

The response-time distribution in a real-time database with
optimistic concurrency control and constant execution times
Citation for published version (APA):
Sassen, S. A. E., & Wal, van der, J. (1997). The response-time distribution in a real-time database with
optimistic concurrency control and constant execution times. (Memorandum COSOR; Vol. 9707). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/b9479736-3c0a-48fa-b532-436ca5e4a7fd

tea
Eindhoven University
of Technology

Department of Mathematics
and Computing Science

Memorandum COSOR 97-07

The response-time distribution
in a real-time database with

optimistic concurrency control
and constant execution times

S.A.E. Sassen
J. van der Wal

Eindhoven, March 1997
The Netherlands

The Response-Time Distribution in a Real-Tinle Database with
Optimistic Concurrency Control and Constant Execution Times

Simone Sassen and Jan van der Wal

Abstract

For a real-time shared-memory database with optimistic concurrency control, an approximation for

the transaction response-time distribution is obtained. The model assumes that transactions arrive

at the database according to a Poisson process, that every transaction uses an equal number ofdata

items uniformly chosen, and that the multiprogramming level is bounded. The execution time of

all transactions is constant. The behavior of the system is approximated by an M / D / c queue with

feedback. The probability that a transaction must be fed back for a rerun depends on the number

of transactions that has committed during its execution. Numerical experiments, which compare

the approximative analysis with a simulation of the database, show that the approximation of the

response-time distribution is quite accurate, even for high system loads.

1 Introduction

Real-time databases combine the requirements of both databases and real-time systems. In a database,

transactions (database requests) should preserve database consistency. Subject to this consistency re

quirement, the transaction throughput of the database should be maximized. In a real-time system, the

main requirement is timeliness, i.e., transactions must be executed before their deadlines. Soft real

time systems are allowed to miss some deadlines when the system is overloaded, but at least a certain

fraction of the transactions should meet some prescribed deadline. In a real-time database, both con

sistency and timeliness are important. In this paper, we investigate soft real-time databases and are

interested in the probability that a transaction meets its deadline.

To benefit from the increase in CPU power that parallel computer architectures offer, transactions

on databases should be executed concurrently. However, concurrent execution can destroy database

consistency if conflicting transactions are incorrectly scheduled. Two transactions conflict if they ac

cess the same data-item, at least one of them with the intention to write. To execute conflicting transac

tions, a concurrency control scheme is needed. Concurrency control schemes govern the simultaneous

execution of transactions such that overall correctness of the database is maintained (see e.g. PAPADIM

ITRIOU [1986]). The two main concurrency control schemes are locking and optimistic concurrency

control.

Under the locking scheme, an executing transaction holds locks on all data-items it needs for ex

ecution, thus introducing lock waits for transactions that conflict with it. Consistency is guaranteed,

however chains of lock waits can lead to high transaction response times.

When the conflict probability is low, it can be advantageous to use the optimistic concurrency con

trol (acC) scheme proposed by KUNG and ROBINSON [1981] . Under acc, all CPUs can be used

1

for transaction processing at the same time, even for processing conflicting transactions. Each trans

action is processed in three phases: an execution phase, a validation phase and a commit phase. In the

execution phase a transaction T accesses any data-item it needs for execution, regardless of the num

ber of transactions already using that data-item. During the execution phase, all actions T performs on

data-items are only done on local copies of the data-items. In the validation phase, all items used by

T are checked for conflicts. If a conflict has occurred with a transaction that committed after T started

(that is, if at least one of the data-items read by T was in the meantime changed globally by another

transaction), T must be rerun. The local changes T made to data-items then don't become global but

are erased. Ifno conflicts occurred, T completes the validation phase successfully and enters the com

mit phase, where the data-items used by T are updated globally.

In this paper, we study the performance of a real-time database with acc, where the execution time

of all transactions is constant. An analytical model is formulated and solved in order to find the prob

ability that a transaction meets its deadline. Existing analytical performance studies for acc (such

as MENASCE and NAKANISHI [1982], MORRIS and WONG [1985], and KLEINROCK and MEHOVIC

[1992]) only consider average system performance, such as throughput, average response time, and

the average number of restarts needed for a transaction. (The response time of a transaction is the to

tal time between its arrival and its commit.) Knowledge about average response times is not enough to

estimate the probability that a transaction meets its deadline: for this, an approximation of the response

time distribution is required. As far as we know, except for our previous study (SASSEN and VAN DER

WAL [1997]), no analytical performance studies of real-time databases with acc exist that address

the distribution of the response time. In SASSEN and VAN DER WAL [1997], we approximated the

response-time distribution in a real-time database with OCC where the execution times of transactions

are exponentially distributed. The present paper is a follow-up on that study by considering transac

tions with constant execution times.

The rest of the paper is organized as follows. The model for a real-time database with acc and

constant execution times is explained in Section 2. In Section 3, we derive two approximative analyses

for the response-time distribution. Numerical results, which compare analysis with simulation, are

presented in Section 4. Moreover, Section 4 contains recommendations on how to choose the number

of CPUs needed to achieve some prespecified performance level. Finally, Section 5 contains some

concluding remarks.

2 The Model

In the introduction, we described the optimistic concurrency control (OCe) scheme in detail. In this

section, we model acc in a shared-memory environment with N parallel CPUs as a multi-server

queueing system with feedback, see Figure 1 for an illustration.

In the dashed area, which represents the N CPUs, at most N transactions can be present. Each trans

action is handled by one CPU and either leaves the system (after a successful execution), or is rerun

2

3

Figure 1: Queueing model ofthe system

r

9

N

9

The queueing model of Figure 1 is no standard feedback model. The probability that a transaction

T must be rerun is not fixed, but depends on the number of transactions that departed (committed)

during the execution of T. The number of departures during T's execution depends on the length of

T's execution (but the length is constant and equal to D for all transactions) and on the number of

concurrently executing transactions. Since it is an open system, the number of concurrently executing

transactions varies during T's execution.

For an exact analysis of the system, in which transactions are only rerun if conflicting transactions

committed during their execution, it is convenient to label the transactions in service by colors, say

green and red. A transaction T is green at the start of every run. During its run, T is colored red as

soon as a transaction commits that conflicts with T. A red transaction discovers at its validation that

it has to be rerun (it then returns to the CPU as a green transaction); a transaction that is still green

at validation time need not be rerun so is allowed to commit. In this way, the color of a transaction at

validation time determines whether the transaction must be rerun. The colors red and green are depicted

in Figure 1 as rand g, respectively.

