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Chapter 1 

Introduetion 

1.1 Background 

1.1.1 General framework 

The scarcity of employable energy is considered widespread to be a major prob
lem. Power supply still depends heavily on the use of fossile energy sources. 
Related to this, the harm of the associated ernissions to the ecological environ
ment are recognized. Depletion of conventional energy sourees to an increasing 
extent together with the increase in energy demand are the main causes. This 
situation impels a frugal use of these traditional sourees and a competitive man
agement of alternative, more sustainable energy sources. One of the important 
themes in energy technology research is heat transfer controL 

External heat transfer from located sourees in a quiescent (fluid) ambient, is 
accompanied by the formation of plumes. Fluid flow in a plume originates from 
the buoyancy force, the apparent gravity differences experienced as a result of 
spatial density variations. The souree of these differential dilatations is the fact 
that temperature and density are related. The intensity of the flow depends on 
the rate at which the heat is supplied. 

Plumes are manifcstations of continuons and local heating of a fluid. Familiar 
examples are a cigarette plurne and the flow originating from a chimney or a fire. 
These plumes can be observed easily due to the presence of a visible tracer agent, 
like smoke or water vapour. Often they are not visible like the plumes above 
radiators, in our central heating system. Plumes do also appear on a larger scale 
in geophysical systems like in the atmosphere, oceans and in the interior of the 
earth. At relatively high heating rates or if the heating is not constant, blobs of 
rising fluid may appear, known as thermals. 
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1.1.2 Engineering Hows 

The present research originates from an interest in heat transfer management 
from an engineering point of view. An example is the process of natura! con
vection in heat storage vessels. These are used, for instance, in solar dornestic 
hot water systems. Heat has to be stored because supply and demand are not in 
phase. The quality of the stored heat depends on the temperature. Heat stored 
at high temperature contains more available energy than heat stored at low tem
peratures. Therefore it is advantageous to keep the temperature differences as 
large as possible. Generally this results in a stratified situation. Water of high 
temperature is therefore stored on top of cold water. This favourable configura
tion may be destroyed by fluid flow. The accompanying mixing creates enhanced 
diffusion of heat, decreasing the temperature differences. On top of the inevitable 
molecular diffusion, this decreases the storage quality. 

A heat storage vessel contains a heat exchanger consisting of a spiral tube. 
At the charging state hot fluid flows through the coil exchanging its heat to the 
cold ambient fluid in the vessel. A plume of relatively hot fluid is released. This 
may cause undesirable mixing. In this case the quality of the stored heat is 
strongly dependent on the action of convection and diffusion. This is of major 
importance on the economical operation of systems that use water heated by 
sustainable energy resources, like solar energy. At the moment solar dornestic 
hot water systems can almost compete with conventional heating systems at 
moderate latitudes. An optimization of the presently available systems could 
make the difference. 

A secoud example is the formation of plumes induced by hot electronic com
ponents in all kind of configurations and housings. Especially in increasing the 
performance of computers the cooling management, in addition to the minimiza
tion of heat production, is the key element. 

In most cases the design of the:;;e systems with respect to the desired heat 
exchange is based on empirica! data and analytica! solutions of strongly simplified 
problems. The reasou for the application of these simplified kinds of treatments is 
because of the complexity of both the geometries considered (3D-effects) and the 
resulting flow phenomena. Often the flows involved are even turbulent. Therefore 
in a large amount of circumstances the solution of simplified problems is only 
able to display a very limited validity. More detailed theories of descrihing these 
complex flows are much less well developed. However for engineering purposes, in 
the recent past, there were no alternatives (Turner [1973], Gebhart et al. [1988]). 

With the increase of computer capacity, i.e. a combination of speed and 
storage capacity, numerical simulations of time dependent fluid flow at suflident 
resolution come into play in the near future. In this perspective, one of the 
things that are required in the designing process is the development of a physi
cally correct numerical code in order to simulate the flow and heat exchange in 
complicated flow configurations. 
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1.2 Transitional Fluid Flow 

Two main categories of fluid flows are those generated by external forcing and 
fluid flows created by temperature differences. In the latter case the buoyancy 
force is responsible for the flow, which is referred to as "natural convection". The 
externally forced flow is called "forced convection" and the general case is "mixed 
convection", in which both typesof forcing are present. 

Fluid flow can also be categorized by the flow regime. With increased forcing 
the flow first is laminar. The laminar flow regime is characterized by being 
stationary, i.e. there is a stabie and therefore steady shear flow. However, with 
an increase of the forcing the flow structure may change to another pattern. At a 
high forcing ra te, flows consist of many whirls or vortical structures, continuously 
moving with time. This was demonstrated about a century ago by Reynolds 
[1883], who enunciated also the criterion for the prediction of the flow regime, 
whether it will be laminar or in a turbulent state. It is based on the ratio 
of destabilizing forces to stahilizing forces, and the measure is now called the 
Reynolds number, Re. 

In the so-called turbulent flows there is a very large difference between the 
length scales of individual whirls. The equilibrium of kinetic energy transfer in 
turbulent flow was the key to find the distribution of scales by Kolmogorov [1941], 
which was a very important break-through. 

Between the two regimes of laminar and turbulent flow there is transition. The 
flow changes from unsteady purely andfor quasi-pcriodie flows to chaotic flows. 
In the latter regime all independent flow features stay on a geometrical figure 
called "attractor" (Lorenz [1963]). This became clear with the first numerical 
simulations of idealized dynamica! systems. Later it was confirmed by detailed 
experimental data as well. An important feature of chaotic and turbulent motion 
is the exponential increase in distance of initially very close particles. Turbulent 
flows are chaotic, though very commonly chaos is associated with low dimensional 
systems. 

\Vithin the context of natural convection flows, transition was first stuclied 
successfully by Rayleigh [1916], who determined the onset of flow between differ
entially heated horizontal planes with the higher temperature on the lower side. 
The Rayleigh number, Ra, a measure of the forcing rate in natura! convection 
flows, was named after him. This was the beginning of the research of more and 
more complex natural convection flows. 

Transition between flow regimes can occur with change of forcing, as men
tioned above, change of time, generally called transients, and change of position. 
This thesis is about natural convection flows, induced by a relatively small heated 
element, with a spatial transition from laminar to turbulent flow. In everyday life 
these flows are called "plumes" and a striking example is the plume of a cigarette. 
Smoke of a burning cigarette in quiescent air shows a straight upstream part, some 
oscillations downstream developing into a turbulent plume. The position of the 
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transitional oscillatory part is very sensitive to slight disturbances. 

1.3 Fluid flow simulations 

With the introduetion of the digital computer, approximately halfway this cen
tury, it became possible to perform numerical simulations of fluid flows. A set of 
"governing equations" appropriate for the considered problem is approximated 
in a discrete sense. First the memory size and processing speed allowed only 
simulation of simple flow configurations and regimes. At the moment it is possi
bie to perform time dependent three-dimensional simulations for turbulent flows, 
although only at rather low forcing rates. 

With Direct Numerical Simulation (DNS) the governing equations are solved 
on a grid that is sufficiently fine to resolve the flow up to the smallest detail. As 
a consequence of this, a very large computer capacity has to be claimed because 
the turbulent part of the flow consists of many different scales of motion. Also, 
turbulence is essential three-dimensional. The large scales of motion are related 
to the geometry of the flow, whereas the small scales of motion are determined 
by molecular processes such as viscosity. The ratio of the macroscopie scales to 
the microscopie scales depends on the ra te of forcing of the flow. The higher the 
forcing rate ( expressed by a dimensionless number such as the Reynolds number, 
in case of forced convection, or the Rayleigh number, in case of natural convection, 
which is considered here) the wider the kinetic energy spectrum. Furthermore, in 
the transition region the balance between buoyant, viscous, inertial and pressure 
forces is very subtle. 

In the future it will be possible to simulate turbulent flows at increasing 
forcing rates, requiring a finer and finer discretization. To be able to use the 
increasing computing power in designing processes and research, the main items 
will be the necessity of reai-time simulation, visualization and parameter and 
design variation. Not only the forcing rate but also the sizes of the systems to be 
simulated will increase. This results in an ever lasting state of computer capacity, 
that is the state of being too small. 

In order to overcome this problem, at least partially, a rednetion in the re
quired resolution is always desirable. The classica! method for this used to be the 
so-called Reynolds averaging. It consists of averaging the governing equations in 
time, resulting in the appearance of new unknown terms representing the fluc
tuations, called the Reynolds stresses. By using this method no detailed, time 
dependent, information can be obtained. The effect of the model in the case of 
large instationary scales, that are always present, can be considerable. 

Since the early 70's a new simulation technique called Large-Eddy Simulation 
(LES) has become available. The first LES was reported by Deardorff [1970], 
dealing with channel flow at infinite Reynolds number. The basic idea of this 
method is to filter the governing equations using a spatiallow-pass filter, remov-
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ing the small scale structure of the flow. By doing this unresolved terms appear 
in the equations. These terms have to he expressed in terms of resolved quanti
ties with aso-called SubGrid-scale Model (SGM). These models account for the 
influence of small whirls, that are not resolved, on the dynamics of the larger 
whirls. This leads to a large reduction of computer capacity because the flow is 
only discretized and resolved up to the cut-off wave number determined by the 
grid size. Because of the fact that the smallest eddies are more isotropie and 
homogeneously distributed than the large eddies it is expected that simulations 
based on subgrid modeHing are more accurate than in the case of time filtering. 
Therefore the models, that are in general quite simple, are believed to he more 
universally applicable. 

1.4 Objectives 

Although Large-Eddy simulations have been performed successfully for all kinds 
of flows in the past twentyfive years, there are no standard SG Ms yet that can 
predict the transition. Only recently there have been some proposals for S G Ms 
that resolve the transitional features quite well. 

All present SG Ms are models derived in principle from the theory of homoge
neaus isotropie turbulence, a turbulent flow that can only exist in a theoretically 
unbounded space in which the fluid is randomly perturbed initially. In the very 
first large eddy simulations Deardorff [1970] used the Smagorinsky model, (af
ter Smagorinsky [1963]) based on an equilibrium state of turbulent production 
and dissipation. This model gave good results for "fully turbulent" flows and 
became very popular. Later on there were some modifications and extensions of 
the model, including the one as used by Nieuwstadt [1990] in which the transport 
of subgrid kinetic energy was solved with an additional convection-diffusion equa
tion. It became clear that the standard Smagorinsky model gave the best results 
in forced convection flows and that the subgrid kinetic energy model performed 
best in the case of natural convection flows. 

More recently Métais and Lesieur [1992] proposed their structure-function 
model, a localization in physical space from homogeneaus isotropie turbulence 
theory in wave-number space. It was found that the model gave good results, 
also in wall-bounded and separating flows like the flow over a backward-facing 
step simulated by Silveira Neto et al. [1991]. 

A subgrid-scale model to simulate interruittent and non-homogeneous flows 
as in the transitional case was developed by Germano et al. [1991]. In this 
so-called dynamical model a Smagorinsky dosure was proposed in which the 
model coefficient has to he calculated dynamically. It is based on the assumption 
that the Smagorinsky model is valid at two filtering levels: the gridfilter and a 
testfilter. The resolved stress between the two filters is then used to determine 
the constant. The obtained subgrid-scale stresses vanish in laminar flow and at 
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solid boundaries where a correct asymptotic behaviour of the turbulent boundary 
layer was predicted. Lilly [1992] optimized the formulation for more general use. 
A revolutionary feature of the metbod is the possible appearance of negative eddy 
viscosities. However, this can lead to numerical instahilities if no precantion is 
applied. 

Finally, Ducros et al. [1994) propose a SGM on the basis of the structure
function model giving nearly zero eddy viscosity during the laminar and transi
tional stages of the flow, a property which they refer to as "selectivity". This 
property is needed because the first instability effectively decreases the Reynolds 
number in the original model and relaminarizes the flow. They coneinde that 
for the transitional boundary layer near a flat surface their tiltered structure
function model gives the best results compared to the structure-function model, 
the Smagorinsky model and the dynamic model. 

The objective of this research is to tind a subgrid scale model that gives good 
results in a large region of forcing of the flow, or turbulent intensities. Further
more, the model must he able to display transition. Therefore the influence of 
the model must he negligible in laminar regions but it must possess the potential 
to drain enough kinetic energy in isotropie homogeneons turbulence. Also the 
properties of non-homogeneity and non-isotropy as occurring in the transitional 
region of a 'plane buoyant plume' may not he affected too much. 

In order todetermine which model performs best, two forms of reference data 
will he used. The first one is a direct numerical simulation, providing detailed 
time dependent three dimensional information that can he compared with the 
Large-Eddy simulations. Here the medium properties of air are used. Secondly, 
an experiment is performed fora plume in a water container in which the veloc
ity is measured in a two-dimensional plane using partiele tracking velocimetry. 
Additional thermocouple measurements were used tagether with shadowgraphy 
in order to obtain information about the temperature distribution. 

1.5 Thesis synopsis 

This thesis starts with a description of the governing equations in chapter 2, 
together with considerations about the transition and length and time scales that 
will appear. Also a summary is given of results obtained by analytica} treatment 
of approximations of the equations for the plane buoyant plumes in a laminar 
state as well as in a fully developed turbulent regime. Furthermore, results as 
obtained by experiments and analyses found in the literature will be discussed. 
In this part of the thesis the flow contiguration under consideration is as given in 
figure 1.1. In the tigure a length scale is given in which all distauces are measured. 
As indicated in the tigure, two sets of notations are used. The tirst one is generally 
applied, whereas the second one is used whenever more appropriate. 

In chapters 3 and 4 the applied numerical simulation techniques will be dis-
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a) 

H 

Heat souree 

b) 

X3,Z l / xz,y 

~Xl,X 
Heat souree 

Figure 1.1: Plu me in a) an infinite medium and b) a confined enelosure 

cussed. It is started with Direct Numerical Simulation (DNS), foliowed by Large
Eddy Simulation (LES) and finally, a description of the applied subgrid-scale 
models (SG Ms ). The latter chapter deals with the discrete approximation tech
nique that is used. Also a test is presented to validate the numerical code for 
a two-dimensional plume in a confined geometry as given in figure 1.1. The 
experimental set-up will he discussed in chapter 5, together with the applied 
measurement techniques: partiele tracking velocimetry with additional thermo
couple measurements and liquid crystal thermography. The experimental data 
acquisition and processing will he described in detaiL The geometry considered 
in the experiment is basically displayed in figure 1.2 and it has a front and back 
wall at a mutual distance equal to the cavity height. 

The results will be discussed in chapters 6 and 7 for the water and air con
figurations respectively. First the results of a direct numerical simulation will be 
described. The geometry in this case is configured as displayed in figure 1.1. It 
concerns a two-dimensional as wellas a three-dimensional turbulent air plume. In 
the case of the three-dimensional simulations, the front and back boundaries are 
separated one enelosure height from each other and the boundary conditions are 
taken to be periodic. Then the results of three-dimensional Large-Eddy simula
tions will be presented and compared. The thesis will be continued with a chapter 
containing the experimental results of the water plume in the configuration as 
given schematically in 1.2. For this situation the results of Large-Eddy 
simulations will be given and compared to the experimental data. The forcing 
rate in this case is higher than for the air plume. Furthermore, experiments and 
simulations will be compared with analytica! results and experimental values as 
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H 

I Heat souree 

Figure 1.2: Experimental flow configuration 

presented in the literature and discussed in chapter 2 
Finally, some conclusions and recommendations will be given in chapter 8. 



Chapter 2 

Governing equations and 
analysis 

2.1 Governing equations 

2.1.1 Navier-Stokes equations 

The equations, cornmonly used to describe the flow variables in a continuum, 
consist of a set of conservation laws. It contains a continuity equation wherein 
the conservation of mass is described. Additionally it includes Newton's secoud 
law for the conservation of rnomentum in the fluid. The resulting equation is 
the Navier-Stokes equation. It is assumed that the density and viscosity are 
invariant in space and time. The internal friction of the fluid is supposed to be 
Newtonian. This means that the shear stresses are linearly proportional to the 
strain. For many ordinary fluids like air and water this is a good approximation. 
The system of equations, written in an Eulerian frame, in Cartesian coordinates 
and in tensorial notation, reads: 

0; (2.1) 

(2.2) 

Repetition of an index in a term means surnrning over the index under consid
eration. The velocity is denoted by Ui, p is the density, p the pressure, v the 
kinernatic viscosity and h is an additional body force. These equations, tagether 
with appropriate boundary and initial conditions, describe the flow for all later 
times. This does not mean that it is always possible to predict exactly the solu
tion at all times, as pointed out by Lighthill [1986]. A closer look at this point 
will be given in section 2.2. 
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2.1.2 The Boussinesq approximation 

Consiclering plume flow, the body force contains a term accounting for buoyancy 
effects. In the previous section effects accompanying the presence of density vari
ations are neglected. Here, density differences as far as responsible for buoyancy 
effects will be taken into account, as a first approximation. In all other terms the 
variation of the density is neglected. The buoyancy term then, can he written as 

fi = J!...9i· 
Po 

(2.3) 

The gravitational acceleration 9i only has a non-zero value -g in the vertical 
direction. The density po is defined at some reierenee temperature. Defining 
a hydrastatic case, the fluid being at rest and with constant density p po, a 
hydrastatic pressure can he obtained. Employing the momenturn equation for 
this situation, the hydrastatic pressure Ph may he calculated, according to 

1 &p 
---+gi=O. 

Po äxi 
(2.4) 

Integration with respect to x3, also denoted as z, yields Ph = Po pogz. lf 
the hydrastatic part (2.4) is subtracted from the full momenturn equation (2.2) 
a modified pressure and body force appears. If the density varies, the local 
difference in weight gives rise to a net forcing so that the gravitational force 
becomes apparent. In fact this is what is called buoyancy. Now the modified 
body force can he written as 

(p Po) 
9i = 9i· 

Po 
(2.5) 

A further simplification is the linearization of the temperature dependency of 
the density, by expanding it into a Taylor series around the reference temperature 
To (at which p(To) =po) and truncating after the second term. This yields 

äpl p=po+(T-To) äT . 
T=To 

(2.6) 

By defining a coefficient of thermal expansion /30 = f3(To) at constant pressure 
according to 

/3o = _..!._ äp I (2.7) 
Po äT T=To 

and substitution into the momenturn equation the number of unknowns is ex
tended to include the temperature as a new variable. An additional equation for 
the temperature is thus required to close the system. The set of assumptions to 
account for the variabie density so far is often referred to as the "Boussinesq ap
proximation", after Boussinesq [1903], although they were first used by Oberbeek 
[1879]. 
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To determine the temperature as function of space and time the first law of 
thermodynamics is used. Denoting the conservation of energy e and neglecting 
viseaus dissipation it reads 

oe 8 
+-(u e) 

8x· 1 
J 

1 8q" 
_J + 

Po 8xj Po 
(2.8) 

with q'j the heat flux density vector and q111 a volume source. Fourier's constitu
tionallaw is used to relate the temperature gradient to the heat flux density by 
means of the thermal conductivity À 

q'J = (2.9) 

Internal energy is defined as a function of basic thermodynamica} quantities, 
e e(T, p, p), which remains constant in an isolated system. With the assumption 
of incompressibility it is a function of temperature only, as given by 8e cp8T 
(Batchelor [1967]), so that only an arbitrary reference level has to be chosen. The 
heat capacity at constant pressure is denoted by Cp· 

Now the system of governing equations, i.e. the Navier-Stokes equations in 
Boussinesq form extended with the energy equation, becomes 

o· l (2.10) 

(2.11) 

ar a a2T - + ( UjT) = KQ + 
8t 8xj OXjOXj PoCpo 

(2.12) 

where K = )..j(pep) is the thermal diffusivity and 6 is the Kronecker delta. The 
subscript o for fluid properties at the reference temperature shall be omitted 
in the rest of this thesis. For a more extended discussion of the Boussinesq 
approximation and an analysis of its validity the reader is referred to the liter at ure 
e.g. Gray and Giorgini [1976] and Tr-itton [1988]. 

2.1.3 The non-dimensional formulation 

With the aid of characteristic scales in the problem definition, it is possible to 
non-dimensionalize the governing equations. This is a favourable way of dealing 
with the problem because of the dynamic similarity, allowing us to scale the 
problem to any size. The length scale which is taken, is a characteristic length H 
of the geometry under consideration. Since all problems dealt with in this thesis 
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have in common that only volume heat sourees are applied with one homogeneous 
direction, a heating rate per unit length is defined according to 

q' = !! q111
dA, (2.13) 

where the area A is defined as the total area perpendicular to the homogeneous 
direction. Now a characteristic temperature scale can be taken to be equal to 
q'/ À. Since the present work deals with natura! convection only, there is no 
prescribed characteristic velocity scale in the problem. However, from balancing 
convection and diffusion in the energy equation a velocity scale can be derived to 
be U = K/ H. This is one of the possibilities to derive a velocity scale without a 
priori knowledge of it. Another possible way is balancing convection and diffusion 
of the momenturn equations, but since Pr 0(1) this makes no real difference. 
Another frequently used velocity scale is obtained by balancing convection and 
buoyancy in the momenturn equation, resulting in the Brunt-Väisälä velocity: 
U= yg{3l:!.TH. Employing U= "'/Hit is possible to write the non-dimensional 
equations 

(2.14) 

out 8 ( * *) 8p* p 8
2ui R p *" ~ * + ~ * ui uj = - ~ * + r 0 *2 + a rT Ui3; vt VX· VX· VX· J ~ J 

(2.15) 

8T* 8 ( *T*) 8
2
T* 111." 

8t* + 8x*: uj = 8x*2 + q ' 
J . J 

(2.16) 

in which two dimensionless quantities Ra and Pr appear. The Rayleigh number 
is defined as 

Ra 

and the Prandtl number is given by 

Pr 
V 

/'(, 

(2.17) 

(2.18) 

The Prandtl number, the ratio of viscosity to thermal diffusivity, is a property 
of the fluid. lt can be seen easily that the combination RaPr is a measure of the 
ratio of buoyancy forces and inertia forces. So when dealing with a fiuid with 
given Prandtl number the Rayleigh number is a measure of the buoyant forcing 
of the flow. 

The variables are scaled (non-dimensionalized) according to 

H2 2 I I 

H * "' * t t* P"' * T q T* 111 q 111* x= x ;u= Hu;=-;; ;p= H2P; =I ;q = Hzq . (2.19) 



2.2 Routes to chaos and turbulence 13 

Note that with definition (2.13), and the sealing for the area, A = H 2 A*, the 
dimensionless heating rate per unit length equals unity: 

'* = !! qm*dA* = ff qmdA* H2 
q ff q111dA 

ff q111dA A* 2 

ff q111dA AH 
1. 

In the remaining part of this thesis the superscripts * will be omitted. 

2.2 Routes to chaos and turbulence 

(2.20) 

As stated in the introduetion (chapter 1), fluid flow can be characterized by 
its flow regime. The flow may be either laminar, turbulent or somewhere in 
between. The transition of one flow regime to another is called a bifurcation. 
The spectrum of flow regimes is distributed from laminar flow at low Reynolds 
or in this case Rayleigh number, up to fully developed almost homogeneons and 
isotropie turbulence at high forcing rates. In between there is a transition from 
laminar to time-dependent motion, and then in some complex way to turbulence. 
In the latter regime large, apparently irregular, fluctuations are present in both 
space and time. It is generally believed that all regimes are solutions of the 
N avier-Stokes equations and at the moment there is also numerical evidence for 
low forcing rates. 

Strongly connected to the irregular motion in turbulent flow is its sensitivity 
to perturbations of the initial condition. This was first found by meteorologists, 
who noticed exponentially diverging numerical predictions, compared to observa
tions. This phenomenon was already observed by Poincaré [1892] in his studies 
of the dynamics of celestial bodies. In these Hamiltonian systems there are no 
dissipative effects as is the case in Navier-Stokes dynamics. In the first half of 
this century the main effort was put into the development of statistkal theories 
of homogeneaus isotropie turbulent flow and the stability of laminar flows. To ex
tend the insight in dynamical systems later on, the study of Hamiltonian systems 
got renewed attention. Especially the KAM theorem (after Kolmogorov, Arnol'd 
and :Moser) gave insight in the conditions whether the motion is quasi-periadie 
or chaotic, see Ottino [1990]. 

In real hydrodynamics it was Landau [1944] who suggested to study the ini
tiation of turbulent flow. He proposed a mechanism consisting of a sequence of 
bifurcations in which each time a discrete frequency is added. In general the ratio 
of separate frequencies is not integer and a quasi-periadie motion occurs. This 
leads to a turbulent flow with a broad band spectrum, consisting of an infinite 
number of discrete frequencies. In the phase space, i.e. the space of all indepen
dent variables qy, this corresponds to a torus of dimension equal to the number of 
frequencies. 

If the Rayleigh number is below some critica! value, Ra er, the motion is steady 
and stable, corresponding to a single poiut in phase space. Since the flow is stabie 
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this point attracts all other points, initially deviating from the stabie situation. 
Therefore this point in phase space is called an attractor. Above the critica! 
Rayleigh number the flow becomes instationary, corresponding to an attracting 
closed orbit or a limit cycle. The limit cycle is purely periodic. This is called a 
Hopf bifurcation (Hopf [1942]). A Hopf bifurcation can he either supercriticalor 
subcritical. The amplitude of the oscillations in case of a supercritical bifurcation 
satisfies the relation 

c/>max - c/>min CX: V Ra - Ra er (2.21) 

(ex: means proportional to ). In the case of a subcritical bifurcation the same 
behaviour is present only when the disturbances are large enough. There is an 
hysteresis effect: decreasing the Rayleigh number results in a behaviour as given 
by (2.21), but increasing Ra results in a behaviour like 

c/>max- c/>min CX: V Ra- Racr · H(Ra -Rap), (2.22) 

where H denotes a Heavyside function and Rap > Racr, its exact value depending 
on the disturbances present. 

It was supposed that at a second critica} Rayleigh number the limit cycle loses 
stability in the same way, leading to a second Hopf bifurcation. The attractor 
would now be a closed tube or a 2-torus. If the two frequencies have an integer 
ratio, the torus forms only a tangent plane to the orbit. Otherwise the frequencies 
are incommensurate and the flow is called to be quasi-periodic and fills the surface 
of the torus. Landau allowed an infinite number of subsequent Hopf bifurcations. 
Therefore this scenario is called the Landau-Hopf route to turbulence. 

With the advent of the digital computer it became possible to do numerical 
simulations of the transition. One of the first simulations, that later received 
a wide attention, was the numerical simulation of transitional two-dimensional 
Rayleigh-Bénard convection, by Lorenz [1963]. He tackled the problem by using a 
streamfunction formulation, eliminating the continuity equation and the pressure 
from the momenturn equation. Furthermore he used a highly truncated Fourier 
modes representation, reducing phase space to only three variables. Exceeding 
some critica! Rayleigh number led to a strange pattem in phase space, that 
became known as Lorenz's butterfly. It consists of two foei. The orbit spirals 
outwards around a focus up to a certain moment at which it is more attracted 
to the other focus. The system is very sensitive to initial conditions. Hence 
it is impossible to predict at what instant the trajectory changes to another 
focus without knowing the equations and initia! conditions. No limit cycles were 
found, causing the question of physical significanee of the truncation. However, 
as described by Miles [1984], it can he proved that the equations used by Lorenz 
have a direct correspondence toa laboratory reproducible fluid system called the 
Howard-Malkus-Welander convection loop. It consistsof natural convection of a 
fluid ip a vertically oriented toroidal tube. 
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The study of Lorenz was a starting point of a large amount of research in 
the past decades, in the area of "chaos theory". Here chaos relates to non
periadie motion in time evolution, whereas turbulence could he defined as "spatio
temporal chaos". It is important to recognize the feature of sensitivity to initial 
conditions and the loss of predictability beyond a certain definite time horizon, 
as summarized very lucidly by Lighthili [1986]. 

In numerical or Iabaratory experiments the Landau-Hopf route was never 
found, after two or three independent frequencies the spectrum always shows 
braadband noise. Incommensurable frequencies do interact with each other, ex
cluding the possibility of filling the spectrum without interaction. Ruelle and 
Takens [1971] showed that long before the appearance of infinite incommensu
rate frequencies the flow may he chaotic. They show that quasi-periadie flow on 
a 4-torus is not stabie anymore and the phase space will consist of what they 
call a "strange attractor", some low-dimensional manifold in phase space, corre
sponding to turbulent motion. This means that after the fourth consecutive Hopf 
bifurcation the flow is turbulent and in the route to turbulence there may appear 
not more than three incommensurate frequencies. 

In the experiments of Gallub and Bensan [1980], for Rayleigh-Bénard con
vection in a confined flow domain, it has been observed that the Ruelle-Takens 
route to chaos (in the sense that there are only a small nurnber of time dependent 
instahilities needed) is generally consistent with the observations. Furthermore 
they conclude that a diversity of processes is involved in transition to turbulent 
convection, but that relative simple mechanisms prevail (period doubling bifur
cations, quasi-pcriodie motion and phase locking). 

Two other routes are important to mention, for they both have also been 
measured. The first one is the period-doubling route of Feigenbaum [1978]. Here 
the first step is a Hopf bifurcation, succeeded by a period doubling bifurcation 
sequence. This scenario is followed by a spherical pendulum, also observed in the 
fluid experimentsof Gallub and Benson [1980]. The second one is the intermittent 
scenario of Pameau and Manneville [1980]. In this case the solution may alternate 
between a periadie limit cycle and astrange attraetor. Interrnittency is frequently 
observed in natural convection flows. 

For more detailed information about ehaos the reader is referred to the articles 
of Lighthili [1986] and Miles [1984] and to the hook of Bai-Lin [1984], which 
contains a compilation of articles in the field. 

2.3 Turbulence: length and time scales 

With respect to the performance of physical and numerical experiments it is 
important to have some estimate of the relevant scales involved in the problem 
of interest. Especially resolution requirements are essential in order to determine 
the sampling rates and the size of the domain, both in space and time, in advance. 
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First it is necessary to have some characteristic velocity scale and a charac
teristic temperature scale. The mean velocity, in a spatial sense, for the flow 
contiguration under consideration is zero, U = 0. Therefore it is necessary to 
have some information about the distribution inspace as wellas the fluctuations 
in time that are coupled through some adveetion velocity. Due to the nonlinearity 
in the momenturn equation, kinetic energy is transferred from the large-scale ve
locity field to smaller scales down to some smallest viscous scale. A characteristic 
velocity and temperature scale may be obtained by a balance of the convection 
and souree terms in both the momenturn and energy equation, as given by 

(2.23) 

(2.24) 

The dimensionless height and the integral of the heat flux over a plane per
pendicular to the heat souree direction are both taken equal to one. Then the 
characteristic velocity and temperature scales become 

U'""' (RaPr) 113
, 

T'"" (RaPr)- 113 . 

(2.25) 

(2.26) 

With the macroscopie length scale H = 1, the macroscopie time scale for the 
velocity fluctuations becomes 

TB"" H/U' = (RaPr)- 113
. (2.27) 

To get some insight in the distribution of scales we may follow K olmogorov 
[1941]. His approach consistedof a combination of the ideas of statistica} physics, 
with the concept of dimensional analysis. First it is assumed that the turbulent 
fluid flow is in a state of statistica} equilibrium. Furthermore Kolmogorov made 
the hypothesis that the small-scale motion is independent from the large scale 
motion. This means that the large scales and small scales are uncorrelated and 
this assumption can only be made if the Reynolds or Rayleigh number is high 
enough. In this case the statistics of the small scale motions of the turbulent 
fluid flow is independent of the large scales and therefore they are universal. An 
important statistkal quantity of the small scale motions is the standard deviation 
or the mean square of the velocity differences in neighbouring points with mutual 
distance l, as given by (óu(l)2). Here the angular brackets denote a mean with 
respect to time. 
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The ideas of Kolmogorov were probably very much influenced by the picture 
of fluid turbulence as described already by Richardson [1922] in the form of a 
poem1. The very extended footnote in Kolmogorov [1941.] describes the same 
picture of the turbulent energy "cascade". 

The idea of an equilibrium state is only meaningful if the statistkal dynamics 
of the turbulence is governed by forcing at large scales and viscosity at small 
scales. Thus it is independent of the exact governing equations and the initial 
conditions. In order to determine the statistica} state of fully developed turbu
lence Kolmogorov [1941.] introduced the average rate of kinetic energy transfer, 
E, between large scale motions and small scale motions in the inertial subrange, 
i.e. at wavenumbers where viscous dissipation is not yet effective. This amount 
of energy is transferred to smaller scales of motion, where at a certain range 
of wavenumbers the energy has to be dissipated. So the mean transfer of ki
netic energy is equal to the mean dissipation of energy due to viscous stresses 
at the smallest scales of motion. Therefore the kinetic energy transfer, E, and 
the diffusivity of momentum, Pr, are the characteristic quantities to describe the 
cascade down to the smallest dimensionless length scales, which are (Pr3/t:) 1

/
4 

on average. 
The main result is obtained for the mentioned mean square velocity fluc

tuations between points separated a distance l from each other, in the inertial 
subrange, also called the "structure function": 

(2.28) 

Following Obukhov [1941] this expression can also be written in the form of a 
power spectrum for the turbulent energy E(k) as function of the wavenumber 
k, using the Wiener-Khintchine relation between correlations and power spectra. 
This yields 

(2.29) 

where Ck is the Kolmogorov constant. The value of Ck was estimated to be 
Ck ,....., 1.5 first by Kolmogorov himself, by using grid turbulence measurements. 
This value was confirmed by most later measurements although Yaglom [1985] 
suggests a value of Ck ""' 2, according to new available data, with an error not 
larger than 10-15%. 

