. 4.2:3, Thr-' lH'llr:t1 nl'lwork will Iw made hnear in 

view of tl1l' nearly lill'-;ll' tilt,,!, circuit, tirere]),' again gaining a r('dllctiou LIl ('()!1Iputational 

cOlllpll,xity. 'I'll(' lilwarit:>' illlplies .1'( "') = 8;k for !ill lJ('l1l'Ous. Although the video filter 

has separatf' LlIl'llt ami Olltpllt tennillals. tlw modelling will for ('onv(,llicll('P 1)(' cloll" as 

if it wprp a J-tl'l'luillal cl('vic(' ill the' interpretation of FLg_ 2.1 of opctLOll 2.1.2. ill onlPr to 

make' nsf' of (he Ilt'C'sclltiy flvitL1ablc P,tar mode1 gt'llerator 11 . 

Th" tmilling Ol't fi)r tlw IH'lIIal Ilpj work cOI"Lfi(ec] of it COlllbinatioll of time clmnaill allll 

'lIf l'f'qnircd. thih particuli-u (11cd ri( <.1.1 illt!?rprdaliou or <lRSllrll!5Lioll conld aJt.en",'a.rdf'; e.it~Il~l Iw ch.(wged 
hy hand t.hl"Ough thr addlt.ioll of t.wo (rHltput) terminrti1i arid changillg the controlll'd tprlllin{l,1 OHH'nt. 

~oltr(€'<; int.o COrl"(",;polldiug conl rolled voltagp ~OlH("(':-; for the i'ldch·d output j('rminal nodec-. This doen Hot 

havf> any SigllificrtlH"(' to tlw H01ll'al ttlou(~lIing proble-Hl itself, hOWE'vPI", heca,\Is(' ill'!:' rna,pping: to an d'Tt rical 

or pltV:oiCid simlllil.t.ioll tlludt'l if, pil.r\ of t hl' pO$~~proc(,Ci~iI!g 
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Figure 4.21: Block schematic of the entire video filter circuit. 
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Figure 4.22: Schematic of one of the four video filter/delay sections. 

frequency domain data, The entire circuit was first simulated with Pstar to obtain this 

data. A simulated time domain sweep running from IMHz to 9,5MHz in 9,5J.i's was applied 

to obtain a time domain response sampled every 5ns, giving 1901 equidistant time points, 

In addition, admittance matrices were obtained from small signal AC analyses at 73 fre-
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(2, 2, 2, 2, 2, 2} 

fignl"<' ~.2:): Till' 2-2-2· 2-2-2 fccdforward l1('nral tH'twork 11"'" for rna("rottlodeiliug t Iii' 
,·idl'O fill('r cir(ltit. 
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Fi~\l]"e 4.24: SdH'ltlit.li,· of the ,·id('o filler inkrfar'illg eire·nitr,'. 

'lnt'Hei," l"1111llilli': frotH 110idl-! to lOO]\.IHL, with tIl<' salltple frequ('llcies ]H)sitioucd al!llost 

e<]l1iilista.11t.ly ou iL IOi!,iLrilhmi,· ft"l'<]UCllCY scalp. B('ca.l1st, OHly Due iuput. w,,, t'ollsid<'l"('d 

reje"ant, it ,q" lllorc dncielli. to recluc,' the 2 x 2 a.dlllittanc(' lllatrix to a 2 x 1 matrix 

ratlll'l" t ball illcludilli!, arbitral',' (e.1', .. constant ~pr()) values ill the full matrix. 

A cottlpariSOll I)('\.'>vppn the OutCOlllPS of the origiual tra11sistor level simulations and the 
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Figurf' 4,25: Schemat.ic of t.he video filt.er biasing circuitry, 

Pstar simulation results using the neural macromod"l is pre"ent.ed in Figs. 4.26 throllgh 

4.30. In Fig. 4.26. VINl is tlw applied time domain sweep. while TARGETO and TAR­

GET1 represpnt the aetnal circuit behaviour as stored in tlH' t.raining sd. The ('01TC8-

poneling neural model outcomes are I(VIDEOO_l \ TO) and I(VTDEOO_l \ Tl). rrsl)('cti\TI~', 

Fig. 4.2, shows an enlargement for the first. 1.61IS, Fig. 4.28 shows an rn),l.1'grmrnt aronnd 

'liS, Onf' finels that the linear neural lllarrolllodel gives a good a]lproximation of the 

transient response of tltr video filter circuit. Fig. 4.2g am! Fig, 4.:30 show tlw small-sign1l1 

fr(>quellcy domain r<'sponse for the first and second filt."r output, r(>sp('ctiv0iy. The targ'ct 

valtwo arc labeled HROCO for HO~ ilnd HR1CO for H lO , while current,,; I(VIDEOO_l \ TO) 

anel I(VIDEOO_l\ Tl) here represt'nt the cOlllpkx-vallwcl lWUl'al model tralls[cr through 

the nsp of an ac input source of unit..y magnitude and zero phase. ThE' ('urn'S for till' 

imaginary parts IMAG(·) are t.hose that. llpproach zero at low frequenci,'s, wllile, in t bis 

pXll111ple, the (mves for t be rp1l1 parts REAL(·) approach valllPs dose to one at low fn'­

qUPIlCies, From these figmes, one obserws that also in the freqneney domain a goodlllatch 

exists between the neumlmodelllnd the video filt"r cirnlit. 
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(Hlili f,n' holl, II", viil,'o filter circuit Ilnd th .. lH'1ll'alllla<TOlllod('1. 

In the' ("1\''''(' of ltul(TO-tllOdpllillg. tlH' 1l'-,('fllhH'N,'-, of all aCCllr;lh' tHod('I i~ d(,·t,(·)'ltlill(\d 1).\. the' 

g.atll ill sill1111atiou dfici(,ll("~·I:..!. III 11Ii:--: c'Xalllpl(l, it ,~,:a~ fOUlld ti!at th(l tilll(' dOIllaill ~\Yl'('P 

l1:-;illg tlHl tu'llnd llHIlTOlllOdcl rall ahoui 25 times faster thall if th(- origillal trHu:--..isto)' 

l('H,i cir<'uit d('s('ripJ iot! \\",t:-; ll'-,{·(L d(\("H'a:-;illg t lw origjllal -t 1l1illlltC' ,c.,j!llllla.t.iOli 1 itlH' to 

"hollt. I() "','owl", This i, I'!c'itrll' il sigllificcmt. gil.ill if Ihl' filt,~r j" to Ill' 11"(,([ l'('p('i(t('dl~' 

a~ a sti-\l!dard hllildJllg hlol"l-::, a1ld 11 (·sIH·dally llold;--; jf tlH' <ksiglH'l' '~·;Uits to ;-;iull1iat.(' 

larg('r circllito ill "hicb I his fill,.,. is just ow' of t.1l(' heck buildillg hloch. 'I'll(' 'lIiYauti(gl' 

ill sluiill;tliOll spc('d ~llOllld of ('()nl'~(, 1)(' ha];·\lICf·d agaill:-lt tIl(l OlH·-tiulC' (llfort of ';-Il'l'h-illg itt 

(l proper lIU-1('l'OlllO{fp1. 'i'\:hidl lLl(1.~' ('a:-;il~' t.ak(· on tlu' ol'dc,t" of 1-l f(·\\, HlaH day:--: rlud ~(\\,i)l'<d 

hom' of CPll Liml' I ",forI' ,mlllci,'ut (,(lllfid(,HC(, aholli tit .. lIl1)(ld bilS 1)("'11 ohtaill"(!. 

III t.hi:-, C(-t,S(', til(' IO-lH'IHOll Itlodd ±{)l' 1]1(' yid{'o filtCll' 'iva:-, obl;-lillE'cl ill :--.h)2;htl:\' I(':-;~ tll.Hll flU 

hllm of l('a,rlliug titllc' Oil 'I'll I1P'lOOO/7:):j ('Oltljlutpl'. usilLg a nH1.Xilll1l111 <jll,rlilv betm C[)lt~ 

:-;traitlt. QI11<I\' =- .j to clis("onrng(' l'<':-;Oll<-lll("(' pf'nks frOlu o('cllrrillp, (lurillg tlw (>arl,\' karlliug 

pha:--:(';"':, I'll(' n':-':\llt~ :-dIlHYll hp]'f' \\"('f(' ollt.aiJl(·d t hrollgl1 (l,.ll iuit ietl pha~(' lu .. ;illg 'iSO itpra-

1 Lon:--; of' t.lle It{'llristi(" t('dilliqll(\ tir:--:t llH'lIti(llWd ill :-;clo(·timl -L2 alld ollt1111(·d ill s('dioll A.2. 

["IlOl,'('cl hI' 1:;0 poliLk~nihi,'l'(' ('Ollj1lf\i\,t", ~Tacli(,llt il<'utli01I" I:,. TIll' dl'nc'a,,(' of Illockllillg 

l2('OIIt.rill\' to 1][(,11,,11,11 iIPpll('i\li()11 in dl'V1CI' Illoddlmg We' IwI'(' alrciHly hWI(' a Ilwdcl. "Ib('jt In (itl' fOI'nl 

of.-l l'{)lllpllCidr·d trc\,ln,i~tur-I('\('l d~'''lTip1 I()ll. 

I'llt ,,111)11111 1)(' 1"'lllad,-:.'d. tllUll).!,h. that clllY Illinor dlan9;(' in 1.111' illlplf'Ill('lIj,t1.ioJl of e\'r'll cl "~(21l1d(IHI" 
I)p1.it\\i:-:;lti()ll ;\lgol'ithlll liki, P(dak-l~il)i('I'() Celli signi(J{-c-wtl,Y ii.ff'i,(j thj' I'i'qllircd 1111lIllu'l' Df ii.('rdti{)I1:-'< :-;n 

1)11(' :-.!tolild vi,.w Ih" ... (, lIlitlilWI',", (lilly a'> rOllgh or qWtii1.d1iv(' lIldic<li.ioll~ u[ 1}1(' 11";II'nillg drOll lll\'()h';'d ill 
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error with iterat.ion count is shown in Fig. 4.31, using a sum~of-squares errOr measure-the 

sum of tllf' contributions from Eg. (3.20) with Eg. (3.22) and Eg. (3.61) with Eg. (3.62). 

The suelden b0nd aft.er 750 iterations is the result. of the transition from one optimization 

method to the next. 

::: 
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Figure 4.31: Video filter modelling errOr plotted logarithmically as a function of it­
eration count. 

modelling. As a general observation, it has been noticed that the required iteration counts normally sta.y 
within thE' sam€- order of magnitude1 but it is not uncommon to have varia.tions of a factor two -or three 
due to, for instance, a different random initialization of nemal network parameters. 
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Chapter 5 

Conclusions 

To quickly develop nt'w CAD models for new devices, as well as to keep up wit h the growing 

need to perform analogue and mixed-signal simulation of very large circuits, new and mOrt' 

f'fEcient modelling techniques are needed. Physical modelling and table modelling are to a 

certain extent complementary, in the sense that table models can be very useful in casp the 

physical insight associated with physical models is offset by the long development tilll~ of 

physical models. However, tlw use of table modeb has so far been restrirted t.o delay-free 

quasistatic modelling, which in practice meant that the main practical application was in 

MOSFET modelling. 