Using this colorful representation of transactions, the state of the system at time i is exactly de

scribed by the vector (w(i), C1(i), r1(i), ... ,CN(i), rN(i)) with w(i) the number of waiting transac-

(in case of a conflict). We assume the time needed for one execution plus validation of a transaction is

constant and equal to D. Further, it is assumed that the commit phase takes negligible time compared

to execution plus validation, and that validation can be efficiently done in parallel. The assumption

that commit takes negligible time compared to execution plus validation is reasonable, since we con

sider a system where all data-items are in main memory so where no disks are attached. Transactions

arrive at the database according to a Poisson process with rate A. An arriving transaction that finds all

CPUs busy joins the queue. As soon as a CPU is freed by a departing transaction, the transaction first

in queue is taken into execution. We also refer to execution plus validation as one transaction run.

With regard to transaction behavior, we assume that two transactions conflict with probability b.

The conflict probability b is an input parameter for characterizing the amount of data contention in the

system. The value of b is larger when the (number of data-items in the) database is smaller or when

transactions access more data-items.

,,,,,,,
:p(n)

j --I

: N:,
,
·,
·,:n,

Figure 2: M/DIN queue with starting-state dependent feedback

,
·······,,,,
,
L ~ _~?-('.l)_,

3 Approximative Analysis

We call the queueing model of Figure 2 an M / D / N queue with starting-state dependent feedback.

Without feedback, the model is an M / D / N queue because of the Poisson arrival process, the deter-

4

As explained in the previous section, it is only possible to exactly determine whether a transaction

must be rerun by either using a coloring of transactions or by registrating, for every transaction T in

execution, the number of conflicting transactions that committed during T's execution. Such a large

state-description is not tractable for an analysis of the system. Therefore, as an approximation of the

feedback mechanism, suppose we know the probability that a transaction is still green at the end of its

run, given that it found n - 1 other transactions (of which the colors are not known) in execution when

it started its run (n = 1, ... , N). Let us denote this success probability by p(n). (If a transaction is still

green at the end of its run this is called a success.) Then, in order to determine whether a transaction

T must be rerun, we would only have to know how many transactions were present at the start of T's

run; if this number is n, the probability that T does not have to be rerun is p(n).

The only difficulty is, that we can't determine the exact value of the probability p(n) that a trans

action is still green at the end of its run, given that it found n - 1 other transactions in execution at

the start of its run. The reason for this is, that success of a transaction does not only depend on the

total number of transactions in execution at the start of the run, but also on the colors of these trans

actions. Nevertheless, we can approximate the probability p(n). In Section 3.1, an approximation for

p(n) is derived by looking at a so-called 'closed' system where the number of transactions in service

is constant at n (for n = 1, ... , N).

Using the probabilities p(n) as success probabilities, we approximate the queueing model with

colored transactions of Figure 1 by the queueing model with probabilistic feedback of Figure 2 below.

tions at time t, and Ci(t) and riCt), respectively, the color (red, green) and the remaining execution

time of the transaction at CPU i at time t (ri(t) == 0 if CPU i is free), i = 1, ... , N. With this state

description, a simulation program of the system is easily made. However, an exact analysis of the sys

tem with this state-description seems so intractable that we are not very optimistic about the chances

of finding one. Therefore, in the next section we propose an approximative analysis of the system.

ministic execution times, and the N servers. The feedback mechanism is called starting-state depen

dent, because the probability of feedback is p(n) if the total number of customers in service (i.e., the

state of the system) at the start of the run was equal to n.

The MID IN queue with starting-state dependent feedback is not known in literature. Since no

existing analysis of this queue is available, we analyzed it ourselves. An exact analysis seems impos

sible. In Section 3.2 and 3.3, respectively, we study two different approximations for computing the

steady-state probabilities of the MID /N queue with starting-state dependent feedback. The two ap

proaches are similar to those in SASSEN and VAN DER WAL [1996], where an M/ DIN queue with

state-dependent feedback was analyzed (there the success probability of a run depends on the number

of customers in service at the end of the run). Section 3.4 shows how to approximate the response

time distribution in an M / DIN queue with starting-state dependent feedback by using the steady-state

probabilities computed in Section 3.2 or 3.3. The approximation for the response-time distribution de

rived in Section 3.4 serves as approximation for the response-time distribution of the queueing model

of Figure 1, so for the actual real-time database we are interested in.

3.1 Approximation for the success probability p(n)

The success probability p(n) of a transaction that sees n - 1 other transactions in execution at the start

of its run is approximated by the success probability Pc(n) in a closed system with a constant number

of n transactions in service. Thus, we consider the system of Figure 3.
,---------------------: n:

,

9

r

--------------------"

Figure 3: Closed system with n transactions

In the closed system of Figure 3, the number of transactions present (in execution) is kept fixed at n: as

soon as a transaction commits and departs, a new transaction is started at the free CPU. For this system,

we would like to derive Pc(n), the probability that a transaction is still green at the end of its run. From

now on we only consider n > 1, since Pc(l) == 1.

Exact computation of Pc(n)

In order to compute Pc(n), the state of the closed system is exactly described by the (n-l)-dimensional

vector (Cl' ..• , Cn-l), where Ci denotes the color (r for red and 9 for green) of the transaction that is

5

1

I-b

Figure 5: Transition diagram ofclosed system with n=3

From the balance equations we obtain

1I"(g,g)=C, 1I"(r,g)=b(2-b)c, 1I"(g,r)=b(l-b)c, and 1I"(r,r)=b2(2-b)c,

6

which is the sum over all states where the transaction completed next is green.

As an illustration, we compute Pc(2) and Pc(3). Let us first consider n = 2. Figure 4 is a transition

diagram of the Markov chain.

Figure 4: Transition diagram ofclosed system with n=2

pc(n)= L 1I"(g,c2, ... ,cn-d,
C2,···,Cn _l

b

the i-th one to finish its run. The most fresh transaction (the transaction that is the n-th to finish) is

always green, so Cn need not be included in the state-description. Notice that for computing Pc(n) the

remaining service times are irrelevant, so it is not necessary to include them into the state-description.

The Markov chain Hc}, ... ,Cn-l)j,j = 1,2, ...} exactly describes the evolution of the trans

action colors in the closed system. From the steady-state vector 11" of this Markov chain, the success

probability Pc(n) is computed as

The transition diagram is explained as follows. If the transaction that finishes first is red, it is restarted

as a green transaction, so the state changes from r to 9 with probability 1. If a green transaction is

finished, with probability b it colors the other green transaction red, and with probability 1-bit doesn't.

