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Abstract

The radio link frequency assignment problem occurs when a network of radio links has
to be established. Each link must be assigned an operating frequency from a given
domain. The assignment has to satisfy certain restrictions so as to limit the interference
between links. The number of frequencies used is to be minimized.

Problems of this type were investigated by a consortium consisting of research groups
from Delft, Eindhoven, London, Maastricht, Norwich, and Toulouse. The participants
developed optimization algorithms based on branch-and-cut and constraint satisfaction,
and approximation techniques including a variety of local search methods, genetic al
gorithms, neural networks, and potential reduction. These algorithms were tested and
compared on a set of real-life instances.

Key words: Frequency assignment, minimum interference, minimum spectrum usage,
approximation, local search, genetic algorithms, neural networks, potential reduction,
optimization, branch-and-bound, constraint satisfaction, computational comparison.

The radio link frequency assignment problem occurs when a network of radio links has to
be established. Each radio link must be assigned an operating frequency from a set of avail
able frequencies. The assignment has to comply with certain preferences, regulations, and
physical characteristics of the transmitters. First, some links have preassigned frequencies.
Second, when two links interfere, their frequencies must be far enough apart to ensure that
communication is not distorted. Third, each link has a reverse link, and for technical reasons
the frequencies assigned to such parallel or "duplex" links must differ by a given distance.
Some of the constraints of the first and second type may be violated at a certain cost. One
variant of the problem is to find an assignment that minimizes the cost of violating the soft
constraints. If all constraints can be satisfied, the second variant is to find an assignment
of zero cost that minimizes the number of frequencies used.

Problems of this type were investigated in the CALMA project of the EUCLID pro
gram. EUCLID, which stands for "EUropean Cooperation on the Long term In Defence,"
is a research program of West-European Departments of Defence. Three of its members,
France, the Netherlands and the United Kingdom, joined in the CALMA project, which
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had the purpose to investigate the use of "Combinatorial ALgorithms for Military Appli
cations." They chose radio link frequency assignment as the subject of a pilot study, and
specified three subprograms: "testing genetic algorithms, testing exact solution techniques,
and testing approximate solution techniques" [12]. The project was granted to a consor
tium consisting of six research groups: the Centre d'Etudes et de Recherches de Toulouse
(CERT) in France, the Technische Universiteit Delft (TUD) , the Technische Universiteit
Eindhoven (TUE) and the Universiteit Maastricht (UM) in the Netherlands, and King's
College London (KCL) and the University of East Anglia (UEA), Norwich, in the United
Kingdom.

In the period from December 1993 to December 1995, each of the groups contributed its
expertise to the project. Together they developed and implemented a wide variety of opti
mization and approximation algorithms. The approximative approaches include neighbor
hood search methods such as simulated annealing, tabu search and variable-depth search,
hyperneighborhood search methods like genetic algorithms, other search methods based
on neural networks, incomplete optimization, and potential reduction methods. Such ap
proaches all produce solutions that are hoped to be close to the optimum but that, in the
present context, have no a priori quality guarantee. The participating groups also developed
techniques for finding lower bounds on the optimum, based on linear programming, graph
coloring, constraint satisfaction, and 0-1 quadratic programming. Lower bounds are used as
a yardstick in two settings: measuring the quality of upper bounds found by approximation
algorithms, and curtailing the search in enumerative optimization algorithms. Finally, all
of these approaches were tested and compared on a set of real-life instances.

This paper is organized as follows. Section 1 gives mathematical formulations of the
problem under consideration and comments upon the test instances used in the project.
Section 2 describes the approximation algorithms developed by the participants, Section 3
deals with lower bounding techniques and optimization algorithms, and Section 4 gives a
computational comparison of the various approaches. Section 5 reviews algorithmic work
done after the project was finished. Section 6 summarizes our conclusions.

1. The radio link frequency assignment problem
We are given is a finite set L of radio links. Each link i is to be assigned a frequency Ii from
a given finite domain D i; we write D = UiELDi . A link i may have a preassigned frequency
Pi, which mayor may not be changed. Other restrictions are defined on pairs of links {i,j}:
the frequencies of a pair of interfering links must be more than a given distance dij apart,
and the frequencies of a pair of parallel links must differ by exactly dij. Each link belongs
to exactly one parallel pair.

Some of the restrictions are soft and may be violated at a certain cost. The others are hard
and may not be violated. Restrictions on the pairs of parallel links are always hard, and so
are some of the interference and preassignment constraints. Nonnegative interference costs
Cij for violating soft interference constraints and nonnegative mobility costs mi for changing
soft preassigned frequencies are given. An assignment of frequencies is complete if every link
in L has a frequency assigned to it. We denote by C and M the sets of all soft interference
and mobility constraints, respectively.

The minimum interference problem is to find a complete assignment that satisfies all
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for each pair of links {i,j} with a hard interference constraint,
for each pair of parallel links {i,j},
for each link i with a hard preassigned frequency,
for each link i,

Iii - iii > dij for each pair of interfering links {i, j},
Iii - iii = dij for each pair of parallel links {i, j} ,

Ii Pi for each link i with a preassigned frequency,
fi E Di for each link i.

Iii - iii > dij
Iii - iii = dij

Ii = Pi
Ii E Di

hard constraints at minimum cost:

Both variants of the problem are obvious generalizations of the graph coloring problem
and thereby NP-hard in the strong sense [13].