The mean kinetic energy transfer can be estimated using the characteristic 
buoyant velocity scale U' and the accompanying eddy-turnover time l/U' '"'"'1/U'. 

Big whirls have l-ittle whirls, 
That feed on their velocityj 
And little whirls have smaller whirls 
And so on to viscosity 
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This results in a non-dimensional kinetic energy transfer with charaderistic mag
nitude: 

(2.30) 

N ow the relations for the smali-scale length and time scales, also referred to 
as the Kolmogorov scales, become respectively 

(2.31) 

and 
(2.32) 

With these relations of large and small scales, an estimation of the waveuurober 
and frequency range yields 

H 

'TJ 

H /U' = _1_ ,.., (Ra/ Pr2) 1/6. 
T U'r 

(2.33) 

(2.34) 

On the other hand, the exact dissipation of kinetic energy is defined by 

(2.35) 

with 

(2.36) 

in which the fluctuating parts of the velocity components have to be used, and 
an overbar is used for denoting the mean in time. In the case that the turbulence 
is statistically isotropic, i.e. that the fluctuations have the same intensities in 
all directions, and with the use of the spatial correlation function, the Taylor 
microscale may be denoted as 

( ) 
1/2 ( 2) 1/6 

À = U' 15:r = Jï5 ~a (2.37) 

The Taylor microscale is mostly used by experimentalists. It was originally meant 
to give an estimation about the smallest eddies present, the length scale at which 
the dissipation takes place. However, it is just an average eddy size. Frequently 
the Reynolds number is based on the Taylor microscale 

- ,._.Jf5 -U' À (Ra) 
1

/
6 

Pr Pr2 (2.38) 

An extensive description ofKolmogorov theory, together with modern insights 
can be found in Frisch [1995]. 
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2.4 Analytica! results and literature 

2.4.1 Similarity equations for the laminar boundary layer 

In this section the idealized problem of a laminar flow generated by a horizontal 
line heat souree in an infinite medium is discussed. In practice this flow would be 
approached by the flow arising from thin wires and long tubes that are heated. 
Here the derivation of Gebhart et al. [1988] will be followed. A numerical solution 
of the highly non-linear equations is obtained. 

The governing non-dimensional continuity, momenturn and energy equations 
are simpified by the boundary layer assumptions to yield the boundary layer 
approximation, 

öw öu 
Öz + öx = O; (2.39) 

öw öw ö2w 
w Öz +u öx = RaPrT + Pr öxZ; (2.40) 

aT aT ö2T 
w öz + u öx = öx2 · 

(2.41) 

These equations are solved by using a similarity variabie TJ(z,x), a stream
function '1/J(z, x) (for which w = ö'lj;jöx and u = -ö'lj;jöz) and a temperature 
corrected with the background as follows: 

TJ(z,x) 

'1/J(z, x) 

T(z,x)- T= 

b(z)x; 

c(z )f ( TJ ); 

d(z)<fJ(TJ), (2.42) 

with f the similarity streamfunction and 1; the similarity temperature. This leads 
to the set of equations given by 

Prf"' + Czff"- (!!_b + Cz) f'2 + RaPr_!!:__<f; 
b b2 z b b3c 

O· 
' 

1;" _ cdz J' </J + Cz J 1;' 
bd b 

0. (2.43) 

The primes denote differentiation with respect to TJ and the subscript z denotes 
partial differentiation with respect to the vertical direction z. 

The existence of a similarity solution now requires that the coefficients in the 
given set of equations are not z-dependent. This results in the solution 

b(z) 

c(z) 

d(z) 

~ (~RaPrd(z)z3 ) 
114

; 

4b(z)z; 
Nzn. (2.44) 
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Now thesetof governing houndary layer equations can he written as 

Prpt' + (n + 3)/J"- (2n + 2)f'2 + cjJ = 0; 

c/J11 4nf' cjJ + ( n + 3)! c/J' 0. (2.45) 

An additional requirement is given hy the fact that the downstream huoyancy 
flux is equal to the heat input. The latter was scaled to unity, leading to 

+oe J w(T- T00 )dx = 1. (2.46) 

-00 

Thus, the downstream buoyancy flux does not depend on z. This leads respec
tively to 

3 
n=-5; 

N = (43I 4RaPr)-115
. 

(2.47) 

(2.48) 

The integral I has to be evaluated from the boundary layer solution, according 
to 

+oo 

I= f f'(TJ)cP(TJ)d'fJ. (2.49) 

-oo 

Using appropriate boundary conditions the houndary layer equations can now 
he solved. These conditions are given hy the symmetry around x 0, the defini
tion of cjJ and the vanishing of w or T at 17 -+ oo ( since these are not independent), 
resulting in 

/(0) = pt(O) = f'(oo) = c/J'(O) = cjJ(O)- 1 0. (2.50) 

The two-dimensional plume flow is specified and by numerical integration 
solutions can be ohtained for c/J('TJ), f(TJ) and f'(TJ) as function of Pr. 

2.4.2 Solutions for the laminar boundary layer equations 

The system of differential equations (2.45) together with the boundary conditions 
(2.50) were solved numerically hy discretizing them on a finite difference grid. 
Central differences were used to ohtain a secoud order spatial discretization. The 
highly non-linear system is linearized hy Picard-linearization, i.e. discretizing 
the highest derivative at the previous iteration level. At each iteration level the 
system wa.c; solved using Gauss-Jordan elimination (Press et al. [1992]) for both 
the momentum and energy equations. The coupling terms, i.e. the dimensionless 
temperature in the momentum equation and the dimensionless streamfunction in 
the energy equation, were decoupled hy taking them from the previous iteration 
level. The maximum difference between the solution at two suhsequent iteration 
levels was used as a convergence criterion, both for the streamfunction f and 
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the temperature 4J. Fastest convergence was found using an underrelaxation 
factor of 0.3. The convergenre criterion was set to 10-6 and calculations were 
performed for Pr = 0.71 and 1.0 on the domain 71 [0, 10], and for Pr 5.0 and 
7.0 on 71 = [0, 15] using 200 elements. In fact the number of elements and the 
domain was varied, leading to a verified accurate solution for the given values. 
Convergenre tables are given in appendix A. Results for the streamfunction f(TJ), 
the distri bution of the vertical velocity component f' ( 71) and the distribution of 
the temperature cP(TJ) are given in figures 2.1 and 2.2. 

Indications of the thickness of the temperature and velocity boundary regions 
can be obtained by consiclering cP(TJ) = 0.05 and wfwmax J'(TJ)/ f'(O) = 0.05. 
Numerical values of these quantities are given in table 2.1. For increasing Prandtl 
number the velocity layer becomes thicker. This may be expected because of the 
fact that Pr appears in front of the diffusive term in the momenturn equation. 
On the contrary, the thermal boundary layer appears to be almost constant for 
all Prandtl numbers. In the case of air (Pr 0.71) both boundary layers are 
of nearly the same thickness. In the full dimensional form as used by Gebhm·t 
et al. [1970] the Prandtl number appears in front of the nonlinear terms in the 
energy equation. In this case the velocity boundary layers have almost the same 
thickness and the temperature boundary layer becomes thinner with increasing 
Prandtl number. With the present sealing the quantity I is for all cases very near 
to unity. 

Pr J'(O) 114>=0.05 TIJ' I f'(O)=o.o5 I J 
0.71 0.660 2.39 2.54 1.014 1.562 
1.0 0.626 2.38 2.81 1.022 1.654 
5.0 0.47'1 2.46 6.23 1.008 2.518 
7.0 0.444 2.51 7.55 0.992 2.796 

Table 2.1: Calculated similarity parameters 

Now it is possible to calculate the relevant variables u, w and T with 

u 

w 

T-T00 

By defining 

~ (2!-1 RaPr) 215 xz-415 J'(rJ)- ~ (43 r 1 RaPr)
115 

z-215 J(rJ); 

(2!-1 RaPr)2/5 zl/5 J'(7J); 

( 4314 RaPr) - 1
/

5 z-3/ 5 4Y(rJ). (2.51) 

+oo 

J = J f'dr], (2.52) 

-oo 
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Figure 2.1: Calculated similarity streamfunction {top) and velocity profiles (bot
tam} 
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2 4 6 8 10 

Figure 2.2: Calculated similarity temperature profiles 

of which the value is given in table 2.1, the flow rate in the plume can be deter
rnined. 

Experimental studies reviewed by Jaluria [1985] were compared with the solu
tion as obtained by Gebhart using the full dimensional boundary layer equations. 
They show a maximum temperature of 15-20 percent lower than the theoreti
cally predicted centreline temperature. It is suggested that the difference is due 
to scattering of data caused by a slightly swaying motion of the plume. Of course, 
the laminar downstream part of the plume will always be influenced by the turbu
lent upstream part. The influence may be either direct or due to the confinement 
of the flow. The latter leads to an interaction with the not yet fully died out 
turbulence that is advected to the heat source. 

Another point is the theoretically considered region z 2:: 0 which implies no 
entrainment from below the source. If a horizontal plate is placed to obstruct 
entrainment from below, the centreline temperature has been observed to rise. A 
cornplieation that arises here however is the introduetion of a no-slip condition 
at the plate surface. 

2.4.3 Stability of laminar plumes 

The hydrodynamic stability of the laminar plume induced by a horizontal line 
souree of heat was investigated by Pera and Gebhart [1971]. Since two-dimensional 
disturbances are the least stabie they considered only two-dimensional distur-
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bances for the temperature distribution and the streamfunction superimposed 
u pon the parallel base flow. 

From the inviscid solution it was found that the flow was much less stabie 
for asymmetrie disturbances than it was for symmetrie ones. Low frequency dis
turbances were found toyieldan unstable flow. These disturbances are strongly 
amplified downstream. At sufficiently high frequency (! > 15 Hz for Pr=0.7) 
disturbances are always damped. In experiments, also performed by Pera and 
Gebhart [1971], it was found that disturbances with frequencies higher than about 
12 Hz were not detected downstream, disturbances of lower frequencies gave am
plification. Total disruption of the flow happened at a shorter distance of the 
souree with decreasing disturbance frequency. 

In experiments without artificially imposed disturbances Bill Jr. and Geb
hart [1975] found that the end of the transitional region is positioned at a height 

z = (3 -108)
5

/
12 4-5/4J-5/3Ra-113Pr112. The transition was defined by a crite

rion based on visual inspeetion of the flow (interferometry) along with the max
imum instantaneous mid-plane temperature. Such a criterion was found to he 
necessary due to the fact that not all observed flow fluctuations may be associ
ated with turbulence. The beginning of the transition could not be determined 
that accurately due to the intermittency, together with an unsufficient control of 
boundary conditions. 

2.4.4 Turbulent plume: an integral model 

In an integral model the momenturn and buoyancy equations are averaged over 
the plume cross section. Furthermore an entrainment assumption is used as de
scribed by Turner [1986]. Additionally a hypothetieal profile is taken for vertical 
velocity and temperature. Then, in the two-dimensional case, the vertical mo
mentum equation for the time-mean componentscan be written as 

(2.53) 

By integration over a horizontal plane z = G the first term vanishes because of 
symmetry, leading to 

+oo 

a J w2dx 

-oo 

+oo 

RaPr j Tdx. 
--oo 

In the same way the energy equation becomes 

+oo 

{) j wTdx = 0. 

-co 

(2.54) 

(2.55) 
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Integrating the continuity equation over the same plane relates the vertical plume 
velocity w to the entrainment velocity u 00 : 

resulting in 

+oo +oo 

I au.d I awd -x+ -x ax 8z 
-co -oo 

-oo 

+oo 

+ :z I wdx, (2.56) 

-co 

(2.57) 

If it is assumed that the distributions of velocity and temperature have a 
Gaussian distribution with different widths, according to 

T (2.58) 

the plane integrated quantities become 

-co 

+oo I wTdx 
-co 

-oo 

(2.59) 

-oo 

To close the equations an entrainment hypothesis may be used that prescribes 
the inflow in the plume. In turbulent conditions a linear spread of the plume width 
with height is commonly observed. Thus it follows that a suitable entrainment 
hypothesis is given by a constant ratio a of time mean entrainment velocity to 
vertical velocity at the core 

The set of equations now becomes 

a 
( v'i.wcb) = 2awc; 

0. 

(2.60) 

{2.61) 
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Incorporation of the conservation of mass of the above set of equations into 
the momenturn equation yields an equation relating Wc to Tc. This can be solved 
by using the buoyancy flux, leading toa secoud equation for Wc and Tc, 

The solution for Wc becomes 

so that 
OWc = 0. 
oz 

(2.62) 

(2.63) 

(2.64) 

This leads to the solution of the Gaussian integral entrainment model for a plane 
turbulent plume, 

2a 
b = ..[irz; 

w ~J2a-1f3 (!3T/3; 1) 1/6 (RaPr)lf3e-(x/b)2; 

T ~J2a-213f3i/6 (f3r + 1)1/3 (RaPr)-lf3z-le-f3r(x/b)2. 
2 

2.4.5 Turbulent plume measurements 

(2.65) 

From experimental observations, as found in the literature, a and f3r can he 
estimated. In full dimensions the specific buoyancy flux is the relevant sealing 
factor. It is defined by 

g{3q' (;;; )3 
B = pep = RaPr H . (2.66) 

The first important measurements were performed by Rouse et al. !1952]. 
These experiments were conducted in air, using gas burners as a heat souree 
("yielding low, blue flames"). The experimental results were obtained using a 
vane anemometer for determination of the velocity and copper-constantan ther
mocouples for the temperature. They found for the dimensional time mean ve
locity and temperature profiles the following relations 

w 

T (2.67) 

with kw = 1.80 and kr = 2.60. Combination of these results with those obtained 
by the entrainment model does not lead to a consistent set of a and /3r values. 
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Deriving them on the basis of the exponents, values of 0.157 and 1.281 are ob
tained, respectively. Using these values to calculate kw and kr yields kw 1.44 
and kr = 3.34. Both the model and the measurements are expected to suffer 
from inaccuracîes, resulting in the discrepancy. 

Kotsovinos [1975] determined the mean midplane veloeities for turbulent 
plane buoyant water plumes, laser doppier anemometry. In his measure
ment the plume flow was created by releasing low density water from a slit in 
an environment at reference density. A value of kw = 1.66 was obtained. Later 
on Kotsovinos and List [1977] measured kT to be equal to 2.4. 

It can be concluded that with the data of the cited measurements a consistent 
determination of the valnes of a and fJr is not possible yet. Furthermore the 
domains in which the valnes of kw and kr are located are rather large, covering 
the range kw 1.4 1.8 and kr 2.4 3.3. 

Furthermore Kotsovinos found for the fiuctuations both for the temperature 

and vertical velocity, and v=::fiJw, a maximum value of 0.4 in the central 
region of the plume. 

Reviews of turbulent jets and plumes can be found in List [1982] and Rodi 
[1982]. More reeent research advances are published in Davies and Valente Neves 
(1994]. 
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Chapter 3 

Direct and large-eddy 
numerical simulatio11. 

3.1 Direct numerical sirnulation 

vVith an increase of the forcing of the flow the kinetic energy spectrum broadens. 
This means that kinetic energy is cascaded to smaller and smaller eddies. The 
computational grid must be refined enough to resolve the smallest occurring spa
tial modes. Using a kinetic energy conserving scheme on a grid that is too coarse 
for this would introduce so-called aliasing errors. It leads to an accumulation of 
kinetic energy at wavenumbers corresponding to the mesh size. Hence, for high 
forcing rates the flow cannot be resolved anymore on a given computational grid, 
within an acceptable computational storage or computing time. 

The computational grid must be refined in order to capture even the smallest 
length scales with suflident accuracy. With the wavenumber also the sampling 
frequency increases. At the same time, both from a physical and a numerical 
point of view, the time-step has to be decreased. 

The ranges in physicallength and time scales have been estimated in equations 
(2.33) and (2.34). Fora three-dimensional computation this leaves us with a core 
storage in words that is proportional to 

(3.1) 

The total amount of computational work to obtain a physical description of the 
turbulence is proportional to 

W ex: (Ra/ Pr2) 11/12 . (3.2) 

For natural convective flows, the computational work does not increase as fast as 
in the case of forced convection where it is given by w, ex: Re 1114

. However, in 
terms of power-supply the sealing is similar. The velocity, as used in the definition 
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of the Reynolds number, scales with the cubic root of the power supplied in the 
turbulent case as given for example by 2.65. Thus both relations show an identical 
behaviour. 

From a phenomenological point of view there are some differences between 
forced convection and natura! convective flows. N atural convection tends to fill its 
available space on every scale. All sizes of eddies tend to be uniformly distributed, 
whereas in forced convective flows regions of increasing shear and vorticity are 
distributed more and more sparse. 

As will be outlined in the discretization section of this chapter the temporal 
numerical sampling rate is higher than the la.rgest physical frequenties. This is 
necessary in order to maintain a numerically stabie integration process. 

3.2 Large-Eddy simulation 

3.2.1 Introduetion 

In large-eddy simulation subgrid adveetion is lumped into nonlinear grid scale 
diffusion by a model. In this way the spatial resolution is decreased and with 
it also the temporal resolution. This leads to a substantial decrease in both 
computational storage and work. 

To cut off the highest wavenumbers ( and thus frequencies) the governing 
equations have to be filtered with a spatial filter to obtain a set of equations for 
the grid scale variables, that can reasonably be discretized. By performing the 
filtering operation extra terms appear, accounting for the subgrid contributions. 
The subgrid contributions are unknown in principle and therefore they have to be 
modelled. The model should be denoted in terms of known, grid scale variables 
to close the system of equations. It should mimic the kinetic energy drain from 
grid scale to subgrid scale wavenumbers in a satisfying way. There should be 
no excessive accumulation or drain of kinetic energy at the end of the resolved 
spectrum. Furthermore the physical cascading process should be approximated 
as close as possible. 

3.2.2 The filtering procedure 

The basis of the theory of large-eddy simulation consists of the application of 
a spatial convolution filter to the governing equations. This procedure splits a 
generic turbulent variabie f into a large scale, or grid scale component 1 that can 
be resolved, and a small scale or subgrid component f'. The subgrid component 
is a spatial fluctuation a.round the spatially varying grid scale component. The 
decomposition and the convolution of f with a filter function g over the flow 
domain n are given by 

(3.3) 
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and 

f(xi, t) j g(xi- xDJ(x~, t)dxL (3.4) 

n 
or in speetral space (in which a function denoted by a capital is the Fourier 
transfarm of the lower case denoted function) F(ki, t) G(k;)F(ki, t). The filter 
function g has to satisfy the normalization condition, so that the filtered variabie 
is not amplified or damped, J g(x; - x~)dx~ 1. 

n 
It is also possible to average a quantity over a fixed volume cell. In contrast to 

the use of the convolution filter procedure the quantity will be piecewise constant 
within each grid cell. This method was used by Deardorff [1970] and Schumann 
[1975] and may have some advantages as will be explained further on. The method 
will be referred to as the "volume balance method", as it was called by Schumann. 

Leonard [197 4] gives some examples of the most important filters. The filters 
with characteristic widths Ll are the top-hat filter or (continuous) volume average 
filter, 

x')= { 1/ Ll if lxi- x~! < D./2; 
' 0 otherwise ' 

(3.5) 

the Gaussian filter, 

/6 -6(x· x~) 2 jt:. 2 g(xi - xD y :;;:K2e ' , (3.6) 

and the sharp Fourier cut-off filter, 

( 
.. _ ') _ 2sin('rr(xi- xDJt:.) 

g x, x, - ( ') . 
1r Xi xi 

(3.7) 

The Fourier cut-off filter is a top-hat filter in waveuurober space, that is why 
the attributive "sharp" is frequently used. This filter tbus filters out tbe high 
waverrumhers abruptly from a certain cut-off wavenumber without disturbing the 
low wavenumber contents. The Fourier transfarm of a Gaussian filter is also a 
Gaussian, whereas tbe transformeel top-bat filter bas the form of tbe Fourier filter 
in the physical domain. Because of tbe fact that tbe kernels of the Gaussian filter 
and especially the Fourier filter are not limited, application of these filters in 
physical space is very time consuming. In speetral space the Fourier filter has a 
discretely limited kernel and is easy to adopt. 

The top-hat filter is implicitly applied by finite difference operators as in tbe 
present work. Rogallo and Moin [1984] show that the derivative of a continuons 
function, f (x), evaluated with standard second order fini te differences is equal to 
the derivative of this function filtered with a top-hat kernel, according to 

aj 
a x 

(3.8) 
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This means that small scale variations J', as defined by top-hat filtering, are 
implicitly filtered out by the finite difference operator. 

If the filter is symmetrie and if it possesses the property of having a constant 
filter width, it can be shown that the commutative property of the filtering process 
with respect to space and time holds, i.e. 

of a] 
-=-; 
OXi OXi 

of 8] 
at at· (3.9) 

The filtering operation is linear, i.e. !I+ h = ] 1 + ] 2 and af = a]. For the 
top-hat filter the inequalities 

(3.10) 

hold, the second derived from the first with the aid of (3.3). In the case of adoption 
of a sharp cut-off filter, or a volume balance method these inequalities turn into 
equalities, which may be regarcled as advantageous. This will be shown in the next 
section. Application of the filtering operation (3.4) to the governing equations 
and assuming that both the large scale and filtered subgrid scale contributions of 
the continuity equation are solenoidal, yields for the evolution of the large scales 

/}ï4 
--0· 
OXi- ' 

3.2.3 Subgrid-scale stresses and fluxes 

Definition of subgrid stresses and fluxes 

(3.11) 

(3.12) 

(3.13) 

A discrete approximation of the equations for the large scale motion may be 
adopted to simulate the flow. Yet, the terms UiUj and uiT can not be evaluated 
directly. These terms can be uuraveled to yield 

(3.14) 

(3.15) 

Now the first term on the right hand side is the new resolved non-linear term. The 
second terms are the subgrid stresses and fiuxes, respectively. They are unknown 
and will be subjected to parameterization to close the system of equations. 

First the subgrid stresses will be discussed as given by 

(3.16) 
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By virtue of the decomposition 3.3 these stresses can be reeast in the form 

Tij= (3.17) 

with the Leonard stresses (Lij), which consist of fully resolved quantities, the 
cross stresses (Gij) and the Reynolds su bgrid scale stresses ( ~j), w hich are de
fined by 

Lij= 

Gij= uiuj + 
and 

Rij= 

The subgrid fluxes are defined by 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

This expressioneau also be split into resolved, cross and Reynolds fluxes, respec
tively. 

With the definitions of Tij and hj the governing equations for the large scale 
motion become 

(3.22) 

(3.23) 

- 2-
fJT fJ (-r)-fJT m -nt + ~ Uj - ;:; 2 + q - !:l . 
u ux3 uxj ux3 

(3.24) 

Interpretation and modelling consequences 

If a shar_p Fourier cut-off filter is applied, or in a volume balance method, the 
relation 1 = 1 holds. Substitution of this expression in the filtered decomposition 
(3.3) would yield = 0. Thus both the Leonard stresses and the cross stresses 
would be equal to zero. However, the filtering operation is applied implicitly. 
The contribution of subgrid stresses that have to be modelled depends on a 
hypothetical filter definition. 

As can be observed from (3.18), in principal the Leonard stresses have nothing 
to do with "subgrid" contributions. With the aid of the theory of homogeneons 
isotropie turbulence Leonard [1974] estimated its value by assuming that a non
sharp convolution filter is employed (i.e. the top-hat or Gaussian filter). The 
result is given by Lij ,...." ~; -J?uiUj + 0(~4 ). Then a t.entative lower bound for 

J 

the additional accompanying energy drain was estimated to be about 30 ± 10 
of the total kinetic energy dissipation. Because of the secoud order behaviour of 
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the Leonard term it is expected to be of equal magnitude as the truncation error, 
0(~2 ) in asecondorder discretization. 

On the one hand this condusion pleads for an explicit evaluation of the 
Leonard stresses. On the other hand Speziale [1985] has shown that the Leonard 
stresses and cross stresses are not Galilean invariant. This is contradicting the 
basics of turbulence theory in which the description of the fiuctuations is inde
pendent of any reference frame of linear uniform motion. 

The effects of inclusion of the Leonard term were stuclied by Antonopoulos
Domis [1981], using a staggered grid as employed in the present thesis. He found 
that instead of draining kinetic energy from the largest resolved scales, the effect 
of the Leonard term was a backscatter from the high resolved wave numbers to 
smaller ones. This was also found to be true for scalar variance. 

In the present work the total of the composing stresses of Tij will be subjected 
to parametrization, omitting the explicit effect of the Leonard terms, as is usu
ally the case. From now on Tij and hj will simply be called subgrid stresses and 
:fiuxes. The closures used to model the contributions of the subgrid stresses and 
fiuxes in terms of the resolved quantities are formulated in the next sections. Re
cent investigations concerning the filtering approach and the handling of subgrid 
stresses are presented in Germano [1990] and Germano [1992]. 

3.2.4 Kinetic energy transfer 

In this section a closer look is taken at the kinetic energy of the flow in order to 
study the energy drain. An equation for the transport of kinetic energy of the 
resolved scales, 

- 1 __ 
e = -u·u· 2 • • , (3.25) 

can be obtained from multiplication of the momenturn equation (3.23) by the 
resolved velocity Üi. With the identity Tij= Tji and the deformation rate tensor 
of the resolved scales (which is also symmetrical), 

S·· _! (äüi äüj) 
ZJ- 2 ~ + !:! l 

VXj VXi 
(3.26) 

the subgrid scale contribution to the large scale motion can be written as 

ÖT. .. - ZJ -u·--
• OXj 

(3.27) 

This yields for the kinetic energy of the resolved scales: 

Öë ä - + -(u·e) ät OXj J 

(3.28) 
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The first term on the right-hand side of (3.27) redistributes kinetic energy. 
Therefore the second term has to account for the kinetic energy transfer over the 
cut-off·, i.e. the subgrid scale dissipation -<:(kc) = . The mean interscale ki
netic energy transfer over the cut-offis from small to large wavenumbers. Locally, 
both in space and time, there may he a transfer of kinetic energy from the small 
scales to the large scales. This phenomenon is called "backscatter". Especially 
in two-dimensional flows the transfer of kinetic energy is towards the large scales 
of motion, resulting in aso-called inverse energy cascade, see Kraichnan [1976]. 

In plume flows this phenomenon might also he important. In a plume the 
vertical component of the velocity is the largest and attains a local maximum. 
This holds both for a laminar and for a turbulent time mean plume flow. Further
more, in a laminar plume the flow accelerates downstream. This will also he the 
case in a ftuctuating turbulent plume at a significant number of locations, as the 
mean upward turbulent plume flow is constant. Recognizing that the main con
tribution to the subgrid scale dissipation in the plume is provided by the vertical 
component reveals the importance of backscatter in this situation. It is given by 

(3.29) 

with both u~ >u~, and 8u3j8x3 > 0. Thus forthese locations a positive souree 
term for the resolved kinetic energy is provided. 

An equation similar to (3.28) can be derived for the transport of filtered 
subgrid scale energy, esgs = ~u~u~. Subtracting the resolved momentmn equation 
from the full momenturn equation and multiplying it by u~ gives 

Most terms in this equation are again of a redistributing kind. Here the subgrid 
scale dissipation appears with opposite sign in comparison with the same term 
in the equation for resolved kinetic energy. In this equation it is a production 
term fed by the large scales motion. The third term on the right hand side is 
responsible for the viseaus dissipation of kinetic energy. 

Several researchers investigated the value ofthe subgrid scale dissipation E(kc) 
as obtained by direct numerical simulations. Amongst them Piomelli et al. {1991] 
found that the energy transfer upscale and downscale have almast the same val
ues. They also found that these valnes were large compared to the viscous dis
sipation. Recently Domaradzki et al. [1994] stuclied the energy transfer between 
wavenumbers in turbulent channel flow. They found that the main energy transfer 
is between successive octave bands, i.e. between ~kc < k < kc and kc < k < 2kc. 
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Additionally it is well known that kinetic energy transfer can have very large 
spatial variations. Another fact is that the viscous energy drain occurs in very 
localized vortical regions as already remarked by Taylor [1935]. 

3.3 Subgrid-scale models 

3.3.1 Introduetion 

Most subgrid scale models have been developed from the viewpoint of forced, 
fully developed, turbulent convection. The parametrization of the subgrid scale 
stresses is usually based on the Kolmogorov spectrum. The main assumptions 
for the parametrization as used in the present work are summarized here. 

First the subgrid scale stresses are decomposed into an isotropie and a devi
atoric part, resulting for the deviatoric part in 

d i 1 
Tij =Tij- Tij =Tij - JTkk{jij· (3.31) 

The isotropie part does not give rise to any deformation. So the subgrid isotropie 
stress leads to a grid scale pressure rise that is recombined with the resolved 
specific pressure. The parametrization is applied to the deviatoric part of the 
subgrid scale stress tensor. The notation for the modification of the pressure and 
stresses will he omitted. 

As a first step to model the subgrid scale stresses a gradient diffusion form 
hypothesis will he exploited. In this way an eddy viscosity model arises, simHar 
to the Newtonian molecular diffusion: 

(3.32) 

with Km the eddy viscosity. Subgrid convection is lumped to grid scale dissipa
tion. The parametrization is shifted from the stresses to the eddy viscosity. Here 
it can directly he observed that a positive definite Km yields a positive definite 
kinetic energy transfer to the subgrid scales. Thus, it always removes kinetic 
energy from the resolved scales to account for the hypothesized dissipation. In a 
similar way an eddy diffusivity Kh is defined (analogous to Fourier's law) as 

(3.33) 

It is assumed that the subgrid heat fiuxes behave in a similar way as the stresses 
do. Subgrid adveetion is lumped to grid scale diffusion at a rate proportional 
to the dissipation. This requires the introduetion of a turbulent Prandtl number 
Prt defined by 

(3.34) 



3.3 37 

In contrast to the molecular Prandtl nurnber, which is a property of the fluid, 
the turbulent Prandtl nurnber is a property of the flow. On the basis of sev
eral publications Eidson [1985] observed that the turbulent Prandtl number was 
rnostly chosen in the range i < Prt < ~· Most of these publications dealt with 
relative high Rayleigh nurnbers and it is not clear what the value should he at low 
turbulence intensities. Frorn Reynolds-averaged k - E turbulence rnadelling it is 
observed that Prt ~ 0.9, even for low Reynolds number rnodels (see e.g. Henkes 
[1990]). 

In the description of the Navier-Stokes equations in the previous chapter 
a Newtonian fluid with constant viscosity and diffusivity was assumed. \Vith 
this assurnption the diffusion parameters could be taken out of the differencing 
operation of the viscous stresses and conductive heat fluxes. Zero divergence 
then led to the forrn as presented in chapter 2. Now the coefficients are not 
constant any longer and we must use the original stress and heat flux formulation. 
Incorporation of the eddy viscosity and eddy diffusivity concept, yields for the 
diffusive terrns in the momenturn and energy equation respectively 

a2ui aTij a 
Pr-a 2 -a = ((Pr+Km)Sij); (3.35) 

xj Xj 

a2T ahj a ( Km) af' 
ax] - axj = axj 

1 + Prt axj 
(3.36) 

Models for the pararnetrization of Km as used in the present work are dis
cussed in the next sections. Another point of view to be mentioned is the direct 
modeHing of Tij by means of resolved stresses, at a slightly larger scale than the 
cut-off scale. The most important model in this class is the scale similarity model 
of Bardina et al. [1984]. 

3.3.2 Smagorinsky model 

In statistica} equilibrium the drain of kinetic energy over the cut-off wavenurnber 
kc is constant if kc is in the inertial range. This kinetic energy transfer is given 
by 

-E(kc) TijBij -2KmSijSij· (3.37) 

On the basis of dirnensional argurnents the Srnagorinsky model ( Smagorinsky 
[1963]) can be derived. Assurning a fluctuating subgrid velocity scale u~98 and 
a subgrid mixing length lsgs the viscous dissipation and eddy viscosity can be 
estirnated with 

u'3 
E(kc) rv sgs; Km"" U~98 lsgs· (3.38) 

lsgs 

Using (3.37) the subgrid velocity scale becornes 

(3.39) 
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with the magnitude of the resolved rate of strain defined as 

(3.40) 

Relating the subgrid mixing length to the grid scale a, using the Smagorînsky 
constant of proportionality C8 , results in a model for the eddy viscosity, given by 

(3.41) 

Lilly [1967] adjusted the Smagorinsky constant in a fashion to he consistent 
with the Kolmogorov spectrum. To that end he approximated the energy transfer 
by 

kc 

2Km8ij8ij = j 2Kmk2 E(k)dk. (3.42) 

0 

With the Kolmogorov spectrum for E(k) a minimum estimate for E(kc) can he 
made: 

kc 

28··8·· < !2CkE(k )213 k 113dk = ~CkE(k )213k413. •J tJ - c 2 c c (3.43) 

0 

It is a minimum estimate for the energy drain due to the fact that the inertial 
range is not extended up to k = 0, in the direction of decreasing wavenumbers. 
Substituting the obtained dissipation back into (3.37) yields a value for the eddy 
viscosity Km, 

( 
2 )3/2(28·8")3/2 

K > - tJ •J k-2 
m C 'c · - 3 k 2SïjSij 

(3.44) 

Substitution of the cut-off waveuurober for the top-hat filter kc = 1r /a yields an 
eddy viscosity model, given by 

( 
2 )3/2 (À)2-

Km = 3Ck -; ISI, (3.45) 

that eau be written in the form (3.41), with 

- !:. (-2 ) 3/4 
Cs- 1r 3Ck (3.46) 

For a common used value of the Kolmogorov constant Ck = 1.5 the Smagorin
sky constant becomes Cs = 0.173. The values of Cs that are used in practical 
large eddy simulations vary in the range Cs = 0.1 - 0.2, see Schmidt and Schu
mann [1989]. Nieuwstadt [1990] reports high correlations of successfullarge eddy 
simulations of forced convection flows with small Cs and successful LES of free 
convection flows with large C8 , within the above given range. 
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3.3.3 Structure-function model 

The structure-function model was developed by Métais and Lesieur [1992] on the 
basis of the speetral eddy viscosity concept as established by Kraichnan [1976]. 
This idea was generalized to physical space. The speetral eddy viscosity is based 
upon a kinetic energy spectrum local in space: 

(3.47) 

and the kinetic energy spectrum Ex(kc) at x is calculated with the aid of a 
local secoud-order velocity structure-function. In their study of homogeneons 
isotropie turbulence, where internal intermittency exists, Métais and Lesieur 
[1992] show that the structure-function model gives the best agreement with a 
Kolmogorov spectrum if a Kolmogorov constant of Ck = 1.4 is used. The 
comparison was made between the structure-function model, speetral models and 
the Smagorinsky model. Therefore some impravement could be made with the 
structure-function model. 

