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Introduction

Lot-sizing is the timing and sizing of production quantities that satisfy the de-
mand for a product such that production resources are used efficiently. Research
on lot-sizing has been focussed to a large extent on the analysis of off-line models
with a finite time horizon. For an overview of this literature we refer to the work of
Bahl, Ritzman & Gupta [1987] and Aggarwal & Park [1993]. Off-line models as-
sume that all information about problem parameters is given in advance. However,
in many practical settings, demand information comes in gradually and a sequence
of decisions has to be made over an indefinite time horizon. In such cases, off-line
models are often inadequate and the lot-sizing has to be done on-line. Such situa-
tions arise for instance in material requirements systems and hierarchical planning
systems [Silver & Peterson, 1985]. An obvious approach is to consider orn-line
lot-sizing from a probabilistic point of view by modeling the demand process as
a random process and choosing a suitable optimality criterion. Although mathe-
matically very attractive, such an approach is practically of little use, since it is
usually already technically complicated for relatively simple models of the demand
process. Most attention in on-line lot-sizing has therefore been paid to relatively
simple heuristics. These heuristics often have varying performance characteristics
which typically depend on the particular on-line lot-sizing problem at hand. As for
now, no on-line lot-sizing approach exists that shows a satisfactory performance
and is generally applicable.



2 Introduction

Recent advances in the design and manufacturing of integrated circuits have brought
the construction of parallel computers, consisting of thousands of individual process-
ing units, within our reach. A direct consequence of these technological advances
is the growing interest in computational models that support the exploitation of
massive parallelism. Connectionist models [Feldman & Ballard, 1982] are compu-
tational models that are inspired by an analogy with the neural network of human
brains. The corresponding parallel computers are called neural networks and the
field of research neural computing. For an overview of this field we refer to the
textbook by Hertz, Krogh & Palmer [1991]. Besides the purely technical benefit of
parallel computation, many models in neural computing have human-like capabil-
ities such as association and learning, which are essential in areas such as speech
and image processing [Kohonen, 1988]. The largest potential of neural computing
is in areas where no efficient solution strategies exist, in which modeling of the
decision process is difficult, or in which problems are characterized by incomplete
data. In recent years neural computing has emerged as a practical technology with
successful applications in many fields [Wong, Bodnovich & Yakup, 1997]. More-
over, several of the methods, which were once justified by vague appeals to their
neuron-like qualities, can now be given a solid statistical foundation [Bishop, 1995].
The majority of these results-are concerned with pattern recognition and use neural
network models with a feed-forward network topology such as the multi-layered
perceptron.

The essential feature of a neural network approach to on-line lot-sizing is that it
is an implicit modeling approach, which means that we look for a tuning of the pa-
rameters of the neural network such that it mimics a sensible input-output behavior,
rather than that we try to explicitly model the underlying demand process. One may
expect that such an approach can lead to useful results, since the on-line lot-sizing
problem is too complicated for the traditional explicit modeling approaches and,
moreover, it is relatively easy to determine what would have been the optimal lot
sizes afterwards. The latter feature enables the construction of examples of on-line
lot-sizing situations and their corresponding off-line optimal lot sizes required for
the tuning of the parameters of the neural network. This approach combines the
implicit model-building skills of neural networks with traditional off-line analy-
sis. Being the most successful and most widely studied neural network model,
the multi-layered perceptron is the most obvious candidate to be investigated. In
this thesis we investigate the potential of multi-layered perceptrons for on-line lot-
sizing.
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Figure 1.1. On-line model of demand information.

1.1 On-line lot-sizing

In on-line models it is often assumed that decisions are made without any knowl-
edge of future problem data. For example, in the case of on-line bin packing, items
arrive sequentially and whenever an item has arrived it must immediately be as-
signed to a bin. We refer to Karp [1992] for an overview of the literature in this
area. In lot-sizing it is more realistic to adopt the following intermediate view be-
tween the two extremes constituted by off-line models (complete information about
the future) and on-line models (no future information). It is assumed that the de-
mand occurs during discrete time intervals called periods and is given for a fixed
number of periods into the future. These periods are called the data horizon. Fig-
ure 1.1 shows the corresponding on-line model of demand information and distin-
guishes between demand information regarding the past, the known future, and the
unknown future.

Important differences between off-line and on-line models for lot-sizing are in
the problem formulation and the definition of optimality. Since all demands are
given in advance, off-line lot-sizing problems can be formulated as optimization
problems, where the goal is to find lot sizes such that demand is satisfied at mini-
mal cost. However, in on-line problems the impact of a lot size decision depends in
general on the unknown future demands, making a problem formulation conceptu-
ally more difficult.

To anticipate on the continuously changing knowledge of the future, on-line lot-
sizing is usually done on a rolling-horizon basis, which can be described as follows.
At the beginning of each period, one determines the lot sizes for a number of sub-
sequent periods starting with the first period. Only the first of these lots becomes
firm, the rest remains tentative. After this first decision has been implemented, the
data horizon is updated and the procedure repeated. Therefore we may concentrate
on the determination of the first lot size.

According to the specific model assumptions for the unknown future demands,
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we distinguish between three types of approach for on-line lot-sizing, i.e., myopic
approaches, explicit modeling approaches, and implicit modeling approaches. Be-
low we briefly discuss this taxonomy and give some examples.

Myopic approaches. In a myopic approach, nothing is assumed about the un-
known future demands. The most obvious myopic approach is to optimize over the
data horizon and to implement the firstlot size. A typical result in this area is due to
Lee & Denardo [1986], who give a worst-case error bound for this approach. Many
myopic approaches involve the minimization of some local objective. For example
in the heuristic proposed by Silver & Meal [1973], the first lot size is taken equal
to the cumulative demand for the first k periods, where & is chosen such that the
average cost per period is minimal. Several myopic approaches were proposed in
the literature which are reviewed in Chapter 2.

Explicit modeling approaches. In an explicit modeling approach, the unknown
future demands are explicitly modeled by assuming they are realizations of some
random process, possibly with unknown parameter values. These parameters may
characterize for example the noise part of the demand process or some systematic
trend and could be estimated from past demand data. Given such an explicit model
there are different possibilities.

One option that is commonly used in practice is to use an explicit model of the
demand process to forecast some of the unknown future demand values. These fore-
casts are then incorporated in an off-line lot-sizing procedure [Silver & Peterson,
1985]. The performance of such an approach strongly depends on the quality of
the forecasts and the sensitivity of the off-line lot-sizing procedure for forecast er-
rors. If, moreover, it is assumed that the unknown future demands are independent
realizations of a random variable, on-line lot-sizing problems can be formulated
as Markov decision problems and can be solved as such [Tijms, 1994]. The re-
sults of this type of research are mathematically attractive but practically of little
use, because of the rather restrictive structure which is required for the demand
process and the relatively complicated estimation and optimization procedures re-
quired [Dellaert & Melo, 1995].

Finally, we mention the explicit modeling approach by Lee, Kramer & Hwang
[1991], who model the unknown future demands as fuzzy sets [Zadeh, 1965] and
solve the on-line lot-sizing problem as a fuzzy optimization problem [Delgado,
Kacprzyk, Verdegay & Vila, 1994].

Implicit modeling approaches. In an implicit modeling approach, one takes a
parameterized black-box in which the number of adaptive parameters can be in-
creased in a systematic way. This black-box represents a very general class of
functional forms and can be made increasingly general by increasing the number
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of adaptive parameters. Given such a black-box, one tries to find parameter values
such that the device shows a sensible input-output behavior on at least a representa-
tive set of examples of on-line lot-sizing situations and their corresponding off-line
optimal lot sizes.

An implicit modeling approach for the on-line version of the well-known lot-
sizing problem introduced by Wagner & Whitin [1958] was proposed by Zwieter-
ing, Van Kraaij, Aarts & Wessels [1991]. To the best of our knowledge this is the
only literature on the use of neural networks for on-line lot-sizing problems. We
refer to the work of Corsten & May [1996] and Stehouwer, Aarts & Wessels [1994]
for discussions of the potential for using neural networks for production planning
and control applications.

Problem statement. Advantages of myopic approaches are the absence of de-
mand history requirements and their often straightforward implementation. Unfor-
tunately only worst-case performance guarantees can be given, since no assump-
tions are imposed on the unknown future demands. Some of these approaches can
be arbitrarily bad [Vachani, 1992]. Although many myopic approaches were pro-
posed in the literature, there is still no myopic approach that is robust in the sense
that it yields a good performance, irrespective of the model parameters. These
deficiencies could be overcome by adopting the mathematically attractive Markov
decision formulation. However, this is only feasible if the nature of the demand
process is well understood and not subject to change, which is hardly the case in
practical situations. For these reasons there is a substantial gap between theory and
practice and, up to now, there is no overall satisfactory solution approach for on-line
lot-sizing problems.

The intention of this thesis is to investigate the potential of implicit modeling
by multi-layered perceptrons for on-line lot-sizing problems. Implicit modeling ap-
proaches have the advantage that they do not require any prior understanding of the
demand process and therefore have potential practical value. Implicit modeling ap-
proaches, however, do require a relevant demand history. An often heard argument
against the use of neural networks is the black-box character of the obtained model.
We object to that by remarking that most neural network approaches are statistically
well-founded and from that point of view not essentially different from statistical
methods [Bishop, 1995]. We aim at obtaining approaches that are robust, i.e., have
good performance characteristics that are relatively insensitive to the model para-
meters. Under the condition that sufficient learning examples can be constructed,
multi-layered perceptrons have the potential of providing such an approach.
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1.2 Neural networks

A neural network consists of a network of elementary nodes that are linked through
weighted connections. These nodes represent computational units which are ca-
pable of performing a simple computation. The result of this computation gives
the output of the corresponding node. Moreover, the output of a node is used as
an input for the nodes to which it is linked through an outgoing connection. The
network topology of a neural network is determined by the number of nodes and
the way they are connected. The neural network model under consideration is the
multi-layered perceptron, in which the units are arranged in layers with connections
between subsequent layers only. Multi-layered perceptrons are discussed in great
detail in Chapter 4. For more details on other neural network models, we refer to the
textbooks by Aarts & Korst [1989], Hecht-Nielsen [1990], Hertz, Krogh & Palmer
[1991], and Kosko [1992].

The main tasks in the application of a neural network model to a certain problem
consist of the determination of a network topology and connection weights such
that the network solves the problem. To accomplish these tasks one can choose
between two approaches, i.e., network construction or learning. These approaches
are discussed next.

Network construction. In network construction, the network topology and the
connection weights are derived directly from the problem formulation and are kept
constant during the network execution. This embeds certain information into the
network by design, which is reproduced during operation. Network construction is
only applicable if the problem can be modeled and analyzed properly.

For instance, several network construction approaches were proposed for solv-
ing combinatorial optimization problems [Papadimitriou & Steiglitz, 1982]. In
these approaches the combinatorial optimization problem is formulated in terms of
a cost function which is to be minimized by the neural network; for examples, see
the work of Looi [1992] and Zwietering [1994]. The main motivation for using such
an approach is the potential speed-up from massively parallel computation. Until
so far, however, the results obtained using neural network approaches for combina-
torial optimization problems are disappointing. Their most important deficiency is
a poor scalability to real-life instances [Foo & Takefuji, 1995; Zwietering, 1994].

Learning. In learning, the network topology and the connection weights are it-
eratively adjusted until the neural network performs the task accurately. At each
iteration, an input is presented to the network and, according to the network out-
puts, the weights are adjusted. If, with the inputs, desired outputs are supplied and
the weights are adjusted such that the difference between network outputs and de-
sired outputs is minimized in some sense, the learning is called supervised. Such
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combinations of inputs and desired outputs are called learning examples. There are
two other types of learning, called unsupervised learning and reinforcement learn-
ing [Hertz, Krogh & Palmer, 1991]. In unsupervised learning no correct outputs are
supplied, which can be useful in data analysis. In reinforcement learning only in-
formation is supplied whether the network outputs are good or bad, which is mainly
used for control applications.

Supervised learning has become very popular due to the discovery of suitable
learning algorithms like the back-propagation algorithm [Rumelhart, McClelland
& Williams, 1986], and is especially useful in case modeling or analysis is diffi-
cult. There exist many successful applications which include for instance forecast-
ing, process monitoring, fault detection, and quality control [Dagli, 1994; Maren,
Harston & Pap, 1990; Weigend & Gershenfeld, 1994; Wong, Bodnovich & Yakup,
1997; Zhang & Huang, 1995].

1.3 Towards a solution approach

The nature of an on-line lot-sizing problem is characterized by the following two
components.

1. A combinatorial component involving the timing and sizing of the production
quantities.

2. An uncertainty component representing the incomplete demand information.

In some sense these components are conflicting, since the combinatorial component
involves detailed puzzling and benefits by complete demand information, which is
contradicted by the uncertainty component. The essential problem is to somehow
understand the demand process and to exploit this knowledge in the lot-sizing by
anticipating on the formally unknown future. Note that the nature of an on-line lot-
sizing problem typically changes with the length of the data horizon. Itis likely that
the combinatorial component becomes increasingly important if the data horizon is
enlarged.

According to the treatment of the two components, we distinguish between two
types of approach for on-line lot-sizing, i.e., monolithic approaches and hierarchi-
cal approaches. In a monolithic approach, both components are treated integrally.
The Markov decision approach for on-line lot-sizing of Dellaert & Melo [1995] is
a typical example of a monolithic approach. Hierarchical approaches first deal with
the uncertainty component before the combinatorial puzzle is solved. A typical ex-
ample of a hierarchical approach is to forecast some of the unknown future demand
values which are then incorporated in an off-line lot-sizing procedure. Next we
discuss the applicability of multi-layered perceptrons for on-line lot-sizing in this
context.
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Possibilities and limitations. The possibilities and limitations of multi-layered
perceptrons for on-line lot-sizing can be discussed by distinguishing between large
data horizons and small data horizons.

In case the data horizon is large, there is small demand uncertainty, and the
essential problem lies in the combinatorial component. In such cases on-line lot-
sizing problems can be viewed as combinatorial optimization problems. Zwieter-
ing, Aarts & Wessels [1991] and Zwietering [1994] showed that, in theory, multi-
layered perceptrons can be constructed that solve each instance of a combinatorial
optimization problem. However, for most problems the minimal required size of the
network is already exponential in the number of inputs, which makes the approach
impractical [Aarts, Stehouwer, Wessels & Zwietering, 1995]. Fortunately, there al-
ready exist excellent approaches for off-line lot-sizing problems based on the more
traditional techniques [Aggarwal & Park, 1993; Federgruen & Tzur, 1991; Wagel-
mans, Van Hoesel & Koolen, 1992].

In case the data horizon is small, there is large demand uncertainty, the combina-
torial component is less important, and the essential difficulty lies in the uncertainty
component. We recall that emergent features of multi-layered perceptrons are their
supervised learning and generalization capabilities, which enable implicit model-
building on the basis of learning examples. Since model-building is the essential
difficulty in the uncertainty component, multi-layered perceptrons have potential
as a solution approach for on-line lot-sizing problems in which there is significant
demand uncertainty.

From the discussion of these two cases, it is to be expected that there is in gen-
eral a trade-off between combinatorial complexity and uncertainty. Furthermore, a
monolithic approach based on multi-layered perceptrons seems only then appropri-
ate if the data horizon is small. In a natural way the question arises if it is possible
to develop a hierarchical approach which, for the uncertainty component, exploits
the strong points of multi-layered perceptrons and, for the combinatorial compo-
nent, builds upon the numerous results and techniques from off-line lot-sizing. In
this way the best of both fields would be combined. We investigate hierarchical ap-
proaches for on-line lot-sizing problems based on supervised learning with multi-
layered perceptrons.

Prerequisites. A necessary condition for the successful application of supervised
learning is the availability of a representative set of learning examples. Therefore,
a first prerequisite is the availability of a relevant demand history. From these past
demands, such a set can be constructed in different ways. One option is to let a
human expert judge situations in which lot-sizing decisions have been made. An-
other option is to calculate the optimal lot sizes afterwards, which is only possible
if the lot-sizing model is well-defined. We study well-defined lot-sizing models and
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adopt the latter option. For that reason, a second prerequisite is an algorithm for
the off-line calculation of learning examples. For the derivation of such algorithms
we adopt the theory concerning planning and forecast horizons initiated by Wagner
& Whitin [1958] and Lundin & Morton [1975]. If a forecast horizon can be found,
optimal decisions for some periods can be obtained with limited information about
future demands and cost parameters, even for infinite-horizon problems. To find
such forecast horizons we employ a forward algorithm, which solves off-line finite
horizon problems of increasing horizon length.

Variable-horizon policies. Motivated by the theory on planning and forecast hori-
zons, we concentrate on the class of hierarchical approaches for on-line lot-sizing
called variable-horizon policies . In such an approach, the lot sizes are determined
by repeatedly optimizing over a variable optimization horizon which is determined
by a horizon-selection rule on the basis of the available demand information. The
optimization part computes the timing and sizing of the lot sizes and can be solved
using dynamic programming techniques. The horizon-selection rule accounts for
the uncertainty component of the on-line lot-sizing problem and uses as input the
known future demands to return an optimization horizon within the data horizon.
Such tasks, in which one of a finite number of possibilities has to be chosen on the
basis of some feature vector, are usually called classification tasks. Through many
successful applications, multi-layered perceptrons have shown to have excellent
classification skills [Bishop, 1995; Pao, 1989; Ripley, 1994]. We address the prob-
lem of finding an optimal horizon-selection rule by formulating it as a classification
problem and adopting common objectives from statistical classification like for in-
stance the maximization of the expected classification rate. For these objectives it
is easy to give explicit expressions for the optimal horizon-selection rules. We use
supervised learning with multi-layered perceptrons to estimate the unknown para-
meters of these expressions and derive horizon-selection rules from the developed
multi-layered perceptrons. The thus obtained hierarchical approaches combine the
classification skills of multi-layered perceptrons with traditional off-line analyses.

1.4 Thesis outline

In Chapter 2, we formulate the on-line single-item lot-sizing problem with an ar-
bitrary cost structure. We introduce a class of solution strategies for this problem,
called variable-horizon policies, in which the lot sizes are determined by repeatedly
optimizing over a variable optimization horizon. A horizon-selection rule chooses
the optimization horizon given the available demand information. Furthermore, we
introduce the corresponding off-line problem and derive forward algorithms to be
used for the calculation of learning examples in Chapters 5, 6, and 7. These forward
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algorithms are only partly generic and require some cost-structure specific analysis.

In Chapter 3 we introduce three elementary cost structures which serve as a test
bed for the evaluation of our ideas and techniques in Chapter 6 and Chapter 7. For
these cost structures we give the cost-structure specific analysis that is required for
the generic algorithms developed in Chapter 2.

Chapter 4 introduces the multi-layered perceptron and discusses its use in sta-
tistical classification. We discuss the mapping capabilities of multi-layered percep-
trons for different response functions. Furthermore, we address supervised learning
in a statistical perspective and discuss the subject of generalization.

In Chapter 5 we formulate the problem of finding an optimal horizon-selection
rule as a classification problem, which we analyze in a statistical framework. We
analyze two objectives, i.e., maximization of expected classification rate and mini-
mization of expected excess cost. For these objectives we give explicit expressions
for the optimal horizon-selection rules. Supervised learning with multi-layered per-
ceptrons is used to estimate the unknown parameters of these expressions. Next
we derive so-called MLP-based horizon-selection rules from the developed multi-
layered perceptrons.

Chapter 6 studies the generalization capabilities of the MLP-based horizon-
selection rules for an on-line lot-sizing problem with Wagner-Whitin cost structure.
We discuss necessary conditions for good generalization and investigate the effect
of the length of the data horizon on the generalization capabilities. Furthermore, we
introduce K -nearest-neighbors, an alternative statistical approach for classification.
Application of this approach yields two alternative horizon-selection rules which
are used as a reference in our empirical studies.

In Chapter 7, we investigate the on-line lot-sizing performance of the variable-
horizon policies constituted by the MLP-based horizon-selection rules proposed in
Chapter 5 by means of an extensive empirical comparison with a benchmark of
variable-horizon policies. The performance evaluation is done on a rolling-horizon
basis for the three cost structures introduced in Chapter 3, for different combinations
of demand processes and data horizon lengths. Preliminary results for these cost
structures were presented in Stehouwer, Aarts & Wessels [1995] and Stehouwer,
Aarts & Wessels [1996].

In Chapter 8, we conclude this thesis with a discussion of the obtained results.
Moreover, we give some suggestions for future research.



Single-item lot-sizing

The intention of this chapter is twofold. First, it introduces the on-line single-item
lot-sizing problem. Second, it develops algorithms that are used for the calculation
of learning examples in later chapters. In general, such learning examples consist
of on-line lot-sizing decision situations and their corresponding off-line optimal
decisions. For that reason we also introduce and analyze the off-line single-item
lot-sizing problem. Both the on-line problem and the off-line problem are generic
in the sense that they are formulated in terms of arbitrary holding and production
cost functions. Nevertheless, most algorithms developed in this chapter are only
partly generic and their application typically requires some cost-structure specific
analysis. In Chapter 3 we give this analysis for three cost structures.

The chapter is organized as follows. In Section 2.1, both the on-line and the off-
line single-item lot-sizing model are introduced. We address the n-period problem
in Section 2.2. This problem occurs as a subproblem in the solution approaches for
both the on-line and the off-line lot-sizing problem. In Section 2.3 we analyze the
off-line problem. The on-line problem is addressed in Section 2.4. Furthermore,
we introduce the class of variable-horizon policies. Section 2.5 develops a forward
algorithm for off-line simple planning horizon detection. Finally, in Section 2.6 and
Section 2.7, some more forward algorithms are derived to be used for the calculation
of learning examples.

11



12 Single-item lot-sizing

2.1 Models for single-item lot-sizing

This section introduces the off-line model and the on-line model. Both models have
the same basis, called the basic model, which 1s described first.

2.1.1 The basic model

Consider the case in which production has to be planned for a single commodity
for which demand occurs during an infinite number of discrete time periods labeled
1,2,... . Let d, denote the demand in period ¢. It is assumed that all period
demands are real-valued and non-negative. Let X, and /, denote the amount of
production in period ¢ and the inventory level at the end of period ¢, respectively.
X, is called the lot size for period ¢. For I, we have

! i
L=Ilo+Y X, =Y di, t=12..., (2.1)
s=] s=1

where Iy denotes the initial inventory level. Furthermore, it is required that all
demands must be satisfied on time and the lot sizes are nonnegative. Hence

X[ZO and 1120, t:1,2,.... (22)

The model includes production and holding cost. It is assumed that all cost func-
tions are independent of time and are given in advance. Let P : IRY— IR denote
the cost function related to production and let H : IRT— IR™ denote the cost func-
tion related to carrying inventory from one period to the next. It is further assumed
that both P and H are strictly increasing. Therefore, there is no benefit in producing
more than necessary. The pair (H, P) is called the cost structure.

By specifying the cost structure, different single-item lot-sizing models can be
defined. Besides single-source models like the Wagner-Whitin model, in which
there is only one way to satisfy demand, also multiple-source models can be de-
fined. For instance, we may produce in-house or buy from outside suppliers. The
difference between models with a single source and those with multiple sources is
only in the production cost function P; see also Chapter 3.

Below we introduce the off-line model and the on-line model. These models
are both build upon the basic model. The difference between the two models lies
in their assumptions concerning demand data availability. In the off-line model it
is assumed that there is complete information about future demands, whereas in
the on-line model it is assumed that there is only partial information about future
demands. For both models we give a problem formulation.

2.1.2 The off-line model

In this subsection we introduce the off-line model and we define the off-line lot-
sizing problem. Off-line means that all information about future demands is given



2.1 Models for single-item lot-sizing 13

in advance. Our model encompasses an infinite number of periods. Therefore we
extend the standard finite-horizon formulation of the problem along the lines of
Lundin & Morton [1975). First we give the standard finite-horizon formulation,
which is defined as follows.

Definition 2.1. A vector (X, ..., X,) that satisfies (2.2) is called a production
plan for the periods 1, ..., n. The cost of a production plan (X, ..., X,) is given
by

Y LP(XD)+ HUI) 1. (2.3)
1=1
The problem of finding a minimal cost production plan for the periods 1, ..., nis
called the n-period problem; the corresponding minimal cost is denoted by f(n).
0

For reasons of convenience, a production plan for the periods 1, ..., n is called
a n-period plan and a minimal cost n-period plan is called an optimal n-period
plan. Furthermore, a production plan (X,y, ..., X,) for the periods u + 1, ..., v
is denoted by X,,, and X, is abbreviated to X,,.

Next we turn to the infinite-horizon formulation. For many lot-sizing problems,
one observes that the initial portion of an optimal production plan only depends on
the demand information for a limited set of nearby periods. This gives rise to the
following infinite-horizon optimality criterion.

Definition 2.2. Let X, be a production plan. Then f(n | X) denotes the cost
of an optimal n-period plan constrained to follow X, for the periods 1,...,t. A
production plan X, is called infinite-horizon optimal, if there exits an integer n with
n > t such that

fIN|X)= f(N) forall N > n,

irrespective of demands in periods n + 1, n + 2, ... . We call ¢ a planning horizon
and n a forecast horizon. ' 0

An obvious formulation of the off-line problem is to find infinite-horizon optimal lot
sizes X,, X», ... . For practical reasons, however, we concentrate on the determi-
nation of the first or first few infinite-horizon optimal lot sizes. It is easy to see that
this is without loss-off generality, since by repeatedly solving instances of the off-
line problem, the infinite-horizon optimal lot sizes X, X,, ... can be determined
one by one. Stated formally, the off-line problem is to find an infinite-horizon op-
timal z-period plan X, for some ¢ € N, given Iy and the demands dy, ds, ... . The
off-line problem is further analyzed in Section 2.3.
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We remark that the existence of infinite-horizon optimal lot sizes can in general not
be assured. In fact, for specific cost structures, it is often possible to construct de-
mand sequences for which no infinite-horizon optimal lot sizes exist [Bean, Smith
& Yano, 1987]. Nevertheless, it is fairly safe to state that any reasonable problem
is more likely to have infinite-horizon optimal lot sizes than not [Lundin, 1973;
Lundin & Morton, 1975; Morton, 1981]. For conditions on the existence of plan-
ning horizons we refer to the work of Bean & Smith [1984] and Bean & Smith
[1993].

2.1.3 The on-line model

We suppose that the realization of the demand in period ¢ + m becomes known at
the end of period ¢. In this way the demands are always known for m periods into
the future; these periods we call the data horizon. The integer m is referred to as the
length of the data horizon. In analogy to the definition of the off-line problem we
can define the on-line problem as to find an infinite-horizon optimal ¢-period plan
X, for some ¢t € N, given I and the demands 4|, ..., d,,. However, such infinite-
horizon optimal production plans may depend on the demand in periods beyond
the data horizon and therefore, in general, cannot be computed on the basis of the
available demand information. We call an algorithm that only uses the available
demand information to calculate a production plan an m-policy.

Definition 2,3. An algorithm for selecting X;, X2, ... is called an m-policy, if
(2.2) is satisfied and the choice of X; forallt = 1,2... depends only on Iy and d;
fors <t +m. O

In this thesis we aim at deriving m-policies that are optimal in some sense. Possi-
ble optimality criteria are to minimize some worst-case error bound on the cost, or,
as is common in the literature on on-line algorithms, to introduce competitiveness
[Karp, 1992]. Our definition of on-line optimality is closely related to our solu-
tion approach and is therefore given in Chapter 5. The on-line problem is further
analyzed in Section 2.4.

2.2 The n-period problem

This section addresses the n-period problem introduced in Definition 2.1. We have
to solve this problem, because it occurs as a subproblem in our solution approaches
for both the on-line and the off-line problem. As a starting point we take the short-
est path formulation due to Wagner & Whitin [1958]. This formulation is gener-
alized to handle arbitrary cost structure (H, P). The corresponding shortest path
algorithm is only partly generic and therefore its application to a particular cost
structure requires cost-structure specific analysis. For three cost structures we give
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this analysis in Chapter 3.

Definition 2.4. Let X, be a production plan. A vector X,,, withO < u < v <nis
called a subplan of X,,,if I, = I, =0and I; > Oforalls =u+1,...,v—1.
A period ¢ is called a production period if X, > 0. If I, = O we say that there is a
regeneration point at the end of period ¢. O

Using these definitions the following property can be stated.

Proposition 2.1. [Wagner & Whitin, 1958]. Suppose there exists an optimal n-
period plan with a regeneration point at the end of period t with 0 < t < n.
Then the n-period plan that is obtained by independently finding optimal production
plans for the first t periods and the last n —t periods with I, = 0, is optimal.

Proof sketch. Production cost depends only on the amount produced in a particular
period. Furthermore, since I, = 0, the inventory holding cost associated with the
last n — ¢ periods depends only on the lot sizes for these periods. O

Property 2.1 is known as the inventory decomposition property and is independent
of the cost structure. In the sequel it is assumed that [p = 0. Since P is strictly
increasing, there is no benefit in producing more than necessary, and all optimal n-
period plans satisfy I, = 0. From Ip = I, = 0 it follows that any optimal n-period
plan can be decomposed into one or more subplans. From Proposition 2.1 it follows
that, given the regeneration points, one can determine an optimal n-period plan by
finding optimal subplans for each pair of consecutive regeneration points. Unfortu-
nately, such optimal regeneration points are not known in advance. Nevertheless,
the best combination of regeneration points can be selected, if optimal subplans are
known for all possible pairs of regeneration points.

Let ¢(u, v) denote the cost of an optimal production plan for the periods u +
1,...,vgiventhat I, =1, =0and [, > Ofort =u+1, ..., v—1. In other words,
c(u, v) represents the cost of an optimal subplan for the periods « 4+ 1, ..., v. Let
the possible regeneration points O, . .., n be represented in a network as nodes and
let c(u, v) represents the cost of traversing the arc from node u to node v. Then,
since Ip = I, = 0 holds, each optimal n-period plan corresponds with a path from
node 0 to node n. Since backlogging is prohibited, the network is acyclic. Hence,
we can formulate the n-period problem as a shortest path problem in an acyclic
network, which, given the arc costs c(u, v) with 0 < u < v < n, we can easily
solve in O(n?) time using the forward recursion

fO) =0
= f@) = min{f(s)+c(s,2) | 0<s<t}), 1<t<n (2.4)

We refer to this underlying network as the regeneration graph. The usefulness of
this recursion depends strongly on the complexity of computing the n(n 4 1)/2 arc
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costs and their corresponding subplans. In general, computing these arc costs and
their corresponding subplans can be as difficult as the original problem and depends
on the specific cost structure. Fortunately, for many interesting cost structures, the
structure of optimal production (sub)plans have nice properties, which enable the
arc costs to be calculated in polynomial time. This holds, for instance, in case
the cost functions P and H are respectively fixed plus linear and linear [Wagner
& Whitin, 1958], both concave [Love, 1973; Zangwill, 1968], or both piecewise
concave [Swoveland, 1975]; see also the work of Aggarwal & Park [1993], Bitran
& Yanasse [1982], and Florian, Lenstra & Rinnooy Kan [1980].

2.3 The off-line problem

The off-line problem was formulated as to find an infinite-horizon optimal ¢-period

plan X, for some ¢ € IN, given the demands d, da, ... . This means that we have to
find a ¢-period plan X, and an integer #n such that f(N | X;) = f(N) forall N > n
and irrespective of demands in periods n + 1,7 + 2, ... . We called ¢ a planning

horizon and n a forecast horizon.

One easily verifies that it is equivalent to formulate the off-line problem as to
determine an infinite-horizon optimal ending condition I, = I, which is defined as
follows.

Definition 2.5. We call the ending condition /, = [ infinite-horizon optimal, if
there exits an integer n with n > ¢, such that for all N > n and irrespective of
demands in periods n+ 1, n + 2, ... there exists an optimal N-period plan Xy with
11 = 1 O

If ending condition I, = [ is infinite-horizon optimal, then we can determine an
infinite-horizon production plan X, by solving the ¢-period problem with the con-
straint /, = I; the integer ¢ is a planning horizon.

The following result addresses the ending condition I, = 0, which was called a
regeneration point, and which plays an important role in many lot-sizing problems.
Its proof is immediate from Proposition 2.1 and therefore omitted.

Proposition 2.2. Let t and n be integers with t < n. Suppose that for all N > n
and irrespective of demands in periods n + 1,n + 2, ... there exists an optimal
solution to the N-period problem with a regeneration point at the end of period t.
Then any optimal solution to the t-period problem is infinite-horizon optimal, t is a
planning horizon, and n a forecast horizon. a

2.3.1 Simple planning horizons

A planning horizon that satisfies the condition of Proposition 2.2 was called simple
by Lundin & Morton [1975]. This gives rise to the following definitions.
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Definition 2.6. The integer ¢ is called a simple planning horizon for forecast hori-
zon n, if for all N > n and irrespective of demands in periods n + 1,n + 2, ...
there exists an optimal N-period plan with a regeneration point at the end of period
t. The integer ¢ is called a simple planning horizon if there exists an integer n such
that ¢ is a simple planning horizon for forecast horizon n. The integer n is called a
simple forecast horizon if there exists a simple planning horizon for forecast hori-
zon n. The smallest simple forecast horizon is called the minimal simple forecast
horizon, O

Combining Proposition 2.1 and Definition 2.2 yields the following result.

Corollary 2.1. Lett be a simple planning horizon. Then any optimal t-period plan
is infinite-horizon optimal, O

So, given a simple planning horizon ¢, the off-line problem decomposes into a -
period problem and a new off-line problem. In this way, off-line problems can be
solved by repeatedly solving ¢-period problems, provided simple planning horizons
can be found. We conclude that the existence of a simple planning horizon is a suffi-
cient condition for the existence of an infinite-horizon optimal production plan. The
necessity of this condition depends on the particular cost structure and is discussed
next.