We used two sets of test instances. One set of eleven real-life instances was provided by
CELAR, the Centre d'ELectronique de l'ARmement in France. They range in size between
200 and 916 links, and the values of the interference and mobility costs vary widely. Six of
these instances are feasible, i.e., there exists a complete assignment of zero cost, and the
minimum spectrum usage problem has to be solved. Five instances are infeasible and only
the minimum interference problem is to be solved.

A second set of fourteen instances was made available by the group at TUD. They were
randomly generated, but preserve the structure and main characteristics of the CELAR
instances. They were released at the end of the project, and the groups were given one week
to report their results. We refer to them as the surprise instances. Six are feasible, eight are
not.

In practice, many problems of the type described above have two additional properties.
First, any two parallel links are subject to the same interference constraints. Second, the
frequency spectrum is split up into two bands, and the distance constraints are such that,
when a link is assigned a frequency in one part, its parallel mate gets one in the other. In that
case, we can ignore the two-way communication aspect: a solution for the problem involving
one link of every parallel pair and using one part of the spectrum is easily extended to a
solution for the entire problem. In our test instances, however, the interference constraints
are not symmetric, the spectrum does not consist of two distinct bands, and we have to
consider both links of each parallel pair explicitly.

where <5 ('Y) = 1 if condition 'Y is true and 0 otherwise.
If there exists a feasible assignment, Le., a complete assignment of zero cost, then the

minimum spectrum usage problem is to find a feasible assignment that satisfies all constraints
and minimizes the number of distinct frequencies used:

subject to the hard and soft constraints:

minimize L Cij<5(11i - fjl :::; dij) + L mi<5(IIi - Pil > 0)
C M

subject to the hard constraints:



Our test instances do have some special structure. For each pair of parallel links {i, j},
dij is equal to a constant J (J = 238 for the CELAR instances), Di = Dj, and for each
j E Di there is a unique j' E Di such that If - 1'1 = J. See [8] for a further analysis of the
test instances.

2. Approximation and upper bounds
Approximation algorithms seek to obtain good solutions in a reasonable amount of time.
They provide upper bounds on the minimum solution value. Most of the methods to be
discussed below apply some form of neighborhood or hyperneighborhood search; one of
these uses a representation related to neural networks. We will also discuss an incomplete
optimization method, based on truncated tree search, and a potential reduction method,
which applies an interior point algorithm and rounding techniques to a binary quadratic
formulation of the problem.

2.1. Local search. The general idea of local search is to start with an initial solution
and iteratively perform small transformations of the solution in an attempt to improve the
objective value. The neighborhood of a solution is defined as the set of all solutions to which
it can be transformed in one iteration or move. A mapping that specifies a neighborhood
for each solution is called a neighborhood function.

A search strategy specifies the way in which at each move a solution from a neighborhood
is selected. The basic iterative improvement strategy transforms the current solution into a
neighboring solution of lower cost, and stops when no better neighbor exists. It can easily be
trapped in a local optimum of poor quality. Search strategies that are intended to overcome
this deficiency include simulated annealing, tabu search, and variable-depth search.

Various hybrid forms of algorithms have been proposed, which combine local search with
constructive, enumerative or iterative techniques. There exist constructive rules that apply
local search to partial solutions, combinations of local search with partial enumeration or
backtracking, and nested forms of local search. In the latter case, local search is applied at
several levels. For example, a neighbor obtained at one level is subjected to local search at
a second level before the search at the first level is resumed.

For a comprehensive discussion of local search techniques and their applications to prob
lems in combinatorial optimization, we refer the reader to Aarts & Lenstra [4]. We will now
describe the various local search approaches taken in the CALMA project.

The participants took quite different approaches. TUE emphasized the development of
neighborhood functions, which were subsequently used in any of the search strategies. In
this way the underlying mechanism of traversing the solution space could be tuned, and also
the various strategies could be compared. In contrast, both CERT and KCL considered a
plain local search technique and used little additional information to adapt it to the problem
at hand.

Simulated annealing. Simulated annealing moves from a solution to a random neighbor.
An improvement is always accepted. A deterioration is accepted with a certain probability:
Given a solution of value z, the probability that a neighbor of value z' > z is accepted is
usually given by exp((z - z')/T), where T is a control parameter that decreases during the
run. The algorithm stops when T reaches a termination value.
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S1(x) = L LXi! LXjg.
fED,gED iEL jEL

(2)

(1)

if frequency f of link i interferes with frequency g of link j,
otherwise,

L Xif = 1 for each i E L.
fED;

<P(X) = L L L (1 - W{!)XifXjg.
i,jEL fED; gEDj

wffJ = { 0,
ZJ 1,

All other constraints of the problems are relaxed and their violation is penalized in the
objective function. Indicator parameters are introduced to model the violation of the inter
ference and mobility constraints:

for f i- g, and w~f = 1 if f = Pi, w~f = 0 otherwise. A feasibility function <P is then defined
by

CERT. An approach proposed by Bourret [7] uses a binary solution representation.
Each frequency-link combination gets a 0-1 decision variable xif with xif = 1 if link i is
assigned frequency f and xif = 0 otherwise. Exactly one such variable is turned on for each
link:

This function attains its minima in the feasible assignments. For the minimum interfer
ence problem a relaxation is obtained by multiplying each term in (2) by an appropriate
coefficient (the cost for a soft constraint, a very large number for a hard constraint) and
minimizing the resulting function subject to (1). For the minimum spectrum usage problem
an order preserving function S1 is defined by

This is a surrogate objective function, which is intended to increase with the number of dis
tinct frequencies used. A weighted sum of the feasibility and the order preserving functions
is then minimized in this approximative approach.