Like the Smagorinsky model the structure-function model can be written as 
a mixing length model, i.e. in terms of the second expression of (3.38), where 
u~gs denotes a charaderistic velocity difference on the computational grid mesh 
with spacing lsgs 6... For the mixing length velocity u~gs the square root of the 
second order resolved velocity structure function is evaluated within a volume of 
characteristic length 6... Over this volume, the secoud order velocity structure 
function is defined as 

(3.48) 

(where 0 denotes the spatial average over the given volume). In Batchelor [1953] 
the relation between the second order structure function and the energy spectrum 
is given, assuming a Kolmogorov spectrum from k 0 up to oo: 

(3.49) 

with r(l/3) = 4.82. 
The local kinetic energy, needed to calculate (3.47), can be evaluated using 

the dissipation E from the -5/3 law, substituted into (3.49), which results in 

E(kc = 1f / 6..) 
1 

4.82n5/3 6..F2(6..). (3.50) 

This yields for the eddy viscosity (3.47): 

(3.51) 
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Intheir paper Métais and Lesieur [1992] deduce arelation between the structure 
function and the filtered structure function: F2 2.53F2, so that the final model 
is given by 

-3/2 r:;;:. 
Km= 0.105Ck t:ly Fz. (3.52) 

The eddy viscosity model based on the structure function can be related to 
the Smagorinsky model. The spatial average of the structure function on a cubic 
equidistant grid is given by 

Fz(x) 
1 
6 (llu(x + t:lx) - u(x)ll2 + llu(x- t:lx) - u(x)ll 2 + 

llu(x + t:ly)- u(x)ll2 + llu(x- t:ly)- u(x)ll2 + 
llu(x + t:lz) - u(x)l/2 + llu(x- t:lz) - u(x)ll2

) . (3.53) 

The velocity in this expression may be expanded in a Taylor series, according to 

(3.54) 

With t:l t:lx = t:ly = t:lz the structure function becomes 

(3.55) 

with the vorticity defined as Wi = EijkOuk/oxj. Here Eijk is Levi-Civita's alter
nating tensor. This results in 

(3.56) 

This is a mixture of the original and a variant of the Smagorinsky model 
as proposed by Kwak et al. [1975]. Instead of the resolved strain they used a 
formulation based on the resolved vorticity, as given by 

(3.57) 

The constant of the form (3.56) is reduced to 0.882C8 • 

3.3.4 Kolmogorov-Prandtl model 

A slightly more complicated model can be derived from the equation for the 
subgrid energy (3.30). Solving this equation yields a value for the resolved subgrid 
energy as function of space and time. This energy can be used as a subgrid 
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velocity scale for, again, a mixing length type of closure. The turbulent viscosity 
in terros of the subgrid energy is then defined as 

(3.58) 

However, equation (3.30) can not he solved immediately. Some additional 
assumptions have to he made. The gradient diffusion hypothesis is used for 
subgrid stresses and fluxes. This is also used for the combination of transport 
terros of the correlation of subgrid velocity with subgrid energy ( e~gs = !u~uD, 
and subgrid velocity with subgrid pressure, see e.g. Speziale [1991]: 

(3.59) 

and an assumption is needed for the value of Ke. In the present study Ke is 
taken to he equal to Km, as discussed in the paper of Speziale. 

The last unknown term is the dissipation, 

(3.60) 

By assuming a Kolmogorov spectrum from k = kc up to oo we can express E in 
terros of esgs, according to 

3/2 
C Csgs. 
d~, 

7r (-2 )3/2 
3Ck 

(3.61) 

With the aid of the identity 8f8x;(u~p1 ) = 8f8xj(ujp1
), the additional equation 

that has to he solved finally reads: 

3/2 
C 

esgs 
d~· (3.62) 

A one-equation model like (3.62) is generally referred to as a Kolmogorov
Prandtl modeL It provides the computation of the resolved turbulent kinetic 
subgrid scale energy and accounts for some limited nonlocal and history effects 
in the determination of the eddy viscosity. This type of model has been preferred 
by Schumann [1975], Grötzbach and Schumann [1979], Deardorff [1980] and 
Moeng [1984] for natural convection fiows in buoyant channel fiows and convection 
in the planetary boundary layer. Korte et al. [1992] used this type of model to 
study the decay of homogeneons isotropie turbulence. 
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By balancing production and dissipation in equation 3.62 and using 3.58 for 
the dissipation we obtain again a Smagorinsky type of model: 

-
2 -- RaProT 

Km = ~ 2SijBij - -p -
0 

8ia· 
rt Xi 

(3.63) 

This is an extended Smagorinsky model that also takes buoyancy effects into 
account. On the one hand, the infiuence of an unstable stratification, yielding an 
increased kinetic energy drain to the subgrid scales, is thus taken into account. 
On the other hand, the model accounts for the physical aspects accompanying 
stabie stratification, in which case a decrease in energy transfer to small scale 
motion occurs. Note that the value of the eddy viscosity has to be confined 
to zero at the lower end. In fact this model was used by Eidson [1985] and 
preliminary tests in this study showed some improvement. Now also the value of 
Cp, can he determined, according to 

c =.! (-2 )3/2 
"" n 3Ck (3.64) 

For a generally accepted Kolmogorov constant of Ck 1.5 the value of the 
constant becomes Cp, = 0.094. Using Ekc of 3.61 and a Smagorinsky closure, the 
resolved subgrid kinetic energy can he estimated by 

(
Km )

2 

esgs = ~CP- (3.65) 

3.3.5 Germano's dynamic model 

Intherecent past Germano et al. [1991] proposed a new eddy viscosity model in 
which the model coefticient is calculated dynamically. It allows the coefticient to 
vary with the flow problem temporally as well as spatially. This may overcome 
the drawbacks of the traditional Smagorinsky model, especially in the context of 
transition from laminar to turbulent flow. No a priori knowledge of the model 
constant is needed and the subgrid scale stresses obtained with the model are 
claimed to vanish in laminar fiows and at solid boundaries in a physically correct 
way. 

The model is obtained by evaluating the subgrid scale stresses in a confined 
region at the underside of the cut-off waverrumher kc. In this way large resolved 
waverrumhers do not affect the model. The subgrid scale stress tensor for the 
large-scale (grid) field reads 

(3.66) 

Application of a coarser spatial "test" filter with width Li ""0(2~) to the equa
tions gives subtest-scale stresses, signified by a caret over the overbar: 

(3.67) 
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Here, in actual computations, test-filtered quantities are obtained bv convoluting 
the large-scale quantities with a filter of width .6.. . 

In the initial formulation the Smagorinsky model was assumed to hold for 
both the isotropie partsof the subgrid and the subtest-scale stresses, i.e.: 

(3.68) 

Tij= -2I<mSij, I<m = C~2 Is I . (3.69) 

Consistent Smagorinsky modelling of and Tij depends on a proper local choice 
of C = c;. It can be directly observed that it is possible now to have a vanishing 
subgrid-scale contribution in the case of laminar flow. In that case the constant 
should also vanish. Even stronger, when there is an inverse energy cascade, as 
is the case for the hypothetical two-dimensional turbulence of Kraichnan [1967], 
the constant is able to obtain a negative value. 

The main observation of Germano et al. [1991] is that the stresses at the two 
levels are related to each other by the algebraic identity 

(3.70) 

with 
and (3.71) 

Cij is the resolved small-scale stress, i.e. the stresses in the test window between 
the test scale and the grid scale. 

In the original formulation it was assumed that C is a slowly varying function 
of space. This was used as a justification for taking it out of the filtering operation. 
However, in generic cases, taking C out of the filtering operation is not consistent. 
The problem can be avoided by averaging C in one or more suitably chosen spatial 
directions. Subsequently, the filtering operation is applied only in this direction. 
This meaus that in the filter direction C does not vary anymore. In this case 
the constant may be taken out of the filtering operation. In order to obtain a 
physically meaningful solution the averaging direction must be a homogeneaus 
direction. If there is no homogeneons direction present in the flow problem, a 
localization method must be used (see e.g. Piomelli and Liu [1995]). In the 
calculations as presented in this thesis the averaging strategy is applied. The 
averaging direction is taken parallel to the heat source. Thus the filtering plane 
is perpendicular to the heating element. 

Equation (3.70) involves symmetrie secoud-rank tensors giving (together with 
continuity) five independent equations for C. Germano et al. [1991] originally 
used an arbitrary contraction of 3.70 with Bij to make it unambiguous. Lilly 
[1992] suggested to apply a least-squares approach to minimize at each point the 
energy of the errors of the independent equations. Defining Qij as the residual 
of (3.70), i.e. 

(3.72) 
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with 
Mij= (jij aij (3.73) 

and by minimizing the square ofthe residual with respect to C, i.e. 8(QijQij)/8C = 
0, the dynamic constant is obtained, yielding 

C = ~ .CijMij . 
2 MktMkz 

(3.74) 

Computationally this formulation is more stabie than the original contraction, 
in which the denominator could become very small. The denominator of Lilly's 
expression (3.74) vanishes only if all components of Mij vanish separately, in 
which case the numerator also vanishes. 

Application of the above outlined procedure to the energy equation, yields a 
dynamic evaluation of the turbulent Prandtl number, 

1 1 PiRi -=---, 
Prt C RjRj 

(3.75) 

with -u·T-:::::u·T . . ' (3.76) 

Now the constauts are evaluated during the calculation and are a function 
of space and time. The only adjustable parameter is the ratio between the test 
and grid-scale filter widths. The results of Germano et al. [1991] suggest that 
the sensitivity associated with the ratio of grid widths is low. It was proposed to 
be in the order of /.ij .6. = 2. In principle this gridrati~ is taken in calculations 
a..'! presented in this thesis. However the testfilter operation is performed on the 
gridfiltered variables. In the present work an explicit gridfiltering is needed to 
define grid scale stresses. This is due to the grid arrangement as will be outlined 
in chapter 4. Subsequent application of the gridfilter and the testfilter using a 
top-hat kernel then results in a trapezoidal filter shape with a somewhat braader 
effective width. To account for this in the evaluation of Mij, Vreman [1995] 
derived an optima} value for the ratio to be equal to J5 instead of 2. 

The value of C may become negative, thus allowing subgrid scale turbulence 
to "backscatter" kinetic energy to the grid scales, which is also found in direct 
numerical simulations. If the total viscosity becomes negative the calculations 
are no langer stabie in a numerical sense. Fora FTCS scheme over 2.6.t (forward 
in time centred in space, see next section) applied to a ditfusion problem, von 
Neumann stability analysis indicates that the maximum amplification factor is 
given by: Gmax = 1- 8KAtf.6.x2• Fora total viscosity or diffusivity K lower 
than zero there is amplification. Therefore measures have to be made to ensure a 
stabie integration process. An option that is used in the present work, is to limit 
the value of the total viscosity or diffusivity at least with a lower bound, taken 
to be zero. This allows a limited negative value for C. 
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3.3.6 Recent developments 

Moin and Jimenéz [1993] state that the scalar eddy viscosity approximation is a 
good model if the small scales being modelled are separated from the large scales 
in speetral space. They refer to meteorological situations, in which case an eddy 
viscosity should work quite well, the lateral dimensions being far more extended 
than the vertical dirneusion normalto the planetary sm·face. However, in Navier
Stokes flow kinetic energy can not be transferred from a discrete waveuurober to 
another. Furthermore, for engineering calculations a scale separation is generally 
not present. In addition three other drawbacks of the Smagorinsky model can 
be identified. First, there is the necessity of adjustment of the model constant in 
different types of flows and flow regimes, i.e. type and magnitude of the forcing. 
Secondly, there is an inadequate limiting behaviour in the presence of a wall. 
Another important drawback is the non-vanishing of the subgrid stresses in the 
case of laminar flows. The latter leads to inaccurate prediction of the laminar 
to turbulent transition, the phenomenon of our main interest. In the next few 
paragraphs some important and interesting developments are presented, although 
it is not supposed to be a complete review of the state of affairs. 

In order to improve the model for "soft"-turbulence at low Rayleigh numbers, 
Vake [1994] modified the Smagorinsky model with the use of a dissipation range 
at high wavenumbers. Such a modification is also needeel when the resolution 
approaches the one required for full resolution of the simuiateel turbulent flow. 
Still, the dynamics are assumed to be isotropie and homogeneaus and an eddy 
viscosity assumption is adopted. 

In making the structure function model more "selective", Ducros et al. [1994] 
developed the filtered structure function model. In this model, in evaluating 
the eddy viscosity, the velocity field is high-pass filtered in order to use only 
the information near to the cut-off wavenumber. This procedure gives a nearly 
zero eddy viscosity during the laminar and transitional stages of the flow. This 
property is referred to as "selectivity". 

Generalisation to flow conditions in which also laminar flow may occur is 
provided both by the structure-function model (by its estimation of the local 
spectrum) and the dynamic modeL According to Moin and Jimenéz [1993] the 
structure function model does not have the correct behaviour in the presence of 
a walL On the other hand, the dynamic model, which satisfies adequately the 
wall behaviour, could be improved in several ways. Zang et al. [1993] used a 
dynamic mixed model in which the base model of the dynamic modeHing is a 
combination of the Smagorinsky model and the scale similarity model of Bardina 
et al. [1984]. In this case the full subgriel scale stress tensor is predicted, in 
contrast to the application of an eddy viscosity model which requires an alignment 
of the principal axes of the subgrid scale stress tensor with the resolved strain ra te 
tensor. They justify their way of modelling by the observation that the dynamic 
model accurately prediets the mean dissipation rate. An improved correlation 
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with DNS data is then obtained by the Smagorinsky model, estimating a better 
local dissipation rate. Vreman et al. [1994] modified the mixed model in order to 
make it more consistent. On the basis of a thorough investigation of experimental 
data obtained from two-dimensional partiele displacement velocimetry in a jet Liu 
et al. [1994] conclude that a mixed formulation performs best. 

As described in the previous section the dynamic model needs averaging of 
the constant in a homogeneons direction. This means that the constant is not 
fully local anymore. Furthermore the procedure can not be applied in cases where 
no homogeneons direction exists. Piomelli and Liu [1995] solved the problem by 
using extrapolation of the model constant with a Taylor series up to any desired 
order of accuracy in time. It was stated that the model coefficient vanishes in 
regions of quiescent flow, accurately reproducing the intermittent character of 
the flow. 

Furthermore Ghosal et al. [1995] proposed a variational formulation of the 
dynamic model, removing the inconsistency encountered by just taking the con
stant out of the filter operation. They use a constant that minimizes the L 2 norm 
of the error Qij, resulting in a Fredholm integral equation of the secoud kind for 
C. In order to account for backscatter they used also an alternative formulation. 
A one-equation model was applied in which the resolved subgrid scale kinetic 
energy diminishes to zero in regions where C is negative, in which case the eddy 
viscosity vanishes. 

In dynamic modelling Moin and Jimenéz [1993] suggest some other improve
ments. First they propose a model in which the constauts at the test-filtered 
scale and the grid scale are not identical. From the five independent equations 
for the twp unknowns they determine both constants. Furthermore they propose 
a tensor formulation for the model constant to remove the well-known criticism 
of the eddy viscosity. Additionally it is suggested to model the dissipation over 
the test-filter wave length by the Kolmogorov equilibrium hypothesis, i.e. the 
average rate of kinetic energy drain over the test filter scale is the same as that 
over the grid filter scale. 

The research concerning the improverneut of subgrid-scale models is carried 
out far most for forced convective flows. In thermal convection flows an impor
tant contribution is given by Wong and Lilly [1994]. They describe two additional 
methods for the determination of the dynamic parameters for the stresses and 
fluxes. In the first they propose a dynamic procedure for the buoyant Smagorin
sky model. lt involves an iterative scheme for solving C and Prt, which is quite 
expensive and may suffer from convergence problems. A secoud more succesfut 
method is presented which is based on a scale analysis. A dynamic parameter is 
introduced in which the total dissipation is incorporated. Thus the combination 
of the subgrid dissipation and the subgrid buoyant production term is left as an 
unknown, avoiding the coupling problems. 



Chapter 4 

Numerical methad and 
performance in plume flows 

4.1 Numerical methad 

4.1.1 Time integration 

A major difficulty in discretizing the momenturn and continuity equations is 
that they appear coupled. Continuity is a constraint in the treatment of the 
momenturn equation in incompressible fluid flow. Therefore, so-called projection 
methods are used in a large number of time dependent numerical simulations. 
A projection method consists of determining an intermediate (generally non
solenoidal) velocity field, employing an approximate pressure gradient on the next 
time level. Frequently, in executing this step, the pressure gradient is estimated to 
he zero everywhere. Then, in completing the time-step, the intermediate velocity 
field is projected onto a solenoidal subspace. A comprehensive overview of this 
methad is given in Gresho [1990]. 

The most convenient way to describe the methad is using the momenturn 
equation formulated as 

(4.1) 

in which Ri contains everything not explicitly written, i.e. advection, diffusion 
and body forces, according to 

Here, any variabie may he a DNS variabie or a grid filtered LES variable, result
ing in a general description for the numerical metbod (as also used by Nieuwstadt 
[1990]). Application of a leap-frog scheme to the advective term and an Euler 
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forward scheme to the diffusion and forcing yields 

un+l - u~-1 Öp n+l n 

' 2Llt ' = - äxi + Ri ' (4.3) 

with: 

(4.4) 

The huoyancy term is taken at the same instant in time, (n- 1), as the vis
cous diffusion term. It might he argued that it should he taken at the n level, 
though there were no differences observed in the present flow problems. Splitting 
equation ( 4.3) using an approximate velocity field ui gives 

u!- un-1 
' ' = Rf; 2Llt 

(4.5) 

(4.6) 

These steps are performed in the given order for determining ui and uf+l, re
spectively. The first step is called the prediction step and the secoud step is called 
the correction or projection. 

The prediction step to determine ui is straightforward once the spatial dis
cretization is defined. The correction step is used to enforce continuity. To that 
end the discrete divergence of ( 4.6) is taken, 

_1_ (8uf+l 
2Llt 8xi 

8u':) _, = 
8xi 

(4.7) 

Here 8 is the discrete spatial difference operator. The spatial discretization is 
discussed in more detail in the next section. Enforcing discrete continuity at the 
present time level, 

8un+1 
-'--0 

8xi - ' 

results in an explicit discrete Poisson equation for the pressure: 

1 8u': ----· 
2Llt 8xi · 

(4.8) 

(4.9) 

The new divergence-free velocity field uf+l can now he calculated from ( 4.6). 
Before evaluating the pressure hy (4.9), first the houndary conditions are imposed 
on ui. Also when computing uf+1 from the projection ( 4.6), houndary conditions 
are needed for pressure points in volumes outside the calculation domain. The 
boundary conditions are discussed in more detail in section 4.1.3. 
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Finally a weak low pass time filter is used to prevent the salution from time 
splitting. This may occur due to the "Ieap-frogging", causing a decoupling of 
the odd and even time steps. A symmetrical discrete three-point filter is used as 
proposed by Asselin [1972]. The veloeities at time-stepnare replaced by 

(4.10) 

The value of r determines the width of the filter and is usually taken in the 
range r = 0.05 0.1. Since we have an explicit scheme the time-steps must 
he taken smal! in order to obtain computational stability. It was found that 
the frequency associated with the time-stepping is very much higher than the 
physical frequencies occurring in the problems to he computed. Therefore the 
Asselin filter has only a negligible effect on the results obtained. 

The time-step criterion is determined by the temporal and the spatial dis
cretization. For the present method it is given by Pourquié [1994] as 

(11 
Ui 11 4K )-l 

D.t :::; D.xi + D.x; ' ( 4.11) 

in which K is the maximum diffusion coefficient, i.e. the maximum of the total 
viscosity and the total diffusivity of heat. The first part between the brackets 
in the right hand side of (4.11) is generally called the Courant-Friedrichs-La..x 
stability condition (CFL condition) for advection. The secoud term is a stability 
condition for the diffusive part. Actual simulations are performeel by estimating 
a proper constant time-step in advance. For each discrete point in space it is 
checked whether this time-step exceeds 95 % of the right hand si de of ( 4.11). If 
it does the calculation is stoppeel and may he restarted with a smaller time-step. 
In order to balance the claims on the time-step restrietion of the diffusion and 
adveetion parts we have: Ui ,...., Kj D.xi. In this sense the sealing of the problem, 
in the way as outlined in chapter 2, may he regarcled as advantageous. 

The diffusion terms are Iagged in time because otherwise the scheme would he 
unconditionally unstable for pure diffusion. This can he shown by a von Neumann 
analysis of the central discretization of the diffusion problem, both in time and 
space. This scheme is also referred to as a Richardson scheme. The remaining 
forward-in-time scheme has a truncation error that is first-order in time. However 
time-steps are always very smal!. 

4.1. 2 Spatial discretization 

The discrete collocation points are defined on a staggered grid, as displayed for 
a two dimensional case in figure 4.1. This grid has been introduced 
by HaTlo'W and Welch [1965]. Peyret and Taylor [1983] recommend the projection 
method to be used in combination with this grid configuration. The advantage 
of this griel arrangement is that spurious oscillations in the pressure, known as 
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"checkerboarding", do not occur. This is achieved due to the coupling of the 
velocity and pressure solutions at adjacent grid points using central differencing . 

• • • 

t Wi,kp 

I 
u· k u· k .Pi,k_ u· k - r---!m, • - r--!• r--!p, • 

t Wï,k 

I 
•Pim,krr • • 

jwi,km 
I 

Figure 4.1: Staggered grid in two dimensions 

Discretized scalar variables are defined at the centre of each cell and the 
discrete velocity components are defined at the cell faces. Vector quantities, like 
Ui,k• at a discrete point with index (i, k) are defined at the low index side of 
the scàJ.ar quantities, like Pi,k, as shown in the figure. In the discrete notations: 
im =i- 1, ip i+ 1. 

For the spatial discretization a finite volume methad is applied. The govern
ing equations are integrated over a grid cell, yielding volume averaged equations. 
By discretization of the integral form of the conservation laws it eau be ensured 
that the basic quantities mass, momenturn and energy will remain conserved at 
the discrete level. Whenever possible, volume integrals are reduced to surface 
integrals using the divergence theorem. The resulting integrals are then approxi
mated using a numerical integration rule (for details see Press et al. (1992]). The 
method is described extensively in Pourquié and Eggels [1991]. 
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In the present work the discretization is equidistant and in Cartesian coordi
nates. The finite volumes are chosen centrally around the discrete points of the 
individual momenturn components and scalars. The finite integration volume for 
imposing the conservation of mass is centred around the discrete pressure points. 

Here the numerical integration rule used is the midpoint rule (which is secoud
order accurate). Whenever values areneededat points where they are not defined, 
second-order interpolation using neighbouring points is applied. The derivatives 
are also approximated with the same accuracy by central differences. Application 
of these techniques yields a numerieal integration scheme, which is second-order 
accurate in space. As described in the previous subsection the scheme is also 
second-order accurate in time, except for the diffusion part, which is first-order. 

Implementation of the outlined discretization strategy is straightforward, es
pecially using an equidistant Cartesian mesh. For the discretization of the advee
tion of momenturn a scheme as proposed by Piacsek and Williams [1970] is used. 
They give a metbod in which errors in quadratic quantities, like kinetic energy 
or scalar variance, due to the existence of small divergences (machine accuracy) 
in the velocity field, cancel out. The scheme is described in detail by Piacsek 
and Williams [1970] for linear advection. It is not entirely straightforward for 
the nonlinear case, especially on a staggered grid. The strategy depends on the 
numerical metbod and the integration rule used. Therefore a derivation of the 
discretization for the present case is given in appendix B. 

For the adveetion of scalars a central discretization is unstable for pure ad
vection. Therefore, where needed, a second-order upwinding technique is used 
due to van Leer [1974] and Leonard [1991], as described in appendix C. In the 
appendix and in the next section the differences are exhibited. The main advan
tage of the metbod is the ability of having a stabie and accurate adveetion using 
a relatively coarse discretization. 

The remaining Poisson problem (4.9) is solved by a direct FFT-based solver, 
called CRAYFISHPAK (see Schumann and Sweet [1976]). Fourier transfarms 
are used in the third and second spatial dimension, respectively. Then the tridi
agonal systems for the first dimension are solved by Gauss elimination. The final 
salution is obtained by inverse Fourier transforms of the secoud and third di
mension subsequently. The Fonrier transforms are only fast if the vector length 
( the number of collocation points in the relevant directions) is a highly composite 
number, i.e. the product of powersof small primes. 

4.1.3 Boundary conditions 

Boundary conditions are implemented directly for quantities defined on the bound
ary. Second-order interpolation is used for all other quantities defined at positions 
outside the spatial boundaries of the problem. In this thesis either no-slip walls 
are used in combination with homogeneons Dirichlet or Neumann conditions for 
temperature, or periodic boundary conditions are applied. In the case of pre-
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scribed boundary veloeities bi the conditions are taken as follows 

on r; (4.12) 

on r. (4.13) 

Evaluating the discrete equivalence of ( 4.6) in boundary normal direction n yields 
a consistent boundary condition for the pressure, 

8p 'n+l = 0 
8n 

on r. (4.14) 

However, one should note that the pressure should satisfy ( 4.3) and that condition 
(4.12) is purely artificial. According to Marcus (1984] and Karniadakis et al. 
[1991] the discrepancy may result in an erroneous numerical boundary layer. 
These aspects must be kept in mind when numerical results are interpreted. 

Periodic boundary conditions are applied according to figure 4.2. lmposing 
cl>( is) =cl>( i!) and f/>(if + 1) =cl>( is+ 1), then results in an equal value of 4> and 
its first derivative at both ends of the computational domain. 

boundary 

Figure 4.2: Implementation of periodic boundary conditions 

4.2 Performance test 

4.2.1 Test problem description 

The numerical code was tested by comparison of solutions as obtained by Desrayaud 
and Lauriat [1993] for steady and unsteady confined buoyant two-dimensional 
plumes. These plumes are released from a discrete point souree in the inte
rior of the domain. The flow configuration is plotted in figure 4.3. Desrayaud 
and Lauriat solved the non-dimensional form of the governing equations for 
the two-dimensional case in vorticity-stream function formulation. The non
dimensionalisation was the same as in the present case, outlined in chapter 2. 

The souree term in the energy equation was described by 

q1 = ó(xs- x)8(zs z), (4.15) 
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Figure 4.3: Flow domain and boundary conditions 

where 8 is the Dirac delta function and (xs, z5 ) is the souree position, located 
in this case at ( ~' ~)' where the computational domain has the dimension n = 
(0, 1) x (0, 1). In the discrete sense the Dirac function is approximated by one 
grid volume by imposing the condition that the integral equals unity. 

The Prandtl number was taken to he Pr = 0.71. For the analysis of the 
flow extensive use was made of the values of several variables at three monitoring 
points M1 i), M2 (~, ~) and 11.'h =(~,V as depicted in 4.3. The 
indices of the variables and monitoring points eorrespond to each other. Also the 
streamfunction, and more specifically its maximum, is employed to monitor the 
flow. 

For Rayleigh numbers lower than Ra = 3.0 · 107 , Desrayaud and Lauriat 
[1993] ( called D&L hereafter) found that the system is attracted to a fixed point, 
representing steady motion. At slightly higher Ra numbers a purely periadie 
motion was observed. At Ra uumbers that approach the critica} Ra number from 
above, a transient is obtained, foliowed by a stationary flow. Aftersome time this 
stationary flow starts to oscillate. It was noticed that the closer the Ra number is 
to the critica} value, the longer is the time for attaining the asymptotic flow. This 
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phenomenon suggests that the onset of the periodic flow is due to the presence of a 
Hopf bifurcation point. Indeed, when the Ra number gets closer to the critica! Ra 
number, the timespan comprising the transient and the stationary flow increases 
as (Ra - Rac)-1. The amplitude of the oscillations was found to evolve like 
(Ra- Rac)112 , in accordance with the behaviour of a Hopf bifurcation. The flow 
was observed to undergo a supercritical Hopfbifurcation since no hysteresis effects 
were found. The behaviour of the amplitudes was used to determine accurately 
the critica! point by linear extrapolation of the amplitudes at supercritical Ra 
numbers to zero oscillation amplitude. Thus, the critica! Rayleigh number, Rac, 
was determined to be very close to Ra 3.0 · 107 . However, since there is no 
comparison with other data, it must be remarked that the accuracy depends on 
the numerical method used. The steady solution together with the bifurcation 
will be subject of the present test. 

For the sake of completeness here, the subsequent route to turbulent flow as 
found by D&L will be outlined briefly. At Ra 3.4 · 107 a secoud frequency 
was observed during the transient. At times greater than one this frequency 
vanished. The frequencies were found to be incommensurate and so the flow was 
classified as being quasi-periodic, turning to periodic at later times. At higher 
Ra numbers the flow becomes first periodic with two locked frequencies, and then 
intermittent. In the latter regime the length of the periodic windows between the 
chaotic bursts varied with (Ra - Rac)-112 • 

4.2.2 Present calculations 

In this section it will be checked if the transition to periodic flow can be predicted 
with the present method. Different schemes for the linear and non-linear advee
tion will be used to investigate their influence on the solutions obtained. For 
the linear adveetion of temperature either a central secoud-order discretization is 
used, or the secoud-order upwinding of van Leer [1974] is employed. With respect 
to the discretization of the non-linear adveetion in the momenturn equation all 
discretization methods as described in appendix B are used, i.e. a conservative 
and an advective scheme as wellas the scheme of Piacsek and Williams [1970]. 

Besides the Finite Volume Method (FVM) also a Speetral Element Method 
(SEM), as developed by Minev et al. [1995a], has been applied as a third inde
pendent reference. With this method also the order of the approximations can 
be varied. 

The SEM is, like the FVM, basedon a.splitting algorithm in order to perform 
a projection. All methods involved in this assessment, including that of D&L, 
suffer from inaccurate boundary conditions. In the method of D&L, boundary 
conditions for the wall vorticities were updated by evaluating the streamfunction 
at the previous level. The problems with the boundary conditions for the present 
FVM are outlined in the previous section. For each method, the inaccuracies 
are different. So in order to investigate the spectrum of effects accompanying 



4.2 Performance test 55 

the incorrect prescription of boundary conditions, solutions as obtained from the 
different methods are compared. Also the order of the approximation is taken 
into account, employing the SEM. Simulations have been performed for cases just 
before and just beyoud the first bifurcation to time dependent flow as assigned 
by D&L, i.e. at Ra 3.0 · 107 and increasing with steps of 0.1 · 107 . 

A typical size of the time-step as used in the present method is 6.t = w-5 for a 
65 x 65 grid. For the grid mentionedit was found that this time-step was sufficient 
in the sense of ( 4.11) for all forcing rates. The variation in the size of the time
steps with change in grid resolution was roughly determined by the advective 
criterion at the present Ra numbers. Employing an impHeit time integration, 
D&L used a somewhat larger time-step of 6.t 5 · w-5 at Ra = 3.1 · 107 . A 
dependenee on spatial resolution was not mentioned. The time-steps used in 
the present SEM calculations are of size 6.t 2.5 · 10-5 , each time using two 
intermediate convection steps. 

Here the streamfunction is calculated from the vorticity by evaluating the 
Poisson equation given by 

82'1/J 
---=-w. 
8xi8Xi 

(4.16) 

The vorticity, having only one component w 8vj8x- 8uj8y, is determined 
with the same secoud-order accurate approximations as outlined in the previous 
section. Then the Poisson equation is solved using the same direct solver as is 
used for evaluating the pressure, applying appropriate boundary conditions, m 
the present case 'Ij; 0 on all boundaries. 

4.2.3 Stationary case 

For the stationary case at Ra 3.0 · 107 results as obtained by D&L and present 
results are compared toeach other. The Finite Volurne Method as outlined in the 
previous part of this chapter is mainly used. Later on, also the Speetral Element 
Method is employed. It must he noted that time integrations for this case are 
performed fora time spant [0, 1] if not mentioned otherwise. At the final time, 
t = 1, a stationary solution is obtained. This does not rnean that the solution 
stays steady for larger times. 