As soon as the green transaction commits, a new green transaction enters execution. Thus, from state

9 the system state changes to r with probability b and to 9 with probability 1 - b. From the balance

equation 11"(r) = b1l"(g) and the normalization equation 11"(r) +1I"(g) = 1 it easily follows that 11"(r) =

b/(1 + b) and 1I"(g) = 1/(1 + b).
The case n = 3 results in the transition diagram of Figure 5.

7

Table 1: Exact and approximated Pe(3) and Pe(10)for various b

Pe(10)

b exact approximated % diff

0 1 1 0

0.01 0.92016213 0.92016844 7E-4

0.1 0.58108885 0.58260747 0.26

0.2 0.43262129 0.43810444 1.27

Pe(3)

b exact approximated % diff

0 1 1 0

0.01 0.98048639 0.98048645 0.01

0.1 0.83910701 0.83920217 0.01

0.2 0.72864322 0.72949017 0.12

relative difference. The difference increases with b, but when b = 0.2 it is still only 0.12% for n = 3

and 1.27% forn = 10. Values of blarger than 0.2 are not interesting, as acc then isn't the appropriate

Comparison of the exact and approximate value of Pe(n) shows, that the approximation is very accu

rate. In the special case of n = 2, the approximation is exact. For n = 3 and n = 10, we compare the

exact and approximate values of Pe(n) for some choices of b in Table 1. The fourth column shows the

Pe(3) = 1r(g,g) + 1r(g, r) = (1 + b - b2)/(1 + 3b - b3
).

The approximation we propose for Pe(n) is the unique fixed point of this equation on the interval (0, 1].

A simple search procedure like bisection can be used to find the fixed point Pe(n).

with c = 1/(1 + 3b - b3). The success probability Pe(3) is

Approximation for Pe(n)

In approximatingpe(n), we don't use any information about the colors ofthe transactions present. We

simply treat all transactions in the same way by assuming that every validating transaction has the same

(still unknown) probability Pe(n) of being successful. Now tag a transaction T. Every transaction that

validates during T's execution is successful (commits) with probability Pe(n). Thus, every transac

tion that validates during T's run colors T red (so makes T unsuccessful) with probability bPe(n). T

is still green at the end of its run if all transactions that validate during T's run do not color T red.

Now make the following important observation: since all transactions last equally long, exactly n - 1

transactions validate during T's run. Hence, the probability that T is still green at the end of its run is

(1- bpe(n))n-l. Thus we have the equality

The number of states of the Markov chain is 2n
- 1 so increases exponentially fast in n. For n = 10,

the number of states that can be attained is 512. Solving the balance equations then requires solving

a system of 512 linear equations in as many unknowns. This is implementable on a fast computer,

but a less elaborate way to compute Pe(n) is strongly desired. We next derive an extremely simple

approximation for Pe(n), which is very accurate as well.

concurrency control scheme anyway. aee was designed for databases with a small conflict probabil

ity, see KUNG and ROBINSON [1981].

Summarizing, our approximation ofPc(n) in the closed system ofFigure 3 serves as approximation

for the success probability p(n) in the open system of Figure 2. For n = 1 to 10, this leads to the

following approximate values for p(n) (see Table 2).

b\n 1 2 3 4 5 6 7 8 9 10

0.01 1.000 0.990 0.980 0.971 0.962 0.953 0.945 0.936 0.928 0.920

0.1 1.000 0.909 0.839 0.783 0.736 0.697 0.663 0.633 0.606 0.583

0.2 1.000 0.833 0.729 0.656 0.600 0.555 0.518 0.488 0.461 0.438

Table 2: Approximate success probabilities p(n) for various b

3.2 Approximation I for the steady state of the M / D / N queue with starting-state
dependent feedback

Approximation I is based on the following approximation assumption regarding the time between two

successive service completion epochs. The assumption is similar to the approximation assumption

TIJMS et al. [1981] used for the MIGIe queue, and was already used in SASSEN and VAN DER WAL

[1996] to approximate the steady-state probabilities of an MID Ie queue with state-dependent feed

back. In an MID Ie queue with state-dependent feedback, the probability that a service run is suc

cessful depends on the number of customers (transactions) in service at the end of the run, so not at the

start. The approximation assumption for the MID IN queue with starting-state dependent feedback is

as follows.

Approximation Assumption

1 a) If just after a successful service completion epoch k customers are in the system with 1 S; k <
N, then the time until the next service completion epoch is distributed as the minimum of k

independent random variables, each uniformly distributed over (0, D).

b) If just after an unsuccessful service completion epoch k customers are in the system with 1 S;

k < N, then the time until the next service completion epoch is distributed as the minimum of

the deterministic variable D and k -1 independent random variables, each uniformly distributed

over (0, D).

2 If just after a successful or unsuccessful service completion epoch k ~ N customers are in the

system, then the time until the next service completion epoch equals DIN with probability 1.

In other words, when k < N, the approximation assumption states that the remaining service time

of each service in progress is distributed as the equilibrium excess distribution of the original service

time. The equilibrium excess distribution of a deterministic variable D is a uniform distribution over

8

9

Define for j = 1, ... , N - 1 and f ? 0 the probability a[j, £] as the probability that £ customers arrive

during Rj. Also, define a[O, f] as the probability thaU customers arrive during D, and a[N, f] as the

for 1 ~ j ~ N - 1.
t < D

t? D

Since the state-description does not contain information about how many transactions were in service

when a transaction, say T, started its run, the success probability oftransaction T can't be determined

exactly by this embedded Markov chain. To overcome this problem, we approximate the number of

transactions in execution at the start ofT's run by the number of transactions in execution just after the

run completion epoch of the transaction that finishes its run last before T. The idea is that this latter

number is known exactly (because the state is observed at every run completion epoch) and will not

differ much from the first number. So again we sacrifice exactness for the sake of a smaller state space,

thus for analyzability.

We want to compute the steady-state probabilities of this approximative embedded Markov chain.

Once the steady state at service completion epochs has been found, the steady-state probabilities at ar

bitrary epochs in time are calculated very easily.

(k, 0): just after an unsuccessful service completion epoch k customers are in the sys

tem, k ? 1. One of the services has just started.

(k, 1): just after a successful service completion epoch k customers are in the system,

k ? O. If k ? N, a new service has just started. Otherwise, all services were

already in progress.

In order to derive the balance equations of the Markov chain, we need some notation. Let Rj be dis

tributed as the minimum of j independent, uniform(0, D)-distributed random variables (j = 1, ... , N

1). Let Rj(t) be the distribution function of Rj. Then

(0, D), see e.g. TUMS [1994]. When k ? N, the approximation assumption states that the system

behaves like an M / D /1 system with feedback, in which the single server works N times as fast as

each of the N servers in the original system.