The fact that electronic circuits can usually be characterized as being complicated nonlin­

ear multidimensional dynamic syst.ems makes it clear that the ultimate general solution 

in modelling will not <'asily be uncovered-if it ever will. Therefore, the hest one ran do 

is try and devise some of the missing links in the repertoire of modelling techniques. thus 

creating new combinations of model and modelling properties to deal with certain classes 

of relevant problems. 

5.1 Summary 

In the context of modelling for circuit simulation, it has been shown how ideas derived 

from, ami extending, neural network theory can lead to pl'attical applications. For t.hat 

purpose. new feed forward neural network definitions have been introduced, in which the 

behaviour of individual neurons is characterized by a suitably designed differential equa­

tion. This differential equation includes a nonlinear fnnction, for which appropriate choicer; 

had to be made to allow for the accurate and efficient representation of the typical static 

nonlinear response of semiconductor devices and circuits. The familiar logistic function 

lacks t.he eommon transition bet.ween highly nonlinear and weakly nonlinear behaviour. 
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FllrtlWl'lllOl'<'. ,"'sinthl,' llLathellHlliral pl'O]H'rtic's lib, cOHtilluity, llLo1lo(ollicity, ,lud olahil­

ity plllY"" an important IO'" ill thc' lIlalty considpr,ltiolls tliat finally led to till' scI. of tH'lll'al 

nPlwork ddinit.iolLo as pr<'."'llt"d in this th,'sis. It ha:i Iwpu sltown that am' '1nasisl.atir iw­

havio\ll' can up to ,ll'hitrarv ]ll'('cision 1)(' l'E'[ln'sc'lltcc1 hy thp,,, Hemal Jlf'twmb. ill eClSf' then' 

is cHlI~' Oll(' ,Ie- solution. III additioll, allY linear dYllalllic b{,llaviolll' of IUlll]wd svst"tllS call 

h,' (oveu'cl ('xact Iv. S"\"'1',lI r('[,'vewt ('xampl"s of lLOlllillC'Clr dvncunic i)('lravio11l haw abo 

i )CCll ci('mOllsl rai,pd to tit til(' ltliit h(,lllatical strnctl1n' of t h,' !l('llt"al networks, althollgl1 not 

all kiucb-; of llonliIH';-H' dYll<:).1111C lwitavionl' cu'() ("ol1si<1('1'('<1 n"}H'(,S('llt.able at pn'sfl.ut. 

The·' statlclanl IlflckpJ'O]lag,Ltion tli,'my fur static nOlliiU"Clr llllllticlim('nsiolla.l iwh<tviolLl ill 

fC'~d[()rw"l'rl I«'l.]rid uet.woIks ha.s 1)[,{,11 ('xtc'llci~d t.o iueill<lc' til(' i,'a1'uillg of (iYllalllic [,('. 

,pOllse ill hoI 11 tinH' dOlllain awi fr..,C[I]('llCY clOlllllill, All c'x]}('riuwut,d soflWctn' illlpll'llll'lli­

cl.t,ic)]l has al1'ea<l,\' yieldp<I a mllll],,'r of C'llconraging prdilllilliuy H·snit,. Fmt.hE'nnol'C'. tit" 

lH'ural lIloddlillg ,ofh"ilIP cau. aft.'·r t hi' learning phase. allt.olllClti('ally gpurrat.e aBalogH(' 

ilf'havionral lllacroHlod('ls iUld ('(jniv,tI,·ut sllhcircnits for mp wit.h circuit silllulat.ors like 

Pst.aL I3~1'kpk:v SPICE ami C',trIpnc\' S]W('tl'l'. The' vi,lm tilt"I rxalllpj(, in section 4.2,6 has 

d('lIlonstmted that Ih" IHOW t"dllli'[II(" ('an IC'lId to UlO1''' than iLll orrk1' of tllltgllitudc' rE'­

dn('tiou ill (t.ransir'nt) ~Llll1l1atioll tillH', b:v going frolll a tnlll~]:->tor h'vpl circuit dpl-)('ript ion 

to H ltl;'"\('UJ-llloclc·l for llS(' \vith thE' :-,;tUU' circuit Shl!111at.oL 

All t his doC's cc·rt.:t,illl\ llOt. illlpiy that OlH' ('au 110v...- (la.Hil,\' aucl (l11ickl~ .. solve' auy lIlOdplliug 

prol)lplH by jnst thn)\vlug ill ,'"'Olll(' llH'l-LS1HPlllPllt or :-;illllda.t.ion data.. SOlllP lwila\'iolll' is 

iWYOlld til(' reprc'Sl't1!,atiomd bOllnds of om Jl!'('s{'ut kccif()rwa1'd lH'nral ll('(worb. as has 

iJl','n acldn'ssc,d ill o('ctioll 2.U. It is not .I'd <'utirdy ('kal' in which cas<'s, or to what. ('X!.C'llt., 

kpdlml'k in dynamic nPllralnctworb willl", 1'e'lnin'ci in l'rltctic,' for d('\'ic(' and snbl'i1'cllit 

llloddlinf;. It Ita" ]'("'11 shown, hOW('\,('L that the introdllction of C'Xt.(TURI feE'dlJa(:k t.o onr 

rlYllamic ll('llral lletworks would ,Illow for till' l"<'pn''l'lItatiou, Ill' to arbitrary accuracy, of 

a vc'rc' gcnnai class of llonlin(,aI llllllt.iciinwll.siclllal implicit different.ial equations, ('()v('rillg 

any ,(lite <'qllatiolls of t.1,,' form f (x, j;. f) = 0 as lIscd to "XllI'('oS t,h" fi"lleml t.itlH' c'yolllt.iOll 

of (,[p('\)'ollic' ('irTllits, It ('\'('\) makr' tllPSC' nemal lll'1works '"Illli\'rrsal approxitllat.ol's·' fOl 

(~rhit.r.(ur (,OlltilllLOll~ lHmlilH'<tl" Hln1tidillH'llsiollal d.vnallli(' lwhnviollY'. This will i IWll abo 

indllel", for instal""" lllllltiplc d(' solnt.iou, (for lll()ckilillfi It,'st.c'l'I'sis auf! latc'h-H]lJ and 

clmot.i(' iJc'ha.viollf, 

Still, it, S'cC'lllS fair 10 oily tltat IlICWY isstlt's in IloulilH'al' llllllt.iclimPll,sional dynalllic' llI(},lPllillF; 

arC' OHl~ll)('gill11illp; t.o l)p lll](kl'stood. and nlOr(' obstad('~ (U(' lik~·l'y to ()lllcrg(' as (lXPPl'i('11('(~ 

R.f'C11111niatC':,-,. Slow l('anting can ill ;-,OHlP (,(U-';P~ lw a big prol)lcrll. cau.o..;illg long l('arnillg 

t.illlPS ill finding it (lo""IJ miuimllml. SillCP wr art' t:vpically "paling wit It hi"h-dilllPnsiollal 

j TIIP pOSHihility of illlph'lIlf·Ili.(l!.iotl ('n on; in til(' cOInplka("('d .";(')lsi! i\'ity ,alc\lJa1 ions !Jete; IHO('ll 1~lrg'()ly 

('Iimina-Led by t.Il(· '>of1.war(' I-idf-j nd. option. t,\u .. rf'h, .... making Pl'rors ;111 IIlllib·!y n"a .. ..,Oll for slow Ir-nrnlllg. 
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systems, having on the order of tens or hundreds of parameters (= dimensions), gaining 

even a qualitative nnderstanding of what is going on during learning can be daunting. 

And yet this is absolutely necessary to know and decide what fundamental changes are 

required to further improve the optimization schemes. 

In spite of the above reaSOnS for caution, the general direction in automatic modelling as 

proposed in this thesis seems to have significant potential. However, it must at the same 

time be emphasized that there may still be a long way to go from encouraging preliminary 

results to practically useful results with most of the real-life analogue applications. 

5.2 Recommendations for Further Research 

A practical stumbling block for neural network applications is still formed by the often 

long learning times for neural networks, in spite of the use of fairly powerful optimization 

techniques like variations of the classic conjugate-gradient optimization technique, the use 

of several scaling techniques and the application of suitable constraints on the dynamic 

behaviour. This often appears to be a bigger problem than ending up with a relatively 

poor local minimum. Consequently, a deeper insight into the origins of slow optimization 

convergence would be most valuable. This insight may be gained from a furtlwr thorough 

analysis of small problems, even academic "toy" problems. The curse of dimensional­

ity is here that our human ability to visualize what is going on fails beyond just a few 

dimensions. Slow learning is a complaint regularly found in the literature of neural net­

work applications, so it seems not just specific to our new extensions for dynamic neural 

networks. 

A number of statistical measures to enhance confidence in the quality of models have not 

been discussed in this thesis. In particular in cases with few data points as compared to the 

number of model parameters, cross-validation should be applied to reduce the danger of 

overfittillg. However, more research is needed to find better ways to specify what a near­

minimum but still "representative" training set for a given nonlinear dynamic systPIIl 

should be. At present, this specification is often rather ad hoc, based on it mixture of 

intllition, (ommon sense and a priori knowledge, having only cross-validation as a way to 

afterwards check, to some unknown extent, the validity of the choices made2 Various forms 

of residue analysis and cross-correlation may also be useful in the analysis of nonlinear 

dynamic systems and models. 

Related to the limitations of an optimization approach to learning is the need for more 

201' rather, cross-va.lidation can only show that the training set i::::: insufficient: it -can invalidate tllP. 
training ,et, not (roally) validate it. 
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"constl'uetiw" alg'ol'itlillls for mapl'illg a targp!, behaviour OlltO llf'1\l'al networks by tlSillf!; it 

priori knowlpclgf' or asslllllPtions, For (,ombinatoriallogic in the sp-fonn the selection of a 

topology awl a paranwtpr sc't of an equivalent fccclfolward lwural n<'!,work can be c\c)Up ill 

" ic'al'llillg-fn'(' and dtici('ll! 1 Il ,\1 11) C]' ··-tite dE'tails of which h,I\'(' HOt lwen included ill this 

titeR;", Howcver. for the mort' lC'kv;)ut gClH'ral ciassec, of "ualogu(' behavioll\', virtllally no 

fast Sd-,C'lIl('S an' aV,lilai>l(' that go iJeyond Silllpk liu('ar rq,l'('SSiOll, Oil til(' 0111(>1' h'Ul(I, 

('y('U if such SciH'UH'S C'anlloi b,Y t lH'tnsclws nlpt nrc tit" full ricllll(\" of analogue bdlavio\ll', 

titC'\' Illay still S('l'V(, a lls('fnl role ill it pnL]ll'()('('ssing phase to 'lllickly gpt a rOll!';\t first 

approxilllatiOll of til(' targ{'l lwhavio\ll', In ot her worde. fllllOl'(' sOl'histicfltl'd l']'('-procps:-;inl', 

of til(' targ{'t clitta 1W')' yidd a llluch l)('tkr starting point for Il'arning hy optillli;oatiou, 

tltc'j'('Ly also incrc'a.';ing t1w proha hilitv of finding a good iljJjJroxilllal ion of the dat.a during 

:-;llhsrqlleut l('amillg, Polt'-zpro flllal,ysis. in comhillatioJ) wit it t lw llPnral lll'twork polp-z(>l'O 

Itlappillg as ou(lilled ill ,,'clion 2.4.2. could play au important roll' hy first. finding, it lillrar 

approxilllatioll to d:Ylla.Hii('al1->y~U'lll hehaviour. 