The obtained stationary flow is depicted in figure 4.4. Qualitatively, in a 
stationary situation, these pictures are the same for each method, provided that 
the resolution is high enough. Results for central differencing and upwinding are 
given in table 4.1, together with the results as obtained by D&L. It was found 
that the upwinding scherne is two tirnes as expensive as the central scherne is, 
increasing the overall computing time with about 15 %. 

With respect to the discretization of the non-linear adveetion in the rno
menturn equation it was found that the solution was identical for all employed 
discretization methods. For the overall numerical scheme it is expected that the 
cornputational efforts for these discretizations do not differ significantly. 
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grid '1/Jmax uz wz WJ T3 
33 x 33 71.37 110.4 -41.80 640.4 0.041 
65 x 65 71.94 107.9 -42.15 675.5 0.044 

129 x 129 72.42 108.3 -41.57 684.9 0.045 

grid '1/Jmax uz wz W3 T3 1 
33 x 33 59.59 82.58 -27.21 710.3 0.044 
65 x 65 68.78 97.78 -37.56 687.8 0.045 

129 x 129 71.59 106.0 -40.41 687.5 0.045 

grid '1/lm;ur. uz Wz W3 T3 
33 x 33 66.50 123.8 -46.66 715.8 0.042 
65 x 65 71.25 118.6 -45.25 697.8 0.044 

129 x 129 72.31 112.8 -42.83 691.5 0.045 

Table 4.1: Results for Ra = 3.0 · 107 obtained by, top: Desrayaud and Lauriat, 
middle: present with central differences, bottom: present with second-order up
winding 

In the case of the 33 x 33 grid, using the upwinding technique, the solution 
becomes oscillatory at about t = 0.7. Although the grid is very coarse, these 
oscillations correspond to the physically correct oscillations at slightly higher Ra 
numbers, and not to so-called grid oscillations. The simulation on the same grid 
with central differencing stays stabie after the transient up to t = l.O. However, 
this simulation shows for the steady state the formation of a wiggle in the tem
perature profile at x ! in the neighbourhood of the top wall. Furthermore, 
just below the souree a negative temperature arises with a value of -0.0067. This 
is not the case anymore at the 65 x 65 grid, although there is still a local mini
mum at the underside of the heat source. At the finest grid these phenomena are 
totally vanished. 

No clear seeond-order convergence can he observed in both grid refinement 
series. One of the reasous may be the fact that the problem definition is not grid 
independent, the heat souree oceupying in every case one grid volume. Therefore, 
convergence eould he improved by defining a heat souree distribution as function 
of the coordinates, e.g. a Gaussian hill: 

'- 1 -r2 /a2 
q- -ze ' 

1fa 
(4.17) 

in whieh r is the radial distance from the centre of the heat souree and a is a 
measure for the width of the souree distribution. The width of the heat source, 
a, was chosen in order to obtain comparable results with the former discrete heat 
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Figure 4.4: Results obtained from second-order 'ltpwinding on 129 x 129 grid, left 
temperatures (0.012:0.003:0.25}, right streamlines (-69:6:69} 

souree in the limit to infinite resolution. Since it was found that the solution 
is converged to a great extent at a resolution of about hundred volumes in 
each dimension, O" was taken to be 0.01. For this case calculations were per
formed, both with the described FVM and the mentioned SEM-technique. In 
all SEM calculations a mesh of 8 x 8 elements was used, incteasing the order of 
approximation per element. With the heat souree distribution as employed by 
D&L it would practically be impossible to use a speetral method because of the 
non-smoothness of the heat source. 

The results are given in table 4.2. In this comparison the FVM was applied 
using thesecond-order upwinding technique for adveetion of internal energy and 

grid '1/Jmax U2 W2 W3 T3 tcpu 

SEM 8 x 87.76 -29.41 548.8 0.027 12700 BI: 8 x 8, order 6 - 103.9 -39.74 674.8 0.043 35200 
M 8 x 8, order 8 - 108.8 -41.84 697.1 0.046 81500 
FVM 33 x 33 I 79.46 139.3 I -51.41 885.0 0.062 1100 
FVM 65 x 65 72.42 119.5 -46.20 707.9 0.045 9000 

FVM 129 x 129 72.58 112.2 -43.23 692.2 0.045 107400 

Table 4.2: Results for Ra 3.0·107 with a Gaussian sour-ee of O" w-2• Spectml 
Element Methad (SEM} and Finite Volume Method (FVM) r-esults. Computing 
times, tcpu, are meas·ured for a time integration of t = [0, 1]. 
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the scheme of Piacsek and Williams [1970] for the non-linear adveetion of mo
mentum. At the 33 x 33 grid the flow becomes oscillatory at t ~ 0.45 and later 
on more frequencies appear. This is not surprising since integrating the Gaussian 
heat souree at this grid yields a value of 1.66, decreasing to 1.03 and 1.00 on a 
65 x 65 and 129 x 129 grid, respectively. Thus, at coarse grids, effectively the 
Ra number is increased by a false representation of the heat source. With these 
simulations a better convergence can be observed, which is thus not surprising. 
Due to the differences in the total heating rate, as caused by the poor represen
tation of the souree distribution, the simulations do not converge to a suflident 
precision. This could be improved by a correction factor for the total heating rate 
or by using a souree width that ean be resolved on all grids. With the speetral 
metbod at the highest aceuracy it was found that the flow bifurcates to periodic 
motion at t ~ 2.0. This does not mean that the SEM solution is inferior. This 
point will be discussed in the paragraph on unsteady plume motion hereafter. 

Simulations as performed with the FVM at low spatial resolution seem to 
be advantageous compared to the SEM from the viewpoint of computational 
effort as measured by the OPU-times. Double spatial resolution in the FVM 
is aecompanied by a double temporal resolution in order to assure numerical 
stability. For a two-dimensional problem this results in an eight-fold inerease of 
OPU-time. The reason for the progressive increase when refining to the highest 
resolution is due to the fact that 129 is not highly composite, resulting in a 
relative large computational effort in solving the Poisson problem. In the SEM 
the time-steps were decreased linearly with the order of approximation. Therefore 
an increase in the OPU-time for subsequent simulations is expected with a factor 
27/8 and 64/27. In the practical simulations the proportionality seems to be 
somewhat less. Thus, for the two dimensional case the two methods used are 
quite competing. Imptementing subgrid-scale models is much easier in the FVM 
method. 

A souree width of a = 4 · 10-2 can be resolved on all grids. For this case 
calculations have been performed of which the results are displayed in table 4.3. 
For most of the variables the convergence seems to be quadratic, except for w2. 
This is due to the non-linearity of the problem. The property of having quadratic 
convergence using a second-order accurate method is only guaranteed for linear 
problems at sufficient resolution. 

4.2.4 Oscillating plumes 

To examine the instationary behaviour of the plume and to check the computa
tional metbod in this case, first a simulation was performed at a Rayleigh number 
3.2 ·107 on a 65 x 65 grid. The computation was started from the solution on the 
same grid at t = 1 and Ra = 3.0 · 107 using the metbod of Piacsek and Williams 
[1970]. The flow showed a bifurcation at t ~ 2.0 both for the centraland upwind 
calculations. The fundamental frequency in both simulations is equal to 305.2 
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grid 7/Jmax U2 I W2 I W3 T3 
33 x 33 69.17 121.0 · -49.83 1 7o6.8 0.040 
65 x 65 72.80 112.3 1 -47. 0.043 . 

129 x 129 73.66 106.1 1 -44.32 1 688.9 o.o44 1 

Table 4.3: Results for Ra = 3.0 · 107 with a Gaussian souree of O" = 4 · 10-2 

± 6.1, where D&L give a value of 299.7, with a minimal accuracy of± 16 (not 
explicitly given for every separate case). It ean be concluded that the results are 
the same within the given accuracies. 

Using the alternative diseretization methods for the non-linear adveetion re
sults in a similar behaviour. There is only a small time differenee of maximal 
0.03 in the instant at which the oseillation sets in. Due to this lag the phases 
differ, but the frequencies and amplitudes are the same. 

In order to investigate the instationary hehaviour of the plumes more thor
oughly, theseeond-order upwinding technique of van Leer [1974] for the adveetion 
of temperature is used tagether with the method of Piacsek and Williams [1970] 
to diseretize the non-linear adveetion in the momenturn equation. 

Since the faet that with the SEM an oscillating plume was found at Ra = 
3.0 · 107 , one might wonder to what extent the bifurcation point depends on the 
numerical metbod and the resolution used. Camparing present results from the 
FVM and SEM with those of D&L might give some impression of the perfor
mance of the various methods. First, applying the above specified discretization 
method, the hifurcation point was determined at a resolution of 65 x 65 grid 
points. Prescrihing different forcing rates, ranging from Ra 3.1 · 107 up to 
Ra = 3.5 ·107 with step 0.1·107 , the transient time tagether with the amplitudes 
au1 and au2 of ttt and ttz are determined. The transient time, ttrans, is defined 
as the length of the period from t = 0 up to the instant at which the heat flux 
through the top, qi~P' of the confinement reaches a minimum after the oscilla
tion sets in. This instant is depicted in figure 4.5 for Ra = 3.5 · 107 . Also the 
fundamental frequency, !rund, of the oscillations was determined and compared 
to those of D&L. These amplitudes, transition times and frequencies are given in 
table 4.4. 

The frequencies of the oscillating plumes are the same within the given ac
curacies. The variation of the amplitudes with the forcing is depicted in figure 
4.6. Using these data the bifurcation point is localized hy extrapolating the data 
of the lowest two forcing rates to zero amplitude. Thus the hifurcation point is 
localized around Ra= 2.8 ·107 , somewhat lower than the value Ra 3.0 · 107 of 
D&L. Also the transient time at Ra= 3.1 · 107 was found to heshorter than the 
value of D&L, heing ttrans ~ 5. The amplitude of tt2 indicates a little difference 
in the bifurcation point compared to the other two tendencies. This may be due 
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Ra ttrans au1 au2 !rund !rund (± 16) D&L 
3.1. 101 2.19 43.8 13.7 301 ±1.5 294 
3.2. 10 1 1.65 50.4 15.6 305 ±6.1 300 
3.3. 107 1.33 56.1 17.0 311 ±6.1 305 
3.4. 10'( 1.11 60.9 18.2 317 ±6.1 310 
3.5 · 101 0.98 65.2 19.1 320 ±1.5 315 

Table 4.4: Transition time, amplitudes and fundamental frequency at several forc
ing rates. 

to convergence of this value, that may be insufficient. At the present 65 x 65 grid 
the secoud frequency does not appear yet at the highest two forcing rates. 

At a higher resolution it was found that the transient time becomes a little 
smallerand the frequency somewhat higher. Also using the SEM with an 8 x 8 
grid and an eight-order approximation at Ra = 3.0 · 107 results in an oscillating 
plume with fundamental frequency 318.6 ± 1.2 after an elapsed transient time of 
magnitude t ~ 2. 

All summarized results of present simulations indicate a lower bifucation point 
compared to the value assigned to it by D&L, of Ra = 3.0 · 107 . Increasing the 
grid resolution seemstoresult in a value even somewhat below Ra= 2.8 · 107. 

4.2.5 Conclusions 

On the basis of the above results a discretization is chosen for all subsequent 
simulations. Representation of the adveetion of scalars like temperature and 
subgrid kinetic energy will be performed with the secoud-order upwinding scheme 
of van Leer [197 4], because of its ability to represent the pure adveetion of almost 
any profile with relatively good accuracy (see appendix C). Besides it gives 
physically more correct results in case the grid resolution is on the poor side, as 
found from the stationary calculations. This is obtained at the expense of an 
increased computational effort, for this single term, of a factor two compared to 
central discretization. This means that the overall increase per time-step is about 
15 %. . 

For the adveetion of momenturn the scheme of Piacsek and Williams [1970) is 
preferred. It gives results comparable to the conservative and advective secoud
order discretizations as outlined in appendix B, and may be slightly cheaper in 
computational effort. 

The chosen schemes seem to be preferabie from the interpretation of present 
results. Furthermore, very simHar results are found comparing present calcula
tions with those of D&L. Differences in any considered variabie do not exceed 
a few percents, both in the stationary case and in the unsteady cases. For the 
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Figure 4.5: Definition of the transient time for Ra= 3.5 · 107 . 

difference of the bifurcation point this margin holds as well. 
A grid refinement study and the additional SEM calculation support that the 

bifurcation point is somewhat lower than the estiroated value Rac = 3.0 · 107 

as obtained by D&L. The present estiroation is Rac ~ 2.8 · 107 . lnaccuracy of 
boundary conditions seem to have a minor impact on the solutions for highly 
advective pluroe ftows. Employing the present FVM, a fair accuracy is obtained 
at moderate grid resolution, and related to it, computational effort. 

4.2.6 Epilogue 

With respect to the discretization of the subgrid scale roodels to be used in the 
LESs there are no tests carried out invalving ftow problems. In the previous di
rect numerical simulations the ditfusion is adequately represented. Otherwise the 
subtle balance between different terros would be distl1rbed and the bifurcation 
would be represented very poorly. The additional feature that comes into play 
within the application of eddy viscosity roodels is the spatial variation of the dif
fusion coefficient. This artefact should have no consequences with respect to the 
discretization used. Furthermore, test cases of well defined, method independent 
turbulent natmal convection ftows, are not known to exist. In cases invalving 
additional discretization features, these will be documented where they occur. 
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Figure 4.6: Squared amplitudes and inverted transient time as function of Ra. 
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Further on in this thesis, flows to be considered are defined by much higher 
forcing rates. These flows will become three-dimensional and can not be compared 
in detail anymore. Firstly, because of the loss of correlation between identical 
situations, up to any finite precision. This is due to the highly chaotical character 
of the flow as discussed in chapter 2. Secondly because the considered flows 
exhibit a complicated structure in time as well as in space. 

At high forcing rates a direct detailed comparison is not a.ppropriate anymore. 
At the moment there are mainly two ways of dealing with this fact. First, as 
will be the case in this thesis, statistica will be compared. Mainly mean flow 
quantities and standard deviations will be used, but also spectra, quantifying the 
contributions of isolated spatial and temporal Fourier modes. On the other hand, 
in turbulence research, coherent structures are often compared. This originates 
from the philosophy that the flow organizes itself by creating typical persistent 
structures that appear very often at more or less random locations. This analysis 
will not be followed in the present study because first a sufHeient matching in 
terms of statistica has to be satisfied. 



Chapter 5 

Labaratory measurements 

5.1 Introduetion 

To validate the numerical results an experimental setup was designed. The ob
jective is to realize a setup in which a well defined transitional plume flow can be 
analyzed in detail. In a physical experiment, the number, resolution and accuracy 
of data that can be sampled is considerably less than in a numerical simulation. 
Also it is not possible to specify boundary conditions very accurately. However, 
it is aimed to obtain results that are at least comparable to data that can be 
acquired with numerical models. Hence, on the one hand the flow contiguration 
is chosen as to show the intended flow regime. On the other hand the contigu
ration must possess the property of having a low sensitivity with respect to the 
boundary conditions that are not actively controlled. 

In thermal convection problems the most interesting features are the temper
ature and velocity distributions, both spatially and temporally. Measuring these 
field data involves non-invasive methods, i.e. techniques in which the intrusion is 
kept at an acceptable low level. Extracting complete 3D data fields from experi
mentsis hardly possible yet. Full 3D measurements of temperature fields may be 
obtained by tomographic methods. However this can only be achieved with high 
financial expenses. Measurement of 2D temperature fields can be done in several 
ways. As will be outlined in the next section, in the present study use is made of 
shadowgraphy as a qualitative tool. Another rnethod regards the use of the re
flectometric properties of liquid crystals, as function of the ternperature. Liquid 
crystal thermography (LCT), as described by Sillekens [1995], was attempted. 
Yet, the speetral resolution is estimated to be too low to obtain reliable time 
dependent 2D field information. The qualitative field information is comparable 
to the shadowgraphic images. 

Velocity field measurements are somewhat easier to perform. In fact it has 
a quite long tradition by means of, for example, using streak photography. In 
applying streak photography, particles or flakes are suspended in the fluid or, in 
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case of a free surface, are put on top of it. Adjustment of a proper shutter time 
with respect to the occurring veloeities results in a streak image. From these 
images the 2D velocity components can be determined by measuring the streaks. 
Though, a priori knowledge of the direction must be added. In stationary flow 
the streak image constitutes a streamline plot. In the past, the streak length 
was measured manually. Nowadays, by digitizing and analyzing the images auto
matically, quantitative information can be acquired much faster. At the moment 
the first results of relative high resolution 3D velocity measurements appear in 
literature. For the time being, in reducing experimental and data processing com
plexity, 2D measurements are preferred. From 2D data, spatial derivatives and 
two-dimensional dynamics can still be obtained, a main advantage of field mea
surements. For an overview of image analysis techniques the reader is referred 
to Adrian [1991] and Nieuwstadt [1993]. 

In thermal convection the temperature and velocity fields are highly cou
pled. Because of this and the ahove mentioned facts, it is chosen to perform 2D 
velocity measurements, supported with local temperature measurements. The 
temperature measurements are performed with thermocouples and stored on file. 
Veloeities are determined with partiele tracking velocimetry (PTV). Additionally, 
shadowgraphy is used as a qualitative tooi to adjust the heating rate to a value 
that causes the flow to show a spatial transition. The experimental techniques 
as exploited will he outlined in the last section of this chapter. 

Before that, first the experimental setup is discussed. Basically it consists of 
a container filled with water. The water is subjected to a heat souree present 
in the container, resulting in a plume. The induced flow that we aim for is of a 
quasi two-dimensional nature. Therefore the heat souree consists of a prismatic 
element. The element releases a two-dimensionallaminar plume, which couverts 
in a much broader, turbulent three-dimensional flow downstream. The design of 
the setup is constrained hy numerical and physical artefacts. An optimization 
for the design is needed. This and the adjustment of the forcing of the flow will 
also be discussed. 

5.2 Experimental setup 

5.2.1 Construction 

A schematic drawing of the setup is given in figure 5.1. Following the arguments 
that will he outlined in the next subsection, the dimensions of the flow domain 
are taken to he W x H x D = 0.3 x 0.2 x 0.2 m. In the domain an electrical 
heating element is mounted, which has the form of a strip of size W x H x D = 
0.002 x 0.02 x 0.2 m. It is positioned in the symmetry plane, its lower side at a 
height of 0.01 m. At the heat flux intended, the size of the element's surface is 
neerled to keep the temperature differences in the fluid within a range of 5° C. 

------ --------
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Figure 5.1: The experimental setup: I front view, II si de view; A heating element, 
B power supply, C heat exchangers, D aspect mt·io adj~tstment, E probe access 
matrix. 
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The vertical orientation of the heat souree yields a laminar plane plume release 
at a well defined, fixed _position. The heating element consists of a customer 
specified flexible Kapton® heater1 with a resistance of 5 n. Two strips of copper 
are sticked to the sicles to decrease the flexibility. The orientation of the resistant 
material in the flexible heating strip is in longitudinal direction. A direct current 
power supply is used with an adjustable range up to 50 V and 10 A. Using this 
configuration, Ra (as defined by 2.17) could he varied from zero to 4.6 · 1011 at 
an ambient temperature of 20° C and to 1.0 · 1012 at a temperature of 35° C. At 
the maximum heating rate the mentioned temperatures correspond to the start 
of the experiment and the equilibrium temperature, respectively. Due to this 
temperature increase Pr drops from 6.9 to 4.8. At the start the heating element 
has to warm up before it begins to emit the heat to the water. The time constant 
of this starting effect is Tel = pep V I aA, attaining a value of a bout 3 s. 

The experimental cavity is equipped with confining top and bottorn heat ex
changers. The heat exchangers are supplied by water from a tank by a centrifugal 
pump at a rate of about 1 · 10-4 m3 Is. The height of the top heat exchanger 
is made adjustable and a small gap between the heat exchanger and the wall 
is maintained. In this way the heating causes no hydrastatic pressure effects. 
From the heat exchangers the water flows back to the tank. The temperature in 
the tank is controlled by a Julabo P 1 thermostatic heater in combination with 
a cooler. The volume of the tank is ca. 0.1 m 3 and the power of the heater is 
1.6 kW. The cooler consists of a coiled copper tube, connected to the water grid, 
supplying water at a temperature of ca. 14° C and at a rate of 2 · 10-4 m 3 Is. 
Thus, the temperature in the heat exchanger circuits is kept constant. Under the 
experimental conditions there is no problem in attaining a constant temperature 
with an accuracy of 0.1° C. 

The side walls of the confinement are made of 0.01 m thick glass. The thick
ness of the walls ensured a heat loss through the sides, relatively small compared 
to the controlled heat exchange through top and bottorn walls. In case of the 
maximum heating ra te of 500 W, in the statistica! steady state, the heat losses 
through the side walls are estimated to he 2 %. This relative amount of heat loss 
may he assumed to he constant, also at lower heating rates. 

With the use of glass the flow domain is optically accessible. This is required 
for the performance of shadowgraphy and PTV. At one side of the flow domain 
a matrix of probe access holes of inner diameter 0.003 m are made. These could 
he sealed, both in the presence of a probe and in the absence of it. 

As a successar of previously utilized setups the presently used configuration 
is empirically optimized as to possess a relative high reproducability of observed 
flow phenomena. Top and bottorn heat exchangers offer the feature of adjusting 
a prescribed homogeneaus temperature at the start. Furthermore, after estab
lishment of a redreulating plume flow, top cooling provides a downflow centred 

1 Kapton is a. regîstered tradema.rk of E.I. DuPont Company 
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around the rising plume. In previous experiments it. is observed that employing 
an approximate adiabatic top may result very easily in asymmetrical bifurcated 
flow, due to uncontrollable heat losses. The present contiguration creates a more 
symmetrical flow, at least statistically. The bottorn heat exchanger enforces a 
stratification up to the recirculating convection region. The heat souree is em
bedded in the stratified layer. Together with the vertical orientation of the souree 
this results in a well defined vertical plume release. 

5.2.2 Constraints 

The dimensions of the configuration and the positioning of the heat souree are 
constrained by a number of requirements. Sirree water is used, the acceptable 
temperature range that may be exploited, is limited. This is due to physical and 
numerical reasons, the latter being more severe. These aspects will be discussed 
next to elucidate the design and to provide a framework for the interpretation of 
the experimental results. 

Physical limitations 

For the heating, in principal a line souree is intended to be used, having zero 
surface area. The consequence is that at constant heating rate, temperatures will 
increase with the decrease of the size of the heatiug element. The temperatures 
that will be observed depend on the heat flux density at the surface area of 
the heating element. Since we want to have a flow medium cousisting of just one 
continuons phase, temperatures are limited to the range zerotoabout 60° C. The 
latter is due to the starting of desaeration of the water, leading to the formation 
and release of bubbles. On the other hand, in order to obtain a shadowgraphical 
image, the temperature differences in the field must be large enough. 

In order to attain large enough Rayleigh numbers, Ra, under the restrietion of 
a limited temperature difference, the size of the enelosure must be large enough. 
This decrea.ses also the maximal occurring frequencies and wave numbers in the 
flow. This may be regarcled as favourable with respect to the size of the experi
mental spatial and temporal sampling rates. 

In earlier attempts (van der Burgt [1994]) a horizontally mounted element at 
the bottorn of a container was used, which yielded turbulent flow straight from 
the souree at lower Ra and thus at lower temperature differences. At valnes 
of Ra where the images of shadowgraphy became visible the horizontal strip 
acted already as a heated flat plate. M ushroom shaped thermals are released 
frorn nucleation points, being more or less randomly distributed over the strip. 
Besides the problem with the shadowgraphy, decreasing Ra in this case results 
in an increased time scale. It also gives difficulties with detecting temperature 
differences. 

The aspect ratio of the domain prevents the plume from sticking to a side 
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wall as ohserved experimentally and reported hy Jaluria [1985]. This was ver
ified hy calculations as performed hy Desrayaud and Lauriat [1993] and Minev 
et al. [1995h]. Exploiting confining heat exchangers, hesides a hydrodynamica! 
quasi steady state also a thermal quasi steady state may he achieved. The word 
quasi means that this steady state holds only for time averaged quantities, with 
an averaging period taken sufficiently long. Especially the top heat exchanger 
decreases the time constant for saturation of the integrating thermal system. At 
the Ra numhers under consideration the advective time scale is imposed hy the 
overall heat exchange coefficient a. This time scale is given hy T;I' """ pcpH /a, 
and it is much shorter than the conductive time scale, TJ ""' H 2/ /'i,. An esti
mated overall heat exchange coefficient a = 0(103 ) results in a ratio of the time 
scales heing >./aH= 0(10-2). The time constant for the present contiguration 
hecomes T[ 0(103 ) s. 

Numerical limitations 

The results of the physical experiments to he performed are suhjected to compar
ison with data provided hy numerical simulations. Therefore it must he possihle 
to simulate the flow with sufficient accuracy. This means that the experimental 
situation together with houndary conditions have to he similar to the physical 
model. In applying simulations of the Boussinesq approximated equations there 
are severe restrictions on the temperature differences in the flow field. According 
to Gray and Giorgini [1976] the temperatures may not exceed a certain limiting 
range. Within this range the maximal error for different terms in the Boussinesq 
approximated equations are smaller than 10 %. They determined the ranges due 
to non-constantnessof the volumetrie expansion coefficient, {3, the dynamic vis
cosity, pv, and the conductivity, )., to he 1.25° C, 3.7° C and 59° C, respectively. 
Using simulations of the full equations and the Boussinesq approximated equa
tions, Heiss [1987] and Lankhorst [1991] found differences in the velocity field of 
lower than 10 % for temperature ranges lower than 5° C. Of course, the range 
around a temperature of 4° C is strictly forhidden due to the local maximal 
density of water at this value. 

It must he remarked that with the prescription of a constant heat flux the 
temperature differences are constant, although the mean temperature rises. This 
leads to a quasi steady state for the hydrodynamica! and thermal fluctuations, 
after a short transient. Also the mean value of the velocity will hecome steady in 
a relatively short time whereas the mean temperature increases up to a saturation 
value, determined hy a halance of heat input and drain. 

5.2.3 Flow regime adjustment 

In order to find the transitional flow regime, shadowgraphy is used to adjust 
the heat flux hy visual inspeetion of the resulting qualitative projection. The 
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image arises due to the differential refraction of light as a consequence of the 
density differences caused by varying temperature gradîents. Gradually varying 
light întensities on a screen constitute the image. By putting a light souree in 
line with the heat souree and a semi transparent projection screen on the other 
side of the setup the flow may be visualized. In this way a proper heat flux can 
be adjusted. Having this heat flux, the transition is positioned at approximately 
half way the vertical extent of the flow domain. 

With the aid of shadowgraphy it is observed that a transitional flow as ob
tained with the present configuration is highly intermittent. Two coherent phe
nomena can be discerned quite clearly. In a relatively large amount of time an 
oscillation is present in the thermal plume. The spatial start of this oscillation 
moves irregularly along the laminar plume. Also this structure ensemble sways 
and twîsts irregularly. At a few moments in time an alternating shedding of vor
tical dipolar structures can be observed. This was most profound in experîments 
with an adîabatic top wal!, as performed by van der Burgt [1994] . In this case 
there is no buoyancy produced by a coolîng top wal! and a stabie thermal strati
fication influences the flow field. A typical example of the latter phenomenon is 
given in figure 5.2. Both phenomena occur irregularly in time and space. 

Figure 5.2: Typical vortex shedding transition phenomenon 
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5.3 Measurement techniques 

5.3.1 Thermocouples 

Principle and configuration 

The working principle of thermocouples is the so-called Seebeck effect. It is 
the production of a small thermoelectric voltage difference at the interface of 
two dissimilar metals as function of the temperature. Therefore thermocouples 
consist of two dissimilar metal wires joined together at one end. Using a metal 
combination with a highly constant voltage to temperature ratio, temperatures 
can be measured accurately. 

The thermocouples used are of type Thermocoax TKI05/25/D. These are K
type thermocouples, having a chromel-alumel junction with a sensitivity of 41 
J.L V ;oe. The actual thermocouple wires are covered with a sheath of inconel 
alloy 600, for mechanica! and chemica! protection. In between there is insulating 
material of mineral oxide. The outer diameter of the sheath is 0.5 mm. The 
hot junction is insulated from the sheath. The response time in still air as given 
by the manufacturer is 1.2 s. With this value the response time in water can 
be estimated by Twater = Tair"'air/"-water ~ 0(10-2 ) s, with K- the coefficient of 
thermal diffusion. 

The thermoelectric signa! is supplied to an A/D-converter as an interface to 
computer storage. The converter is of type MINI-16 of Strawberry Tree Inc .. 
It has eight analog input channels with 16-bit resolution and an input range of 
25 mV. These values in combination with K type thermocouples span a range 
of 625° C , with a resolution of 0.01° C. The converter is equiped with a cold 
junction compensation and linearization for several thermocouple types, and a 
timer for precision timing. 

The data acquisition is performed by use of the software package Quicklog PC 
of Strawberry Tree Inc., which runs on a 40 Mhz 386 SX PC. In normal mode the 
sampling rate of logging to file is limited to about 10 Hz using 4 channels. The 
timesteps between subsequent logs, then, are not equally sized. In "fast mode" 
it is possible to acquire data at the full rated speed of the hardware. In this 
mode a block of data is read as a burst into memory. While it is reading data 
the computer is only dedicated to this single task. Now the sampling spaces are 
equal but the size of a burst is limited. In the configuration used the maximum 
burst size is 16000 data, i.e. temperature samples. 

The chosen sample rate is 25 Hz, being the same as the maximal sample rate 
of the video frames used in the PTV. Moreover this frequency corresponds to 
time intervals of 4 times the response time, yielding an accuracy of (1 - e-4 ) 

or 98 % for step responses. An estimate of the occurring physical frequencies is 
obtained by a preliminary measurement. 

The thermocouples are supported by tubes with a diameter of 2 mm. The 
tubes lead the temperature gauges through the probe access holes and position 
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them at the correct location. At the end of the tubes the thermocouples are 
protruding out of it by a few centimeters. At this point there is a seal to avoid 
leakage. The invasiveness of the thermocouple and its support can best be ex
pressed by its Reynolds number. Using the laminar boundary layer salution the 
maximum velocity at Ra = 1012 is about 0.05 mj s. At the position where this 
occurs, using the diameter of the thermocouple, the perturbative Reynolds num
ber is approximately 20. This may be considered smal! enough to prevent the 
occurrence of downstream von Kármán vortex shedding. 

Preliminary measurement 

Preliminary thermocouple measurements are performed to confirm the estima
tions as given in the previous section. Also additional information concerning 
frequencies and distributions may be obtained. Therefore a measurement was 
carried out at the maximum heat input, being 464 W. For convenience all values 
wil! be given here in full dimension. Sealing can only be performed when the ther
mal diffusivity is known. This quantity is a function of temperature. The present 
measurements can be used to obtain a suitable ambient temperature needed for 
the sealing. 

I 11 

Pp# 
• H Pp2 Ppt 

• • 
Pb Pb 
• • 

+ Ps 
p 

• 

w D 

Figure 5.3: Positions of temperature gauges: I front view, 11 side view 

At the maximum heat input, temperatures are measured at four locations in 
the flow. These locations are at the source, point P5 , at two positions in the 
middle of the plume 0.04 m apart in the direction of the heat source, Ppt and 
Pp2, and in the recirculating bulk, H, as depicted in figure 5.3. The coordinates 
of these points measured in centimeters from the left-bottom-front corner of the 
confinement are Ps = (15, 8, 2), Ppl = (15, 12, 10), Pp2 = (15, 8, 10) and Pb = 
(23, 8, 6), respectively. Here, the heat exchangers are kept at a temperature of 
20.2° C, whereas the ambient temperature has a value of 19.5° C. 

In figure 5.4 the initia! increase in temperature of the thermal element is 
depicted. The earlier mentioned time constant for reaching 63% of the total 
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Figure 5.4: Measured and fitted starting behaviour of the heating element 

temperature increase of 3 s seems to be an overestimation. This is due to the 
uncertainty in the heat transfer coefficient. The plot shows a fit with Tel equal 
to 1.5 s. This starting effect has to be taken into account in the numerical 
simulations. 

In figure 5.5 the temperatures in points Pp1 and Pb are plotted as function of 
time. The temperatures in Ppl and Pp2 have the same characteristics. Therefore 
in figure 5.5 only the temperature at Pp1 is plotted. It can be observed that 
there is an integral heating of the system with respect to time, which is similar 
for both plotted points. The time constant 1;[ of this heating effect is about 
1600 s. At the end of the measurement, which is after approximately 3rJ', a 
thermal equilibrium is reached. The amplitude of the temperature fiuctuations 
in the bulk is much smaller than that in the plume, due to downstream mixing. 
The minimum temperature in the plume is at every time approximately equal to 
the instantaneous temperature in the bulk. This can be explained by the fact 
that there is entrainment in the plume. Fluid from the ambient, having bulk 
temperature, is entrained into the plume. 

