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Memorandum COSOR 98-02, 1998, Eindhoven University of Technology

The number of minima in a discrete sample

F�W� Steutel �

Abstract

The number of times is considered that the minimum occurs in a sample from a

discrete distribution� The special case of the geometric distribution is considered in

some detail� and applied to the computation of the expected maximum of a sample

from the Cantor distribution�

�� Introduction and summary

Brands et al� ������ and Baryshnikov et al� ������ consider the number Kn of values
equal to the maximum in a sample from a distribution on the nonnegative integers� For
n��	 in some cases Kn tends to �	 in many cases it does not converge	 and Kn tends to
in
nity	 if the support of the distribution is 
nite� This last case is rather simple	 and has
not been given much attention� It is equivalent to the case where the number of minima
of the sample is considered� In this note we look at this quantity	 which we also denote by
Kn� In Section � the general case is considered brie�y� Section

deals in some more detail with the case of the geometric distribution	 and in Section
� these results are applied to a problem	 a special case of which appeared in the Prob

lem Section of the American Mathematical Monthly �see Diamond and Reznick ������� a
somewhat similar problem is considered in van Harn ��������

�� The general case

Let M�� � � � �Mn be independent and distributed as M with

P �M � j� � pj� P �M � j� � Pj�

for j � �� �� � � � � De
ne
Nn � min�M�� � � � �Mn�

and
Kn � �fj � Mj � Nng�
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We are interested in the distribution of �Nn� Kn�� On account of symmetry one easily
veri
es the following results�

Proposition �

P �Nn � r�Kn � k� �

�
n

k

�
pkr��� Pr�

n�k�

P �Nn � r� � ��� Pr���
n � ��� Pr�

n�

P �Kn � k� �

�
n

k

�
�X
�

pkr��� Pr�
n�k�

where P� � ��

Corollary �

P �Kn � k� �

�
n

k

�
pk���� p��

n�k�� � e�n��

EKn � np��� � e�n��

as n��� where e�n� denotes an exponentially small contribution�

Of course	 the result in Corollary � is not very surprising� for large n the minimum will al

most certainly be one	 and Knwill be the number of ones in the sample	 which is binomially
distributed with succes probability p��

�� The geometric case

Now let M have a geometric distrtibution	 i�e�	 let p � ��� �� and let

pj � pj����� p�� �� Pj � pj� j � �� �� � � � � ���

Whereas in general Nn and Kn are dependent	 in this case they are not�

Proposition � If M has a geometric distribution as given by ���� then Nn and Kn are
independent� with

P �Nn � r�Kn � k� � ��� p�rn
�
n

k

�
�

p

�� p
�k�

Proof� Follows directly from Proposition � with ���	 and from the product form of the
formula above�
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Corollary �

P �Kn � k� �

�
n

k

�
��� p�kpn�k

�� pn
�

P �Nn � r� � pn�r������ pn��

EzKn �
�p� ��� p�z�n � pn

�� pn
� ���

EzNn �
�� pn

�� zpn
z� ���

�� An application

In Problem ����� ������ one is requested to compute ��mn	 where

mn � ��
Z �

�
F n�x�dx� ���

whith F a Cantor distribution function �with p � ����� This means that F is the distrib

ution function of X given by

X �
�X
j��

�
�

�
�jYj� ���

where Y�� Y�� � � � are independent and distributed as Y with

P �Y � �� � �� P �Y � �� � p�

with p � ��� ��� Clearly	
mn � Emax�X�� � � � � Xn��

with the X�s independent and distributed as X above� It follows from ��� that X has the
form

X � ������� � � � �

where the number of zeroes preceding the 
rst � equals M � �	 with M geometrically
distributed as in ���� M indicates the position of the 
rst � in the triadic expansion of X�
As a result we can apply the formulas derived in Section �	 and so we have

max�X�� � � � � Xn� �
d ��

�

�
�Nn � �

�

�
�Nnmax�X�� � � � � XKn

��

withNn andKn as in Section �	 andNn� Kn	andX�� X�� � � � independent� That ismax�X�� � � � � Xn�
equals that Xj for which the 
rst � comes 
rst and for which the number represented by
the remaining digits is maximal� Taking expectations we obtain

mn � �E�
�

�
�Nn � E�

�

�
�NnEmKn

�

�



where we used the independence of Nn� Kn and the X�s� By ��� of Corollary �	 mn can be
expressed as

mn �
�

�

�� pn

�� �
�
pn

�
�

�

�� pn

�� �
�
pn
E
Z �

�
��� FKn�x��dx�

Using ��� and ��� we get

mn � �
�� pn

�� pn
�
�� pn

�� pn

Z �

�
f��

�p� ��� p�F �x��n � pn

�� pn
gdxg �

� �
�� pn

�� pn
�

�

�� pn

Z �

�
f�� �p� ��� p�F �x�ngdx �

� �
�� pn

�� pn
�

�

�� pn

nX
k��

�
n

k

�
pn�k��� p�kmk� ���

From ��� we compute the 
rst few values of mn� For general p we obtain m� � ��p	 m� �
���p��p��p������p�p��	 m� � ����p��p����p����p���p	������p��p���p���p���
For p � ��� we 
nd m� � ���	 m� � ����	 m� � ��� and m� � �������� The general
expression for m� involv polynomials of degrees nine and eight in the numerator and
denominator	 respectively� for p � ��� the values of mn can easily be calculated� we give
m	 � �����	 M
 � �������	 and m� � ���������� Of course	 mn tends to one as n���
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