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1 Introduction 

A design process can be viewed as a sequence of actions, which comprise the transformation 
from an initial state, comprising the design goals, to a final state detailing a new product or 
service and how it should be created [1]. Commonly, a design process is seen as a knowledge-
based exploratory and evolutionary process. Many models of a design process recognize 
phases of analysis and conceptual design [2], [3]. There is a variety of sub-activities in a 
design process and in this paper we concentrate on the conceptual construction of an 
architecture of the artefact to be designed (ATBD). The architecture forms the skeleton for all 
subsequent design stages; design support systems therefore require a representation of this 
architecture [4]. The fact that design problems are under-defined and open-ended complicates 
architectural design [5]. Even at the end of the architecture phase many alternatives are left 
open. It is often necessary to consider several of these alternatives and then to compare their 
suitability. 

The problem we want to study is how the designer can be assisted in maintaining a 
representation of the ATBD during the early design phases, where he1 has to generate 
alternatives and to make conceptual architectural decisions. Nowadays, design support 
systems (DSS) are used in this phase. DSSs aim to help designers to maintain complex 
structures of requirements, context, alternatives of an ATBD architecture, etc. According to 
[6], DSSs have to provide support for exploration, evolution, cooperation, integration, and 
automation throughout the design process. In order to perform these tasks, many DSSs 
contain domain-specific models for design knowledge representation and administration 
during a design process. These models, however, may cause a bias towards certain design 
styles. This may sometimes interfere with the intentions of the designer, or restrict his creative 
freedom. 

In this paper we will therefore consider a model for design knowledge representation that 
aims to be as empty as possible, whereas it should still be useful in taking the administrative 
burden off of the designer’s shoulders. Also, our model tries to help designers integrate 
context, requirements, and alternatives for the ATBD architecture at hand. Furthermore, as 
our model invites the designer to think in terms of well-defined relations between the various 
concepts he uses, we think that our model also stimulates cleaner thinking about the design 
problem. Using the model it is easy to express ideas, but also questions, doubts and 
alternatives. The model allows documentation in a uniform way by means of well-defined 
semantics. 
                                                           
1 Everywhere in this paper, ‘he/his’ is short for ‘she or he/her or his’ 



2 Related Work 

Several authors address the issue of (formally) representing design knowledge in multi-
disciplinary contexts. Our work is similar to, and partially inspired by, Fujii et.al., [15] in the 
sense that a state transition model of a design process is used, and properties of the ATDB are 
expressed in predicates; transitions are defined by their effect on these properties. The 
underlying modal logic in [15] is based on the work of Brazier [16] et. al. Our model features 
less advanced automated reasoning, since we allow attributes (functions) of concepts that are 
not restricted to truth-values; hence we cannot apply formal logic manipulations to the same 
extent as [15] and [16]. (See 3.1). Some knowledge, however, that we do represent and 
manipulate explicitly comprises various forms of hierarchy. Our model caters for the various 
types of hierarchical relations that designers use in all stages of design. (See 3.3) Several 
authors explain the role of hierarchies in designing: according to Simon [10], hierarchies 
increase evolution speed and allow the decomposition of the ATBD. Douglas describes how a 
design problem can be reduced to a hierarchy of decisions or alternatives [5]. Therefore the 
machinery behind our model uses hierarchical relations from Object Orientation (OO) [7], 
extended with some operators to express intentional relations, together with notions from 
spreadsheets [8] and symbolic manipulation [9]. (see3.1) Numerous models of design 
knowledge representation are based on hierarchical approaches. Such models can be divided 
into descriptive and prescriptive models. 

2.1 Descriptive models 

Descriptive models of design process are used for describing different kinds of products, 
design problems, specifications, and solutions. An example is the STEP library. STEP is a set 
of ISO [11], [12], [13] standards, which provides the exchange of engineering product data 
between databases and CAD systems. STEP is built on an information modelling language 
that can formally describe the structure and correctness conditions of any engineering 
information. The library consists of several parts, each consisting of a hierarchy of instances 
of entities in a data model. Examples of parts are classes of physical objects, classes of 
aspects of physical objects, etc. Classes of objects have a textual definition but also an 
intentional definition via a class of properties. Each class has to be associated to another class 
by types of associations (is-a, used-in, part-of, connected-with etc.). STEP does not support 
the design process of the ATBD. Alternatives to an ATBD architecture can only be partially 
expressed using optional associations with other classes. There is no computational engine to 
propagate decisions throughout an ATBD description. 