For both problem types, a move in a neighborhood corresponds to changing the frequency
of a single link. The chosen implementation has substantial running time and memory
requirements. In order to cope with these difficulties, the author proposed to decompose
the test instances into small subproblems and to treat these independently. In spite of
various attempts to reduce the frequency domains and to discard links from the problem
on heuristic grounds, the approach produced modest results.

TUE. The simulated annealing algorithms of Tiourine et al. [29] use problem repre
sentations and neighborhood functions that are specific to the problem at hand. A graph
representation of the problem is based on its similarity to certain graph coloring problems
[27]. The interference graph G = (L, E) on the set L on links has an edge {i, j} E E if and
only if i and j interfere. For a set T of nonnegative integers, a T-coloring is a frequency
assignment satisfying Ii E Di for all i ELand Iii - fil fi T for all {i,j} E E. Given a list of
admissible frequencies for each link, a solution corresponds to a selection of one frequency
from each list that respects the restrictions with adjacent nodes. This representation is



used to enforce consistency of the domains of adjacent nodes with respect to the current
assignment throughout the search; see [30] and Section 3.2.

The authors developed different neighborhood functions and tested these using various
search strategies. Because of the special structure of the test instances (see Section 1), they
considered pairs of parallel links as atomic objects. In the minimum interference problem,
a solution y is a neighbor of a solution x if x can be transformed into y by changing the
frequency of a link with a non-zero contribution to the cost of x. This neighborhood is shown
to be connected in the sense that, starting from an arbitrary solution and using moves of
this type, an optimal solution can always be reached. Computational experiments were
encouraging on small and medium-size problems, but the performance on larger instances
was less satisfactory.

In the minimum spectrum usage problem, a neighbor of a solution x is obtained by
removing a random seed frequency from the set of used frequencies. The links that were
assigned this frequency are reallocated by a heuristic procedure. It first tries to use frequen
cies already used in x. If a link i cannot be assigned such a frequency without violating the
interference constraints, forward probing is used to check if reallocation of the links inter
fering with i may resolve this infeasibility. Experiments with this rather wild neighborhood
produced good results.

The implementation of these simulated annealing algorithms uses the cooling schedule
proposed in [32]. For each value of the control parameter T, a number of trials is performed,
equal to the size of the largest neighborhood. T is then replaced by T j(l+[T In(1+b.)/30")]),
where b. controls the decrement rate of T and 0" is the standard deviation of the solutions
values generated for the current value of T.

Tabu search. Tabu search always moves to the best neighbor. In this way the cost of
the solutions generated is not necessarily decreasing. To prevent the method from cycling,
several recently visited solutions or the reversals of several recently performed moves are
excluded or "put on the tabu list." A stopping criterion has to be defined, for example a
maximum number of iterations without improvement.

KCL. Bouju et al. [6] describe a tabu search algorithm that changes the frequency of a
single link at each move. The size of the neighborhood is restricted to a certain percentage
of the links that have the largest contribution to the total interference cost. When applied
to the minimum interference problem, the algorithm performed quite poorly. For the min
imum spectrum usage problem, they developed an extended algorithm that dynamically
updates the frequency domains. Initially, each domain contains two frequencies only and
the algorithm searches for an interference-free assignment. If no such solution is found, the
frequency domains are extended and the search is repeated. The frequencies are added one
by one in the order determined by the number of different frequency domains in which they
occur. The approach shows encouraging results.

TUE. The tabu search algorithms of Tiourine et al. [29] use the same representation
and neighborhoods as their simulated annealing algorithms. They apply the backtracking
mechanism of Nowicki & Smutnicki [24] to restaI;t the search from a neighbor of the best
solution found when a stopping criterion is met. The moves for the minimum interference
problem and the seed frequencies for the minimum spectrum usage problem are put on the
tabu list. This algorithm worked well for the latter problem. Its poor performance for the
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former problem is attributed to the large size of the neighborhoods and the peculiar cost
structure of the problem.

Variable-depth search. Variable-depth search was introduced as a highly problem
specific exchange algorithm for uniform graph partitioning [17] and later for the traveling
salesman problem [21]. The latter paper gives guidelines for possible extensions of the al
gorithm to other problems. In short, the method works as follows. Starting from an initial
solution, it makes a sequence of small greedy moves. This process can be seen as the re
peated application of some neighborhood function. It has to be ensured, though, that the
moves within the same sequence are not reversed. Improving solutions encountered in such
a sequence are registered. The sequence is typically terminated when it becomes too long
or when no gain is expected from further moves. The next iteration starts from the best
solution found in the sequence.

TUE. Tiourine et aI. [29] describe two algorithms of this type. Their algorithm for the
minimum interference problem starts with a solution that is locally optimal with respect to
moves that change the frequency of a single link. It selects a random link with a probability
proportional to the cost incurred by the link. The link is assigned a random frequency from
its domain. All links interfering with the new assignment are put on a list. A link is then
drawn randomly from the list, it is assigned the locally best frequency from its domain, and
it is in turn replaced on the list by its interfering links. No link may reenter the list during
the same iteration. An iteration is terminated if an improvement is found, or otherwise
randomly with a probability proportional to the deterioration of the solution value and the
duration of an iteration. This strategy produced very good results, and even its average
running time of 1.5 hours was quite competitive.

For the minimum spectrum usage problem, an iteration of variable-depth search starts
by selecting a random used frequency. Each link that is assigned that frequency gets another
used frequency from its domain. Infeasibilities resulting from this reassignment are resolved
using a variant of the variable-depth search algorithm for the minimum interference problem.
This algorithm performed well.