As mentioned already, the measured values in points Ppl and Pp2 are similar. 
This similarity is most profound in statistica! measures of the fiuctuations. The 
distribution of the fiuctuations is best expressed by the power speetral density 
and the probability density. For obtaining the latter the integral heating up of the 
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Figure 5. 5: Temperature as Ju netion of time, dotted: Ppl, full line: Pb 

system must be subtracted of the tata! signa!. For this heating the function Tint = 
To + ~T · (1- exp( -tjr)) is taken, with T0 = 20° C, ~T = 16° C and r = 1600 s. 
The abtairred probability density is given in figure 5.6, whereas the power speetral 
density is depicted in figure 5.7. The probability density, or briefty distribution, 
possesses a large skewness, while for isotropie turbulence a symmetrie profile is 
expected. Water of a certain minimal ambient temperature is entrained into the 
plume. Because of this the left tail falls off relatively quickly. The temperature 
distribution in the bulk is more Gaussian but due to the smaller fluctuations, 
and therefore the relative importance of long time scales, this distribution is less 
converged. The power speetral density shows at low frequencies a slow decay that 
increases up to higher frequencies. An energy cantairring range is visible up to a 
frequency of 1 Hz, whereas up to 5 Hz most energy is resolved. A more detailed 
comparison of the original signals is shown in figure 5.8. At the start there is 
a high correlation, indicating a two-dimensional flow field. After a short time 
the flow becomes three-dimensional and the correlation vanishes. The statistica! 
quantities remain the same. The change in physical properties with increase in 
mean temperature and the accompanying variations in the Rayleigh and Prandtl 
numbers do nat have a noticeable infiuence on the statistics. 
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5.3.2 Partiele tracking velocimetry 

Optica) arrangement 

75 

The flow is illuminated by intersection of the domain with a sheet of light, pro
vided by two slide projectors, equipped with 250 W halogen light bulbs. Because 
of the obstruction of the light by the heating element and the intensity decrease 
due to the seeding and the diverging light beam, light sourees at both sicles of 
the setup are used. The light sheet is confined to approximately 5 mm thickness 
by a slit cut in matt black cardboard, covering the sicles of the setup. Also the 
back of the set up is covered to eliminate the influence of indirect light. The entire 
contiguration is placed in a dark room. 

The flow is seeded using Optimage NB3 particles with a typical size of 100 
JLm in a concentration of about 0.001 Vol.%. The particles are first wetted in 
a small amount of ethanol (± 0.1 Vol.%) to prevent them from adhering to the 
surface. After addition of the partiele/ethanol mixture the top heat exchanger is 
positioned. The density of the particles is Pp = 1000 ± 20 kg jm3 and they are 
polycrystalline in structure giving them a high scattering efficiency of light. 

The image of the particles illuminated by the light sheet is recorded on Super
VHS tape using a 3 CCD Super-VHS camera, equipped with a zoom lens (VCR: 
Panasonic AG-7350, camera: JVC KY-F30) . The resolution of the camera is 
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625 x 625 at 25 Hz for full frames, consisting of two interlaced fields of odd and 
even lines. The horizontal x vertical resolution of the VCR is > 400 x 625 lines. 

U se is made of LEDs indicating reference points and the starting point of the 
experiment. Exploiting the reference points eliminates possible vibrations. At the 
beginning of an experiment a lighting LED marks exactly the starting moment. 
A grid is used defining world coordinates to map the recorded geometry to the 
physical geometry. The difference originates from optica! deformations like the 
aberration of the camera lens. Before starting the experiment a recording is made 
of this grid in situ, for use in later processing. 

Tracking algorithm 

The actual tracking algorithm consists of three parts: (i) image acquisition and 
enhancement, (ii) partiele detection and location and (iii) partiele matching. 
These tasks are performed with the computer package Diglmage as a basis ( Dalziel 
[1993]). This package runs on a 486 DX PC and is able to control the VCR. The 
algorithm was developed with emphasis on simplicity and efficiency. The latter 
is needed to obtain large numbers of field files, which are necessary to describe 
turbulence statistics. 

After recording an experiment a well defined audio pulse is added to the audio 
channel of the video tape. The audio pulse is used as a time correction signal. 
The correct frame is acquired using a Data Translation DT-2862 arithmetic frame 
grabber, with a resolution of 512 x 512, 8 bit each. The VCR is controlled 
by the PC in order to perform image acquisition of the exact frame while the 
VCR is in "play" mode. The first video field to be grabbed is defined by the 
increasing intensity of a LED that defines the start of the experiment. After 
acquisition of the right frame a background image is subtracted to amplify the 
instantaneous character of the image. The background image is constructed by 
taking a long time average of the digitized video fields. Then a minmax filter is 
applied removing background variations with an extent larger than the maximum 
allowed partiele size. 

Next, the reference points are located and the differences with the reference 
coordinate system are calculated. If the error exceeds a preset limit a new at tempt 
is made to acquire the image. The reference mapping is used to determine the 
world coordinates of the current image. This is performed by mapping a least 
squares bi-quadratic polynomial as obtained from the world coordinates. 

Particles are located by making use of an intensity threshold above which 
a region is considered to be a particle. To determine the validity of the speckle 
being a particle, the shape, size and intensity characteristics of such a partiele are 
checked against the allowable limits. The position of a valid partiele is determined 
by taking the intensity centroid. Location in this way gives subpixel accuracy. 
Having particles extending at least three pixels in each direction, the location has 
an accuracy of better than 0.2 pixels. 
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The matching algorithm will be described very briefly, for details the reader 
is referred to Dalziel [1993] . The metbod is basedon a transportation algorithm, 
a technique frequently used in operations research for determining optima! as
sociations between two sets. The sets are two partiele images P and Q at time 
levels tn and tn+l, respectively. Particles Pi are defined for i = 1, M and Qj for 
j = 1, N. Associations are defined by Ctij = 1 if partiele Pi at tn is considered 
the same as Qj at tn+l. Otherwise Ctij is identical to zero. To define the optima! 
set of pairings a cost function Cij for the association Ctij is defined, expressing 
the likelihood of the pairing. High Cij means a low likelihood for the pairing. 
The basic idea is to minimize the object function (, constituting the summarized 
weighted association: 

(5.1) 

The algorithm used to minimize ( makes use of relational indices in order to 
maintain unique pairings, i.e. for each matrix index i and j separate there is 
exactly one Cti j that equals unity. This algorithm is given in appendix D. 

To quantify the cost or likelihood of a matching, Cij, a pricing policy has to 
be defined. It consists of assigning a minimal cost to associations that are dosest 
to an expected pairing. The expectation is determined from an Euler forward 
adveetion of a partiele in frame Pover a time step ót = tn+l - tn. Then the cost 
is defined as the squared distance between an actual partiele position Qj and the 
estimation: 

(5.2) 

Here an estimation of the velocity ui is determined from an earlier matching. 
Additional constraints are used acting as price premiums or discounts. These 

constraints are expressed by applying extra multiplication factors to the basic cost 
Cij. The most important is the introduetion of a factorexpressing the uncertainty 
of the estimated velocity. This is most profound when dealing with an appearing 
particle, a partiele that has not been matebed before. In this case the velocity 
is estimated from the local neighbourhood. Also ellipticity, size and threshold 
level are used as additional criteria. The first two of these criteria express the 
possibility that we might have to do with two particles very near to each other in 
the image plane. The last one expresses the preferenee of particles that have to be 
matched, i.e. for identified particles that are more likely to be physical particles. 
The dependenee of the algorithm on the last three criteria is only weak. 

Data processing 

The raw data obtained from the matching algorithm are processed with three 
objectives: enlarging accuracy, spurious vector removal and interpolation on a 
square lattice. The accuracy of the veloeities as found by the matching algorithm 
is enlarged by averaging over subsequent frames. 



78 Laboratory measurements 

Then, spurious vector remaval is applied to the unstructured original data. 
Subsequently the filtered data are interpolated on a grid. These processes are 
described in the following. Typical results are given in figures 5.9, 5.10 and 5.11 . 
They show results of the partiele location algorithm, the averaging and spurious 
vector remaval procedure, and the spline interpolation, respectively, as applied 
in the present study. It concerns an experiment with a heating rate of 35 V x 
6,3 A = 220.5 W. The instantaneous data are sampled at frame 1950 which is 
recorded at t = 78 s from the start. In figure 5.9 it can be observed that the 
particles found are not distributed uniformly over the domain. Especially in the 
vicinity of the lower and right walls less particles are found. This is due to light 
scattering at the right wall and shadows caused by the heat source . 
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Figure 5. 9: Particles found, frame 1950 

1.5 

The localization procedure to determine the position of the particles has some 
finite accuracy limited by the image resolution and the size of the particles. At 
low veloeities this accuracy determines the velocity. Therefore the velocity of a 
partiele obtained between subsequent matchings is averaged. In the present study 
the averaging procedure covers five matchings, as motivated in the next section. 
Hence, particles that can not be matched this number of times are eliminated. 

The occurrence of unphysical or spurious vectors, as obtained from the par
tiele tracking algorithm, is practically unavoidable. Due to an optimization be
tween data yield and quality, an amount of stray veetors is always present. The 
matchings are simply unknown, and only some uncertainty may be reduced. As 
discussed this happens in the matching algorithm, but from visual inspeetion it 
seems that this is not quite enough. Therefore a filter is used based on a certain 
maximum allowable amount of variation within a searching area. The variation 
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Figure 5.10: Final unstructured velocity field, frame 1950 
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criterion is chosen to be twice the standard deviation. More specifically, the fol
lowing steps are taken. For a partiele i all other particles are determined that lie 
within a certain distance r 1 from partiele i. Then the means (J.L~ and J.L~) and 
the standard deviations (a~ and a~) of the individual velocity components are 
determined over this set of particles, including partiele i. Subsequently the length 
of the actual velocity deviation of partiele i with respect to its neighbourhood is 
computed, according to 

(5.3) 

This is compared to the length of the standard deviation of the vector compo
nents, 

(5.4) 

If the actual deviation atest is larger than two times the standard deviation ai 
the vector is removed from the data field. For a Gaussian distributed field this 
means that 5% of the data will be removed, even when there arenostray vectors. 
Experience turns out that the amount of stray veetors does not exceed 5 % so 
that two times the standard deviation is a proper choice. The radius of the area 
taken into account, r 1, is determined by the amount of data found in each area. 
A very small amount of data may lead to non-significant statistics. On the other 
hand we want to preserve the localness, so that the area may not be too large. 
A radius r1 of about 5 %of the characteristic domain size is found to give good 
results. 
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u 

Figure 5.11: Grid interpolated velocity field, frame 1950 

For the interpolation of the unstructured field data to a grid, an algorithm 
as used by Nguyen Duc and Sommeria [1988] is employed. The interpolating 
function for each velocity component is an analytica! expression. The coefficients 
of it are calculated in order to minimize the second-order derivatives. It can be 
written for any velocity component Ui at point (x, z ): 

N 

ui(x, z) =a+ bx + cz + L dir[!n r[ (5.5) 
i=l 

with 
(5.6) 

The coefficients a, b and c are obtained from a least-square linear .fit. The re
maining coefficients di are calculated by applying equation (5.5) to each parti
cle, yielding a linear system of N equations with zeros on the main diagonal. 
The main interesting features of the interpolation are twofold. It does nat show 
spurious oscillations like high-order polynomial interpolations do. Besides, the 
interpolation gives the exact measured value at the partiele locations, because 
the coefficients di are defined in such a way. 

Error estimates 

The accuracy of the partiele tracking algorithm is mainly determined by the 
accuracy of determining a partiele position, the partiele sedimentation velocity 
and the partiele response to acceleration. The physical domain with an extent of 
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0.3 m is depicted on the image plane with an extent of 512 pixels, having about 
1700 pixels/m. The typical accuracy of the localisation of a partiele with a size of 
about 3 pixels in each direction is 0.1 pixel (Dalziel [1993]). This yields a position 
accuracy of u x= 0.1/1700 = 6·10-5 m. Having accurately spaeed samples in time 
with interval 8t = 0.04 s, thus, an accuracy for the velocity of u u = 0.0015 m/ sis 
found. Using statistics, or a convolution of the velocity field over N 5 samples in 
time, leads to a standard deviation of u:/• = u u/ ..,flïT;, making use of the central 
limit theorem. If the highest occurring frequency suffices fmax :::; 1/(2NsfJt) still 
a resolved velocity is obtained. Using N 5 = 5 for averaging the determined 
instationary velocity field yields an accurate description of the flow (see fig . 5.7). 
In the present measurements about 1000 particles where found in each frame, of 
which 500 could be tracked over N 5 = 5 frames. Thus the mean spatial resolution 
is determined by these 500 particles with a mean mutual distance of about 10-2 

m . The veloeities are interpolated to a finer grid, containing 63 x 42 equidistant 
gridpoints. 

The sedimentation of the particles due to a slight density difference between 
particles and working fluid can be estimated by balancing the particles gravita
tional force with the Stokes drag. Since the particles are nearly spherical and 
the partiele Reynolds numbers are lower than unity, this is a good guess. The 
estimated accuracy of the veloeities Uu due to the sedimentation spèed Ups then 
becomes: 

Pp- p gd~ 
u--- -

ps - p 18v (5.7) 

This yields a value of 0(10-4 ) mjs which is an order below the value due to 
location accuracy. The response of a partiele to a sudden acceleration can be 
determined by balancing the Lagrangian instationary forces on the partiele with 
the Stokes drag. This gives a first-order integrating response with a typical 
reaction time given by: 

Pvd~ 
Ta=--

18pv 
(5.8) 

which is as large as 0(10-3 ) s, being considerably smaller than the temporal 
sample spacing. 
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Chapter 6 

Results for water plumes: 
Experiment versus LES 

6.1 Introduetion 

In this chapter subgrid-scale modeHing is tested by comparison with experimen
tally obtained data and the results of numerical simulations. This procedure can 
he performed in two ways, generally referred to as "a priori testing" on the one 
hand and "a posterion"' testing on the other hand; a denotation as introduced 
by Piomelli et al. [1988]. 

A direct comparison of the experimental data with those obtained by a Large
Eddy simulation, using a particular subgrid scale model, is generally referred to as 
a posteriori testing. The term a posteriori testing is also used if the reference data 
are generated by direct numerical simulation (ONS). The processof a posteriori 
testing is the standard way to evaluate a model. 

The other method, a priori testing, employs the reference data to pronounee 
directly upon the quality of a subgrid model. In this case the high resolution 
reference data are filtered spatially. Using the data at the two resolution levels, 
subgrid stresses are calculated. These stresses are then compared to the sub
grid stresses determined with a model acting on the filtered data. Thus, the 
performance of several models can he evaluated, and suitable candidates can he 
discerned for actuallarge-eddy simulations. However, a good agreement between 
the real stresses and the stresses as obtained by using a model is not a guarantee 
for a succesful LES. In an LES the SGS model affects the resulting resolved 
velocity and temperature field. The latter is taken as an input for evaluating 
the model. As a consequence a discrepancy between experimental data and LES 
data is likely to occur. The different sets of input data should converge with 
improvement of the model. 

The a priori method, employed on the basis of ONS data, was pioneered 
by Clark et al. [1979] and McMillan and Ferziger [1979]. At present it has become 
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a widely used investigation tool. However, using DNS data restricts the test 
to relatively low, forcing rates, i.e. low Reynolds or, as in the present case, 
low Rayleigh numbers. One of the first extensive studies based on experimental 
data at relatively high Reynolds numbers was performed by Liu et al. [1994]. A 
drawback of the latter study, in comparison to the studies using DNS data, is the 
fact that only two-dimensional fields were used . Contrary to the flow conditions 
as investigated in the present study, it must be stressed that the majority of a 

priori testing so far has been performed on forced convection, in which there are 
at least two homogeneaus directions. 

In the present chapter both methods will be applied. Firstly, velocity fields 
wil! be subjected to two-dimensional a priori testing. Therefore buoyant produc
tion can not be evaluated. Then, simulations are performed and the obtained 
data wil! be compared to the experimental velocity fields. In this a posteriori 
testing, the temperatures at localized points are involved additionaly. Before 
evaluating the performance of the different models first the obtained flow field 
wil! be considered and analyzed. Amongst a statistica! description of the pri
mative variabie field, the latter camprises a description of the obtained subgrid 
stresses and the interscale kinetic energy transfer over the typical filter width 
length scale. 

In contrast to the rest of this thesis in this chapter all obtained quantities are 
presented in full dimension. In presenting the experimental data, sealing would 
result in a loss of information. This is due to non-Boussinesq effects tagether 
with the absence of a physical reference basis. 

In the PTV experiments the spatial sample resolution is not enough to rep
resent the dissipation range. Resolving this range would imply a sample spacing 
that is equal to, or even smaller than the Kolmogorov scale. This is not a draw
back in the perspective of the present study. The purpose of this study involves 
the validation of LESs and the testing of SG Ms. The objective of LES is to 
represent only the energy containing eddies with sufficient accuracy. This means 
that our direct interest is concerned with intermediate length scales, in which the 
energy just decreases as a function of the spatial wavenumber. 

6.2 Results from partiele tracking experiments 

6.2.1 Experimental conditions 

The experimentally investigated flow in this chapter was obtained using the setup 
discussed in chapter 5. The setup was tilled with demineralized and de-aerated 
water. The temperature control in the heat exchangers supply tank was turned 
on, tagether with t he flow through the heat exchangers . This situation was 
maintained for about two hours, spanning the time before the actual start of the 
experiment. This time span is needed to obtain a hydrodynamically stagnant 
and thermally homogeneaus initia! condition. 
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At the start of the experiment the temperature of the water in the set up was 
19.5° C. The heat exchangers were kept at 19.5° C and the ambient temperature 
in the laboratory was 19.9° C. The power supply is turned on at a heating rate 
of ±1102.5 W jm. The heating of the fluid has a delay of 1.5 s due to the internal 
heating of the element as discussed in chapter 5. Using the given heating rate, 
the dimensionless governing parameters are Pr = 7.0 and Ra = 2.1·1011 , defined 
at a reference temperature of 20.0° C. 

During the experiment the mean temperature in the setup will rise. Due to 
this effect the Ra-number will increase and Pr will drop. Therefore, the experi
mental results will be presented in full dimension. Later on in the comparison the 
results of numerical simulations will be scaled to full dimensions, using a suitable 
magnitude of the sealing quantities. 

A vertical cross-section of the resulting flow was recorded on video-tape, and 
temperatures were measured at several locations. The experiment lasted for 600 
seconds, assuring to have enough data in order to pass a transient of the flow field 
and to sample suftleient integral time scales to analyze the statistically stationary 
flow. Flow statistics as presented in the next sections are obtained from the video 
recordings in the time interval [80-600] s. 

6.2.2 Mean flow 

The recorded video tape was subjected to the tracking algorithm, resulting in 
unstructured vector fields. These vector fields were interpolated on a grid of 
size 63 x 42, yielding a spatial grid width of ,6. ~ 4.76 · 10-3 m. These steps are 
performed according to the method discussed in chapter 5. The final resolution in 
time was 5 Hz. Then the statistics of the resulting structured fields are determined 
at the given spatial resolution. The number of fields on which the analysis thus 
is constituted amounts 2600 velocity fields. A single realization from which the 
statistics are built up was already given in figure 5.11. The two-dimensional 
plane in which the veloeities are measured contains a horizontal and a vertical 
component that are indicated by u1 and u3, respectively (see also figure 1.2). 

A vector plot of the mean flow is given in figure 6.1. A nearly symmetrical flow 
pattem is established, consisting of a plume that drives a circulation pattem in 
the upper half of the set up. The magnitude of the mean flow can not be estimated 
easily, e.g. by using an entrainment assumption as outlined in section 2.4.4. Both 
the molecular and turbulent dissipation are very much influenced by the preserree 
of the confining walls. The width of the plume suddenly increases as the bulk of 
recirculating fluid entrains it at half the setup height. The mean entraining flow 
is directed almost perpendicular to the plume. Below this level the entrainment is 
much smallerand the fluid doesnotflow horizontally towards the plume anymore. 
In this region the fluid is bent downwarcis before the attraction to the plume 
becomes large enough. 

In fact the time mean flow clearly characterizes the spatial transition of the 
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Figure 6.1: Mean flow velocity veetors at x2 = ~D as obtained by PTV at 
Ra= 2.1 · 1011 and Pr = 7.0. Sealing: 0.01 mjs magnitude is displayed by the 
lejt-bottom vector. 

flow. At the height where the entrainment increases at an appreciable rate, the 
flow may be defined as spatially transitional. It turns from laminar, below this 
location, to turbulent, above it. Though the fluctuations of the vertical velocity 
are large directly above the source, this does not indicate turbulence. A small 
oscillation of the laminar plume causes this behaviour. The oscillations are irreg
ular although the plume is stilllaminar. A sample sequence of the temperature at 
Ppl (see figure 5.3) is given in figure 6.2. The irregular oscillations are nearly al
ways present. They are mainly due to upstream influences and turbulence which 
is convected back to the souree region. Arriving there this turbulence possesses 
a reduced but still noticeable kinetic energy. 

The velocity in the lower plume part is low compared to results obtained 
from laminar boundary layer assumptions or turbulent entrainment assumptions 
as described in sections 2.4.1 and 2.4.4, respectively. The flow in this region 
can bedescribed as an irregularly asciilating laminar plume flow. Therefore the 
time mean flow has a braader lateral distribution with a decreased maximum, 
as compared to a stationary laminar plume. On the other hand, the partiele 
tracking velocimetry experiments exhibited a relatively low spatial resolution. 
Because of the relatively small partiele density compared to the laminar plume 
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Figure 6.2: Temperature record at Ppl of an irregular oscillating plume. 

velocity width, the plume flow in this region could not he captured accurately. 
Additionally, the present confined enelosure causes a recirculating large scale 
flow, which is in contrast to the assumptions made in the mentioned laminar and 
turbulent models of chapter 2. 

The effect of the irregular oscillations of the laminar plume on the time mean 
profile can he estimated. From the lateral velocity u 1 at the centre line, the 
displacement of the laminar plume can he determined. A cumulative summation 
of this displacement indicates the plume position as function of time. It is found 
that at a height of 0.07 m, i.e. 0.05 m above the middle of the heat source, the 
plume oscillates in a lateral region bounded by approximately 0.02 m from the 
centre line. The standard deviation of the off-centre-line-position amounts 0.0115 
m. Convoluting the laminar boundary layer profile with a Gaussian probability 
density function for the plume position, results in the estimation for the time 
mean velocity profile. For the probability density function the calculated standard 
deviation of the plume position is used. This results indeed in a lower vertical 
centre line velocity, compared to both steady laminar boundary layer profiles and 
the turbulent entrainment approximation. The result is given in figure 6.3. The 
vertical centre line velocity found by this procedure agrees much better with the 
results from the partiele tracking velocimetry. The overall profile of the PTV is 
somewhat lower due toa background downwarcis oriented flow. The width of the 
plumes as obtained by the turbulent entrainment model, the laminar oscillating 
modeland the PTV are comparable toeach other. The width of the PTV result 
is somewhat smaller due to the presence of vortices at both sicles of the plume. 
These vortices are only present in a relatively small amount of sample times. 
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Figure 6.3: Mean flow u3 profiles at the line [xl,0.10,0.07] m; thin fullline: 
steady laminar boundary layer approximations, dash-dotted: integral turbulent 
entminment approximations with a= 0.157 and f3r = 1.281, dashed: oscillating 
laminar boundary layer plume, bold full line: PTV result. 

6.2.3 Flow fluctuations 

The convergence of the flow to a steady state is checked by inspeetion of the 
statistics of the velocity as function of time. The veloeities were taken at the 
midpoint because of our interest in the transitional region. These statistics should 
approach a converged value, which is zero in case of the mean horizontal velocity 
component. The veloeities in the middle, the mean and the standard deviation 
of it, as function of time, are displayed in figure 6.4, as well as their probability 
densities. It shows that at the end of the experiment the statistics are nearly 
constant. 

It seems that there exists a tendency consisting of a long term decrease of 
the mean and standard deviation of the horizontal velocity. At the same time 
these statistics for the vertical component seem to increase slightly. The latter 
is mainly caused by the temperature dependent properties of the working fluid. 
The deviation of especially the horizontal mean component may be caused by 
an asymmetry of the setup, including an installation orientation which is not 
level. On the other hand, the difference of the mean horizontal velocity with 
its expected ideal value at the end of the experiment, relative to its standard 
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deviation is within 10 percents. This justifies a qualitative analysis, not ascribing 
too much significanee to the numerical values obtained. 
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Figure 6.4: Evolution of the stalistics of the velocity components at point 
(0.15, 0.10, 0.10] m as function of time (left), and their distributions (right}. 

The probability densities behave according to expectations based on physîcal 
grounds. Having no net forcing in horizontal direction results in a symmetrical 
distribution with mean zero. lt is Gaussian-like due to multiple interactions. The 
distribution of the vertical component is positioned for the major part at positive 
values and it is skewed. The forcing, resulting locally in instantaneous strong 
updraughts, is responsible for bath effects. 

The spatial distribution of the fl.uctuations of the velocity components in the 
plane under eonsideration gives some insight in the turbulent behaviour of the 
plume. A contour plot of the standard deviations of the veloeities are displayed 
in tigure 6.5. These fluctuations in time are denoted by a double prime: u~', 
in contrast to time mean values that will be signified by angular brackets, e.g. 
(ui)· Due to lateral oscillations of the plume, the standard deviation of the 
vertical component u3 is rather high already at smal! elevations from the heat 
source. Furthermore, its magnitude behaves like the mean vertical velocity. The 
fluctuations of the horizontal veloeities are largest in the region where the lateral 
entrainment has a maximum. 

By integrating the two-dimensional velocity divergence over discrete volumes 
of size 2~, an estimate can be obtained of the velocity differences ~u2(2~) in 
souree axial direction. The axial velocity difference is given by 

(ul(Xl + ~,X2,x3)- U1(X1- ~,X2,x3)) + 
(u3(X1,X2,X3 + ~)- U1(x1,X2,X3- ~)). (6.1) 

This provides a measure of the three-dimensionality of the flow. Again the mean 
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Figure 6.5: Spatial distribution of the standard deviation of velocity components 
at x2 = ~ D. Lejt: u~, right: u~, contour levels in mj s. 

value and the standard deviation are calculated and depicted in figure 6.6. The 
standard deviation of the axial velocity demonstrates evidently that the flow is 
three-dimensional. Also the frequency contents are similar to those in the other 
two directions. 
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Figure 6. 6: Spatial distribution of the axial velocity component at x2 = ~ D. Left: 
(~u2(2~)), right: ~u~(2~), contour levels in mjs. 

From the velocity standard deviations the dissipation rate per unit mass can 
be estimated on the basis of an equilibrium range energy drain. Assuming a 
turbulent integral length scale l, it becomes: E ;:::::: u~3 jl. Employing an inte
gral length scale l = H, the dissipation rate in the core of the plume reaches a 
value of E;:::::: 3.2-10-7 m 2/s3 • With this value, the mieraseales of length due to 
Kolmogorov and Taylor can be estimated to be: 1J = (v3 /E)114 ;:::::: 1.3. 10-3 m 
and À;:::::: u~J15v/E;:::::: 2.7-10-2 m, respectively. The spatial sample resolution 
of ± 10- 2 m (see chapter 5) therefore is not enough to represent the dissipation 
range. This under the hypothesis that a three dimensional equilibrium range 
would be present. However, the resolution is in accordance with the remarks as 
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stated in the introduetion and it resolves the energy containing eddies. 

6.2.4 Subgrid stresses 

The instantaneous structured velocity fields are used in order to obtain the sub
grid stresses, which were defined by 

(6.2) 

For this purpose a top-hat filter of size 2~ is chosen, in order to be consistent 
with the mathematica! formulation and numerical implementation in the actual 
Large-Eddy simulations. For the same reason an extended trapezoidal integration 
rule is used for the filter operations. 

From the two-dimensional measurements only three of the six subgrid stress 
componentscan be determined: Tn, T13 and T33· The mean subgrid stresses and 
their standard deviations are depicted in figure 6. 7. 

The largest values of the subgrid stresses occur in the plume region, in which 
T33 is particularly large. At the top wall high values of Tn are present in the 
areas at which the plume spreads out to the left and to the right. Except for 
the top wall region these stress components do correlate fairly well with the 
temporal standard deviations of the corresponding velocity components. The 
cross-component of the subgrid stress T13 possesses much smaller values than the 
other two, the difference being an order of magnitude. This is caused by cancelling 
out of positive and negative contributions. High values of T33 correspond with 
high values associated to small boundary layers, i.e. in the plume region. In the 
same way the large value of T11 in the transitional region can be explained by 
relatively small entraining regions. 

The trace of the subgrid scale stresses constitutes a grid scale pressure, which 
is incorporated in the already existing pressure term, in an actual LES. Therefore, 
in the comparison with subgrid stress models later on, one should look at the 
deviatoric part of it. This is not possible since the measurement is only two
dimensional. In 6. 7 the stress tensor is depicted with full trace. While this 
affects the T11 and T33 components, the value of T13 will stay uncontaminated. 
Later on in the comparison with subgrid models an approximation is applied to 
obtain traceless experimental stresses. 

Inspeetion of the standard deviations of the subgrid stresses shows that the 
fluctuations of all subgrid stresses are more equalized over the different compo
nents. They also have a more similar spatial distribution, except for the promi
nent fluctuations of Tn at the top wall. It also shows that Tn and T33 remain 
positive most of the time, while T13 more or less alternates around zero. On the 
other hand, the clear time mean T13 behaviour suggests the existence of a co
herent phenomenon. A real dissection into flow patterns would require a proper 
orthogonal decomposition. 
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Figure 6. 7: Subgrid stresses at x2 = D/2, top to bottom: r 11 , r 13 and T33, Left: 
time mean stresses; right: standard deviations. Levels multiplied by 107 . 

The large fiuctuations at the left confining wall compared to those at the right 
wall may be caused by a set of physical and non-physical artefacts. The light 
sheet at the left wall was of a better quality compared to that at the right wall. 
Even with the use of local intensity equalization (after recording), this resulted 
in a larger number of particles detected at the left wal!. This effect was already 
depicted in figure 5.9. In combination with instantaneously occurring large values 
of the second spatial derivatives near the wall this results in the large standard 
deviations of the subgrid stresses. Another reason might be the preserree of 
refiection effects of particles at the confining glass surface. Occasionally a partiele 
may be matched withits own refiection. However, the interest of the investigation 
is focussed on the plume region. In this area no spurious effects are observed. 
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6.2.5 Energy transfer 

With the filtered velocity field the rate of strain tensor Sij can be calculated 
at the filtered level using a straightforward finite difference scheme. The rate of 
strain tensor, together with the subgrid scale stresses, define the interscale kinetic 
energy transfer as outlined in section 3.2.4. It can be written as function of the 
filter width: 

(6.3) 

In the present case the length scale separating resolved components from subgrid 
components is defined with the filter to be 26.. The energy transfer thus defined 
is from scales above 26. to scales below this value. If E(26.) is positively valued 
the kinetic energy is drained from the resolved scale to the subgrid scale. This is 
the case in the inertial subrange. 

Again not all components involved in the contraction 6.3 are known. Here only 
contributions from the known components are taken into account. It is hardly 
possible to make some proper assumptions to estimate the unknown components 
of Tij and Sij· To make a just interpretation of the energy transfer possible such 
a blurring would be unwanted. Following Liu et al. [1994] the trace of the stress 
tensor is not subtracted here, i.e. the stresses as given in the previous section 
are used. In figure 6.8 the time mean kinetic energy transfer and its standard 
deviation are given. The mean kinetic energy transfer shows some regions with 
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Figure 6.8: Kinetic energy transfer E(26.) at x2 !D, left: time mean, right: 
standard deviation. Levels multiplied by 107 . 

positive and negative values. If the turbulence were purely dissipative, only pos
itive values would occur. In the plume region and near the top wall there are 
areas of negative energy transfer. This means that kinetic energy is transferred 
from small scales to larger spatial scales. This phenomenon is called "backscat
ter". It is expected that the occurrence of backscatter disqualifies the effectivity 
of subgrid scale models that are based on a statistica! equilibrium assumption. 

The time mean backscatter here originates from the injection of kinetic energy 
at a scale that is smaller than 26.. It has to be kept in mind that because of 
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this a dissipative drain of kinetic energy might be present also below this 2.6. 
level. Though most of the kinetic energy is present in the lower wavenumbers 
and must therefore be transferred from the high wavenumbers downwards. This 
is also expected to happen at the .6. level to a smaller degree. 

Besides the time mean backscatter in the lower part of the plume, instanta
ueaus backscatter occurs in the total upflowing area. This is demonstrated by 
the standard deviation of the interscale kinetic energy transfer E"(2.6.). It shows 
that the instantaneous values are about ten times as large as the mean value. 
Thus backscatter and forward scatter are equally important phenomena in the 
plume region. Integrating the energy transfer and its standard deviation over the 
domain yields values of 1.0·10-7 Wjm and 3.5 ·10-5 Wjm, respectively. The lat
ter was evaluated over the region at the right from position x = 0.043. Therefore 
interscale kinetic energy transfer is much more important than the net kinetic 
energy drain. This is in agreement with results as found by analyzing forced con
vective flows resulting from direct numerical simulation, e.g. by Piomelli et al. 
[1991] and Domaradzki ct al. [1993]. 

It can be concluded that backscatter is essential in the present problem at the 
2.6. level, especially when most of the fluctuations are to be simulated. At the 
.6. level the influence might be strongly reduced. A subgrid scale model should 
therefore exhibit the ability for providing backscatter. At least a reduction in 
subgrid dissipation to zero in laminar, i.e. resolved regions, is an advantageous 
property. Therefore dynamic rnadelling is preferred beforehand. However, at 
Pr > 1, as in the case of water, the rnadelling of the subgrid fluxes may be more 
critical. 

6.2.6 A priori testing 

On the basis of the filtered velocity fields the subgrid stresses are calculated 
according to several models. Here the Smagorinsky model, the structure function 
model and the dynamic model will be taken into account. The objective of this 
analysis is to discern between the predictive qualities of the mentioned SGS 
models in a statistica! sense. Thus a realization at some point in time may yield a 
low correlation between predicted and exact subgrid effects. In the present study 
this constitutes a tolerabie degree of freedom inasmuch as most engineering flows 
are to be characterized with numerical methods long beyoud any predict ability 
horizon. The issue of predictability is addressed in more detail in chapter 7. 