Concave cost structures. Using the following well-known results of Zangwill
[1968] for single-item lot-sizing models with concave production and holding cost
functions, we show that for such models the existence of a simple planning horizon
is necessary and sufficient for the existence of an infinite-horizon optimal produc-
tion plan; see also the work of Zangwill [1969] and Veinott [1969].

Proposition 2.3. [Zangwill, 1968]. Suppose that both P and H are concave. Then
for all optimal n-period plans X, and t =1, ..., n, we have

(i) I,_y x X;, =0, and
(ii) X, =00r X, = D(t —1,k) forsomek € {t, ..., n},
where D(u, v) denotes the cumulative demand for the periods u + 1, ..., v. O

Theorem 2.1. Suppose that both P and H are concave. Then there exists an
infinite-horizon optimal t-period plan with t € N if and only if there exists a simple
planning horizon.

Proof. The ‘only-if’-part is immediate from Proposition 2.2. 'We now prove the
‘if”-part. Let X, be an infinite-horizon optimal ¢-period plan and let » be the corre-
sponding forecast horizon. In case I, = 0, it is obvious that ¢ is a simple planning
horizon. What remains is the case I, > 0. From Proposition 2.3 and the fact that
n is a forecast horizon we infer that there exists a k € {t + 1, ..., n} such that
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I, =D(,k)and X; = Oforalls =1+ 1, ..., k. [tiseasy to see that X, is infinite-
horizon optimal with f = 0, which implies that £ is a simple planning horizon for
forecast horizon n. This completes the proof. a

In the literature on concave cost models, simple planning horizons and forecast
horizons are therefore often called planning horizons and forecast horizons, respec-
tively [Bensoussan, Crouhy & Proth, 1983; Bensoussan & Proth, 1991]. Others
completely focus on the underlying regeneration graph. Such a view was adopted by
Federgruen & Tzur [1995], who discuss single-item lot-sizing models with concave
production and holding cost functions within a generalized shortest path framework.
They assume that the arc costs are given and that the arcs are indivisible actions. In
their formulation a node 7 is called a forecast horizon if the shortest path from node
0 to node N goes through node ¢ for all N > n and irrespective of the arc costs
c(u, v) with n < u < v. Such a node ¢ is referred to as a planning horizon.

General cost structures. For models with general cost functions, the existence of
a simple planning horizon is in general not a necessary condition for the existence
of an infinite-horizon optimal production plan, which is illustrated by the following
example.

Example 2.1. Let us take the following cost structure

0 ifX=0
PX)=4{ 20+ X if0 <X <10
204+ 10+ 3(X —10) if X > 10,

H()=1 foralll>0,

which represents a simple overtime model with linear holding cost, setup cost 20,
regular time production cost 1, overtime production cost 3, and a regular time pro-
duction capacity of 10. Furthermore, we have an infinite horizon with demands
dy =5,d, =25, and 4, = 5 fort > 3. Then for all ¢-period problems with ¢
even, the first regeneration point in the unique optimal ¢-period plan is at the end
of period 2. Furthermore for all ¢-period problems with ¢ odd, the first regeneration
point in the unique optimal ¢-period plan is at the end of period 3. It is impossi-
ble to conclude that a simple planning horizon prevails on basis of Proposition 2.2.
Nevertheless, both the unique optimal 2-period plan as well as the unique optimal 3-
period plan have the same first lot size X| = 10. So according to Definition 2.2 we
have found an infinite-horizon optimal production plan, a planning horizon equal
to 1, and a forecast horizon equal to 2. For more details on the overtime model we
refer to Chapter 3. a
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Although, as indicated by the above example, concentrating on simple planning
horizons for general cost structures is at the risk of missing an infinite-horizon op-
timal production plan, we do concentrate on detecting simple planning horizons for
the following reasons.

1. By looking only for simple planning horizons, we may concentrate on the
underlying regeneration graph as we did for the n-period problem. Since this
concept is generic, we can develop algorithms for general cost structures.
Nevertheless, cost-structure specific analysis is still required for the compu-
tation of optimal subplans; see also Section 2.2.

2. In the extensive empirical study to be presented in Chapter 7, we computed
over a million learning examples for both concave and non-concave cost
functions. In all these cases a simple planning horizon could be detected.
Based on these results, we conjecture that a small amount of variability in the
demand process is sufficient for the existence of a simple planning horizon.

3. If a simple planning horizon can be detected, an attractive decomposition
arises and infinite-horizon optimal lot sizes can be determined by solving the
corresponding finite-horizon problem.

2.3.2 Forward algorithms

To find simple planning horizons, one commonly employs a forward algorithm.
Such algorithms solve z-period problems for ¢ = 1,2, ... until a stop criterion
indicates that a simple planning horizon has been found. It is obvious how to build
a forward algorithm upon the forward recursion (2.4) for the n-period problem.
Furthermore, if fort = 1, 2, ... we keep a record of the set of integers that occur as
a regeneration point in any optimal z-period plan, at the kth iteration of the forward
algorithm we can easily check if there exists an nand arwith 1 <r <n <k
such that for N = n,n + 1, ..., k there exists an optimal N-period plan with a
regeneration point at the end of period ¢. Despite that, Definition 2.6 does not
provide an appropriate stop criterion. What we need is a stop criterion that requires
only a finite number of steps. Such a criterion is derived in Section 2.5.

The following notions can be used to express the efficiency of a forward algo-
rithm with respect to the use of demand data.

Definition 2.7. Let the smallest integer n such that ¢ is a simple planning horizon
for forecast horizon n be denoted by n*(¢). A forward algorithm that requires only
n*(r) periods of demand information to discover a simple planning horizon ¢ is
called perfect. A forward algorithm is called protective if it can be guaranteed that
it finds a simple planning horizon ¢ under the condition that n* (¢) is finite. a

Similar notions were introduced by Lundin & Morton [1975] for general planning
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and forecast horizons. Although there exist some examples of perfect forward al-
gorithms for specific cost structures [Chand & Morton, 1986], such forward algo-
rithms are in general hard to obtain.

2.4 The on-line problem

In analogy to the definition of the off-line problem we defined the on-line problem
as to find an infinite-horizon optimal ¢-period plan X, for some ¢ € N, given /y and
the demands dj, . .., d,. Since, in general, such infinite-horizon optimal production
plans cannot be computed, we resort to algorithms that only use the available de-
mand information, which we called m-policies. Many such algorithms are proposed
in the literature, which we briefly review below. '

The most obvious m-policy is to repeatedly optimize over the data horizon and
to implement the firstlot size. We refer to this approach as the fixed-horizon policy.
Among others, Blackburn & Millen [1980] have pointed out that the cost perfor-
mance of the fixed-horizon policy is poor for small data horizons. Furthermore,
subsequent production plans can differ notably, introducing so-called nervousness.

Motivated by the theory on planning and forecast horizons, Chand [1982], Carl-
son, Beckman & Kropp [1982], and Federgruen & Tzur [1994] proposed m-policies
for the Wagner-Whitin model in which the horizon over which is optimized is cho-
sen dynamically. We call such policies variable-horizon policies. Chand [1982]
uses a simple planning horizon result to construct a set of candidate simple planning
horizons to chose from. A procedure similar to that of Silver & Meal [1973] is then
used to choose an optimization horizon from this set. Federgruen & Tzur [1994]
apply a forward algorithm to check if a simple planning horizon prevails within the
data horizon. If this is the case, the corresponding finite-horizon problem is solved.
In case no simple planning horizon is detected, they take an optimization horizon
from a set of candidate simple planning horizons according to some worst-case er-
ror bound. Carlson, Beckman & Kropp [1982] investigated the use of forecasting
to extend the data horizon for the Wagner-Whitin cost structure. Their approach
was to forecast demand for as many periods in the future as necessary for a forward
algorithm to detect a planning horizon.

The remaining part of the literature addresses the development of relatively
simple heuristics that exhibit less nervousness than the fixed-horizon policy and
perform well on the average. Most of these heuristics were designed for the special
case of the Wagner-Whitin model with constant cost and determine the first lot size
by aggregating a number of subsequent demands. These heuristics are also called
aggregation heuristics [Silver & Peterson, 1985]. This number is determined by
locally minimizing some reasonable objective function like for example least cost
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per unit time [Silver & Meal, 1973] or least cost per unit product [Gorham, 1968].
Other examples of such heuristics can be found in Bahl, Ritzman & Gupta [1987]
and Silver & Peterson [1985].

Research on the performance of m-policies has mainly focussed on worst-case
analysis and empirical testing. Worst-case results are given by Axsiter [1982],
Axsiter [1985], Bitran, Magnanti & Yanasse [1984], Chen, Hearn & Lee [1995],
Lee & Denardo [1986], Vachani [1992]. For empirical testing and a comparison
of different m-policies in a rolling-horizon environment we refer to the work of
Baker [1977], Baker [1989], Berry [1972], Blackburn & Millen [1980], Blackburn
& Millen [1985], Chand [1982], Carlson, Beckman & Kropp [1982], Ritchie &
Tsado [1986], and Zoller & Robrade [1988]. From these studies it turns out that
non of these policies dominates under all cost and demand conditions.

2.4.1 Problem analysis

If we concentrate on simple planning horizons, as we did for the off-line problem,
the on-line problem involves the determination of a simple planning horizon ¢ with
t € {1, ..., m}. Given such a simple planning horizon ¢ the infinite-horizon optimal
t-period plan is obtained by solving the z-period problem. Depending on /o and
the known future demands dj, ..., d, and the formally unknown future demands
15 dni2, - . ., we distinguish between the following four cases.

1. A simple planning horizon ¢ for minimal forecast horizon » exists, such that
t <n < m. Any perfect forward algorithm is able to detect these horizons in
exactly n iterations.

2. A simple planning horizon ¢ for minimal forecast horizon »n exists, such that
t < m < n. No forward algorithm is able to detect these horizons in m or
less iterations.

3. A simple planning horizon ¢ for minimal forecast horizon n exists, such that
m < t < n. No forward algorithm is able to detect these horizons in m or
less iterations.

4. No simple planning horizon exists.

Only in the first case, infinite-horizon optimal lot sizes can be determined with
certainty. In the other three cases this is impossible, and one has to choose the lot
sizes heuristically. Which of the four cases occurs depends on m, the cost structure,
and the demand characteristics.

In the literature we found a number of studies, which empirically investigate the
relation between on the one hand the cost structure and the demand characteristics
and on the other hand the expected value of the planning horizon and the corre-
sponding minimal forecast horizon. Lundin [1973] describes some experiments
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concerning prevalence and values of (simple) planning and forecast horizons for
the Wagner-Whitin model with constant setup cost. In 97.5% of all cases a forecast
horizon was found within 70 periods. His main conclusion is that the higher the
average demand or the demand variability, the smaller the expected forecast hori-
zon. Furthermore, he showed that if demand has an upward trend it is more likely
to find forecast horizons than when demand has a downward trend. Federgruen &
Tzur [1994] give similar conclusions for concave cost models with time varying
cost structure; see also the work of Lundin & Morton [1975] and Morton [1981].

In these studies the main focus is usually at minimal forecast horizons and their
corresponding (simple) planning horizons. From these studies we conclude that
these simple planning horizons tend to be very small, indicating a very high poten-
tial for variable-horizon policies. Next we discuss these policies in more detail.

2.4.2 Variable-horizon policies

Figure 2.1 gives a template representing a general variable-horizon policy. The lot-
sizes are determined by repeatedly optimizing over a chosen optimization horizon
and implementing the lot sizes of the first subplan. Note that the inventory level
at the end of Step 4. is zero. This template can be viewed as a generalization of
the type of variable-horizon policies proposed by Chand [1982], Carlson, Beckman
& Kropp [1982], and Federgruen & Tzur [1994] for the Wagner-Whitin model in
which only the first lot size was implemented. To see this we refer to Proposi-
tion 2.3. This result implies that in case of concave cost functions, the first lot size
of an optimal production plan equals the demand for an integer number of periods.
So, for the Wagner-Whitin model, implementing the first subplan and implementing
the first lot size are completely equivalent.

We call a rule that determines an optimization horizon given the demands within
the data horizon a horizon-selection rule. Such a rule can be written as a mapping
g : R" — (1,2,..., m) of the demands 4|, ..., d,. Given a horizon-selection
rule, the corresponding variable-horizon policy is completely determined. Below,
we show that most m-policies that were proposed for the Wagner-Whitin model are
in fact variable-horizon policies or can be simply adjusted to become one without
loss of cost performance.

First, let us consider the fixed-horizon policy. Itis easy to see that this policy is
a variable-horizon policy in which the optimization horizon is fixed.

Second, we concentrate on the class of aggregation heuristics. In such heuris-
tics, one produces the cumulative demand for the first & periods in period 1 with
k € {1,2,..., m). The value of k is chosen on the basis of the available demand
information. For instance one can take that k that minimizes the average cost per
period. We adjust the aggregation heuristics as follows. It is easy to see that by
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Given [p = 0 and demands within data horizon dy, .. ., dp.
Choose an optimization horizon t € {1, 2, ..., m}.
Determine an optimal ¢-period plan X;.

Implement the first subplan (X, ..., X;) of X,.

A

Update the data horizon, renumber the periods, and goto 1.

Figure 2.1. A variable-horizon policy.

choosing k, the inventory level becomes zero at the end of period k. Given such a
regeneration point, by Proposition 2.1, it is optimal to solve the k-period problem
independently. So we may use k as an optimization horizon and implement the first
subplan without loss of cost performance. Although the computation of an optimal
k-period plan for the Wagner-Whitin cost structure and the addition of k numbers
both require O (k) basic operations, it takes more time to compute the optimal k-
period plan [Wagelmans, Van Hoesel & Koolen, 1992]. The advantage is that the
adjusted aggregation policies can be applied to on-line problems with arbitrary cost
structure.

2.4.3 A benchmark of variable-horizon policies

This subsection presents four variable-horizon policies, which are used as a refer-
ence in our empirical studies. We describe these variable-horizon policies by their
horizon-selection rules. It is assumed that we are at the beginning of period 1 and
that we have to choose an optimization horizont € {1, 2, ..., m}, given Iy = O and
the demands di, d», .. ., dn.

Economic order quantity policies. Consider the discrete time version of the
infinite-horizon lot-sizing model with constant demand rate D of Harris [1913].
Then there is no demand uncertainty and it is mathematically optimal to use the
same lot size each time a replenishment is made [Hax & Candea, 1984; Silver &
Peterson, 1985]. Furthermore, because demand is deterministic and no shortages
are allowed, it is clear that each replenishment is made when inventory is exactly
zero. The optimal production policy is to produce a fixed quantity at each setup,
which can be derived as follows. The total relevant cost per time unit correspond-
ing to a fixed production quantity of Q are given by

TRC(Q) = (S)D + HD. 2.5)

where I denotes the average inventory level. Examining the function TRC(Q) and
its derivatives yields the value of Q that minimizes TRC(Q). This value is called
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the economic order quantity and is denoted by Q*. For the lot-sizing problem with
constant demand it is optimal to set up production every n* = Q*/ D time units and
to produce Q* units product at each setup. n* is called the order cycle. Note that n*
constitutes a planning horizon.

Our models differ from the above model in that demand is in general subject
to variation. Despite this difference, using a fixed economic order quantity is a
simple and effective way for dealing with the on-line problem in situations where
the demand rate is approximately constant [Silver & Peterson, 1985]. m-policies
based on the economic order quantity proposed in the literature either use Q* or n*.
We propose the following variable-horizon policy based on the order cycle. The
selected optimization horizon is equal to the order cycle n* rounded to the nearest
integer greater than zero. For D we take the average demand level calculated over
the data horizon, which is recalculated every time new information comes in. Note
that, by using the average demand rate, time variability is simply ignored.

The least cost per unit product policy. The least cost per unit product policy
is based on the aggregation heuristic described by Gorham [1968]. It selects the
smallest optimization horizon ¢ that minimizes the total cost per unit product. In

other words it determines the smallest ¢ € {1, 2, ..., m} such that
t
1O _ i L9 2.6)
D)  selli.my D(s)
where D(v) denotes the cumulative demand covering periods 1, ..., v. We remark

that in the original procedure, as proposed by Gorham [1968], the first (local) min-
imum was chosen.

The least cost per unit time policy. The least cost per unit time policy is based on
the aggregation heuristic described by Silver & Meal [1973]. It selects the smallest
optimization horizon ¢ that minimizes the total cost per unit time. In other words it

determines the smallest ¢ € {1, 2, ..., m} such that
!
O _ o L8 (2.7)
t se{l,...m} S

We remark that in the original procedure, as proposed by Silver & Meal [1973], the
first (local) minimum was chosen.

The fixed-horizon policy. The fixed-horizon policy chooses ¢ equal to m.

2.4.4 Discussion and outlook

All proposed benchmark policies are generic in the sense that they can be applied to
arbitrary cost structures. However, policies based on the economic order quantity
require cost-structure specific analysis. In Chapter 3 this analysis is given for the
three cost structures under consideration.
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Chapter 5 addresses the problem of finding an optimal horizon-selection rule. Since
the problem of selecting an appropriate optimization horizon on the basis of the de-
mands dy, ..., d, is essentially a classification problem, in that chapter, we adopt
common objectives from statistical classification like for instance maximization of
the expected classification rate. For these objectives we give explicit expressions
for the optimal horizon-selection rules. Supervised learning with multi-layered per-
ceptrons is used to estimate the unknown parameters of these expressions and we
derive approximative horizon-selection rules from the developed multi-layered per-
ceptrons.

In the remainder of this chapter we derive forward algorithms for the off-line
computation of learning examples. These algorithms are used in our experiments
in Chapter 6 and Chapter 7.

2.5 Off-line simple planning horizon detection

The first planning horizon results are due to Wagner & Whitin [1958], who derived
a forward algorithm and a stop criterion for the Wagner-Whitin model. Stronger
results have been presented by Zabel [1964] and Eppen, Gould & Pashigian [1969];
however, these Wagner-Whitin-type planning horizon results are often unsatisfac-
tory, because they only provide sufficient conditions for a simple planning horizon
to occur. In fact, Lundin & Morton [1975] showed that such horizons only exist for
a narrow range of cost parameter values.

2.5.1 Regeneration sets

Building on the work of Zabel [1964], Lundin [1973] and Lundin & Morton [1975]
developed a more general theory of simple planning horizons and other stop criteria
around the concept of regeneration sets. Given such a regeneration set they provide
forward algorithms and give sufficient conditions for simple planning horizons to
occur; see also the work of Chand [1979] and Morton [1981]. Below we introduce
regeneration sets, which are used as a starting point for the derivation of a suitable
stop criterion.

Definition 2.8. Let 4 be a finite set of integers and let  and & denote its minimal
and maximal element, respectively. Then 4 is called a regeneration set, if for all
n > % and irrespective of demands in periods 3+ 1, % + 2, ... there exists an
optimal solution to the n-period problem with a regeneration point in 4. a

A regeneration set 4 is defined in such a way that any n-period problem, with n >
8, has an optimal solution with a regeneration point in 4. Lundin & Morton [1975]
proposed different strategies for deriving stop criteria from such regeneration sets.
For instance, if for all elements ¢ in a regeneration set, there exists an optimal z-
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period plan with the same first regeneration point, then a simple planning horizon
has been discovered.

Let the length of a subplan X, be the number of periods it covers, i.e., v — u.
The next result is straightforward from Definition 2.4.

Proposition 2.4. Suppose a finite upper bound M exists on the length of a subplan
in an optimal n-period plan that is independent of n. Then any set of M consecutive
periods constitutes a regeneration set. o

Note that, if a finite upper bound M can be derived that satisfies the requirement
of Proposition 2.4, then we have regeneration sets for any instance of the off-line
problem.

Next we derive a stop criterion based on such regeneration sets. Let £, denote
the set of those s that minimize the right-hand side of (2.4). Then £, represents the
set of periods that occur as the last regeneration point but one in an optimal ¢-period
plan. The set of periods that occur as a regeneration point in an optimal ¢-period
plan is denoted by R, and is defined by the forward recursion

Ro = @
{ Ry = {t+1}UUse£,+1 Ry, t=0,1,....
Given that such an upper bound M exists, the following theorem provides a neces-
sary and sufficient condition for a simple planning horizon to occur. This condition
is suitable for use as a stop criterion in a forward algorithm.

(2.8)

Theorem 2.2. Suppose a finite upper bound M exists on the length of a subplan in
an optimal n-period plan that is independent of n. Let

/Sk(n) - lﬂn N Rn+l NN $n+k—l-

Then t is a simple planning horizon for forecast horizon n if and only ift € 8y (n).

Proof. 'The ‘only-if’-part follows directly from the definition of simple planning
horizon. The ‘if’-part we prove by showing that, if 1 € 8y (n), we have t € Ry
for all N > n. We distinguish between two cases. Incase n < N < n + M this is
obvious, since ¢t € 83 (n). What remains is the case N > n + M. Take such an N.
Proposition 2.4 implies that {n,n 4+ 1, ..., n+ M — 1} constitutes a regeneration
set. Sothereexistsak € {n,n +1,...,n+ M — 1} such that k € Ry. Take such
ak,then t € 8y (n) implies that t € ;. The proof of the theorem is completed by
using that Ry € Ry. O

2.5.2 A forward algorithm

The forward algorithm for the detection of simple planning horizons corresponding
with Theorem 2.2 is presented in pseudo-code in Figure 2.2, For reasons of conve-
nience we left out the code for the calculation of f(n) and R,. On termination of
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proc FORWARDALGORITHM
var
k, n:int;
4 : set of int;
begin
k,n:i=1,1;
8:= Ry, {8 =48(1)}
while k < M do

if S = @ then
8, k= Rps1, 1;

while SN R, k11 £0do 8, k=8N R,_44+1, k+10d
elsek:=k+1A
ni=n+1; {§=458n—-k+1) #07)
od {k = M)
end

Figure 2.2. The forward algorithm in pseudo-code.

the procedure ¢ is a simple planning horizon for forecast horizon (n — M + 1) for all
t € 8yy(n — M + 1). Notice that Theorem 2.2 does not guarantee the existence of
simple planning horizons; therefore, the termination of the forward algorithm can-
not be assured. However, if a simple planning horizon for some forecast horizon
exists, it is going to be found by the algorithm. So the forward algorithm is protec-
tive. Furthermore, if a simple forecast horizon is found by the algorithm it is the
minimal simple forecast horizon. The forward algorithm is not perfect since it uses
demand information for the periods 1, ..., n to detect a simple planning horizon
for minimal forecast horizon (n — M + 1).

2.5.3 Implementation issues

The forward algorithm has been implemented in the object-oriented programming
language C++. We defined a class BASICCLASS, which contains generic features
like for instance the shortest path recursion. For a specific type of cost structure,
a new class has to be defined that inherits from BASICCLASS. For this new class,
we only have to add two additional features, i.e., (i)} an algorithm that calculates
optimal subplans and their costs and (ii) an upper bound M on the length of a
subplan. In order to possibly speedup the forward algorithm we incorporate the
upper bound M in the shortest path recursion.

The forward algorithm frequently adds and merges ordered sets of integers. We



28 Single-item lot-sizing

used the efficient implementation of ordered sets by splay trees due to Sleator &
Tarjan [1985] from the libg++-library. The amortized complexity of adding and
merging are O (log n) and O (nlog r) in the number of nodes n, respectively.

2.6 Off-line excess cost calculation

In this section we derive an algorithm that determines the excess cost incurred when
decomposing the off-line problem at some period ¢ and solving the ¢-period problem
independently. In this section we derive such an algorithm. Such an algorithm is
needed in our experiments in Chapter 6 and Chapter 7.

Let again f(u, v) denote the cost of an optimal (v — u)-period plan for the

periods u + 1, ..., v. Then a recursive definition of f (i, v) is straightforward from
(2.4). We define A(p, n) as
Ap,n) = f(p)+ fp,n) — f(n). (2.9)

In words, A(p, n) denotes the excess cost over the cost of an optimal n-period
plan incurred when independently finding optimal production plans for the first p
periods and the last n — p periods with /, = 0. Furthermore, let A(p) be defined
as

A(p) = lim A(p, n). (2.10)

In words, A(p) denotes the excess cost of decomposing the off-line problem at
period p. Remark that the limit value A(p) may not exist. Let R, , denote the set
of integers that occur as a regeneration point in any optimal (v — u)-period plan for
the periods u + 1, ..., v. Then a recursive definition of R, , is straightforward from
(2.8). The following result can be used as a stop criterion in a forward algorithm.

Theorem 2.3. Suppose a finite upper bound M exists on the length of a subplan in
an optimal n-period plan that is independent of n. Given is an integer p. Let

8(p.n) =8 N Rpp N Rpper N+ N Rp -1

Then for all t € 8y (p, n) we have

(i) Alp, Ny= f(p)+ f(p,1) — fQt) forall N = n, and

(i) A(p) = f(p)+ flp.t) = f©.
Proof. According to Theorem 2.2, all t € §,/(p, n) are simple planning horizons.
Completely analogously, it can be shown that all t € 4,/ (p, n) are simple planning
horizons for the instance of the off-line problem starting in period p+1. So we have
fp, Ny = f(p,)+ f(t, N)and f(N) = f(t) + f(t, N) forall1 € Sy (p,n)
and N > n. From this we infer that f(p, 1) — f(t) = f(p, N) — f(N) for all

t € 8y (p, n) and N > n, which, after some straightforward calculations, completes
the proof. O
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A major disadvantage of using Theorem 2.3 as a stop criterion in a forward algo-
rithm is the large amount of memory that is required for storing the integer sets
Rps and R;. Besides, it is often sufficient to know the excess cost within a cer-
tain prespecified tolerance. The following result provides a stop criterion that is
less memory demanding. Moreover, in a natural way, this criterion allows for the
inclusion of a tolerance parameter.

Theorem 2.4. Suppose a finite upper bound M exists on the length of a subplan in
an optimal n-period plan that is independent of n. Given is an integer p. For all
t > p we define

Li(p, ) = min_ A(p,s)
1<s<t+k

Uc(p, 1) = max A(p,s).
1<s<t+k

Then we have
(i) Lu(p,t) < A(p,n) <Um(p, 1) forallt, nwithn >t > p,

(i)) Ly(p, 1) < A(p) < Um(p,t) forallt = p,

(iii) Lm(p,t +1) =2 Lu(p, 1) forallt > p,

(iv) Uy(p,t + 1) < Um(p,t)forallt > p, and

(v) Un(p.t+ 1) = Lu(p,t+1) < Un(p, 1) = Lu(p, 1) for all 1 > p.
Proof. Since incaset < n < t + M the proof of part (i) is straightforward,
we concentrate on the case n > t + M. Take such an n. From Proposition 2.4
we know that {r,t +1,...,1+ M — 1} is a regeneration set. Using the definition
of regeneration set, there exist &,/ with t < k,I < t + M, such that f(n) =
F&) + flk,ny and f(p,n) = f(p, D)+ fU,n). Using f(p,n) < f(p, k) +
f(k, n) we derive A(p,n) < A(p, k). Similarly, using f(n) < f() + f{, n),
we derive A(p, n) = A(p, [). Combining these two inequalities and the definition
of Ly(p,t) and Uy (p, t) yields Ly(p,t) < A(p, D) < A(p,n) < A(p,k) <
Uum(p, t), which completes the proof of part (i). Part (i{) is a direct consequence
of part (i). Using part (i) we have Ly(p,t) < A(p,t+ M) < Uy(p, 1) forall 1
with 1 > p, which implies parts (ii/) and (iv). Part (v) follows immediately from
parts (iif) and (iv). O

Given such an upper bound M, we can calculate A(p) within a tolerance 8 with
B = 0, by using Uy(p,t) — Lu(p,t) < B as a stop criterion in a forward al-
gorithm. Although Uy (p, t) — Lm(p, t) is decreasing in ¢, the termination of the
forward algorithm cannot be assured. Since the implementation of this algorithm is
straightforward, its details are omitted.
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2.7 Off-line optimal optimization horizon selection

This section derives forward algorithms that facilitate the off-line computation of
the best possible optimization horizon. To that end we generalize the simple plan-
ning and forecast horizon framework developed in Section 2.5 by adopting a differ-
ent notion of optimality, called k-optimality, which is defined as follows.

Definition 2.9. Let f; (n) denote the cost of a optimal n-period plan consisting only
of subplans of length less than or equal to k. The corresponding optimal production
plans are called k-optimal. m]

It is easy to see that an inventory decomposition property as Proposition 2.1 can
be derived for k-optimal production plans as well. Therefore, we formulate the
problem of finding k-optimal production plan as a shortest path problem on the
regeneration graph. The difference is that only arcs with a length less than or equal
to k have to be considered. The corresponding recursion is given by

{fk(O) =0

fi®) = min{fi(s) +c(s,t)|s>0, t—k<s<t}, t>1. (2.11)

Note that the set of paths with arc lengths less than or equal to j is a subset of the set
of paths with arc lengths less than or equal to i. The following results are therefore
immediate.

Proposition 2.5. f;(t) < f;@) foralli > j > 1andt > 0. O
Proposition 2.6. /(1) > f(t) for all k, ¢ > 0. o

Proposition 2.7. Suppose a finite upper bound M exists on the length of a subplan
in an optimal n-period plan that is independent of n. Then fi(t) = f(t) for all
k>Mand: > 0. a

2.7.1 k-optimal simple planning horizons

Below, the simple planning and forecast horizon framework developed in Sec-
tion 2.5 is straightforwardly generalized to k-optimality. Most results are given
without proof, because similar results have already been proved in Section 2.5.

Definition 2.10. The integer ¢ is called a k-optimal simple planning horizon for
forecast horizon n, if for all N > n and irrespective of demands in periods n +
1, n+2, ... there exists a k-optimal N-period plan with a regeneration point at the
end of period ¢. The integer ¢ is called a k-optimal simple planning horizon if there
exists an integer n such that ¢ is a k-optimal simple planning horizon for forecast
horizon n. The integer n is called a k-optimal simple forecast horizon if there exists
a k-optimal simple planning horizon for forecast horizon n. The smallest k-optimal
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simple forecast horizon is called the minimal k-optimal simple forecast horizon.
O

Definition 2.11. Let¢ be a k-optimal simple planning horizon. Then any k-optimal
t-period plan is called infinite-horizon k-optimal. a

Definition 2.12. Let 4 be a finite set of integers and let 8 and § denote its minimal
and maximal element, respectively. Then 4 is called a k-optimal regeneration set,
if for all n > 8 and irrespective of demands in periods 8 + 1, 8+2, . .. there exists
a k-optimal n-period plan with a regeneration point in 4. a

Proposition 2.8. Any set of k consecutive periods constitutes a k-optimal regener-
ation set. a

The following result is a direct consequence of this.

Corollary 2.2. Suppose there exists a k-optimal simple planning horizon. Then
there exists a k-optimal simple planning horizon t witht € {1, ..., k}. O

Let £ denote the set of those s that minimize the right-hand side of (2.11). Then
L* represents the set of periods that occur as the last regeneration point but one in
a k-optimal ¢-period plan. The set of periods that occur as a regeneration point in
an k-optimal ¢-period plan is denoted by R¥ and is recursively defined by
[Rgzg
Rf = (U Ugepe Ry, 121

Proposition 2.9. Let 8f(n) = RENRE, NN R | Thent is a k-optimal

simple planning horizon for forecast horizon n, if and only if t € 8§(n). a

(2.12)

2.7.2 Off-line k-optimal simple planning horizon detection

We conclude that £-optimal simple planning horizons can be detected by using
the forward algorithm derived in Section 2.5 for the detection of simple planning
horizons with M = k. Note that this only works because, in our implementation,
we included the bound M 1n the forward recursion {2.4); see Section 2.5.3.

2.7.3 Off-line k-optimal excess cost calculation

Let fi (1, v) denote the cost of an k-optimal (v — u)-period plan for the periods

u-+1,..., v. Then a recursive definition of f; (i, v) is straightforward from (2.11).
We define Ax(p, n) as
Me(p,n) = fi(p) + filp, n) — fi(n). (2.13)

In words, Ax(p, n) denotes the excess cost over the cost of an k-optimal n-period
plan incurred when independently finding k-optimal production plans for the first p
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periods and the last n — p periods with I, = 0. Furthermore, let A;(p) be defined
as

Ak(p) = lim Ax(p, n). (2.14)

We remark that this limit value may not exist. Given such an upper bound M, we
can calculate A(p) within atolerance 8 with 8 > Oby using Uy (p, t)—Lu(p, t) <
B as a stop criterion in a forward algorithm. Although Upy(p, t) — Ly(p, t) is de-
creasing in ¢, the termination of the forward algorithm cannot be guaranteed. Since
the implementation of this algorithm is straightforward, its details are omitted.

We conclude that Ax(p) can be calculated by using the forward algorithm de-
rived in Section 2.6 with M = k. Note that this only works because, in our im-
plementation, we included the bound M in the forward recursion (2.4); see Sec-
tion 2.5.3.

2.7.4 Implementation issue

Although an additional finite upper bound N on the length of a subplan in an op-
timal n-period plan that is independent of n is no longer required, in case such a
bound N is available and if N < k, we can speedup the forward algorithm by
taking M = N.



Some elementary cost structures

The framework for single-item lot-sizing presented in the previous chapter was
formulated in terms of an arbitrary cost structure. For a particular cost structure,
the framework presupposes three features. First, optimal subplans and their costs
can be computed efficiently. Second, there exist an upper bound on the length of
a subplan in an optimal production plan. Third, we have an expression for the
economic order quantity. This chapter derives these cost structure specific features
for three elementary cost structures, which, in the remainder of this thesis, serve as
a test bed for the evaluation of our ideas and techniques.

The chapter is organized as follows. Section 3.1 addresses the Wagner-Whitin
cost structure. The corresponding lot-size model is a single-source model in the
sense that there is only one way to satisfy demand. Two-source models with over-
time and purchasing are addressed in Section 3.2 and Section 3.3, respectively.