Allother import-ant it('tll I hat clt'st'rws lllore al((,lllion in the future is the issur' of dvuamic 

neural ll(·tworb wit.h f.·.,rlh",.]" Tit" "igllificiwt th(>oIt'tical advantage of hlwing a "ulli­

wreill approxitllat.or" for dymllllic systPllls will haw to w('iglwd against, the disadvant:tgrs 

of ,;iving IIp on c'xplicit cX]lrpsoiolls for brh;wionr and ou I!;n:tralltt'e~ for lllli(lllPlll'SO of 

Iwhaviolll'. stability and static lllOllOfollirity, In casrs w\tnt' f(>edlmcl, is 110t IlPpckd. it 

d('arly l'('llmillS advalltagl'Oll:-; to nmk" use of th", techniques as worb,d ont in dc,tail ill this 

(,Ill'sis, bl'CiHlS(' it off('rs ulUch grelltpr control ovcr tllP yarions kin(ls of lwhavioUl' flull one 

wants or "Ilows a dynamic 1l(;111'al lwtwork t.o lp:trll, S('('11 frolll t.his vic'wpoilli, it call lw 

stated that the approach as pr('sf'nted ill this thesis of£'('l's th" advantage that 01\(' call ill 

n'latively "mall stq" t reMl., of!' j'(·I,·v,wt mathematical guamllt('eS Clgainst n'presPlltCl(iollal 

l)(nv(~r. 
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In this appendix, a few popular gradient based optimization methods are outlined. In 

addition, it simple heuristic technique is described, which is by default used in the experi­

mental software implementation to locate a feasihle region in parameter space for furt.lwr 

optimization by the one of the other optimization methods. 

A.I Alternatives for Steepest Descent 

A practical introduction to the methods described in this section Can be found in [171, as 

well as in many other books, so we will only add a few notes. 

The simplest gradient-based optimization scheme is the steepest descent method. In the 

present software implementation mOre efficient methods are provided, among which tIlt' 

Fletcher-Reeves and Polak-Ribiere conjugate gradient optimization methods [161. Its de­

tailed discussion, especially W.r.t. I-dimensional search, would lead too far beyond the 

presentation of basic modelling principles, and would in fact require a rather extensive 

introduction to general gradient-based optimization theory. However, a few remarks 011 

the algorithmic part. may be useful to give an idea about the strncture and (lack of) com­

plexity of the method. Basically, conjugate gradient defines subsequent search directions 

8 by 

(A.l) 

where the superscript indicates the iteration count. Here 9 is the gradient of an error or 

cost function E which has to be minimized by choosing suitable parameters p; 9 = \7 E, 

or in terms of notations that we used before, 9 = (*,) T, If ;3(k) = 0 "ik, this scheme 
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c''''Tesponds to stc'(OIIE'S! dc's(,(,llt wit lJ leamillg rat" 1/ = 1 ;mcl ltlotll<'nt.ll111 II = O. S['t' 

Eq. (:3.24). H(}w['wl'. with conjugate "raclic'llt, gPltPralIv only riCO) = 0 and wit.h t,IH' 

fkt.dlrr-R,,('v('s SdH'ltU·. for k = 1. 2 .. , ., 

(,1..2) 

(A.3) 

For (Illarirotic fllnct.ions E th"S(· t.wo schellH's for ;3(1') call 1)(' showll to h(' cqlliv;clrnt., which 

illlplips that. til(' scbe'lt",s will for an~' lIolllillPar function E Iwhavc' silllilarly npar a smooth 

lllillilllunL dlle to th" uearlv clllaclriitic shap" of the lewal Taylor explUlsioll. Nc'w lMrIlll1c(.(-r 

w('tors pan- oiJt;linc'd IlY se'tlrciJing for a minimulll of E ill the s dir('ct.ioll by ('aleulo.tiug 

tIl(' value of the scalar parlullrt.er (V ",hic·h minimi""s E(plk) + I> slk)). Tbe lll'W point in 

parameter spacE' t.hns oi>tailH'd hN'OnH'S tlw start.ing point pU+!) for tIl(' lH'Xt, iterat.ion. 

i.('., t.he next l-dilllf'u:--,ionnJ sr-ardi. Thr de-tails of l-clilnensional search are Oillitt,(,cl 11(>H\ 

1m! it typi('ally im'olws ('stilllat.illl; tIl(' positioll of t.h(' lllillinllllll of E (only ill t.lll' search 

dirediou l ) through int.('rlloIat.ion of subspqnent points ill ('etch I-diml'llsional search 1)1' a 

paraiJoli' or a cllbi(' polyuomial, of wllich the miuima cau 1)(' fOIllHI analytically. The slopl' 

along the search dlrrctioll is giwll hy ~\~ = 8
1'g. Sp(>ciai 1l1l'aSlln'S haw to he taken to 

(,11,,1.11'P that E will lll'VPl' ilHTPasp with sniJ?wquPllt it('ratious. 

The hackgrolllld of thE' r-onjngate gra<ii('Ht llwthocl E('I-. ill a Gralll~Scll1nid.t orthogollaliza­

tion proCl'ciure, which silllplilips to tlw Flet.clH'l'-Reevrs SdlC1llC' for quadrat.i(, functions. For 

quacirat.ic fUllction:-l, th£' Optillli'i.<1,tioll i;-; gllanLlltN'd t.o rpi-l.,("}l the> tnillin:nun within a nuitt: 

numlwr of pxact l-dillll'llSional s('arches: at lllOSt. n, whpl'PIl is the l1l1111ll('r of parameters 

ill E. For lllOrp gf'llt'ral for1l1S of E, no sudl gnarantees call be givpn, a.nd a Sigllifici1.Ilt. 

amount of hpuristic knowled"c i" lll'eclpcl to obtaill a,ll impleml'utatioll that i, numerically 

robu~t. and that. has good rOllwrgPllcP prolwrtips. Cnfortullately, this is still a I,it of an 

art. if not il.lch~lllV. 

Fillally. it shoni(] 1)(' not."d ! hat still more powerful optilllizatiou 1I10t.hods are knowll. 

Among thC'lll, thl' so-called I3FGS ([uasi-N .. -wtoll llldhod has IWCOlllP rather popular. 

Slightly kss popular is til(' DFf> quasi-Newton ul(,thu(1. Tiles(' quasi-Newt,oll llwtitods 

huild 111) au approximation of tire inVi'rsc' Hessian of th" error function ill su('cl'ssiw it('l'­

ations, nsing ouly graclirllt illfill'Illatioll. III practice. t hps!' nwthods typically l1l'C<l somc 

two or thlTl' timps fewpr itpratiolls thall the cOlljugak gradient lll"t hods. at tire pXlwnsc' of 

hallclling ,111 approximation of IIw illVPrs!' H!'sRian [161. Due to thc' matrix 11l11itiplimttons 



A.2. HEURISTIC OPTIMIZATION METHOD 141 

involved in this scheme, the cost of creating the approximation grows quadratically with 

the number of parameters to be determined. This call become prohibitive for large neural 

networks. On the other hand, as long as the CPU-time for evaluating the error fun(!.iotl 

and its gradient is the dominant factor, these methods tend to provide a significant saving 

(again a factor two or three) in overall CPU-time. For relatively small problems to be char­

acterized in the least-squares sense, the Levenberg-Marquardt method can be attractive. 

This method builds an approximation of the Hessian in a single iteration, again using only 

gradient information. However, the overhead of this method grows ewn cubically with 

the number of model parameters, due to the need to solve a corresponding set of linear 

equations for each iteration. All in all, one can say that while these more advanced optim­

ization methods certainly provide added value, they rarely provide an order of magnitude 

(or more) reduction in overall CPU-time. This general observation has been confirmed by 

the experience of the author with many experiments not described in this thesis. 

A.2 Heuristic Optimization Method 

It was found that in many cases the methods of the preceding section failed to quickly 

converge to a reasonable fit to the target data set. In itself this is not at all surprising. 

since these methods were designed to work well when close to a quadratic minimum, 

but nothing is gnaranteed about their performance far away from a minimum. Howev"r, 

it came somewhat as a surprise that under these circumstances a very simple heuristic 

method often turned out to be more successful at quickly converging t.o a reasonable 

fit-although it. converges far more slowly close to a minimnlll. 

This method basically involves the following steps: 

• Initialize the parameter vector with random values. 

• Initialize a corresponding vector of small parameter steps. 

• Evalnate the cost fnnction and its partial derivatives for both the present parameter 

vector and the new vector with the parameter steps added. 

• For all vector elements, do the following: 

If tlIP sign of the partial derivative corresponding to a particular parameter ill thl' 

llew vector is opposite to the sign of the associated present parameter step, then 

enlarge the step size for this parameter using a multiplication factor larger than one, 

since the cost function decreases in this direction. Otherwise, reduce the step size 

using a factor between zero and one, and reverse the sign of this parameter step. 
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• Upclatp titP ]HTcH'llt p,nn!!,,'t,,! \"('(·tor by rpplacing it with tit" ahov(,-lll('llti(Jll('d llt'W 

v('cl.or. prm'id"cl tb" co,( fn!l('tio!l elid !lot ill(:H'asl' (too ltlllcit) with t.he new wctOl'. 

• f\q)('al tIll' fOl'lll('j' tl1r(',' stpps f()r a ('"rtaill llllllll)('r of itpmtions. 

This is Css"lltially a oll,,-diBlellsioual hisection-like search sdu'ul(' which ha.' hpell rather 

holdly ('xU'ltd,',1 fOJ' Wi(' ill lllllltipl" elinH'llSiollS, 11,\ if t!t,,),(, W('t'(' llO illtPra(·tioll al all 

alllollg the' \'ariol1s din}('llSions lV.r.t. the pO.,itiOll of the lllillim,! of Uw cost fll11dioll. 

SOBle additioual PI'I'C(1lltiOllS atT lw(,d"c! to avoid (strOllg) <\iwrgrw·('. sinc'" cOllvergt'llCl' is 

not g:ncLr<:-lutH'd. {hHI ll1a,V, ['Ot ('xalliphl , n~c111("(' all p,l,l'i:U1H't.('l" st('PS llsillg a factor do;-:p t.o 

~('m jf tIl(' cost fllllctiOlI wonlel illCTI'c(,S(' (too lllllClt). \VIWll the p!Ll'alllet(,I s('ps haV(' the 

oppo;-,itc'l sigH of the grrVlif'llt. tli(' ~tc'P si:;.-;c' rE'clnction {~llSU1'E"S Ihat e~:Pllt.ua.l]y a Sl1ffiCj(~lltlv 

"llall st.c'j) ill I.his (ISPllemllv Hoi S(,C'IH'sl) drs(,(,llt directioll will lead to " (["('1'('''''' of t.he 

cost functiolL as long as a llliuillllllll has Hot bC'{,ll u'adH'cl. 

Afh'r nl-l-illg t bi1-l llwt hod for a (">(ll"t.<tiu lllHllbf'I of itE'l"a.tion:-l. 11 is advisable to switch to OlH' 

of (h,' 111<'1 hods of tll(' jln'(,pdillg s('('(ioll. At. prrsrnt.. t his is still (lone mauually. hut Oll(' 

"oHld co])('Piw adclit.iollai ill'nrjsti('o for doillg t bis all\.cHlLiltic·ally. 
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Appendix B 

Input Format for Training Data 

In the following sections, a preliminary specification is given of the input file format used for 

neural modelling. Throughout the input file, delimiters will be used to separate numerieal 

items, and comments may be freely used for the sake of readability and for docllmentation 

purposes: 

DELIMITERS 

At least one space or newline must separate subsequent data items (numbers). 