This type of approximation assumption, based on the equilibrium excess distribution of the service

times, is well known and was first applied successfully for approximating the steady-state probabilities

of the MIGIe queue by TUMS eta!. [1981]. We showed in SASSEN and VAN DER WAL [1996] thatthe

approximation assumption also yields very accurate results for the M / D / e queue with state-dependent

feedback. Therefore, we think that the approximation assumption is also very useful for analyzing the

M / D /N queue with starting-state dependent feedback.

Using the above assumption, we model the M / D / N queue with starting-state dependent feedback

by an embedded Markov chain that only considers the system just after service (or run) completion

epochs. The possible states of this embedded Markov chain are:

10

Here we applied the binomium of Newton and the useful identity

1 ~ j ~ N - 1, £ ~ 0.

[N 0] = _AD/N(AD/N)£
a ,{. e £!.anda[O £] = e-AD (AD)£

, £!

7r(k,l) =

+

7r(N - 1,1) =

+

7r(k,O) =

+

7r(k,l) =

+

k-N k-l
7r(k,O) = L (l-p(N))a[N,£]7r(k-f, 0) + L (l-p(k-£))a[k-£-l,£]7r(k-£,O)

£=0 £=k-N+l
k-l

+ L(1-p(min{k-£, N}))a[min{k-£, N}, £]7r(k-£, 1) + (l-p(l))a[O, k-1]7r(0, 1),
£=0

l D (At)k k (AD)m
Ae-At-,-dt =1 - L e-AD

I·
o k. m=O m.

Now the steady-state vector 7r of the embedded Markov chain is the unique non-negative solution to

the balance equations

k

L p(k - £ + 1)a[k - £, £] 7r(k - £ + 1, 0) + p(1)a[0, k] 7r (0, 1)
£=0

k

LP(k - £ + l)a[k - £ + 1,£]7r(k - £ + 1,1), °~ k ~ N - 2
£=0
N-l
L p(N - £)a[N - 1 - £, £]7r(N - £,0) + p(N)a[N, O]7r(N, 0)
£=1
N-l
L p(N - £)a[N - £,£]7r(N - f, 1) + p(l)a[O, N - 1]7r(0, 1)
£=0
k-l
L(1- p(k - £))a[k - £ - 1, £]7r(k - £,0) + (1 - p(1))a[O, k - 1]7r(0, 1)
£=0
k-l
L(1- p(k - £))a[k - £,£]7r(k - £, 1), 1 ~ k ~ N - 1
£=0

k-NH k
L p(N)a[N,£]7r(k-£+l,O)+ L p(k-f+1)a[k-£,£]7r(k-f+1,0)
£=0 £=k-N+2
k

LP(min{k-£+l, N})a[min{k-£+l, N},£]7r(k-£+l, 1) + p(l)a[O, k]7r(O, 1),
£=0

Computing a[j, £] for j = 1, ... ,N - 1 is more cumbersome, but can be done by conditioning on Rj.

a[j, £] = l D
e-At (~?£ dRj(t)

= j-l (£ + i)! j(-l)i (j _ 1) [_Hi -AD (AD)m]
~ £1 (AD)iH i 1 fo e m!'

probability that £ customers arrive during D / N. Since the arrival process is Poisson with intensity A,

11

together with the normalization equation

the equation for the geometric tail of the ordinary M / D / N queue.

Computing r from (1) and substituting 7r(k, 0) = 7r(M,O)rk - M and 7r(k, 1) = 7r(M,1)rk - M

for k ~ M in the balance equations and in the normalization equation leads to a system of 2M + 1

linear equations. This system can easily be solved since M does not have to be very large to obtain

reasonable accuracy of the solution. Typically, the value of M required by the geometric-tail approach

to obtain some desired accuracy is much smaller than the value of M required when solving for the

steady-state probabilities by truncating the state space, especially when the traffic intensity p is large,

see TIJMS and VAN DE COEVERING [1991].

(1)

1/y = exp(-'xD(1- 1/y)/N),

1 - p(N)(1- y) = exp('xD(1- 1/y)/N)

on the interval (0, 1). When p(N) = 1, this equation simplifies to

00

I}r(k,O) +7r(k, 1)] +7r(0, 1) = l.
k=l

Notice, that a transaction that arrives at an empty system is always successful, so p(1) = 1. For clarity,

we did not substitute this value for p(1) in the above balance equations.

The balance equations can be solved by truncating the state space at a large level M (say), so at

the states (M, 0) and (M - 1, 1), and rejecting customers that find M customers in the system.

Another way to solve the balance equations is by exploiting the geometric-tail behavior of the em

bedded Markov chain, as in TIJMS and VAN DE COEVERING [1991]. It can be shown that the Markov

chain has a single geometric tail. For details, see SASSEN and VAN DER WAL [1996]. Thus there exist a

large Manda r E (0,1) such that for k ~ M, 7r(k, 0) ~ 7r(M, O)rk- M and 7r(k, 1) ~ 7r(M, 1)rk - M .

From the balance equations for 7r (k, 1) and 7r (k, 0) for k ~ N, we find that r is the unique root of the

equation

Next, we show how the steady-state probabilities of the M / D / N queue with starting-state dependent

feedback can be computed from the steady-state probabilities of the embedded Markov chain. Denote

by 'PI(k) the fraction ofdeparting customers that leaves k customers behind in the system. Once 7r(i, 1)

is known for i ~ 0, 'PI(k) can be computed as

7r(k, 1)
'PI(k) = L C 1)' k ~ O.

i>O 7r Z,

Since customers arrive one at a time and are served one at a time, the fraction of real departures that

leaves k customers behind equals the fraction of new customers that finds k customers in the system

upon arrival. Further, because of the Poisson arrival process, we have by the PASTA property (WOLFF

[1982]) that the long-term fraction of time that k customers are in the system equals the fraction of

arrivals that finds k customers in the system.

Hence, the probabilities 'PI(k) are our first approximation for the steady-state probabilities of the

M / D / N queue with starting-state dependent feedback.

12

3.3 Approximation II for the steady state of the M / D / N queue with starting-state
dependent feedback

N+k min{j,N}

qk(t+D)= L qj(t) L Bfa[k-j+i] for k~O.
j=O i=max{O,j-k}

(2)

k ~ 0,
N+k min{j,N}

L qj L B{ ark - j + i],
j=O i=max{O,j-k}

1.

Thus, an approximation for the time-average probabilities qk is found from the linear equations

It remains to specify the probability B{, that is, the probability that i services are completed success

fully during a time-interval (0, D] if j customers are present at time O. Of course, in the special case

that p(n) = 1 for all n, B{ = 1 for i = min{N, j} and B{ = 0 otherwise. Then the model reduces to

the ordinary M / D / N queue and the analysis is exact. However, for the general M / D / N queue with

starting-state dependent feedback, it is not possible to compute the exact value ofBf if the system state

is observed only after every D time units.