2.2 Prescriptive models 

Prescriptive models concentrate on the development and application of strategies, methods, 
techniques, and tools that are used for designing. An example is the KBDS system. 

KBDS [14] is a Knowledge Based Design System, which allows a team of designers to 
maintain a representation of the design process not only as a historical record of the 
development of a design artefact, but as an "active" repository of information. Alternatives are 
represented in the form of the space of design alternatives (SDA). There is also the space of 
design objectives (SDO) related to SDA. The SDO is used for both generation and evaluation 
of alternatives in SDA. The model allows the designer to keep track of several design 
alternatives at a time; evaluating an alternative design against a set of design objectives; and 
transparently accessing external applications. The ideas that we propose in this paper are in no 
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way as mature as either of the above models: for instance, a computer implementation is still 
under development. Still, we think that it is worthwhile to explore a model that has both 
descriptive and prescriptive sides. 

3 An operational model for design processes 

We propose a model for design processes that should allow denoting design processes for the 
sake of exercising, researching and teaching cross-disciplinary design skills. Here, ‘cross-
disciplinary’ refers to design situations where several designers with substantially different 
backgrounds have to co-operate. We assume that therefore no single discipline-related design 
methodology is available, and both technological and non-technological issues should be 
taken into account. Our model typically relates to early design stages, when major 
architectural decisions are taken without the ability to rely on the detailed knowledge that is 
only available in later stages. We want the same model to govern requirements, context and 
architectural issues. The model should cope with administrating (the consequences of) 
alternatives for design decisions, and it must be possible to postpone decisions or revoke 
earlier decisions. If our model proves to be adequate (which is still to be assessed), it should 
be possible to give automated support, e.g. to ensure, as far as possible, consistency among 
various decisions. It should, to a large extent, take the administrational burden from the 
designers without enforcing a strict format upon the creative design process. 

3.1 Basics of the model 

To this aim, our model contains the following ingredients: 

• concepts (classes or instances) 

• attributes, which are predicates over these concepts 

• few pre-defined attributes, such as ‘has-a’, ‘is-a’, needs-a’, that occur in virtually all kinds 
of design situations 

• the notion of a spreadsheet, as this is a familiar device for incremental ‘what-if’-analysis 
in many disciplines 

• the notion of partial and symbolic evaluation (see below), as this allows decisions to be 
postponed or revoked. Notice: traditional spreadsheets don’t allow cells to be non-
evaluated: they cannot propagate expressions, but only the (numerical, logical or alpha-
numerical) values of expressions. This is clearly insufficient for postponing decisions. 

With this model, a design process is a sequence of tables. A table contains 0 or more rows; 
every row represents one concept. A table contains 10 or more columns; every column 

represents an attribute. We have 10 pre-defined attributes with 
pre-defined meanings. Also, the propagation of these meanings 
to other cells is well defined. This means that, if the designer 
defines or changes the value of one attribute, the values for 
related pre-defined attributes can be updated automatically.   
The pre-defined attributes come in two sets of 5 (=4+1). The 
two sets are each other’s inverses, in the sense that ‘has-a’ is 
the inverse of ‘part-of’. One pair of inverses is the ‘classifies-
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as’ and ‘instantiates-as’ pair that connects classes and instances. The other 4 pairs of pre-
defined attributes are defined for classes only. They are depicted in the above diagram. Some 
examples illustrate these pre-defined attributes: is-a(table) ! furniture; specializes-
as(furniture) ⇒  table; has-a(table) ! legs; part-of(legs) ⇒  table; instantiates-as(my-
favourite-chair) ! chair; classifies-as(my-favourite-chair) ⇒  chair; needs-a(lamp)   ! 
electricity; causes-a(lamp) ! light; et cetera. The expression after the arrows indicates the 
contents of a cell in the table. The user enters expressions after single arrows (!); the 
expressions after double arrows (⇒ ) follow automatically from the meaning of one of the pre-
defined attributes. A cell is characterized by a row (concept, say C) and a column (attribute, 
say A). The cell represents the expression A(C). If A(C) can be evaluated; it also represents 
the value of this expression, similar as is done in a spreadsheet. In all previous examples, 
evaluation was fully possible. In some cases, for instances with conditional expressions (see 
3.2), evaluation is only partially possible. Indeed, the contents of cells can be more involved 
as we will explain below. With our tables, consisting of rows, columns and cells, we represent 
the design process as a state transition machine. The initial state is a table with 10 columns 
and 0 rows. A state transition can be one of: adding a concept (=adding a row); adding an 
attribute (=adding a column), or modifying the contents of a cell. It is assumed that the 
modification of a cell immediately invokes updating other cells if the pre-defined semantics of 
the attributes allows this. For instance, if the cell has-a(table) is filled with the word ‘legs’, 
and ‘legs’ is the name of an already existing concept, then the cell part-of(legs) is filled with 
the word ‘table’. More complicated examples of updates will be explained later. 