COMMENTS 

Comments are allowed at any position adjacent to a delimiter. Comments within numbers 

are not allowed. The character pair" 1*" (without the quotes) starts a comment, while 

"* I" ends it. Comments may not be nested, and do not themselves act as delimiters. This 

is similar, but not identical, to the use in the Pstar input language and the C programming 

language. Furthermore, the" 1* ... *1" construction may be omitted if the comment 

does not contain delimited numbers. 

Example: 

Any non-numeric comment, or also a 
non-delimited number, as in V2001 

1* Any number of comment lines, which 
* may con.ain numbers, such as 1.234 
*1 

B.l File Header 

The input file begins-neglecting any comments-with the integer number of neural net­

works that will be simultaneously trained. Subsequently, for each of these neural networks 

the prE'ferred topology is specified. This is done by giving, for each network, the total 
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iul"gl.'!' lIullllwr of layc'l'''' I I,' + 1. fullowl'd by a list of iukp;t'r llllllllwrs So ... :VI,' for the 

width of ('aeh Ja),(,L The llllllllwr of lH'twork iUj)nts XI! lllU,.,t 1)(' ('qual t(Jr all lletworkC', 

awl th,' "till(' Iwlclo for t 1)(' llllllllwr of ll('twork outputs Sf, . 

EXi'llupl,,: 

2 
3 
4 

3 2 3 
344 3 

/* 2 neural networks: 
/* 1st network has 3 layers 
/* 2nd network has 4 layers 

in a 3-2-3 
in a 3-4-4-3 

*/ 
topology */ 
topology *1 

Thes(' lH'nral network sj)('cifiC'atiolls are followed by data about the {lPvirc or sn\>('ircnit 

that is to h,' ulO,kll"d. First lil(' 11llllllwr of COUllOlliug (iudrpPlHI"llt) iuput YiU'iahk,., of it 

dt'vicc or snbC'ilTuit is spC'('ifipd, giVPli hv all illtt'gc'r which sllnulc! for ('OllSist"l",)" "l1nal 

I It(' liUlnl)!'r of inpllI" N" of I he ll('nral lldworb. It is followpcl by tlw illt."g!'r ullmlwr of 

(inclc'IWncl('ntj 01ltPllt variahles, which slronlc! eqmd the Xl{ of the' nenralnetworks. 

Example: 

# input variables 
3 

# output variables 
3 

}d't,pr st,,\.t.illp; tIl(' mUlll"'l of input variabll'" and output variabks, a ('olkni(lll of data 

blo('ks is spc('ified. in an clrhilr,\1'.Y ordf'I. Each datil block can contain l'it.lwr dc data <ind 

(optiomdly) transiellt data. OJ' elC' delta. TIl(' fonrmt of th""" data blo('ks is SIW('ifif'd in 

tlw sc'ctious U,2 and U,:l. How('w'r, thl' usc of llcural lwtworkii for lllOddliuf,; elcctrical 

IlPhaviollt' Ipads to a(lditiollal aspccts ('ollccl'lling th,' int('r]ll'('tatioll of input.s and out.puts 

in tenm of plel'lrical variables auti paramcters, which is t.he sub.iect of t.h(' next. s('ction, 

B.1.l Optional Pstar Model Generation 

Very oft.eu, tilt' input YMiahles will n'pH'spnt it spt of indep,'udent t,prminal voltages. lik" 

the' v (lis('1].,,('d in tit" ('Ollt('Xt of Eq, (:3,19), awl th(' Ol1tput v;uiahlPs will I", a S('t of 

(,OITPspollding i[((ir-]JI'lIdE'llt. (tccrget) tpnninal currents i. In til{' optional automatiC' gen­

cratioll of nlOcl,,1s f()(. Hllalogll(' circl1it sillllllators. it is assllllll'c1 tbat we' <11'(' cicalillg with 

sllch \'o]tctgp-coJltroll('d lllod,,],; for tIl{' t('nninal currents, Iu that case. WE' CfIU int('rprPl. 

t.hp <lhnV!' :3-iujlut, :l-ontpllt c'xcllllpic's a" l'C'ferring t.o tIl(> lllodrlling of a 4-trrmiuill d,'vic-f> 

or 0111)('ir(,l1il. with :3 indqJ<'lld('nt \('1'lllinal \-oltag('s awl :3 inclqwuclent terminal (,UlT('lltS. 

SC'" al,o ,,'di()ll ~. 1.2. P1'o(f'c'dillg wit h this int'{'f[Jrpt iLtioll iu t"nus of Pledrical \1l.riabl<'s, 

we will now dc'snilw holV a ll('Hl'allH'twnrk having more inp1lts thall ontp1lt,s willlw trans­

lated cluring t hp automati(' g('l[('rati(llI of Pstar behavioural models. It is lIot allowpcl to 

I Hrr(' W(~ indud<:> tlk,:' input layer III cO\llltjng layers, such tha_t it Il('1i-vork with J\ + I Ia,v"r:; h<ts /\' - I 
hi(ld!"J) i.:lY.f:'rs. in .('\.c('Ord~\!lC{' with .. h(· <;OI1Wlliiotl.'1 diflCU:-;s(,d (~.i:trli(>1' in 1,l1if> tlw,,,i~. 'I'll!:"' inpll1. layer i:-. la,ver 
~. = 0, <tud the ou •. put 1<1.\'\'1' ii-> b\..\"('r 1-. = ".". 
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have fewer inputs than ontputs if Pstar models are requested from the neural modelling 

software. 

If the number of inputs No is larger than or eqnal to the number of outputs N h , then the 

first. N[, (!) inputs will be used to represent the voltage variables in v. In a Petar-like nota­

tion, WI? may write the elements of this voltage vector as a list of voltages V(TO,REF) ... 

V(T< N/,' -1 >,REF). Just as in Fig. 2.1 in section 2.1.2, the REF denotes any r",ference 

terminal preferred by the user, so V(T<i>,REF) is the voltage bet.ween terminal (node) 

T<i> and terminal REF. The device or subcircuit actually has IVK + 1 terminals, becau~e 

of the (dependt'nt) referenc'{' terminal, which always has a current that is tlw negat.iW' 

sum of the other terminal Currents, due to charge and current conservation. The lVI, 

outputs of thf' neural networks will be IIsed to represent the current variables in i, of 

which tlw elements can be written in a Pstar-like notation as terminal current variables 

I(TO) ... I(T< N[{ - 1 ». However, any remaining No - N[, inputs are snpposed to be 

time-independE'nt parameters PARD ... PAR< No - l'h: - 1 >, which will be included as 

such in the argument lists of automatically generated Pstar models. 

To clarify this with an example: No = 5 and N[{ = 3 wonld lead to automatically generated 

Pstar models having the form 

MODEL: NeuralNet(TO,Tl,T2,REF) PARO, PAR1; 

END; 

with 3 independent input voltages V(TO.REF), V(Tl,REF), V(T2.REF), 3 independent 

terminal cnrrents I(TO), I(T1), I(T2), and 2 model parameters PARD and PARI. 

B.2 DC and Transient Data Block 

The de data block is represented as a special case of a transient data block, by givin('; only 

a single time point 0.0 (which may also be interpreted as a data block type indicator), 

corresponding to t,.,,=l = 0 in Eq. (3.18), followed by input values that are the elenlE'nts 

of x;o/" and by target output values that are the elements of Xs,i,. 

In modelling electrical behaviour in the way that was discussed in sE'ction B.l.I, t he x;~}, 
of Eq. (3.18) will bee-ome the voltage vector v of Eq. (3.19), of which the elemcnts will be 

the tt'rtllillal voltages V(TO,REF) ... V(T< N g - 1 >,REF), while the XY.i, of Eq. (3.18) 

will become the current vector is", ofEq. (3.19), of which the elements will be the terminal 

currents I(TO) ... I(T< NJ.; - 1 ». 
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Example: 

o 0 
3.0 
5.0e-4 

4.0 
-5.0e-4 

5.0 
0.0 

!* single time point *! 
!* bias voltages *! 
J* terminal currents */ 

How('wr. it silould 1)(' p(llphasiz('d thilt all illterpl'('tatioll ill terms of pltysirClI (jncUlt.ith's like 

\'olta!',e, nIHI cur1'eots i, 0111.\' ]'(''lnired for th" optiowd antolllati(' gelleratiou of iwluwiollml 

tllo<ipls fill' allctloguE' cit-cllit sillluliLton'i. It. does 110t phl)' all).' rok in t.he Iraining of Ill(' 

l\u(l(~rl:villg lH'lll'ai lld\~·Ol'ks. 

Ext(,lHling Ihe d[' ['ast', a tlHnsicllt dala blo('k is !'(']l!'('s(,lltPd iJv giving lllHltipk tillle points 

f"", cdways .,tclrtill!,; witll til<' vahi<' 0.0. alld in ill(TPilsillg timp order. Tim(' points tj('ecl 

Hot Ill' "<]Ilidistaut. Eacli t.i11l(' ]loint is folloWE'rl by tlte dE'Btl'llis of t.1l(' (·.OlT(',c,po11dillg x;°,l" 

In tlH' ('h-'('t.ric>al ilLt!'rprC'tatiolL this HlllOll111s to the 8]){,(,jficatioll uf volt.<"\,gpf-. HEd ('lllT('llt::-. 

as a ftlud.iol1 of timl'. 

time voltages currents 
0.0 3. 0 4,0 5.0 5. Oe-4 -5.0e-4 0.0 
1.0e-9 3, 5 4.0 5.0 4 .Oe-4 -4.1e-4 0.0 
2.5e-9 4, 0 4 0 5.0 3. Oe-4 -3.3e-4 0.0 

8.3 AC Data Block 

TlH-' Slllall-;-;igll().1 ac d.;-Lta hlock i~ di:-.tillgni1-ilwd fnnu Cl.. r1<- or t.ra.llsicllt dat.r·\, hlock hy 

starting with" diLtiL hlo['k t:-"p(' indicator valllE' -1.0, This 11llllllw)' is followrd by tIl(' de 

I);ets t'('lltT:';('llted hv tit" clPllH'ttls of x;,G) as in Eq, (:3,5~). 

III tit" elpct.rical iut.erprdatiflll, til" "klll('tlts of xi'l) al'(' the de hias voltages V(TO,REF) 

Y(T< S" - I >.nEF). 