2.2. Genetic algorithms. Genetic algorithms also apply local search but now with hy
perneighborhoods, where a set of solutions is transformed into a new set of solutions. These
methods usually mimic mechanisms from evolution theory and typically encode solutions
as bitstrings. Starting from a population of parent solutions, at each iteration its offspring
is determined by applying genetic operators. Th~ binary crossover operator aims at prop
agating the characteristics of good solutions from one generation to the next. The unary
mutation operator is randomly applied to offspring to ensure a diversity of solutions in the
population. It is hoped that the entire process will evolve towards better solutions.

UEA [10,26]. An early implementation at DEA used GAmeter, their toolkit for genetic
algorithms. It applies textbook binary representations, crossover and mutation operators,
and produced quite poor results. The introduction of problem-specific operators and data
structures significantly improved the performance. One such crossover operator tries to
propagate constraints satisfied by parents down to their offspring, another is designed to
preserve spectrum usage. Specialized mutation operators implement a variety of ideas that
boil down to the application of standard local search to the offspring, so that the overall
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procedure can be viewed as bilevel search. These refinements led to good results for some
of the test instances, but the overall solution quality is not uniform.

UM. The problem-specific and highly tuned genetic algorithm of Kolen [18] appeared
to be one of the most effective approximation techniques for the minimum interference
problem. Doing away with the traditional binary representation, random mutations and
crossovers, he interpreted the principles underlying genetic algorithms at a conceptual level
and developed sophisticated subroutines for the mutation and the crossover operators.

Solutions are represented by vectors of frequencies. At each iteration a new population of
a fixed size is constructed by applying a crossover operator to pairs of solutions. A crossover
produces one new solution, which is subjected to a mutation operator to ensure its local
optimality. Each solution in the parent population is selected in turn for the crossover; its
mate is determined randomly with a probability inversely proportional to its value.

The mutation operator applies iterative improvement, changing the frequency of a single
link at each move. The crossover is somewhat more complex. For a pair of parent solutions
in the population, its offspring is a solution to the original instance of the problem with the
domain of each link restricted to the frequencies assigned to it in one of the parent solutions.
The algorithm that competed in the CALMA project [26] used a constructive heuristic for
this problem. A later version uses a cutting plane algorithm; see Section 5.1 [18].

This approach produced excellent results. The refinement that is to be discussed in
Section 5.1 runs much faster.

2.3. Neural networks. Abstracted from their biological background, neural networks
represent connectionist models of computation. Computations are performed by a network
of richly interconnected processors, each performing a relatively simple task. Each processor
receives signals from its neighboring processors and calculates a certain response, which in
turn is propagated through the network. The computations are performed in parallel, and
eventually the network should stabilize in some state. The network is trained by adjusting
the weights of the interconnections.

KCL. KCL obtained promising results using GENET, a generic connectionist tool which
simulates neural networks on a sequential computer [31]. Originally developed for constraint
satisfaction problems, GENET was adapted by Vom Scheidt [33] to the problem at hand.

An instance of the minimum interfer~nceproblem is represented by a network, each link
corresponding to a cluster of vertices, with one vertex for each frequency in its domain and
with an edge between two vertices when the frequencies in question interfere. The mobility
and interference costs define weights of the vertices and edges, respectively. A complete
frequency assignment now corresponds to a subset of vertices, one from each cluster; its
cost is the sum of the weights over the selected vertices and the edges induced by them.
The global constraint that exactly one vertex must be selected from - or be active in - each
cluster is the major departure from classical neural networks.

At each iteration, one vertex in each cluster is active. Each vertex calculates its response
depending on the weights of the adjacent active vertices and the incident edges. In each
cluster, the vertex with the maximum response becomes active and the other vertices become
inactive. When a local maximum is reached, GENET makes it less attractive by decreasing
the weights of the active vertices and of the edges between them. The entire process can
be viewed as a bilevel search strategy. At one level, iterative improvement modifies the
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solution by turning vertices on and off. At another level, the training mechanism changes
the instance by adjusting the weights. Good results are reported for the smaller instances.

Major modifications were necessary to apply GENET to the minimum spectrum usage
problem. The objective function cannot be evaluated locally anymore and has to be calcu
lated externally after each iteration. Details on how the weights are updated to discourage
poor local optima are reported neither in [6] nor in [33].

Another approach to the minimum spectrum usage problem amounts to solving a se
quence of feasibility problems. Initially, each domain is restricted to two frequencies and the
minimum interference problem is solved. The domains are then extended and the process is
iterated until an interference-free assignment is found. Dimitropoulos [11] suggests that the
domain extension procedure may follow the same tactics as the tabu search implementation
of KCL.

2.4. Incomplete optimization. Optimization algorithms usually apply some form of
tree search; see Section 3. By limiting the search on heuristic grounds, one may gain speed,
but at the expense of losing the optimality guarantee of the solution obtained.

The partial constraint satisfaction algorithm of CERT [5] is an example of this approach.
It seeks to maximize the number of satisfied constraints. Its performance is unsatisfactory.

2.5. Potential reduction. Karmarkar et al. [15] [16] proposed an interior point algorithm
for binary feasibility problems. One first formulates the problem as an optimization problem,
by dropping the integrality conditions and introducing a non-convex potential function,
whose minimizers are feasible solutions to the original problem. An interior point method is
then used to obtain approximate solutions to the new problem. This algorithm starts with
a point in the interior of the feasible region and generates a sequence of interior points with
decreasing objective value. For that purpose, at each iteration a descent direction for the
potential function is determined using its quadratic approximation defined on an inscribed
ellipsoid in the feasible region around the last generated point. The algorithm proceeds
as long as a substantial reduction in the value of the potential function is found in that
direction and no feasible integer solution has been generated by a rounding scheme. When a
local minimum is encountered, the potential function is modified in some way and the entire
process is restarted. Computation times are mainly influenced by the rate of convergence
of the interior point method applied and by the density of the Hessian of the function.