The probability that a service is successful depends on the number of customers present at the mo

ment the service is started. This number is not known exactly, because the system state is not observed

at service start epochs. Therefore, we studied the following approximation for B{. We approximated

In Approximation I, the time between successive service completions is approximated. Moreover, the

success probability is approximated. Approximation II, which will be discussed next, is inexact with

respect to the success probability but exact with respect to time. In SASSEN and VAN DER WAL [1996]

a similar Approximation II was derived for the M / D / c queue with state-dependent feedback.

Let us explain Approximation II. Just as in the exact analysis of the ordinary M / D / c queue by

CROMMELIN [1932], we observe the state of the system every D time units. Since the service times

are constant and equal to D, any customer in service at some time t will have completed his service

- either successfully or unsuccessfully - at time t +D. The customers present at time t +D are

exactly those customers who completed an unsuccessful service during (t, t +D], plus the customers

who were either waiting in queue at time t or who arrived in (t, t+D]. Hence, we can relate the number

of customers in the system at time t +D to the number in the system at time t.

To do this, let qk(u) be the probability that k customers are in the system at time u. Also, let all]
be the probability thatl customers arrive in (t,t+ D],soa[f] = e->'D(>\D)€/l!forl ~ 0. Finally,

let Bf denote the probability that i services are completed successfully during a time-interval (0, D],
given that j customers are in the system at the start of the interval. How to find Bf is discussed in

detail below, but first we state the relation between the number of customers present at time t and at

time t +D.

By conditioning on the state at time t we find

Bf by the probability that a binomial(min{N, j}, p(min{N, j}))distributed random variable equals i.

This approximation ignores that the transactions that finish service during (0, D] have a success prob

ability that is dependent on the number of transactions in execution at their starting time, which lies

before time 0 instead of at time O.

Just as for Approximation I, it can be seen that the probabilities qk have a geometric tail, Le., qk ~

qk-l T as k -+ 00. The geometric-tail factor T is exactly equal to the tail of Approximation I, so T is

the root of equation (1) on the interval (0,1). Hence, the probabilities qk can be computed by choosing

a large M and substituting qk = qMTk- M in (2) for k 2: M.

The steady-state probabilities qk obtained by solving (2) are our second approximation for the

steady-state probabilities of the M / D/ N queue with starting-state dependent feedback. We denote

these probabilities by <PII(k), k 2: 0.

3.4 Approximation for the response-time distribution

Define S as the response time of an arbitrary transaction. Using the approximation assumption of Sec

tion 3.2 and Approximation I or II for the steady-state probabilities of the M / D / N queue with starting

state dependent feedback, we approximate the distribution of S.

Let the random variable L denote the steady-state number of transactions in the system. Denote

our approximation for the distribution of L by {<p(k), k 2: o}. (This can be either <PI(k) or <PII(k).)

According to Little's theorem, E[L] =)"E[S]. Hence, we compute our approximation for the expected

response time E[S] as
1

E[S] = :x Lk<p(k).
k

To approximate the distribution of S, we need to approximate the distribution of the waiting time and

the total service time of a transaction.

Let us first discuss the service-time distribution. Every service run of a transaction takes D time.

The probability that another run is needed depends on the number of transactions in execution at the

moment the present run was started. This number is only known for the first run of a transaction and

is given by the steady-state probabilities. For the later runs, we approximate the number in execution

at the start of a run of transaction T by the number of transactions in execution at the start of the first

run of transaction T. Thus we approximate the service time by a geometrical distribution.

Next, we discuss the waiting-time distribution. If a transaction T finds i 2: N transactions in the

system upon arrival, it has to wait until i - N + 1 service completions have been successful. Us

ing part 2 of the approximation assumption of Section 3.2, the time between the arrival of T and the

next service completion is approximately uniform(O, ~)-distributed. As an approximation, we say that

with probability p(N) that service is successful. Then T still has to wait for i - N successful ser

vice completions. With probability 1 - p(N), that service is unsuccessful. Then T still has to wait

for i - N + 1 successful service completions. As long as all CPUs are busy, the number of service

completions needed for j successful services is approximately negative-binomially distributed with

parameters j and p(N). Hence, using part 2 of the approximation assumption, the time needed for j

13

successful service completions (starting just after a service completion epoch) is approximately D / N

times a negative-binomial(j,p(N)) distributed variable.

Denote by Gi a geometrically distributed random variable with success probabilityp(i), denote by NBj

a negative-binomially distributed variable with parameters j and p(N), and let U(O, a) be a uniform

(0, a)-distributed random variable. Summarizing the above discussion, the approximation we suggest

is as follows.

Total Service-Time Distribution If a transaction T sees i other CPUs busy at the start

of its first service run, the distribution of the total service time of T is approximated by

D Gi+l'

Waiting-Time Distribution If a transaction T finds i ~ N transactions in the system

upon arrival, the waiting-time distribution of T is approximated by

{
U(O, ~) + ~NBi-N W.p. p(N)

U(O,~)+ ~NBi-N+l w.p. 1 - p(N).

Here 'w.p.' means 'with probability'.

Our approximation for the response-time distribution thus is

N-I 00

P(S:::; t) = l: <p(i)P(D Gi+1 :::; t) +p(N) l: <p(i)P(U(O, ~) + ~NBi-N +D GN :::; t)
i=O i=N

00

+(1- p(N)) l: <p(i)P(U(O, ~) + ~NBi-N+l +D GN :::; t).
i=N

Similarly, for a direct approximation of E [S2] we propose

N-I 00

E[S2] = l: <p(i)E[D2G~+l]+p(N) l: <p(i)E[(U(O, ~) + ~NBi-N +D GN)2]
~o ~N

00

+(1- p(N)) l: <p(i)E[(U(O,~)+ ~NBi-N+l +D GN)2].
i=N

Note, that we could have approximated E[S] in this way as well. However, we already have an ap

proximation for E[S] from Little's theorem.

4 Numerical Results

In Section 4.1, we test the accuracy of the Approximations I and II by comparing the approximations

for the response-time distribution with the values produced by a simulation of the system. In Section

4.2, we discuss an example of the applicability of the analysis for real-time database design. We show

how to choose the number of CPUs needed to achieve some prespecified performance level.