AIl,'r sl)('eifying- Ill(' d(' hi"s. Illl' frc'(jW'llCY \'a],ws ,h,i" ar(' g-iwtl, ('ileh of I hem followed hy 

t he real cmd imagillary \'a.!tws of all t.IlI' pjPltH'ul s of an ,V" x N" t.argN tr;\llsfpr (lialrix 

H".",. TIl{' l'('(]uin'd !)niPr of llwtrix ('[rlllc'nts is the llol'ltlcd rradillg ord('J', i.e" from Jpft t.o 

riglll, OltP 1'OW aft('r the' olb('r'. 

lThi:-. ~ivl';-' 

Bt"((Hb./),)o.(I) 11II((H1"i l .'(),()) 

H"IIM".",), \"d Illl(lH"""I' 

I1d(H/t,i/, )O"NI;·-I) lill((HI>,i)'Jo.:\:1> --1) '-k((HII 'I, )J.()) 111l((H/, '/ )l.IlJ 

\.'1\ -I). Br-UHr"'I,),V g _.I,'\',,,_.l) Itll((H!',iJ,)."·lI I,S" I)· 
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of Y-parameters3 . Rb,i, is then equivalent to the so-called admittance matrix Y of the 

device or sub circuit that one wants to model. The frequency lb", and the admittance 

matrix Y have the same meaning and element ordering as in the Pstar specification of a 

lllultiport YNPORT. under the assumption that a common reference ('rmilIal REF had 

IwelI selected for the set of ports [13, 14]: 

f1 y11r y11i y12r y12i ymmr ymmi 
f2 yl1r yl1i y12r y12i ymmr ymmi 

fn yllr y1li y12r y12i ymmr ymmi 

where t,he r denotes a real value, and the i an imaginary vallH'. The admittance matrix 

Y has size NI,' x N I,: N I, is here denoted by m, The ykl""y<k><l> = (Y)u can he 

interpreted as the complex-valued ac current into terminal T<k> of a linear(ized) device 

of subdtTllit.. resulting from an ac voltage source of amplit.ude 1 and phase 0 lwt.ween 

terminal T<l> and terminal REF. 

Frequency 'Values may be arbitrarily selected. A zero frequency is also allowed (whirh can 

be used for modelling d~ conductances), The matrix elenwnt order corresponds to the 

normal reading order, i.e .. from left to right. OllP row after til<' other: 

read in the order: 
/ (y11r ,y11i) (y1mr, y1mi) \ 1 2 m 

H y I (y21r,y21i) (y2mr, y2mi) I m+1 m+2 2m 
I I 
\ (ym1r,ym1i) (ymmr, ymmi) / (m-1)m+1 (m-l)m+2 m*m 

Contrary to Pstar, the application is here not restricted to linear multi ports, but includes 

nonlinear lIlultiports, which is why the de bias had to be specified a.' welL 

Examplec 

type de bias voltages 
-1.0 3.0 4.0 5.0 
frequency yk1r ykli yk2r yk2i yk3r yk3i 
1.0e9 1.39-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /* k~l */ 

1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 /* k~2 */ 
1.3e-3 1.1e-3 0.3e-3 0.8e-3 0.3e-3 3.1e-3 1* k~3 */ 

2.3e9 2.1e-3 1.0e-3 0.79-3 1. 5e-3 0.2e-3 2.0e-3 1* k~l */ 
1.0e-3 0.le-3 0.8e-3 0.2e-3 0.6e-3 3.1e-3 1* k=2 */ 
1.1e-3 0.le-3 0.5e-3 0.7e-3 0.ge-3 1.1e-3 1* k=3 */ 

Optional alternative ac data block specifications: 

3S-parCLffietcr input is not (yet) providE'd: only Y~para.mders can pn:'i:iE'nny bE" USE'cL 
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Altprnat.iwly. ac dilL) blocks Illav abo h,· "iw'lI by startillp; witll a data hlock t.Y]li' indiciltol' 

v"lll(' -2.0 instead of -1.0. Til" only differencE' is that. pairs of llllllllwrs for tit" "OlllpJE'X­

v;chlf'd "IClU['nt.s ill Y arp intPIprc'IPd it, (alllplittui<', phasp) i"st.ritd of (rpitl pitrl. ilUilf\inar~' 

pitr(). Th" alllplitll(i<' p;iwlI lIlllSt. 1)(' tit" absulnt" (pusitiv,') <llllplitlHk (not a vahw ill 

d['cibpI). Tilp pili,,,' nlllst 1)(' gin'lL ill ""1;]'('['0. If a data hlock t.YP[' ilHlicalor vitlll(' -:3.0 

is n,wd. til(> ('Ullplit.lld('. phase') forlll with abRolllt(, altlplitllck is aSSlllllNI dnrillf>; iHplLt 

proc(-':-;~illg:. wit 11 t 1H' pha.:·.;(' C'xlHT,,,:-wd ill radians. 

B.4 Example of Combination of Data Blocks 

Takillp; til" "iJow pXillllplr plU( 8 (.ogetllPt'. Ollf' obtaills, for an arbitrary [Jt'(lpI' of data 
bloch: 

neural network definitions 
2 
3 323 
43443 

inputs and outputs 
3 3 

ac block 
-1.0 3. 0 4. 0 
1.0e9 .3e-3 

.3e-3 
1. 3e-3 

2.3e9 2.1e-3 
1.0e-3 
1.1e-3 

transient block 
0.0 3.0 4. 0 
1. Oe-9 3.5 4. a 
2.5e-9 4.0 4 .0 

de block 
0.0 3.0 4.0 

5.0 
1.le-3 
1. 1e-3 
1. 1e-3 
1 .Oe-3 
O. 1e-3 
0.1e-3 

5.0 
5.0 
5.0 

5.0 

0.3e-3 0.8e-3 0.3e-3 3.1e-3 
O.3e-3 O.8e-3 0.3e-3 3.1e-3 
0.3e-3 0.8e-3 0.3e-3 3.1e-3 
0.7e-3 1.5e-3 0.2e-3 2.0e-3 
0.8e-3 0.2e-3 0.6e-3 3.1e-3 
0.5e-3 0.7e-3 0.ge-3 1.1e-3 

5.0e-4 -5.0e-4 0.0 
4.0e-4 -4.1e-4 0.0 
3.0e-4 -3.3e-4 0.0 

5.0e-4 -5.0e-4 0.0 

TIl[' pITS('nt CXIWI'ilHPnt.al softwarE' illlplrlllrlltatioll can 1 ... 11<1 illl input filr cOlltaininp; t.hr 

t['xt of 1. his ('Xalllplr,. 

Only 11lll11hrrs Mr H'([llin·d III tlt(' inpllt filC', since any 0111(>1' (1.C'xtllaJ) information is 

i\ntol11l\ticitlly discll.nkd as (·OlHlllC'llt. In spit.(' of tlH' flld t.hat. no k('ywDl'ds an' Hsrd. it is 

still ('as:" to loealP allY (,lTors clnp to all accic1('ut.allilisaliglllllrllt of data as a COllS['qllrner of 

SOlll(' llliN,c.;iug or KllIH'rtlllOl\:-l 11llllllwl'~. POI' this }HUPOS(" a -trace sofhvarc option has IH'CIi 

illlplrlll('nt['d. wltirh shows what. til(' IlPllral tllo,ipllin,,; prop;mtll t hiub that pach 111ll111)('r 

r('l)l'('SPllt.S. 
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Appendix C 

Examples of Generated Models 

This appendix includes neural network models that were automatically generated by the 

behavioural monel generators, in order to illustrate how the networks can be mapped onto 

several different representations for further use. The example concerns a simple network 

with one hidden layPl', three network inputs, three network outputs, and two neurons in 

the hidnen layer. The total number of neurOnS is therefore five: two in the hidden layer 

ann three in the output layer. These five neurons together involve 50 network paranwtcrs. 

The neuron nonlinearity is in all cases the :F2 as defined in Eq. (2.16). 

C.l Pstar Example 

1***************************************************** 
* Non-quasistatic Pstar models for 1 networks, as 
* written by automatic behavioural model generator. * 
*****************************************************/ 

MODEL: NeuronTypel(IN,OUT,REF) delta, taul, tau2; 
delta2 = delta * delta; 
EC1(AUX,REF) In( (exp(delta2*(V(IN,REF)+1)/2) + exp(-delta2*(V(IN,REF)+1)!2» 

! (exp(delta2*(V(IN,REF)-1)/2) + exp(-delta2*(V(IN,REF)-1)!2» 
) ! delta2; 

Ll(AUX,OUT) taul; C2(OUT,REF) tau2 ! tau1 
R2(OUT, REF) 1.0 ; 

END; 

MODEL: ThesisO(TO,Tl,T2,REF); 

1* ThesisO topology: 3 - 2 - 3 *1 

c:Rlarge ~ 1.0e+15; 
c: Neuron instance NET [0] .L[l] .N[O] ; 
L4 (DDX4,REF) 1.0; 
JC4(DDX4,REF) 
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+1.790512e-Og*V(TO,REF)-1.258335e-10*V(T1,REF)+2.022312e-09*V(T2,REF); 
EC4 (IN4, REF) 

-6.708517e-02*V(TO,REF)-4 271246e-01*V(T1,REF)-7.549380e-Ol*V(T2,REF) 
+4.958681e-01-V(L4); 

NeuronType1_4(IN4,DUT4,REFJ 
1.369986e+00, 6 35775ge-10, 6.905401e-21; 

c;R4(OUT4,REF) Rlarge; 

c; Neuron instance NET[O] .L[1] .N[l]; 
L5 (DDX5,REF) 1.0; 
JC5(DDX5,REF) 

+1.93374ge-09'V(TO,REF)+1.884210e-10*V(T1,REF)+2.65681ge-09'V(T2,REF); 
EC5(IN5,REF) 

+1.89582ge-Ol'V(TO,REF)+3 461638e-Ol'V(T1,REF)+1 246243e+00*V(T2,REF) 
-2.266006e-01-V(L5); 

NeuronTypel_5(IN5,OUT5,REF) 
1.458502e+OO, 9.067704e-l0, 5. 114471e-20; 

c;R5(OUT5,REF) Rlarge; 

c; Neuron instance NET [0] . L [2] . N [0] ; 
L6 (DDX6,REF) 1 0; 
JC6 (DDX6 ,REF) 

+2.202777e-10'V(OUT4,REF)+2.865773e-l0*V(OUT5,REF); 
EC6(IN6,REF) 

+1.425344e+OO'V(DUT4,REF)-1.075981e+OO'V(DUT5,REF) 
+3.051705e-02-V(L6); 

NeuronTypel_6(IN6, OUT6 ,REF) 
1.849287e+OO, 7.253345e-10, 3.326457e-20; 

c:R6(DUT6,REF) Rlarge; 
JC9(TO,REF) ~1.249222e-Ol-2.68479ge-01*VCOUT6,REF); 

c: Neuron instance NET [0] . L [2] . N [1] ; 

L7 CDDX7,REF) 1.0; 

JC7(DDX7,REF) 
+9.147703e-l0*V(DUT4,REF)+5.598127e-l0.V(OUT5,REF); 

EC7 (IN7 , REF) 
+6. 116778e-Ol*V(DUT4,REF)-2.250382e-02*V(OUT5,REF) 
-1.391824e-02-VCL7); 

NeuronType1_7(IN7,OUT7,REF) 
1.732572e+OO, 2.478904e-l0, 1.471256e-21; 

c;R7(DUT7,REF) Rlarge; 
JC10(Tl,REF) -8.017604e-02+5.439718e+OO*V(DUT7,REF); 

c; Neuron instance NET [0] .L[2] .N[2]; 
L8 (DDX8,REF) 1.0; 
JC8(DDX8,REF) 

-5.037256e-ll*V(OUT4,REF)-2.05662Se-iO*V(OUT5,REF); 
ECSCINS ,REF) 

+i.891435e+OO*V(DUT4,REF)-8019724e-01*V(OUT5,REF) 
+2.601973e-01-V(L8); 

NeuronType1_8(IN8,OUT8,REF) 
1.8949S1e+OO, 1.096576e-09, 5.602905e-20; 

c;RS(OUTS,REF) Rlarge; 
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JC11(T2,REF) 2.267318e-01-2.024442e-Ol*V(OUT8,REF); 

END; /* End of Pstar ThesisO model *; 

C.2 Standard SPICE Input Deck Example 

***************************************************** 
* Non~quasistatic SPICE subcircuits for 1 networks, * 
* written by automatic behavioural model generator. * 
***************************************************** 

* This file defines 1 neural networks: 
.SUBCKT NETO 1 2 3 999 ~ith 3 independent terminal currents 

• TEMP 
• BOLTZ 
• CHARGE 

~> T 

2.7000000000000000E+01 CtoK = 2. 7314999999999997E+02 
1. 3806225999999997E-23 (Boltzmann constant k) 
1.6021917999999999E-19 (Elementary charge q) 
3.0014999999999997E+02 Vt 2.5864186384551461E-02 

• N must equal q/(kT) == 1/Vt at YOUR simulation temperature TEMP' , , 
.MOOEL DNEURON 0 (r3= 1 OE-03 IBV= 0.0 CJO= 0.0 N= 3.8663501149113841E+Ol) 
* Re-generate SUBCKTs for any different temperatures. 
* Also, ideal diode behaviour is assumed at all current levels! => 
* Make some adaptations for your sirnulator~ if needed. The IS value 
* can be arbitrarily selected for numerical robustness: it drops 
* out of the mathematical relations, but it affects error control. 
• Cadence Spectre has an IMAX parameter that should be made large . 