TUn [35J. A creative adaptation of this technique to the radio link frequency assignment
problem uses a specially structured binary quadratic formulation. Let Xij = 1 if link i is
assigned frequency f and Xi! = 0 otherwise. The minimum interference problem is now to

minimize

subject to L Xij ~ 1, i E L,
JED;

Xi! E {O, I}, i E L, f E Di'

where Q is a matrix representing the interference and mobility costs.
For the minimum spectrum usage problem, the formulation is slightly modified so as to

incorporate an upper bound on the number of frequencies used. Variables Z j are introduced,
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with Zj = 1 if frequency f is blocked and Zj = 0 otherwise. The objective xTQx, which
contains terms XijXjg for incompatible simultaneous assignments of f to i and of g to
j, is extended to include terms xiI ZI. In this way a solution of zero cost corresponds to
an assignment without interference and without use of blocked frequencies. A constraint
L-/ED Zj 2: IDI- n is added to ensure that no more than n frequencies are used.

Approximate solutions to both problem types are now obtained by relaxing all integrality
constraints and introducing a weighted potential function of the form xTQx - L-j logwjsj,
where Sj is the slack of the jth constraint. In contrast to the model resulting from a straight
forward implementation of Karmarkar's approach, these potential functions have sparse
Hessians, which allows for the use of sparse matrix techniques and hence facilitates efficient
implementations.

A nice feature of the approach is that it generates many integral solutions. These are
obtained while rounding the fractional solutions to the relaxed problem to integer solutions
with the same value of xTQx. The availability of many alternative solutions may be useful
when a secondary objective has to be taken into account.

The method obtained fairly good results but has substantial memory requirements.
This is due to the size of the models, which have up to 32,000 variables. In some cases
various preprocessing routines could be applied to reduce the number of variables and large
instances could be solved.

The authors extended their approach to a wider class of quadratic binary optimization
problems, whose constraint matrices have specific properties [36].

3. Optimization and lower bounds
Algorithms that solve the problem to optimality must apply some form of enumeration of
the solution space, using lower bounds on the minimum solution value as well as logical
arguments so as to curtail the search process. A lower bound is usually obtained by relax
ing the problem, that is, by discarding some of its constraints and solving the remaining,
simpler, problem. We will discuss lower bounding techniques based on linear programming,
graph coloring, constraint satisfaction, and 0-1 quadratic programming.

3.1. Branch-and-bound. One way to obtain a lower bound is to take an integer linear
programming formulation of the problem and to drop the integrality requirements on the
variables. The bound provided by this linear relaxation of the problem is usually too weak.
Polyhedral lower bounds [1] [2] [23] are obtained by identifying additional linear inequali
ties that strengthen the linear relaxation, and in the best case are necessary in the linear
description of the convex hull of feasible solutions. If we would know the linear description
completely, then we could solve the problem as a linear programming problem, which is
computationally easy. Obtaining such a complete description is, however, as hard as solving
the problem itself. We therefore settle for certain families of linear inequalities that define
high-dimensional faces of the part of the convex hull of solutions where we expect to find an
optimal solution. Since the formulation should not grow too big, we add inequalities only
if they are violated by the current fractional solution. An algorithm that at each iteration
adds violated linear inequalities to the current formulation and resolves the linear program
ming problem based on the extended formulation is called a cutting plane algorithm. In
branch-and-cut we apply a cutting plane algorithm in every node of the tree.

10
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The constraints (3) can be converted to vertex packing constraints by using the complement
ih = 1 - Yf of the variables Yf. This substitution reformulates (3) as

(3)

(4)

foralli,j EL: If-gl ~dij,

for all i, j E L: j = i + 1, i odd, If - gl =1= d,
for all i E L, f E Di,

for all i E L, f E Di ,

for all fED.

for all i E L,

Xif + iiI ~ 1 for all i E L, f E Di.

minimize L Yf
fED

subject to L Xif = 1
fED;

xif + Xjg ~ 1

xif +Xjg ~ 1

xif ~ Yf

Xif E {O, I}

YfE{O,l}

Clearly, one could extend G' by adding vertices corresponding to the variables iii for fED,
and edges corresponding to the constraints (4).

Since the domains Di are large, the above formulation contains many variables. When
applying branch-and-bound, the size of the instances and the strength of the linear relax
ation of the formulation are possibly the two most crucial issues.

Other lower bounds can be based on combinatorial arguments. Branch-and-bound algo
rithms generally benefit from preprocessing techniques that reduce the size of the problem
instance and from heuristics that generate feasible solutions in each node of the tree.

TUD, TUE. Aardal et al. [3] developed an optimization algorithm for the minimum
spectrum usage problem based on branch-and-bound, using a vertex packing formulation.
Information about the structure of an instance is extracted from the interference graph
G = (L, E) introduced in Section 2.1. We assume that the pairs of parallel links are given
by {i, i + I} with i odd.

The interference graph formulation of the problem is a graph coloring problem with the
additional restrictions that not all colors are admissible for all vertices, and that certain
distance requirements have to be satisfied. This formulation is not convenient to write down
as an integer programming problem, but it gives important structural information that is
useful in solving the problem.