3.2 Expressions in cells 

Attributes will often have multiple values. In order to express this, the expressions in cells 
may contain operators. Operators include: BOTH, ALT (abbreviation of ‘alternative’), OPT 
(abbreviation of ‘optional’), IF, ITE (abbreviation of if-then-else), IN, AND, OR, and other 
obvious relational operators for Boolean and numerical types. We illustrate some of these 
operators with examples: 

• has-a(chair)!BOTH(seat, backrest, legs) gives rise to part-of(seat) ⇒  chair; part-
of(backrest) ⇒  chair; part-of(legs) ⇒   chair. 

• needs-a(electric-lamp)!ALT(battery,220V). Notice that in this case no automatic 
deduction of allows-a(battery) or allows-a(220V) can take place. Also notice that the 
entries ‘battery’, ‘220V’, and all other constants are left unevaluated unless the designer 
considers it worthwhile to identify concepts with these terms for further elaboration. Our 
system does not contain any ontological information about the domain; it only 
administrates the ontology as it builds up in the designer’s mind. At a future stage, 
however, the designer may want to elaborate on, say, the battery: then he may introduce a 
concept ‘battery’ with attributes in its own right. 

• has-a(chair)!BOTH(seat, legs, backrest, OPT(armrests)) expresses that a chair has a seat, 
legs and a backrest; armrests are optional. 

• is-a(chair)!ITE(made-by-artist(chair),piece-of-art, furniture), where the first argument of 
ITE is a condition. ITE is an abbreviation for If-Then-Else. If this condition evaluates to 
‘TRUE’, the second argument is returned; otherwise the third argument is returned. So in 
this case the value of the cell is-a(chair) is only defined if the attribute ‘made-by-artist’ 
returns a definite value for the concept ‘chair’. But even if ‘made-by-artist(chair)’ does 
not evaluate to TRUE or FALSE (for instance, the designer hasn’t made up his mind yet, 



so the cell made-by-artist(chair) is still empty), we can use the contents of the cell is-
a(chair) in other expressions (which may or may not be evaluated in turn). The assignment 
of a definite value to any attribute may take place at any time; its effect will immediately 
propagate to all cells that depend on it. Similar, a definite value may be withdrawn at any 
time, and values that depend on it will loose their validity; the associated expressions, 
however, will continue to hold. 

• If times-used(room)!BOTH(night, day), then has-a(room)!IF(IN(night, times-
used(room)),lamp) evaluates to ‘lamp’. So the operator IN(x, y) is used to check if x 
occurs in (the expression) y. If y in turn is a conditional expression, depending on 
condition K,  the condition K is also accounted as a condition in the result of ‘IN’. 

• part of the pre-defined semantics of ‘is-a’ is the following: suppose, for concept x, 
attribute A(x)!E(x) where E is some expression in x. If is-a(y)!x, then we can 
automatically deduce A(y)⇒ E(y). This is consistent with the concept of inheritance from 
Object Orientation. 

3.3 Transitivity, hierarchies and architectures 

The 10 pre-defined attributes, has-a … is-caused-by, are 
transitive relations between classes. Transitive relations, 
such as (multiple) inheritance, are at the heart of 
hierarchies as they occur commonly in all sorts of 
design processes. For modelling design the exploitation 

of transitivity in concert with our operators has some attractive consequences. For instance, 
suppose we want to postpone the decision between the two architectures depicted here. Then 
we can simply write part-of (S1)!S; part-of(S2)! ALT(S,S1). This allows further argumen-
tation where both options are left open for a while. In a similar way, transitivity can be used to 
deduce about fulfilment of requirements or side effects. For instance, from causes-a(p)!r and 
needs-a(p)!s and causes-a(q)!v and needs-a(q)!r we may automatically deduce that 
needs-a(v) ⇒  s and causes-a(s) ⇒  v. Obviously, these argumentation patterns occur 
frequently throughout most design processes. Indeed, design is about the fulfilment of 
requirements, and it is crucial to assess if at a certain stage all requirements are fulfilled. Our 
model provides a natural mechanism to integrate these argumentation patterns (that involve 
stakeholders and their attributes and other terms from the context) with argumentation about 
technological or architectural aspects of the design. 