3.1 The Wagner-Whitin cost structure

The first cost structure originates from the single-source model described by Wag-
ner & Whitin [1958]. Demand is only satisfied through in-house production. The
production cost function P is fixed plus linear (concave) and is given by

0 ifX =0

P(X) = 1
() |S+pX if X >0, G-

33
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P(X)

o

Figure 3.1. Single-source production cost function.

where p denotes the production cost per unit of product and § denotes the setup
cost. The holding cost function is linear and is given by

H({)=hl foralll >0, (3.2)

where 4 denotes the holding cost per unit of product per period. We assume that
p,h > 0and S > 0, so that both P and H are strictly increasing. We refer to this
cost structure as the Wagner-Whitin cost structure.

3.1.1 Characterization of optimal subplans

Since both H and P are concave, we may apply Proposition 2.3 to obtain the fol-
lowing result.

Corollary 3.1. Let X,, be a subplan of an optimal n-period plan X,,. Then X, =
D(u, v). O

Using this result it is easy to see that the cost of an optimal subplan, i.e., the cost
of an arc in the underlying shortest path problem in the regeneration graph, is given
by

v—1
c(u, v) = P(D(u, v)) + Y _ H(D(, v)).

t=u+]
These arc costs can be computed recursively as was shown by Evans [1985]. In
his algorithm, the computation of all arc costs requires O (n*) basic operations (ad-
ditions, multiplications, and comparisons). Using the forward recursion (2.4), we
obtain an O (n?) algorithm for the n-period problem with Wagner-Whitin cost struc-
ture. Recently, a number of authors developed algorithms for the n-period problem
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with Wagner-Whitin cost structure requiring only O (n) basic operations [Aggarwal
& Park, 1993; Federgruen & Tzur, 1991; Wagelmans, Van Hoesel & Koolen, 1992].
These algorithms exploit the special structure of the model even more.

3.1.2 Bounds on the length of an optimal subplan

Throughout this chapter we use the notation e;, which denotes an n-component
vector with a one in the ith position, and zeros elsewhere. Furthermore, let | x]
denote the largest integer smaller than or equal to x.

Theorem 3.1. Let X,,, be a subplan of an optimal n-period plan X,,. Then

< d +1
v—u < nd, < 00.

Proof. Let § = min{X, 4, min,<,<, I;}. Then, since X, is a subplan, § > 0. Let
X, = X, —de,| + de,. One easily verifies that X' is a n-period plan. Since X, is
optimal, the cost of X/ must be greater than or equal to the cost of X,,. Subtracting
the equal cost components yields the inequality

P@) = (P(Xux1) — P(Xus1 —6))
hé

v—u-—1<%<

S

hé’

Corollary 3.1 implies that X,.1 = D(u, v) and therefore I, = D(t, v) forall t =
u+1,...,v—1and é = d,. The proof of the firstinequality is completed by using
that v — u is integer. Since X, is a subplan, d, > 0. Together with 2 > 0, this
proves the finiteness of |S/(hd,)] + 1. ]

=

Corollary 3.2. Suppose a lower bound dy > 0 on positive demand in a period
exists. Let Xy, be a subplan of an optimal n-period plan X,,. Then

S
U—Hf_[mJ+l<O®.
Od

For instance when demand is integer valued the upper bound on the length of a
subplan of an optimal production plan is equal to |.S/h] + 1. Note that such an
upper bound may drastically reduce the number of arcs to be considered in the
underlying shortest path problem. We use these bounds in the forward algorithm
developed in Chapter 2.

3.1.3 Economic order quantity

The purpose of this subsection is to derive a horizon-selection rule based on the
economic order quantity as proposed in Section 2.4.3. The variable-horizon policy
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constituted by this rule is used as a reference in our empirical studies. Next we ana-
lyze the discrete time version of the infinite-horizon lot-sizing mode] with constant
demand described in Section 2.4.3.

Let D be the demand rate in units per period. It is easy to see that the average
inventory level [ is equal to Q/2. The total relevant cost per period, defined by
(2.5), become

hQ DS
TRC =—= 4+ — D.
(@) =—+ 0 +p
Examining TRC((Q) yields the economic order quantity Q" and the corresponding
order cycle n* given by
2DS

0 =n'D= . (3.3)

Although Harris [1913] was the first who derived this formula, it is widely known
as Wilson’s lot size formula. Wilson was a consultant who used such a formula
in his work on inventory management in many companies [Hax & Candea, 1984].
For details on this analysis we refer to the textbooks by Hax & Candea [1984] and
Silver & Peterson [1985].

The horizon-selection rule selects the optimization horizon equal to the order
cycle n* rounded to the nearest integer greater than zero. For D we take the average
demand level calculated over the data horizon, which is recalculated every time new
information comes in.

3.1.4 A worst-case result

In Section 2.6 we defined A(p, n), which denotes the excess cost over the cost of
an optimal n-period plan, incurred when independently finding optimal production
plans for the first p periods and the last n — p periods with I, = 0. The following
worst-case result is due to Bitran, Magnanti & Yanasse [1984].

Proposition 3.1. A(p,n) < Sforallp=1,...,n a
This result can be generalized to k-optimality as follows.
Proposition 3.2. Ay(p,n) < Sforall p=1,...,nandk € N 0

Note that these results also hold for the limit values A(p) and Ay(p), provided
these limit values exist.

3.2 A cost structure with overtime

The second cost structure originates from the two-source model mentioned by Ja-
gannathan & Rao [1973]. Demand is satisfied either by production during normal
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P(X)

0 c

Figure 3.2. Two-source production cost function with overtime.

time or by production during overtime. The production cost function P is piecewise
concave and is given by

0 ifX=0
P(X) =15+ pX f0o<X<C 3.4
S+pC+qgX-C) ifX>C,

where C denotes the regular time production capacity, S denotes the setup cost,
p denotes the regular time production cost per unit product, and ¢ denotes the
overtime production cost per unit product. The inventory cost function H is linear
and is given by (3.2). We assume that ¢ > p > 0. Furthermore, we assume that
h,C >0and S > 0, sothat P and H are both strictly increasing. In the analysis,
the difference in cost per unit product between overtime production and regular time
production plays an important role. For notational reasons we define r = g — p. We
refer to r as the overtime premium. Jagannathan & Rao [1973] and Dixon [1980]
analyzed similar cost structures with additional bounds on overtime production and
inventory. Baker, Dixon, Magazine & Silver [1978] and Dixon, Elder, Rand &
Silver [1983] considered overtime models with backlogging.

3.2.1 Properties of optimal production plans
First consider the following general result for single-item lot-sizing models with

arbitrary piece-wise concave cost functions due to Swoveland [1975].

Proposition 3.3. [Swoveland, 1975]. Suppose that P is concave on each of k inter-
vals [gi—1, qi]l withi =1, ..., k, and H is concave on each of | intervals [b;_\, b;]
withi=1,...,1 Let  ={q0, ..., qu} and H = {bo, ..., b;}. Then there exists
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an optimal n-period plan with the property that between successive periods s and t
with 1 <s <t <nandl;, I, € J there is at most one period u with s < u <t
and X, ¢ P. |

We now return to the specific production cost function with overtime that is subject
of this section. Using the formulation of Proposition 3.3, we have k = 2, go = 0,
q1 = C, and g = oo for the production cost function P and [ = 1, by = O,
and b; = oo for the holding cost function H. Applying Proposition 3.3 yields the
following result.

Corollary 3.3. There exists an optimal n-period plan with the property that each
subplan contains at most one production period with a lot size that is unequal to
the capacity of regular production C. a

Theorem 3.2. Let X, be a subplan of an optimal n-period plan X,,. Then X, < Xy
for all production periods b andd withu +1 <b <d < v,

Proof. ~ We concentrate on the case that X, contains two or more production
periods, otherwise the proof is trivial. Suppose, on the contrary, that there exist
production periods b and d with u +1 < b < d < v such that X;, > X,;. We show
that such a production plan cannot be optimal. Let § be defined by

min{Xp, minp<rea I;, C — Xq} if Xa < Xp <C
é = { min{ming<; <4 I;, C — Xa} fXsg <C<Xp

min{X, — C, minp<;<g I} ifC < Xg < Xp.
From X, and X, being production periods and X, being a subplan of X,,, we infer
that § > 0. Let X/, = X, — 5e, + de4. One easily verifies that X is a n-period plan
and has lower cost. This contradicts with X, being optimal. a
3.2.2 Characterization of optimal subplans
Definition 3.1. A subplan X, of a n-period plan X, is called well-formed if

(i) At most one production period f with u+1 < ¢ < v exists such that X, # C,
and

(i) X, < X, for all production periods b andd withu +1 < b <d < wv.

The following result is straightforward from Corollary 3.3 and Theorem 3.2.

Corollary 3.4. There exists an optimal n-period plan that consists only of well-
formed subplans. O

To facilitate a characterization of optimal well-formed subplans, we introduce the
cumulative demand axis as described by Chung & Lin [1988]. Instead of giving
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l
I Xi, ! T x

But Bu+2 Bu+3 By By+1

Figure 3.3. Cumulative demand axis.

each period an equal length on a time axis, each period is represented by an interval
of length proportional to the demand in that period, and demand is spread uniformly
over a period. The origin is used to indicate the beginning of period 1. We then
mark the points By = O0and B, = D(0,r — 1) fort = 2,...,n+ 1. Each point
B, refersto the end of period ¢ — 1 and the beginning of period ¢, hence the interval
from B; to B,y represents the demand in period ¢. In Figure 3.3 this concept is
visualized for a subplan X,,, with k& production periods i} < iz < ... < . Using
this cumulative demand axis, it becomes clear that production in period i is used
to meet the demand from B, — X, to B,41. Production in period i, is used
to meet the demand from B,y — X;, — X;, |, t0 Byy) — Xi,, and so on. Ina
subplan the production in each period can only be used to meet present or future
demand and inventory must be positive, therefore we require B,y — X;, > By,
Byt — Xi, —Xi,_, > B;,_,,and soon.

Theorem 3.3. Let X, be a well-formed subplan of an optimal n-period plan X,.
Suppose that X, has k production periods iy < i < ... < iy. Then we have
(i) iy =u—+1,
(ii) Ifk = 1, then X, = D(u, v), and
(iii) Ifk > 1, then the lot sizes X;,, ..., X;, are given by

B,.C,....0) ifo<p<C
(C,...,C,ﬁ) lf,3>C,
where B = D(u, v) — (k — 1)C. The timing of the lot sizes iy, . .., i is given

by iy = jifors =2,...,k where j; is defined fors = k., k —1,..., 1 by
the backward recursion

(Xip, .o X)) =

k
Js=max{jlu+1<j< jqi, Bu+1~ZXim > Bj},
m=s

with boundary condition jiy1 = v+ 1.
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Proof. Since X, is a subplan, parts (i} and (ii) are obvious. The remainder of this
proof concentrates on part (iii). Subplan X,, contains k production periods. Since
X,v is well-formed, at least k — 1 of these production periods have a lot size of C.
The lot size in the remaining production period is equal to 8 = d,, — (k — 1)C.
Since X, is well-formed, there are two possibilities for the timing of 8, i.e., in case
0 < B < C it must be in the first production period and in case g > C it must be
in the last production period. Using the definition of cumulative demand axis and
since X,, is a subplan, i; < j; fors = 2, ..., k. Suppose there exists an index s
with 2 < 5 < k such that iy < j;. Lett be the largest such index. Soi; < j;, and
is = jsforallz <s < k. We define X, = X, — X, e, + X;, e;,. From the definition
of j, it follows that X/ is a n-period plan and one easily verifies that X/, has lower
cost. This contradicts with X, being optimal and we conclude that i; = j; for all
s=2,....k ' 0

Theorem 3.3 implies that given the number of production periods of a well-formed
subplan for the periods u# +1, ..., v, computing the optimal lot sizes X+, ..., X,
requires O(v — u) basic operations. Since an optimal n-period plan exists that
consists only of well-formed subplans, it is sufficient to enumerate over all (v —
u) possible values for & and to choose a subplan with lowest cost. In this way,
an optimal subplan can be obtained using O ((v — u)?) basic operations, and the
computation of all arc costs requires O(n*) basic operations. Using the forward
recursion (2.4), we obtain an algorithm for the n-period problem with the overtime
cost structure that requires 0 (n*) basic operations.

3.2.3 Bounds on the length of an optimal subplan
Lemma 3.1. Let X, be a subplan of an optimal n-period plan X,. Then

d—bg[%J < 00

for all production periods b andd withu +1 <b <d < v.

Proof. We concentrate on the case that X, contains two or more production pe-
riods, otherwise the proof is trivial. Let é be defined by § = min{X},, mins<, <4 /,}.
From the definition of subplan and from b being a production period it is obvious
that 6 > 0. Let X = X, — 8¢, + deq. One easily verifies that X, is a n-period plan.
Since X, is optimal, the cost of X/ must be greater than or equal to the cost of X,,.
Subtracting the equal cost components gives the inequality

(P(Xa +8) — P(X4)) — (P(Xp) — P(Xp —§))

(d-1b) < P,
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which, together with d — b being integer, completes the proof of the first inequality.
The finiteness of | r/ k] + 1 is obvious from 2 > 0. O

Lemma 3.2. Let X, be a subplan of an optimal n-period plan X,. Then there
exists a last production period d withu < d < v and

S
—d < |——— .
v —Lhmmang<“)

Proof. From X,,,, being a subplan it is obvious that a last production period d exists.
If d = v we have v —d = 0 < o0 and the result is obvious. We concentrate on the
case d < v. Let § = min{Xy, ming<,<, I;}. Then, since X,, is a subplan, y > 0.
Because 4 is the last production period, I, = D{(¢, v) forallt =d,...,v— 1, and
therefore y = min{X,, I,—;} = min{Xy, d,}. Below, we show that y is bounded
from below, Therefore consider the following two cases. Incase d = u + 1, it
is obvious that X; = D(u,v) > d,. Incase u + 1 < d < v, Corollary 3.3,
Theorem 3.2, and X, > O, imply that X; > C. So y > min{C, d,}. Let
X, = X, — des + de,. One easily verifies that X' is a n-period plan. Since X, is
optimal, the cost of X/ must be greater than or equal to the cost of X,,. Subtracting
the equal cost components yields the inequality

P) — (P(Xa) — P(Xa —9))

vods hs
By distinguishing between different cases for X; and § we have
B if X <C
b —d S—r(Xs -0 ifXy>C, Xg—8<C,andé <C
3 <8S—rXy -8 fXy>C, Xa—86=<C,andé>C
S—ré ifX¢g >C, Xy —6>C,and 6 <C
| S —rC ifXy>C, Xa4-6>C,andé >C
<S.

Using that § > min{C, d,} yields v —d < S/(h min{C, d,}). The proof of the first
inequality is completed by using that v—d is integer. Since X,,, is a subplan, 4, > 0.
Together with # > 0 and C > O this proves the finiteness of |S/(h min{C, 4,})].
(|

Theorem 3.4. Let X, be a subplan of an optimal n-period plan X,,. Then

r S
—y < |= _ 1 .
v —u < |sz + L’ min{C, du}J +1 <00

Proof. Theorem 3.3 implies that period u + 1 is the first production period. Let
period d be the last production period. Thenu + 1 <d < v. Applying Lemma 3.1
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yields d —u < |r/h] + 1. The proof is completed by combining this inequality
with the equality of Lemma 3.2. O

The results of Theorem 3.4 are easily verified by substituting p = g and C = oo to
obtain Theorem 3.1.

Corollary 3.5. Suppose a lower bound di > 0 on positive demand in a period
exists. Let X, be a subplan of an optimal n-period plan X,,. Then

r

s
cu< |l —— 41 < oo
VTES L;J + .jz min(C, dL}J tl<oo

Corollary 3.4 provides us with an upper bound on the length of an individual arc on
a shortest path, i.e., a subplan X,, can be part of an optimal plan only if v — u is
less than or equal to this bound. Using this upper bound in our dynamic program-
ming algorithm may reduce the number of computations drastically. Besides this
computational profit, we use these upper bounds as a stop criterion for our forward
algorithm.

O

3.2.4 Economic order quantity

Again we derive a horizon-selection rule based on the economic order quantity as
proposed in Section 2.4.3. The corresponding variable-horizon policy is used as a
reference in our empirical studies. Next we analyze the discrete time version of the
infinite-horizon lot-sizing model with constant demand described in Section 2.4.3.

Let D be the demand rate in units per period. It is easy to see that the average
inventory level I is equal to Q/2. The total relevant cost per period, defined by
(2.5), become

P(Q)D
TRC(Q) = (g + H(Q/2)
_ hQ | +pD ifo<Q<C
) BOS9 4 gD if Q> C.

Carefully examining TRC(Q) yields the economic order quantity Q* and the cor-
responding order cycle n*. Let r|, r; be defined by

2DS
r = e

h ’

[2D(S —r()
r = —h .

and
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Then

rn if0<r <C
Q*=n"D={r, ifS>rC,r,> C,and TRC(r;) <TRC(C) (3.5)

C otherwise.

The horizon-selection rule selects the optimization horizon equal to the order cycle
n* rounded to the nearest integer greater than zero. For D we take the average
demand level calculated over the data horizon, which is recalculated every time
new information comes in.

3.3 A cost structure with purchasing

The third cost structure is based on the following two-source model. Demand is
satisfied either by in-house production or by purchasing from an outside supplier.
Suppose that the in-house production capacity is equal to C, and let p, g denote
the in-house production cost per unit product and the purchasing cost per unit prod-
uct, respectively. There is a fixed setup cost S for in-house production in a certain
period; there are no fixed charges for purchasing. So the in-house production cost
is fixed plus linear (concave) as in the Wagner-Whitin cost structure and the pur-
chasing cost is linear. Such models are also called models with stockouts or models
with lost-sales and were analyzed by Sandbothe & Thompson [1990] as concave
cost network flow problems.

As was indicated by Chen, Hearn & Lee [1994] the difference between single-
source models and multiple-source models can be captured in the production cost
function. To make any sense, g must be greater than p, which implies that a break-
even point B exists between producing and purchasing. This break-even point is
found by solving S + pB = ¢B and is given by B = S/(g — p). For the same
reason we assume that B < C. Using this result, the two-source model is captured
by the following piecewise linear production cost function

q9X if0<X<B
P(X)=1S+pX ifB<X<C (3.6)
S+pCH+qX-0C) it X>C.

The inventory cost function H is linear and is given by (3.2). We assume that
g>p>0hC>0and S > 0, sothat P and H are both strictly increasing.
In the analysis, the difference in cost per unit product between purchasing and in-
house production is important. For notational reasons we define r = g — p. We
refer to r as the purchase premium.
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Figure 3.4. Two-source production cost function with purchasing.

3.3.1 Properties of optimal production plans

Using the formulation of Proposition 3.3, we could choose k =3, g0 =0, g = B,
g2 = C, and g3 = oo for the production cost function P. But, since P is concave
on [0, C], we may also take k = 2, go = 0, g = C, and g, = o0o. For the holding
cost function H, we take [ = 1, by = 0, and b; = oco. Applying Proposition 3.3
yields the following result.

Corollary 3.6. There exists an optimal n-period plan with the property that each
subplan contains at most one production period with a lot size that is unequal to
the capacity of in-house production C. O

Given a production plan X. Let R(X;), S(X;) denote the amount of in-house pro-
duction in period ¢, and the amount of product purchased in period ¢, respectively.
These quantities can be calculated from X, by

0 if0o<X <8
R(X)=3X ifB<X =<C
cC iftX, >C

and

S(X1) =X — R(X)).
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Using this notation we can state the following two results due to Sandbothe &
Thompson [1990].

Proposition 3.4. There exists an optimal n-period plan X, such that 1,.5(X;) = 0
forallt with 1 <t <n. O

Proposition 3.5. There exists an optimal n-period plan X, such that I,_,(C —
RX,)WR(X,)=0forallt with1 <t <n. O

3.3.2 Characterization of optimal subplans
Definition 3.2. A subplan X, of a n-period plan X, is called well-formed if
(i) Atmost one production period ¢ with u 41 < ¢t < v exists such that X, # C,
@) S(X;)=0fort =u+1,...,v—1, and
(iii) R(X,) e {0,C}fort =u+2,...,v.
O

The following result is straightforward from Corollary 3.6, Proposition 3.4, and
Proposition 3.5.

Corollary 3.7. There exists an optimal n-period plan that consists only of well-
formed subplans. m]

Using the cumulative demand axis defined in Section 3.2.2 we can now characterize
optimal well-formed subplans. The proof of the following result is similar to that
of Theorem 3.5 and therefore omitted.

Theorem 3.5. Let X, be a well-formed subplan of an optimal n-period plan X,.
Suppose that X,,, has k production periods i, < iy < ... < ix. Then we have
(i) ih=u+1,
(ii) Ifk =1, then X,+\ = D(u, v), and
(iii) Ifk > 1, then the lot sizes X;,, ..., X;, are given by

(8.C,....C) fB<B<C

Xy, ..., X)) = .
(C,...,C, B) otherwise,

where B = D(u, v) — (k — 1)C. The timing of the lot sizes I, ..., iy IS given
by iy = js fors =2,...,k where j; is defined fors =k, k —1,...,1 by
the backward- recursion

k
jo=max{j |u+1<j<jo, Boi— Y Xi, > Bj},

m=s

with boundary condition jyy) = v+ 1.



46 Some elementary cost structures

X, being optimal. We conclude that iy = js foralls =2, ..., k. O

Theorem 3.5 implies that, given the number of production periods of a well-formed
subplan for the periods u + 1, ..., v, computing the optimal timing and sizing of
the lot sizes requires O(v — u) basic operations. Since an optimal n-period plan
exists that consists only of well-formed subplans, it is sufficient to enumerate over
all (v — u) possible values for & and to choose a subplan with lowest cost. In this
way, an optimal subplan can be obtained using O((v — 1)?) basic operations, and
the computation of all arc costs requires O (n*) basic operations. Using the forward
recursion (2.4), we obtain an algorithm for the n-period problem with the purchase
cost structure that requires O (n*) basic operations.

3.3.3 Bounds on the length of an optimal subplan
The following result provides us with an upper bound on the length of a subplan of
an optimal n-period plan.

Theorem 3.6. Let X, be a subplan of an optimal n-period plan X,,. Then
r
—u<|={+1<co.
v—u< [hJ <

Proof. Let$ = min{X,4+), min,y)<;<, [;}. Then, from the definition of subplan,
it is obvious that 6 > 0. Furthermore, let X, = X, — de,y1 + de,. One easily
verifies that X, is a n-period plan. Since X, is optimal, the cost of X' must be
greater than or equal to the cost of X,,. Subtracting the equal cost components gives
the inequality

(P(Xy +8) — P(Xy)) = (P(Xus1) — P(Xus1 —9))

v—u+1) < 3
a-r
==
which, together with v — u being integer, completes the proof of the first inequality.
The finiteness of |r/ k] 4 1 is obvious from 4 > 0. O

3.3.4 Economic order quantity

In this subsection we derive a horizon-selection rule based on the economic order
quantity as proposed in Section 2.4.3. The corresponding variable-horizon policy
is used as a reference in our empirical studies. Next we analyze the discrete time
version of the infinite-horizon lot-sizing model with constant demand described in
Section 2.4.3.

Let D be the demand rate in units per period. The analysis is different from
the analysis for the two former models. Suppose we use a fixed lot size of Q.
Then it consists of an in-house production part R(Q) and a purchase part S(Q).
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Proposition 3.4 implies that it is not optimal to keep purchased goods in inventory.
So either 0 = S(Q) = D, and demand is satisfied directly by purchasing, or
Q = R(Q), and demand is satisfied by setting up production. Incase Q = S(Q),
ie., 0 < O < B, there is no inventory and the total relevant cost per period are
given by

TRC(Q) =¢D,

which is independent of Q. Incase Q = R(Q), thatis, B < Q < C, the average
inventory level [ is equal to (/2 and the total relevant cost per period are given by

hQ DS
TR = — 4 — D.
C(Q) > + 0 +p
Let
2DS
ry = e
h
and
B ifri<B
Or=13r ifB<rn<C
C ifry,>C.

Then, in case TRC(Q)) > gD, no economic order quantity exists and all demand
is directly satisfied by purchasing from the outside supplier. Otherwise, in case
TRC(Q)) < gD we have an economic order quantity

0" =n"D=0,. 3.7

The horizon-selection rule selects the optimization horizon equal to the order cycle
n* rounded to the nearest integer greater than zero. For D we take the average
demand level calculated over the data horizon, which is recalculated every time
new information comes in.
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Multi-layered perceptrons for statistical
classification

A multi-layered perceptron consists of a layered network of elementary nodes
that are linked through weighted connections. These nodes represent computational
units, which are capable of performing a simple computation that consists of a sum-
mation of the weighted inputs of the node, followed by the addition of a constant
called the bias weight, and the application of a response function. The result of
the computation of a unit gives the output of the corresponding node. The nodes
are arranged in layers with connections between the inputs of the network and the
nodes in the first layer and between subsequent layers only.

A history of Perceptrons. Early work on multi-layered perceptrons dates back
to McCulloch & Pitts [1943], who studied a simple mathematical model for the
behavior of a single neuron in a biological nervous system consisting of a simple
processing unit. Single-layered networks of such units were studied by Widrow
& Hoff [1960] under the name adalines and by Rosenblatt [1958] and Rosenblatt
[1962] who called them perceptrons. Multi-layered perceptrons can be viewed as
an extension of these single-layered networks. Rosenblatt [1962] showed that per-
ceptrons can be used for adaptive pattern classification, by introducing a learning
algorithm called the perceptron convergence procedure and by proving his famous
perceptron convergence theorem. This theorem states that the perceptron conver-

49
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gence procedure finds the connection weights of a single-layered perceptron that
solves a given pattern classification problem if such a solution exists. Among oth-
ers, Minsky & Papert [1969] demonstrated the limitations of single-layered per-
ceptrons by showing that they can only classify sets that are linearly separable.
Minsky & Papert [1969] suggested the use of multi-layered perceptrons to over-
come these difficulties. However, due to the lack of a convergence procedure for
this type of networks and the convincing argument of Minsky & Papert [1969] for
single-layered perceptrons, interest in perceptrons dropped to a modest level. In the
last decade, multi-layered perceptrons regained interest due to the discovery of the
back-propagation algorithm, which enabled an efficient evaluation of derivatives in
multi-layered perceptrons. This algorithm is the backbone of many learning algo-
rithms. Although similar ideas had been developed earlier by Werbos [1974] and
Parker [1985], it was the paper by Rumelhart, McClelland & Williams [1986] that
introduced the back-propagation algorithm to a broader audience.

In recent years multi-layered perceptrons have emerged as a useful neural net-
work model with applications in many fields. The majority of these applications are
in pattern recognition and classification. For examples of such applications we refer
to the work of Huang & Lippmann [1988], Maren, Harston & Pap [1990], Michie,
Spiegelhalter & Taylor [1994], and Ripley [1994].

The remainder of this chapter is outlined as follows. In Section 4.1 we intro-
duce multi-layered perceptrons and we show that multi-layered perceptrons can be
viewed as mappings. Their network mapping capabilities are discussed in Sec-
tion 4.2. In Section 4.3 we address the supervised learning problem, i.e., the prob-
lem of constructing a multi-layered perceptron on the basis of learning examples.
Supervised learning in the presence of noise or uncertainty is analyzed in Sec-
tion 4.4. Section 4.5 is devoted to the subject of generalization. Finally, in Sec-
tion 4.6, we introduce statistical classification and discuss the use of multi-layered
perceptrons in this area.

4.1 Network mappings

In a multi-layered perceptron the inputs of units in the first layer correspond to the
inputs of the network, while the inputs of the units in a higher layer are the outputs
of the units in the preceding layer. The outputs of the units in the highest layer
determine the outputs of the network, and this is called the output layer. Units that
are not output units are called hidden units, and the corresponding layers are called
hidden layers. The topology of a multi-layered perceptron is determined by the
number of inputs, the number of layers, and the number of units per layer.

Let the term m-layered perceptron (mLP) refer to a multi-layered perceptron
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with m layers of computational units or, equivalently, m layers of weights. Below
we define the mapping represented by a general mLP with n? inputs and n units
in layer [ for [ =1, ..., m. Let x; denote the ith input and let yj[) denote the output
of unit j in layer /. We assume that within layer / each unit has the same response
function given by £ ().

The output of the jth unit in the first layer is obtained by first computing a
weighted linear combination of the n® inputs, and adding a bias weight, which
yields

(l) Zw(l)x’ +w%)’ 4.1

where wﬁ) denotes the weight of the connection between input i and first layer unit

J and w%) denotes the bias weight of first layer unit j. Sometimes — (})) is called

a threshold. The bias weight can be modeled as an ordinary weight by adding an
extra input with fixed value xo = 1. Rewriting (4.1) then yields
2©®

a’ Z w'xi. 4.2)

The output of first layer unit j is then obtamed by applying the response function
FM() and is given by

(l) f(l)(a(l)) (4.3)
The output of the kth unit in layer ! 4+ 1 is obtained by first computing a weighted
linear combination of the »’ inputs from layer /, and adding a bias weight, which
yields

)

I+ (V0] +1)
& _Z Wy Vi T Weo s (4.4)

j=1
where w, J+ ) denotes the weight of the connection between unit ; in layer / and unit
k inlayer / 4+ 1, and w(’+') denotes the bias weight of unit k in layer / + 1. Again,
this bias weight can be modeled as an ordinary weight by adding an extra unit 0 in
layer [ with a fixed output value y(()[) = 1. Rewriting (4.4), then yields

20

a,E[H) _ Z (l+l)y51). (4.5)

j=0
The output of unit & in layer /4 1 is then obtained by applying the response function
FU*Y() and is given by

y(:+1) f(l+1>( (l+l>) (4.6)
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xl x2 1

Figure 4.1. An example of a 2LP with two inputs, three hidden units, and two output
units. The bias weights are shown as weights from extra inputs having a fixed value
1.

We refer to the above recursive computation of outputs from inputs as forward
propagation. An example of a 2LP is shown in Figure 4.1. This network has 2
inputs, 3 hidden units, and 2 output units. Combining (4.1), (4.4), and (4.6), we
obtain an explicit expression for the complete mapping represented by this 2LP.
This expression is given by

3 2
2 2 2 1 I
W= wg + Y w20 (w§.0>+§ :wﬁ.,.’x,-) fork=1,2. (47
j=l1 i=1

From this example it is clear that a multi-layered perceptron can be viewed as a
mapping f : RY — IRX, where M denotes the number of inputs and K the number
of output units. Mapping f is called the network mapping. In the next section
we address the question what network mappings can be realized by multi-layered
perceptrons, i.e., we investigate the network mapping capabilities of multi-layered
perceptrons.

4.2 Network mapping capabilities

In recent years the capabilities of multi-layered perceptrons to realize mappings
have been investigated by many authors. Network mapping capabilities of multi-
layered perceptrons can be subdivided into exact capabilities and approximation
capabilities. Exact capabilities of multi-layered perceptrons are determined by the
set of mappings that can be realized as a network mapping. Approximation capa-
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bilities of multi-layered perceptrons are determined by the extend to which they can
approximate arbitrary mappings.

Below, we discuss some results on the network mapping capabilities for the type
of multi-layered perceptrons under consideration. We concentrate on multi-layered
perceptrons with one output unit. The corresponding results for multi-layered per-
ceptrons with more than one output unit can be easily deduced from this simplified
case as was shown by Hornik, Stinchcombe & White [1989]. We introduce the no-
tation (¢, 8)-mLP to denote an m-LP with response function « for the hidden units
and response function S for the output units. For reasons of convenience («, «)-
mLP is abbreviated to a-mLP.

First, we discuss the exact capabilities of #-mLPs, where 8 : R — {0, 1}
denotes the hard-limiting response function given by

P 1 ifx=0 48

=10 ifx <o “8)

Second, we discuss the approximation capabilities of 8-mLPs and o-mLPs, where
o IR — [0, 1] denotes the logistic sigmoid response function given by

o(x) = (4.9)

1 +exp(—=x)’

The term sigmoid refers to “S-shaped”. The logistic sigmoid response function can
be seen as a differentiable approximation of the hard-limiting response function of
(4.8). Finally, we discuss the approximation capabilities of (4, A)-mLPs and (o, 1)-
mLPs, where A : R — IR denotes the linear response function given by

A(x) = x. (4.10)

4.2.1 Exact capabilities

6-mLPs can be seen as classification devices that classify input vectors to one of
a finite number of classes and the exact capabilities of 9-mLPs can be studied by
considering their classification capabilities. For our discussion of the classification
capabilities of §-mLPs we follow the work of Zwietering [1994]. A subset V C R
is said to be classified by a 8-mLP with M inputs and one output unit, if its network
mapping f : RY — {0, 1} satisfies

1 ifxeV

T =10 itrgv.

The decision region 3.(f) of this §-mLP is defined by
2(f)={xeR" | f0) =1},
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halfspaces. Therefore, all its bounds, usually called faces, belong to the set. A
pseudo polyhedron V € f’M is the intersection of a finite collection of closed or
open affine halfspaces and can have faces belonging to the set and faces belonging
to its complement V*. The collection Uy can be viewed as the collection of all
subsets of IR™ that have a finite number of piece-wise linear bounds. The following
result specifies the classification capabilities of §-mLPs.

Theorem 4.1. [Zwietering, 1994]. Let C,, p denote the collection of subsets of R
that can be classified with a 8-mLP with M inputs and one output unit. Then

(i) Cim = Hy U@, RM),

(ii) Py C Com C Uy, and

(iii) Cppr = Ups for m > 3.
O

These results appeared in the papers by Zwietering, Aarts & Wessels [1991] and
Zwietering, Aarts & Wessels [1992]. Gibson & Cowan [1990] and Gibson [1993]
obtained related results. Zwietering [1994] derived a detailed characterization of
C,.m by giving necessary and sufficient conditions for a subset to be classifiable
with a 6-2LP. For more details and examples of subsets that can or cannot be clas-
sified by a 6-2LP we refer to the work of Zwietering, Aarts & Wessels [1992],
Zwietering [1994], and Gibson & Cowan [1990].