14

4.1 Response-time distribution

We tested Approximation I and II by comparing them with a simulation of the system. Without loss of

generality, the execution time D of the transactions was taken equal to 1. In the simulation program,

the system state was registered exactly in the record (w(t), CI(t), rl(t), ... , CN(t), rN(t)) as described

at the end of Section 2. Applying Approximation I and II, we computed E[S], sdev(S) (the standard

deviation of S), P(S > 2), P(S > 5), and P(S > 10) as described in Section 3.4.

We looked at systems with N =2,4, 8, and 10. Besides N, the input parameters were the conflict

probability b and the arrival intensity per CPU Al (so Al = AIN). The parameter b was chosen at 0,

0.01,0.1, and 0.2. To explain how Al was varied, we define

AD AID
Pu:= Npc(N) = Pc(N)"

Since Pc (n) is decreasing in n, PU is an upper bound on the server utilization. The arrival intensity per

CPU, Al> was varied such, that for every choice of b systems with PU from 0.50 to about 0.98 were

investigated.

Table 3 and Table 4 contain a representative selection of the simulation and analysis results. For

various choices of the input parameters N, AI, b, and pu, the tables show E[S] and sdev(S). In ad

dition, Table 3 shows P(S > 2) and P(S > 5), and Table 4 shows P(S > 5) and P(S > 10).

E[S] sdev(S) P(S> 2) P(S> 5)
N Al b PU ApI ApII Sim ApI ApII Sim ApI ApII Sim ApI ApII Sim
2 0.70 0.01 0.71 1.56 1.53 1.53 0.77 0.76 0.76 0.20 0.19 0.19 0.005 0.004 0.004

0.10 0.77 1.92 1.94 1.93 1.26 1.24 1.20 0.34 0.34 0.34 0.031 0.031 0.029

0.80 0.01 0.81 2.02 1.98 1.98 1.24 1.23 1.23 0.37 0.35 0.35 0.034 0.032 0.032

4 0.60 0.10 0.77 1.58 1.63 1.61 0.97 0.92 0.86 0.23 0.23 0.22 0.009 0.009 0.007

0.90 0.00 0.90 2.04 2.00 2.00 1.20 1.20 1.20 0.38 0.36 0.37 0.032 0.030 0.031

8 0040 0.10 0.63 1.33 lAO lAO 0.86 0.79 0.74 0.10 0.10 0.10 0.004 0.004 0.003

0.20 0.82 2.15 2.26 2.21 1.67 1.63 1.52 0.36 0.38 0.37 0.061 0.065 0.054

10 0.35 0.10 0.60 1.35 1.42 1.43 0.90 0.83 0.78 0.10 0.10 0.10 0.004 0.005 0.003

0.20 0.80 2.12 2.23 2.21 1.69 1.65 1.58 0.34 0.35 0.35 0.058 0.061 0.055

Table 3: Distribution of the response time S: analysis versus simulation

The simulated values are accurate up to the last digit shown. The number of transactions simulated

was such, that the width of the 95% confidence interval is smaller than the last shown decimal place.

For instance, a simulated value of 2.56 for E[S] means, that the 95% confidence interval lies inside

[2.55,2.57].

The numerical experiments indicate, that both approximative analyses give reasonably accurate

results. For both approximations, the error in E[S] is typically smaller than 7%, where the worst cases

are those with b = 0.1 or 0.2 and PU :2: 0.91. The relative error in sdev(S) is typically below 10%,

with a few exceptions again for b =0.1 or 0.2 and PU :2: 0.90, or for sdev(S)< 1, with errors of about

15

16

Table 4: Distribution of the response time S: analysis versus simulation

ana b=O
ana b=0.01 ..
sim b=O
sim b=0.01 •

(b) N = 10

1.00 ,---,----.----,.-.-----.----.-----r-.----..,.......,

0.90
'.

0.80 \
'.

0.70 '.
\.

0.60 '.

0.50 ~\\0.40
'..

0.30 ..
0.20 ...

0.10 ~0.00 L-~~-I

1 2 3 4 5 6 7 8 9 107 8 9 10

ana b=O
ana b=0.01 .
sim b=O
sim b=0.01 •

2 3 4 5 6

••\
\
'.

"\"''''
",'.'.............

(a) N = 4

Figure 6: P(S > t) againsttfor b = 0 and b = 0.01

1.00 ,---,----.----,.-..----,----.----,.-.----..,.......,

0.90

0.80 ..
~0.70

0.60

0.50

0.40

0.30

0.20

0.10
0.00 1--'----'------'---~~,,;;;;;::=0lIlllIIl__.J

1

E[S] sdev(S) P(S> 5) P(S> 10)
N Al b PU ApI ApI! Sim ApI ApI! Sim ApI ApI! Sim ApI ApI! Sim

2 0.70 0.20 0.84 2.70 2.80 2.72 2.17 2.15 2.01 0.13 0.13 0.12 0.012 0.013 0.010

0.80 0.10 0.88 3.12 3.13 3.10 2.45 2.43 2.38 0.17 0.17 0.17 0.022 0.022 0.020

0.20 0.96 9.26 9.36 8.97 8.7 8.7 8.3 0.60 0.61 0.60 0.34 0.34 0.33

0.90 0.00 0.90 3.20 3.15 3.15 2.42 2.41 2.40 0.18 0.17 0.17 0.022 0.021 0.021

0.01 0.91 3.50 3.45 3.44 2.72 2.72 2.71 0.21 0.21 0.21 0.034 0.033 0.033

4 0.60 0.20 0.91 3.69 3.82 3.58 3.10 3.08 2.74 0.25 0.26 0.23 0.047 0.049 0.034

0.70 0.10 0.89 2.59 2.62 2.53 1.89 1.86 1.74 0.10 0.10 0.09! 0.007 0.007 0.005

0.90 0.01 0.93 2.60 2.56 2.56 1.78 1.77 1.76 0.10 0.09 0.09 0.006 0.006 0.005

8 0.45 0.20 0.92 3.62 3.71 3.55 2.85 2.83 2.59 0.24 0.25 0.22 0.037 0.038 0.028

0.90 0.01 0.96 2.70 2.68 2.66 1.83 1.83 1.80 0.10 0.10 0.10 0.007 0.007 0.006

10 0.40 0.20 0.91 3.40 3.42 3.31 2.58 2.55 2.38 0.20 0.21 0.19 0.025 0.025 0.020

0.55 0.10 0.94 3.30 3.32 3.10 2.41 2.39 2.14 0.19 0.19 0.16 0.020 0.020 0.012

0.90 0.01 0.98 3.57 3.55 3.53 2.68 2.68 2.67 0.22 0.21 0.21 0.033 0.033 0.032

In Figure 6(a) and (b), respectively, we plotted P(S > t) against t for b = 0 and b = 0.01, with),l =

0.90, and N = 4 and N = 10, respectively. The symbols depict simulation results, the (dotted) lines

As for the tail probabilities of the response time, the tables show that Approximation I and II are not

accurate up to the second decimal, but the absolute error almost always is smaller than 0.02. Hence,

Approximation I and II are sufficiently accurate for database design purposes. Moreover, the analyses

tend to give a slight overestimation, so a pessimistic view, of P(S > t), which in the design phase is

preferred to a too optimistic view.