It must be kept in mind that the filtered velocity field is obtained with a 
top-hat filter of size 2.6.. In the test the deviatoric part of the "exact" subgrid 
stresses are compared to the model stresses. Since the normal subgrid stress in 
axial direction T22 can not be determined in a straightforward way, the analysis 
will be kept two-dimensional. This yields for the "exact" deviatoric subgrid 
stresses 

(6.4) 
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This strategy yields a result identically equal to an application of the assumption 
722 = ( 7u + 733) /2. The two known normal stresses 7u and 733 thus become ex
actly the opposite of each other. The deviatoric stresses are given in appendix E, 
tagether with the deviatoric parts of L;j, C;j and ~j that campose the total 
stress. 

The intensities and the mean of the Reynolds stresses are relatively small 
compared to the Leonard and cross stresses, as can be observed in the appendix. 
Thus the fluctuations at the ~ level are much smaller than those at the 2~ 
level. This is in accordance with a decreasing spectrum at larger wave num
bers. However, for a three-dimensional equilibrium range, i.e. E( k) ex k- 513 , the 
expected difference in intensity amounts a factor ( ~ )-5/ 3 = 3.2. The observed 
difference, being a decade, would be in accordance with a spectrum with exponent 
(1°log(~))- 1 = -3.3 insteadof -5/3. This suggests a two-dimensional turbulent 
inertial range around k = 1r /2~- 1r / ~~ according to Kraichnan [1967]. Such an 
inertial range bas an exponent equal to -3. Alternatively this behaviour could be 
due to the fact that this range of wavenumbers might lie in a dissipation range. 
On the basis of the estimation of the Kolmogorov mieraseale the latter hypoth
esis must be rejected. However, it is not yet very clear how the interpolation 
of the unstructured original data to a regular grid (with increased resolution on 
average) extends the spatial spectum. lt is this artefact that makes the above 
analysis a tentative exercise. 

In the composition of the mean value of ru the influences of Ln and Cu 
are of equal and major importance. Since these components exhibit an almast 
equal standard deviation that is about twice as large as the standard deviation of 
the total stress, Lu and Cu must have a large negative correlation. For r13 the 
influence of the Leonard term is particularly large in the top region, whereas the 
cross term is more profound in the lower plume region. According to the standard 
deviations bere again a large negative correlation between Leonard stress and 
cross stress must be present. These negative correlations are also an attribute 
of two-dimensional motion as can be observed in a two-dimensional vortical flow 
field, e.g. given by u 1 = sin(21fkx3), u3 = sin(2nkxl), which is also divergence 
free. 

Subsequently, on the basis of the filtered velocity field the subgrid stresses 
are determined according to the subgrid scale models. The lack of information 
concerning the determination of the exact top-hat subgrid stresses also appears 
in the calculation of the magnitude of the resolved rate of deformation tensor 
!"SI. The value of this property serves as a sealing factor in the models for the 
predicted stresses. Again not all composing parts can be determined , because of 
the absence of information about the axial velocity u2. Accordingly the unknown 
cross components are neglected and the value of S22 can be determined on the 
basis of zero divergence, i.e. S22 = -(Su + $33). Later on, in the a posteriori 
analysis of the LES data, a similar approach wiJl be followed. Then an additional 
quantification will be performed to estimate the influence of three-dimensional 



96 Results for water plumes: Experiment versus LES 

effects. 
The Smagorinsky model and the structure function model give similar results. 

The latter model only yields values approximately a factor two lower compared 
to the Smagorinsky model. The value of 713 as determined by the Smagorinsky 
model is similar to the "exact" subgrid stress, except for the top wall region 
in which the predicted stress is opposite to the real stress. Qualitatively the 
fluctuation of 713 and T33 as predicted by the Smagorinsky modelagrees fairly wel! 
with that obtained by gridscale information. In the plume region the time mean 
711 and 733 components are in disagreement with the exact values. Employing the 
dynamic model yields better results for these components, though the agreement 
is still very poor. For 713 the dynamic model prediets opposite values and the 
temporal fluctuations of all components are underestimated. 

Contrary to the subgrid stresses, the interscale kinetic energy transfer as ob
tained by the dynamic model gives results that are very similar to the exact 
transfer rates. This energy transfer is depicted in figure 6.9, and has to be com
pared to figure 6.8. A good quantitative agreement for the mean interscale kinetic 
energy transfer is obtained if the dynamic procedure is applied, though the result 
near no-slip walls depends heavily on the implementation of the dynamic pro
cedure. Boundary conditions for the filtering operations have to be applied. In 
the next subsections this issue is addressed in mor~ detail. The standard devia
tion of the kinetic energy transfer is estimated to be half of the exact standard 
deviation. It seems that the effective resolution of subgrid stresses and gridscale 
strains differs somewhat, causing the distinction. 

In evaluating Lij and Mij the 2.6 hat filter has to be applied to several flow 
quantities. Therefore boundary conditions at the no-slip walls have to be met. 
Here it is assumed that all stresses and strains do not alter over the boundary. 
This is a logica! consequence of the impermeable no-slip condition for the velocity 
components. 

The dynamic parameter C is calculated at each point of the .6 grid. After
warcis it is filtered to the 2.6 grid. This is allowed since the parameter is defined 
on the basis of similarity between the 4.6 scale and the 2.6 scale. Therefore on 
the one hand a .6 resolution for C would not be representative. On the other 
hand, nearly singular values of C caused by an almost zero value of MijMij are 
thus filtered out. Since the kernel of the filter exceeds the domain boundaries, a 
crucial aspect of the filtering operatien here is the implementation of boundary 
conditions for C at the no-slip walls. Application of a homogeneous Neumann 
condition leads to the present results. One could also plead for a homogeneous 
Dirichlet condition since the flow is laminar at the wall. However, in an actual 
LES this is already obtained by setting the boundary condition for the eddy vis
cosity accordingly. A Dirichlet condition for C at the upper confinement causes 
the energy transfer to be limited too much. 

The energy transfer determined with the Smagorinsky and the structure func
tion model result in values four and two orders of magnitude lower, respectively, 
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than the dynamic model for both the time mean and fluctuating transfer rates. 
The spatial distribution of the energy transfer is equal for both models. They 
both reveal increased values at the top wall, being positive in this entire region. 
Relating the evaluation of the energy transfer, these models are inferior with re
spect to the dynamic model. Yet, in applying the dynamic model care must be 
taken in the application of appropriate boundary conditions at no-slip walls . 
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Figure 6.9: Kinetic energy transfer E(2~) at x2 = ~D determined with the dy
namtc model, lejt: time mean, right: standard deviation. Levels multiplied by 
107 . 

Evaluating the dynamic model on the experimental data reveals a value for 
the dynamic constant C, and thus for the Smagorinsky constant Cs as function of 
space. The statistics of the dynamic constant are given in figure 6.10. Here again 
the backscatter is irrefutably present. In the plume region the dynamic constant 
has a minimal magnitude of -0.01, conesponding with a negative Smagorinsky 
constant of magnitude 0.1. The maximal fluctuation of the dynamic constant 
corresponds to a fluctuating Smagorinsky constant with amplitude 0.16. 
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Figure 6.10: Value of the dynamic parameter C at x2 = ~D, left: tim e m ean, 
right: standard deviation. Multiplication factor 103 

Finally it has to be remarked that not the subgrid stress is responsible for 
the impact on the resolved field. In fact the divergence of the subgrid stress 
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8Tij I axj has to be considered as it appears in the governing equations. However 1 

an accurate agreement between modelled and real subgrid scale stresses yields 
also a suftkient description of its divergence. 

6.3 LES results: a posteriori testing 

6.3.1 General remarks 

In this section results of Large-Eddy simulations wil! be presented . As already 
expressed in the introduction, confrontation of actual simulations with reference 
data is the only ultimate metbod of validation. In the present study first a 
no-model simulation was performed on the large-eddy grid. In the next section 
results from this simulation are presented. Then by applying SGS models, im
provements or deteriorations become apparent. Tagether with the experimental 
velocity and temperature data it is expected that conclusions can be drawn with 
a fair rigour. 

The computational grid as employed in the simulations corresponds with the 
resolution of the physical partiele tracking experiments. The grid size was taken 
63 x 42 x 42 in all computations. Also the temporal sample density could be 
taken identically the same as in the experimental case, without vialating the 
stability criterion. A total of 15000 time steps were taken for each simulation. 
The velocity information at the vertical cross-section x2 = i D was analyzed in 
exactly the same way as the experimental data were treated. Thus, cross-sections 
were evaluated after the initia! transient starting at sample number 2005, with a 
sample frequency of 1 out of 5. 

The experimental heat flux, length scales and material properties correspond 
to values of Ra= 2.1·1011 and Pr = 7, material properties were taken constant at 
20° C . The turbulent Prandtl number is taken equal to Pr1 = 1/3. The heat flux 
generated by the heat souree is equally divided over the source-containing grid 
volumes. The flow resistance generated by the no-slip heating strip is neglected. 
In a no-model simulation a no-slip condition was compared to a free evolution of 
the velocity field at the source. No significant differences in the statistics of the 
velocity field were found. 

Because of the symmetry of the problem a symmetrical salution always exists. 
However, this symmetrical salution is notstabie at the Ra number under consid
eration. The development of the instability is governed by the initia! perturbation 
and the machine accuracy of the computing facility. In genera!, applying no initia! 
perturbation in an LES results in a flow persisting to be stabie much too long. 
An additional circumstance is the physical initia! non-homogeneity that may be 
low but is always present. Therefore a random temperature perturbat ion was 
applied over the entire domain. The limits of the dimensionless temperature per
turbation were set to ±5 · 10- 6 , ad ding no net thermal energy. With the present 
heat flux this corresponds with the equivalence of a physical maximum temper-
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at ure perturbation of ±0.01 ° C. Results from numerical experiments expressing 
the role of the initial perturbation are provided in chapter 7. 

Calculations are performed on a Cray C98/4256 supercomputer, using a stan
dard accuracy of 64 bits. On the specified resolution a time step takes approxi
mately 0.23 CPU-seconds, excluding the evaluation of an SGS model. 

6.3.2 Velocity information 

Zero model results 

The coarse grid numerical simulation, without using an SGS model, results in 
flow velocity statistics as depicted in figure 6.11. The mean flow shows a vertical 
velocity in the plume that is about three times as high as the velocity found 
in the experiment. The part of the flow domain occupied by the time mean 
recirculation is too large. The fluctuations of the velocity, however, as monitored 
in the midpoint of the depicted cross-section, is in better agreement with the 
experimental data. The time mean plume flow displays a linear spread with 
height, just as predicted by a turbulent entrainment assumption. 
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Figure 6.11: Results from the coarse grid si mulation without model. Left: statis
tics as Ju netion of time at point [0.15, 0.1 0, 0.1 0} m, right: time m ean vector plot 
at x2 = ~ D, sealing: 0. 01 mj s magnitude is displayed by the left-bottom vector. 

The observed behaviour is a consequence of the application of a coarse grid 
without accounting for additional dissipation. Therefore small scales cannot he 
represented . Thus numerical ditfusion farces the conserved kinetic energy to 
appear in the larger scales, accompanied by smaller frequencies. In this way the 
kinetic energy of the mean flow is overestimated. Representation of the friction 
at the top and side walls is expected to he particularly insufficient. This results 
in a better conversion of potential to kinetic energy in the plume, which on its 
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term does not degrade fast enough and stays at large stationary scales. The large 
scale inertia farces cause the recirculation zone to be too large. 

The mean and fl.uctuating kinetic energy drain, again over the 2~ scale, 
amounts 3.2 · 10- 8 and 5.8 · 10-7 Wjm, respectively. The mean is a factor three 
lower than the experimentally observed amount, whereas the fluctuating compo
nent is 60 times lower. This supports the above explanation of the discrepancy. 
The spatial distribution of the statistics of the kinetic energy transfer, calculated 
from the two-dimensional velocity field at x2 = ~D, is depicted in figure 6.12. 
The distributions are similar to the exact transfer rates (see figure 6.8). The 
values are 5-20 times lower for the mean transfer rate and 30-60 times for the 
fl.uctuating component. 
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Figure 6.12: Kinetic energy transfer ~:(2~) from the two-dimensional velocity field 
at x2 = ~ D, Tij = 0 model, left: time mean, right: standard deviation. Levels 
multiplied by 107 . 
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Figure 6.13: Buoyant production g (Ju~ T' from the two-dimensional field at x2 = 
~ D, Tij = 0 model, left: time mean, right: standard deviation. Levels multiplied 
by 107 . 

The buoyant production g(Ju~T' seems to be of greater importance than the 
kinetic energy transfer. The mean and fluctuation of this quantity is depicted in 
figure 6.13. Near the souree the maximum of the specific mean buoyant produc-
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tion is approximately 1.4 ·10-5 m 2 j s3 or 1.4 ·10-2 W jm3 . For alocal equilibrium 
of subgrid energy a high turbulent dissipation would be required in the souree 
area. However, in the souree area the flow is laminar. Therefore alocal equilib
rium model comprising buoyant production on a 2.6. grid would deteriorate the 
results. Taking into account the effect of transport of turbulent energy would give 
some improvement, though the energy would rise too fast due to an insufficient 
representation of both the velocity and temperature boundary layers. 

Though they are neither large nor intense, there are negative mean buoyant 
production regions. In these regions a positive spatial fluctuation of temperature 
correlates with a negative fluctuation of vertical verlocity and vice versa. At 
the sicles of the plume this is due to a difference in boundary layer thicknesses 
of velocity and temperature. If they had an equal thickness instantaneously, 
the spatial fluctuations would have the same sign and their product would be 
positive everywhere. Near the cooled top wall, cold deseending fingers, appearing 
when the upward velocity is low, may be advected back to the top. Relatively 
warm regions near the top wall are pusbed downwarcis now and then. The mean 
buoyant production shows that the first event is a little more important, though 
the amplitude of both phenomena must be almost the same. This is demonstrated 
by the fluctuation of the buoyant production, which is a factor ten larger than 
the mean at this location. 

Results from LES 

Calculations were performed with the aid of several SGS models. First the stan
dard Smagorinsky model was used. Results of this simulation are displayed in 
figures 6.14 and 6.15. The main difference with the Tij = 0 model calculation is 
the decrease in plume velocity. This is an improvement. However, the midpoint 
vertical velocity is still two times as high as the experimentally found value. The 
fluctuations are again in good agreement with the experimentally obtained val
ues. Again a large recirculating mean flow pattem establishes. Penetration of 
this recirculation to the lower left and right regions is even more profound and in 
less agreement with the experimental observed recirculation. Therefore the local 
eddy diffusivities must he tuned more specifically to the local dynamics. 

The kinetic energy transfer is again similar to the exact value, only much too 
low, see figure 6.15. A comparison with the Tij = 0 model simulation displays a 
decrease of this transfer. 

Simulations with the structure function model, the buoyant Smagorinsky 
model and the Kolmogorov-Prandtl model yield only marginal modifications of 
the obtained flow. In the buoyant version of the Smagorinsky model the mean 
plume velocity increases somewhat. This may be explained by the negative mean 
temperature gradient with height, causing the turbulent viscosity to increase. 
However, for the upstream part of the plume, this temperature drop with height 
takes place in the laminar plume. Thus it is not creating turbulent subgrid fluc-
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Figure 6.14: Results from the Smagorinsky model. Left: statistics as Ju netion 
of time at point (0.15, 0.1 0, 0.1 0} m, right: time m ean vector plot at x2 = t D, 
sealing: 0.01 mjs magnitude is displayed by the left-bottom vector. 
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Figure 6.15: Kinetic energy transfer ~:(2~) at x2 = t D, Smagorinsky model, lejt: 
time m ean, right: standard deviation. Levels multiplied by 107 . 

tuations as is assumed. Beyoud the transition it does create subgrid fl.uctuations, 
but the model cannot discern between the two regions. The effect should not 
be t aken into account when the negative gradient is monotonic and the profile is 
laterally confined. Bath are characteristics of the laminar plume region. 

Again, having an increased value of the eddy diffusivity, the viewpoint is 
subscribed that a higher eddy viscosity leads to less fluctuations and thus to a 
larger kinetic energy of the mean flow. The mean kinetic energy is determined by 
the conversion of potential energy to kinetic energy, which is determined by both 
eddy diffusivities. To reduce the uncertainty connected to this conversion would 
require the simulation of an uncoupled flow problem. It is recommended to study 
a comparable forced convection problem, like a confined box with a point souree 
of momentum. 
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In a way, application of the dynamic model shows some improvement. This is 
obtained at the expense of a larger CPU-time, which is more than two times as 
large (0.53 CPU-seconds per time step) as needed fora Smagorinsky model. From 
a practical point of view the dynamic procedure could not be applied without 
additional restrictions. Allowing the dynamic parameter to attain large negative 
values would result in a total viscosity that is negative. As explained earlier in 
this thesis, this results in an unstable numerical scheme. Allowing a value of the 
total viscosity between zero and the molecular viscosity is an option. However, 
in executing this approach, it was found that the timesteps had to be decreased 
with at least a factor of two. Veloeities were found to rise incidentally to very 
large values, causing a vialation of the CFL stability criterion. Thus C was 
limited to zero for the present calculations. It must be realized that the potential 
improvements of the method are very much restricted by this approach, in which 
backscatter is not possible anymore. 

Simulations with the present implementation of the dynamic model thus re
sults in eddy diffusivities with a molecular value in the plume region. This causes 
the mean vertical veloeities in the plume to rise to the Tij = 0 model value, as is 
demonstrated by figure 6.16. Also the downward penetration of the recirculating 
flow is comparable to the Tij = 0 model result. 
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Figure 6.16: Results from the dynamic model. Lejt: statistics as function of time 
at point [0.15, 0.1 0, 0.1 0} m, right: time mean vector plot at x2 = D /2, sealing: 
0. 01 m/ s magnitude is displayed by the left-bottom vector. 

The kinetic energy transfer over the 2b.. scale is depicted in figure 6.17. Gom
pared to the Tij = 0 model simulation hardly an impravement is obtained. Still 
the values are much too low. With regard to this feature, other SGS models 
yielded values that are even worse. Here the positiveness of the dynamic parame
ter still damps the high wavenumber dynamics and so the kinetic energy transfer. 
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Figure 6.17: Kinetic energy transfer e(2~) obtained from a two-dimensional ve
locity field at x2 = D /2, dynamic model, left: time mean, right: standard devia
tion. Levels multiplied by 107 . 

Outside the plume region the eddy viscosity rises above the molecular value, 
as expected in a more homogeneaus isotropie turbulent flow. This is depicted in 
figure 6.18. The mean value of the dynamic parameter attains a typical value of 
0.1, corresponding with a rather high value of the Smagorinsky constant of about 
0.3. The very high values in the lateral vicinity of the souree corresponds with 
high curvatures of streamlines at the specified location. In a very short distance 
the flow changes from a lateral flow direction towards the souree to an upward 
flow. This can also be observed in the vector plot, that even shows a wiggle in 
the velocity. Also at the walls, the value of C becomes very large. However, 
boundary conditions for the diffusivities are prescibed according to a laminar 
near wal! behaviour. At the present grid resolution this might not be justified. 
The global qualitative picture of C-values is in agreement with the findings of 
the a priori results of the PTV experiment. Both results show a negative value 
in the plume core. 

Figure 6.18: Dynamic parameter C at x2 = ~ D, lejt: time mean, right: standard 
deviation. 

In the dynamic calculation, a constant value of the turbulent Prandtl number 
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of Prt = 1/3 was used. The dynamic evaluation of Prt resulted in singular values 
of the eddy diffusivity of heat. This is due to the large number of zero crossings 
of Prt in the instantaneous fields. The zero crossings of C together with those of 
PjRj resulted in a very spotty picture of Prt that, on its turn, frequently crosses 
the zero value. In retrospect the outlined evaluation of the combination C and 
Prt as proposed by Lilly [1992) is recognized to be inconsistent. It is a combined 
problem, expecting a coupled treatment. Such a treatment was suggested and 
successfully employed by Wang and Lilly [1994] for Rayleigh-Bénard convection. 

6.3.3 The initially rising dipole 

Here a closer look is given at the starting behaviour of the flow. It is presented on 
the basis of numerically obtained instantaneous temperature fields; a convenient 
tracer, since it is both the origin and the result of the flow. As a reference, a 
two-dimensional direct numerical simulation is performed. Convergence with grid 
refinement was checked, using grids of size 189 x 126, 378 x 252 and 756 x 504. It 
was found that the solution at 378 x 252 was converged with sufficient accuracy. 
Thus, a correct representation of the heat souree is provided. At a lower resolution 
the penetration velocity of the dipole was too low. Due to the high Prandtl 
number the thermal boundary layer is thinner than the hydrodynamic boundary 
layer. With decreasing resolution the first incorrect representation arises in the 
temperature field. Numerical diffusion causes an artificial increase in thermal 
boundary layer width. Therefore the buoyant force and hence the veloeities are 
underestimated. 

The result after 16.8 seconds from the start is compared to results of LES. 
Therefore the original temperature field of the DNS is taken, as well as the 
spatially filtered field. The filter is specified by a top-hat convolution with a 
kernel of 6 x 6, to obtain the correct filtered temperature field as defined in 
the LES at the present resolution. At the given time the results of LES were 
found to be still symmetrical, whereas the DNS already starts to diverge slightly 
from symmetry. This was also seen in the experimental setup. In order to 
make the instantaneous comparison possible, in the DNS no perturbation was 
applied. Thus the initia! symmetry period was increased. Possible realizations of 
divergences from symmetry, connected to subgrid scale motion, is filtered out in 
the LES. It is assumed, however, that this will not significantly alter the analysis. 
Results of the DNS are given in figure 6.19. 

In figure 6.20 results are given for the Tij = 0 model and Smagorinsky model 
simulations, which are characteristic for the LESs. It is demonstrated that the 
rising speed of the initia! dipole for the LESsis larger compared to the DNS. This 
is due to an underestimation of the flow friction on the coarse grid. Firstly this is 
the consequence of the insufficient representation of velocity gradients. Secondly 
it is due to the assumption of a real no-slip heat souree in the DNS, contrary to 
a free volume heat souree in the LES case. The Tij = 0 model simulation can 
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Figure 6.19: Temperature contours of starting dipale at t = 16.8 s obtained by 
DNS. Lejt: full resolution, representing T. Right: jiltered DNS to LES grid 
resolution, representing T. Contours starting at 21° C with increments of 1° C. 
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Figure 6.20: Temperature contours of starting dipale at t = 16.8 s. Left: Tij = 0 
model, right: Smagorinsky model. Contours starting at 20.5° C with increments 
of 0.5° C. 

be appended in the above presented sequence of DNS results with decreasing 
resolution. At the present resolution also the hydrodynamic friction is largely 
underestimated, causing a high rising speed. 

Accounting for subgrid dissipation employing a standard Smagorinsky model 
with a Kolmogorov constant of Ck = 1.5 is demonstrated to be insufficient. The 
prediction of backscatter in the centre of the plume seems to be in dissananee 
with this observation. Thus, particularly penetration fronts in a more or less 
stagnant ambient, like the present initia! dipole, seem to be accompanied with an 
underpredicted subgrid friction. A slower penetration prediction might appear 
tagether with a backscatter at the centre of the plume, restoring the boundary 
layer thickness. The present observations of the rising speeds are in qualitative 
agreement with the time mean flow results in the previous sections, showing 
qualitatively similar differences between the upward velocities. At later times 
the unstable flow creates lateral velocity fiuctuations that are much larger in the 
DNS, compared to the LES. This results in an additional decrease of upward 
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velocity in the DNS. 
The increased diffusivity of temperature created by the filtering operator in 

the DNS is similar to the Smagorinsky model results. The latter is obtained 
on the account of the combination of the present wrong estimation of the eddy 
viscosity with the prescribed turbulent Prandtl number. Therefore it is hard 
to pronounee upon the correctness of Prt, though it is clear that larger values 
of the subgrid kinetic energy dissipation are required locally. On the one hand 
this may be achieved by employing larger values of the Smagorinsky constant, 
at least locally. On the other hand, an increase of Prt would yield a thinner 
thermal boundary layer, resulting in larger velocity gradients and thus a larger 
subgrid kinetic energy dissipation. It must be stated that Prt is not a property 
of the flow but mere a molecular parameter. Therefore, some kind of dynamic 
evaluation is still preferred. 

6.3.4 Local temperatures: measurements versus LES 

In the middle of the considered cross-section of the flow, temperature records were 
made as function of time. The application of thermocouples provided the exper-
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Figure 6.21: Temperature di.fference as function of time at point Ppl, left: LES, 
full line: Smagorinsky model, dashed line: Tij = 0 model, right: measurement. 

imental data. The temperature increase as obtained by the Smagorinsky model 
and the Tij = 0 model are depicted in figure 6.21. Besides an integral increase 
in bulk temperature fluctuations are present. The increase in bulk temperature 
is a consequence of the initia! discrepancy between the thermal energy supply by 
the souree and the drain by the upper and lower conducting walls. In fact the 
drain appears to be negligible, consiclering a temperature rise of 2.625/600 Kjs 
connected to the heat input. As a consequence of the meandering motion of the 
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plume, fiuctuations are present of a bout 1 K, which is in agreement with the 
maximum large scale temperature difference at this height. 

At the right side of the figure a measurement is presented. A few records 
were made yielding similar data. The fiuctuations are a bout 5 K. This is also in 
agreement with the laminar boundary layer solution and the 2D DNS, the latter 
presented in figure 6.19 in the previous section. The only difference is an irregular 
oscillation of the plume, causing a fiuctuation instead of a constant temperature 
rise. For convenience the boundary layer solution as presented in chapter 2 for 

h 
<I 

X3 - 2 · 10-2 [m] 

Figure 6.22: Temperature difference of laminar plume as function of height from 
virtual souree origin. 

the present set of (Ra, Pr) is given in figure 6.22. The temperature is given as 
function of height above the virtual origin, which must be defined in the actual 
situation facing the fact that boundary conditions are not identical. Temperature 
records are made at mid-depth, being 8 cm above the middle of the heat source. 
Taking this distance to the virtual origin, it can be observed that the laminar 
boundary layer temperature is approximately equal to 5 K. 

To make a fair comparison with the temperature measurements possible, the 
obtained data from the physical experiment should be spatially filtered. Evidently 
this is not possible, though under the Taylor assumption of "frozen turbulence", 
the spatial filter may be substituted by a temporal filter. It was found that a 
temporal top-hat filter with a time span of 6 s yields results comparable to those 
of the LESs. Remarkable is that this filter length does not relate to any expected 
ratio of gridwidth and a characteristic transport velocity at the considered point. 
It must be remarked again that there is a poor representation of the thermal 
boundary layer relative to the hydrodynamic boundary layer. In figure 6.23 
the filtered physical data are shown together with power spectra of the signals 
obtained by numerical and physical experiments. 

High frequencies are poorly represented by the simulations. Only the very 
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Figure 6.23: Statistics of temperature difference. Left: convoluted measurement, 
right: spectra; full bold line: mean spectrum of convoluted measurements, bold 
dashed: mean spectrum of original measurements, bold dash-dotted: spectrum 
obtained from Smagorinsky model, full thin line: spectrum obtained from Tij = 0 
model. 

slow fluctuations are camparabie to physically found values, regarding their spec
tral power density. This is in contrast to the spatial fl.uctuations in the initia! 
rising dipale as descibed in the preceeding section. Later on, as a transitional 
and turbulent region appears, spatial and temporal fluctuations are suppressed 
in the simulations even with zero eddy diffusivities. Thus a too large part of 
the fluctuating kinetic energy is supplied to only the largest scales of motion, 
connected to low frequencies. 

6.4 Conclusions 

The transitional flow regime of a water plume in a confined tank has been investi
gated experimentally and numerically. Experimental velocity data were obtained 
using PTV in a vertical cross-section. Furthermore, local thermocouple mea
surements were carried out. Effects of initia! stratification as well as heat losses 
may be considered to be negligible. With the PTV the global mean motion and 
the global fl.uctuations are very wel! represented. However, near the plume ori
gin only a very smal! amount of particles are responsible for the description of 
the flow. On the contrary, uncontrolled heat losses and initia! inhomogeneities, 
like thermal stratification, hardly infl.uenced the results. The results of the PTV 
revealed a three-dimensional transitional velocity field. Large scale time mean 
recirculation zones were found to be present confined to the upper half of the 
flow domain. 
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Employing the velocity fields from the experiment a priori tests were per
formed. Only the statistics of the subgrid stresses in each point of the vertical 
cross-section were taken into account. On the basis of filtered velocity fields, 
stresses were calculated with existing subgrid scale models. No sufReient simi
larity with the exact stresses was found. Only a fair representation was found 
for the interscale kinetic energy transfer over the scale of the filterwidth with the 
dynamic model. 

Gomparing actual simulations performed with several SGS models, yielded 
poor agreement with the PTV data. The pluroe velocity was overestimated and 
the penetration of the time mean recirculation zone in the lower part of the 
flow domain was too deep. This behaviour was found to be connected to the 
bad representation of high waverrumhers and frequencies. Especially the thermal 
boundary layer is insufficiently represented. Therefore most of the kinetic energy 
was captured by the mean flow. These findings were supported by the local 
temperature measurements. 

Here, as in traditional large-eddy modelling, the treatment of the subgrid 
stresses bas received very much attention. Thus, assuming a model for the sub
grid stresses, the subgrid fluxes are related to them with the turbulent Prandtl 
number. This may be an appi:opriate approach for large scale turbulent convec
tion flows. In the present configuration, however, it all starts with heat fluxes at 
a subgrid scale. This heat input is always represented at the grid scale. At this 
stage the simulation is not able to represent a laminar boundary layer anymore. 
Especially in the transitional and souree region, grid refinement is recommended, 
thereby suppressing also the role of the subgrid model in these regions. An addi
tional problem is the representation of the confining no-slip walls. 

In the next chapter, a geometry is applied which bas a heat souree large 
enough to represent it at a fine DNS grid as well as on a coarse LES grid. In 
this way the above discussed problem wil! be avoided. 



Chapter 7 

Results for air plumes: DNS 
versus LES 

7.1 Introd uction 

In this chapter results of a Direct Numerical Simulation (DNS) will be confronted 
with the results of Large-Eddy Simulations (LES) . With the DNS as a reference 
basis a vast amount of data is provided with high spatial and temporal resolu
tion. On a global level the mean field and standard deviations can be used for 
comparison. In order to interpret these data more local data can be used, both 
in space and time. The latter contains instantaneous field information as well as 
probability density functions and speetral distributions. 

A huge amount of computer effort is needed to perform a DNS. Therefore 
redundancy must be avoided. With the present numerical methad as described in 
chapter 4 the spatial and temporal sampling of the velocity and the temperature 
field are at the same rate. In order to produce data with high relevancy the 
characteristic wavenumbers of velocity and temperature fields are objected to be 
very close to each other. The differences in the distributions of speetral power 
with wavenumber depends largely on the Prandtl number. In order to perfarm an 
efficient DNS and to provide data with physical relevance, the Prandtl number 
is chosen to be Pr = 0. 71. This corresponds to the value for air. 

In contrast to plumes occurring in water, air plumes possess a more ' simi
lar distribution of thermal and hydrodynamica! quantities. As demonstrated in 
chapter 2, the boundary layer thicknesses are almost equal for a laminar plume 
in air. In water the velocity layer is about three times as thick as the thermal 
layer. 

In a turbulent field with a Kolmogorov wavenumber k.,." the conductive wave
number k.,.,T, which is connected to the largest wavenumber in the temperature 
field, depends on the Prandtl number. It is given by Lesieur [1990] to be k.,.,T = 
Prk." for Pr > 1 and k.,.,T = Pr314 k.,., for Pr < I. Thus at high Prandtl numbers 
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(water) a relatively warm or cold blob will be stretched and folded to larger 
wavenumbers. At low Pr numbers the diffusion of heat is more important. 

The geometry as used in the DNS corresponds to the flow problem as defined 
by Desrayaud and Lauriat [1993] and was taken as a two-dimensional test problem 
in chapter 4. In the DNS a third direction parallel to the heat souree is extended 
with an equal dimension. In this direction periadie boundary conditions are 
assumed. Thus in determining statistics, fluctuations in time as wel! as variations 
in this homogeneaus direction can be used. If the flow statistics are known to 
be symmetrical with respect to the midplane x 5 = 0.5 beforehand, an additional 
averaging may be carried out, weighing values at x' = Xs - x with the mirrored 
values at -x'. In determining the flow statistics, the mentioned methods reduce 
the integration time and with it, the minimal computational effort needed. 

The heat souree distribution is defined by a Gaussian hill according to 

1 2/ 2 q' =--e-r er . 
1f(J2 ' 

(7.1) 

with a suitably chosen width, er. The latter concerns the accuracy with which 
the souree can be represented and depends on the minimal gridsizes that are 
used. In the present thesis a width of er = 2.5 · 10-2 was defined. With grid 
resolutions starting at 45 x 45 in the direction perpendicular to the souree the 
given distribution can be represented with suftleient accuracy. This with respect 
to the discrete integral of the flux over the domain, which does not exceed a 
difference from 1 of w-5 . In contrast to the situation in the preceeding chapter 
the heat flux is instantly prescribed. 