A formulation that leads more naturally to a mathematical programming formulation
is associated with an extended graph of variables G' = (V', E'), which is very similar to the
network used by GENET; see Section 2.3. There is a vertex vif E V' for each combination
of a link i ELand a frequency f E Di. There is an edge {vif,Vjg} E E' if If - gl ~ dij.
An optimal solution is a subset S C V' such that for every link i E L exactly one vertex
vif belongs to S, such that S forms a vertex packing or independent set in G' (Le., no two
vertices of S are adjacent), and such that S is of minimum cardinality.

Let xif = 1 if link i is assigned frequency f and xif = 0 otherwise. Let Yf = 1 if
frequency fED is used and Yf = 0 otherwise. The vertex packing formulation of the
problem is now as follows:



Preprocessing. The number of variables in the CELAR instances varies between approx
imately 8,000 and 32,000. In order to reduce the size of the instances one can apply various
preprocessing techniques. One obvious way of reducing the number of variables is to make
use of the restriction that, for i odd, if link i is assigned the frequency f E Di, link i + 1
has to be assigned the unique frequency I' E Di for which If - 1'1 = d. We can therefore
replace all variables xHl,f, i odd, by variables Xi!'. This substitution reduces the number
of variables by a factor two. We refer to Aardal et aL [3] for various other preprocessing
techniques.

Polyhedral lower bounds. The classes of inequalities used to strengthen the linear pro
gramming relaxation of the vertex packing formulation are all variants of the general class
of clique inequalities. A clique is a complete subgraph of an undirected graph. Note that in
any clique in the interference graph G any frequency can be used at most once. Clique in
equalities have the form I:iEC Zi ::; 1, where the variables Zi are associated with the vertices
of the graph under consideration and where C is a clique of that graph. A clique inequality
is known to define a facet of the vertex packing polytope if and only if the clique in ques
tion is maximal [25]. Given the sizes of G' and of its maximal cliques, it is not realistic to
derive clique inequalities from G'. We observe, however, that a clique in the much smaller
interference graph translates into a clique in the graph of variables, and therefore search for
maximal cliques in G. We refer to Aardal et aL [3] for further details on the identification
of violated clique inequalities and on the implementation of the branch-and-cut algorithm.

Lower bounds from graph coloring. For some of the minimum spectrum usage instances
a restricted chromatic number dominates the polyhedral bound. Consider G and relax the
problem by setting dij = 1 for each edge {i,j} E E. The minimum number of colors needed
to color the vertices of the modified interference graph such that adjacent vertices receive
different colors and each vertex i is restricted to receive a color from its domain Di, is a lower
bound on the optimal solution value. Aardal et aL [3] describe an enumerative algorithm
for determining this number.

An algorithm incorporating the above ingredients solved all feasible CELAR instances
to optimality in a reasonable amount of time [3]. The implementation uses MINTO, a
software package for integer linear programming. The application of this kind of approach
is restricted to problems where a strong linear relaxation is available, which is not yet the
case for the minimum interference problem.

3.2. Constraint satisfaction. Constraint satisfaction is a specialized backtracking algo
rithm for integer feasibility problems. In the present context, we wish to find an assignment
of frequencies to links respecting a number of constraints. A constraint satisfaction algo
rithm assigns frequencies to links in an order specified by variable and value selection rules.
If a feasible solution is found, the algorithm terminates. Otherwise, it performs backtrack
ing to the nearest active node with a feasible alternative frequency. It applies consistency
enforcing techniques to limit the search and to detect infeasibility of a partial assignment.
Two of these techniques, forward checking and arc consistency, appear to be very usefuL
Given a partial assignment, they seek to reduce the size of the domains of the free links.
Forward checking removes all frequencies from these domains that are inconsistent with the
partial assignment made. Arc consistency ensures that every frequency in the domain of
a free link i has a support in the domain of another free link j if i and j are bound by
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and by Kifj if i is set to f while j is set to its preassigned frequency:

if If - p./ < d ..J - ~J'

otherwise.

if Ip' -p., < d··'
~ J - ~J'

otherwise,{
Ci'K ij = J'
0,

{
Ci'

Kifj = J'
0,

Let Xi = 1 if link i is set to its preassigned frequency and Xi = 0 otherwise. The relaxation
is then to

minimize L KijXiXj + L mi(l - Xi) + L(l - Xi) min L KifjXj
i,jEL iEL iEL fEDi\{pd jEL\{i}

subject to Xi E {O, I} for all i E L.

3.3. A 0-1 quadratic programming relaxation. To obtain a lower bound for the
minimum interference problem, TUE considered a relaxation that, instead of assigning a
frequency to each link, decides whether or not to adhere to its preassigned frequency. For
this relaxation it is easy to define an objective function that covers most of the incurred
costs and is subject to integrality constraints only. Denote the interference cost of a pair of
links {i, j} by Kij if i and j are set to their preassigned frequencies:

We will interpret the objective function for a link k. If the decision is made not to use
the preassigned frequency Pk, in other words if Xk = 0, then the second and the third

a constraint. In other words, it will remove a frequency from the domain of i if it cannot
be assigned to i to satisfy the constraint with j. For a detailed overview of the field of
constraint satisfaction we refer the reader to [22] and [30].

UM. The algorithm of Kolen & Van Hoesel [19] solves the minimum spectrum usage
problem as a sequence of feasibility problems. The number of frequencies used is bounded
from above, initially by the value of the best known solution. If the problem is proved to be
infeasible, then the best known solution is optimal. Otherwise, the right-hand side of the
objective constraint is reduced and the algorithm is resumed. Note that the problem is only
strengthened this way. The algorithm does not have to be restarted from scratch, since all
nodes fathomed in the previous run will retain their status.