4.2.2 Approximation capabilities

In the discussion of the approximation capabilities of multi-layered perceptrons we
distinguish between the task of classification, in which input vectors have to be
assigned to classes and the task of regression, in which continuous variables have
to be predicted given input vectors. Below we discuss the approximation capabili-
ties of 8-mLPs and o-mLPs for classification and the approximation capabilities of
@, »)-mLPs, (g, L)-mLPs, and a-mLPs for regression.

Classification. Lippmann [1987] showed that 6-mLPs, with m > 3, can approxi-
mate any decision boundaries with arbitrary accuracy, provided the number of hid-
den units is sufficiently large. Despite these capabilities the practical use of 8-mLPs
for classification is limited. The main reason for this is that the hard-limiting re-
sponse function is inappropriate for use in learning algorithms; see also Section 4.3.
In such cases o-mLPs can be used for classification by rounding the outputs to the
nearest integer or by implementing a winner-takes-it-all mechanism. Bishop [1995]
shows that o-mLPs with m > 2 can approximate any decision boundary with arbi-
trary accuracy, provided the number of hidden units is sufficiently large.
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Regression. Among others, Hornik, Stinchcombe & White [1989] showed that
(8, X)-mLPs with m > 2 can approximate arbitrarily well any continuous function,
provided the number of hidden units is sufficiently large. The authors also show
that the same result holds for (o, A)-mLPs with m > 2; see also the work of Barron
[1991], Cybenko [1989], Funahashi [1989], and Hornik [1991].

The regression capabilities of o-mLPs can be characterized using the above
results for (o, A)-mLPs. One easily verifies that a unit with a logistic sigmoid re-
sponse function can approximate a unit with a linear response function with arbi-
trary accuracy by rescaling its incoming and outgoing weights [Bishop, 1995]. Asa
result of that, o-mLPs, with m > 2, can approximate arbitrarily well any continuous
function with range [0, 1], provided the number of hidden units is sufficiently large.
We remark that, by choosing a suitable transformation, any bounded continuous
function can be transformed to a function with range [0, 1].

Numerous alternative response functions exist with similar approximation ca-
pabilities. Hornik [1991] stressed that it is the multi-layered feed-forward topology
that gives multi-layered perceptrons the potential of being universal approximators,
rather than the specific choice of the response function, by showing that any con-
tinuous, bounded, and non-constant response function is sufficient. An extensive
treatment of this area is beyond the scope of this thesis; elaborate discussions are
provided by Ellacott [1994], Light [1992], Mason & Parks [1992], and Zwietering
[1994].

A final remark addresses the profit of using mLPs with m > 2, considering the
fact that we can approximate any mapping with arbitrary accuracy with a 2LP. One
possibility is that by using more hidden layers we obtain more efficient approxi-
mation in the sense that the same accuracy is obtained with fewer weights. So far,
however, there are hardly any results on this subject.

4.3 Supervised learning

From the results presented in the previous section we conclude that multi-layered
perceptrons have quite impressive network mapping capabilities, but no construc-
tion methods were provided for finding appropriate network topologies. When ap-
plying multi-layered perceptrons to a certain task one has to choose a suitable net-
work topology and weights such that the network performs the task accurately. If
the underlying task is well-understood and can be analyzed properly, these parame-
ter values can be derived directly from the problem formulation. Usually, however,
this is not the case and the only available information consists of examples of the
desired input-output behavior. In such cases one can apply supervised learning
techniques. In this section we concentrate on the problem of determining suitable
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weights for a multi-layered perceptron with a fixed network topology on the basis
of a finite set of examples. The problem of choosing a suitable network topology is
addressed in Section 4.5 in the context of generalization.

4.3.1 Problem formulation

Given is a multi-layered perceptron with M inputs and K outputs and a finite set
8 = {s1, ..., sy} of learning examples, where s, = (x,,t,) withn =1,..., N,
X, € IRM represents an input vector for the multi-layered perceptron, and t, € R¥
represents the corresponding desired output or target vector. We refer to 8 as the
learning set. The network is supposed to be already completely specified apart
from the weights. For reasons of convenience we group all weights in the network
to form a single weight vector w. Let y(X,; w) denote the output vector of the
multi-layered perceptron with weight vector w on input of input vector x,. Then
the supervised learning problem is defined as to find a weight vector w such that
the difference between the target vector t, and the output vector y(x,; w) is minimal
foralln =1, ..., N. Usually, the difference is measured by an appropriate error
function. Let £ = E(w) denote the rotal error function, which can be written as
a sum, over all examples in the learning set, of the error E, (w) of each individual
example, i.e.,

N
E(W) = Z E, (W), (4.11)
n=|
where n = 1, ..., N labels the examples in the learning set. Many different error

functions have been proposed in the literature and the selection of an appropriate
one is usually problem-dependent [Bishop, 1995; Xu, Klasa & Yuille, 1992]. The
most commonly used error function is the sum-of-squares error function given by

N
EW) =) En(W), (4.12)
n=1
where
K
En(W) =Il Y0 W) =t 7= D 0k (%as W) — 1),
k=1
and where || - || denotes the Euclidean norm.

Remark that, although the capabilities of multi-layered perceptrons to reproduce
target vectors given input vectors may be useful in itself, usually the purpose is to
generalize, i.e., to reproduce target vectors given input vectors that are outside the
learning set. Generalization is subject of Section 4.5.
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4.3.2 Solution approaches

Supervised learning involves the search for a weight vector w such that the total
error function E is minimal. If the chosen response functions are differentiable,
supervised learning can be viewed as the unconstrained minimization of a differ-
entiable function of many variables. Such problems have been widely studied,
and many of the conventional approaches in this area can directly be applied to
supervised learning with multi-layered perceptrons; see for example the standard
textbook on global optimization techniques by Fletcher [1987].

In the simplest case of a A-1LP with the sum-of-squares error function (4.12),
E is a convex function of w having a single minimum. This minimum can be found
by solving a set of coupled linear equations [Bishop, 1995]. For more general net-
works, in particular those with more than one layer, E is typically a non-linear
function of w and local minima may exist. As a consequence of this, it is in gen-
eral impossible to find closed-form solutions for these minima. Instead, supervised
learning approaches, which are called learning algorithms, typically minimize E
by an iterative procedure in which the weights are adjusted in a sequence of steps
until some stop criterion is met. At each such step we can distinguish between two
distinct stages. In the first stage, the derivatives of £ with respect to the individual
weights must be evaluated at the current values of the weights. Until the discov-
ery of the back-propagation algorithm, the computationally efficient evaluation of
these derivatives was considered as a major problem. In the second stage, these
derivatives are used to compute the weight adjustments. The most commonly used
weight adjustment schemes involve some kind of gradient descent.

Although there are various learning algorithms that show a good performance
on a wide range of applications, they all typically require problem-specific tun-
ing, making a sound comparison of the different learning algorithms cumbersome.
Therefore, no single best universal learning algorithm can be designated. In the se-
quel we discuss the back-propagation algorithm and gradient-descent based weight
adjustment schemes. Furthermore, we discuss weight initialization and stop crite-
ria. Elaborate overviews of the literature on learning algorithms are provided by
Bishop [1995], Hertz, Krogh & Palmer [1991], Xu, Klasa & Yuille [1992].

4.3.3 Error back-propagation

Below we give a derivation of the back-propagation algorithm. We use the notation
introduced in Section 4.1 for a general mLP. It is assumed that we are given an
arbitrary fixed network topology, with arbitrary continuous, differentiable response
functions, and an arbitrary differentiable error function.

We recall that the back-propagation algorithm is a procedure for the evaluation

of the derivatives of the total error function E with respect to the weights wi.[,.). Using
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(4.11) these derivatives can be expressed as sums over the learning examples of the
derivatives of the error functions E,. Consequently the learning examples (X, t,)
may be considered one at a time. Thus we may concentrate on the calculation of the
derivative of E, with respect to weight w“) We suppose that we have supplied the
input vector X, to the network and calculated the outputs of all units by successive
apphcatlon of (4.3) and (4.6). First we note that E, depends on w only through

j , ), which yields
0

9E,  9E, da; e
500  3a 0 aw“) (415)
Ji
Let 65-") be defined as
OE
0 _ n
59 = 0 (4.14)

For notational reasons we define yfo) = X, . Using this notation and (4.1) and (4.4)
it follows that
8a(‘l)
— =y (4.15)
qw!h
ji

Substituting (4.14) and (4.15) into (4.13) yields

ok,
" 5(!) (l 2 (4.16)
E)wj,

The calculation of the 5( s can be executed recursively as follows. Starting at the
output layer, for output umt k in layer m we have

dE, _ 9E. dy"

8" = = , (4.17)
8™ ay!" 8"
which, using (4.6), can be simplified to
8 = " (a <'">) (4.18)

3y,§m) ,

where f'‘™ denotes the derivative of the response function f (’") . For hidden unit j
in layer / with 1 <[/ < m, we note that E, only depends on a through ak[“) for
k=1,...,n" which yields

1+1)

n' - (+D
=Ty S T (@.19)
E)aj ) 9a, da;
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1. Apply input vector x, to the network and use forward propagation to find all
outputs yﬁ-l) of units in the network.

2. Evaluate the errors 6,5'") for the output units using (4.17).

3. Back-propagate the errors 8,5'") using the error back-propagation rule (4.20)
to obtain 8;!) for each hidden unit.

4. Use (4.16) to evaluate the derivatives.

Figure 4.3. The back-propagation algorithm.

This can be simplified using (4.4) and (4.14) to what is known as the error back-
propagation rule given by
al+h

80 = fO@™ 3 g, (4.20)
k=1

With this rule we can recursively calculate the errors of units in the hidden layers
from the errors of units in the output layer, where the errors are represented by the
55-1)’5. Remark that this holds for any network with feed-forward topology. The
back-propagation algorithm for evaluating the derivatives of E, with respect the
weight w‘(,.l,.) is summarized in four steps in Figure 4.3.

The derivative of the total error function E with respect to the weight wj-l,;) can
be determined by summing the derivatives of E, for all learning examples which
results in

N
oF 0E,

o= Z 0" (4.21)
awji n=I awji

We end our discussion of the back-propagation algorithm with a remark on its com-
putational efficiency. Let W denote the total number of weights. Then one can
easily verify that applying the above steps to evaluate the W derivatives of £, re-
quires O(W) operations. Note that this is quite efficient, since evaluation of the
derivatives using their explicit formulas using forward propagation would require
O(W?) operations. The evaluation of the derivatives of E thus requires O(N W)
operations.

The above derivation of the back-propagation algorithm allows for general forms
of the error function, the response functions and the network topology. In our exper-
iments in Chapter 6 and Chapter 7 we use a sum-of-squares error function. More-
over, in each unit, we use the logistic sigmoid response function, which has the
convenient property that its derivative can be expressed in terms of the response
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function itself as
o'(x) =c(x)(1 —o(x)). (4.22)

This enables an efficient software implementation of the calculation of the deriv-
ative. For derivations of the back-propagation algorithm for particular combina-
tions of error functions and response functions we refer to the textbooks by Bishop
[1995], Hertz, Krogh & Palmer [1991] and Rumelhart, McClelland & Williams
[1986].

4.3.4 Weight adjustment schemes

In this subsection we discuss gradient-descent based weight adjustment schemes
for the minimization of E with respect to the weight vector w. First, we introduce
two basic weight adjustment schemes called batch learning and sequential learning
and discuss their convergence properties. Since local minima may exist, we distin-
guish between local convergence, i.€., convergence to a local minimum, and global
convergence, i.e., convergence to a global minimum. After that, we extend the two
basic schemes by adding a momentum term.

Batch learning. In batch learning, we start with an initial guess for w and we
update the weights repeatedly in the direction in which the total error function de-
creases most rapidly, i.e., in the direction of the negative gradient. The correspond-
ing weight adjustment scheme equals
N
AW = —nVyE = —n Y VyE,, (4.23)
n=1
where w denotes the weight vector, Vy E,, denotes the gradient of E, with respect
to w, and n € IR is called the learning rate. Note that the weights are adjusted
after all learning examples in the learning set have been presented to the network.
Under suitable conditions, the batch learning weight update scheme converges
to a local minimum of E. The value for n can be fairly critical, since a too small
value results in slow convergence, whereas a too large value results in divergent
oscillations. Furthermore, we remark that once trapped in a local minimum there is
no escape and global convergence cannot be assured.

Sequential learning. In sequential learning, the weights are adjusted in the di-
rection of the negative gradient of the error function for one learning example at a
time. The corresponding weight adjustment scheme equals

Aw = —nVy E,, (4.24)

where the learning examples in the learning set are selected randomly or considered
in sequence.
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Convergence results for sequential learning require that the learning rate is made
to decrease at each iteration according to some cooling schedule, given by n, with
t =1,2,....Ithas been frequently mentioned in the literature that the advantage
of sequential learning over batch learning is that, due to its random behavior, se-
quential learning can escape from local minima. Furthermore, an analogy between
sequential learning and simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983],
where the temperature is controlled by the learning rate n,, has been mentioned
[Bottou, 1991]. Heskes, Slijpen & Kappen [1993] elaborate on the analogy with
simulated annealing by showing that the fastest possible cooling schedule for »;
that guarantees convergence to a global minimum is exponentially slow. In prac-
tice, however, a constant value of 7, generally leads to much better results, although
the guarantee of global convergence is lost.

Several authors claimed that sequential learning often yields the best results,
especially for complex problems with many local minima [Barnard, 1992; Heskes
& Wiegerinck, 1996]. Schiffmann, Joost & Werner [1992] compare the sequen-
tial version of gradient descent using a fixed learning rate with a large number of
learning algorithms on a complex real world benchmark. They make a distinction
between global weight adjustment schemes, in which the same learning rate is used
for all weights, and local weight adjustment schemes, in which each weight has its
own learning rate that is typically adapted during execution. In this study, sequential
learning with a fixed learning rate was the best global weight adjustment schemes;
only some of the local weight adjustment schemes gave slightly better results.

We end our discussion with some additional advantages of sequential learning
over batch learning. Since weights are adjusted after every presentation, sequential
learning is memory efficient. Moreover, in case of large redundant learning sets,
sequential learning runs faster [Bishop, 1995; Ellacott, 1994]. Finally, sequential
learning is naturally suitable for parallel implementation.

Momentum. For both batch learning and sequential learning a value of 7 that is
too large may result in divergent oscillations. Conversely, if 7 is too small, the com-
putation times may become prohibitive. The optimal value of 7 typically changes
during the search. One commonly used remedy is to add a momentum term, which
adds a weighted average of the previous gradients to the current gradient. To illus-
trate its effect we consider batch learning with momentum, which is given by

AW(t) = =V E lw@y +eAw(t — 1), . (4.25)
where ¢ refers to the tth weight adjustment. This is equivalent to

!
AW(D) = =1 ) 1 VwE lwi—s), (4.26)
s=0
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and can be seen as applying exponential smoothing to (4.23). In the case that the
subsequent gradients are approximately the same we have

AW = —VoE{l + p+pl+...} = —ﬁVwE, (4.27)

resulting in an increase of the effective learning rate from n to n/(1 — p). Itis
obvious that 1 must be chosen such that @ < p < 1. On the other hand, if the
subsequent gradients oscillate, successive fluctuations cancel to obtain a long term
trend with an effective learning rate close to n Bishop [1995]. The corresponding
weight adjustment scheme for sequential learning with momentum is as follows.
After presentation of the learning example labeled n, the weights are adjusted ac-
cording to

AW(t) = —nVwEy [woy +HAW(E —1). (4.28)

An extraeffect of using a momentum term for sequential learning is that one obtains
an approximation of the total gradient. We refer to the work of Wiegerinck, Komoda
& Heskes [1994] for convergence results of sequential learning with momentum.

4.3.5 Stop criteria

Possible stop criteria are to stop after (i) a fixed number of iterations, (i) a fixed
amount of computation time, or (ii{) the erroron the learning set has dropped below
some prespecified level. A disadvantage of these criteria is that they ignore the
network’s generalization capabilities. Stop criteria that account for generalization
capabilities are discussed in Section 4.5.

4.3.6 Weight initialization

Weight initialization has received relatively little attention in the literature. The
most commonly employed weight initializing procedure is to choose small random
values. Random values are used to avoid problems due to symmetry in weight
space [Rumelhart, McClelland & Williams, 1986]. For the logistic sigmoidal re-
sponse function, large absolute values of the initial weights results in small values
of derivatives of the response function, which leads to small values of the gradi-
ent and consequently a flat error surface. If, on the other hand, the initial weights
are too small, the logistic sigmoid response function becomes approximately linear,
which may slow down learning [Bishop, 1995]. Unfortunately, there does not ex-
ist a clear definition of small, and fine-tuning is needed for a particular problem at
hand. Recently, a number of alternative weight initialization procedures have been
proposed, which typically use prior, problem-specific knowledge. Smyth [1992]
used the decision boundaries of a K -nearest-neighbors classifier [Duda & Hart,
1973] as initialization of the first hidden layer weights. Wessels & Barnard [1992]
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developed a procedure in which the weights are initialized such that the hidden unit
decision boundaries are uniformly oriented in feature space. Denoeux & Lengellé
[1993] used prototype vectors.

4.4 Learning in a statistical perspective

As we have stressed before, the real purpose of supervised learning is to model
the process underlying the learning examples, rather than to memorize the set of
learning examples. In this way, on input of an input vector outside the learning set,
the best possible prediction for the corresponding output vector can be made. It is
important to note that such a process may be subject to noise or may be inherently
stochastic. In this section we discuss supervised learning by means of sum-of-
squares error minimization in a statistical perspective.

Following Bishop [1995], we model the process that generates the learning ex-
amples by a random variable pair (X, T) defined on Qx x Qr, where Qx C R
denotes the input space and 21 € IRX denotes the rarget space. The process can
then be characterized by the joint probability density function of X and T denoted
by fx.r.

Let {(U,, Va)},2, be a sequence of independent and identically distributed ran-
dom learning examples with common distribution fxt. Given is an {o, 8}-mLP
with M inputs and K outputs completely specified apart from its weights w. Let
y(x; w) denote the output vector of the network on input of input vector x € Qx.
We introduce the sequence of random variables {c,}°° , where «, denotes the sum-

n=1"

of-squares error between y(U,; w) and V,, given by

K
dn =l y(Un; W) = Vi I1P=D " (Ups W) = Vie)?, (4.29)
k=1
where yx(U,; w) and V,; denote the kth component of y(U,; w) and V,, respec-
tively. Itis obvious that random variables «, with n = 1, 2, ... are independent
and identically distributed. Finally, we introduce the sequence of random variables
{en}3 -, where ey denotes the mean sum-of-squares error of the N learning exam-
ples labeled n =1, ..., N given by

N
1
= Zla"' (4.30)
The following result is obtained by applying the the strong law of large numbers
[Feller, 1968].
Theorem 4.2. Suppose E{|| y(X; w) — T |2} < 0o. Then, with probability 1,

lim ey =€,
N—ooo
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where

¢ = / |y w) —t I fior(x, Ddtdx. @.31)

Using the identity fx t(X, t) = fr(t | X = x) fx (x) we rewrite (4.31) as

€ =/ I y(x; w) — E(T | X=x} II” fx x)dx +
(4.32)
/ var{T | X = x} x(x)dx,

where fr(t | X = x) denotes the conditional probability density function of T given
X and E{-|-} and var{-|-} denote the conditional expectation and the conditional
variance, respectively. Note that the second term of (4.32) is independent of w and
can be neglected when minimizing € with respect to w. Furthermore, since the
integrand in the first term of (4.32) is non-negative, a global minimum of ¢ with
respect to w is attained when

yx;w) =E{T | X=x} = /th(t | X = x)dt. (4.33)
For the individual network outputs yx (x; w) this corresponds to

ye(x; w) = E{Tx | X =x} = /lkfn (e | X' = x)dy. (4.34)

This important result states that in the limit as the size N of the learning set goes
to infinity, the network mapping corresponding with a minimum of € is given by
the conditional expectations of the targets. We notice that this only holds under the
condition that (/) E{|| y(X; w) — T ||?} < oo and (i{) the {«, B}-mLP has sufficient
network mapping capabilities such that there exists a choice w which makes the first
term in (4.32) sufficiently small. On easily verifies that condition (i) is satisfied, if
g is bounded and E{7;} and E{T;?} are both finite fork =1, ..., K.

For obvious reasons we call the mapping x — E{T | X = x} the targer map-
ping, i.e., the mapping that has to be learned by the multi-layered perceptron. In
practice, we minimize the sum-of-squares error function (4.12) on a finite learning
set of realizations of (X, T). In that case, the network outputs corresponding with
a minimum of error become approximations of the conditional expectations of the
targets. In other words the network mapping corresponding with a minimum of
error becomes an approximation of the target mapping. For this approximation to
be good, the learning set must be sufficiently large as to approximate an infinite
learning set. The problem of determining a suitable network topology and a learn-
ing set that is sufficiently large is discussed in the next section in the context of
generalization.
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A final remark is that Theorem 4.2 is independent of our choice of feed-forward
network topology, or even of using multi-layered perceptrons at all. It only requires
that the representation for the mapping y(x; w) is such that there exists a choice for
w which makes the first term in (4.32) sufficiently small. The contribution of multi-
layered perceptrons is that they provide a practical framework for finding such a
representation.

4.5 Generalization

In the context of supervised learning with multi-layered perceptrons, generalization
refers to the prediction of target vectors for new input vectors, i.e., for input vectors
that are not in the learning set. Good generalization is in general not simply evident
and there are a number of conditions that must be satisfied, in order to achieve good
generalization. These can be divided into problem specific and model specific con-
ditions. This section is organized as follows. In Section 4.5.1 we discuss problem
specific and model specific conditions for good generalization. The problem of se-
lecting an optimal network topology is addressed in Section 4.5.2. In Section 4.5.3,
stop criteria for learning that take generalization capabilities into account are dis-
cussed. Finally, in Section 4.5.4, we discuss committees of networks.

4.5.1 Condition for good generalization

Below we discuss two classes of conditions that enable generalization in multi-
layered perceptrons.

Problem specific conditions. A first necessary condition for good generalization
is that the target mapping is in some sense smooth, i.e., a small change in the inputs
should, most of the time, produce a small change in the outputs. Problems that do
not satisfy this condition are learning the input-output behavior of pseudo-random
number generators and data encryption algorithms, for instance.

A second necessary condition for good generalization is that the learning set
1s a sufficiently large and representative subset of what statisticians use to-call the
population, i.e., all examples that you want to generalize to. The importance of
this condition becomes clear when we distinguish between two types of general-
ization: interpolation and extrapolation. Interpolation applies to input vectors that
are surrounded by learning examples that are close in some sense; everything else
is extrapolation. In particular, input vectors that lie outside the subspace spanned
by the learning examples require extrapolation. Interpolation can often be done re-
liably, but extrapolation is usually unreliable [Barnard & Wessels, 1992; Haley &
Soloway, 1992]. Hence it is important to have sufficient learning examples to avoid
the need for extrapolation. In some cases preprocessing may be necessary to en-
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sure that the problem only requires interpolation. Problems that inherently require
extrapolation are inappropriate for an approach based on supervised learning with
multi-layered perceptrons.

Model specific conditions. In the previous sections we focussed on the minimiza-
tion of some error function E on a finite learning set by choosing appropriate values
for the weights in a multi-layered perceptron of fixed topology. What remains is the
problem of determining a network topology that is optimal with respect to gen-
eralization capabilities. We saw that the suitability of a certain network topology
depends on its network mapping capabilities; see Section 4.2. In Section 4.4 we
noted that, in case of a learning set that is sufficiently large, a necessary condition
for good generalization is the requirement that the network has sufficient network
mapping capabilities to represent the target mapping.

In practice, however, there is usually only limited data available so that the op-
timal network topology is determined by the particular learning set at hand. In such
cases, we typically seek for the network topology that achieves the best general-
ization. Remark that the network topology with the best possible generalization
with respect to a certain learning set may have poor generalization capabilities. The
dependency between the optimal network topology and the learning set can be char-
acterized by the so-called bias-variance trade-off, which we now briefly discuss.
A theoretical treatment of this subject is provided by Bishop [1995]. Let f be the
network mapping of a multi-layered perceptron obtained by applying some learning
algorithm with a finite learning set 4. Then f can be viewed as a function of 4, i.e.,
f = f(4), and the bias measures the extent to which the average of the network
mapping over all possible learning sets 4 differs from the target mapping. The vari-
ance measures the sensitivity of the network mapping to the particular choice of
learning set. Bias and variance are complementary quantities, and the best general-
ization capabilities are typically obtained as a compromise between the conflicting
requirements of low bias and small variance. Networks with too little network map-
ping capabilities typically smooth out some of the underlying structure (high bias),
while networks with too much network mapping capabilities over-fit the learning
examples (high variance).

4.5.2 Learning and generalization

Next we address the problem of determining a multi-layered perceptron with the
best possible generalization capabilities with respect to a given set of learning ex-
amples. Various approaches have been presented in the literature for this problem.

The most commonly used approach to select an optimal network topology for
a given learning set is to execute the learning algorithm for different fixed network
topologies and to select the topology with the best generalization capabilities. To
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overcome over-fitting, one typically starts with a simple network and one increases
the number of hidden units.

An alternative approach is to let the learning algorithm adapt the topology of
the network during execution. Possibilities are to start with a small network and to
add units or to start with a large network and to prune units [Fahlman & Lebiere,
1990].

Both approaches require a method to assess the generalization capabilities of
a network. Depending on the available number of learning examples one of the
following two methods can be used. In the hold out method the generalization
capabilities of a network are assessed using an independent set of examples. The
total error on this set is called the generalization error. In practice, the availability
of learning examples may be limited and we may not be able to afford the luxury
of keeping aside such a set of examples. In such cases we can adopt the method
of cross-validation, where we divide the available set of examples into a number of
distinct segments, develop a network using the data of all but one of these segments,
assess the generalization capability of the network on the remaining segment, and
repeat the process for each possible choice for the segment that is omitted from
the learning process. The results are then averaged. The disadvantage of such an
approach is the increase in computational effort.

4.5.3 Alternative stop criteria

In Section 4.3.5 we discussed stop criteria for learning algorithms. These criteria
completely ignored the network’s generalization capabilities. Next we discuss two
alternative stop criteria in which, during execution of the learning algorithm, the
generalization error is monitored on an independent set of examples. The monitor-
ing can be done by using the hold out method or by using cross-validation.

In the first stop criterion, called premature stopping, the learning algorithm is
stopped when the generalization error first starts to increase. This criterion is based
on the observation that during a typical execution of a learning algorithm, the gen-
eralization error often shows a decrease at first, followed by an increase as the
network start to over-fit the learning set. In the second stop criterion the learning
algorithm is executed for a fixed number of iterations while always storing a copy
of the network with the lowest generalization error.

The major advantage of using such stop criteria is the absence of over-fitting
hazard. Consequently, the generalization capabilities of thus obtained networks
are independent of the choice of network topology, provided the network mapping
capabilities are sufficient.

Remark that, in this way, there are typically three independent sets of examples
involved, i.e., a learning set used for weight adjustments, a validation set to monitor
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the generalization error during execution of the learning algorithm in order to pick
the best network, and a test set to asses the generalization capabilities of the final
network.

4.5.4 Committees of networks

In practical gradient-based learning algorithms global convergence is not guaran-
teed, hence the final network might be sensitive to the initial values of the weights.
For that reason it is common practice to develop several networks with different
weight initializations. The problem now is to decide which of these networks we
are actually going to use. One possibility is to keep the network with the lowest
error on the validation set and simply discard the remaining networks. Drawbacks
of this technique are the effort waste for developing the discarded networks and
the danger of the selected network being biased to the validation set. These draw-
backs can be overcome by grouping the networks together to form a committee and
let the committee determine the final output [Perrone & Cooper, 1993]. This de-
termination can be done by majority voting or by averaging all network outputs,
for instance. The advantage of such a committee decision is that significant im-
provements can be obtained with little extra computational requirements. Often the
generalization capabilities of such a committee are even better than the best indi-
vidual network. Bishop [1995] showed that some reduction of generalization error
is to be expected, due to the reduced variance which results from the averaging over
different networks.

4.6 Statistical classification

The task of classification occurs in a wide range of information processing prob-
lems of great practical significance, from automatic reading of postcodes to med-
ical diagnosis. In general, a classification problem is concerned with the construc-
tion of a classification rule that assigns objects to pre-defined classes on the basis
of observed features. The most general and commonly used framework in which
solutions to classification problems are formulated is a statistical one. The corre-
sponding field of research is called statistical classification or statistical pattern
recognition. It is a well established field with a long history. In recent years it has
been demonstrated that multi-layered perceptrons can be viewed as an extension of
conventional techniques in statistical classification; see for example the textbooks
by Duda & Hart [1973] and Ripley [1996]. Based on the numerous comparisons
of the performance of neural network classifiers with the performance of conven-
tional classifiers, we may conclude that multi-layered perceptrons often provide a
practical solution approach with a performance that is competitive with the best
traditional approaches [Huang & Lippmann, 1988; Michie, Spiegelhalter & Taylor,
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1994]. In the remainder of this section we discuss multi-layered perceptrons in the
context of statistical classification.

4.6.1 Preliminaries

Suppose we have to assign objects to one of K pre-defined classes on the basis of
M observed real-valued features. Let 2 C IRM denote the space of feature vectors
and let £ = {1,..., K} denote the set of class labels. We model the relation
between objects and their corresponding class label by a pair of random variables
(X, Y) defined on §2 x .£. This relation can be characterized by the joint probability
density function of X and Y denoted by fxy. The corresponding classification
problem can now be formulated as to find a classification rule g : € — J that
optimizes some appropriate objective. After introducing some basic concepts, we
discuss two such objectives, i.e., maximization of expected classification rate and
minimization of expected cost.

4.6.2 Some basic concepts

In statistical classification it is often convenient to write the joint probability density
function in the form

Fy&x D =PY =1|X=x}fxXx), (4.35)

where P{Y = | | X = x} and fx denote the conditional probability that an object
belongs to class ! given feature vector x and the probability density function of X,
respectively. The quantity P{Y = [ | X = x} is called the posterior probability,
since it gives the probability that an object belongs to class [ after the feature vector
x is observed. Similarly, the joint probability density function can be written in the
form

fryx D = fx&|Y=DP{Y =1}, (4.36)

where fx(x | Y = [) and P{Y = [} denote the conditional probability density
function of X given ¥ = [ and the probability that an object belonging to class [,
respectively. The quantity P{Y = [} is called the prior probability, since it gives
the probability that an object belongs to class / before its feature vector is observed.
Combining these two expressions for the joint probability density function we ob-
tain

K& [Y =DP{Y =1}
PlY =1|X=x} =
{ | X = x} ) :

which is called Bayes’ formula. 1t is named after Rev. Thomas Bayes, an 18th
century mathematician. Bayes’ calculations were published in 1763, two years
after his death [Bayes, 1763].

(4.37)
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Bayes’ formula allows the posterior probabilities to be expressed in terms of prior
probabilities P{Y = !} and conditional probability density functions fx(x | Y = 1),
where fx (x) can be written in the form

) =) fx&x | Y =DP{Y =1}, (4.38)

le L

4.6.3 Maximization of expected classification rate

In the present part we consider the problem of finding a classification rule g : 2 —
L that maximizes the expected classification rate r(g) defined by

rg) = f PY = g0) | X = x) fx ()dx. (4.39)

If g(x) is chosen such that P{Y = g(x) | X = x} is maximal for every x, then r(g)
is maximal. This justifies the following statement of the rate-optimal classification
rule. To maximize the expected classification rate, select that class / for which
P{Y = | X = x} is maximal. The resulting expected classification rate is called
the Bayes rate and is the best performance that can be achieved.

In practical classification applications the posterior probabilities are usually un-
known and the rate-optimal classification rule cannot be applied. In such cases,
one can use available examples of objects, their feature vectors, and corresponding
classes to estimate the posterior probabilities, which can be used to classify objects.
In this way we obtain approximative classification rules. One approach is to es-
timate the conditional probability density functions fx(x | ¥ = [) and the prior
probabilities P{Y = !} separately and then combine them using Bayes‘ theorem
to give posterior probabilities. An alternative approach is to estimate the posterior
probabilities directly. Below, we show that,with a suitable representation of the
learning examples, the outputs of a multi-layered perceptron obtained by minimiz-
ing the sum-of-squares error on a finite set of learning examples can be interpreted
as approximations to posterior probabilities.

Given is an {c«, 8}-mLP with M inputs, one per input dimension,and K output
units, one per class. The network is supposed to be already completely specified
apart from the weights w. Learning examples are constructed as follows. For a pair
(x, I) of an object feature vector and its corresponding class label we take the input
vector equal to x. The corresponding target vector is defined by t = e;, where ¢,
denotes a K component vector with a one in the /th position, and zeros elsewhere.

We model the relation between input vectors and target vectors by the pair of
random variables (X, T) defined on Q x {0, 1}X, where T = (T}, ..., Tx) is given
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1 ifY =k
=0l ""T% fok=1,... K. (4.40)
0 otherwise

We apply Theorem 4.2 to obtain that in the limit as the size of the learning set goes
to infinity, the network mapping corresponding with a minimum of ¢ is given by the
conditional expectations of the targets. Using E{T;, | X =x} =P{Y =k | X =X}
this yields that a global minimum of € with respect to w is attained when

wx;w) =P{Y =k | X=x} forallk €.L. (4.41)

This only holds under the condition that (i) the {«, 8}-mLP has sufficient network
mapping capabilities such that there exists a choice w which makes the first term in
(4.32) sufficiently small and (ii) E{|| y(X; w) — T ||} < oco. One easily verifies
that E{T;} and E{7;?} are both finite for k = 1, ..., K. A sufficient condition for
(ii) to hold is that output unit response function S is bounded. A suitable choice is
to use o -mLPs.