. SUBeKT NETOL1NO 1 2 999 
* Neuron instance NETCOJ ,L [lJ . N [OJ 
R1 999 1.0 
El 4 999 1 999 1. 0 
V1 4 5 0.0 
E10 10 999 5 999 9. 3843029994013438E-Ol 
010 10 15 DNEURON 
VlO 15 999 0.0 
E20 20 999 5 999 -9.3843029994013438E-01 
D20 20 25 DNEURON 
V20 25 999 0.0 
F30 999 30 V10 8.6725011215163601E-01 
F35 999 30 V20 1.3274988784836392E-01 
030 30 999 DNEURON 
F40 999 40 V10 1.3274988784836392E-Ol 
F45 999 40 V20 8.6725011215163601E-01 
D40 40 999 DNEURON 
G5 5 999 30 40 5.3280462068615719E-Ol 
H50 50 999 V1 1.0 
L50 50 2 6.3577589506364056E-10 
R50 2 999 
C50 2 999 
. ENDS 

1.0 
1.0861375379500291E-11 

151 
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.SUBCKT NETOL1NI 1 2 999 
• Neuron instance NET EO] .L[I] .NE1] 
Rl 999 1.0 
El 4 999 1 999 1.0 
Vi 4 5 0.0 
El0 10 999 5 999 1.0636136179961743E+00 
010 10 15 ONEURON 
Vl0 15 999 0.0 
E20 20 999 5 999 -1.0636136179961743E+00 
020 20 25 DNEURON 
V20 25 999 0.0 
F30 999 30 Vl0 8. 9352149294460403E-Ol 
F35 999 30 V20 1.0647850705539598E-Ol 
D30 30 999 DNEURON 
F40 999 40 V10 1.0647850705539598E-Ol 
F45 999 40 V20 8.9352149294460403E-Ol 
040 40 999 DNEURON 
G5 5 999 30 40 4.7009552297947205E-Ol 
H50 50 999 V1 1. 0 
L50 50 2 9 0677037473784523E-10 
R50 2 999 1 .0 
C50 2 999 5 .6403157684469542E-l1 
.ENDS 

.SUBCKT NETOL2NO 1 2 999 
* Neuron instance NET [0] .L[2] .N[O] 
R1 
El 
Vl 
El0 
010 
Vl0 
E20 
D20 
V20 

999 
4 999 
4 5 

10 999 
10 15 
15 999 
20 999 
20 25 
25 999 

1.0 
1 999 1.0 
0.0 
5 999 1.7099305663270813E+00 

DNEURON 
0.0 

5 999 -1.7099305663270813E+00 
DNEURON 
0.0 

F30 999 30 Vl0 9.6831951188735381E-Ol 
F35 999 30 V20 3. 1680488112646179E-02 
D30 30 999 DNEURON 
F40 999 40 Vl0 3. 1680488112646179E-02 
F45 999 40 V20 9.6831951188735381E-Ol 
040 40 999 DNEURON 
GS 5 999 30 40 2. 92409S3395785913E-01 
HSO 50 999 VI 1.0 
L50 50 2 7.2533448996746825E-l0 
R50 2 999 1.0 
C50 2 999 4.5861006433956426E-11 

ENDS 

.SUBCKT NETOL2Nl 1 2 999 
* Neuron instance NET [0] . L[2] . N [1] 

Rl 1 999 1.0 
E1 4 999 999 1. 0 
VI 4 5 0.0 



C.2. STANDARD SPICE INPUT DECK EXAMPLE 

E10 10999 5 999 1.5009030008888708E+00 
D10 10 15 DNEURON 
V10 15 999 0.0 
E20 20 999 5 999 -1.5009030008888708E+00 
D20 20 25 DNEURON 
V20 25 999 0.0 
F30 999 30 Vl0 9. 5265564929569439E-Ol 
F35 999 30 V20 4.73443507043056578-02 
D30 30 999 DNEURON 
F40 999 40 V10 4.7344350704305657E-02 
F45 999 40 V20 9. 5265564929569439E-Ol 
D40 40 999 DNEURON 
G5 5 999 30 40 3.3313278719803212E-Ol 
H50 50 999 V1 1.0 
L50 50 2 2. 4789035420970444E-10 
R50 2 999 1. 0 
G50 2 999 5. 9351066440511015E-12 
. ENDS 

.SUBCKT NETOL2N2 1 2 999 
* Neuron instance NET[O] .L[2].N[2] 
Rl 1 999 1. 0 
El 4 999 1 999 1.0 
V1 4 5 0.0 
E10 10 999 5 999 1.7954759016151536E+00 
Dl0 10 15 DNEURON 
Vl0 15 999 0.0 
E20 20 999 5 999 -1 7954759016151536E+00 
D20 20 25 DNEURON 
V20 25 999 0.0 
F30 999 30 V10 9. 7316774616780659E-01 
F35 999 30 V20 2. 6832253832193342E-02 
D30 30 999 DNEURON 
F40 999 40 ViO 2. 6832253832193342E-02 
F45 999 40 V20 9. 7316774616780659E-01 
D40 40 999 DNEURON 
G5 5 999 30 40 2.7847770028559875E-Ol 
H50 50 999 Vl 1.0 
L50 50 2 1.0965763466052844E-09 
R50 2 999 1.0 
G50 2 999 5.1094529090918392E-ll 
.ENDS 

.SUBCKT NETO 1 2 3 999 
• Network 0 topology: 3 - 2 - 3 
G2 999 11 1999 -6.7085165083464222E-02 
Gl 999 10 1999 1.7905117030211314E-09 
G4 999 11 2 999 -4.2712455761636123E-Ol 
G3 999 10 2 999 -1.2583350345102781E-I0 
G6 999 113999 -7.5493795848363305E-01 
G5 999 10 3 999 2.0223116907395013E-09 
III 999 11 4.9586810996633499E-Ol 
Ll0 10 999 1.0000000000000000E+OO 
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G7 999 11 10 999 1.0000000000000000E+00 
Xli 11 12 999 NETOL1NO 
Gl0 999 14 1 999 1. 8958285166932167E-01 
G9 999 13 1 999 1.9337487686116938E-09 
G12 999 14 2 999 3 4616377160567428E-Ol 
Gll 999 13 2 999 . 8842096327712685E-10 
G14 999 14 3 999 . 2462426190134208E+00 
G13 999 13 3 999 2 6568190323453482E-09 
I14 999 14 -2. 2660061612223554E-Ol 
L13 13 999 1.0000000000000000E+00 
G15 999 14 13 999 1.0000000000000000E+00 
X14 14 15 999 NETOLlNl 
GIS 999 17 12 999 1.4253444817664417E+00 
G17 999 16 12 999 2 2027769755558099E-I0 
G20 999 17 15 999 -1.0759814652523116E+00 
G19 999 16 15 999 2.8657725035783068E-10 
117 999 17 3 .0517054260507383E-02 
Li6 16 999 1 .OOOOOOOOOOOOOOOOE+OO 
G21 999 17 16 999 1.0000000000000000E+OO 
X17 17 18 999 NETOL2NO 
G24 1 999 18 999 -2.6847994620332258E-Ol 
I18 1 999 -1.2492219829255186E-Ol 
G26 999 20 12 999 6. 1167782976390769E-Ol 
G25 999 19 12 999 9. 1477032544690288E-10 
G28 999 20 15 999 -2.2503817077250656E-02 
G27 999 19 15 999 5. 5981269686469561E-I0 
120 999 20 -1. 3918243186941530E-02 
Li9 19 999 1.0000000000000000E+00 
G29 999 20 19 999 1.0000000000000000E+00 
X20 20 21 999 NETOL2N 1 
G32 2 999 21 999 5.4397177239052902E+OO 
121 2 999 -8.0176040232393930E-02 
G34 999 23 12 999 1.8914346798991264E+00 
G33 999 22 12 999 -S.0372564367972412E-ll 
G36 999 23 15 999 -S.0197243940349203E-Ol 
G35 999 22 15 999 -2.0566284076395966E-10 
123 999 23 2.6019731842095845E-Ol 
L22 22 999 1.0000000000000000E+OO 
G37 999 23 22 999 1.0000000000000000E+OO 
X23 23 24 999 NETOL2N2 
G40 3 999 24 999 -2.0244416743534960E-Ol 
124 3 999 2.2673179954870881E-Ol 
.ENDS 

C.3 C Code Example 

1***************************************************** 
• Static (DC) C-source functions for 1 networks, as * 
* written by automatic behavioural model generator. * 
*****************************************************! 

double f(double s, double d) 
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return(log(cosh(0.5*d*d*(s+1.0»/cosh(O.5*d*d*(s-1.0» )/(d'd)); 

/* Network 0 topology: 3 - 2 - 3 */ 
void netO( double inO, double inl, double in2 

double >outO, double *outl, double .out2) 
{ 

double netOllnO; 
double netOllnl; 
double netOl2nO; 
double netOl2nl; 
double net012n2; 

1* Neuron instance NET[O].L[l] .N[O] *; 
netOl1nO = 

f(-6.7085165083464222e-02 * inO 
-4.2712455761636123e-01 * in1 
-7. 5493795848363305e-Ol * in2 
+4. 958681099663349ge-Ol, 1.3699856203187932e+00); 

;* Neuron instance NET[O] .L[l] .N[l] */ 
netOl1nl = 

f(+1.8958285166932167e-Ol • inO 
+3.4616377160567428e-Ol • inl 
+1.2462426190134208e+00 * in2 
-2. 2660061612223554e-01, 1.4585017092867422e+00); 

/. Neuron instance NET [0] .L[2] .N[O] *; 
net012nO = 

f(+1.4253444817664417e+00 > netOl1nO 
-1.0759814652523116e+00 * netOllnl 
+3. 0517054260507383e-02 , 1.8492866550792397e+00); 

>outO = -1 2492219829255186e-01 -2.6847994620332258e-01 * net012nO; 

;* Neuron instance NET [OJ. L [2] . N [1] *; 
net012nl = 

f(+6.116778297639076ge-01 * netOl1nO 
-2.2503817077250656e-02 * netOl1n1 
-1.3918243186941530e-02, 1.7325720769358317e+00); 