The algorithm uses the same preprocessing step as the polyhedral methods. The variable
selection rule is determined after preprocessing. For that purpose, the variables are removed
one by one from the problem in such a way that at each step the variable involved in the
least number of constraints is removed; the variable selection order is the reverse of the
order of removal. The value selection rule takes a random frequency already used in the
partial assignment, or otherwise the frequency present in most of the domains of the free
links.

The authors also proposed to curtail the search tree by a lower bound based on the
chromatic number of the underlying interference graph, thereby stressing the similarity of
their approach to depth-first branch-and-bound. They succeeded in proving optimality of
solutions for all benchmarks of the minimum spectrum usage problem, albeit at the expense
of considerable running times.



term occur for k. The second term is simply the mobility cost of k. The third term is the
minimum cost of interference that occurs between k and all other links that are set to their
preassigned frequencies. Suppose now that k is set to its preassigned frequency: Xk = 1.
The first term gives the cost of interference between k and all other links fixed to their
preassigned frequencies. The variable Xk is also considered in the third term, determining
the cost of the cheapest alternative frequency for each link whose frequency is different from
its preassigned one. The only cost that is not covered by this objective function concerns
the interference between links neither of which is set to its preassigned frequency. Since all
costs in the problem are nonnegative, an optimal solution to the relaxation yields a lower
bound for the minimum interference problem.

This approach works well if, first, a significant number of links have a preassigned fre
quency and at least some of these cannot be changed and, second, if the mobility costs
are not much smaller than the interference costs. For the few instances that satisfy these
assumptions, a preprocessing technique and an efficient enumeration scheme incorporated
in a branch-and-bound framework were used to obtain lower bounds of a reasonable quality.
See [29] for details.

4. Computational comparison
Tables 1 and 2 present the computational results obtained for the two sets of test instances
mentioned in Section 1. For each approach we indicate the quality of the reported solutions
and an average running time for the classes of feasible and infeasible instances. The reader
is invited to compare these results with the qualifications given in the text.

The list of computer equipment used should help to correct running times for differences
in hardware performance. However, for a balanced comparison between the running times
needed by the different methods more detailed information about the relative speeds of the
machines used would be needed.

5. Further developments
The literature reports on the design of several local search algorithms for variants of the
problem considered in this paper. For example, Castelino et al. [9] compare implementations
of iterative improvement, tabu search and genetic algorithms for a combat net radio link
frequency assignment problem, and Hao et al. [14] perform frequency assignment in mobile
radio networks by tabu search. In this section we will briefly describe three developments
that originated in the CALMA project.

5.1. Approximation: a genetic algorithm with exact crossover. Later refinements
of the genetic algorithm of UM (see Section 2.2) include an optimization routine for the
crossover. This sort of gene engineering method constructs an optimal offspring by solving
an integer linear programming formulation of the crossover problem using a cutting plane
algorithm [18]. The cutting planes that are added to a linear relaxation of the problem
correspond to 3-cycle inequalities. The algorithm terminates when an integer solution is ob
tained or no further violated inequalities are found. In the latter case the remaining problem
is solved by CPLEX, a commercial branch-and-bound code. Essential for the success of this
approach is the extensive preprocessing applied to the integer programming formulation so
as to eliminate dominated links and redundant constraints and to reduce the domains.
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Table 1: Computational results for CELAR instances

method group minimum spectrum usage minimum interference
1 2 3 4 5 11 time 6 7 8 9 10 time

SA (simulated annealing) TUE 2 0 0 0 0 2 1 7% 65% 5% 0% 0% 310
TS (tabu search) TUE 2 0 0 0 - 0 5 - - - - - -
VDS (variable-depth search) TUE 2 0 0 0 0 2 6 4% 0% 14% 0% 0% 85
SA (simulated annealing) CERT 4 0 0 0 - 10 41 44% 1299% 70% 2% 0% 42
TS (tabu search) KCL 2 0 0 0 0 2 40 170% 1804% 566% 8% 1% 111
GENET (see Section 2) KCL 0 0 0 0 0 2 2 14% 27% 40% - - 20
GA (genetic algorithm) UEA 6 0 2 0 i 10 24 1% 386% 134% 3% 0% 120
GA (genetic algorithm) UM - - - - - - - 1% 0% 0% 0% 0% hrs§
PCS (partial constraint satisfaction) CERT 4 0 6 0 0 - 28 86% 2563% 246% 47% 12% 6
PR (potential reduction) TUD 0 0 2 0 0 - 3+ 29% - - 4% 1% 10+
BC (branch-and-cut) TUD,TUE 0* 0* 0* 0* 0* 0* 10+ - - - - - -
CS (constraint satisfaction) UM 0* 0* 0* 0* 0* 0* hrs - - - - - -
0-1 QP (0-1 quadratic programming) TUE - - - - - - - - - - -5% -1% hrs
best solution 16* 14* 14* 46* 792* 22* 3389t 343592 262 15571 t 31516t

Table 2: Computational results for surprise instances

......
Q1

method group minimum spectrum usage minimum interference
1 2 3a 4a 8 9 10 14 time 3 4 5 6 7 11 12 13 time