For minimizing the sum-of-squares error (4.12) on a finite learning set we con-
clude that on input of object feature vector x, the network output values can be
interpreted as estimates for the posterior probabilities P{Y = k | X = x}. Similar
results can be found in the papers by Ruck, Rogers, Kabrisky, Oxley & Suter [1990]
and Yeung [1993].

4.6.4 Class overlap

Itis in general impossible to determine the class of an object on the basis of a feature
vector with certainty. For instance because the feature vector simply contains too
little information about the object. In the previous subsection we saw that in such
cases it is rate optimal to select the class / for which the posterior probability P{Y =
/'] X = x} is maximal. According to (4.37) this corresponds to selecting the class
! for which fx(x | Y = DP{Y = [} is maximal, where we use that fx(x) can
be viewed as a normalization factor. We recall that fx(x | ¥ = [) denotes the
probability density function of X given that the object belongs to class /. From
equality (4.38) we know that the overall probability density function fx(x) can
be written as a sum of |.£| components fx{(x | ¥ = )P{Y = [}, one for each
class [ € .L. Since the classification problem is completely characterized by these
components, the nature of a classification problem depends on the amount by which
these components overlap. We refer to this phenomenon as class overlap.

The amount of overlap between two probability density functions is usually
called the overlapping coefficient and refers to the area under the two probability
density functions simultaneously. The overlapping coefficient is defined as follows.
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Definition 4.2. [Bradley, 1985]. Let U and V be random variables on IR" with
corresponding probability density functions fy and fv. Then the overlapping coef-
ficient Ay.v is defined by

Ay = f min{ fu (0, fy(X)}dx.
0

Below we derive a measure for the amount of overlap for the general classification
problem with the classification rate objective. There are two differences with the
ordinary overlapping coefficient. The first difference is that there can be more than
two probability density function involved. The second difference is that the proba-
bility density functions are weighted by their corresponding prior probabilities. The
corresponding overlapping coefficient is denoted by Ax y. For the two-class case we
have

oy = [ mintfux | ¥ = DP(Y = 1), fe(x | ¥ = 2P(¥ =2})dx,
which, using Bayes’ rule, can be rewritten as
Axy = /min{P{Y =1|X=x},P{Y =2 | X =x}} x(x)dx
= 1—/max{] —P{Yy=1|X=x},1-P¥ =2 | X =x}} fxXdx.
Using the identity P{Y =1 | X =x} + P{Y =2 | X =x} = 1, we derive
Axy =1 — /max{P{Y =1|X=x},P{Y =2 | X =x}} x x)dx

= 1= [Py =50 | X = x) i

=1-r(,

where r(-) denotes the expected classification rate as defined by (4.39) and g* de-
notes the rate-optimal classification rule. For the general classification problem we
define the overlapping coefficient by

Axy =1—r(g"). (4.42)

So the overlapping coefficient Axy corresponds with the misclassification rate of
the Bayes’ optimal classification rule. For example, in case of non-overlapping
components we have r(g*) = 1 and Axy = 0. In practical classification applica-
tions, r(g*) usually cannot be calculated exactly. Nevertheless we know that r(g) <
r(g*) for any classification rules g, which can be rewritten as Axy <1 — r(p). So
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the expected misclassification rate 1 — r(g) of any horizon-selection rule g pro-
vides an upper bound for Ax y. Note that we can estimate 1 — r(g) by calculating
the misclassification rate of g on an independent set of learning examples.

4.6.5 Minimization of expected cost

In some applications, maximization of the expected classification rate is an inap-
propriate objective. Distinct examples of such applications can be found in medical
diagnosis, where it is often necessary to discriminate between the different types
of erroneous classifications [Low & Webb, 1990]. A simple approach to obtaining
such discrimination is to introduce a cost matrix with elements ¢;, denoting the
cost incurred for classifying an object that belongs to class / € L to class k € L.
However it depends on the application if such a cost matrix is sufficient. A more
general approach is to introduce a cost function ¢ : 2 x £ x £ — IR, where
c(x, 1, k) denotes the cost incurred for classifying an object with feature vector x
that belongs to class [ € .L to class k € L. Below we work out this approach. Since
P{Y = 1| X = x} is the probability that the true class label of x is /, the expected
cost associated with assigning an object with feature vector x to class k is

E{e(X, Y, k) | X=x} =Y c(x, LOP{Y =1 | X =x}. (4.43)
lel
For notational reasons we abbreviate the conditional expectation E{c(X, Y, k) |
X = x} to ¢(k | x). We can now consider the problem of finding a classification
rule g : © — L that minimizes the overall expected cost c(g) defined by

c(g) = / cg() | % f(dx. (4.44)

If g(x) is chosen such that ¢(g(x) | x) is minimal for every x, then the overall cost
is minimal. This justifies the following statement of the cost-optimal classification
rule. To minimize the overall expected cost, we compute the conditional expecta-
tions c(k | x) for all k € .£ and select class k for which ¢(k | x) is minimal. The
resulting minimum overall cost is called the Bayes cost and is the best performance
that can be achieved. One easily verifies that maximizing the expected classifica-
tion rate reduces to a special case of minimizing the overall expected cost by taking
c(x, 1, k) equal to

cox Ly =] TTER (4.45)

0 otherwise.

Note that in this case there is no cost distinction, since all errors have equal cost.
The notion class overlap, as defined in the previous section, can be easily extended
to the more general cost objective by defining Ax y = c(g*), where g* denotes the
cost-optimal classification rule.
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In practical classification applications the conditional expectations are usually un-
known and the cost-optimal classification rule cannot be applied. In such cases,
one can use available examples of objects, their feature vectors, and corresponding
classes to estimate the conditional expectations, which can used to classify objects.
In this way we obtain approximative classification rules. One approach is to esti-
mate the posterior probabilities and use (4.43) to give the conditional expectations.
An alternative approach is to estimate the conditional expectations directly. Below
we show that, with a suitable representation of the learning examples, the outputs
of a multi-layered perceptron obtained by minimizing the sum-of-squares error on
a finite set of learning examples can be interpreted as approximations to the condi-
tional expectations.

Given is an {«, B}-mLP with M nputs, one per input dimension,and K output
units, one per class. The network is supposed to be already completely specified
apart from the weights w. Learning examples are constructed as follows. For a
pair (x, /) of an object feature vector and its corresponding class label we take
the input vector equal to X. The corresponding target vector is defined by t =
(cx, 1), ..., cx, 1, K)).

We model the relation between input vectors and target vectors by the pair of
random variables (X, T) defined on Q x IRX, where T = (T}, ..., Tx) is given by

Th =cX, Y, k) fork=1,...,K. (4.46)

We apply Theorem 4.2 to obtain that in the limit as the size of the learning set goes
to infinity, the network mapping corresponding with a minimum of € is given by the
conditional expectations of the targets. Using E{7; | X = x} = c(k | x) this yields
that a global minimum of € with respect to w is attained when

ye(xX; w) =c(k | x) forallk € L. 4.47)

This only holds under the condition that (i) the {c, }-mLP has sufficient network
mapping capabilities such that there exists a choice w which makes the first term in
(4.32) sufficiently small and (ii) E{|| y(X; w) — T ||*} < oco. A sufficient condi-
tion for (ii) to hold is that both output unit response function 8 and cost function
¢(x, I, k) are bounded. In that case a suitable choice is to scale the targets between
Oand 1 and to use o-mLPs.

For minimizing the sum-of-squares-error on a finite learning set we conclude
that on input of object feature vector x, the network output values can be interpreted
as estimates for the conditional expectations c(k | x).

4.6.6 Discussion

The accuracy of the thus obtained estimates of posterior probabilities and condi-
tional expectations depends on a number of conditions. To begin with, good gener-
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alization is only possible if the learning set is sufficiently large and representative
and if the multi-layered perceptron has sufficient network mapping capabilities; see
Section 4.5. Furthermore, the minimization of sum-of-squares-error as a function of
the weights must be done appropriately. If these conditions are satisfied we expect
the estimates to be accurate.

Note that the accuracy of these estimates becomes less important when used in a
classification rule since, in that case, only correct classification counts. Depending
on the chosen objective, such a classification rule classifies correctly if the estimated
value of the posterior probability of the correct class is maximal, or if the estimated
value of the conditional expectation of the correct class is minimal. This observation
has been an inspiration for authors to derive alternatives for the traditional sum-of-
squares error function that are tailored for use in a classification rules [Hampshire &
Pearlmutter, 1991]; see also the work of Bishop [1995], Bridle [1990], and Weigend
[1993]



MLP-based horizon-selection rules

In Chapter 2 we introduced a generic single-item lot-sizing model, and we studied
three different problem formulations. We briefly discuss these problem formula-
tions below.

First, we addressed the off-line finite-horizon problem, which was solved by
dynamic programming. This problem was called the n-period problem.

Second, we studied the off-line infinite-horizon problem which we called the
off-line problem. In many settings, infinite-horizon optimal lot sizes depend on
limited future demand information only. The theory of planning and forecast hori-
zons addresses this subject. We studied so-called simple planning horizons and
showed that, given a simple planning horizon ¢, the off-line problem decomposes
into the ¢-period problem and the remaining off-line problem. In this way, the off-
line problem can be solved by repeatedly solving off-line finite-horizon problems,
provided simple planning horizons can be found. We derived a forward algorithm
for the detection of simple planning horizons.

Third, we addressed the on-line infinite-horizon problem which we called the
on-line problem. As long as simple planning horizons can be calculated on-line,
the above decomposition applies and optimal off-line solutions can be obtained. In
general, however, simple planning horizons cannot be calculated on-line. For that
reason, many heuristics have been proposed in the literature for on-line lot-sizing
problems. However, most of these heuristics were tailored to the Wagner-Whitin

77
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cost structure. In Section 2.4.2 a class of heuristics for the generic on-line problem
is introduced, called variable-horizon policies. In a variable-horizon policy the lot
sizes are determined by repeatedly solving finite-horizon problems that are split
off from the on-line problem. This splitting is done by a horizon-selection rule,
which determines the number of periods over which is optimized on the basis of
the available demand information. Section 2.4.3 showed that most of the existing
heuristics for the Wagner-Whitin cost structure can be adapted to become variable-
horizon policies without loss of cost performance.

This chapter addresses the problem of finding optimal horizon-selection rules.
We formulate the problem of finding an optimal horizon-selection rule as a classi-
fication problem, which we analyze using the results and techniques from statisti-
cal classification presented in Section 4.6. We consider two objectives, i.e., maxi-
mization of expected classification rate and minimization of expected excess cost.
For these objectives we give explicit expressions for the optimal horizon-selection
rules. Supervised learning with multi-layered perceptrons can be used to estimate
the unknown parameters of these expressions. In this way we obtain approximative
horizon-selection rules, called MLP-based horizon-selection rules. In Chapter 6 we
investigate the generalization capabilities of the MLP-based horizon selection rules.
The on-line lot-sizing performance of the variable-horizon policies constituted by
these rules is investigated in Chapter 7.

5.1 Optimal off-line versus optimal on-line

In Section 2.7 we showed that optimal off-line optimization horizons correspond to
m-optimal simple planning horizons. Furthermore, we developed a forward algo-
rithm to detect such m-optimal simple planning horizons. The use of this algorithm
for on-line lot-sizing is limited, since such horizons can only be calculated on-line
if an m-optimal simple planning horizon s for forecast horizon n exists, such that
s < n < m. Furthermore, a protective forward algorithm must be available that
is able to calculate s and n using no more than m periods of demand information.
A perfect forward algorithm would be an example of such an algorithm; see also
Section 2.3. In any other case, optimal off-line optimization horizons depend on
demand realizations beyond the data horizon and can therefore not be computed
on-line. Note that different demand realizations beyond the data horizon may lead
to different optimal off-line optimization horizons. What we need is a definition of
what is meant by an optimal on-line optimization horizon. To this end we make the
following two important observations.

1. The task of selecting optimization horizons given available demand informa-
tion can be seen as a classification task, where the objects to be classified
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correspond to decision situations, the feature vectors represent available de-
mand information, and the classes correspond to optimal off-line optimiza-
tion horizons. From this view-point, horizon-selection rules correspond to
classification rules and the problem of finding an optimal horizon-selection
rule can be seen as a classification problem. A possible objective would then
be to find a horizon-selection rule that maximizes the expected classification
rate.

2. Although we do not know the exact relation between available demand in-
formation and the optimal off-line optimization horizon, we can calculate
examples of this relation from demand history using the forward algorithm
developed in Chapter 2. With such examples at hand it is possible to apply
techniques from statistical classification to the abovementioned classification
problem.

In the remainder of this chapter we exploit these observations by formulating the
problem of finding an optimal horizon-selection rule as a classification problem
and by adopting an appropriate objective. We analyze two such objectives, i.e., the
classification rate objective and the excess cost objective.

5.2 Classification rate objective

A horizon-selection rule for the generic on-line problem with cost structure (H, P)
and data horizon length m can be represented as a mapping g : ,, = £m, where
Q,, € IR™ denotes the space of possible demand vectors and .£,, = {1, ..., m}
denotes the set of possible optimization horizons. Using the terminology of Sec-
tion 4.6, we can state that 2, represents the space of feature vectors, and .£,, rep-
resents the set of class labels. Before we can formulate the problem of finding
an optimal horizon-selection rule, we have to model the relation between demand
vectors and their corresponding optimal off-line optimization horizons.

5.2.1 Preliminaries

We recall that optimal off-line optimization horizons correspond to m-optimal sim-
ple planning horizons. Therefore, in the sequel, we use the term m-optimal simple
planning horizon.

We assume that m-optimal simple planning horizons always exist and therefore
can be calculated off-line. Note that the non-existence of m-optimal simple plan-
ning horizons could be modeled by the introduction of an extra class and extending
L, with an extra class label. This, however, goes beyond the scope of this the-
sis and 1s mainly of theoretical interest; see also Section 2.5 which discussed the
existence of planning horizons.
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Since more than one m-optimal simple planning horizon may exist, we have to
break ties in some way. If the forward algorithm developed in Chapter 2 terminates,
it returns the minimal m-optimal simple forecast horizon and all corresponding m-
optimal simple planning horizons. To break ties, we concentrate on the smallest
m-optimal simple planning horizon, which for reasons of convenience is called the
minimal m-optimal simple planning horizon.

Since m-optimal simple planning horizons can in general not be computed on-
line, they can in general not be expressed as a function of the m demands within
the data horizon. For that reason, we model the relation between demand vectors
and their corresponding minimal m-optimal simple planning horizon by the pair of
random variables (X,,,, Y,,) defined on £2,, X .£,,. This relation can be characterized
by the joint probability density function of X, and Y,, denoted by fx,, v,

5.2.2 Problem formulation and analysis

We now formulate the problem of finding an optimal horizon-selection rule for the
generic on-line problem with cost structure (H, P) and data horizon length m as to
find a mapping g : €2, = £, that maximizes the expected classification rate r(g)
given by

rig) = / P{Y = g(%) | X = X} fx,, (0)dX, (5.1

where P{Y,, = [ | X,» = X} denotes the posterior probability that [ € L, is the
minimal m-optimal simple planning horizon given the demand vector x € €2,, and
Jx,, denotes the probability density function of X,,. We refer to this objective as the
classification rate objective.

If g(x) is chosen such that P{Y,, = g(x) | X;,» = x} is maximal for every x, then
r(g) is maximal. This justifies the definition of the rate-optimal horizon-selection
rule py, given by

P (x) = argmaxP{Y,, =1 X, = x}. (5.2)
leL oy
The expected classification rate r{p;,) of the rate-optimal horizon-selection rule is
called the Bayes rate. Note that, in this way, we implicitly define an optimal on-line
optimization horizon to be an optimization horizon that has the highest posterior
probability of being an m-optimal simple planning horizon.

5.2.3 Properties of the rate-optimal horizon-selection rule

At first we conjectured that the Bayes rate r(p},) is increasing in m form > 1,
because the amount of relevant demand information increases. However, looking at
the trivial case m = 1, it is easy to see that, in general, this is invalid. For the case
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m = 1 there is only one class, i.e., one possible off-line optimal optimization hori-
zon, and therefore r(p}) = 1. The reason for this is that the characteristics of the
classification problem, represented by the joint probability density function fx,, v,
change with m. Below, we present some results concerning these characteristics.

Proposition 2.7 showed that, under the condition that a finite upper bound M
exists on the length of a subplan in an optimal production plan for the n-period prob-
lem that is independent of n, the notions optimality and k-optimality are equivalent
for k > M. It is easy to see that, under the same condition, equivalence holds for
the notions simple planning horizon and k-optimal simple planning horizon. The
following result is then immediate.

Proposition 5.1. Suppose a finite upper bound M exists on the length of a subplan
in an optimal production plan for the n-period problem that is independent of n.

Then the random variables Yy, Yy, ... are identically distributed. The corre-
sponding distribution equals the distribution of minimal simple planning horizons.
O

Note that, if a bound M exists that satisfies the requirement of Proposition 5.1, ran-

dom variables Y, with k =1, ..., M — 1 are in general not identically distributed,
the number of relevant classes may change with k, and optimality is in general not
equivalent to k-optimality for & = 1,..., M — 1. Next we show that if a bound

M exists that satisfies the requirement of Proposition 5.1, the Bayes rate r(p}) in-
creases with m form > M.

Theorem 5.1. Suppose a finite upper bound M exists on the length of a subplan in
an optimal production plan for the n-period problem that is independent of n. Then

r(py) S r(Phy) <0

Proof. Take some m > M. Consider the horizon-selection rnile g : Qp1 = Lt
that for each x € Q,.1, applies p,, to (xi1, ..., X»), discards x,|, and returns
Pr(x1, ..., xm). Letx = (x1, ..., Xmy1) and X = (x1, ..., Xn). Then, using Propo-
sition 5.1, we obtain

P{Ymi1 = 8(X) | Xms1 =x} = P{¥pn = p,, (%) | Xn =X]},

and one easily verifies that r(g) = r(py,), which, using r(g) < r(p;,, ), completes
the proof. O

In the same way we did for m-optimal simple planning horizons, the relation be-
tween demand vectors and their corresponding (off-line) minimal m-optimal simple
forecast horizons can be modeled by a pair of random variables (X, Z,) defined
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on £,, x N and characterized by a joint probability density function fx, z,. The
following result uses this model to derive a lower bound on the Bayes rate.

Theorem 5.2. Suppose a perfect forward algorithm exists for the detection of m-
optimal simple planning horizons. Then we have

r(py) 2 P{Zn < m}.

Proof. Consider the following horizon-selection rule denoted by g. We apply the
perfect forward algorithm. If the algorithm terminates within the data horizon, it
returns the minimal m-optimal simple planning horizon found by the algorithm. If
the algorithm does not terminate, some optimization horizon is returned randomly.
The expected classification rate r(g) of this horizon-selection rule is greater than or
equal to P{Z,, < m}, the probability that the m-optimal minimal forecast horizon
1s smaller than or equal to the data horizon. Since p}, is rate-optimal, we have
r(p;) = r(g). This completes the proof. ]

Unfortunately, we do not have a perfect algorithm for the generic lot-sizing model
available. What we do have available is a protective forward algorithm. This algo-
rithm can be used to generate a set of examples of the relationship between demand
vectors and m-optimal minimal simple forecast horizons. From such a set of exam-
ples we can estimate the probabilities P{Z,, < m}. We remark that perfect forward
algorithms do exist for special cases of the generic lot-sizing model. For example,
Chand & Morton [1986] derived a perfect forward algorithm for the Wagner-Whitin
cost structure. The next result concerns the characteristics of Z,, as a function of m
and can be proven using similar arguments as in Proposition 5.1.

Proposition 5.2. Suppose a finite upper bound M exists on the length of a subplan
in an optimal production plan for the n-period problem that is independent of n.
Then the random variables Zy, Zy+, ... are identically distributed. The corre-
sponding distribution equals the distribution of minimal simple forecast horizons.
0

The protective forward algorithm developed in Chapter 2 for the calculation of sim-
ple planning horizons for forecast horizons uses some finite upper bound M on the
length of a subplan in an optimal production plan. To detect a simple planning
horizon ¢ for forecast horizon n, the forward algorithm requires a data horizon of
n+ M — 1 periods. The following lemma is based on this observation. Its proof is
analogous to that of Theorem 5.2 and therefore omitted.

Lemma 5.1. Suppose a finite upper bound M exists on the length of a subplan in
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an optimal production plan for the n-period problem that is independent of n. Then
r(pp) = PlZm =m —M +1}.
O

This lemma is used in the following proof of convergence of the Bayes rate. Further-
more, in this proof, we use the assumption that m-optimal simple planning horizons
always exist.

Theorem 5.3. Suppose a finite upper bound M exists on the length of a subplan in
an optimal production plan for the n-period problem that is independent of n. Then

lim r(p;)=1.
m— o0

Proof Letm > M. Using Lemma 5.1 and Proposition 5.2 we obtain P{Zy <
m—M +1} < r(p},) < 1. From the assumption that m-optimal simple planning
horizons always exist it is evident that m-optimal simple forecast horizons always
exist and thus can be calculated off-line. This implies that limy_ oo P{Zy < k} = 1.
The proof is now completed by letting m — oo and using elementary calculus.
0

5.2.4 An MLP-based horizon-selection rule

The rate-optimal horizon-selection rule r(p},) requires explicit knowledge of the
posterior probabilities P{Y,, = [ | X, = x}. Unfortunately these quantities are
usually unknown and this rule cannot be directly applied. Below we show that
with a suitable representation of the learning examples, on input of demand vector
x the outputs of a multi-layered perceptron obtained by minimizing the sum-of-
squares error on a finite set of learning examples can be interpreted as estimates of
the posterior probabilities P{Y,, = [ | X,, = x}. By substituting these estimated
posterior probabilities into (5.2), we obtain an MLP-based horizon-selection rule.

Computing learning examples. We now describe how we construct a learning
example from demand history. To that end we consider the generic on-line problem
with cost structure (H, P) and data horizon length m. Without loss of generality, we
consider some sequence of periods in demand history, labeled 1, 2, ... . Further-
more, we suppose that the inventory level at the beginning of period 1 equals zero.
We apply the forward algorithm developed in Section 2.3 for the detection of sim-
ple planning horizons with parameter M set to m. As was shown in Section 2.7, on
termination, this algorithm returns a minimal simple m-optimal planning horizon s
for forecast horizon n. As in Section 4.6.3, a learning example (x, t) is constructed
as follows. For the input vector we take X = (d|, ..., dn). The corresponding target
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vector is defined by t = e,, where e; denotes an m component vector with a one
in the sth position, and zeros elsewhere. Thus constructed target vectors we call
zero-one target vectors.

Multi-layered perceptrons. Given is a multi-layered perceptron with m inputs, m
output units and sigmoidal response functions o that is completely specified apart
from the weights w. The following statement is justified by the results of Sec-
tion 4.6.3. After minimization of the sum-of-squares error function on a finite set
of learning examples with zero-one target vectors, on input of demand vector X,
the network output values y, (x; w) can be interpreted as estimates for the posterior
probabilities P{Y,, = k | X,, = x}. The mapping oM* : Q,, — L, given by

m

P (X) = arg max yi(X; w), (5.3)
kedL,y
can thus be seen as an approximative horizon-selection rule with respect to the
classification rate objective.

5.3 Excess cost objective

In Section 4.6.5 we generalized the classification rate objective by introducing a
cost function c(x, /, k), which denotes the cost incurred for classifying a class / ob-
ject with feature vector x to class k. This enabled discrimination in terms of cost
between the different types of erroneous classifications. For our purposes, such
discrimination may be very important, since the developed horizon-selection rule
is incorporated in a variable-horizon policy, and the performance of a variable-
horizon policy is evaluated in terms of production and holding cost rather than in
terms of classification rate. Before we can formulate the problem of finding an opti-
mal horizon-selection rule, we have to define the cost of choosing an inappropriate
optimization horizon.

" 5.3.1 Preliminaries

In Section 2.6 we introduced A(p), which denotes the excess cost (over infinite-
horizon optimality) of decomposing the off-line problem at period p. Based on
Theorem 2.3 we developed a forward algorithm for the calculation of A(p). This
algorithm requires knowledge of a finite upper bound M on the length of a subplan
in an optimal production plan. Although such bounds were derived in Chapter 3
for the cost structures under consideration, we prefer to use use the excess cost
over infinite-horizon m-optimality because (i) no bounds are required and (i{) no
variable-horizon policy with a data horizon of length m can do better than infinite-
horizon m-optimality. In Section 2.6 we generalized A(p) towards k-optimality
to obtain Ag(p), which denotes the excess cost (over infinite-horizon k-optimality)
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of decomposing the off-line problem at period p. We showed that the forward
algorithm for calculating A(p) can be used to calculate A;(p) by choosing M = k.

Given a variable-horizon policy for the on-line problem with cost structure
(H, P) and data horizon length m. Suppose we execute one iteration of this pol-
icy and we select an optimization horizon p € .£,. Then, by definition, we have
excess cost of A, (p). These excess cost can in general not be calculated on-line.
Consequently, A,,(p) can in general not be written as a function of the m demands
within the data horizon d|, . . ., d,.and a cost function c(x, &, [) as proposed in Sec-
tion 4.6.5 does not exist.

For this reason we model the relation between demand vectors and the excess
cost (over infinite-horizon m-optimality) of decomposing the off-line problem at
period p by the pairs of random variables (X,,, C(p)) for p = 1,2, ..., which
are defined on €2, x IR. This relation can be characterized by the joint probability
density function of X, and C,(p) denoted by fx,,.c.(p)- For notational reasons
we introduce C,, = (Ciy (1), ..., C,n(m)) and the joint probability density function
fxmrcm of Xm and Cm.

Remark that, for similar reasons an m-optimal simple planning horizon may
not exist, it may occur that A,,(p) does not exist. As for the classification rate
objective, we assume that the cost excesses A, (p) can always be calculated off-
line. Note that, in practice we can always use the bounds L(p, t) and U(p, t) from
Theorem 2.3 to estimate A,,(p).

5.3.2 Problem formulation and analysis

The problem of finding an optimal horizon-selection rule for the generic on-line
problem with cost structure (H, P) and data horizon length m is now formulated as
to find a mapping g : 2, — £, that minimizes the overall expected excess cost
c(g) defined by

c(g) = /E{Cm (&) | Xy = x} fx,, X)X, (5.4)

where E{C,, (k) | X,, = x} denotes the conditional expectation of the excess cost
when decomposing the off-line problem at period & given the demand vector x €
2,.. We refer to this objective as the excess cost objective.

If g(x) is chosen such that E{C,, (g (x)) | X,» = x} is minimal for every x, then
¢(g) is minimal. This justifies the definition of the cost-optimal horizon-selection
rule 7, given by

7, (x) = argmin E{C,, (/) | X, = x}. (5.5

le L,
The expected excess cost ¢(7,;) of the cost-optimal horizon-selection rule is called
the Bayes cost. Note that, in this way, we implicitly define an optimal on-line op-



86 ML P-based horizon-selection rules

timization horizon to be an optimization horizon with lowest conditional expected
eXcess Cost.

5.3.3 Properties of the cost-optimal horizon-selection rule

At first we conjectured that the Bayes cost c(p;,) is decreasing in m form > 1,
because the amount of relevant demand information increases. However, looking at
the trivial case m = 1, it is easy to see that, in general, this is invalid. For the case
m = 1 there is only one class and therefore c(p]) = 0. The reason for this is that
the characteristics of the classification problem, represented by the joint probability
density function fx,, c,,change with m. Below, we present some results concerning
the characteristics of the classification problem as a function of m.

Proposition 2.7 showed that, under the condition that a finite upper bound M
exists on the length of a subplan in an optimal production plan for the n-period prob-
lem that is independent of #, the notions optimality and m-optimality are equivalent
form > M. It is easy to see that under the same condition, equivalence holds for
A(p) and A,, (p). The following result is then immediate.

Proposition 5.3. Suppose a finite upper bound M exists on the length of a subplan
in an optimal production plan for the n-period problem that is independent of n.
Then for all p = 1,2, ... the random variables Cy(p), Cp41(p), ... are identi-
cally distributed. The corresponding distribution equals the distribution of excess
cost (over infinite-horizon M-optimality) when decomposing the off-line problem at
period p. O

Note that, if a bound M exists that satisfies the requirement of Proposition 5.3,
random variables C,, (p) withm =1,...,M — land p = 1,2, ... are in general
not identically distributed, the number of relevant classes may change with m, and
optimality is in general not equivalent to m-optimality form =1, ..., M — 1. Next
we show that if a bound M exists that satisfies the requirement of Proposition 5.3,
the Bayes cost c(p,;,) decreases with m form > M. Since this result is similar to
that of Theorem 5.1 its proof is omitted.

Theorem 5.4. Suppose a finite upper bound M exists on the length of a subplan in
an optimal production plan for the n-period problem that is independent of n. Then

c(ty) 2 ety ) = ...

The following conjecture is inspired by
Theorem 5.3 for the classification rate objective.

Conjecture 5.1. lim ¢(z;) = 0. O
m— o0
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5.3.4 An MLP-based horizon-selection rule

The cost-optimal horizon-selection rule 7,; requires explicit knowledge of the con-
ditional expectations E{C,,(/) | X,, = x}. Unfortunately these quantities are usu-
ally unknown and this rule cannot be directly applied. Below we show that with a
suitable representation of the learning examples, on input of demand vector x the
outputs of a multi-layered perceptron obtained by minimizing the sum-of-squares
error on a finite set of learning examples can be interpreted as estimates of the con-
ditional expectations E{C,, (I) | X,, = x}. By substituting these estimated posterior
probabilities into (5.5), we obtain an MLP-based horizon-selection rule.

Computing learning examples. We now describe how we construct a learning
example from demand history. To that end we consider the generic on-line problem
with cost structure (H, P) and data horizon length m. Without loss of generality,
we consider some sequence of periods in demand history, labeled 1,2, ... . Fur-
thermore, we suppose that the inventory level at the beginning of period 1 equals
zero. We use the forward algorithm developed in Section 2.6 for the calculation of
A(p) with the parameter M set to m. The algorithm is applied for p =1, ..., mto
obtain excess cost A, (1), ..., An(m); see Section 2.6. A learning example (x, t)
can now be constructed as follows: for the input vector x we take x = (d, ..., dmn)
and for the target vector t we take t = (A, (1), ..., A,(m)). Thus constructed
target vectors we call cost target vectors.

Multi-layered perceptrons. Given is a multi-layered perceptron with m inputs
and m output units. The network is supposed to be already completely specified
apart from the weights w. The relation between input vectors and target vectors
was already modeled by the pair of random variables (X,,, C,,). We apply Theo-
rem 4.2 to obtain that, in the limit as the size of the learning set goes to infinity, the
network mapping corresponding with a minimum of € is given by the conditional
expectations of the targets. Furthermore, a global minimum of ¢ with respect to w
is attained when

ye(X; w) = E{C,, (k) | X,, =x} forallk € L,,. (5.6)

This only holds under the condition that (i) the multi-layered perceptron has suffi-
cient network mapping capabilities such that there exists a choice w which makes
the first term in (4.32) sufficiently small and (ii) E{|| y(Xin; W) — Cp, ||?} < 00. A
sufficient condition for (ii) to hold is that both the output unit response functions
and the excess cost functions A,,(p) for p = 1, ..., m are bounded. In that case
a suitable choice is to scale the targets between 0 and 1 and to use multi-layered
perceptrons with logistic sigmoid response functions, for instance. We remark that
this was proven for the Wagner-Whitin cost structure in Proposition 3.2.
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For minimizing the sum-of-squares-error function on a finite set of learning exam-
ples with cost target vectors we conclude that, on input of demand vector x, the net-
work output values approximate the conditional expectations E{C,, (k) | X,, = x}.
The mapping t)** : Q,, — L, given by
MLP :
T, (X) = arg miny(x; w) (5.7)
ked
can thus be seen as an approximative horizon-selection rule with respect to the
excess cost objective.

5.4 Discussion

This chapter addressed the problem of finding optimal horizon-selection rules for
the on-line problem with cost structure (A, P) and data horizon length m. To that
end we formulated the problem of finding an optimal horizon-selection rule as a
classification problem. We considered two objectives: the classification rate objec-
tive and the excess cost objective. For each of these objectives we derived and an-
alyzed an explicit expression for the optimal horizon-selection rule. Unfortunately
these optimal horizon-selection rules cannot be applied, because they are expressed
in unknown quantities like for example posterior probabilities. It was shown that
multi-layered perceptrons can be used to estimate these unknown quantities on the
basis of learning examples. In this way we obtained MLP-based horizon-selection
rules.

Implementation. The ideas and results in this chapter are completely indepen-
dent of the cost structure (H, P). The only exception is found in the implementa-
tion of the procedure for the calculation of learning examples. Learning examples
are computed using the forward algorithms developed in Chapter 2. To implement
these forward algorithms for a particular cost structure, an algorithm for calculation
of optimal subplans for that cost structure is needed. In Chapter 3 such algorithms
were derived for three different cost structures. For these cost structures we imple-
mented procedures for the construction of learning examples. In these procedures
we always calculate both zero-one target vectors and cost target vectors. These vec-
tors are combined to form combined learning examples of the form (x, t, ¢), where
x denotes an input vector, t a zero-one target vector, and ¢ a cost targets vector. Ad-
vantages of using combined learning examples are a reduced data storage and the
possibility of computing, for example, the cost effectiveness of an approach based
on zero-one target vectors.