.out1 = -8.0176040232393930e-02 +5.4397177239052902e+00 * net012n1; 

;* Neuron instance NET[OJ .1[2J .N[2] *; 
netOl2n2 = 

f(+1.8914346798991264e+00 * netOlinO 
-8.0197243940349203e-01 * netOlln1 
+2.6019731842095845e-01, 1.894980686769737ge+00); 

*out2 = 2.2673179954870881e-01 -2.0244416743534960e-01 * net012n2; 
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C.4 FORTRAN Code Example 

c *********~~****************************************** 
c • Static (DC) FORTRAN source code for 1 networks, 
C * written by automatic behavioural model generator. * 
C ***************************************************** 

DOUBLE PRECISION FUNCTION DF(DS, DO) 
IMPLICIT DOUBLE PRECISION (D) 
002 DO. DO 
DF LOG( (EXP( D02*(D3+1DO)/200) 

+ + EXP(-DD2*(DS+1DOl/2DO» 
+ / (EXP( DD2*(DS-IDO)/2DO) 
+ + EXP(-DD2*(DS-lDO)/2DO» 
+ ) / DD2 

END 

C Network 0 topology: 3 - 2 - 3 
SUBROUTINE NETO( DINO 

+ DINl 
+ DIN2 
+ DOUTO 
+ DOUTl 
+ DOUT2) 

IMPLICIT OOUBL£ PRECISION (D) 

c Neuron instance NET[O] L [lJ N [oj 
DINO = 

+ DF(-6.7085165083464222E-02 * DINO 
+ -4.2712455761636123E-Ol * 011'11 
+ -7.5493795848363305E-01. 011'12 
+ +4.9586810996633499E-01, 1.3699S56203187932E+OO) 

C Neuron lnstance I'IETCOJ . L [1J . N [1J 
011'11 = 

+ DF(+1.8958285166932167E-Ol * OINO 
+ +3.4616377160567428E-Ol * OINl 
+ +1 2462426190134208£+00 * OIN2 
+ -2 2660061612223554E-Ol, 1 . 4585017092867422E+OO) 

C Neuron instance NET [OJ .L[2J .N[O] 
021'10 = 

+ DF(+1.4253444817664417E+OO * 011'10 
+ -1.0759814652523116£+00 * D1N1 
+ +3 0517054260507383E-02, 1.8492866550792397E+00) 

DOUTO = -1.2492219829255186E~01-2.6847994620332258E-Ol 

C Neuron instance NET [OJ .L[2J .N[lJ 
D2Nl = 

+ DF(+6.1167782976390769E-Ol * 011'10 

* D2NO 
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+ 
+ 

-2. 2503817077250656E-02 * D1N1 
-1.3918243186941530E-02, 1.7325720769358317E+00) 

DOUTl = -8.0176040232393930E-02+5.4397177239052902E+OO * D2Ni 

C Neuron instance NET[ol .L[2J .N[2l 
D2N2 = 

+ DF(+1.8914346798991264E+OO * D1NO 
+ -8.0197243940349203E-Oi * DiNl 
+ +2.6019731842095845E-Ol, 1.8949806867697379E+00) 

DOUT2 = 2.2673179954870881E-01-2.0244416743534960E-01 * D2N2 
END 

C.5 Mathematica Code Example 

(***************************************************** \ 
• Static (DC) Mathematica models for 1 networks, as * \ 
* written by automatic behavioural model generator. * \ 
*****************************************************) 

Clear[fl 
f[s_,d_l := 1!d'2 Log [Cosh[d'2 (s+1)/2l / Cosh[d-2 (s-1)/2]] 
Clear[xO , xl, x2J 

(. Network 0 topology: 3 - 2 - 3 *) 

Clear[netOl1nOJ (0 Neuron instance NET [OJ. L [lJ . N [OJ * J 
netOl1nO[xO_,xl_,x2_l := \ 

f[-0.6708516508346424 10--1 xO 
-0.4271245576163612 10-+0 xl 
-0.7549379584836331 10'+0 x2 
+0.4958681099663350 10-+0,+1.3699856203187932 10-+ol 

Clear [netOl1nl] (0 Neuron instance NET [OJ. L[ll . N [ll oj 
netOl1n1[xO_,x1_,x2_l := \ 

f[+0.1895828516693217 10-+0 xO 
+0.3461637716056743 10-+0 xl 
+1.2462426190134208 10-+0 x2 
-0.2266006161222355 10-+0,+1.4585017092867422 10-+0J 

Clear [net012nOJ (0 Neuron instance NET[OJ .L[2J .N[Ol *) 
net012nO[xO_,x1_,x2_l := \ 

f[+1.4253444817664417 10-+0 netOl1nO[xO,xl,x2J 
-1.0759814652523116 10-+0 netOl1n1[xO,xl,x2J 
+0.3051705426050739 10--1,+1.8492866550792397 10-+0] 

netOoutputO[xO_,x1_,x2_J := -0.1249221982925519 10-+0 \ 
-0.2684799462033226 10'+0 net012nO[xO,x1,x2J 

Clear [netOl2n1) (* Neuron instance NET[O] .L[2) ,N[ll *) 

net012n1(xO_,x1_,x2_l := \ 

157 



IS8 APPENDIX C. EXA.1'cIPLES OF GENERA.TED MODELS 

f[+0.6116778297639077 10-+0 netOllnO[xO,xl,x2J 
-0.2250381707725066 10--1 net011nl[xO,x1,x2J 
-0.1391824318694153 10--1,+1.7325720769358317 10-+0J 

netOoutput1[xO_,xl_,x2_J :~ -0.801760402323939510--1 
+5.4397177239052902 10-+0 net012nl[xO,xl,x2J 

Clear [net012n2J C- Neuron instance NET [OJ .L[2J .N[2J *) 
net012n2[xO_,x1_,x2_J :~ \ 

f[+1.8914346798991264 10-+0 netOllnO[xO,xl,x2] 
-0.8019724394034920 10-+0 netOllnl[xO,xl,x2] 
+0.2601973184209585 10-+0,+1.8949806867697379 10-+0J 

netOoutput2[xO_,xl_,x2_] :~ +0.2267317995487088 10-+0 \ 
-0.2024441674353496 10-+0 net012n2[xO,xl,x2J 
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Appendix D 

Time Domain Extensions 

In this appendix, we will slightly generalize the numerical time integration and transient 

sensitivity expressions that were previously derived only for the Backward Euler integ­

ration met.hod. The main purpose is to incorporate the trapezoidal integration method, 

because the local truncation error of that method is O(h3 ), with h the size of the time 

step, instead of the O( h 2 ) local truncation error of the Backward Euler integration method 

[9]. For sufficiently small time steps, the trapezoidal integration is therefore much more 

accurate. As has been mentioned before, both the Backward Euler integration method 

and the trapezoidal integration method are numerically very stable~A-stable~methods 

[29]. The generalized expressions, as described in the following sections, haVE' also been 

implemented in the neural modelling software. 

D.l Generalized Expressions for Time Integration 

From Eqs. (3.1) and (3.5) we have 

[ 

F( Sik, 6~k) + ~+ ~ Yik 'Tl;ik dt 'T2,ik dt 

""lk 

with, for k> 1, 

~ 
dt 

~' ~' . dYj,k-l 
L.. W1Jk Yj,k-I - ai. + L.. V,jk -d-t-
j=1 J=I 

Nk-l 

L W'jk Yj,k-I - aik + 
j=l 

Nk-l 

L VtJk Zj,k-l 
j=l 

(D.l) 

(D.2) 
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Thc ", .. arc' now l]in'ctlv a\'"ilablP witltOllt. difkn'lltiatioll or ini.0gratiotl ill til<' l'xpressiolls 

1(ll tH'lHOl) ; in layer k > 1. Sill(,C I It" '"k ... [ HtT "aln'Rely" obtailler1 tlJrough integratioll ill 

tlw P},N'l'dilig Iayc'}' k - 1. TIt(' sprci,d ['CiSl' k = L wlwr!' ciifff'rclltiation of ll<'twork inpnt 

cigllals is nppdpd to obtain thc 'J,l), ic ollt,ailll,d frolll a s('parat.;> 11ll11Wricai dijfprel1t.iation, 

Om' lllay 11S(, Eq. (3.1(;) itH this pm])(),,'. 

Eq, (D,l) ltllW also Iw writt.l'n ItS 

[ 
~ 

T2.·,." cit 

~ 
llf 

(D,J) 

\V(~ \vill apply a dis{'n't.i~a.tioll accordillg to tllP t>C1WlIW 

!(x, x, t) o o (DA) 

where vah",s at previous tillle points in tlIP discretizp(\ expressions arp denoted bv ac­

cents ( '). COlloequputly, a ,pI of illlplicit llonlillear differential-·or differential-alg('\naic­

l''lnatiollS for variables in t.lt(' v('clm x is replaced by a set of implicit nonlinear alg('lnil.il' 

p'luat.iow; from wbicit tIlt' lllllmoWll npw x at a nrw time point t = I' + lr with lr > [) 
bas to lw solved for Ii (kllO"'Il) jll'l'vious ",' a,t t.ime I'. Different values for the paranwt.r'rs 

(I itwl (1 ,dl()w for the srlf'rtion of a particular integration scheme, TIl(; Forward Elll('I 

method is ohtitinl'cl for ~l = 0, ~2 = L thl' Backward Euler llIPtilod for ~l = 1, (2 = 0, till' 

traprzoilbl illtl'gmtiOlI llH'thod fot' ~l = (2 = ~ and tile spconel ordcr Aelams-Basltforth 

llll,thod for ~l = i, ~2 = [DI· Srl' aJso [101 for thr Backward Euler lll('tbocl, III CllI thE'sl' 

casp,S Wl' havc' 6 = I - ~], III the following, w(' will exclude the Forward EllieI' variant, 

sillcr it would lpltcl to a 111ltlllH'r of sprcial rasps that tT(lllirr distinct ('xprrssiolls ill order 

to avoid divisioll by "pro, w hill' it also hao rat,her poor tlulll<.'rical otabiJity pro]wrties. 

USillg Eq. (OA), WP obtilin from Eq, (0,3) 

Yik Tl,ik ~".) 

(D.5) 
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Provided that ~l # O-hence excluding pure Forward Euler-we can solve for Y,k and Z,k 

to obtain the explicit expressions 

y,k {(r:F(S'k,6;kl + (16:F(S:k,6,!J 

+ [-(16 + (I¥ + i*l Y;k + ~ T2.ik ~;k } 
(D.6) 

{ } 
, 

Yik - Y;k _ Q " 
h~1 6 -,k 

where division by zero can never occur for El # 0, II. # O. This equation is a generalization 

of Eq. (3.4): for ~l = 1 and ~2 = 0, Eq. (D.6) reduces to Eq. (3.4). 
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D.2 Generalized Expressions for Transient Sensitivity 

TIl(' ('xpn'ssiollS for tmll.si,'nt sPllsitivity are obtaillf'd h." ciiff"n'lltia(illg Eqs. (0.2) a!HI 

(D.G) w.r.t. ilny (scalelr) parClltle(er jJ (indiscriminate' wIwtIH'r l' rpsitiC's in this neuron or 

in a l}l'('cpdinll, Iaypr). which l"fICis to 

V~, --l 

L 
([) .1) 

+ 
I 

L 
.FI 

[~ " ,UZt/-I] <II' -).k···1 + I,),. J) 

which is icientical to til(' first eCjlllitioll of (J.g), and 

([) .8) 

/ 

(~) (%t) 
/IEI 

whid, grllrrali7,rs thl' s('('onc1 and third equation of (3.8). 