SA TUE - - - - - - - - - - - - - - - - - -

TS TUE 0 0 0 0 0 4 4 0 3 - - - - - - - - -
VDS TUE - - - - - - - - - 0% 0% 1% 2% 0% 14% 0% 10% 63
SA CERT 4 4 - - - - - - 22 28% - - 127% 23% - - - 81
TS KCL 0 2 - - 4 4 - 2 28 - - 409% 20% 303% 3034% 186% 1911% min
GENET KCL 0 0 - - 2 4 - - 5 - - - - - - - - -
GA UEA 2 2 i i - 10 i 4 9 156% 346% 33% 288% 39% 884% 29% 387% 20
GA UM - - - - - - - - - - - 0% 5% 0% - 0% 125% hrs§
PCS CERT 6 2 0 0 - 12 0 12 6 - - 3305% 919% 293% 2219% 217% 827% 5
PR TUD 0 0 - - - 12 - 0 5 - - 49% - - - - - 20
BC TUD,TUE 0* 0* - - - 16 - 16 min - - - - - - - - -
CS UM 0* 0* 0* 0* - 0* 0* 0 hrs - - - - - - - - -
0-1 QP TUE - - - - - - - - - - - - - -53% - - - min
best solution 18* 14* 380* 394* 20 18* 394* 10 39 46 221 4123t 4324 3080t 11827 10110t

minimum spectrum usage
2 number of frequencies above optimum

infeasible solution is reported

minimum interference
6% deviation from the best known solution

method not applicable, or no solution reported
* optimality proved
t optimality proved by tree decomposition algorithm [20]
t obtained by improved genetic algorithm [18J

average running times
41 minutes of computation time
min minutes of computation time
hrs hours of computation time
+ preprocessing time is not included
§ improved version [18] runs in minutes

computer hardware
CERT SUN SPARC 10
TUD HP9000/720
TUE SUN SPARC 4
KCL DEC Alpha 3000 (130 MHz)
UM (GA) DEC OSF/1 AXP
UM (CS) PC 486
UEA DEC Alpha (133MHz)



5.2. Approximation: a gradient descent method. Warners [34] describes a gradient
descent method for the minimum spectrum usage problem, which is faster than the poten
tial reduction method of TUD (see Section 2.5). The two algorithms differ in the way a
descent direction is determined. Whereas the older method uses a computationally involved
technique based on second-order derivatives, the new method confines itself to the use of a
gradient.

5.3. Optimization: tree decomposition. Koster, Van Hoesel & Kolen [20] recently
proposed a dynamic programming algorithm for the minimum interference problem. It de
composes the problem into smaller subproblems and extends these gradually to the overall
problem. The decomposition is based on the observation that the optimal choice of a fre
quency for a link only depends on the frequencies assigned to the links interfering with it. In
general, if S is a separating vertex set of the interference graph G and if an optimal assign
ment for S is known, then the optimal assignments for all connected components separated
by S only depend on S and can be computed independently of each other. The problem
has to be solved for every feasible assignment for S, because an optimal assignment for S
is not known beforehand.

The algorithm starts by computing a tree decomposition of G [28]. It yields a cover
of G by a set of subgraphs corresponding to the nodes in a tree. The vertices of such a
subgraph form a vertex separating set. Two nodes in the tree are connected via a path
if their subgraphs intersect. Based on this decomposition, the initial subproblems and the
order in which they are extended are determined. The initial subproblems are given by
the subgraphs corresponding to the leaf nodes in the tree decomposition. Subsequently, the
subproblems are extended by adding new nodes to them or by merging two subproblems.

All feasible solutions are evaluated for each subproblem. Extensive preprocessing is
applied to reduce its size, and bounds are used to curtail its solution space. An upper bound
for a subproblem is calculated by subtracting from the best known overall upper bound the
values of the lower bounds of the solved ~ubproblems that are vertex disjoint from the given
one. Similarly, a lower bound is derived from the lower bounds of the subproblems that are
completely contained in the given subproblem.

This algorithm has been successfully applied to the CELAR instances, solving three of
them to optimality and obtaining strong lower bounds for the others.

6. Conclusions
Radio link frequency assignment problems form a relatively new class of practical prob
lems, to which many of the techniques of combinatorial optimization can be applied. The
algorithmic work by the six groups involved in the CALMA project leads to the following
conclusions.

(1) The instances of the minimum interference problems appear to be harder than those
of the minimum spectrum usage problem. Each class contains its notorious instances. Most
(but not all) algorithms developed perform better on the latter class.

(2) Standard local search has benefits for everyone. On the one hand, straightforward
codes that incorporate little structural information give reasonable solutions in moder
ate running times. On the other hand,· more sophisticated implementations that employ
problem-dependent information in their neighborhood function and search strategy pro-
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duce better results, often in less time.
(3) With genetic algorithms the distinction becomes more marked. The approach must

be tuned to the problem at hand in order to make it work, and then it can work very well.
(4) For methods based on (hyper)neighborhood search, it is worthwhile to investigate

hybrid variants, in particular those that embody some form of bilevel search.
(5) The potential reduction method is a new element in the array of approximation

algorithms. It evidently has great potential.
(6) In case of optimization, the general and tailored approaches are drawn even farther

apart. Complete enumeration of all possible solutions is obviously out of the question. In
order to find provably optimal solutions, algorithms must incorporate highly specialized
elimination rules, based, e.g., on polyhedral techniques or consistency arguments.

(7) Branch-and-bound and constraint satisfaction are two sides of the same coin. Ex
ploring the combination of concepts and techniques from mathematical programming and
artificial intelligence is a promising topic of investigation.

(8) Overall, there is a strong positive correlation between the amount of problem-specific
information used, the extent to which mathematical insight is exploited, the development
and implementation effort required, and the quality of the results obtained.

On the basis of a broader experience, we venture to suggest that the validity of our
conclusions is not restricted to the radio link frequency assignment problem but extends to
many difficult combinatorial problems arising in planning and design.
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