Performance evaluation. The performance of the MLP-based horizon-selection
rules can be evaluated on an independent set of learning examples. For instance, in
case of the classification rate objective, one can calculate the classification rate on
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an independent set of learning examples with zero-one target vectors. Such selec-
tion of optimization horizons for demand sequences that are outside the learning set
is called generalization. The generalization capabilities of the MLP-based horizon-
selection rules depend on the extent to which the conditions for good generalization
discussed in Section 4.5 are satisfied. Stated briefly, the learning set must be suf-
ficiently large and representative, and the multi-layered perceptron must have suf-
ficient network mapping capabilities. For instance, if these conditions are satisfied
in case of the classification rate objective, it is likely that o' has a near-optimal
classification rate, i.e., close to the Bayes rate. On the other hand, if one or more
of these conditions are violated the classification rate may be far from optimal. In
Chapter 6 we analyze the generalization capabilities of the horizon-selection rules
pMF and 7. The on-line lot-sizing performance of their corresponding variable-
horizon policies is evaluated in Chapter 7.
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Generalization capabilities of MLP-based
horizon-selection rules

The implementation of the horizon-selection rules for the on-line lot-sizing prob-
lem proposed in the previous chapter involves the construction of multi-layered
perceptrons on the basis of learning examples using supervised learning. As every
method that uses examples of input-output behavior to model a process, supervised
learning is closely related to the subject of generalization. In that context, general-
ization refers to the prediction of outputs for new inputs, i.e., prediction of outputs
for inputs that are not used for modeling. Good generalization is in general not
simply evident and generalization capabilities are, among other factors, determined
by the smoothness of the target mapping and the representativeness of the learning
set.

This chapter studies the generalization capabilities of the MLP-based horizon-
selection rules for on-line lot-sizing problems with Wagner-Whitin cost structure.
Particularly, it investigates the effect of the length of the data horizon and the type
of learning examples on the generalization capabilities. These investigations are
based on a set of experiments.

The remainder of this chapter is outlined as follows. Section 6.1 discusses
necessary conditions for good generalization. The experimental setup is given in
Section 6.2. As a reference, in Section 6.3, we adopt the K -nearest-neighbors
technique, which can be used for classification. Such K-nearest-neighbors clas-

91
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sifiers have shown reasonable generalization capabilities in a large variety of tasks
[Michie, Spiegelhalter & Taylor, 1994]. Application of the K -nearest-neighbors
technique to the two objectives introduced in Chapter 5 yields two horizon-selection
rules. Section 6.4 and Section 6.5 are devoted to generalization with zero-one tar-
get vectors and generalization with cost target vectors, respectively. Finally, in
Section 6.6, we formulate the main conclusions of this chapter.

6.1 Generalization

In Chapter 5 we formulated the problem of finding an optimal horizon-selection
rule as a classification problem and analyzed two objectives, i.e., the classification
rate objective and the excess cost objective. Optimal horizon-selection rules were
derived for these objectives, which contained some unknown quantities, e.g., pos-
terior probabilities. It was shown that these quantities can be estimated using a
multi-layered perceptron constructed on the basis of learning examples. In this way
we obtained two MLP-based horizon-selection rules, one for each objective.

Depending on the objective, the notion of generalization has a different mean-
ing. In case of the classification rate objective, multi-layered perceptrons were used
to estimate posterior probabilities and generalization refersto the prediction of these
probabilities for new demand vectors. In case of the excess cost objective, multi-
layered perceptrons were used to estimate conditional expectations of excess cost
and generalization refers to the prediction of these expectations for new demand
vectors. Section 4.5 gave necessary conditions for good generalization and a dis-
tinction was made between problem specific conditions and model specific condi-
tions for good generalization. Below, we discuss these conditions.

6.1.1 Problem specific conditions

In Section 4.5, two problem specific necessary conditions for good generalization
were given. First, the target mapping underlying the learning examples must be suf-
ficiently smooth. Second, the learning set must be sufficiently large and represen-
tative. In this thesis we consider artificial demand processes with known stationary
distributions. For the construction of learning examples, demands are drawn from
these distributions. Therefore, representativeness of a learning set is guaranteed un-
der the condition that the set is sufficiently large. The required number of learning
examples is determined by the smoothness of the target mapping. Next we give the
target mappings for the two objectives in case of a generic on-line problem with
cost structure (H, P) and data horizon length m. Furthermore, we discuss their
smoothness.
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Classification rate objective. Let us denote the target mapping underlying the
learning examples with zero-one target vectors by ¢, : ,, — [0, 1]™. Then ¢, is
given by

¢m (X) = (¢m,1(X), ceey ¢m.m (X)); (61)

where ¢, (x) = P{Y,, = k | X, = x}fork = 1,...,m. In Section 5.2.4 it
was shown that the network mapping of a multi-layered perceptron obtained by
minimizing the sum-of-squares error function on a finite set of learning examples
with zero-one target vectors apprbximates the target mapping ¢,,; see also Sec-
tion 4.6.3. The generalization capabilities of such a network are partly determined
by the smoothness of ¢,,. Since ¢,, is in general unknown, it is impossible to an-
alyze the smoothness of ¢,, for a given m. But we can give the following general
result on the smoothness of ¢,, as a function of m, which is obvious from Proposi-
tion 5.1 and our assumption that m-optimal simple planning horizons always exist.

Proposition 6.1. Suppose a finite upper bound M exists on the length of a subplan
in an optimal production plan for the n-period problem that is independent of n.
For x € R® and for m = 1,2,... we define Xn = (x|, ..., Xm). Then for all
x € R there exist integers | € Ly and N > M such that

(D) dmi(Xm) < dprraXper) < ...,
(i) dmax(Xm) = ik (Xms1) = ... forallk € Ly \ {1}, and
1 ifk=1

0 otherwise

(iii) Gmr Xp) = forallm > Nandk € Ly.

0o

Next we use these results to discuss the smoothness of ¢, as a function of the
data horizon length m. Assume that the assumption of Proposition 6.1 holds and
such a bound M exists. We start by considering the case that m is sufficiently
large. From (iii) we infer that the functions ¢, , with k € L, are of the form
Gmr - 2m — {0, 1}. Using the terminology introduced in Section 4.2.1, these
functions can be viewed as classification functions. The corresponding decision
regions are given by

I (bmi) ={x € Qp | Ppmiax) =1} fork=1,... m. (6.2)

At each decision boundary, the target mapping ¢, is discontinuous. The more
decision boundaries, the more discontinuities, and the less smooth ¢,,.

We now decrease m. For m sufficiently small, the discontinuities at the deci-
sion boundaries vanish. Using () and (ii) we infer that when further decreasing m,
the smoothness of ¢,, at the decision boundaries increases until m = M. Proposi-
tion 6.1 does not address the case m < M.
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Excess cost objective. Let us denote the target mapping underlying the learning
examples with cost target vectors by ¥, : 2, — R™. Then ¥, is given by

Um(X) = Wm,1(X), ..., Ymm (X)), (6.3)

where ¥, (X) = E{Cn (k) | X» = x} fork = 1,...,m. In Section 5.3.4 it
was shown that, the network mapping of a multi-layered perceptron obtained by
minimizing the sum-of-squares error function on a finite set of learning examples
with cost target vectors approximates the target mapping ¥,,. The generalization
capabilities of this network are partly determined by the smoothness of ¥,. Since
Y is partly determined by the cost structure (H, P), at this point nothing can be
stated about its smoothness.

6.1.2 Model specific conditions

Data driven model building approaches, like supervised learning, typically have
some parameter which controls the level of model flexibility. A necessary condition
for good generalization is that the value of this parameter is chosen such that the
level of model flexibility is optimal with respect to the learning set. Section 4.5.1
discussed this subject by means of the bias-variance trade-off. Too much model
flexibility leads to over-fitting; too little model flexibility smoothes out some of the
underlying structure. The model flexibility of a multi-layered perceptron is deter-
mined by its network mapping capabilities which are controlled by its topology.
Remark that in most learning algorithms convergence to a global minimum of the
sum-of-squares error function E with respect to the weights w is not assured. A
final condition for good generalization with multi-layered perceptrons is that the
weights are chosen such that E is sufficiently small.

6.1.3 Expectations

From the above results we suspect that the conditions for good generalization for
learning with zero-one target vectors deteriorate with m. Furthermore, we suspect
that for a given data horizon length m the target mapping ., is smoother than the
target mapping ¢,. In the remainder of this chapter this is further investigated.

6.1.4 Generalization assessment

Generalization assessment is done by means of the hold out method introduced in
Section 4.5, in which generalization capabilities are measured on an independent
test set. With respect to generalization capabilities we make a distinction between
the multi-layered perceptron and its corresponding horizon-selection rule. The gen-
eralization capabilities of the multi-layered perceptron is measured by the sum-of-
squares error on an independent test set. This is an obvious choice since it was
obtained by minimizing the sum-of-squares error on a finite learning set. The gen-
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eralization capabilities of the corresponding horizon-selection rule are measured
differently. From that viewpoint, generalization can be seen as the selection of
optimization horizons for new demand vectors. Obvious choices to measure gener-
alization capabilities are then to calculate the classification rate on an independent
test set in case of the classification rate objective, and to calculate the average excess
cost on an independent test in case of the excess cost objective.

6.2 Experimental setup

In this chapter we consider an on-line lot-sizing problem with a Wagner-Whitin
cost structure (holding cost 2 = 1, setup cost § = 200, and production cost p = 1)
and demands that are uniformly distributed on [0, 200]. The length m of the data
horizon is varied between 2 and 10.

For the calculation of learning examples we generate a 10,000 period demand
sequence by independently drawing from a uniform distribution on [0, 200]. For
each value of m, we generate three sets of 2,500 combined learning examples from
this sequence, i.e., a learning set, a validation set for monitoring the generalization
capabilities during execution of the learning algorithm, and a test set for assessing
the generalization capabilities of a network afterwards. By taking the learning set
rather large we want to accomplish that it approximates an infinite learning set.

Note that these combined learning examples contain both zero-one target vec-
tors and cost target vectors as described in Section 5.4. The procedure for the
computation of zero-one target vectors and cost target vectors was described in
Sections 5.2.4 and 5.3.4, respectively. These procedures use the forward algorithms
developed in Chapter 2 in which the Wagner-Whitin cost structure specific features
derived in Section 3.1 are included.

6.2.1 Preprocessing

We include a preprocessing step in which all elements of input and target vectors
are scaled between 0 and 1. Such scaling has the advantage that all target mappings
are of the form g : [0, 1] — [0, 1], such that we can use multi-layered percep-
trons with sigmoidal units in all cases. Scaling has the additional advantage that it
allows us to take identical weight initialization procedures and identical values of
the learning parameters. This may reduce the amount of time spent on parameter
tuning drastically. Furthermore, in this way, the generalization performance among
different target vector types and data horizon lengths can be compared fairly.
Next we describe the scaling procedure in detail. For the input vectors, we ex-
ploit our foreknowledge of the demand distribution and divide each input by 200,
the maximal possible value of demand in a period. The zero-one target vectors obvi-
ously need no further scaling. The scaling of the cost target vectors is less straight-



96 Generalization capabilities of MLP-based horizon-selection rules

forward. We use the worst-case result presented in Proposition 3.2 for the Wagner-
Whitin cost structure. This result states that A, (p) < S, where S denotes the setup
cost and A,,(p) denotes the excess cost (over infinite-horizon m-optimality) of de-
composing the off-line problem at period p; see also Section 2.7 and Section 5.3.
Consequently ¥, is bounded and the appropriate scaling is obtained by dividing the
elements of all cost target vectors by § = 200. The only remaining difference after
preprocessing between learning with zero-one target vectors and learning with cost
target vectors is that the network horizon-selection is determined by the output unit
with maximum response and the output unit with minimum response, respectively.
This difference is removed by applying the transformation 1 — x to the elements of
the scaled cost target vectors.

6.2.2 Learning algorithm

After some experimentation with different settings of the parameters of the learning
algorithm, we have chosen the following setting. The initial values of the weights
are drawn from a uniform distribution on [—1, 1]. We use the sequential version
of gradient descent with momentum term using the sum-of-squares error function
(4.12) with learning rate n = 0.1 and momentum term x = 0.9. To develop a net-
work, the learning algorithm is executed for 625,000 iterations. During execution,
the sum-of-squares error is monitored on the validation set and the network with
the lowest generalization error is kept. For more details on the learning algorithm
we refer to Section 4.3.

6.2.3 Network topology selection

For the construction of the horizon-selection rules p)** and 7", we use multi-
layered perceptrons with m inputs and m output units as implied by the structure of
the learning examples. Furthermore, we take logistic sigmoid response functions.
To determine a suitable network topology for each value of m, we investigate five
network topologies of increasing network mapping capabilities consisting of net-
works with O, m, m + 2, m + 4, and m + 6 hidden units, respectively. All network
topologies have one hidden layer, except for the 0 hidden unit topology, which has
no hidden layer. We develop ten networks for each of the 5 x 9 = 45 different
combinations of data horizon lengths and network topologies. These ten networks
are combined to form a committee by averaging over network outputs. For each
committee we compute the sum-of-squares error on the validation set. Both the
horizon-selection rules pM“* and tM* are obtained by selecting the committee with

m m
the lowest sum-of-squares error on the validation set.
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6.2.4 Learning curves

The development of the sum-of-squares error on the learning set and the validation
set during execution of the learning algorithm is called the learning curve. We in-
vestigate the learning curves for learning with both zero-one target vectors and cost
target vectors. To enable a comparison between curves for different data horizon
lengths, we monitor the average sum-of-squares error per output unit. This quan-
tity is obtained by dividing the sum-of-squares error on each of the sets by m and
by averaging over the ten multi-layered perceptrons with best network topology.
In Figure 6.1 we plot this quantity for three values of m. In all cases the sum-of-
squares error on the learning set decreases in the number of iterations. In some
cases we observe that the sum-of-squares'error on the validation set initially de-
creases, but starts to increase after some number of iterations. This effect, known as
over-fitting, only occurs for zero-one target values, where it increases with m. Most
networks converged within 200, 000 iterations. Comparing the learning curves for
zero-one and cost target vectors with equal m, we observe that for the latter, the
curves are smoother, have smaller variation, and show no over-fitting.

6.3 K-nearest-neighbors

An alternative supervised learning technique from statistical classification is K-
nearest-neighbors. First, we describe this technique in general and show that it can
be used for estimation of posterior probabilities. Next we apply the K -nearest-
neighbors technique to obtain approximate horizon-selection rules for the classifi-
cation rate objective and the excess cost objective, respectively. Throughout this
chapter, these KNN-based horizon-selection rules are used as a reference for the
MLP-based horizon-selection rules.

6.3.1 K -nearest-neighbors estimation

Consider the general classification problem defined in Section 4.6, where the ob-
jective is to maximize the expected classification rate. Given are an integer K and a
set of N examples of objects, characterized by their feature vectors x € 2 and their
class labels / € £, and distributed according to fx y. We call this set the learning
set. Let N; denote the number of class / learning examples.

Consider some new object with feature vector x € 2. We draw a hypersphere
around x exactly enclosing K learning examples. Let the volume of the hyper-
sphere be denoted by Vg (x) and let QO (/, x) denote the number of class / learning
examples contained in the hypersphere. Then the conditional probability density
Jx(x | Y =) can be estimated by

Qk(, x)
N Vg(x)
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Figure 6.1. Learning curves for different target vectors. The horizontal axis de-
notes the number of iterations of the learning algorithm. The vertical axis denotes
the averages of the sum-of-squares error per output unit of the ten multi-layered
perceptrons with optimal network topology with respect to the learning set.
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the probability density fx (x) can be estimated by

K
NVgx)’
and the prior probability P{Y = [} can be estimated by
N;
N
By substituting these estimates into Bayes’ formula (4.37) we obtain an estimate
for the posterior probabilities P{Y =/ | X = x} given by

Ok, x)
—

The classification rule that for a given x assigns the class for which Qg ([, x)/K is
largest is called the K -nearest-neighbors classification rule. For asymptotic results
on the convergence of this rule to the Bayes rate when N goes to infinity we refer
to the textbook by Duda & Hart [1973]. For finite NV only negative results exist. It
can, for instance, be shown that the convergence can be arbitrarily slow requiring
a number of learning examples that grows exponentially with the input dimension
Duda & Hart [1973].

6.3.2 Parameter selection and generalization

An important issue is the problem of selecting K. We remark that there is a relation
between selecting an appropriate network topology in the context of multi-layered
perceptrons and selecting an appropriate value for K. Both parameters control the
level of flexibility of the model with respect to the data. Therefore the dependency
between the optimal value for K and the learning set can also be characterized by
the bias-variance trade-off as discussed in Section 4.5.1. If X is too large, some of
the underlying structure is smoothed out (high bias). If K is too small, the obtained
model is very sensitive to the learning set leading to over-fitting (high variance).
Usually, K is determined as follows: calculate the performance of the classification
rule on an independent validation set for a number of values of K and choose the
one with the best performance on the validation set, i.e., the best generalization
capabilities.

6.3.3 KNN-based horizon-selection rules

Similar to the development of the MLP-based horizon-selection rules in Chapter 5
we can apply the K -nearest-neighbors technique to estimate posterior probabilities
and conditional expectations. Below we derive horizon-selection rules for both the
classification rate objective and the excess cost objective.



100 Generalization capabilities of MLP-based horizon-selection rules

Classification rate objective. Suppose we have a set of N learning examples with
zero-one target vectors. Let K be some integer value with K < N. Given a demand
vector x € 2,,,, we can estimate the posterior probabilities P{Y,, =/ | X,, = x} by

Qx (I, %)
K y
where Qg (/, x) denotes the number of class / learning examples contained in the
hypersphere around x exactly enclosing K learning examples. The mapping o™ :
Q, = L, given by

11
Pm " (X) = arg max LIS

(6.4)
le Lo K

can thus be seen as an approximative horizon-selection rule with respect to the
classification rate objective.

Excess cost objective. Suppose we have a set of N learning examples with cost
target vectors denoted by (x, ¢®) fori =1, ..., N. Let K be some integer value
with K < N. Given a demand vector x € £2,,, we can estimate the conditional
expectation E{C,, (/) | X, = X} by

] }
x 2 e

i€dk (%)

where Jx(x) denotes the set of indices of the learning examples contained in the
hypersphere around x exactly enclosing K learning examples. The mapping 7"~ :
Qn — L, given by

1 .
7" (x) = arg min — Z ¢ (6.5)
leLm K e dy (
4 K X)

can thus be seen as an approximative horizon-selection rule with respect to the
excess cost objective.

Parameter selection. A suitable value for K is determined as follows. For the
classification rate objective we compute the classification rate of pX™ on the vali-
dation set for K = 1, ..., 20. This is done using the zero-one target vectors of the
combined learning examples. We choose that value of K with the highest classi-
fication rate. For the excess cost objective we compute the average excess cost of
TX"N on the validation set for K = 1, ...,20. This is done using the cost target
vectors of the combined learning examples. We choose that value of K with the
lowest average excess cost.
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m p::LP p};NN
avg ind com
217532 7568 75.08 | 74.00
3| 81.72 8192 81.16 | 80.76
4 | 88.95 89.88 89.72 | 88.04
5191.87 9228 9244 | 89.52
6| 92.15 9268 93.08 | 87.40
719132 9228 92.76 | 85.60
819124 9192 92.80 | 84.60
9 1 91.10 92,12 92.24 | 84.16
10 | 91.28 91.56 92.36 @ 82.40

Table 6.1. Classification rate in percentages on test set for horizon-selection rules
pont" and piN. The entries for ph'* represent averages of ten networks (avg), best
individual networks (ind), and committees (com,).

6.4 Generalization with zero-one target vectors

This section addresses generalization with zero-one target vectors and is organized
as follows. Section 6.4.1 assesses the generalization capabilities of the horizon-
selection rules pM" and pKMN. Class overlap is studied in Section 6.4.2. Sections
6.4.3 and 6.4.4 investigate model specific and problem specific conditions for good
generalization, respectively. Finally, Section 6.4.5 gives some conclusions.

6.4.1 Generalization assessment

We assess the generalization capabilities of the horizon-selection rules p}-* and
OENN for data horizon lengths m = 2, ..., 10, by calculating the corresponding
classification rates on the independent test set. Table 6.1 presents these results.

The classification rate for pp!'* increases from 75% for m = 2 to 93% for
m = 6. For m > 7 the classification rate slowly deteriorates to 92% for m = 10.
The overall performance of the committees is better than the average performance
of the individual networks. In most cases, a committee performs even better than
the best individual network.

The classification rate for pX"V increases from 74% for m = 2 to 89% for
m = 5. For m > 6 the classification rate rapidly deteriorates to 82% for m = 10.

Before discussing these results we remark that we do not know the Bayes rates
r(py) form =2, ..., 10. Therefore it is difficult to see what is good generalization
and what is not. This problem is partly overcome by using the KNN-based horizon-

selection rule as a reference. It is clear that the overall performance of p)'* is
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better than that of p&"". For larger values of m the classification rates for both pj-?
and pXMN fall short of our expectations. Apparently, one or more of the necessary
condition for good generalization have been violated. Furthermore, it seems that the
amount of violation increases with m and that the K -nearest-neighbors technique is

more sensitive to this violation than multi-layered perceptrons.

6.4.2 Class overlap

Section 4.6.4 discussed the phenomenon class overlap, which strongly effects the
characteristics of a classification problem. In this subsection we investigate the
presence and the amount of class overlap for different values of m. The presence of
class overlap is evident from Figure 6.2, which gives a graphical representation of
the 7,500 learning examples generated for the case m = 2. The two axes represent
demands in subsequent periods. This figure was obtained by plotting the input
vectors of the learning examples with 2-optimal simple planning horizon equal to 1
or 2 in (a) or (b), respectively. As an illustration we give a graphical representation
of the horizon-selection rule constituted by the best committee for the case m = 2
in (c) and (d). To understand the origin of this overlap, we briefly summarize the
procedure used to compute these learning examples.

Each learning example is obtained by applying a forward algorithm to a se-
quence of periods in demand history, labeled 1, 2, ... . On termination, the forward
algorithm returned a minimal m-optimal simple planning horizon s for some fore-
cast horizon n. The input vector of the learning example was obtained by taking
the first m demands d,, ..., d,. The remaining demands dp 1, ..., dn, necessary
for determining s, were discarded. It is this discarding of demand information that
“introduces” class overlap in the learning examples. We remark that this discarding
of demand information is a consequence rather than a source of class overlap, since,
if such class overlap exists, it is inherently present in the underlying classification
problem.

In Section 4.6.4 we derived an expression for the amount of class overlap in a
classification problem called the overlapping coefficient. Let A,, denote the over-
lapping coefficient for the classification problem with data horizon length m. Then,
by definition, we have A,, = 1 — r(p,,), where r(p,,) denotes the Bayes rate. We
can estimate r(p},) in the following two ways.

The first way is based on the observation that for any horizon-selection rule p
we have r(p) < r(py). So the expected classification rate r(p) of any horizon-
selection rule p provides a lower bound for the Bayes rate. Just as we did when
assessing generalization capabilities, we can estimate r (o) by calculating the clas-
sification rate of p on the independent test set.

In the second way we use the lower bound on the Bayes rate provided by The-
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Figure 6.2. Graphical representation of 7,500 learning examples with zero-one tar-
get vectors for the case m = 2. For each learning example ((x), x2), (t1, t2)), the
input vector (x1, x2) is plot in (a), if (), t2) = (1,0), orin (b), if (11, 1) = (0, 1).
(c) and (d) show the behavior on these examples of the best committee T)"*. Input
vector (xy, x) is plot in (c), if T)y"F (x1, x2) = 1, or in(d), if " (x1, x) = 2.
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orem 5.2, We recall that P{Z,, < m} denotes the probability that a minimal m-
optimal simple forecast horizon prevails within the data horizon. In Theorem 5.2
it was shown that, under the condition that a perfect forward algorithm exists,
r(o,) > P{Z, < m}. We can use this bound, because Chand & Morton [1986]
derived such a perfect forward algorithm for the Wagner-Whitin cost structure. For
each m with 2 < m < 10, we estimate P{Z,, < m} by the fraction LB{m) of the
7,500 available learning examples (for which we stored the corresponding minimal
m-optimal simple forecast horizons) that has a minimal m-optimal simple forecast
horizon smaller than or equal to m. In Section 5.2.3 it was shown that in case m = 1
we have r(p]) = P{Z; < 1} =1 and therefore LB(1) = 1.

Let MLP(n) denote the classification rate on the test set of the best MLP-based
horizon-selection rule we found for data horizon length m. Let KNN(m) denote the
classification rate on the test set of the best KNN-based horizon-selection rule we
found for data horizon length m. Incase m = 1, the problem of selecting an optimal
optimization horizon is trivial and therefore it is obvious to define MLP(1)=1 and
KNN(1)=1.

Figure 6.3 shows the values of MLP(m), KNN(m), and LB(m), for 1 <m <
10. The best estimate of r(p;,) as function of m is now obtained by taking the
maximum of MLP(m), KNN(@n), and LB(m). The difference between MLP(m)
and LB(m) for m > 6 is an indication of the optimality gap, which for instance
could be closed by adding more learning examples.

6.4.3 Model specific conditions

A necessary condition for good generalization is that the level of model flexibility is
optimal with respect to the learning set. This is certainly not a sufficient condition
for good generalization, since the learning set may be too small or not representa-
tive, for instance. To investigate this condition we plot generalization capabilities
as a function of the model flexibility in Figure 6.4 for different data horizon lengths
m. The classification rate of p}'* on the test set as function of the number of hid-

den units is plot in Figure 6.4(a) and the classification rate of o'~ on the test set as
function of K is plot in Figure 6.4(b). Next we discuss these plots.

Multi-layered perceptrons. We recall that during execution of the learning algo-
rithm the sum-of-squares error on the validation set (generalization error) is moni-
tored and a copy of the network with the lowest generalization error is kept. After
termination of the algorithm this copy is restored. The advantage of this approach
is that over-fitting due to a too small learning set or a too large model flexibility 1s
overcome. From the learning curves (c) and (e) in Figure 6.1 the risk of over-fitting
is clear. Consequently, the generalization capabilities as function of the number of
hidden units have the following typical shape. Let N, denote the smallest number



6.4 Generalization

with zero-one target vectors

105

! l | T | T T T j T
1.0 b g ‘ i
06 L ]
0.4 | oo i ....................... .

; KNN(m) ~— :

f : . LB(m) =—.

i I L ] I 1 i i i 1

2 4 6 8 10

m

Figure 6.3. Classification rate on test set as a function of m for best MLP-based
horizon-selection rule and best KNN-based horizon-selection rule. Fraction LB(m)
of the 7,500 available learning examples with a minimal m-optimal simple forecast
horizon smaller than or equal to m.

0.94 0.90 — ,
woy A S by gofRan
o o ]
0.90 | 085 | e p”
T
0.80 //\4:? -~
0.86 |
m=2 — | 075 .. e
m=3 —— ] -
082t . M8 e
e 0.70 | m=§, S
m=6 —— m=4 -v -
078 m=7 -—1 065 m=6 -~ -
m=8 —— m=10 ——
074 Lo . N 0.60 .
0 2 4 6 8 10 12 14 0 5 10 15 20

(a) Multi-layered perceptrons

(b) K-nearest-neighbors

Figure 6.4, Generalization capabilities as function of the model flexibility. (a) Clas-
sification rate of p)\'* as function of the number of hidden units. (b) Classification
rate of p™™ as function of K .



106 Generalization capabilities of MLP-based horizon-selection rules

of hidden units for which the best possible generalization is achieved with data hori-
zon length m. Suppose we increase the number of hidden units n starting at n = 0.
Then for n < N7 the generalization capabilities increase with n. Forn > N the
generalization capabilities are approximately constant. For the different values of
m, we observe such a shape in Figure 6.4(a). For example in the case m = 6 we
have N* = 12. We observe that N, increases for 2 < m < 6. Form > 6 we have
Ny ~10.

K -nearest-neighbors. In Figure 6.4(b) the generalization capabilities of the hori-
zon selection rule p"N are plot for different values of K and m. We observe that
for small values of K the model flexibility is too high for the given learning set.
The optimal value of K typically lies in the interval [10, 20].

Conclusion. From Figure 6.4 we infer that investigating more hidden units or
larger values of K will most probably not result in significant improvements, upon
which we conclude that the model specific conditions for good generalization are
satisfied with respect to the learning sets. So the disappointing generalization capa-
bilities for m > 6 cannot be explained in this way. As a consequence of that, one or
more of the problem specific conditions for good generalization must be violated.
This also explains the over-fitting during learning observed in the learning curves
(c) and (e) in Figure 6.1. From the increase of Ny for2 < m < 6 we conclude that
the functional complexity of the target mapping ¢, increases with m in the sense
that more network mapping capabilities are required.

6.4.4 Problem specific conditions

The target mapping ¢, is completely characterized by the posterior probabilities
P{Y, = k | X,y = x} with k € L, or using Bayes’ rule, by the prior probabilities
P{Y,, = k} and the conditional probability density functions fx, (x | ¥, = k) with
k € «£,,. The results presented in Section 5.2.3 imply that the characteristics of
Y.n, given by the prior probabilities P{Y,, = &}, change with the data horizon length
m. Consequently, the characteristics of ¢, change with m, and we conjecture that,
with these characteristics, the problem specific conditions for good generalization
change. Below we investigate this conjecture.

Prior probabilities. We recall that the prior probability P{Y,, = [/} denotes the
probability that the minimal m-optimal simple planning horizon is equal to /. For
each value of m we estimate P{Y,, = [} by the fraction «,(f) with [ € .L,,, where
a,,(I) denotes the fraction of the 7,500 available learning examples with data hori-
zon length m that have zero-one target vector e;. These estimates are presented in
percentages in Table 6.2. The entries for m > 7 are omitted. Note that the order
cycle, as obtained by substituting the average demand level 100 in (3.3), equals the
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an1) an@) am@) an@ oan(S) an®) am(?)
29.13  70.87 - - - - -
2045 55.09 24.45 -
1924 5317 2253 5.05 - - -
19.09 5300 2233 484 073 - -
19.05 5297 2232 484 073  0.08 -
19.05 5297 2232 484 073 0.08 0.00

Table 6.2. Estimates & (1) of the prior probabilities P{Y,, = l}.

GO LD WS

optimization horizon with the highest prior probability. We observe that for / < 6
the fractions «,, (/) as function of m converge to fixed values. This behavior can be
explained as follows.

Proposition 5.1 implies that, if a finite upper bound M exists on the length
of a subplan in an optimal production plan for the n-period problem that is inde-
pendent of n, random variables Yu, Ya.1, ... are identically distributed. So, if
such an upper bound M exists, the prior probabilities become independent of m
for m > M. The observed behavior of «,, (/) as function of m can thus be ex-
plained by the existence of such a bound M = 6. However, it is unlikely that such
a bound really exists. To illustrate this, we refer to the proof of Corollary 3.1 in
which we derived a bound on the length of a subplan in an optimal production plan
for the Wagner-Whitin cost structure. Since our demand is uniformly distributed on
[0, 200], positive demand in a period can be arbitrarily small, and we can construct
examples of n-period problems with arbitrarily large optimal subplans. Neverthe-
less, as can be concluded from the fractions «,,(/), the probability that a subplan
in an optimal production plan has a length greater than 6 is very small. In fact of
all 7,500 learning examples there was no one having an m-optimal simple planning
horizon greater than 6. Consequently, the empirical distributions of Y,, form > 6,
which are represented by the fractions a,, ({), are identical. In our analysis of gen-
eralization with zero-one target vectors it thus makes sense to distinguish between
the cases 2 < m < 6, in which the empirical distribution of Y, changes with m,
and m > 6 in which the empirical distributions of Y, are identical.

Curse of dimensionality. To understand the deteriorating classification rates for
m > 6 as observed in Table 6.1 and Figure 6.3 we combine the outcome of the
investigation of the prior probabilities with the results of Chapter 5.

The analysis of the prior probabilities implies that the zero-one target vectors
of the combined learning examples are independent of m for m > 6. From this
we deduce that the deteriorating classification rates for m > 6 must be caused by
the increased input vector dimensionality. At first sight this looks very counter-
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intuitive, since including more relevant demand information should enable better
horizon-selection. However, we conjecture that a phenomenon occurred that is re-
lated to what Bellmann [1961] calls the “curse of dimensionality”. In the context
of generalization, the curse of dimensionality can be understood as follows. Sup-
pose we have some finite learning set. Then increasing the dimensionality of the
input space by adding new features rapidly leads to the point where the data is very
sparse and the learning examples provide a very poor representation of the target
mapping. In such a case, good generalization is only possible if the target mapping
is a smooth function of the input vectors, such that it is possible to infer the target
values at intermediate points, where no data is available, by interpolation.

Our conjecture is confirmed by Proposition 6.1, in which it was shown that,
under the condition that a finite upper bound M exists on the length of a subplan in
an optimal production plan for the n-period problem that is independent of n, the
smoothness of the target mapping ¢,, decreases with m form > M.

Apparently, the K -nearest-neighbors technique is more sensitive to the smooth-
ness of ¢, than supervised learning with multi-layered perceptrons. To further
investigate this, we plot the classification rate of o5 as function of the learning
set size for m = 5 and m = 10 in Figure 6.5. We take K = 20. Incase m =5,
approximately ten times as many learning examples are needed to obtain a classifi-
cation rate that is comparable with the classification rate of p)*?. In case m = 10,
using twenty times as many learning examples is not nearly sufficient. The num-
ber of learning examples required for good generalization with p&™" seems to grow
exponentially with m. We conclude that p¥'* uses the available learning examples
more efficiently than pX™.

It would be very interesting to investigate the effect of the number of learn-
ing examples on the generalization capabilities of the MLP-based horizon-selection
rules, but doing this thoroughly would take an enormous amount of computing time.
Some preliminary steps in this direction were made by Zwietering, Van Kraaij,
Aarts & Wessels [1991].

6.4.5 Discussion

We investigated the generalization capabilities of the MLP-based horizon-selection
rules for the classification rate objective as a function of the data horizon length. It
turned out that, when we enlarge the data horizon, these generalization capabilities
diminish. By analyzing the necessary conditions for good generalization, we were
able to point out the non-smoothness of the target mapping as the main source of
problems when learning with zero-one target vectors. We end this section with a
summary of the conclusions on the basis of the following two typical cases.
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Figure 6.5. Classification rate of horizon-selection rule pi™™ with K = 20 as func-

tion of the learning set size for m = 5 and m = 10.