In the next section, we present a ‘hand-made’ example of a small design process that makes 
use of our model. For more realistic examples, a software implementation is indispensable. At 
the end of section 4 we comment on the current status of our prototype.  

4 Example 

As an example of a system to design we chose a prototype of a dynamic board (d-board.) The 
main idea of a d-board is to enhance the functionality of a normal lecture room blackboard 
(board.) A conventional blackboard serves in teaching processes, where a teacher writes or 
draws on the board synchronously with his oral presentation. Therefore, a snapshot of a board 
with the writing on it only captures a small portion of the meaning. The dynamical process, 
which carries a lot of the didactics, is lost. We aim to enhance the functionality of a board in 

S 

S1 S2 

S 

S1 S2 
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such a way that speech and drawn information are recorded in the chronological order for 
later usage, thus enhancing the meaning. 

4.1 Dynamic board prototype 

The starting point in the design process was made when we decided to enhance an existing 
board instead of building a completely new system. The first concepts introduced in the table 
are related to our Lecture room and a class of Boards that will fit the Lecture room. 
(See steps 1-6.) We can also introduce new attributes such as Area (steps 3-4). Our doubts 
about a board size can be expressed as alternatives. For instance, we restrict the board area to 
medium (m) and large (l), because these are commonly used in lecturing (step 7). The 
auxiliary devices, namely the Marker and the Eraser, are used as tools. Using the IS-A 
attribute they are generalized into the more generic concept Tool (steps 8-9). Any later 
modification of the Tool will cause automatic modification of both the Marker and the 
Eraser. For instance, adding an attached Wire to the Tool (step 10) causes automatic 
propagation of the Wire to the Marker and the Eraser. Notice that all the concepts we 
have introduced so far are either specific instances (My Lecture room) or generic classes 
(Lecture room, Board.) They are used to describe a context or system parts. In step 11 
we introduce the concept of Understandability, which is of a different kind. It does not 
have a specific instance and furthermore it describes a requirement. Despite these big 
differences we treat all concepts in a similar way. The Understandability will increase 
if both video and audio components are present (step 12). After thinking about different 
alternatives we came up with the Microphone (Mic) to provide audio and the two 
alternatives, namely Camera and Digitizer, to provide video (steps 13-18). In steps 
19-20 we decide to use a Camera for medium-sized boards and to use a Digitizer for 
large boards. For our purposes a Digitizer needs a special Interface (Int-ce) and 
a built-in Microphone (step 21). The Interface of the Digitizer can be either wired 
or wireless (step 22). However, we know that a wireless interface is more expensive then a 
wired one. To express this knowledge, we add a new attribute Price and assign a value to it 
that corresponds to the Digitizer (steps 23-24). 

In a similar way we, can continue until the design is finished or no open alternatives are left. 
For instance, if we decide to use a large board then the table automatically maintains 
consistency and computes that a Board has a Digitizer with a Wireless 
Interface; the total Price will then exceed $400. 

4.2 Software: prototype and future extensions 

The table at the end of this section was hand-generated. However, we are developing a system 
to automate the administration of such tables. The core of this system is a parser, an 
expression evaluator, and an engine to propagate expressions between cells based on the pre-
defined attributes. The first two components are now operational. In order to propagate 
expressions, thereby taking the semantics of pre-defined attributes and conditions into 
account, we propose to use, in every cell, an internal normal form. Such a normal form is a 
list of all possible return values of a cell (constants or concepts), where for every entry in the 
list we administrate the condition for which this value results. This normal form facilitates 
merging expressions, which is necessary, among other things for multiple inheritance. Finally, 
the core will be interfaced to a standard spreadsheet front-end, so that familiar interaction 
techniques automatically apply.  
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In this table we represent the dynamics of the design process. To that aim, all entries are prefixed with a rank 
number; these numbers count the subsequent actions (decision) of the design. If one cell contains two entries, 
with different numbers, this indicates that in the course of the process, the content of this cell was changed from 
the first to the second entry. Numbers with prime (e.g. 6’) result from automatic propagation; in this case step 6 
gives rise to the automatic update in the entry labelled 6’. Label 0 is given prior to the start of the design process.  
Abbreviations: 7) m-medium, l-large 14) Mic -Microphone 23) Int-ce –Interface 

Conclusions and Future Work 

We study the problem of assisting designers in early design phases of interdisciplinary design 
situations where no dedicated design theory or methodology is available. Our approach is 
characterised in that is it generic but at the same time aims to give support in administrating, 



postponing and revoking design decisions. We are in the process of implementing our ideas 
and using them in test cases with practitioners in order to show their practical usefulness. 
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