12%. For b = 0 and b = 0.01, the approximations are very good: irrespective ofthe (high) value of

Pu, the errors in E[S] and sdev(S) are always below 2%.

analysis results from Approximation II. According to the subfigures, simulation and analysis results

agree very well. Both subfigures also clearly show the effect of data conflicts on the response time

under ace. For N = 10, the difference in P(S > t) between the cases b = 0 and b = 0.01 is much

larger than for N = 4: more parallelism implies more conflicts.

Finally we point out, that the approximations for the system behavior are not only good, but also

very fast. The runtime of the simulations exceeded the runtime of the analyses by a factor up to 1000

(so where simulation took a day, the analysis took only about 1 minute).

4.2 How many CPUs are needed?

How can we determine which number of CPUs will yield the best system performance, given the con

flict probability b and the total arrival intensity A?

The answer to this question depends on the performance measure of interest. As explained in

Section 1, the performance measure of interest for a database is throughput, whereas for a real-time

database (RTDB) the fraction of transactions that meets its deadline is more important. The latter per

formance measure is called a real-time performance measure. In the following, we first consider the

maximum throughput of a RTDB, given the number of CPUs N and the conflict probability b. Next, we

discuss how to determine which number of CPUs is needed to guarantee some prespecified real-time

performance level, for a RTDB with arrival intensity A.

Maximum throughput

An approximation for the maximum throughput (MT) can be calculated as N Pc(N) using Table 2.

For N = 1 to 10, Table 5 shows MT and the marginal efficiency (ME) of having one extra CPU. The

marginal efficiency ME at N is the difference of the throughput with N - 1 and N CPUs. It shows

the extra useful capacity available if CPU N is added. Dependent on the cost of one extra CPU, and

on the transaction arrival rate A, the appropriate value of N can be chosen using Table 5.

N I 2 3 4 5 6 7 8 9 10
b MT ME MT ME MT ME MT ME MT ME MT ME MT ME MT ME MT ME MT

0 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10

0.01 1 0.98 1.98 0.962.94 0.943.88 0.934.81 0.91 5.72 0.906.62 0.87 7.49 0.86 8.35 0.85 9.20

0.1 1 0.82 1.82 0.702.52 0.623.13 0.55 3.68 0.504.18 0.464.64 0.42 5.06 0.39 5.45 0.38 5.83

0.2 1 0.67 1.67 0.522.19 0.442.62 0.38 3.00 0.33 3.33 0.30 3.63 0.28 3.90 0.25 4.15 0.23 4.38

Table 5: Maximum throughput and marginal efficiency for various Nand b

Notice, that if the number of CPUs N tends to infinity, the maximum throughput MT(N) also tends

to infinity, though very slowly. Since this is theoretically more interesting than practically, we refer to

the Appendix for a further discussion of this asymptotic behavior.

17

18

Real-time performance

(b) A; 95(N, 0.2) and AS 95(N, 0.2), ,(a) >..; 90(N, b) for b = 0.01 and 0.2,

9.0
(3,90) b = 0.01 -

3.5
8.0 (3,95) b = 0.2 - ..

A* 7.0 (3,90) b = 0.2 ... - A* 3.0 (5,95) b = 0.2

6.0 2.5

5.0 2.0
4.0 1.5
3.0 1.0
2.0- ..

1.0 .. 0.5

0.0 0.0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

N N

Figure 7(a) plots A;,90(N, b) against N, for a system with b = 0.01 and a system with b = 0.2.

The influence of conflicts (b = 0.2 versus b = 0.01) is clear: it reduces the value of the maximum

allowable arrival intensity dramatically.

Figure 7(b) plots At 95(N, 0.2) against N for t = 3 and t = 5. We remark that each of the graphs,
converges to a finite value as N gets large, which was not visible for the system with b = 0.01 in

Figure 7(a). The interpretation of the flat curves at large N is that, from a certain value of N on, the

real-time perfonnance (i.e., the service level a) of the system cannot be improved: adding more CPUs

becomes practically useless.

Plots like Figure 7 are very helpful for design purposes: they can be used to detennine which num

ber of CPUs is needed to guarantee (t, a)-efficiency if the conflict probability is b and the arrival in-

Figure 7: Maximum arrival rate At,OI(N, b) as afunction ofN

In a RTDB, the perfonnance is measured as the percentage of transactions that meets its deadline. Let

us introduce the following notion. A RTDB is (t, a)-ejJicient if at least a% of the transactions meets

its deadline t. Fonnally: P(S ~ t) 2: (a/100) with 0 ~ a ~ 100. We call a the ejJiciency level or

the service level. For example, from Table 4 it can be seen that a RTDB with N = 4, b = 0.01 and

A = 3.6 is (10, 99)-efficient and (5, 90)-efficient, but not (5, 95)-efficient.

For a database with given b and N, it is interesting to detennine the maximum value of the ar

rival intensity A for which the system is still (t, a)-efficient. We denote this maximum value of A by

>";,OI(N, b). Using our approximative analysis II, we have computed A;,OI(N,b) for various N, b, t,
and a. For every choice of N, b, t, and a, a bisection method with respect to A was applied to find

A; 01 (N, b). In this way, the perfonnance of the system had to be recomputed for many different values,
of >... (Being able to deal with this kind of complicated perfonnance questions underlines the tremen-

dous importance of having a fast analytic approach for perfonnance calculations. With simulations it

would take weeks to get an answer, whereas with the analysis it is only a matter of minutes.)

tensity is A.

For example, suppose we have a conflict probability bof 0.2 and an arrival intensity Aof 1.5. Also,

suppose we require that the system to be built must be (3, 95)-efficient, Le., at least 95% of the trans

actions must have a response time smaller than 3. Then Figure 7(b) shows us, that this service require

ment is not fulfilled with 3 CPUs, because A39s(3, 0.2) = 1.28 < 1.5. Since A39S(4,0.2) = 1.55,4, ,
CPUs suffice to satisfy this 95% service level.