The forcing rate or Rayleigh number depends on the maximal allowable grid 
size as used in the DNS with respect to the random access starage of the com
puter. Computations were carried out on a Cray C98/4256 with a core memory 
of 256 Mwords. With a grid resolution of 1953 about half of this starage capacity 
is used. On the basis of a two-dimensional convergence test it was found that 
a maximal forcing of Ra = 1010 could be applied. This forcing rate is about 
three magnitudes above the value at which, apart from the initia! transient, time 
dependent motion appears. As outlined in chapter 4 this first asciilation in the 
2D plane starts at about Ra = 3 · 107 . 

In this chapter first two-dimensional motion at Ra = 1010 will be investigated 
with respect to convergence, predictability and two-dimensional dynamics. The 
aim of this study is to estimate the spatial and temporal resolution required for 
the 3D DNS, tagether with an appropriate initia! perturbation. Furthermore, 
two-dimensional features will be uncovered, which will be compared to three
dimensional phenomena. Then the DNS wil! be discussed and results wil! be 
presented. The transient to three-dimensional motion will be considered as wel! as 
the quasi-stationary turbulence appearing thereafter. Finally, results of LES will 
be given and compared to the DNS. Since the results in the present chapter are 
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all numerically determined using the Boussinesq approximation, it is convenient 
to switch to dimensionless quantities again. 

7.2 Results of two-dimensional simulations 

7.2.1 Convergence of two-dimensional flow 

The initial dipole 

First the starting flow is investigated. The resulting temperature fields are plotted 
in figure 7.1 fort= 1.2 · 10-4 with an increased grid resolution. At this moment 
in time the dipolar structure is initiated and has risen to the upper half of the 
domain, heading for the top confinement. Grids involved, contained an amount 
of collocation points of 492 , 992 , 1952 and 3902 , respectively. 

0.6 
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Figure 7.1: Temperature distributions at t = 1.2 · 10-4 , Ra= 1010 , Pr = 0.71. 
Contour levels [10-3 : 10-3 : 10-2). Resolution: a) 492 ; b) 992; c) 1952 ; d) 3902 . 
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In the direction of increasing spatial resolutions the dipale is traveling with 
diminishing speed. The low resolution simulations are not able to capture the 
velocity gradients with sufficient accuracy. This results in an underestimation of 
Newtonian friction, allowing relatively large rising speeds. At very low resolution 
it is expected that numerical thermal diffusion becomes large, resulting in large 
structures of low temperature. This would lead to lower veloei ties. However, the 
latter phenomenon is not observed at the present resolutions. 

At low resolution the speetral energy at waveuurobers connected to the grid 
size is not low enough to resolve the flow. This results in a wiggly shape of the 
temperature con tours. Convergence of the position and smoothness of the dipolar 
structure with grid refinement is clearly present. An acceptable representation of 
the occurring physical phenomena is observed at the 1952 grid. 

The present 2D convergence in the initia! phase of the pluroe flow under 
investigation is not a guarantee for the convergence in the three-dimensional 
turbulent case, although it is feit as to give a good indication about the resolution 
required. First there is the issue of unpredictability. Instantaneous realizations 
can not be compared anymore at later times due to the inevitable unpredictability 
as already mentioned briefly befare in chapter 2. Therefore statistics have to be 
compared. In the next section these statistica! results are presented. Also the 
dependenee on the initia! perturbation will be shown. To get an impression 
of the time dependent flow, temperature fields are given as fundion of time in 
appendix F. Secoud there is the three-dimensional dynamics of the flow. On 
the one hand it might be argued that vortex stretching will increase the energy 
containing waverrumher range at the high end. Since buoyant flows are more 
space filling this is not expected to have a large influence. On the other hand, 
at small scales, laminar entrainment wil! be present, steepening free boundary 
layers that will be convected over the entire domain. However, this convective 
abrasion is already present in the 2D case. This can be observed in the vicinity 
of the plume centre in the direction of each separate poles of the dipole. Here, by 
laminar entrainment of relatively cold fluid, each monopole grazes at the laminar 
plume, decreasing the thermal boundary layer thickness. 

Laminar boundary layer flow 

An additional check can be obtained by a comparison of the results from laminar 
boundary-layer theory with those of 2D simulation. This is again an instan
taneous evaluatiol). at a time where a more or less stationary and symmetrical 
laminar plume has developed in the initia! phase of the flow. Since there are 
more approximations used in the laminar boundary-layer theory, the comparison 
might be regarcled as a check for the validity of this theory. For instance, the 
forcing rate may be neither too large nor too small, because it concerns convec
tive plumes that are not turbulent. However, a variation of the Rayleigh number 
will not be carried out here. 
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The results of the comparison are shown in figure 7.2. Here the value of 
cjJ as defined in equation (2.51) is calculated back from the values of T. Also 
the similarity variabie 7J is calculated from the 2D 1952 grid. In the figures 
the similarity variabie for the 2D full Navier-Stokes simulation is taken at lines 
of constant height. Results of simulations are taken at time t = 5 · 10-4 , see 
appendix F. A Gaussian souree distribution is taken as well as a point source, 

7} 7} 

Figure 7.2: Temperature distributions cfJ(7J) at t = 5 ·10-4 and heights X3 = 0.3513 
increasing with ~x3 = 0.1026. Lejt: present Gaussian source. Right: point 
souree containing a single grid cell. Circles indicate Navier-Stokes simulation 
grid points, the bold line indicates the boudary-layer theory result. 

containing a single grid cell. It can be observed that the point souree simulation 
matches almost exactly with the boundary layer results, which validates the code. 
In later analysis a Gaussian souree distribution wil! be used. To invesigate how 
much this infiuences the results it is also compared to the boundary layer profile. 
The temperature distribution from the Gaussian souree shows some differences. 
Especially at low heights the Gaussian distribution results in a large deviation 
from boundary-layer theory. Downstream, the results are converging to each 
other, though they do not reach the value of cjJ = 1 at the midplane. However, the 
latter is due to the differences in boundary conditions. In case of the distributed 
source, temperatures at low 7J are smaller than the point souree prediction and 
larger at large 7J. 

In both cases the derivative of the streamfunction f' matches accurately at 
small values of 7}, typically up to 7J = 2. At higher values of the similarity variabie 
combined with high values of X 3 a non-vanishing value f' ~ 0.1 is present. This 
is a consequence of the top wall that produces a recirculation at the investigated 
moment in time. 

In the present confined geometry the laminar boundary-layer theory provides 
data that are in accordance with the obtained Navier-Stokes flow. This in a 
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time interval starting with the collision of the initia! dipole with the top wall 
and ending with the symmetry breaking instability. After this instability it still 
provides data for maximum occurring veloeities and temperatures, though the 
exact location is not known. The boundary layer starts a meandering motion, 
occupying a very large lateral region in the 2D case (see appendix F). As will he 
shown later, this region is much less extended in the 3D case, especially at low 
elevations from the source. 

7.2.2 The predictability horizon in 2D flow 

So far the analysis of the flow concerned instantaneous symmetrical flow fields. 
The symmetry is a consequence of the symmetrical flow configuration, boundary 
conditions and initia! conditions. The occurring phenomena in a hypothetical 2D 
flow are equal to those occurring in a slice of the 3D flow perpendicular to the 
homogeneous direction. However, at high Rayleigh numbers the flow is unstable 
and after some time a symmetry breaking bifurcation appears (a symmetrical 
solution still exists). Si nee this happens in the two-dimensional plane, the initia! 
asymmetrical flow manifest itself equally in two and three dimensions. Within a 
specified flow medium the length of the symmetrie period depends on the forcing 
of the flow and the initia! perturbation. In a numerical simulation it depends 
also on spatial resolution, temporal resolution and machine accurac)'. The flow 
medium and forcing are already specified as well as the computational grid. Sta
bility of the numerical scheme specifies the temporal sampling rate, which is 
b..t = 2.5. 10-7 . 

In order to perform an efficient 3D DNS, knowledge of the lengthof the sym
metrie transient is indispensable. On the one hand a large initia! perturbation is 
preferred, resulting directly in three-dimensional motion. However, there will still 
remain a transient towards quasi-steadiness because the average kinetic energy 
has to be provided by the potential source. Another disadvantage is the disrup
tion of natura! occurring phenomena for some time interval that is not exactly 
known. A very small perturbation, on the other hand, results in a flow that is 
two-dimensional for a long time. It would be a waste to spend computer time 
connected to the 3D problem for a result that may have been calculated in two 
dimensions. Therefore a 2D study is carried out to investigate the consequences 
of the initia! perturbations. 

Initia! temperature perturbations are added to the zero initia! temperature 
field in order not to harm the incompressibility of the flow . For this purpose a 
standard random generator was used as e.g. given in Press et al. [1992]. Based 
on an initia! so-called "seed" it realizes subsequent numbers for the temperature 
at each collocation point. These numbers are defined in a specified interval, 
centred around zero to add no net thermal energy to the flow field. Half the 
size of the interval is denoted as ay, the intensity of the perturbation. The 
intensity was varied in steps from ar = 10-4 up to ay = 10-14 . In each step the 
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Figure 7.3: Vertical velocity as function of time (lo-3 ) at position 
(x1,x3) = (0.5,0.7487). Left: inftuence ofinitial random perturbation on T with 
intensities ar= 10-4 (a), 10-6 (b), 10-8 (c), 10-10 (d), 10-12 (e) and for the 
bold line ar = 10-14 (f). Right: infiuence of the generatorseed at ar = 10-8 , 

using six different values. 

intensity was decreased with two decades. The first value is about a decade below 
the undisturbed resulting temperatures, whereas the last value is approaching 
machine accuracy as given by c ~ 10-15 , for 64 bits floating point representations. 

Results are given in figure 7.3. The bold line is the result of the simulation 
with the smallest perturbation intensity ar = 10-14 . The first peak at t "" 0.3 
corresponds with the pass of the initial dipole, after which a decrease occurs due to 
the collision at the top wall (see appendix F). After this collision a rebound of the 
monopoles from the no-slip wall occurs, accompanied by the creation of vorticity 
of opposite sign. This is a physical effect that was also found experimentally 
by van Heijst and Flór [1989] and numerically by Orlandi [1990]. Thus it is not 
due to the approximation ofthe boundary conditions as discussed insection 4.1.3. 

For this computation the symmetry is getting lost at approximately t = 2.2 · 
10- 3 . At that moment the value of the vertical velocity decreases rapidly due to 
a transverse motion of the boundary layer. With the increase of the perturbation 
intensity this occurs earlier, and can be observed by the deviation from the bold 
line. The largest perturbation disrupts the flow already just after the dipole 
collision. As a second test, in the right grapbic of figure 7.3, the initial seed 
was varied at constant intensity. It can be observed that all realizations start 
to diverge from each other at the same moment in time. Thus predictability is 
lost at the moment of symmetry breaking. Initially there is still some coherent 
dynamics that is lost after a while. Then, the osciliations start to fill up a velocity 
band. 
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In terms of predictability it is shown that with every subsequent decade of 
accuracy of the approximation of the zero initia! field, the predictability horizon 
is shifted forward with approximately a same period, of a bout 2.5 · 10-3 . 

In order to perform an efficient 3D DNS, without to much disruption a per
tmbation of ar = 10-8 was found to be appropriate. 

7.2.3 Turbulence statistics of 2D flow 

The transitional buoyant plumes under consideration originate from a two-dimen
sional flow. At higher elevations from the souree a curling motion develops, 
embedded in a more or less two-dimensional recirculating flow. If the three
dimensional curling motions are of smal! spatial extent it should be possible to 
perform successfully simulations on 2D grids, either DNS or LES. 
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Figure 7.4 : Vector plot of time mean velocity at Ra = 1010 , Pr = 0.71. Left: 
gridsize 492 , right: gridsize 1952 . The lower left corner vector is of length 5000. 

To investigate the 2D turbulent flow statistics were determined over the period 
t = 0.005 - 0.01. These flows were simulated without a subgrid-scale model on 
three grids, defined by 492 , 992 and 1952 equidistant volumes at Ra = 1010 , 

Pr = 0.71. Results for the mean field are depicted in figure 7.4. Though the 
statistics may not have been fully converged, it can be observed that there is 
a large-scale flow bifurcation. Here the left-right symmetry of the flow problem 
may not be used for fast convergence of statistica! data. At the finest grid the 
flow consists of a large circulating region occupying most of the flow domain. At 
the coarse grid this is not so profoundly present. Thus the energy drain connected 
to numerical diffusion at coarse grids results in a flow field which resembles more 
the 3D case (see figure 7.9). At the fine grid the injected kinetic energy is able to 
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follow the inverse energy cascade of Kraichnan [1967]. However, as will be shown 
with the 3D DNS insection 7.3, the coarse grid mean flow contains a much too 
large kinetic energy. Once fluctuations are created they are advected through 
the entire domain with a relatively small dissipation. Standard deviations of 
the velocity components are almost constant throughout the domain. Regions of 
decreased values of the fluctuations are only found near walls perpendicular to 
the fluctuating component in question. Thus extra dissipation must be provided 
as might be clone with a subgrid-scale model in a LES. In the next section results 
of 2D LES will be discussed. 

7.2.4 Results of 2D LES 

As discussed in chapter 3, subgrid scale modelling is based on the equilibrium ki
netic energy drain of 3D turbulence. Therefore a subgrid scale model provides the 
dissipation at the gridscale connected to this drain. If indeed a 3D equilibrium 
range exists just beyoud the cut-off, which is fed by the gridscale kinetic energy 
injection, a standard model would yield results in agreement with the physical 
problem. This in analogy with the geophysical large-scale atmospheric circula
tion. Here we will again look at the start up behaviour and to the developed 
field. 

Figure 7.5: Temperature distributions at t = 1.2·10-4 with Ra = 1010 , Pr = 0. 71, 
obtained with the Smagorinsky model at gridsize 492 . Contour levels [10-3 : 10-3 : 

10-2]. Left: PrT = 1/3; right PrT = 1. 

In figure 7.5 it is demonstrated that for the starting flow, the incorporation 
of a Smagorinsky model yields an improved result with respect to the Tij = 0 
model simulation as given in figure 7.1. The travelling speed of the dipolar 
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structure is limited as a result of the increased friction. Purthermare the influence 
of the turbulent Prandtl number is shown. According to the position of the · 
dipole it must be observed that a low turbulent Prandtl number like Prr = 
1/3 is preferabie in comparison with Prr = 1. Not only the additional flow 
friction reduces the dipale speed, also an increased eddy diffusivity, resulting in 
smaller buoyancy farces, is responsible for an improved matching with the 2D 
converged solution. On the other hand it is shown that the thermal boundary 
layer is more localized at the higher value of Prr . A combination of higher eddy 
diffusivities, tagether with an increased value of Prr eventually results in an 
optima! combination. Therefore the model input values Cs and Prr should be 
tuned to the flow. Without loss of generallity this would be attained by a proper 
dynamic model, both for stresses as well as fluxes . 
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Figure 7. 6: Vector plot of time mean velocity at gridsize 492 and Ra = 1010 , 

Pr = 0.71, obtained by the Smagorinsky model (Prr = 1/3). Lower left corner 
vector is of length 5000. 

The time mean flow shows an increased symmetry. A more detailed exami
nation shows that the mean veloeities in the plume region are larger than those 
obtained with the Tij = 0 model calculation of section 7.2.3. On the other hand 
the fluctuations over the entire flow domain exhibit a lower intensity. Thus more 
kinetic energy is supplied to the time mean flow and dissipated at the large scales 
by the model on the account of the instationary small-scale fluctuations. Both 
two-dimensionality and the incompressibility condition are responsible for the 
creation of large structures. In the three-dimensional case large stresses can be 
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absorbed by motion out of the present 2D plane, accompanied by the formation 
of smaller structures. The kinetic energy of these structures can be dissipated 
more efficiently by a subgrid model. 

7.3 Results of direct numerical simulation 

7.3.1 The transient 

The initia! symmetrical part of the transient in three dimensions is equal to its 
counterpart in two dimensions. From the moment of the symmetry breaking 
bifurcation the 3D simulation starts to be interesting. Though the start is two
dimensional, a 3D simulation is used also for this period, allowing axial modes 
to grow from their machine accuracy value right from the beginning. 

The 3D DNS at Ra = 1010, Pr = 0.71, consistedof 37,000 time steps, the 
first 13,000 oflength D..t = 2.5 ·10-7 , and the last 24,000 of length D..t = 2.0 ·10-7 . 

The period simulated with the longer time steps up to t = 0.00325 corresponds 
with the transient, whereas the latter period up to t = 0.00805 deals with the 
quasi-stationary situation. The initia! temperature perturbation intensity was 
ar = 10-8 and the flow becomes asymmetrical at about t = 0.00125 as is the 
case in the 2D situation, depicted in figure 7.3. The transient to 3D motion at 
about t ~ 2.0 is depicted in figure 7.7, in which the vertical and axial component 
of the velocity at location (x1,x3) = (0.5,0.75) are given as function of the axial 
coordinate y and time. Later on velocity data at this monitoring line will be used 
as a key element in the comparison between DNS and LES. The monitoring line 
is located at an elevation defined in the expected transitional region. Furthermore 
the vertical and axial velocity components at this line are expected to constitute 
a sensitive pair of flow tracers. This in the sense that the vertical component 
originates as a result of the potential to kinetic energy conversion, whereas the 
axial components appears as a result of downstream instabilities. 

It is demonstrated that 3D motion initially manifests itself as a 2D flow 
that changes in planes along the axial direction. At this stage hardly no axial 
velocity or velocity fluctuations are present. As the velocity distributions in the 
x 1 - X3 planes at various x2 get more out of phase the third velocity component 
starts to grow from its initia! zero value. Note the difference in intensity scales 
for the vertical and axial velocity component. From the given data it can not 
be observed whether the changes in the homogeneaus direction are due to a 
meandering of the boundary layer (3D) or to a change in profile height in this 
direction (2D symmetrical in each slice). Three dimensional visualisation revealed 
that the boundary layer is still almost two-dimensional. Downstream vortices are 
shed in which isothermal surfaces bulge somewhat, resulting in lumps of slightly 
increased temperature. These lumps of higher temperature are the cause of the 
development of vortices with a rotation axis lying in the x- z plane. In this way 
axial veloeities start to grow and due to interactions the flow becomes turbulent, 
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Figure 7. 7: Vertical velocity I and axial velocity 11 as function of axial coor
dinate and time at XI = 0.5, X3 = 0. 75. Evolution in simulated time interval 
1.25 ·10-3 < t < 2.5. 10-3 . 
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especially in the downstream region. A time series of temperature contour plots 
in a cross-section are given in appendix G. The sequence is camparabie to that 
given for the 2D case in appendix F, and the differences of 2D and 3D dynamics 
can be clearly observed. 

Figure 7.8 shows an intantaneous sample (of the appendices) of the temper
ature distribution as observed in the 2D and 3D cases. In the 2D case large 
structures are present that bend and fold. The main flow accupies almast the 
entire domain, because the kinetic energy is captured in the 2D plane. The en
tire plume oscillates heavilly. In the 3D case the plume shows a laminar vertical 
structure at small elevations from the source. Downstream it becomes turbulent 
and due to 3D motion smaller structures are created effectively. Kinetic energy 
is drained to smaller scales and there is no large recirculating flow. :I'his is why 
a rather stabie thermocline develops at the souree height. 

t=O.OOB t=0.008 

Figure 7.8: Instantaneous temperature distributions in the 2D case (lejt) and 3D 
case {right). Contour values {0.0005:0.0005:0.01). 

7.3.2 Flow statistics 

The statistics of the flow were determined on the basis of 24 full resolution field 
files, equally spaeed over the time interval t = 0.00325 - 0.00805. Averaging 
was performed over the homogeneaus direction and over the specified samples 
(24 fields times 195 collocation points). A vector plot of the time mean flow is 
depicted in figure 7.9. The statistically steady flow is characterized by a conver
genee towards a symmetrical flow, with respect to the midplane x 5 • Employment 
of the symmetry condition seems to be justified in determining the statistics of 
the flow. Here this condition is not used in order to give an impression of the 
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slow convergence that must be connected to the presence of quite dominant large 
scales. Statistics, as obtained from records containing data written over a ho
mogeneous line every five time steps, show a good convergence. Thus it can be 
concluded that the time integration was long enough. The poor convergence of 
statistics for full x1 - X3 planes is due to the relatively small number of fields 
involved in the evaluation. 

1 r-, ------------------_-_ ..... -.-_-_-r-_-_---.-----------.. . 
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Figure 7.9: Vector plot of time mean velocity at Ra= 1010 , Pr = 0.71. Lower 
left corner vector is of length 5000. 

As shown in figure 7.9 a time mean circulation appears starting from a height 
corresponding with the souree position and filling the upper part of the box. 
Penetration into the region below the souree is almost ruled out and a stagnant 
layer emerges. Right from the souree there is a nearly linear spreading of the 
vertical flow profile up to the vortex cores in the centre of the recirculation zones. 
In this region the entrainment varies only slowly. Downstream the entraining 
region the flow collides with the top confinement and spreads to the upper left and 
right corner, following them without separation from the wall. Then an almost 
vertical downflow precedes the backflow to the souree position, which occupies the 
wall region at heights x3 = 0.4 - 0.6. A turbulent flow profile as predicted by an 
entrainment assumption for unconfined plumes, as given in 2.4.4, is not found in 
any region of the plume. The recirculat ion causes the vertical velocity to cross the 
x-axis linearly in the entraining region. The maximum centre line velocity found 
has a value just exceeding 2000, whereas the entrainment assumption prediets 
a constant value of nearly 2800. Thus the bounded flow domain together with 
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transitional phenomena alters the flow severely, compared to the free turbulent 
plume. 

0.2 0.4 0.6 0.8 1 

Figure 1.10: Contour plot of the standard deviation of the vertical velocity. Con
tours starting at 200 and increasing with 200. The dot denotes the monitoring 
line. 

In the 3D plume, in contrast to the resulting velocity statistics as occurring in 
the 2D plume, all fluctuations of the velocity culminate in the centre of the box 
near the top wall. Contour plots of these fluctuations are presented in figures 7.10 
and 7.11. Especially the standard deviation of the vertical and axial components 
show large values in this region, of which the latter exhibits a particularly large 
increase in a thin layer near the top confinement. From these figures and from 
the evolution of the temperature field (appendices F and G) it can he concluded 
that the flow is essentially three-dimensional. 

In table 7.1 the mean values and standard deviations of the vertical and axial 
velocity components at the monitoring line are listed. To make a fair comparison 
with the results from the LESs as described in the next section, the spatial 
filtering operation is necessary in case of the present ONS result. The LESs will 
he performed on a 453 grid, whereas the ONS grid is defined by 1953 collocation 
points. Thus the ratio of grid resolutions as employed by the ONS and LESs has 
a value of 4~ , which is not an integer. In order to obtain a minimum estimate for 
the grid-filtered fluctuations a convolution filter of size SD. is used. This results 
in values of u~ = 1282, and u~ = 727, whereas the full resolution fluctuations are 
given by u~ = 1328 and u~ = 746, respectively. The time mean components are 
not affected by the filtering operation. 
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Figure 7.11: Contour plot of the standard deviation of the horizontal velocity 
{lejt) and axial velocity {right). Contours starting at 200 and increasing with 200 

not affected by the filtering operation. 

The time mean axial velocity component shows a value that slowly converges 
to zero. However, a small deviation is left and can be interpreted as an estimator 
for the convergence, using the assumption that it should go to zero. Relative 
to the standard deviation it is within 3 %, which is considered to be sufficient. 
Recognizing that for a 2D forcing the Rayleigh number is relatively low to obtain 
isotropy, the fiuctuations of the observed components do not differ that much. 
Furthermore it can be observed that the intensity of the mean flow and the 
fiuctuation are within the sameorder of magnitude, as expected in purely natura! 
convection fiows. 

From the recorded axial velocity at the monitoring line, speetral and prob
abilty density distributions are given in figure 7.12. The frequency axis for the 
temporal spectrum is scaled with the mean vertical component of the velocity. 
This is what constitutes Taylor's frozen turbulence hypothesis. 

The spectrum shows a gradually increasing decay rate at larger wavenumbers. 
lts shape is the result of several simultaneous phenomena. It starts with the 
buoyant souree that is defined to possess a relatively smal! spatial dimension. 
This souree is responsible for the injection of kinetic energy into the modes of 
relatively high wave numbers. In the transitional region the plume bends and 
folds. On average these structures constitute a rising motion with an increased 
width. This motion is responsible for the large-scale recirculation as observed 
in the time mean flow. Also large-scale fiuctuating motions are present that 
gradually lose their kinetic energy to the benefit of smaller scales. Purthermare 
there is the redistribution of kinetic energy in the transitional bending and folding 
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Figure 7.12: Statistics of the axial velocity at the line (x1, x3) = (0.5, 0.7487). 
Left: speetral density, bold line: spatial, thin line: temporal (frequencies divided 
by (u3} ); right: normalized distribution, thin line: result from simulation, bold 
line: Gaussian with same mean and standard deviation. 

process itself, probably both upscale and downscale. Thus the spectrum cannot 
be explained by any simplified assumptions. 

The fact that the temporal and spatial spectrum correspond very well with 
each other at low wavenumbers supports the validity of Taylor's hypothesis, 
though it seems that at high frequencies a larger convection velocity is needed 
to extend its vigour. This corresponds with small scale structures having a rela
tively large convection speed. The reason for this is not very clear and may be 
of a physical or a numerical nature. 

The probability density distribution shows an almost Gaussian behaviour, as 
generally found in a multiple interaction process. Again in the comparison with 
LES results, filtered valnes should be used. However, since the distribution is 
Gaussian, its shape for the filtered velocity is given by the valnes in table 7.1. 
As far as the spectra are concerned, up to the Nyquist wave number of the 
LESs there is almost no difference due to the filtering operation. At this wave 
number, k = 22.5, the intensity deercase in the spectrum as aresult of the filtering 
operation is only about 19% 1. At higher wave numbers it deercases up to 100 
%at k 90. 

1 Application of a top hat filter with a width L':. = 1/45 in the Fourier domain, G, results in 
an amplification of the spectrum with a factor 

G 2 = (sin(dL':./2))
2 

(KkL':./2) 
(7.2) 
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{u3) ~ (u2) u u 
2 

DNS 1824 1282 22 727 
Zero model 2353 1292 -10 761 

Smagorinsky model 2069 1293 19 676 
Smagorinsky model Prt 1/2 1993 1302 10 682 

Structure function model 1912 1353 65 703 
Buoyant Smagorinsky model 2375 1255 -17 621 
Kolmogorov Prandtl model 2114 1274 13 699 

Dynamic model 2324 1283 -25 775 

Table 7.1: Flow statistics at (x1,x3) = (0.5,0.7487) produced by DNS and several 
LESs. 

7.4 Large-Eddy simulations 

Employing several subgrid scale models, large-eddy simulations have been per
formed at a relatively low resolution of 453 collocation points. Quantities as pre
sented in the previous section, concerning the DNS, are compared with present 
LES results. Model constauts used in the LESs and prescribed explicitly are all 
given by a Kolmogorov constant Ck 1.5. The LES simulations consisted of 
40,000 time steps of length .tlt = 5 · w-7 • The last 20,000 time steps were used 
to calculate the statistica in the time interval t = 0.01 - 0.02. Statistics of axial 
and vertical velocity at the monitoring line are again given in table 7.1. 

It was found that the differences of the statistics at the monitoring line repre
sent a tendency that can be found in the entire flow field for each simulation. The 
distribution of the statistica! quantities over the x- z plane is for all simulations 
simHar to the distribution as found for the DNS. Due to the longer integration 
time the distribution of observed values of the axial velocity is closer to a Gaus
sian distribution compared to the DNS case. As expected, the fields are more 
symmetrical than the obtained DNS field is. An example is the time mean vec
tor plot for the simulation with the Smagorinsky model at Prt = 1/3 as given in 
figure 7.13. A global comparison of the structure of the mean flow with the DNS 
shows a good agreement. 

In general it is observed that quantities that deviate at the monitoring point 
in the given plane, show a tendency in the same direction over the entire domain. 
Thus table 7.1 gives a good qualitative impression of the performance of several 
subgrid scale models. Here a better agreement of all LES calculations with the 
reference basis (the DNS) is obtained, compared to the results for plumes in 
water as presented in the previous chapter. However, the differences with the 
reference basis for each model are similar. 

With respect to the mean flow, as is indicated by the value of (u3), a better 
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Figure 7.13: Vector plot of time mean velocity at Ra 1010, Pr = 0. 71, obtained 
with Smagorinsky model, Prt = 1/3. Lower left corner vector is of length 5000. 

agreement is obtained with the more simple models, like the Smagorinsky model 
and particularly the structure function model. With the latter model the differ
ence with the DI\S is within 5 %. Furthermore, an improverneut is obtained if 
the turbulent Prandtl number is increased. The 0 model situation as well 
as the buoyant Smagorinsky model and the dynamic model result in an over
estimated mean flow, up to 30 % for the buoyant Smagorinsky model. Here the 
dynamic model yields again minimal values for the dynamic parameter in the 
plume region. Therefore it results in a simHar 0 model behaviour, with 
almost no additional turbulent dissipation. The buoyant Smagorinsky model, 
on the other hand, yields an increased eddy viscosity due to the unstable local 
stratification in the plume. Thus a laminarizing effect leads to reduced fluctu
ations and subsequently to an enlarged mean kinetic energy. By putting the 
stratification effect in a non-equilibrium description like the Kolmogorov-Prandtl 
model, an impravement is obtained. Using this model there is less net influence 
of the stratification term. In the downstream region, where the lateral plume os
cillations are large and partial plume roll-up is present, produced subgrid kinetic 
energy is effectively redistributed. Tagether with local instantaneous unstably 
stratified situations this reduces the eddy viscosity. 

Except for the buoyant Smagorinsky model, the differences in the fluctuations 
are not so large. Besides its performance for the mean flow the structure fundion 
model results in the largest deviation for the fluctuation of the vertical velocity 
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of ahout 5 %. However, it shows from the mean value of the axial velocity that 
convergence to zero is not yet attained that close. The fluctuations in axial 
velocity diHer with maximal 7 %. This amount is reached at the upper side 
hy the dynamic model and is caused hy aliasing effects. At the other side, the 
same difference resulting in smaller fluctuations of axial velocity is ohtained with 
the standard Smagorinsky model. The difference is made in allowing gridscale 
:fluctuations on the one hand and dissipating them rigorously on the other. It must 
he stated that the explanations for the ohserved differences are quite tentative 
and should he investigated more thoroughly. 
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Figure 7.14: Speetral densities of the axial velocity at the line (xl! xa) = 
(0.5,0.7487). Bold line: spatial, thin line: temporal (frequencies divided by (ua}). 
Left: result obtained with Smagorinsky model, right: results of dynamic model. 

The resulting difference in gridscale energy is depicted hy the spectra as given 
in figure 7.14. A relatively large gridscale energy is ohserved in the results of the 
dynamic model. Large wave numhers possess a too small amount of kinetic en
ergy in hoth situations. The latter is again due to the injection of kinetic energy 
at small spatial scales. A downward energy transport to small wave numhers is 
not accounted for at a proper rate. Either a dissipative model or inaccurate nu
merical presentation of the associated modes and the prohibition of backscatter 
are responsihle for this hehaviour. The temporal spectra are in better agreement 
with the DNS results (fig. 7.12), although they show a similar hehaviour as for 
the spatial scales. Here small frequencies are present with the correct intensity, 
whereas high frequencies fall ofi relatively fast. These high frequencies are con
nected to small spatial scales that are very much affected hy the models and 
numerical representation. The larger amount of fluctuations present in the tem
poral spectra compared to the spatial spectra may be regarcled as a return to a 
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more 2D organized flow, which still describes a chaotical meandering motion. 

7.5 Conclusions 

Buoyant air flow in a confined geometry was investigated using DNS and LES. In 
order to study the required grid resolution, the behaviour of the initia! transient 
and the loss of stability, first 2D simulations were performed. By investigating 
the convergence it was found that for the 2D case at Ra 1010 and Pr 0. 71 a 
grid resolution of 1952 grid points was sufReient to adequately simulate the flow. 
Furthermore, for a flow originating from a point souree and just after the collision 
with the top confinement, laminar boundary layer solutions were found to match 
the present full Navier-Stokes solutions very well. By defining a larger souree 
region, solutions at small elevations are more diffused, though downstream they 
tend to the same profile. 

By increasing the intensity of initia! perturbations in the flow, stability was 
found to be lost at an earlier stage. Thus a suitable intensity was found for the 3D 
DNS. Statistics of the 2D turbulent flow showed a large-scale circulating pattern 
which is not symmetrie. Large fluctuations are created in this background flow, 
which were convected with a low dissipation rate. Performing a 2D LES resulted 
in a flow more similar to the 3D flow that was expected to emerge. Here the time 
mean flow was already symmetrical. 

The 3D DNS yielded a 2D flow for the initial transient. Shortly after the 
symmetry breaking bifurcation subsequent axial planes started to give a gradually 
changing salution with the axial coordinate. These were the first 3D effects 
appearing in the flow. In this stage the divergence of the axial velocity from its 
initial zero value was stillnegligible relative to fluctuations of the vertical velocity 
with the axial coordinate. From this stage on these axial veloeities started to grow 
up to their steady state statistics. 

The time mean turbulent flow, emerging after the described transient, showed 
a tendency towards a symmetrical flow. It was found that all fluctuations cul
minate near the top wall, in the centre of the box. Particularly the fluctua
tions in the axial direction showed a relatively sharp increase just below the 
top confinement. Speetral statistics of the axial velocity component at the line 
(x1,x3) = (0.5,0.7487) were found tofall off fast with increasing wavenumbers 
and frequencies. At this line Taylor's hypothesis was found to he valid at low 
frequencies. Since kinetic energy is injected at relatively srnall scales a complex 
redistributing process is found to be present. 

