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Abstract

The synchronization problem for complex discrete�time systems
is revisited from a control perspective and it is argued that the
problemmay be viewed as an observer problem� It is shown that
for several classes of systems a solution for the synchronization
�observer� problem exists� Also� by allowing past measurements
a dynamic mechanism for state reconstruction is provided�

�
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��� Introduction

Since the work of Pecora and Carroll �	
�� a huge interest in �chaos� syn�
chronization has arisen� Among others� this is illustrated by the appear�
ance of a number of special issues of journals devoted to the subject� cf�
��
� �
� ���� One clear motivation for this widespread interest lies in the
fact that Pecora and Carroll indicated that chaos synchronization might
be useful in communications� Although by now this claim is not fully jus�
ti�ed yet� several interesting applications of �chaos� synchronization are
envisioned�
Synchronization as it was introduced by Pecora and Carroll has been

studied from various viewpoints� Following �	
�� often a receiver�transmitter
�or master�slave� formalism is taken� where typically the receiver system
is an exact copy of the transmitter system� and the aim is to synchronize
the receiver response with that of the transmitter� provided the receiver
dynamics are driven by a scalar signal from the transmitter� see �	
� �� ����
More recently� the above method was recast in an active�passive decom�

position� see �	��� where the decomposition idea has to be understood in
the way that part of the transmitter state needs to be transmitted� while
the �passive� part then will be derived asymptotically�
Another idea to achieve synchronization between �identical� transmitter

and receiver dynamics is to include �linear� feedback of the drive signal in
the receiver system� see �	�� and �		� where a number of sucessfull experi�
mental settings of this type are discussed�
A third way to achieve synchronization between transmitter and receiver

was recently put forward in ��� and essentially advertises the idea of system
inversion for �state� synchronization�
Notwithstanding the widespread interest in the synchronization prob�

lem� sofar the problem leaves quite some ambiguity in how to make an
active�passive decomposition� or how to build successfully an �stable� in�
verse system� Indeed� this ambiguity disappears when the synchronization
problem is viewed as the question how to reconstruct the full state tra�
jectory of the transmitter system� given some �scalar� drive signal from
the transmitter� This is essentially the observer problem from control the�
ory� and has� following the earlier attempts ��� 	
� 	��� by now obtained a
prominent place within recent synchronization literature� see for instance
�	�� and various other observer�based synchronization papers�
The purpose of the present chapter is to revisit the synchronization prob�

lem for discrete�time systems using �discrete�time� observers� Synchroniza�
tion of complex�chaotic discrete�time systems has been the subject of var�
ious publications� see e�g� ��� 	� �� �	� ���� but only little attention for an
observer�based viewpoint exists �see� however� ���� ��� where this viewpoint
is taken� and ����� which may be interpreted as a particular application of
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the observer�based viewpoint �although this is not mentioned explicitly in
������� One could argue� however� that the synchronization problem for
discrete�time systems is as important as the continuous�time counterpart�
First� for communications of binary signals one can very well base oneself
on discrete�time transmitter systems instead of continuous�time transmit�
ters� A second motivation to look at discrete�time synchronization is that
many continuous�time models are in the end �for instance for simulation
and implementation� discretized or sampled� A third motivation is that
discrete�time dynamics are obtained when one considers the Poincar�e map
at a suitably de�ned Poincar�e section of a chaotic transmitter system�

As stated� we pursue an observer�based view on �discrete�time� synchro�
nization� Although there exist some clear analogies between discrete�time
and continuous�time observers� there are various results available in either
context which do not admit a proper analogon in the other domain�

This chapter is organized as follows� In Section 	��� we treat some prelim�
inaries and give our problem statement� Section 	�� is devoted to nonlinear
discrete�time transmitters of a special form� the so called Lur�e form� It
is shown that for this kind of systems the construction of an observer is
relatively easy� In Section 	��� we study the question when a given non�
linear discrete�time transmitter is equivalent to a system in Lur�e form
by means of a coordinate transformation� In Section 	��� we introduce a
so called extended Lur�e form� indicate how observers for transmitters in
this extended Lur�e form may be constructed� and give conditions under
which a nonlinear discrete�time transmitter may be transformed into an
extended Lur�e form� Section 	�� treats the observer design for perturbed
linear transmitters� Section 	�� �nally� contains some conclusions�

��� Preliminaries and Problem Statement

Throughout this chapter� we consider discrete�time nonlinear �transmitter�
dynamics of the form

x�k � 	� � f�x�k��� x��� � x� � R
n 
��	���

where the state transition map f is a smooth mapping from R
n into itself�

Note that direct extensions of �	���	� are possible by allowing the state
to belong to an open subset of Rn� or to a di�erentiable manifold� The
solution x�k� x�� of �	���	� is not directly available� but only an output is
measured� say

y�k� � h�x�k�� 
��	�	�
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where y � R
p and h � Rn � R

p is the smooth output map� Though in
the sequel there is no restriction in assuming the transmitted signal y�k�
to be p�dimensional� we will for simplicity �and following most work on
synchronization� take p � 	�

The observer problem for �	���	�	����� now deals with the question how to
reconstruct the state trajectory x�k� x�� on the basis of the measurements
y�k�� A full observer �or brie�y observer� for the system �	���	�	����� is a
dynamical system of the form

�x�k � 	� � �f ��x�k�� y�k��� �x��� � �x� � R
n 
��	���

where �x � R
n� and �f is a smooth mapping on Rn parametrized by y�

such that the error e�k� �� x�k� � �x�k� asymptotically converges to zero
as k�� for all initial conditions x� and �x�� Moreover� we require that if
e�k�� � � for some k�� then e�k� � � for all k � k��

��� Systems in Lur�e Form

The problem of observer design in its full generality is a problem that is
di cult to solve� Basically� only the observer design problem for linear
systems has been solved in its full generality� cf� ����� Therefore� we start
our survey of possible approaches to observer�based synchronization by
considering a class of nonlinear systems that is slightly more general than
linear systems� namely systems in so called Lur�e form�

Assume that the master dynamics are governed by the following system
of di�erence equations

x�k � 	� � Ax�k� � ��y�k��� y�k� � Cx�k�� 
������

where x�k� � Rn is the state� y�k� � R� is the scalar output� � � R� �
R
n is a smooth function and A�C are constant matrices of appropriate
dimensions� Dynamics of the form �	����� are referred to as dynamics in
Lur�e form� The question we now pose is� under what conditions it is
possible to design an observer for �	�����! As a possible observer candidate
one can build a copy of �	����� augmented with so called output injection�

bx�k � 	� � Abx�k� � ��y�k�� � L�y�k� � by�k��� by�k� � Cbx�k�� 
������

where bx�k� � Rn is the estimate of x�k� and L is a n� 	 matrix� see �	���
The solutions of the systems �	����� and �	����� will synchronize if for

all initial conditions the error e�k� �� x�k� � bx�k� tends to zero when k
tends to in�nity� Substracting �	����� from �	����� one can easily see that
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the error vector e�k� obeys the following linear di�erence equation

e�k � 	� � �A� LC�e�k�� 
������

Therefore� if all eigenvalues of A � LC lie in the open unit disc �i�e�� the
set fz � C j jzj � 	g�� then �	����� is an observer for �	������ In other
words� for the system �	����� the synchronization problem can be reduced
to the following question� given A�C� under what conditions does there
exist a matrix L such that A � LC has all eigenvalues in the open unit
disc! This linear algebraic problem has a simple solution� Namely� a
su cient condition for existence of L is the invertibility of the following
linear mapping

O�x� ��

�
������

C
CA
CA�

���
CAn��

�
������x� 
����
�

In linear control theory� a pair of matrices �C�A� such that O�x� in �	�����
is invertible� is said to be an observable pair� Using this terminology we
can formulate the following result�

THEOREM ���

Assume that the pair �C�A� is observable� Then the system �����	
 ad�
mits an observer ������
 with the exponentially stable linear error dynamics
������
�

The proof of this result can be found in any textbook on linear control
theory �see e�g� ������ It is worth mentioning that the proof is constructive�
Namely� the linear mappingO de�nes a similarity transformation such that
the matrix A� LC is similar to the following matrix in Frobenius form�

����
� � � � � a� � l�
	 � � � � a� � l�
���
� � �

���
���

� � � � 	 an � ln

�
����

where col�l�� l�� � � � � ln� � O�L�� and the ai are the coe cients of the char�
acteristic polynomial of A� Since ai � li are the coe cients of the charac�
teristic polynomial of A�LC it is always possible to locate the eigenvalues
of A � LC in the open unit disc by means of an appropriate choice of the
matrix L�
It is worth mentioning that the condition of observability is in fact a

su cient� but not a necessary condition allowing to design an observer�
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Namely� the system may have O�x� of rank lower than n� but at the same
time it may admit an observer� This situation occurs when the so�called
unobservable dynamics are exponentially stable� In the control literature
linear systems with exponentially stable unobservable dynamics are referred
to as detectable �cf� ������ In practice it often means that such systems can
be transformed to an observable system via model reduction�

Example � Consider the following discrete�time dynamics in Lur�e form��
z��k � 	�
z��k � 	�

	
�

�
� ��
	 	 � �

	

 �z �

A

�
z��k�
z��k�

	
�

�
�

�� cos y�k�

	

 �z �

��y�k��

y�k� �


� 	

�

 �z �

C

z�k�


������

where �� � � �� In this case� we obtain�
C
CA

	
�

�
� 	
	 	 � �

	

������

which clearly is an invertible matrix� Thus� one may construct an observer
for �	���
� of the following form�� bz��k � 	�bz��k � 	�

	
�

�
� ��
	 	 � �

	

 �z �

A

� bz��k�bz��k�
	
�

�
�

�� cos y�k�

	

 �z �

��y�k��

�

�L�y�k� � by�k��
by�k� �



� 	

�

 �z �

C

bz�k�

�������

where L � col�l�� l��� and l� and l� are chosen such that all eigenvalues of
the matrix

A � LC �

�
� ��� l�
	 	 � �� l�

	

�������

lie in the open unit disc� �

��� Transformation into Lur�e Form

In the previous section we learned that if the transmitter dynamics are
in Lur�e form �	����� and the pair �C�A� is observable� then it is always
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possible to design a receiver system which synchronizes with �	������

The result presented in the previous section is very simple� However�
the following question remains open� what can we do if the transmitter
dynamics are not in the form �	�����! In this section we will present a
partial answer to this question�

First of all� notice that the representation �	����� is coordinate depen�
dent� This means that if one rewrites the system �	����� in a new coordinate
system via a �nonlinear� coordinate change z � T �x�� then a new represen�
tation of the same dynamical system is not necessarily in the form �	������

By the same token� however� this may also mean that it is possible to
transform a system into Lur�e form by means of a nonlinear coordinate
change z � T �x�� Hence� we arrive at the following problem�

Let a discrete�time system �	���	�	����� with scalar output be given� and
assume that f��� � �� h��� � �� The problem is to �nd conditions ensuring
existence of an invertible coordinate change z � T �x� such that the system
�	���	� is locally �or globally� equivalent to the following Lur�e system

z�k � 	� � Az�k� � ��y�k��� y�k� � Cz�k� 
�����	�

where the pair �C�A� is observable�

As one can see from the problem statement� the coordinate change z �
T �x� can be either locally or globally de�ned �i�e�� the inverse mapping T��

can exist on a neighborhood of the origin or everywhere�� In the �rst case
the systems �	���	�	����� and �	���	�� are equivalent if for all k one has that
jjx�k�jj is su ciently small� In the second case there are no restrictions of
such kind�

The following result from �	�� gives a �local� solution to the problem�

THEOREM ���

A discrete
time system ������������
 with single output is locally equiva�
lent to a system in Lur�e form ���	���
 with observable pair �C�A� via a
coordinate change z � T �x� if and only if

�i� the pair �	h���
	x� 	f���
	x� is observable�

�ii� the Hessian matrix of the function h 	 fn 	O���s� is diagonal� where
x � O���s� is the inverse map of

O�x� �

�
����

h�x�
h 	 f�x�

���
h 	 fn���x�

�
���� � 
�������

with h 	 f�x� �� h�f�x��� f� �� f� fj �� f 	 fj���
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It is important to notice that condition �i� means that the Jacobian
	O���
	x is invertible� In an equivalent form it can be rewritten in the
form

dim

�
span

�
	h

	x
����

	h 	 f

	x
���� � � � �

	h 	 fn��

	x
���

��
� n

The condition �ii� may be interpreted in the following way� As indicated
above� if condition �i� holds� the transformation s � O�x� is a local di�eo�
morphism� Thus� s forms a new set of local coordinates for the dynamics
�	���	� around the origin� It is straightforwardly checked that in these new
coordinates the system �	���	�	����� takes the form�������

������

s��k � 	� � s��k�
���

sn���k � 	� � sn�k�
sn�k � 	� � fs�s�k��

y�k� � s��k�


�������

where fs�s� �� h	fn	O���s�� In the literature �cf� �	���� the form �	���	��
is referred to as the observable form of the system �	���	�	������ Condition
�ii� then is equivalent to the local existence of functions ��� � � � � �n � R� R

such that

fs�s� � ���s�� � ���s�� � � � �� �n�sn� 
�������

With the functions ��� � � � � �n at hand� the transformation

zi �� sn���i �
nX

k�i��

�k�sk�i� �i � 	� � � � � n� 
�������

then transforms the observable form �	���	�� into the following Lur�e form��������
������

z��k � 	� � ���y�k��
z��k � 	� � z��k� � ���y�k��

���
zn�k � 	� � zn���k� � �n�y�k��

y�k� � zn�k�


�����
�

The mapping O in �	���	�� and the observable form play an important
role in the observer design for nonlinear discrete�time systems� As one can
easily see� in the linear case the mapping O is exactly the linear operator
�	����� introduced in the previous section� Since the Jacobian of O is
invertible around x � � the mapping O is a local di�eomorphism� If one is
interested in �nding a coordinate change z � T �x� which is globally de�ned
it is su cient to check that O is a global di�eomorphism from R

n to Rn

and the functions ��� � � � � �n satisfying �	���	�� exist globally�
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Example � Bouncing ball� Consider the following discrete�time model
which describes the bouncing ball system ���� ����

x��k � 	� � x��k� � x��k�
x��k � 	� � �x��k�� � cos�x��k� � x��k��


�������

where x��k� is the phase of the table at the k�th impact� x��k� is propor�
tional to the velocity of the ball at the k�th impact� the parameter � is the
coe cient of restitution� and � � ����	 � ��A
g� Here � is the angular
frequency of the table oscillation� A is the corresponding amplitude and
g is the gravitational acceleration� For some values of the parameters the
system can exhibit very complex behavior� However� we will show that this
is not an obstacle for the design of an observer�

Suppose only the �rst variable x� �the phase� is available for measure�
ment� The question is� can we reconstruct the second variable! Clearly
the system �	���	
� is not in Lur�e form� However� using the theory pre�
sented in this section� we will show that there exists a coordinate change
that transform �	���	
� into Lur�e form�

So� we assumed that

y�k� � h�x�k�� � x��k��

Let us check the conditions of Theorem 	��� A simple calculation gives

	h���

	x
�


	 �

�
�

	f���

	x
�

�
	 	
� �

	

and this pair is clearly observable� Hence� condition �i� is satis�ed�

To check condition �ii�� let us �nd the mapping O� Obviously�

O�x� �

�
	 �
	 	

	
x 
�������

with x � col�x�� x��� This mapping is linear� it is invertible and therefore
it is a global di�eomorphism� Introducing s � col�s�� s�� �� O�x� we see
that

fs�s� �� h 	 f� 	 O���s� � ��s� � �	 � ��s� � � cos s�

and it is clear that the Hessian of this function is diagonal� Thus� condition
�ii� is satis�ed as well� Note that� in view of �	���	��� we have that fs�s� �
���s�� � ���s��� with ���s�� �� ��s�� ���s�� �� �	 � ��s� � � cos s��
Therefore there exists a coordinate change which locally transforms the
system �	���	
� into Lur�e form� Moreover� the mapping O is a global
di�eomorphism and the functions ��� �� are globally de�ned� which gives
that this coordinate change is in fact global�
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From �	���	
���	���	�� we obtain the following coordinate change��
z� � ��x� � x� � � cos x�
z� � x�


����	��

with the output y � z� � x�� In the new coordinate system the original
system �	���	
� has the following form�

z��k � 	� � ��z��k�
z��k � 	� � z��k� � �	 � ��z��k� � � cos z��k��


����	��

Note that the dynamics �	����	� are identical to the dynamics �	���
��
Therefore� an observer for �	����	� is given by �	���	���
The estimates bx�� bx� for x�� x� are given by the following relations� which

immediately follow from �	�������bx� � bz�bx� � bz� � �bz� � � cos bz� 
����		�

with �z�� �z� the observer state for �	����	�� Moreover� by means of an appro�
priate choice of l�� l� one can achieve arbitrarily fast convergence of bx�k�
to x�k�� �

��� Transformation into Extended Lur�e Form

In the previous section we found that if the observability mapping O is a
di�eomorphism and condition �ii� of Theorem 	�� holds� then there exists
a coordinate change transforming the system �	���	�	����� into Lur�e form�
which makes the observer design a simple linear algebraic problem� Es�
pecially condition �ii� of Theorem 	�� is quite restrictive� Therefore� the
question arises whether� and in what way� this condition may be relaxed�
To answer this question� we will assume in this section that at time k

besides y�k� also past output measurements y�k�	�� � � � � y�k�N � for some
N � � are available� and �rst consider nonlinear dynamics of the following
form��

x�k � 	� � Ax�k� � ��y�k�� y�k � 	�� � � � � y�k �N ��
y�k� � Cx�k�


����	��

where x�k� � R
n� y�k� � R

�� � � RN�� � R
n is a smooth mapping�

and A�C are matrices of appropriate dimensions� Note that the dynamics
�	������ for N � � are just the dynamics �	������ Therefore� we refer to
dynamics of the form �	������ as dynamics in extended Lur�e form with
bu�er N � Assume that the pair �C�A� is observable� As we have seen in
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Section 	�� there then exists a matrix L such that all eigenvalues of A�LC
lie in the open unit disc� Along the same lines as in Section 	��� it may
then be shown that the following dynamics are an observer for �	�������� bx�k � 	� � Abx�k� � ��y�k�� � � � � y�k �N �� � L�y�k� � by�k��by�k� � Cbx�k�


����	��

As in Section 	��� we now ask ourselves the question under what con�
ditions the discrete�time system �	���	�	����� may be transformed into an
extended Lur�e form for some N � �� The transformations we are going to
use here� are more general than the transformation in Section 	��� in the
sense that we also allow them to depend on the past output measurements
y�k�	�� � � � � y�k�N �� More speci�cally� we will be looking at parametrized
transformations z � T �x� ��� � � � � �N �� where z � R

n� with the property that
�locally or globally� there exists a mapping T����� ��� � � � � �N � � R

n � R
n

parametrized by ���� � � � � �N �� such that for all ���� � � � � �N � we have

T �T���z� ��� � � � � �N �� ��� � � � � �N � � z

A mapping having this property will be referred to as an extended co�
ordinate change� We will then say that the system �	���	�	����� may be
transformed into an extended Lur�e form with bu�er N if there exists an
extended coordinate change T ��� ��� � � � � �N � � R

n � R
n parametrized by

���� � � � � �N � such that the variable

z�k� �� T �x�k�� y�k � 	�� � � � � y�k � N �� 
����	��

satis�es �	������� where the pair �C�A� is observable� As pointed out above�
one may then build an observer �	������ for z�k� in �	������� From this
observer� one then obtains estimates bx�k� for x�k� by inverting the extended
coordinate change T �

bx�k� �� T���bz�k�� y�k � 	�� � � � � y�k �N �� 
����	��

The following result from �
� �see also �
�� gives conditions under which a
system �	���	�	����� may be transformed into an extended Lur�e form with
bu�er N �

THEOREM ���

Consider a discrete
time system ������������
� and assume that the map�
ping O in ���	���
 is a local di�eomorphism� Let N � f�� � � � � n � 	g be
given� Then ������������
 may be locally transformed into an extended Lur�e
form with bu�er N if and only if there locally exist functions �N��� � � � � �n �
R
N�� � R such that the function fs in the observable form ���	��	
 satis�
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�es

fs�s�� � � � � sn� �
nX

i�N��

�i�si� � � � � si�N � 
����	
�

The proof of the above theorem is constructive� Namely� assume that
functions �N��� � � � � �n satisfying �	������ exist� and de�ne an extended
coordinate change by

zi ��

������
�����

sn�i�� �
nP

j�N��
�j�sj�i� � � � � sj�i�N � �i � 	� � � � � N � 	�

sn�i�� �
nP

j�i��
�j�sj�i� � � � � sj�i�N � �i � N� � � � � n�


����	��

It is then straightforwardly checked that in these new extended coordinates
the observable form �	���	�� takes the following extended Lur�e form���������������

�������������

z��k � 	� � �
z��k � 	� � z��k�

���
zN �k � 	� � zN���k�

zN���k � 	� � zN �k� � �N���y�k�� � � � � y�k � N ��
���

zn�k � 	� � zn���k� � �n�y�k�� � � � � y�k � N ��
y�k� � zn�k�


����	��

Theorem 	�� gives necessary and su cient conditions for the local exis�
tence of an extended Lur�e form with bu�er N for �	���	�	������ For global
existence of an extended Lur�e form with bu�er N � the mapping O in
�	���	�� needs to be a global di�eorphism� and the mappings �N��� � � � � �n
satisfying �	������ need to exist globally�
It is easily checked that for N � n � 	� condition �	������ is always

satis�ed globally� Thus� we have that a system �	���	�	����� for which
the mapping O in �	���	�� is a local �global� di�eomorphism may always
be locally �globally� transformed into an extended Lur�e form with bu�er
n � 	�

��� Observers for Perturbed Linear Systems

So far the design procedure for observers has been based on the assumption
that for the discrete�time system under consideration the mapping O in
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�	���	�� is a �local or global� di�eomorphism� In the sequel� we consider a
particular class of systems for which this might not be the case� Namely�
we consider systems of the form�

x�k � 	� � Ax�k� �Bf�x�k��
y�k� � Cx�k�


�������

where x�k� � Rn is the state� y�k� � R� is the scalar output� the function
f � Rn � R

� is smooth� A�B�C are matrices of appropriate dimensions�
and the pair �C�A� is observable� Clearly� depending on the speci�c struc�
ture of f and B� the system �	������ may have a mapping O that is not
a di�eomorphism� Nevertheless� we may derive conditions on �	������ that
guarantee the existence of an observer�

De�ne the rational function G�s� by

G�s� �� C�sI � A���B 
�������

Then G�s� has the form G�s� � q�s�
p�s� � where q and p are polynomials in s�

with deg�p� � deg�q�� We now assume that deg�p� � deg�q� � 	� It may
be shown that this is equivalent to the fact that CB 
� �� To obtain an
observer for �	������� we �rst de�ne new coordinates in the following way�
Since CB 
� �� there exists an �n � 	� � n matrix N such that NB � �

and the matrix S ��


CT NT

�T
is invertible� Thus� ��� z� �� �Cx�Nx�

forms a new set of coordinates for �	������� It is straightforwardly checked
that in these new coordinates the system �	������ takes the form��

�
��k � 	� � "f���k�� z�k��
z�k � 	� � A���k� �A�z�k�

y�k� � ��k�

�����	�

where

"f��� z� � C

�
AS��

�
�
z

	
� CBf

�
S��

�
�
z

	�	
and 


A� A�

�
� NAS��

We now assume the following�

A� The mapping "f in �	������ is globally Lipschitz with respect to z�
i�e�� there exists an L � � such that

��� � R���z� "z � Rn����j "f��� "z�� "f ��� z�j � Lk"z � zk�

A� All zeros of the polynomial q�s� are located in the open unit disc�
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As an observer candidate we take the following system�� b��k � 	� � "f �y�k�� bz�k��bz�k � 	� � A�y�k� � A�bz�k� 
�������

We then have the following result�

THEOREM ���

Assume that for �������
 we have that the pair �C�A� is observable� that
CB 
� �� and that assumptions A� and A� hold� Then �������
 is an
observer for �������
�

PROOF De�ning the error signals e��k� �� ��k� � b��k�� ez�k� �� z�k� �bz�k�� we obtain the following error equations��
e��k � 	� � "f ���k�� ez�k� � bz�k�� � "f ���k�� bz�k��
ez�k � 	� � A�ez�k�


�������

It is easily checked that assumption A� implies that all eigenvalues of
A� are in the open unit disc� This implies on its turn that there exist

 � ��� � � � 	 such that ez�k� satis�es

kez�k�k � 
�kkez���k 
�������

Using assumption A� and �	������� we then obtain

je��k�j � j "f���k � 	�� ez�k � 	� � bz�k � 	��� "f ���k � 	�� bz�k � 	��j �
Lkez�k � 	�k � L
�k��kez���k


�������

Since � � � � 	� it follows from �	��������	������ that e��k�� ez�k� � � for
k � ��� and thus �	������ is an observer for �	�������

REMARK A�
The result in this section may be generalized to systems �	������ for

which we have that deg�p� � deg�q� � 	� This generalization will be given
in a forthcoming paper�

��	 Conclusions

Following a similar line of research as in �	�� we develop an observer per�
spective on the synchronization problem for nonlinear �complex� discrete�
time systems� For several classes of discrete�time systems it is shown that
a suitable observer can be found� In case such an observer does not exist�
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or� can not be found analytically we propose to use an extended observer�
The latter method follows �
�� see also �
�� and presents an observer that
uses also past measurements� and can be applied under fairly general con�
ditions� Like the continuous�time paper �	�� it seems that control theory
might be a very valuable tool in the study of synchronization�
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