Large data horizons. In the case m is large, there is no class overlap and the tar-
get mapping can be viewed as a binary classification function ¢, : 2, — {0, 1}".
At each decision boundary ¢,, is discontinuous. The degree of smoothness is de-
termined by the number of decision boundaries and the more decision boundaries
the less smooth ¢,,. The functional complexity of the target mapping is typically
high in the sense that many hidden units are required. In this ill-conditioned case,
good generalization is difficult and requires lots of learning examples. An example
is the case m = 10, in which 2,500 learning examples turned out to be insufficient
for good generalization.

Small data horizons. Due to the presence of class overlap, in the case of small
m, there are no discontinuities in the target mapping and most of the underlying
structure is smoothed out. As a result of that, the functional complexity of the
target mapping is typically low in the sense that only few hidden units are required.
In this case, good generalization is possible with relatively few learning examples.
An example is the case m = 2, in which 2,500 learning examples was more than
sufficient for good generalization.

When we enlarge the data horizon from small to large, the smoothness of ¢,,
decreases, the functional complexity of ¢,, increases, and generalization becomes
more difficult requiring more learning examples.
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MLP
Tm KNN

avg ind com

8.79 8.64 875955
5.20 5.17 5.21 | 5.59
2.14 204 191 205
1.01 0.90 0.84 | 1.48
0.81 0.65 0.80 | 1.17
0.55 0.48 053 | 0.81
039 033 037 0.64

91029 023 027058
10 | 0.28 0.22 0.19 | 0.54

R ~ION BN

Table 6.3. Average excess cost on test set for horizon-selection rules T'*" and "N
The entries for T)"" represent averages of ten networks (avg), best individual net-

works (ind), and committees (com).

6.5 Generalization with cost target vectors

This section addresses generalization with cost target vectors; its organization is
as follows. Section 6.5.1 assesses the generalization capabilities of the horizon-
selection rules " and 7,S"N. Model specific conditions and problem specific con-
ditions for good generalization are studied in Sections 6.5.2 and 6.5.3, respectively.
Finally, Section 6.5.5 gives some conclusions.

6.5.1 Generalization assessment

We assess the generalization capabilities of the horizon-selection rules 7“* and
T NN for data horizon lengths m = 2, ..., 10, by calculating the corresponding
average excess cost on the independent test set. Table 6.3 presents these results.
The average excess costs for both t)F and 7, "™ are strictly decreasing in m. The
overall performance of the committees is better than the average performance of the
individual networks. The performance of the committees compares well with the
performance of the best individual networks. The overall performance of the MLP-
based horizon-selection rules is superior to that of the KNN-based horizon-selection
rules. In the remainder of this section we further analyze these results.

6.5.2 Model specific conditions

We now investigate the model specific conditions for good generalization for the
different approaches with respect to the learning set. Therefore, in Figure 6.6, we
plot the generalization capabilities as a function of the model flexibility. For dif-
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Figure 6.6, Average excess cost as function of the model flexibility. The horizontal
axis represents the number of hidden units for multi-layered perceptrons and the
value of K for K -nearest-neighbors.

ferent data horizon lengths m, we plot the average excess cost of t}F on the test
set as function of the number of hidden units in (a) and the average excess cost of
7NN on the test set as function of K in (b). Looking at Figure 6.6 we conclude
that the model specific conditions for good generalization are satisfied. The opti-
mal number of hidden units N}, increases strictly with m indicating an increase of
the functional complexity of the target mapping ¥.. For K -nearest-neighbors, we
observe that small values of K lead to poor generalization due to a too high model
flexibility. The generalization capabilities increases smoothly with K. The results
in Figure 6.6 suggest that slightly better generalization capabilities can be obtained
by using more hidden units or higher values of K.

6.5.3 Problem specific conditions

The target mapping ,, is completely characterized by the conditional expectation
of the excess cost E{C,, (k) | X,, = x} with k € L,. From the results presented
in Section 5.3.3, we know that the characteristics of random variables C,, (k) with
k € L, change with the data horizon length m. Consequently, the characteristics of
¥, change with m. The effect of this change on the problem specific conditions for
good generalization is determined by the cost structure (H, P). Below we exam-
ine the characteristics of random variables C,, (k) by estimating their expectations
E{C,, (k)}.

The analogon of the prior probability P{Y,, = k} for the excess cost objec-
tive is the prior expectation E{C,, (k)}. In words, E{C,, (k)} denotes the expected
excess cost of decomposing the off-line problem at period k. For each m we esti-
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Brn()) B BuB)  Bn@  Bu(S) Bn(6) Bn(D)
58.45 1721 - - - - -
66.52 3334 4211 - - - -
67.74 3579 4579 4245 - - -
67.89 36.08 4623 43.03 4381 - -
67.90 36.11 4628 43.10 4390 4368 -
67.90 3611 4628 43.10 43.90 43.68 43.79

Table 6.4, Estimates B,,(k) of the prior expectations E{C,, (k)}.

WO R w3

mate the prior expectations E{C,, (k)} with k € ., by averaging over the 7, 500
available cost target vectors. We denote the estimate of E{C,, (k)} by Bn(k). Ta-
ble 6.4 presents these estimates. The entries for m > 7 were omitted. Note that
the order cycle, as obtained by substituting the average demand level 100 in (3.3),
corresponds with the optimization horizon with the lowest prior expectation. We
observe that B, (k) as function of m converges to a fixed value for k € .£,,. This
behavior can be explained as follows.

Proposition 5.3 implies that, if an upper bound M exists on the length of a
subplan in an optimal production plan for the n-period problem that is independent
of n, random variables Cas(k), Cy+1 (k), ... are identically distributed. So, if such
an upper bound M exists, the prior expectations become independent of m form >
M. The observed behavior of B, (k) as function of m can thus be explained by the
existence of such a bound M = 6. However, it is unlikely that such a bound really
exists. Using similar arguments as put forward in Section 6.4.4, in our analysis, we
distinguish between the cases 2 < m < 6, in which the empirical distribution of
C,, (k) changes with m, and m > 6 in which the empirical distributions of C,, (k)
are identical.

6.5.4 Class overlap

The analogon of the overlapping coefficient A,, for the excess cost objective with
data horizon length m equals the Bayes cost ¢(t,;). The following estimate is based
on the observation that for any horizon-selection rule T we have c(t) > c(r). So
the expected excess cost ¢(t) of any horizon-selection rule t provides an upper
bound for the Bayes cost and can be estimated by calculating the average excess
cost of T on the independent test set. Let UB(m) denote the average excess cost
on the test set of the best horizon-selection rule we found for data horizon length
m. In case m = 1, the problem of selecting an optimal optimization horizon is
trivial and therefore it is obvious to define UB(1)=0. In Figure 6.7 we plot the
values of UB(m) for 1 < m < 10. The observed behavior of UB(m) as a function
of m supports Theorem 5.4 and Conjecture 5.1. These results state that c(z,) is
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Figure 6.7. Average excess cost on test set for best horizon-selection rule.

decreasing in m for m > 6 and limy_ o c(7,,) = 0 under the condition that an
upper bound M = 6 exists.

6.5.5 Discussion

We studied the generalization capabilities of the MLLP-based horizon-selection rule
for the excess cost objective as a function of the data horizon length m. It turned out
that good generalization is possible with cost target vectors for all m. We analyzed
the necessary conditions for good generalization and observed that the number of
hidden units required for good generalization increases strictly with m, indicating
an increase of the functional complexity of the target mapping ¥,,. Despite this
increase in functional complexity, there was no noticeable effect on the conditions
for good generalization. In all cases 2,500 learning examples was sufficient for
good generalization.

6.6 Conclusion

This chapter studied the generalization capabilities of the two MLP-based horizon-
selection rules proposed in Chapter 5 for an on-line lot-sizing problem with Wagner-
Whitin cost structure. Particularly, the effect of the length of the data horizon and
the type of learning examples on the generalization capabilities were investigated.
As a reference we developed two alternative horizon-selection rules based on K -
nearest-neighbors estimation. Below, we give some conclusions.
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MLP-based versus KNN-based. We conclude that, in case of generalization with
zero-one target vectors, the use of multi-layered perceptrons is preferred to the K -
nearest-neighbors technique; not only with respect to its generalization capabilities,
but also with respect to its more efficient use of the available learning examples.
In case of generalization with cost targets, multi-layered perceptrons were always
slightly better.

If we compare the computational efficiency of supervised learning with multi-
layered perceptrons and the K -nearest-neighbors technique, a distinction can be
made between (i) the amount of effort that has to be put in before a good horizon-
selection rule is obtained and (ii) the on-line processing speed. With respect to (i),
both multi-layered perceptrons and K -nearest-neighbors are rather time consum-
ing, since they require fine-tuning of the parameter controlling the model flexibility.
The time to develop a multi-layered perceptron can be decreased by using improved
learning algorithms and parallel processing. With respect to (ii'), MLP-based hori-
zon selection rules are very fast on-line compared to KINN-based horizon-selection
rules. The reason therefore is that, in a KINN-based horizon-selection rule, the
distance from the give demand vector to all learning examples in the learning set
must be calculated. However, there also exist fast implementations of K -nearest-
neighbors algorithms [Fukunaga & Narendra, 1975].

Zero-one targets versus cost targets. A possible disadvantage of using zero-one
target vectors is that, although multiple simple planning horizons may exist within
the data horizon, we only code the minimal one. In this way crucial information
may be lost. One option is to allow multiple ones in the target vectors, however, in
this way still no cost information is incorporated in the targets. These disadvantages
can be overcome by using cost target vectors.

Generalization with zero-one target vectors turned out to be more difficult for
large data horizons. The main source of difficulties is the smoothness of the corre-
sponding target mapping. Due to the better conditions for good generalization, we
expect that learning with cost target vectors requires less learning examples and can
therefore be done faster.

Discussion. Although the above conclusions are in favor of using an MLP-based
horizon-selection rule with cost target vectors, a fair comparison between the dif-
ferent approaches and the different types of learning examples cannot be made yet.
This is because generalization capabilities are measured differently for the two ob-
jectives. For instance, a classification rate of 0.9 cannot be compared with an av-
erage excess cost of 5. One option is to calculate the average excess cost for all
horizon-selection rules. But the most appropriate way of comparing the different
horizon-selection rules is on the basis of the performance characteristics of their
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corresponding variable-horizon policies. In the next chapter we investigate these
characteristics by means of an extensive empirical study.
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Performance of variable-horizon policies
for on-line lot-sizing

In Chapter 2 we introduced variable-horizon policies as a solution approach for
on-line lot-sizing problems. Such policies determine the lot-sizes by repeatedly
optimizing over some optimization horizon and implementing the lot sizes of the
first subplan. A variable-horizon policy is completely determined by its horizon-
selection rule, which determines the optimization horizon given the demands within
the data horizon. In Chapter S we derived two horizon-selection rules based on su-
pervised learning with multi-layered perceptrons. The purpose of this chapter is to
investigate the performance characteristics of the variable-horizon policies consti-
tuted by these horizon-selection rules. Moreover, our intention is to give conclu-
sions and recommendations with respect to the use of these variable-horizon poli-
cies. To that end we perform an extensive empirical study in which the MLP-based
variable-horizon policies are compared with a benchmark of alternative variable-
horizon policies on a rolling-horizon basis. This study focuses on the three cost
structures introduced and analyzed in Chapter 3.

The chapter is outlined as follows. In Section 7.1 we discuss some related lit-
erature. Section 7.2 gives an outline of the experiments. In Section 7.3 we discuss
policy performance evaluation. Section 7.4 investigates the potential of variable-
horizon policies. In Section 7.5 we present the empirical results. Finally, in Sec-

117
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tion 7.6 we give some conclusions.

7.1 Related literature

The literature shows several studies that address the performance of variablehorizon
policies on a rolling-horizon basis. These studies address, without exception, the
Wagner-Whitin cost structure. Our design of experiments is inspired by the studies
of Baker [1977], Blackburn & Millen [1980], Carlson, Beckman & Kropp [1982],
and Zwietering, Van Kraaij, Aarts & Wessels [1991]. Below we discuss the main
conclusions of these studies.

Baker [1977] investigated the impact of the length of the data horizon, the order
cycle, and the demand characteristics on the performance of the fixed-horizon pol-
icy. He concludes that for a good performance of this policy the data horizon must
be at least as large as the order cycle.

This work was extended by Carlson, Beckman & Kropp [1982], who included
demand forecasting. They compare the fixed-horizon policy with three variable-
horizon policies, each consisting of a simple demand forecasting technique and a
forward algorithm. Demand is forecasted for as many periods as needed by the
forward algorithm to detect a planning horizon. They conclude that forecasting
becomes more beneficial as the variation in demand increases. Furthermore, they
conclude that any reasonable extension of demand beyond the data horizon is fea-
sible. They recommend to let the length of the data horizon plus the number of
forecasted demands exceed the order cycle.

Blackburn & Millen [1980] designed a set of experiments to investigate the
impact of the length of the data horizon, the order cycle, and the variation in de-
mand on the performance of the fixed-horizon policy and three different aggregation
heuristics. It appears that, independent of demand characteristics, the performance
of the aggregation heuristics becomes poorer as the variation in demand increases,
whereas for data horizons larger than two order cycles, increasing variation in de-
mand tends to improve the performance of the fixed-horizon policy. For reasons
of cost effectiveness, they recommend the use of one of the aggregation heuris-
tics when the information about future demand is limited. Typically, there is a data
horizon length for which the fixed-horizon policy starts to dominate the aggregation
heuristics. This value decreases when the demand variability increases.

Zwietering, Van Kraaij, Aarts & Wessels [1991] performed some experiments
with multi-layered perceptrons for the rolling horizon version of the single-item lot-
sizing model with Wagner-Whitin cost structure. The authors showed that multi-
layered perceptrons can outperform the fixed-horizon policy and the aggregation
heuristic of Silver & Meal [1973].
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7.2 Outline of the experiments

This section outlines our experimental setup. The experiments evaluate the perfor-
mance of a number of different variable-horizon policies for instances of three types
of on-line lot-sizing problems. We vary the length of the data horizon between 2
and 10. The organization of this section is as follows. First, we characterize the in-
stances under consideration by summarizing the corresponding demand processes
and cost structures. Next, we describe the details of the variable-horizon policies
we consoder. Finally, we describe how we evaluate policy performance.

7.2.1 Demand processes

We investigate the effect of the characteristics of the demand process on the perfor-
mance of variable-horizon policies by considering three types of demand processes,
i.e., uniformly distributed demand, Erlang distributed demand, and seasonal de-
mand. These demand processes are stationary, i.e., their characteristics are constant
in time.

Variability is on of the characteristic of the demand process that strongly effects
the performance of a variable-horizon policy [Blackburn & Millen, 1980; Carlson,
Beckman & Kropp, 1982]. The variability of a positive random variable X is mea-
sured by its squared coefficient of variation ci defined by
var{ X}

E*{X}"
Moreover, there is a relationship between the variability of the demand process and
the distribution of minimal planning and forecast horizons; see the work of Lundin
[1973], Federgruen & Tzur [1994], Lundin & Morton [1975], and Morton [1981].
Since the MLP-based horizon-selection rules proposed in Chapter 5 depend on the
distribution of minimal planning and forecast horizons, we expect that the perfor-
mance of the variable-horizon policies constituted by these horizon-selection rules
depends on the variability of the demand process. For these reasons, we consider a
number of coefficients of variation. Below we describe these demand processes in
more detail.

cy = (7.1)

Uniformly distributed demand. Suppose the demand in period ¢ is uniformly
distributed with mean p and range R, i.e., the demand d, is uniformly distributed
on [p — éR, u+ %R]. Then the corresponding squared coefficient of variation is
given by
RZ

2

Cq = ek
We use uniformly distributed demands with mean & = 100 and ranges R = 75,
150, and 200. The corresponding squared coefficients of variation are equal, to

(1.2)
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C(%’, = 0.05, 0.19, and 0.33, respectively. For notational reasons we label the three

uniform distributions as U75, U150, and U200.

Erlang distributed demand. Suppose the demand in period ¢ is Erlang-k distrib-
uted with parameter A. Then the mean and the squared coefficient of variation are
given by

E{d} = ~, (1.3)

2

¢ = (7.4)

o= x

We generate Erlang demands with (approximately) equal mean and variances as
the abovementioned uniform distributions by substituting E{d,;} = 1« and (7.2) into
(7.3) and (7.4) to obtain

1202
k:max{l,[ Rl; —i—%J}, (7.5)
12k
= Rz (7.6)

We label the three Erlang distributions as E75, E150, and E200.

Seasonal demand. We generate seasonal demands using the formula
1 . 2mt
'd[ :(M_ER)SIH (T>+u,, (77)

where T denotes the cycle length, and i, is a uniformly distributed random variable
with mean p = 100 and range R = 75. It is obvious that

E{d} = u+ (n— %R) sin <2T£) : (7.8)

Let D,,.r denote the cumulative demand from period ¢ up to period t + 7 — 1, i.e.,
the demand during a cycle. Then one easily verifies that E{D, ,.r} = uT and the
expected demand per period during a cycle is . We use seasonal demand processes
with cycle lengths 7 = 3 and 6. These are labeled as S3 and S6, respectively.

7.2.2 Cost structures

We study four cost structures, i.e., two Wagner-Whitin cost structures, one cost
structure with overtime, and one cost structure with purchasing. All cost structures
have the linear holding cost function (3.2). We normalize the holding cost £ to
1. The production cost functions for the Wagner-Whitin cost structure, the cost
structure with overtime, and the cost structure with purchasing are defined by (3.1),
(3.4), and (3.6), respectively. The Wagner-Whitin cost structures were selected to
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yield order cycles n* of 2 and 4 periods as determined by (3.3) with D = p = 100.
To obtain the appropriate order cycles, S was set equal to 200 and 800, respectively.
For the two-source models with overtime and purchasing, constructing reasonable
cost structures is less straightforward. After some experimentation with these mod-
els, we choose two cost structures that showed a reasonable number of lot sizes
requiring overtime or purchasing; see also the work of Dixon, Elder, Rand & Silver
[1983] and Suurmond [1996]. For the cost structure with overtime we set the over-
time premium r, the setup cost S, and the regular time production capacity C equal
to 1, 425, and 200, respectively. The corresponding order cycle, as determined by
(3.5 with D = pu = 100, is equal to 2. For the cost structure with purchasing we
take the purchase premium r, the setup cost S, and the in-house production capac-
ity C equal to 10, 100, and 125, respectively. The corresponding order cycle, as
determined by (3.7) with D = p = 100, is equal to 1.

7.2.3 Learning examples

Forall 8 x4 x9 = 288 combinations of demand processes, cost structures, and data
horizon lengths, we generate two sets of 2,500 combined learning examples, i.e.,
one learning set and one validation set for monitoring the generalization capability
during execution of the learning algorithm. These combined learning examples con-
tain both zero-one target vectors and cost target vectors as described in Section 5.4.
We remark that we generated demand for as many periods as necessary to compute
5,000 learning examples, which is approximately 5,100 periods in all cases. The
procedures for the computation of zero-one target vectors and cost target vectors
have been described in Sections 5.2.4 and 5.3.4, respectively. These procedures use
the forward algorithms developed in Chapter 2 in which the cost structure specific
features derived in Chapter 3 have been included.

There are two reasons for taking the same number of learning examples in all
288 cases. First, although we expect that in most cases the number of learning
examples required for good generalization is smaller than 2,500, it takes too much
time to investigate the required minimal number of learning examples for all 288
cases; see also Chapter 6. Second, we want to maintain as much as possible the
same conditions for the 288 experiments. Note that, in practice, the availability of
learning examples may be limited and one may be unable to afford the luxury of
keeping aside a validation set. In such cases cross-validation can be used; see also
Section 4.5.

7.2.4 MLP-based variable-horizon policies

The procedure to obtain the variable-horizon policies constituted by the MLP-based

horizon-selection rules piit* and t ¥ developed in Chapter 5 is, except for some
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minor differences, identical for each of the 288 combinations of different demand
processes, cost structures, and data horizon lengths. Below, we describe this proce-
dure and point out these differences.

Preprocessing. A preprocessing step is included in which all elements of the in-
put and target vectors are scaled between O and 1. Next, we remove the differ-
ence in interpretation of network outputs between zero-one target vectors and cost
target vectors by applying the transformation x — 1 — x to the elements of the
scaled cost target vectors. In this way, all target mappings are mappings of the form
g : [0, 1] — [0, 1]. This enables the use of sigmoidal units, identical weight ini-
tialization procedures, and identical learning parameter values in all cases; see also
Section 6.2.

Next we describe the scaling procedure. For the scaling of the input vectors
for uniformly distributed and seasonal demand, we use the property that these de-
mand processes are bounded. We divide the input vectors for uniformly distributed
demand by p + %R, and the input vectors for seasonal demand by 2u. Erlang dis-
tributed demand is unbounded. In that case we scale by dividing the input vectors
by the largest observed demand realization. The zero-one target vectors obviously
need no further scaling. The scaling of the cost target vectors is less straightfor-
ward. For the Wagner-Whitin cost structure we use the worst-case result presented
in Proposition 3.2. This result states that A,,(p) < S, where S denotes the setup
cost and A, (p) denotes the excess cost (over infinite-horizon m-optimality) of de-
composing the off-line problem at period p; see also Section 2.7 and Section 5.3.
Consequently, the appropriate scaling is obtained by dividing the elements of all
cost target vectors by S. We were unable to derive such results for the other cost
structures and therefore scale the elements of the cost target vector by the largest
observed value of A, (p).

Learning algorithm. The initial values of the weights of the multi-layered per-
ceptron are drawn from a uniform distribution on [—1, 1]. We use the sequential
version of gradient descent with momentum term using the sum-of-squares error
function (4.12) with learning rate n = 0.1 and momentum term w = 0.9. The
learning algorithm applies 2,500,000 iterations for each multi-layered perceptron.
During execution the sum-of-squares error is monitored on the validation set and
the network with the lowest error is kept.

Network topology selection. Because of the size of our experimental setup, man-
ual tuning of the neural network topology is simply infeasible. Therefore, in our
experiments, we use a predetermined set of neural network topologies. The risk of
such an approach is that we may end up with a suboptimal policy, since for instance
adding more hidden units would yield a better performance. On the other hand, it is
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interesting to see what results can be obtained in this way, since in practice there is
often no time for fine tuning. Next we describe the network topologies we consider
in our experiments.

Suppose we have a data horizon of length m. Then we use multi-layered per-
ceptrons with m inputs and m output units as implied by the structure of the learning
examples. Furthermore, we take logistic sigmoid response functions (4.9). To de-
termine a suitable network topology, we investigate five network topologies with
increasing network mapping capabilities, i.e., with increasing number of hidden
units. We expect that two-source models require more hidden units than single-
source models which we take into account as follows. For the single-source models
we investigate network topologies with 0, m, m+ 2, m 44, and m 4- 6 hidden units;
for the two-source models we investigate network topologies with 0, m, m + 3,
m + 6, and m 4+ 9 hidden units. Except for the topology with zero hidden units,
which has no hidden layer, all network topologies have one hidden layer. For each
of the five different network topologies we develop ten networks. These ten net-
works are combined to form a committee by averaging over network outputs. For
each committee we compute the sum-of-squares error on the validation set. Both
the horizon-selection rules o' and tM* are obtained by selecting the committee

m m
with the lowest sum-of-squares error.

7.2.5 KNN-based variable-horizon policies

Next we describe the procedure to obtain the variable-horizon policies constituted
by the KNN-based horizon-selection rules p"™ and 7"~ ; see Section 6.3. Suppose
we have a data horizon of length m. Horizon-selection rule pfMN is obtained by
computing the classification rate on the validation set for K =1, ..., 20, and by
choosing the value of K with the highest classification rate. This is done using
the zero-one target vectors of the combined learning examples. Horizon-selection
rule TXN is obtained by computing the average excess cost on the validation for
K =1,...,20, and by choosing the value of K with the lowest average excess
cost. This is done using the cost target vectors of the combined learning examples.
Note that for both horizon-selection rules the procedure for determining K is taken
independent of any cost structure, demand process, or data horizon length.

7.2.6 More variable-horizon policies

This subsection summarizes the more conventional variable-horizon policies that
were proposed in Section 2.4.3 and that are used as a reference throughout this
chapter. Furthermore, we introduce two variable-horizon policies that include fore-
casting and are based on the work of Carlson, Beckman & Kropp [1982]. For rea-
sons of convenience we distinguish between policies with forecasting and policies
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without forecasting.

Myopic policies. In Section 2.4.3 we derived the following four variable-horizon
policies from well-known heuristics for the Wagner-Whitin cost structure.

1. Economic order quantity policies (EOQ).

2. The least cost per unit time policy (PUT).

3. The least cost per unit product policy (PUP).
4. The fixed-horizon policy (FIX).

We remark that EOQ was derived for the three cost structures under consideration
in Chapter 3.

Policies with forecasting. Carlson, Beckman & Kropp [1982] investigated the
use of forecasting to extend the data horizon for the Wagner-Whitin cost structure.
Their approach was to forecast demand for as many periods in the future as neces-
sary for a forward algorithm to detect a planning horizon. They investigated several
forecasting techniques ranging from relatively simple techniques, like extension of
last period’s demand, to more sophisticated techniques, like exponential smoothing
with trend and seasonality. From their experiments it appears that a simple 5-period
moving average works as well as the more sophisticated forecasting techniques.
Consequently, they concluded that any reasonable extension of the data horizon
will do as well as the more accurate ones.

Based on the work of Carlson, Beckman & Kropp [1982] we can use a forecast-
ing technique to extend the data horizon in combination with our forward algorithm
to detect an m-optimal simple planning horizon. Inthis way we derive two variable-
horizon policies based on the following two simple forecasting techniques.

1. Take the average demand . = 100 as a forecast for the unknown future
demands.

2. Use a 5-period moving average to forecast the unknown future demands.

We denote the corresponding policies by AVG and M VG, respectively. Both forecast-
ing techniques generate a demand sequence with low variability. For such cases, we
found that the forward algorithm often needs a large amount of demand information
to stop. For that reason we terminate the forward algorithm after a maximum of 100
iterations. If the forward algorithm terminates within 100 iterations, the optimiza-
tion horizon is taken equal to the m-optimal simple planning horizon. In case no
m-optimal simple planning horizon is found, we select the smallest element from
the m-optimal regeneration set 87 (100); see also Theorem 2.9. AVG can also be ob-
tained by exploiting that the demand beyond the data horizon is constant. This was
shown by Van Nunen & Wessels [1978], who used the infinite-horizon lot-sizing
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model with constant demand to derive an infinite-horizon optimal ending condition
in case of a Wagner-Whitin cost structure; see Definition 2.5. Advantage of this
approach is that, since no forward algorithm is required, it is computationaily less
demanding.

7.3 Policy performance evaluation

The performance of m-policies is usually evaluated empirically by applying them
to different instances of on-line problems with a finite number of periods, called
the problem horizon. A typical set-up is to consider 50 replications of 48-period
problems [Baker, 1977; Carlson, Beckman & Kropp, 1982]. Such experiments are
strongly effected by so-called end-of-horizon effects caused by the truncation of the
infinite horizon to a finite horizon [Blackburn & Millen, 1980]. To minimize these
effects in our experiments we use instances with large problem horizons.

Suppose we apply some variable-horizon policy 7 to an instance of an on-line
lot-sizing problem with a data horizon of length m and a problem horizon of length
n. Then, when the end of the problem horizon is reached, we have obtained lot-
sizes for k periods of demand for some k& with n — m < k < n; the remaining
n — k lot sizes are determined by choosing the final optimization horizon equal to
n — k. We denote the corresponding total sum of production and holding cost by
C7 (n). The performance of 7 can be measured in a number of different ways. The
most obvious way is to measure the absolute performance CJ; (n). Unfortunately,
this is inappropriate for our purposes, because it does not allow for a comparison
of the performance of variable-horizon policies with different data horizon lengths,
problem horizon lengths, cost structures, and demand processes. To that end, a rel-
ative performance measure is required, in which the performance of 7 is expressed
relative to some reference value. This section introduces two relative performance
measures, i.e., off-line performance and on-line performance.

7.3.1 Off-line performance

We speak of off-line performance if we take the cost f(n) of an optimal n-period
plan as a reference. The corresponding off-line performance measure is the devia-
tion from off-line optimality y,” (n), defined by

()
f’
which can be computed using the recursion (2.4). We assume that f(n) > 0. It
then is obvious that ¥, (n) > 1.

Based on the stationarity of the demand processes under consideration we ex-
pect that 7 (n) converges to a limit value as n goes to infinity. We denote this

Ym (1) = (7.9)
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Figure 7.1. Typical behavior of y] (n) as a function of n for variable-horizon poli-
cies PUT, AVG, FIX, and PUP, using the Wagner-Whitin cost structure with order
cycle 4, a data horizon of length 4, and uniformly distributed demands (U200).
PUT performs best, followed by AVG, F1X, and PUP.

limit value by y,; . Figure 7.1 gives an example of the convergent behavior of y,; (n)
for four variable-horizon policies as a function of n. In our experiments we assess
policy performance by estimating these limit values. Apparently, good estimates
of y,; can be obtained by taking a problem horizon of 2,000-4,000 periods. In our
experiments a problem horizon of 4,000 periods is used.

Discussion. The off-line performance characteristics of a variable-horizon policy
7 can be investigated by estimating y,; for different data horizon lengths, demand
processes, and cost structures. For instance, one may determine how much per-
formance could be gained by enlarging the data horizon, e.g., by improving the
information system. In this way we may determine the value of demand informa-
tion for a given policy. Furthermore, the performance characteristics of different
variable-horizon policies can be compared. For instance, if y,;! < y,72 for two poli-
cies y and 7y, then my uses the available demand information more efficient than
7, for data horizon length m. But, since it is unknown how efficient these policies
use the available demand information, it is impossible to decide upon the off-line
policy performance whether it is useful to search for better policies for a given data
horizon length. For such issues, off-line optimality is inappropriate as a reference.
For example, y,7 = 4 can be optimal for m = 2 in the sense that no variable-horizon
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policy exists that yields better results and y,7 = 2 can be not optimal for m = 10 in
the sense that another policy exists that yields better results. We call this alternative
notion of optimality on-line optimality, which is introduced next,

7.3.2 On-line performance

In analogy with the definition of off-line performance, it would be obvious to ex-
press the on-line performance of a variable-horizon policy 7 for an instance of an
on-line lot-sizing problem with data horizon length m and problem horizon length
n relative to the best performance of any m-policy for that instance by
Cr(n)
min{CZ'(n) | 7’ € P}’

(7.10)

where #,, denotes the set of all possible m-policies. Nevertheless we express the
on-line performance of 7 relative to the best performance of any variable-horizon
policy, because the policies under consideration in this thesis are variable-horizon
policies.

We recall that a variable-horizon policy is completely specified by its horizon-
selection rule, which, for a data horizon length m, can be written as a function g :

R™ — {1, ..., m}of the m demands within the data horizon; see also Section 2.4.2.
Let #,, denote the set of all possible horizon-selection rules that can be written as
a function g : R™ — {1, ..., m} of the m demands within the data horizon. For

reasons of convenience we denote the variable-horizon policy corresponding with a
horizon-selection rule g by 7 (g). The on-line performance measure is the deviation
¢, (n) from the best performance of any variable-horizon policy, defined by

Cn ()

min{Cy®’ (n) | g € Hn)

o (n) = . (7.11)
Since we assumed that f(n) > 0, it is obvious that ¢, (n) > 1.

Based on the stationarity of the demand processes under consideration we ex-
pect that ¢] (n) converges to a limit value as n goes to infinity. We denote this
limit value by ¢]. The on-line performance characteristics of a variable-horizon
policy 7 can be investigated by estimating ¢7 for instances of on-line lot-sizing
problems with different data horizon lengths m, demand processes, and cost struc-
tures. Based on these characteristics we can study the robustness of the different
variable-horizon policies. A variable-horizon policy is called robust if it yields a
good on-line performance, irrespective of the cost structure, the demand process,
and the length of the data horizon.

Unfortunately, computing ¢, (n) for instances with sufficiently large values of
n, as in the off-line case, will not work because the best performance of any arbitrary
variable-horizon policy for an instance of an on-line lot-sizing problem with data
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horizon length m and problem horizon length » is in general unknown. Therefore,
we next derive an upper and a lower bound on ¢ (n) that can be used to estimate
b

An upper bound. Let 5:;(”) denote the deviation from off-line m-optimality de-
fined by

C,n)
fn()
The following result provides an upper bound on the on-line performance of a

variable-horizon policy and is immediate from the fact that C}; (n) is greater than or
equal to the cost f, (n) of an m-optimal n-period plan.

o, (n) = (7.12)

Proposition 7.1. ¢ (n) < 6. (n) for all g € Hyn. O

Based on the stationarity of the demand processes under consideration, we again
expect that gz(n) converges to a limit value as n goes to infinity. We denote this
limit value by 5,7; Itis obvious that ¢, < 5:, The advantage is that 5:, (n) can be
easily computed using the recursion (2.11).

A lower bound. The following result follows directly from the fact that any
variable-horizon policy provides an on-line performance lower bound.

Ci® (n)

Proposition 7.2. ¢*® (n) > .
” '™ (n)

forallg, g € Hp. 0
We expect that these lower bounds converge when taking the limit of » to infinity.

In our experiments we typically compare a number of different variable-horizon
policies. The above result can then be used as follows. Suppose we have N variable-
horizon policies 7;,i = 1,..., N. Then forall i = 1, ..., N the best lower bound
for ¢}/ (n) is given by

C7i
o) = — Cn @ . (7.13)
- min{C,'(n) | j =1, ..., N}
Note that a value of 1.01 for this lower bound implies that the performance of m;

deviates 1% from the best of these N policies.