Globally, most LESs resulted in a solution, similar to the DNS. Especially the 
relatively simple equilibrium models showed a good agreement. The Smagorinsky 
model as extended with the buoyant production term resulted in a distartion 
of the similarity with the DNS. Application of the Kolmogorov-Prandtl model 
restored a large part of this disagreement. 
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In using these models, a tuning of the model constants seems to exhibit a 
potential of yielding even better results. Therefore dynamic modeHing is con
sidered to be advantageous. Yet, application of the dynamic procedure to the 
turbulent stresses did not result in a satisfactory agreement. In the plume region 
the dynamic parameter was estimated to be negative most of the time. In keeping 
the numerics stabie a lower bound of zero had to be applied. Thus backscatter, 
an important phenomenon in the plume region, was directly prohibited. This 
gave rise to results almost identically equal to a Tij 0 model simulation. Here, 
in applying the dynamic procedure the representation of the smallest scales of 
motion by the numerics may be of crucial importance. 



Chapter 8 

Concluding discussion and final 
remarks 

In this thesis transitional plume flows in confined geometries are analyzed and 
predicted. The objective was to gain insight into the transitional bf_!haviour and 
to reduce the computational effort needed in numerical simulations by rneans of 
a suitable Large-Eddy Simulation. Therefore a proper SubGrid Model (SGM) 
has to he defined, that parameterizes the subgrid stresses and subgrid heat fluxes 
sufficiently well. 

Most analyses on subgrid scale modeHing and practical realizations of LESs 
as documented in the literature are concerned with forced flows. Most frequently 
these flows exhibit a relatively large turbulent dissipation rate. Here we are con
cerned with plume flows that are buoyancy induced and originate from discrete 
sources. Then a spatial transition from laminar to turbulent flow is accompa
nied by relatively low (buoyant) forcing rates. Therefore the integral turbulent 
dissipation is small. Furthermore the resulting flow is very non-homogeneous, a 
feature that additionally has its reflections on the degree of local isotropy. 

Literature survey revealed boundary-layer type equations descrihing free plumes 
originating from a line heat source. These similarity equations are solved numer
ically. In the fully turbulent case, approximations can he made about the time 
mean profile shape and the entrainment rate. This results directly in a solution 
for the turbulent time rnean profiles. In a confinement, however, both solutions 
have only a minor practical significance. Recirculation effects, wall resistance and 
the establishment of a stratification often affect the flow in a decisive way. On t.he 
other hand, these solutions are indispensable in serving as first guidelines in esti
mating the magnitudes of relevant properties, also for the purpose of numerical 
simulation. 

Subsequently the confined plume configuration was analyzed using the full 
Navier-Stokes and energy equations. The equations were numerically solved using 
a Finite Volume Metbod (FVM). The method, as well as partienlar discretization 
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schemes and the numerical code were validated for a two-dimensional air plume, 
confined in a cavity. This contiguration was also utilized by Desrayaud and Lau
riat [1993] to describe routes to chaotic convection using numerical simulation. 
This research was used as a reference basis, together with additional numerical 
experimentsusinga Speetral Element Method (SEM). The comparison yielded 
quantitatively similar results, e.g. the maximum difference of the estimated crit
ical Rayleigh number was within 7 %. Here both methods (FVM and SEM) 
revealed a value at the lower side of this region. 

A basis of validation with respect to the flow phenomena subjected to LES 
was created by means of experimental data and a Direct Numerical Simulation 
(DNS). Experimental data were gathered in a plume flow induced by a heating 
element surrounded by water at a forcing of Ra 2.1 · 1011 . Measurements 
were caried out in a two-dimensional cross-section by means of Partiele Tracking 
Velocimetry (PTV). The resulting data were sampledon an equidistant grid with 
spacing À using au interpolation method. They eau be summarized as follows: 

• A converged representation of the flow statistics was obtained. 

• The transitional regio u, defined by a sudden broadening of the mean flow, 
was located in the centre of the flow domain. 

• Above the transition two recirculation regions filled the upper half of the 
domain. 

• A low correlation of time mean SG M stresses with exact stresses was found. 

• In the transitional region, backscatter and forward scatter of kinetic energy 
are of equal importance. 

• A qualitative good representation of the exact interscale kinetic energy 
transfer was obtained with the dynamic model applied to filtered data. 

Subsequently numerical simulations were performed with several SGMs. This 
resulted in a common behaviour defined by: 

• A description of the heat souree with suftkient resolution is essential. 

• An overestimation of the velocity in the plume region. 

• An exaggeration of the penetration of the redreulating mean motion in the 
lower part of the flow domain. 

One of the reasous for this observed behaviour was the insufficient representa
tion of the buoyant souree and the thermal boundary layer, that could not be 
restored by the modelling. This results in a much too stabie boundary layer with 
a decreased buoyancy force, tagether partially responsible for the observed net 
effects. Additionally, the inability to represent backscatter led to the observed 
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discrepancy. Application of the dynamic model could not imprave these results 
due to the restrietion on the backscatter as given by numerical stability of the 
present FVM. 

As a secoud souree of reference, a DNS was performed for air at Ra= 1010 . 

In this situation a heat souree was defined that could be represented accurately 
at the DNS grid of 1953 , as wellas on the much coarser LES grid of 453 . The 
3D DNS revealed that: 

• A symmetrical time mean recirculation covered the domain above the heat 
source. 

• The flow was essentially three-dimensional, especially near the top wall. 

• No clear turbulent inertial range was present. 

Application of LES to the air plume yielded much better results than the 
LESs for the water plumes did. The main observations are: 

• An additional kinetic energy drain by an SG M has to be incorporated. 

• The Smagorinsky model and the structure function model performed fairly 
well. 

• There is not enough statistics present in the subgrid scales to allow a sta
tistica! description. 

Here again because of numerical reasons, backscatter could not be allowed, re
sulting in a similar perfomance of the zero model ( coarse grid DNS) and the 
dynamic model situation. 

Summarizing, it can be stated that numerical prediction of the behaviour of 
transitional plumes originating from small buoyancy sourees by means of LES is 
a very delicate affair. Globally this is due to three major causes. First, especially 
at high Prandtl numbers, care must be taken to resolve the thermal boundary 
layer as well as the hydrodynamica! boundary layer. Second, enough subgrid 
scales must be present to allow a statistica! description of the flow. However, if a 
scale similarity is present a dynamica! model could be used. This model has also 
the potential to represent backscatter. 

Backscatter is very hard to handle. In the literature several ways of dealing 
with instantaneous localized backscatter are provided. A number of methods 
are summarized by Moin and Jimenéz [1993] and a recent contribution is given 
by Meneveau et al. [1996]. In global dissipative flows, 'first all kinds of averaging 
operations were introduced to filter it out. Then, in dealing with larger more 
persistent areas of backscatter, dynamic Kolmogorov-Prandtl closures were used. 
Application of such kind of dosure allows backscatter, decreasing the subgrid 
kinetic energy down to zero. At this value it is limited in a natural way. 
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In a transitional plane plume flow a large coherent and persistent area of 
backscatter is present. The above mentioned methods cannot deal with this 
properly. 
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Appendix A 

Convergence of similarity 
solutions 

Convergence of the numerically determined solutions of the similarity equations 
2.45 is checked by investigation of the variables I as defined by 2.49, f' (0) and 
f(oo) when refining the grid size, nry. In the standard case the calculation domain 
was given by TJ = [0, 'TfmaxJ, with 'Tfmax = 10. When found necessary, i.e. at large 
Pr number, the calculation domain was extended up to 'T/max = 15. The value of 
f(oo) was approximated by the value at f('Tfmax)· Results are given in tables A.1 
to A.4. All calculations were found to be converged up to satisfying accuracy at 
the largest grid sizes. 

'Tfmax nry I f'(O) f('Tfmax) 
10 25 0.97672 0.65111 0.76488 
10 50 1.00474 0.65866 0.77676 
10 100 1.01180 0.65998 0.77979 
10 200 1.01362 0.66032 0.78086 

Table A.l: Convergence results for Pr = 0.71. 

'Tfmax nry I f'(O) f('Tfmax) 
10 25 0.98657 0.61956 0.81102 
10 50 1.01345 0.62492 0.82273 
10 100 1.02033 0.62614 0.82576 
10 200 1.02210 0.62646 0.82682 

Table A.2: Convergence results for Pr = l.O. 



1.44 

'r/max nry I f'(O) J('r/max) 1 
10 25 0.97785 0.46884 1.22500 ' 
10 50 1.00037 0.47220 L2367o 1 

10 100 1.00624 0.47307 1.23974 . 
15 200 1.00802 0.47375 1.25889 1 

Table A.3: Convergence results for Pr = 5.0. 

71max n'll I f'(O) f('flmax) 
10 25 0.96202 0.43854 1.33167 
10 50 0.98314 0.44133 1.34362 
10 100 0.98872 0.44215 1.34682 . 
15 200 0.99225 0.44400 1.39820 
20 200 0.99167 0.44404 1.40713 

Table A.4: Convergence results for Pr = 7.0. 



Appendix B 

Discretization of 11on-linear 
adveetion 

The standard methad of discretizing the non-linear term in the momenturn equa
tions in a fini te volume method is by using the conservative form. In applying the 
conservative or flux form, all terms can be partially integrated and subsequently 
a midpoint rule is applied. In a two-dimensional situation this becomes for the 
adveetion in x-direction 

~ jj {au u + auw} dû. 
n ax az 

(B.1) 

n 
Partial integration in the direction of the derivative and using the rnidpoint rule 
for the other direction yields 

~ jj' auu dü = _1_ J! auu dxdz = _1_ J dz n ax dxdz ax dxdz 
n zx z 

~ 4~x { (u( i, k) + u(ip, k)r- (u(im, k) +u( i, k)r} (B.2) 

and 

~ 
4
!x {(u(i,k)+u(i,kp))(w(i,kp)+w(im,kp))-

(u(i,k) +u(i,km)) (w(i,k) +w(im,k))}. (B.3) 

The total adveetion in x-direction is obtained by summing both contributions. 
However according to Piacsek and Williams [1970] this rnethod does not conserve 
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quadratic quantities absolutely, i.e., algebraically. The conservative form is not 
fully adequate for prediction methods that involve a processin which the continu
ity is not identically zero. In the present case the value of the divergence depends 
on the accuracy to which the Poisson equation for the pressure is solved, which 
is the machine accuracy. The fact that the divergence does not vanish exactly 
gives a contribution to the integral of quadratic quantities, in this case kinetic 
energy. Therefore Piacsek and Williams [1970] call this method a conditionally 
conserving form. 

Another form in which the non-linear term can be discretized is the advective 
form 

~ jj {u~: +w~:} dfl, (BA) 

n 
which has no contribution of the divergence. It can be discretized by using a 
trapezoidal rule in the direcion of the derivatives and using again a midpoint rule 
for the other direction, resulting in 

~ d:dz f { ~u~: L + ~dx + ~u~: I x - ~dx} dxdz 
z 2 2 

~ 4~x {(u(ip,k)+u(i,k))(u(ip,k)-u(i,k))+ 

(u( i, k) + u(im, k)) (u( i, k)- u(im, k))} 
= 4~x {u(ip,k) 2 u(im,k)2

} (B.5) 

and 

1 j { 1 au i 1 au! } ~ -- -w- 1 + -w- 1 dxdz 
dxdz 2 az z + -dz 2 8z z - -dz 

x 2 2 

~ 4~x { ( w(i, kp) + w(im, kp)) (u( i, kp) u( i, k)) + 

( w(i, k) + w(im, k)) (u( i, k)- u( i, km))}. (B.6) 

According to Piacsek and Williams [1970] this form produces a contri bution to the 
integral kinetic energy proportional to the divergence and of opposite magnitude 
to the conserving or flux form discretization. A veraging the two forms yields a 
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vanishing contribution in the varianee equation of the non-vanishing divergence. 
In this way an absolutely conserving form is obtained, i.e. a form with algebraic 
conservation independent of the accuracy of the solution. This form becomes 

4~x {u( ip, k) (u( ip, k) +u( i, k)) - u( im, k) (u( im, k) + u( i, k)) } + 

4~z {u( i, kp) ( w( im, kp) + w( i, kp)) - u( i, km) ( w( im, k) + w( i, k)) } . (B. 7) 

Furthermore, it follows that the latter form is also preferable because it is more 
economical to compute compared to the two other forms. 
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Appendix C 

The "ULTIMATE"-van Leer 
scheme 

Simple linear adveetion schemes do have some drawbacks. The second-order cen
tral scheme is unconditionally unstable for pure advection, resulting in wiggles 
in the presence of weak diffusion, and the first-order upwind scheme is very dif
fusive. In order to overcome the problems associated with these linear adveetion 
schemes, van Leer's second scheme was used (van Leer [1974]), with a modified 
criterion for switching to fi.rst-order upwind as proposed by Leonard [1991]. The 
modification does not infiuence the results, it only minimizes the computational 
costs, as will be shown. 

The starting point of van Leer's second scheme is the adveetion of a scalar c 

ä 
-u·c 
äx· 1 

J 

äc 

This may he discretized forward in time to yield a semi-discrete equation 

a 
-u·c= 
äx· 1 

J 

(C.l) 

(C.2) 

For convenience the one-dimensional equivalent will he taken, and the subscript 
j will be dropped. Application of the derivations to a multidimensional system 
is straightforward. First this equation is written in the Lax-Wendroff form by 
using a Taylor expansion of c = c( t), 

( C.:3) 

so that the adveetion equation becomes 

(C.4) 
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The right-hand side is taken at time-step n, and the higher order terms are 
dropped. At constant adveetion velocity u we have according to (C.1), 8cf8t = 
-u8cf8x and fPcj8t2 u282cj8x2 , so that 

8 8c 1 2 8
2c 

-uc =u-- -u -At. 
àx 8x 2 àx2 

Applying a finite volume procedure to the former equation yields 

x+!dx 

I !ucdx = 
x-!dx 

c(i - 2) c(i- 1) c(i} 
• • - ~L • -~ R 

Figure C.1: Staggered grid in one dimension 

In flux form the Lax-Wendroff scheme may now be written as 

x+!dx 

I !ucdx=fR-fL, 

x-!dx 

with the fluxes as given in figure C.1 IR( i) = h(i + 1) and 

h =~+~u ( 1-u~) (c(i)- c(i- 1)). 
upwind 

higher-order 

(C.5) 

(C.6) 

(C.7) 

(C.8) 
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The regularity of the salution can be represented by a monoticity monitor e 

e = _c('-i -:---:-1-'--) ---:-c-'-( i_---:-2--'-) 
c(i)-c(i-1)' 

(C.9) 

that equals unityin linear parts and negative when there is alocal extremuJ?. The 
higher order part of the flux is limited by multiplication with a limiter function 
L(B) due to van Leer, 

giving 

L(e) = IBI + e 
1 + e' 

L(B) = { :c(i -1)- c(i- 2) 
c(i)- c(i- 2) 

(C.10) 

if e < o; 
if e > o (C.ll) 

The flux can be written as the product of the adveetion velocity and some inter
polated value of the scalar with the use of the limiter defined as 

. 1 ( Llt) cmt = c(i- 1) + '2 1- u f:lx (c(i)- c(i- 1))L(B). (C.12) 

The final scheme becomes 

{ 

c(i- 1) if e < 0; 
cint = c(i- 1) + (1- u f:lt) (c(i)- c(i- 1))(c(i- 1)- c(i- 2)) if e > 0 

f:lx c(i)- c(i- 2) 
(C.13) 

Using this scheme may cause problems since e and cint may become singular 
in equivalued parts. Therefore we use the "ULTIMATE" strategy as proposed 
by Leonard [1991]. In this strategy the absolute curvature and slope are computed 
according to 

ACURV =Ie( i- 2)- 2c(i- 1) + c(i)l ADEL= ie( i- 2)- c(i)l. (C.14) 

Now the higher order part in (C.13) is only taken into account whenever ACURV 2: 
ADEL. In linear parts the method switches to first-order upwinding, which has 
no truncation error in such region. Therefore singularity problems are avoided 
and the scheme is a little cheaper in computational cost, not evaluating a higher 
order part where first-order has no truncation error. The acronym "ULTIMATE" 
stands for the use of a universallimiter (UL) for transient interpolation modeHing 
(TIM) of the advective transport equations (ATE). 

Some common adveetion schemes are compared with the present scheme in 
figure C.2. Here a test is used as proposed by Leonard [1991], consisting of a 
step, a sine squared and a semi-ellipse. For details see Leonard [1991]. Figure C.2 
shows the absolute supremacy of the present "ULTIMATE"-van Leer scheme. 
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Figure C.2: Results of several adveetion schemes at Courant number er = 0.5 



Appendix D 

PTV cost minimization 
algorithm 

In the partiele tracking algorithm, used in the present study, the finding of the 
optimal set of matchings is obtainecl by minimizing the function ( as defined by 

(D.l) 

The association is determined by the binary valued quantity O:ij, being equal 
to 1 for true associations. The Hkelihoocl of the pairing is given by a so-called 
cost function Cij. Therefore the function ( expresses a summarized weighted 
association or integral cost. 

Reducing ( is achieved by use of the relational index J(j) which has 
the value i, for which O:ij = 1. Similarly an index J( i) with value j, for which 
O:ij 1 can be defined. Both are needeel because of the existence of particles in 
image P that are not appearing in Q and vice versa. The change in the overall 
cost can now be calculated for each O:k! = 0 becoming 1. To keep the pairings 
unequivocal for every i there is exactly one O:ij that equals unity. This holels also 
for every j. This means that by putting a zero aki to unity that both O:J(I)I and 
O:kJ(k) must become zero. Sequentially this implies that also O:J(I)J(k) has to be 
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assigned to one, having 

(D.2) 

CXJ(l)J(k) ~l 

This interchange results in a change in cast. The change in overall cast is due 
to the casts associated with the change in the mentioned four O:ij values. The 
alteration is denoted by the reduced cost rek/ 

(D.3) 

The pair kl which yields the most negative value of rek/ will he allowed toenter 
the set of pairings along with pair I(l)J(k). This process is repeated until no 
association has a negative value of rekt anymore. The definition of ( ensures that 
this salution has the minimum value of the objective function and corresponds 
to the optimal set of associations. 



Appendix E 

Experimental stresses and a 
priori test 

In this appendix the detailed results of the a priori test are given. The "exact" 
deviatoric stresses are depicted in figure E.l. The decomposition of the total 
stress in Reynolds, cross and Leonard stresses is given in figures E.2, E.3 and E.4. 
Furthermore a priori predictions of the time mean stresses and their standard 
deviations are calculated based on subgrid scale models. In figures E.5, and E.6 
results are given for the Smagorinsky model and the dynamic model, respectively. 
These models are used while employing top-hat filtered data. 
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Figure E.l: Subgrid stress es, deviatoric parts, top to bottom: 7u, 713 and 733, 

Left: time mean stresses; right: standard deviations. Levels multiplied by 107 • 
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Figure E.2: Subgrid Reynolds stresses, deviatoric parts, top to bottom: Ru, R13, 
Lejt: time mean stress es; right: standard deviations. Levels multiplied by 107 . 
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Appendix F 

Developn1.ent of a 2D plume in 
• air 

In this appendix the temperature field of a 2D plume is given as function of 
time. The dimensionless parameters are Ra = 1010 and Pr 0.71. The flow 
domain, boundary conditions and heat souree distribution are specified in the 
introduetion of chapter 7. The flow was simulated on a 1952 grid. An initial 
perturbation of intensity ar = 10-8 is applied. Snapshots are at a nurnber 
of times, indicated at the top of each picture. Contour levels are given by [5 · 
w-4:5. w-4:1o-2]. 
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Figure F.t: Evolution of the temperature field in the 2D case, values 
(0.0005:0.0005:0.01} 



Appendix G 

Development of a 3D plume in 
• air 

In this appendix the temperature field of a 3D plume is given as function of 
time. The dimensionless parameters are Ra = 1010 and Pr = 0. 71. The flow 
domain, boundary conditions and heat souree distribution are specified in the 
introduetion of chapter 7. The flow was simulated on a 1953 grid. An initial 
perturbation of intensity aT 10-8 is applied. Snapshots of cross-sections at 
the discrete position j 100 are given at a number of times, indicated at the 
top of each picture. The evolution of the flow field up to the first picture in 
this appendix is equal to the two-dimensional starting flow, and is depicted in 
appendix F. Contour levels are given by [5 · 10-4 :5 · 10-4 :10-2]. 
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Figure G.1: Evolution of the temperature field in the 2D case, val u es 
{0.0005:0.0005:0.01) 
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Frequently used nomendature 

Although most quantities are treated sametirnes as being dirnensionless, the phys
ical dirneusion is given between square brackets. 

Symbols 

A area [m2] 
B buoyancy flux [m3 8-3] 
Cp heat capacity at constant pressure [m2 s3 K-1] 
Ck, Cs, C Kolmogorov, Smagorinsky, dynamic constant [-] 
e kinetic energy [m2 s-2] 
E speetral kinetic energy density [m3 s-2] 

f frequency [s-1] 

f sirnilarity streamfunction [m2 8-1] 
structure function [m2 s-2] 

g gravitational acceleration [m8-2] 
h subgrid flux [mK s-1] 
H,W,D domain heigth, width, depth [m] 
k wavenumber [m-1] 
Kh eddy diffusivity [m2 s-1] 
Km eddy viscosity [m2 s-1] 
n time step 
p pressure [kg m-1 s-2] 
.Pr Prandtl number [-] 

(after Ludwig Prandtl (1875-1953)) 
ql heat flux per unit length [kg s-2] 
q/1 heat flux per unit area [kgm-18-2] 
q/11 heat flux per unit volume [kgm- 2 s-2] 
r radius [m] 
Ra Rayleigh number [-] 

(after John W. Strutt, Lord Rayleigh (1842-1919)) 
Re Reynolds number [-] 

(after Osborne Reynolds (1842-1912)) 
s strain 
t time [s] 
T ternperature [K;oGJ 
u, v, w velocity cornponents [m8-1] 
Ui velocity cornponents in direction i [ms-1] 
V volurne [m3] 
x, y, z coordinates [m] 
x· 
' 

coordinates in direction i [m] 
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Greek symbols 

(); entrainment rate 
(); heat transfer coefficient 
(3 coefficient of thermal expansion 
f3T width coefficient of turbulent temperature profile 
{J Kronecker delta 
À grid spacing, difference 
€ kinetic energy transfer 

'TJ Kolmogorov length scale 

'TJ similarity coordinate 

4> similarity temperature 
/'i, thermal diffusivity 
À thermal conductivity 
À Taylor mieroaeale 
p, mean 
V kinematic viscosity 
w vorticity 
'Ij; streamfunction 
p density 
(j standard deviation 
r subgrid stress 
r time constant 

Notations 

f* dimensionless quantity 
1 spatially filtered value 
f' spatially fiuctuating value 
(J) time averaged value 
J" temporal standard deviation 

Abbreviations 

DNS 
FDM 
FVM 
LES 
PTV 
SEM 
SGM 
SGS 

direct numerical simulation 
finite difference method 
finite volume metbod 
large-eddy simulation 
partiele tracking velocimetry 
speetral element metbod 
subgrid scale model 
subgrid scale 

!-] 
[kgm2 s-3 K-1] 
[K-1] 
[-] 

[m] 
[m2 s-3] 
[m] 
[m] 
[Kj 
[m2 s-1] 
[kgms-3 K-1] 
[m] 

[m2 s-1] 
[s-1] 
[m2 s-1] 
[kgm-3] 

[m2 s-2] 
[s] 
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Summary 

The present research is concerned with tl1ermal plumes induced by prismatic heat 
sourees and displaying a spatial laminar to turbulent transition. The plume of 
a cigarette is a striking example of such a flow, showing the transition clearly. 
In boilers, plumes affect the storage of heat in such a way that they decrease 
the storage efficiency. Heat advected from computer chips by plume flowsensure 
subcritical chip temperatures. Thus thermal plume flows are responsible for the 
performance of several devices. Therefore we want to predict these kind of flows. 

Generally, the length scales involved range from very small in the free buoy
ant boundary layer to very large in recirculating patterns. To solve such flows 
entirely, by numerical approximation on a computer, would require vast amounts 
of computer storage, as well as CPU-time. Therefore the research focusses on the 
feasability of the application of so-called "Large-Eddy Simulation" (LES). This 
is a technique in which the largest scales of motion are explicitly calculated. The 
effect of the smallest eddies on the larger structures is modelled. Several models 
are yet available. Mostly they are based on the theory of homogeneons isotropie 
turbulence. The accompanying energy drain can then be modelled with an eddy 
diffusivity. 

In order to come to a fair assessment, experimental as well as numerical 
sourees of reference data are employed. In an experimental setup the objected 
plume flow was established in water and subjected to "Partiele Tracking Velocime
try" (PTV). The vigour of the flow as expressed by the Rayleigh number was 
Ra 2.1 · 1011 . For air a "Direct Numerical Simulation" (DNS) was performed 
at a lower Rayleigh number of Ra 1010 . 

The PTV yielded qualitatively good spatial in formation of the flow. It showed 
a recirculating region in the upper half of the flow domain starting with the 
transitional region. The DNS was carried out successfully yielding a resolved 
flow field, spatially as well as temporally. Furthermore the simulation period was 
suflident to obtain converged statistics. 

The PTV data revealed that in the transitional region the interscale kinetic 
energy transfer downscale and upscale are of equal importance. As a consequence 
equilibrium models are unable to display the physical correct effect of the small 
scales of motion. A scale similarity concept as employed by the dynamic model 
shows the ability to permit upscale energy transfer. However, this is limited by 
numerical stability. In the case therefore it is hard to apply LES with 
suflident accuracy. A good representation of the souree is essential. In case of the 
DNS air flow, the agreement with LES was much better. Here less scales with 
an extent smaller than the grid width were present and so the model had only a 
weak influence. Furthermore it was found that relative cheap models performed 
best. 
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Samenvatting 

Het huidige onderzoek betreft thermische pluimen veroorzaakt door lijnvormig 
warmtebronnen en met een ruimtelijke laminair-naar-turbulent overgang. Een 
sigarettenpluim is een goed voorbeeld van zo'n stroming waarbij de overgang 
goed te zien is. In boilers zorgen pluimen voor een daling van de kwaliteit van 
de warmte-opslag. In computers daarentegen zorgen pluimen voor de benodigde 
afvoer van warmte van de chips. Pluimen zijn dus verantwoordelijk voor de 
prestaties van verschillende apparaten. Daarom willen is het belangrijk dit soort 
stromingen te kunnen voorspellen. 

In het algemeen reiken de lengteschalen van zeer klein in dunne grenslagen 
tot zeer groot in recirculatie gebieden. Het oplossen van zulke stromingen, met 
numerieke benaderingen op een computer, zou een zeer grote hoeveelheid aan 
data opslag en CPU-tijd vergen. Daarom richt het onderzoek zich op het aan
wenden van zogenaamde "Large-Eddy Simulation" (LES). Dit is een techniek 
waar de grootste schalen van beweging expliciet berekend worden. Het effect van 
de kleinste wervels op de grotere structuren wordt gemodelleerd. Verschillende 
modellen zijn reeds voorhanden. De meeste modellen zijn gebaseerd op de theo
rie van homogene isotrope turbulentie. De hieraan gekoppelde energie afvoer kan 
dan gemodelleerd worden met een eddy-diffusiviteit. 

Om een eerlijke vergelijking mogelijk te maken is gebruik gemaakt van zowel 
experimentele als numerieke referentiedata. In een experimentele opstelling is 
een pluim gecreëerd in water, waarbij "Particle 'Iracking Velocimetry" (PTV) 
is uitgevoerd. De thermische forcering uitgedrukt met behulp van het Rayleigh 
getal was Ra = 2.1·1011 . Voor lucht is een "Directe Numerieke Simulatie" (DNS) 
uitgevoerd bij een lagere forcering van Ra = 1010• 

De PTV gaf kwalitatief goede ruimtelijke informatie van de stroming. In de 
bovenste helft van het stromingsdomein ontstaat een recirculatie zone, startend 
vanaf het overgangsgebied. De DNS is met succes uitgevoerd en het resultaat 
was een opgelost stromingsveld, zowel ruimtelijk als in de tijd. De simulatieduur 
was zodanig dat geconvergeerde statistieken zijn verkregen. 

De PTV data toonde dat in het overgangsgebied de kinetische energieover
dracht van grote naar kleine schalen even belangrijk is als andersom. Het gevolg 
is dat evenwichtsmodellen niet in staat zijn het correcte fysische gedrag van de 
kleine schalen te verdisconteren. Een gelijkvormigheidsconcept zoals gebruikt 
wordt in het dynamische modellaat echter wel de mogelijkheid zien van energie
overdracht van kleine naar grote schalen. Dit is echter beperkt op grond van 
numerieke stabiliteit. In het huidige geval is het daarom zeer moeilijk om een 
LES te gebruiken met voldoende nauwkeurigheid. Een goede representatie van 
de bron is essentieel. In het geval van de DNS luchtstroming is de overeenkomst 
met LES veel beter. Hier zijn minder schalen aanwezig die kleiner zijn dan het 
numerieke grid, zodat het model geringe invloed uitoefende. Relatief goedkope 
modellen presteerden hier het beste. 
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Nawoord 

"Het leed is geleden de horizon schijnt wanneer de doden dronken zijn en Pierlala 
verdwijnt". In de afgelopen jaren is getracht een fysisch relevant proefschrift te 
schrijven, binnen randvoorwaarden van esthetica en perfectionisme. De mens en 
zijn zoektocht zijn onontkoppelbaar. In het begin met de neus op de monochrome 
terminals, kritisch de groene getallen controlerend die in schier oneindige rijen 
over het scherm rolden. Later met "fancy graphics", hetgeen een wereld opende 
maar daarnaast ook zeer veel vragen opriep. Er is veel geleerd. Gedeeltelijk ook 
door mij. Dit is niet alleen mijn eigen verdienste geweest. Hierbij wil ik een groot 
aantal mensen bedanken die een belangrijke factor waren in de realisatie van dit 
proefschrift. Dit zowel op een elirekte als indirekte manier. 

Op de eerste plaats ben ik de elirekte begeleiding, Anton van Steenhoven 
en Camilo Rindt, veel dank verschuldigt. Beider constante ondersteuning en 
vertrouwen hebben voor een belangrijk deel geleid tot de verwezenlijking van het 
resultaat. De tweede promotor Prof. Frans Nieuwstadt had een grote bijdrage 
door zijn niet aflatende enthousiasme en nuttige suggesties. De overige leden van 
de kerncommissie, Prof. van Heijst en Prof. Mattheij, wil ik bedanken voor hun 
bruikbare opmerkingen en correcties. 

Bij deze wil ik ook de afstudeerders en stagiaire bedanken die hun steentje 
hebben bijgedragen, in chronologische volgorde: Hugo Sparidans, Johan Kwast, 
Dorrit van der Burgt, Eddy van Doorn, Peter Hempenius, Gerdewan Jacobs en 
Erik (the half-a-bee) Hermens. 

De technische en administratieve ondersteuning van Frits van Veghel, Rian 
Tielemans, Ad van Huygevoort, Lambert van der Schoot, Peter Ewalts, Ion 
Barosan en Frans Kuypers droegen bij tot een prettige samenwerking. 

Jos Sillekens, Jacob van Berkel, Peter Minev, Gert van der Plas, JanKees 
Hogendoorn, Douwe de Vries en Rob Schook zijn een constante bron geweest van 
meer of minder fruitvolle en ook sappige discussies. 

Verder wil ik mijn moeder, de rest van de familie en m'n vrienden bedanken 
voor de steun en de relativatie. 
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Stellingen 
behorende bij het proefschrift van Rob Bastiaans: 

Large-Eddy Simulation of Confined Transitional Plumes 

I In het transitiegebied van een door een lijnbron geïnduceerde thermische pluim 
is de zogenaamde "backscatter", kinetische energie-overdracht van kleine naar 

ruimtelijke schalen, net zo belangrijk als "forward scat ter". 

Dit proefschrift. 

II De turbulentiegraad van numeriek gesimuleerde turbulentie kan goed gekarak
teriseerd worden door de verhouding tussen de grootte van de datavelden voor 
en na compressie. 

III Kennis van de stromingsleer stoelt voornamelijk op het feit dat de belangrijkste 
fiuïda, te weten lucht en water, optisch toegankelijk zijn. 

IV Bij de behandeling van de C02-problematiek in documentaires worden ten on
rechte H20 pluimen getoond. 

V theorie, betreffende de dissonantie vermijding, voorspelt dat 
personen deze theorie verwerpen. 

L. Festinger [1957], 
A Theory of Cognitive Dissonance, 
Stanford University Press. 

VI Iets wat geen bewuste risico's met lelijkheid neemt kan niet mooi 
Alain de Botton [1993], 
Essays in Love. 

VII Duidelijke taal kan vaak alleen gebruikt worden met zware concessies aan de 

VIII Onwetendheid is des wetenschappers libido. 

IX Kinderen die "ik ben vies" op auto's hebben gelijk. 

X Het fileprobleem kan opgelost worden door een verbod op deelname. 

XI Het door P. deC. veelvuldig gebezigde "sapperdefiap" duidt op een handelswijze 
die meestal niet met voorbedachte rade was. 



XII Een onmogelijkheid is geen onmogelijkheid. 