As a second example, suppose we have built a system with 8 CPUs for the situation b = 0.2 and

A = 2. As can be seen from Figure 7(b), the system with N = 8 is (3, 95)-efficient. However, what

happens to the efficiency level of the RTDB ifthe traffic intensity Aincreases by 20% to 2.4? How many

CPUs must be added in order to restore the (3, 95)-efficiency? As can be guessed from the figure, and

as is concluded from numerical experiments, the value of A3,9S(N, 0.2) never exceeds 2.3. Theoretical

support for this is given in VAN DER WAL and SASSEN [1997]. Hence, if A increases to 2.4, the RTDB

cannot be made (3, 95)-efficientanymore, no matter how many CPUs are added. It is important to keep

this observation in mind when designing a RTDB with ace.

5 Concluding Remarks

In this paper, we derived two approximations for the response-time distribution in a real-time database

with optimistic concurrency control, N CPUs, and constant execution times of length D. Approxima

tion I was based on an embedded Markov chain analysis and the well-known residual life approxima

tion of TIJMS et al. [1981] was used for the remaining execution times of the transactions in execution.

Approximation II resembled the exact analysis of the M / D / N queue (CROMMELIN [1932]) by ob

serving the state of the system after every D time units.

Numerical experiments for various system loads and conflict probabilities indicated, that both ap

proximations produce reasonably accurate estimates for the transaction response-time distribution. The

error in the average response time is typically smaller than 7%, and the error in the standard deviation

of the response time is typically below 10%. The absolute error in the distribution of the response time

is at most 0.03.

The combination of reasonable accuracy and very short computing times (compared to simulation)

makes our approximative analyses very well suited for the purpose of real-time database design. With

little effort, it is possible to compute the number ofCPUs needed to achieve some prespecified real-time

performance. We have proposed to measure the performance of a real-time database in terms of (t, a)

efficiency. A real-time database is (t, a)-efficient if, under a given arrival intensity of transactions, at

least a% of the transactions have a response time smaller than (their time to deadline) t. Using the

analyses, we can for instance check whether the real-time database remains (t, a)-efficient when an

increase in the transaction arrival rate occurs, and if the database doesn't remain (t, a)-efficient, we

can compute how many extra CPUs are needed to restore (t, a)-efficiency. In this way we can account

for future grow of traffic already in the design phase.

19

References

CROMMELIN, C.D. [1932]. Delay probability formulae when the holding times are constant. Post

Office Electrical Engineers Journal, 25, 41-50.

KLEINROCK, L., AND F. MEHOVIC [1992]. Poisson winner queues. Performance Evaluation, 14,

79-101.

KUNG, H., AND I. ROBINSON [1981]. On optimistic methods for concurrency control. ACM Trans

actions on Database Systems, 6,213-226.

MENASCE, D.A., AND T. NAKANISHI [1982]. Optimistic versus pessimistic concurrency control

mechanisms in database management systems. Information Systems, 7, 13-27.

MORRIS, R.I.T., AND W.S. WONG [1985]. Performance analysis of locking and OCC algorithms.

Performance Evaluation,S, 105-118.

PAPADIMITRIOU, C.H. [1986]. The Theory ofDatabase Concurrency Control. Computer Science

Press, Rockville, Maryland.

SASSEN, S.A.E., AND I. VAN DER WAL [1996]. Two approximations for the steady-state probabili

ties and the sojourn-time distribution of the M / D / c queue with state-dependent feedback. Techni

cal Report COSOR 96-34, Dept. of Mathematics and Computing Science, Eindhoven University of

Technology.

SASSEN, S.A.E, AND I. VAN DER WAL [1997]. The response-time distribution in areal-time database

with optimistic concurrency control and exponential execution times. In V. Ramaswami and P.E.

Wirth (editors), Proceedings ofthe International Teletraffic Congress (ITC) 15, Washington, D.C.,

U.S.A., June 23-27,1997. North-Holland.

TIJMS, H.C. [1994]. Stochastic Models: An Algorithmic Approach. John Wiley & Sons, Chichester.

TIJMS, H.C., AND M.C.T. VAN DE COEVERING [1991]. A simple numerical approach for infinite

state Markov chains. Probability in the Engineering and Informational Sciences,S, 285-295.

TIJMS, H.C., M.H. VAN HOORN, AND A. FEDERGRUEN [198l]. Approximations for the steady-state

probabilities in the M / G / c queue. Advances in Applied Probability, 13, 186-206.

WAL, J. VAN DER, AND S.A.E. SASSEN [1997]. The M/G/oo queue with OCe. Technical Report

COSOR, Dept. of Mathematics and Computer Science, Eindhoven University of Technology.

WOLFF, R.W. [1982]. Poisson arrivals see time averages. Operations Research, 30, 223-231.

20

21

Appendix

From this equation it is immediately clear that MT(N) cannot converge to a finite value when N tends

to infinity. We thus conclude that MT(N) -+ 00 as N -+ 00.

Simulations of closed systems with a large number of CPUs support this conclusion. Moreover,

they showed that the solution of equation (3) for a fixed, large N gives a fairly accurate indication of

MT(N). For instance, a simulation of a closed system with b = 0.2 and N = 1000 produces an

MT(1000) of about 18.4. The solution of (3) in that case is 18.0.

Summarizing, if the number of CPUs N tends to infinity, the maximum throughput MT(N) also

tends to infinity. However, the rate of convergence can be extremely small. As an example, having

1000 CPUs instead of 500 in a system with b = 0.2 yields an additional throughput of only about 2.5.

Also, to go from a MT of 18 (with 1000 CPUs) to 36 we need more than 100000 CPUs!

(3)MT(N) = N(1- b)MT(N).

In this Appendix, we discuss the asymptotic behavior of the maximum throughput MT(N). What hap

pens to MT(N) if the number of CPUs N tends to infinity?

The algorithm of Section 3.1, which computes the exact value of Pc(N) (and thus the exact value

ofMT(N) = NPc(N) from a Markov chain, is computationally not feasible for N -+ 00. Moreover,

the approximation we derived for Pc(N) in Section 3.1 is asymptotically not applicable, because it

becomes more and more inaccurate as N becomes larger.

Hence, we used the following heuristic argument to derive the asymptotic behavior of MT(N).

MT(N) denotes the long-run average number of committing transactions per unit time in a closed sys

tem with N CPUs. Since every run of a transaction takes exactly 1 time unit, the probability that a run

is successful equals I:~=l P(n transactions commit during 1 time unit)(1- b)n. For N large, we as

sume that this approximately equals (1 - b)MT(N), with MT(N) = I:~=l nP(n transactions commit

during 1 time unit). Thus, for N large, approximately N(1- b)MT(N) transactions commit per unit

time. Hence, an approximation for MT(N) with N large is found as the fixed point of the equation