Discussion. Suppose we have a benchmark of N variable-horizon policies ; with
i =1,..., N. Then we can investigate the on-line performance characteristics of
variable-horizon policy 7; by estimating the on-line performance bounds ¢,, and
@77 for instances of on-line lot-sizing problems with different data horizon lengths,
demand processes, and cost structures. Good estimates are obtained for large prob-
lem horizons. The smaller the gap between upper and lower bound, the better we
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can estimate the on-line performance ¢/ for a particular instance. Using the upper
bound as estimate has the advantage that we can guarantee that the on-line perfor-
mance is not worse than $:’ This is nice if the gap between the upper bound and
the lower bound is small, but of less use if the gap is large. On the other hand, if one
of the N variable-horizon policies under consideration has a near-optimal on-line
performance, it would be appropriate to use the lower bound as an estimate for ¢} .
Preluding on the experiments, we only observed significant gaps for small values
of the data horizon. Fortunately, it is especially in those cases that the conditions
for good generalization are excellent, and near on-line optimal performance of our
policies can be expected. For these reasons, the lower bounds are used as estimates
for the on-line performance. For the sake of completeness, we also give the upper
bounds.

7.3.3 Explanation of the tables

Unless stated otherwise, the tables in this chapter present performance characteris-
tics in percentages deviation. We add a background gray color to each table entry,
whose level of darkness scales with the entry. In this way we can easily recognize
patterns in the performance characteristics. The lighter the background gray level
of a table entry, the better its performance. Gray levels are in the range [0, 1], where
0 and 1 denote black and white, respectively. Percentages deviation are mapped
onto background gray levels using the function s : IR™ — [0, 1], defined by

1—§ fo0<x <S5

s(x) =
x) 1 otherwise.

(7.14)
In the range 0-5%, background gray levels change linearly as a function of the
percentage deviation from white (0% deviation) to black (5% deviation). All table
entries with a percentage deviation larger than five are assigned the background
gray level black.

7.4 The potential of variable-horizon policies

Before discussing the performance characteristics of specific variable-horizon poli-
cies, we focus on their potential. Let «,,(n) be the deviation of m-optimality over
optimality for the n-period problem defined by

Jm ()
fn)
From Proposition 2.6 it follows that «,,,(n) > 1. Let m = 7 (g) with g € F, be

a variable-horizon policy. Then one easily verifies that «,,(n), a;(n), and y,7 (n)
satisfy the relation

(7.15)

am(n) =
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Y (n) = an(m)@ (), (7.16)

which, using that ¢«,,(n) > 1 and 5:01) > 1, yields the following lower bound for
the off-line performance of any variable-horizon policy.

Proposition 7.3. &(n) > an(n) forall g € H#,. O

Based on the stationarity of the demand processes under consideration we expect
that o, (n) converges to a limit value as n goes to infinity. We denote this limit
value by «,. The quantity «, can be seen as an indication of the potential of
variable-horizon policies with data horizon length m. For that reason we estimate
a,, for the 288 considered combinations of cost structures, data horizon lengths, and
demand processes, by applying the recursions (2.4) and (2.11) to the corresponding
4,000-period problem. The corresponding percentages deviation are presented in
Table 7.1. The value of o, decreases strictly with m to become equal to zero for
sufficiently large values of m. This behavior can be explained using the following
results that can be readily obtained from Proposition 2.7.

Corollary 7.1. Suppose a finite upper bound M exists on the length of a subplan in
an optimal production plan for the n-period problem that is independent of n. Then
am(t) = ay(t) forallm > M and t > 1. Furthermore, a,, = ay forallm > M.
0

Corollary 7.2. Foralll'> m> landt > 1, a;(t) < an(t). Furthermore, a; < oy,
foralll > m > 1. 0

For instance, for the cost structure with purchasing, applying Theorem 3.6 yields a
finite upper bound M with a value of 11.

Comparing the value of «,, for uniformly and Erlang distributed demand, we
observe that the value of «,, does not depend on the type of demand distribution but
it increases for increasing demand variability. For seasonal demand, the value of
o, increases with the cycle length. Note that the variability increases with the cycle
length. Because different cost structures have different cost parameters, conclusions
with respect to the characteristics of «,, as a function of the cost structure are less
obvious. A commonly used technique to compare different cost structures is to use
the corresponding order cycles, based on the average demand level, as a reference.
The idea is that, in the constant demand case, different cost structures with equal
order cycles can be considered equivalent; see also Section 2.4.3.

For instance, let us determine the minimal length of the data horizon such that
the deviation is smaller than 1% for all demand processes. From Table 7.1, we ob-
tain that this length equals 1.5 order cycles for both Wagner-Whitin cost structures,
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two order cycles for the cost structure with overtime, and seven order cycles for
the cost structure with purchasing. These lengths can be viewed as an indication of
the value of demand information for the corresponding on-line lot-sizing problem.
Based on the relative proportions between these lengths, the on-line lot-sizing prob-
lem with purchasing requires relatively much demand information with respect to
the order cycle in order to obtain a certain performance. From this viewpoint it can
be considered as more difficult.

7.5 Empirical results

For all 2,880 combinations of variable-horizon policies, data horizon lengths, cost
structures, and demand processes, we compute the off-line performance and the
on-line performance bounds on the corresponding 4,000 period demand sequences.
In view of the size of the setup we need to arrange the results conveniently. This
is done by means of aggregation. We aggregate over the eight demand processes
included in the setup by presenting the average and the worst-case results for the
off-line performance. Furthermore we present average and the worst-case results
for the on-line performance bounds.

The remainder of this section is organized as follows. We start with some pre-
liminaries. After that, we discuss the performance characteristics of the variable-
horizon policies for the two Wagner-Whitin cost structures, the cost structure with
overtime, and the cost structure with purchasing. Finally, we give some conclu-
sions.

7.5.1 Preliminaries

Before we start our discussion of the empirical results we introduce some notions
that are central in the discussion of the performance characteristics.

Off-line performance. From the work of Baker [1977], Blackburn & Millen
[1980], and Carlson, Beckman & Kropp [1982], we know that the off-line perfor-
mance of variable-horizon policies like FIX, AVG, and MVG can be arbitrarily close
to off-line optimality by taking the data horizon sufficiently large. This does not
hold for the variable-horizon policies based on supervised learning, because in gen-
eral the data horizon cannot be enlarged unlimited without running into the curse
of dimensionality; see also Section 6.4.4. For these reasons, there exists a length of
the data horizon for which FIX, AVG, and MVG begin to exhibit a consistently supe-
rior average and worst-case off-line performance to that of the MLP-based and the
KINN-based variable-horizon policies. This data horizon length is called the switch-
over point. The greatest potential for the latter policies is observed for data horizons
with a length smaller than the switch-over point. For all cost structures we deter-
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mine the switch-over point and we discuss the off-line performance characteristics
of the different policies for data horizons smaller than this point.

The efficiency of a variable-horizon policy with respect to the available demand
data can be investigated by determining the minimal length of the data horizon
such that its worst-case off-line performance is smaller than 1%. Lundin & Mor-
ton [1975] determined these minimal lengths for the fixed-horizon policy. In their
setup they considered a large number of instances of the on-line lot-sizing problem
with Wagner-Whitin cost structure; the corresponding order cycles ranged from 1
up to 150. Their main conclusion was that using FIX with a data horizon of five
order cycles provides solutions within 1% of an infinite-horizon optimal solution,
irrespective of the cost parameter values. We investigate the data efficiency of the
different variable-horizon policies and determine these minimal lengths for all cost
structures under consideration.

On-line performance. A variable-horizon policy is said to be robust if, irrespec-
tive of the cost structure, the demand process, and the length of the data horizon,
it yields a good on-line performance. To investigate the robustness of the different
variable-horizon policies we use the on-line performance lower bound. Note that,
unlike the off-line performance, it is fair to compare the on-line performance of dif-
ferent variable-horizon policies, not only for different demand processes, but also
for different cost structures and data horizon lengths.

In Section 6.4.4 we discussed the phenomenon curse of dimensionality, which
occurs when generalizing on the basis of zero-one target vectors, and which caused
a deterioration in the classification rate of KNN- and MLP-based horizon-selection
rules for increasing lengths of the data horizon. Especially the K -nearest-neighbors
technique turned out to be very sensitive to this phenomenon, which is related to
the smoothness of the target mapping. It is to be expected that the variable-horizon
policies based on these horizon-selection rules also suffer from this phenomenon.
The amount of deterioration is used as an indication of the complexity of the under-
lying classification problem and will be investigated.

7.5.2 Two Wagner-Whitin cost structures

Table 7.2 presents the off-line performance characteristics of ten variable-horizon
policies for the Wagner-Whitin cost structures with order cycles 2 and 4, respec-
tively. The corresponding on-line performance characteristics are given in Table 7.4
for order cycle 2 and in Table 7.5 for order cycle 4.

Off-line performance. Using Table 7.2, one easily verifies that the switch-over
points for the Wagner-Whitin cost structures with order cycles n* = 2 and n* = 4
are obtained for data horizon lengths 4.5n* and 3n*, respectively. For data horizons
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m-OPT

RXx AVG MVG

0- 1 targets
MLP KNN

Cost targets
MLP KNN
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2 1.52* In* | 3In* 3n* 2n* 2n* 2n* 2n*
4 1.5n* 3n* 2n* 2n* 1.75n* o0 1.75n* 2n*

Table 7.3. Minimal length of the data horizon such that the worst-case deviation
from off-line optimality is smaller than 1% for Wagner-Whitin cost structures with
order cycles n* =2 and n* = 4.

with lengths smaller than these switch-over points, MLP {0-1 targets), MLP (cost
targets), and KNN (cost targets) provide an average and worst-case off-line perfor-
mance that is consistently superior to that of the other variable-horizon policies
included in the benchmark. The off-line performance characteristics of KNN (0-1
targets) deteriorate with the length of the data horizon.

From Table 7.2 we determine the minimal length of the data horizon such that
the worst-case off-line performance is smaller than 1% for all 20 different combi-
nations of Wagner-Whitin cost structures and variable-horizon policies. These min-
imal lengths are expressed in multiples of the order cycle in Table 7.3. The entries
of the variable-horizon policies that do not yield such a performance are omitted.
Furthermore, we include the minimal length of the data horizon such that the de-
viation of off-line m-optimality over off-line optimality is smaller than 1% worst
case. These lengths are denoted by m-OPT and were determined in Section 7.4.
Proposition 7.3 implies that for any on-line lot-sizing problem, a variable-horizon
policy cannot obtain an off-line performance smaller than 1% with a data horizon
smaller than m-OPT.

From Table 7.3 it appears that FIX, AVG and MVG require three order cycles of
demand information to consistently yield a worst-case off-line performance that is
smaller than 1%. Only two order cycles are needed for MLP (0-1 targets), MLP (cost
targets), and KNN (cost targets). This is rather data efficient, because the smallest
possible length of the data horizon for which a variable-horizon policy may exist
that obtains such a performance (m-OPT) equals 1.5 order cycles.

On-line performance. Using Table 7.4 and Table 7.5, one easily verifies that the
average gap between on-line performance upper and lower bounds decreases with
m. The smaller this gap, the better we can estimate the average on-line performance.
Significant gaps are only found for small data horizons, i.e., for data horizon lengths
m = 2, 3. Due to excellent conditions for generalization, we expect that our poli-
cies are near on-line optimal in case of small data horizons. For these reasons, it
makes sense to use the on-line performance lower bound to estimate the on-line
performance.

From Table 7.4 and Table 7.5 it is clear that MLP (0-1 targets), MLP (cost tar-
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gets), and KNN (cost targets) are robust, because their deviation from the on-line
performance lower bound of the best variable-horizon policy is less than 0.3% on
average and less than 0.7% worst case. Blackburn & Millen [1980] recommended
the use of PUT for situations with small data horizons. Although the average devia-
tion of PUT is less than 1%, it is not a robust policy, because its worst-case deviation
is 4.32%.

In Table 7.4 and Table 7.5 we observe that the performance of KNN (0-1 targets)
deteriorates with the length of the data horizon. To a lesser extend this also holds
for MLP (0-1 targets). This deterioration is caused by the curse of dimensionality
and the length of the data horizon for which KNN (0-1 targets) starts to deteriorate
is approximately two order cycles.

7.5.3 The cost structure with overtime

Table 7.6 presents the off-line performance characteristics of ten variable-horizon
policies for the cost structures with overtime. The corresponding on-line perfor-
mance characteristics are given in Table 7.8.

Off-line performance. The off-line performance characteristics of the variable-
horizon policies for the cost structures with overtime are similar to the off-line
performance characteristics of the Wagner-Whitin cost structure with order cycle
2 presented in Table 7.2(a). The switch-over point is obtained for a data horizon
of length Sn*. For data horizons smaller than 5»* periods, MLP (0O-1 targets), MLP
(cost targets), and KNN (cost targets) dominate all other policies.

The data efficiency of the different variable-horizon policies is presented in Ta-
ble 7.7. Both F1X and PUT require four order cycles to obtain a worst-case off-line
performance smaller than 1%. The other policies that come within 1% need 2.5
order cycles of demand information, which is rather efficient, because a data hori-
zon of at least two order cycles is necessary to obtain such a performance with a
variable-horizon policy (m-OPT). The ratios between the minimal lengths in Ta-
ble 7.7 are similar to those for the Wagner-Whitin cost structure in Table 7.3.

On-line performance. The on-line performance characteristics are similar to the
on-line performance characteristics of the Wagner-Whitin cost structure with order
cycle 2 presented in Table 7.4. Again we use the on-line performance lower bound
as an estimate for the on-line performance. From Table 7.8 it is clear that only MLP
(0-1 targets), MLP (cost targets), and KNN (cost targets) are robust, because their
deviation from the on-line performance lower bound of the best variable-horizon
policy is less than 0.2% on average and less than 0.4% worst case.

In Table 7.8 the effect of the curse of dimensionality on the performance of
the variable-horizon policies based on supervised learning can be clearly observed.
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[ #* [ m-oPT | AX | AVG | MVG | KNN |

[V ] 7 8n* | 8n* [ 8n* | 8nF |
Table 7.11. Minimal length of the data horizon such that the worst-case deviation
Sfrom off-line optimality is smaller than 1% for the cost structure with purchasing.

has a relatively high functional complexity; see also Section 6.1.

We predicted that the functional complexity of the target mappings of the two-
source models would be higher than that of the single-source models. This was
taken into account when predetermining the set of network topologies by taking
more hidden units in these cases. However, as we may conclude know, still more
hidden units are required. As a result of that we end up with suboptimal MLP-
based variable-horizon policies. The off-line performance characteristics of KNN
(cost targets) are an indication of the performance that can be obtained by adding
more hidden units. For these reasons we only address KNN (cost targets) in our
discussion of the performance characteristics.

Off-line performance. The switch-over point is obtained for data horizon length
8n*. For data horizons smaller than 8n* periods, KNN (cost targets) dominates the
other policies. In contrast with the other cost structures, FIX can be hardly improved
by using a variable-horizon policy with forecasting.

The data efficiency of the different variable-horizon policies is presented in Ta-
ble 7.11. The policies that obtain a worst-case off-line performance smaller than 1%
all need eight order cycles of demand information. This is rather efficient, because
any variable-horizon policy requires a data horizon of at least seven order cycles to
obtain such a performance with a variable-horizon policy (m-OPT).

On-line performance. We use the on-line performance lower bound as an esti-
mate for the on-line performance. From Table 7.10 it is clear that KNN (cost targets)
is robust, because the deviation from the on-line performance lower bound of the
best variable-horizon policy is less than 0.3% on average and less than 0.7% worst
case. The other policies all have worst-case deviations up to 8%.

7.6 Conclusion

This chapter investigated the lot-sizing performance of the MLP-based variable-
horizon policies by means of an extensive empirical study using a benchmark of
different variable-horizon policies.

In Section 7.5.1 we postulated the existence of a switch-over point with respect
to the performance of the variable-horizon policies based on supervised learning.
For all cost structures we determined this switch-over point. We conclude that
for data horizons with a length smaller than the switch-over point the MLP-based
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variable-horizon policies have superior performance characteristics. For data hori-
zons with a length larger than this switch-over point, these policies are outper-
formed by FIX, AVG. and MVG. It appeared that the switch-over point is mainly
determined by the cost structure, and, we can conclude from the experimental re-
sults that it is larger than the length of the data horizon needed by FIX to obtain a
worst-case off-line performance smaller than 1%.

For data horizons with a length smaller than the switch-over point, we investi-
gated both the data efficiency and the robustness of the different variable-horizon
policies. We conclude that, irrespective of cost structure and demand process, the
MLP-based variable-horizon policies yield excellent performance which is obtained
using only little demand information.

We end this chapter with some conclusions concerning the applicability of
MLP-based variable-horizon policies for on-line lot-sizing problems. To that end
we distinguish between two typical cases, i.e., small data horizon and large data
horizon. Note that the notions ‘small” and ‘large’ are relative and depend on the
cost structure. Such a distinction was also made in Chapter 1 and Chapter 6.

Small data horizons. In case the data horizon is small, demand uncertainty is
large, and it is important to determine a good ending condition, i.e., a suitable op-
timization horizon. We investigated variable-horizon policies with three different
types of horizon-selection rules. The first type of rule employed a simple myopic
heuristic (FIX, PUT, PUP, EOQ). The second type of rule used a simple forecast-
ing method as proposed by Carlson, Beckman & Kropp [1982] to extend the data
horizon in combination with a forward algorithm (AVG, MVG). The third type of
rule employed a horizon-selection rule based on supervised learning (MLP, KNN).
From the results presented in this chapter we conclude that the MLP-based variable-
horizon policies dominate all other variable-horizon policies through good perfor-
mance characteristics, great data efficiency, and robustness.

Large data horizons. In case the data horizon is large, the demand uncertainty
is small, and there is hardly any benefit from determining a suitable optimization
horizon by using either forecasting, multi-layered perceptrons, or the K-nearest-
neighbors technique. The best policy that can be used in this case is the fixed-
horizon policy FIX.



Conclusion

In this thesis we investigated the potential of supervised learning with multi-layered
perceptrons for on-line lot-sizing problems. The starting point of our study is a
general single-item on-line lot-sizing problem. We propose a class of hierarchical
solution approaches that we call variable-horizon policies. In such policies, lot sizes
are determined by repeatedly optimizing over a variable optimization horizon that is
chosen by some horizon-selection rule that takes the available demand information
into account.

We formulated the problem of finding an optimal horizon-selection rule as a
classification problem, which we analyzed in a statistical framework. We consid-
ered two objectives, i.e., maximization of expected classification rate and minimiza-
tion of expected excess cost. For these objectives we can give explicit expressions
for the optimal horizon-selection rules. Supervised learning with multi-layered per-
ceptrons is used to estimate the unknown parameters of these expressions. Next
we derived so-called MLP-based horizon-selection rules from the developed multi-
layered perceptrons. To facilitate the off-line computation of learning examples, we
developed forward algorithms.

We have analyzed the conditions for good generalization and their effect on the
generalization capabilities of the MLP-based horizon-selection rules. Numerical re-
sults show that these conditions deteriorate if the number of known future demands
increases. By means of an extensive empirical study, we compared the perfor-
mance characteristics of the variable-horizon policies constituted by the MLP-based
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horizon-selection rules with those of a benchmark of variable-horizon policies. This
study showed that, in situations with large demand uncertainty, the MLP-based
variable-horizon policies dominate all other variable-horizon policies with respect
to robustness, performance, and data efficiency. In situations with small demand
uncertainty, using multi-layered perceptrons is not beneficial.

The remainder of this chapter is organized as follows. First, we formulate cri-
teria that justify a supervised learning approach, Next, we comment on the models
and techniques presented in this thesis. Finally, we give some suggestions for future
research.

Criteria for supervised learning. We conclude that an approach based on super-
vised learning may contribute significantly to the performance of on-line lot-sizing
systems if the following criteria are satisfied.

1. There is no efficient solution approach for the particular problem at hand.
This may be, for instance, because modeling is (too) difficult or the problem
is characterized by incomplete data.

2. Thereis sufficient relevant input data available to construct a sufficiently large
set of Jearning examples. In most applications this will be plain historical
data. In case there is only limited data available or historical data is no longer
up to date or relevant, one option is to model relevant cases and construct
learning examples for them.

3. Itis possible to provide target data for input data in an efficient way. This can
be by means of an algorithm or by means of a human expert.

Success, however, is not assured, since good generalization is only possible if
the conditions for generalization are satisfied; see Section 4.5. For instance, the
problem of learning the inverse of a one-way function used in user authentication
[Tilborg, 1988] does satisfy the abovementioned criteria, but does not satisfy the
conditions for good generalization. Furthermore, we conclude that choosing an ap-
propriate problem representation is of the utmost importance; for instance, we refer
to the differences in generalization capabilities between the approaches based on
different target vectors observed in Chapter 6.

We stated before that the nature of an on-line lot-sizing problem is character-
ized by two components, i.e., a combinatorial component involving the timing and
sizing of the production quantities, and an uncertainty component representing the
incomplete demand information; see also Section 1.3. We developed a hierarchi-
cal approach which exploits the strong points of multi-layered perceptrons for the
uncertainty component and which builds upon the numerous results and techniques
from off-line lot-sizing for the combinatorial component. In this way we combine
the best of both fields. We conclude that such a two-stage approach may contribute
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significantly to the performance of on-line lot-sizing systems if the learning prob-
lem of the first stage satisfies the above criteria and the combinatorial problem of
the second stage can be computed efficiently.

General comments. In this thesis we focussed on on-line lot-sizing problems.
Nevertheless, the ideas and techniques presented in this thesis are more general.
This can be argued as follows. The backbone of our approach is the off-line com-
putation of planning and forecast horizons by means of a forward algorithm with
a stop criterion. In fact the techniques presented in this thesis can be directly ap-
plied to on-line versions of any problem that fits within the regeneration set frame-
work [Lundin, 1973; Lundin & Morton, 1975]. Examples of such problems are
cash balancing [Mensching, Garstka & Morton, 1978}, capacity expansion [Ra-
jagopalan, 1994; Udayabhanu & Morton, 1988], equipment replacement [Bylka,
Sethi & Sorger, 1992; Sethi & Chand, 1979], and facility location [Bastian & Volk-
mer, 1992; Daskin, Hopp & Medina, 1992].

An important step in our approach is the observation that the problem of select-
ing an appropriate optimization horizon can be viewed as a classification problem.
This viewpoint enabled a practicable definition of on-line optimality. It is important
to note that other classification approaches than multi-layered perceptrons can be
applied. Actually, this was illustrated by the application of the K -nearest-neighbors
technique in Chapter 6 and Chapter 7.

An interesting subject, not addressed in this thesis, is the effect of the number
of learning examples on the performance of the MLP-based variable-horizon poli-
cies. Van Kraaij [1991] did some preliminary experiments for an on-line lot-sizing
problem with Wagner-Whitin cost structure. In these experiments, only 50 learning
examples were sufficient to outperform the heuristic of Silver & Meal [1973]. More
experiments are needed to reach convincing conclusions. We can conclude from our
experiments that the number of learning examples required for good generalization
increases with the length of the data horizon; see Chapter 6.

In this thesis we considered so-called uncapacitated lot-sizing models in the
sense that the total production capacity in each period, which may stem from dif-
ferent sources, is infinite. In practice, however, the total amount of production in
a period may be bounded. Additionally, there may be finite bounds on the amount
of product kept in inventory from one period to the next. The latter extension is
rather straightforward, since planning horizon results exist [Sandbothe & Thomp-
son, 1993]. The former extension, however, is more difficult since no planning
horizon results exist for capacitated problems. One option is to relax the capacity
constraint and to introduce an uncapacitated model with penalty cost for exceeding
capacity as we considered in this thesis. An additional problem with capacitated
problems is that some of the possible optimization horizons may be infeasible.
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This problem can be overcome by taking the feasible optimization horizon with
the highest estimated posterior probability, for instance.

Suggestions for future research. An interesting subject for future research is to
investigate if the ideas and techniques presented in this thesis can be applied to on-
line versions of decision problems that do not fit in the regeneration set framework.
A possible starting point is the infinite-horizon dynamic programming framework
proposed by Morton [1979], who introducing the concept of T-regeneration sets,
which applies to a reasonably general form of the dynamic programming problem.
Another option is to proceed from the planning horizon framework introduced by
Federgruen & Tzur [1995] and Federgruen & Tzur [1996], which handles the class
of problems that can be formulated as shortest path problems in acyclic graphs.

Promising is the study of techniques for the incorporation of problem-specific
knowledge into neural networks. Such knowledge can take a variety of forms, but
usually consists of some general information about the form which the target map-
ping should take or some constraint which it should satisfy. This kind of knowledge
is referred to as prior knowledge. Since any information that is build directly into
the network reduces the complexity of the learning problem involved, this may lead
to substantial improvements in data requirements, learning efficiency, and general-
ization. For examples we refer to the work of Barnard & Botha [1993], Joerding &
Meador [1991], and Low & Webb [1990]; see also the textbooks by Bishop [1995]
and Honavar [1994]. We mention two possibilities for incorporating prior knowl-
edge when designing MLP-based horizon-selection rules. A first possibility occurs
in the case that the demand process is seasonal with a cycle length larger than the
data horizon. Then we can exploit this foreknowledge by including an extra demand
lag such that the number of inputs equals the cycle length. A second possibility is
the incorporation of prior knowledge about one or more of the relevant decision
boundaries of the underlying classification problem. Such decision boundaries can
for instance be derived for the on-line lot-sizing problems with overtime and pur-
chasing by rewriting Theorem 3.3 and Theorem 3.5, respectively. These decision
boundaries can be directly hardwired into the network or can be given as extra in-
puts to the network. Numerical experiments are needed to examine the impact of
incorporating such knowledge on the generalization capabilities of the MLP-based
horizon selection rules and the on-line lot-sizing performance of the corresponding
variable-horizon policies.
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Samenvatting

Dit proefschrift beschouwt situaties waarin de productie van één eindproduct moet
worden gepland voor opeenvolgende perioden in de tijd. We nemen aan dat de
vraag naar product een vast aantal perioden vooruit bekend is. Dit aantal wordt de
data horizon genoemd. Er moet altijd aan de vraag naar product in een bepaalde
periode worden voldaan. Er worden productie- en voorraadkosten beschouwd, en
het is zaak een zo goedkoop mogelijk productieplan te vinden waarin op tijd aan
alle vraag naar product wordt voldaan. Dit soort problemen worden ook wel se-
riegroottebepaling sproblemen genoemd. Gezien de manier waarop de vraag naar
product bekend wordt spreken we van on-line seriegroottebepaling.

De klassiek wiskundige aanpak voor dit soort problemen is de onzekerheid in
toekomstige vraag naar product te modelleren en het zo ontstane model te analyse-
ren. Zulke analyses zijn vaak lastig en vergen kennis en begrip van het vraagproces.
Mede hierdoor worden in de praktijk vaak eenvoudige heuristieken gebruikt waar-
van de prestatie vaak te wensen overlaat. Dit onderzoek kijkt in hoeverre neurale
netwerken voor verbetering kunnen zorgen. In het bijzonder kijken we naar het
gebruik van meerlaags perceptrons.

In Hoofdstuk 2 formuleren we het on-line seriegroottebepalingsprobleem met
een willekeurige kostenstructuur. Verder introduceren we een klasse van oplos-
singsstrategieén die we variabele-horizon strategieén noemen. Zulke strategie€n
bepalen de seriegroottes door herhaaldelijk te optimaliseren over een variabele ho-
rizon. Een horizon-selectie regel kiest zo’n horizon op basis van de beschikbare
vraaggegevens. Bovendien worden voorwaartse algoritmen afgeleid die gebruikt
worden voor het berekenen van leervoorbeelden. Deze algoritmen zijn gedeelte-
lijk generiek, zodat er voor toepassing op een specifieke kostenstructuur nog extra
analyse nodig is. In Hoofdstuk 3 geven we deze analyse voor drie elementaire
kostenstructuren. Deze kostenstructuren worden voor testdoeleinden gebruikt in de
experimenten in Hoofdstuk 6 en Hoofdstuk 7.

Hoofdstuk 4 introduceert meerlaags perceptrons en bespreekt hun nut voor sta-
tistische classificatie. In het bijzonder kijken we naar de vermogens van meerlaags
perceptrons om te leren en te generaliseren op basis van leervoorbeelden.

In Hoofdstuk 5 beschouwen we het probleem om een optimale horizon-selectie
regel te vinden. Dit probleem kunnen we formuleren en analyseren als een classi-
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ficatieprobleem. We beschouwen twee doelstellingen: maximalisatie van classifi-
catiegraad en minimalisatie van verwachte kosten. Voor deze doelstellingen geven
we expliciete uitdrukkingen voor de optimale horizon-selectie regels. Deze regels
bevatten nog onbekende grootheden, zoals bijvoorbeeld a posteriori kansen. Meer-
laags perceptrons worden gebruikt om deze grootheden te schatten. Door deze
schattingen te substitueren in de expressies voor de optimale regels krijgen we op
meerlaags perceptrons gebaseerde horizon-selectie regels.

Hoofdstuk 6 onderzoekt de generaliserende vermogens van de op meerlaags
perceptrons gebaseerde horizon-selectie regels voor een on-line seriegroottebepa-
lingsproblemen met Wagner-Whitin kostenstructuur. We bediscussiéren de nood-
zakelijke condities voor goede generalisatie en onderzoeken het effect van de lengte
van de data horizons op deze vermogens. Het blijkt dat de condities voor goede ge-
neralisatie verslechteren als de hoeveelheid informatie over de toekomst toeneemt.

In Hoofdstuk 7 onderzoeken we de prestaties van de op meerlaags perceptrons
gebaseerde horizon-selectie regels wanneer ze gebruikt worden in een variabele-
horizon strategie. Dit doen we door middel van een omvangrijke empirische studie
waarin de prestaties van deze strategie€n worden vergeleken met die van andere
strategieén. Deze studie laat zien dat, in situaties met grote vraagonzekerheid, de op
meerlaags perceptrons gebaseerde strategie€n beter presteren dan alle andere strate-
gieén met betrekking tot robuustheid, data effici€ntie en kosten. Als er daarentegen
weinig onzekerheid is met betrekking tot de toekomstige vraag naar product heeft
het weinig zin meerlaags perceptrons te gebruiken.

Hoofdstuk 8 sluit het proefschrift af met een discussie van de bereikte resultaten
en suggesties voor verder onderzoek.
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Beschouw een handelsreizigersprobleem met stedenverzameling S = {sy, ..., $,}. Zij voor elk
paar steden s, s, hun onderlinge afstand gegeven door A(s), 54). Beschouw tevens een graaf §
met puntenverzameling V = {vy, ..., v,}, waarbij § een cykel is. Definieer voor elk paar punten
vy, v, hun onderlinge afstand Ag (vs, vr) als de lengte van het kortste pad van vy naar v, in .
Een afbeelding f : V — S heet topologie behoudend als

va,vq,vrev : AQ,(UIM Uq) < Ag(vp, V) = A(f(vp)v f(vq)) < A(f(”p)’ S (ur).

Zij f : V — § een bijectieve topologie behoudende afbeelding. Dan is de tour die § induceert
door middel van f optimaal.

[1] H.P. Stehouwer (1993), Self organizing feature maps and the travelling salesman problem: a
theoretical study, Master’s thesis, Eindhoven University of Technology.

I

Bowman [1] gebruikt in zijn Management Coefficients Theory voorbeelden van het beslissings-
gedrag van managers in het verleden ter verbetering van hun beslissingsgedrag in het heden.
Neurale netwerken kunnen uitstekend gebruikt worden bij de implementatie van deze theorie in
beslissingsondersteunende systemen.

[1] E.H. Bowman (1963), Consistency and optimality in managerial decision making, Manage-
ment Science 9, 310-321.

11X

On-line beslissingsproblemen lenen zich voor een hybride aanpak op basis van neurale netwerken
en deterministische technieken. Hierbij is het zaak de puzzlekwaliteiten van deterministische
technieken te combineren met het vermogen van neurale netwerken om met onzekerheid om te
gaan.

[1] H.P. Stehouwer (1997), dit proefschrift.

Iv

In [1] wordt bewezen dat in veel leeralgoritmen voor feedforward netwerken het veranderen van
de steilheid van de responsefunctie equivalent is aan het veranderen van de stapgrootte van het
leeralgoritme en de initi€le gewichten. Dit resultaat elimineert de noodzaak om de steilheid van
de responsefunctie te bepalen.

[1] G. Thimm, P. Moerland en E. Fiesler (1996), The interchangeability of learning rate and gain
in backpropagation neural networks, Neural Computation 8, 451-460.



v

Het meerdere malen publiceren van exact hetzelfde artikel [1,2] kan een gunstige uitwerking
hebben op het aantal keren dat er naar dit artikel verwezen wordt [3].

[1] V.S. Badami en C.M. Parks (1991), A classifier based approach to flow shop scheduling,
Computers and Industrial Engineering 21, 329-333.

[2] V.S. Badami en C.M. Parks (1991), A classifier based approach to flow shop scheduling,
Computers and Industrial Engineering 21, 401-405.

{3] C.H. Dagli (1994), Artificial Neural Networks for Intelligent Manufacturing, Chapman &
Hall, London.

VI

De benaming milleniumprobleem voor het gegeven dat men in veel computerprogrammatuur
slechts twee numerieke posities voor een jaartal heeft gereserveerd is onjuist. Het gaat om een
eeuwprobleem.

vl

Het feit dat gedogen als juridisch fenomeen uitsluitend voorkomt in het Nederlandse recht zou
de overheid te denken moeten geven.

VIII

Gezien de toenemende ongedisciplineerdheid van de weggebruikers zou het veiliger zijn om bij
bewaakte spoorwegovergangen pas de spoorbomen te openen als de rode lichten gedoofd zijn.

IX

Een van de voorwaarden voor het slagen van een milieubeleid is de algemene bewustwording
van het feit dat de aarde niet van de mens maar de mens van de aarde is.

X
De kans op vormfouten neemt toe met het “kaliber” van de misdadiger.
XI
Deze stelling is onwaar indien goedgekeurd door de rector:
XII

Een onderzoeker vindt het in zijn bovenkamer.