For any integration SChellH'. thl' illitia.1 partial ckrivlitivr vlilnps are lill,flill, liS ill Eq. (:1.9), 

ohtaine'd from the forward propagation of the straely state' ('quations 

~I uJ! I=() 

~.-I [<III',)' 1 . 1 

L i .f;J-l 
1 __ 1 (JI 1=0 

uF uF uS"1 
UjJ + CJGc '73tf f = () 

(0.9) 
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D.3 Trapezoidal versus Backward Euler Integration 

To give all intuitive impression about the accuracy of the Backward Euler method and tlw 

trapezoidal integration method for relatively large time steps, it is instructivr to consider 

a concrete example, for instance the numerical time integration of the differential <,qua­

tion x = 27r sin(21ft) with x(O) = -1, to obtain an approximation of the exact solution 

,T(t) = - cos(21ft). Figs. 0.1 and 0.2 show a few typical results for tlw Backward Euler 

method and the trapezoidal integration method, respectively, Similarly, Figs, 0,3 and OA 

show results for the numerical time integration of the differential equation ,i: = 27r (os(21ft) 

with x(O) = 0, to obtain an approximation of the exact solution x(t) = sin(2?tt), CIE'arly, 

the trapezoidal integration method offers a significantly higher accuracy in tilE'se examples, 

It is also apparent from the results of Backward Euler integratioll, that the starting point 

for the integration of a periodic function can have marked qualitative effects on the ap­

proximation errors, 
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Fi/!,lltTD.l: Tit" ('XiW! solutioll ,1'(1) = -cos(27rt) (solid linr) of.i' = 27rsin(27r1) . 

. r(O) = -1. t E 10.21. compiu'PCl to Backwiml EI11<·1' integration n·wlt.., 
11.,illg 20 (Iarg(' clot.s) and 4() (small dots) l'qnal ti1lle strps. rrSIH'cliwh'. 
'I'll" S('f,l('d ")m(',' functioll sin(27rt) is also showl! (<1<1,,11(0(1). 
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Fignrr D.2: Th" rxaC't solution I(I) = -cos(27rt) (solie! liM) of .j. = 27rsin(27ffj . 

.f(O) = -·1. t E Ill. 21. compa)'('cl to tra.pr~oidal integration results using 

20 (large dots) allel 40 (small clots) ('(111111 timp stpps. l'rs]H·ctiv(:Iy. Tit" 
s('al,'('1 SO\l['('(' function sin(27rt) is also shown (clashf'cl). 



D.3. TRAPEZOIDAL VERSUS BACKWARD EULER INTEGRATION 165 
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-1 ... . . 
FigurE' D.3, The E'xact solution x(l) = sin(21ft) (solid line) of i = 21f cos(21ft), x(O) = 

0, I E [0,21, compared to Backward Euler integration results using 20 
(large dots) and 40 (small dots) equal time steps, respectively. TIl(' 
scaled source function cos (21ft) is also shown (dashed). 
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-1 

Figure D.4: The exact solution x(t) = sin(21ft) (solid line) of:i; = 21fcos(21ft). x(O) = 
O. I E [0.21, compared to trapezoidal integration results using 20 (large 
dots) and 40 (small dots) equal time steps, respectively. The scaled 
source function cos(21ft) is also shown (dashed). 
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Summary 

This thesis describes the main theoretical principles underlying new automatic modelling 

methods, generalizing concepts that originate from theories concerning artificial neural 

networks. The new approach allows for the generation of (macro-)models for highly non­

linear, dynamic and multidimensional systems, in particnlar electronic components and 

(sub)circuits. Such models can subsequently be applied in analogue simulations. The pur­

pose of this is twofold. To begin with, it can help to significantly reduce the time needed 

to arrive at a sufficiently accurate simulation model for a new basic component-such as 

a transistor, in cases where a manual, physics-based, construction of a good simulation 

model would be extremely time-consuming. Secondly, a transistor-level description of a 

(sub)circuit may be replaced by a much simpler macromodel, in order to obtain a major 

reduction of the overall simulation time. 

Basically, the thesis covers the problem of constructing an efficient, accurate and numeric­

ally robust model, starting from behavioural data as obtained from measurements and/or 

simulations. To achieve this goal, the standard backpropagation theory for static feedfor­

ward neural networks has been extended to include continUOUB dynamic effects like, for 

instance, delays and phase shifts. This is necessary for modelling the high-frequency be­

haviour of electronic components and circuits. From a mathematical viewpoint, a neural 

network is now no longer a complicated nonlinear multidimensional function, but a system 

of nonlinear differential equations, for which one tries to tune the parameters in such a 

way that a good approximation of some specified behaviour is obtained. 

Based on theory and algorithms, an experimental software implementation has been made, 

which can be used to train neural networks on a combination of time domain and frequency 

domain data. Subsequently, analogue behavioural models and equivalent electronic circuits 

can be generated for use in analogue circuit simulators like Pstar (from Philips), SPICE 

(University of California at Berkeley) and Spectre (from Cadence). The thesis contains a 

number of real-tife examples which demonstrate the practical feasibility and applicability 

of the new methods. 



SAMENvATTING 173 

Samenvatting 

Dit proe£'3chrift beschl'ijft de belangrijkste theoretische principes achter nienwE' automat­

isdw modelleringsmethoden die een uitbreiding vormen op concepten afkomstig uit the­

arieen betreffende lnmstmatige neurale netwerken. De nieuwe aanpak biedt magelijkheden 

Om (macro)modellen te genereren voor sterk niE't-lineaire, dynamische en meerdimen­

silmale systemen, in het bijzonder electronische componenten en (deel)circnits. Znlke 

modellen knllnen vervolgells gebruikt worden in analoge simulaties. Dit dient een tweeledig 

doel. Ten eerste kan het helpen bij het aanzienlijk reduceren van de tijd die llodig is OIl! 

tot een voldoend nauwkeurig simulatiemodel van een nienwe basiscomponent-zoals een 

transistar--te komen, in gevalien waar het handmatig vanuit fysische kennis opstellen 

van een goed simnlatiemodel zeer tijdrovend zou zijn. Ten tweede kan een beschrijving, 

op transistor-niveau, van een (deel)circuit warden vervangen door een veel eenvoudiger 

macromodel, om langs dezc weg een drastischc verkorting van de totale simulatiet.ijd I.e 

verkrijgen. 

In essentie behandelt het proefschrift het probleem van het maken van een efficient, 

nanwkeurig en numeriek robunst model vannit gedragsgegevens zoals verkregen uit metin­

gen en/of simulaties. Om dit doel te bereiken is de standaard backpropagation theorie 

voor statische "feed forward" n€urale netwerken zodanig nitgebreid dat ook de continue 

dynamische effekten van bijvoorbeeld vertragingen en fasedraaiingen in rekening knnnen 

worden gebracht. Dit is noodzakelijk voor het kunnen modelleren van het hoogfrequent 

gedrag van electl'Onische componenten en circuits. Wisknndig gezien is een neuraalnetwerk 

nu niet langer een ingewikkelde niet-lineaire meerdimensionale funktie maar een stelsel 

niet-lineaire differentiaalvergelijkingen, Waarvall getracht wordt de parameters zo te be­

palen da!. een goede benadering van een gespecificeerd gedrag wordt verkregen. 

Op grand van theorie en algoritmen is een experimente!e software- implementatie gel1laakt, 

waannee neurale netwerken kunllell worden getraind op eell combinatie van tijd-dol1lein 

en/of klein-signaal freqnentie-domein gegevens. Naderhand kunnen geheel antomatisril 

analoge gedragsmodellen en equivalente electronische circuits worden gegenereerd voor 

gebruik in analoge circuit-simulatoren zoals Pstar (van Philips), SPICE (van de nniversiteit 

van Californie te Berkeley) en Spectre (van Cadence). Het proefschrift bevat eell aantal 

aan de praktijk ontleende voorbeelden die de praktische haalbaarheid en toepasbaarheict 

van de nienwe methoden aantonen. 
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1. Cynici die het praktisch nut van neurZLle netwerken aanvechten 
diskwalificeren dannllcc zichzelf. 

2. Een stapsgewijze uitruil van uitdrukkingskracht tegen gegaran­
decrde lJlodel-eigem;chZLppen is een groot. voorc!cel vall de aanpak 
zoab geintrodncecrd in dit proefschrift. 
(Dit. proef'ichrift, hoofdstuk 5.2) 

3. De tocpassing 0]) grote schaal van neumle lH~twerken binnell 
circuit-simlllatie is slcchts een kwestie van t.ijd. Een verruiming 
van de definitie van neuralc netwer-ken kan deze tijd clesgewens(. 
tot 1ml rcduccren. 

4. De op handen zijnde standaardisatie van analoge hardware bfe­
schrijvingstalen (AHDL's), zonls VHDL-A ell Vcrilog-A, leidt 
de aandacht. af van de vverkelijke lllodellcringsproblemen. 
(Dit prodschrift, hoofdst.uk 1.4). 

5. Veel ollClerzoekers van 11em'ale lletwerken vcrwarren de noodzaak 
van het discretiser('n van de tijd in niet-lineaire difi"erentiaalvt'r­
gelijkingcn md clc lloodzaZLk 0111 tot tijd-discrete modellcn t.e 
komell. 
(Dit. proefschrift, hoofdstuk 1.3). 

6. De grote toegevoegde waarc\e van terugkoppeling voor nenrale 
netwerkcn bevestigt de waarde van eel! goede opvoedillg, llBccr 
laat ook zicn dal, een silllpele opvoeclkulldige tcrugkoppeling 
waarsrhijnlijk volstaat. 
(Dit proefschrift, hoofdstuk 2.4.3.2). 



7. Ret verdwijnen van paranormale verschijnselen bij nauwkeuri­
ger waarneming laat de mogelijkheid open van een onbedoelde 
reduktie van macroscopische waarschijnlijkheidsgolven onder in­
vloed van de gangbare wetenschappelijke onderzoeksmethoden, 
zodanig dat het resultaat consistent is met de hypothese van het 
niet~bestaan van het paranormale. 

8. Ret thuis laten uitvoeren van chirurgische ingrepen kan de kans 
op onbehandelbare infecties helpen verlagen. 

9. Formele correctheidsbewijzen voor computerprogramma's zijn 
geen bruikbaar alternatief voor het aan de praktijk toetsen van 
computerprogramma's, en zullen dat ook nooit worden. 

10. Een wet die het voorkomen van censuur op Internet onder­
steunt zal in Nederland voor iedereen aanvaardbaar zijn, op 
voorwaarde dat die wet alleen schriftelijk wordt bediscussieerd 
en vastgelegd. 

11. De grote commerciele belangen bij de ontwikkeling van multi­
mediasystemen voor de massa dragen onbedoeld bij tot een ver~ 
snelde ontwikkeling van hoog-technologische hulpmiddelen voor 
gehandicapten. 

12. Binnen de psychologie is de noodzaak of wenselijkheid van het 
hebben van een ik nooit overtuigend aangetoond. Op het ter 
discussie stellen van het ik als zodanig blijkt, ondanks de talloze 
persoonlijke en maatschappelijke problemen die met dat ik, of 
veelvouden daarvan (MPS), samenhangen, nog steeds een taboe 
te rusten. 
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